Science.gov

Sample records for bradykinin b2 receptor

  1. Regulation of bradykinin B2-receptor expression by oestrogen

    PubMed Central

    Madeddu, Paolo; Emanueli, Costanza; Varoni, Maria Vittoria; Demontis, Maria Piera; Anania, Vittorio; Gorioso, Nicola; Chao, Julie

    1997-01-01

    Tissue kallikrein is overexpressed in the kidney of female rats, this sexual dimorphism being associated with a greater effect of early blockade of bradykinin B2-receptors on female blood pressure phenotype. We evaluated the effect of ovariectomy and oestradiol benzoate (50 μg kg−1 every two days for two weeks) on the vasodepressor response to intra-arterial injection of bradykinin (150–900 ng kg−1) and on the expression of bradykinin B2-receptors.Ovariectomy reduced the magnitude of the vasodepressor response to bradykinin and unmasked a secondary vasopressor effect. Oestrogen replacement restored the vasodepressor response to bradykinin in ovariectomized rats.The vasodepressor responses to sodium nitroprusside (3–18 μg kg−1), acetylcholine (30–600 ng kg−1), desArg9-bradykinin (150–900 ng kg−1) or prostaglandin E2 (30–600 ng kg−1) were significantly reduced by ovariectomy. Oestrogen restored to normal the responses to desArg9-bradykinin, acetylcholine and prostaglandin E2, but not that to sodium nitroprusside.B2-receptor mRNA levels were decreased by ovariectomy in the aorta and kidney and they were restored to normal levels by oestrogen. Neither ovariectomy nor oestradiol affected receptor expression in the heart and uterus.These results indicate that oestrogen regulates B2-receptor gene expression and function. Since kinins exert a cardiovascular protective action, reduction in their vasodilator activity after menopause might contribute to the increased risk of pathological cardiovascular events. Conversely, the cardioprotective effects of oestrogen replacement might be, at least in part, mediated by activation of the kallikrein-kinin system. PMID:9283715

  2. Differential Distribution of Bradykinin B(2) Receptors in the Rat and Human Cardiovascular System.

    PubMed

    Figueroa, Carlos D.; Marchant, Alejandra; Novoa, Ulises; Förstermann, Ulrich; Jarnagin, Kurt; Schölkens, Bernward; Müller-Esterl, Werner

    2001-01-01

    -Bradykinin, a major vasodilator peptide, plays an important role in the local regulation of blood pressure, blood flow, and vascular permeability; however, the cellular distribution of the major bradykinin B(2) receptor in the cardiovascular system is not precisely known. Immunoblot analysis with an anti-peptide antibody to the bradykinin B(2) receptor or chemical cross-linkage with [(125)I]Tyr(0)-bradykinin revealed a band of 69+/-3 kDa at varying intensity in the homogenates of the endothelium and tunica media of the rat aorta and endocardium. Immunostaining showed that the B(2) receptor is abundant in the endothelial linings of the aorta, other elastic arteries, muscular arteries, capillaries, venules, and large veins, where it localizes preferentially to the luminal face of the endothelial cells. In marked contrast, small arterioles (ie, the principal blood-pressure regulating vessels) of the mesenterium, heart, urinary bladder, brain, salivary gland, and kidney had a different staining pattern in which B(2) receptor was prominent in the perivascular smooth muscle cells of the tunica media. A similar distribution pattern was found in mouse as well as in human tissues, indicating that the particular distribution pattern of the B(2) receptor in arterioles is not a species-specific phenomenon. During development, the distribution of B(2) receptor in the heart changes; for example, in the heart of newborn rats, the B(2) receptor was abundant in the myocardium, whereas in the adult heart, the receptor was present in the endocardium of atria, atrioventricular valves, and ventricles but not in the myocardium. Thus, B(2) receptors are localized differentially in different parts of the cardiovascular system: the arterioles have smooth muscle-localized B(2) receptors, and large elastic vessels have endothelium-localized receptors.

  3. Synthesis and characterization of bradykinin B(2) receptor agonists containing constrained dipeptide mimics.

    PubMed

    Amblard, M; Daffix, I; Bergé, G; Calmès, M; Dodey, P; Pruneau, D; Paquet, J L; Luccarini, J M; Bélichard, P; Martinez, J

    1999-10-07

    We have previously shown that substitution of the D-Tic-Oic dipeptide by a (3S)-[amino]-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety in the bradykinin B(2) receptor antagonist HOE 140 resulted in a full potent and selective bradykinin B(2) receptor agonist (H-DArg-Arg-Pro-Hyp-Gly-Thi-Ser-D-BT-Arg-OH, JMV1116) exhibiting a high affinity for the human receptor (K(i) 0.7 nM). In the present study, we have investigated the effects of replacement of the D-Tic-Oic moiety by various constrained dipeptide mimetics. The resulting compounds were tested for their binding affinity toward the cloned human B(2) receptor and for their functional interaction with the bradykinin-induced contraction of isolated human umbilical vein. Subsequently, we have designed novel bradykinin B(2) receptor agonists which are likely to be resistant to enzymatic cleavage by endopeptidases and which might represent interesting new pharmacological tools. In an attempt to increase the potency of compound JMV1116, both its N-terminal part and the D-BT moiety were modified. Substitution of the D-arginine residue by a L-lysine residue led to a 10-fold more potent bradykinin B(2) ligand [compound 22 (JMV1465) (K(i) 0.07 nM)], retaining full agonist activity on human umbilical vein. Substitution of the D-BT moiety by a (3S)-[amino]-5-(carbonylmethyl)-2,3-dihydro-8-methyl-1, 5-benzothiazepin-4(5H)-one [D-BT(Me)] moiety led to compound 23 (JMV1609) which exhibited a higher agonist activity (pD(2) = 7.4) than JMV1116 (pD(2) = 6.8).

  4. Noradrenaline release from rat sympathetic neurones triggered by activation of B2 bradykinin receptors.

    PubMed

    Boehm, S; Huck, S

    1997-10-01

    1. The role of bradykinin receptors in the regulation of sympathetic transmitter release was investigated in primary cultures of neurones dissociated from superior cervical ganglia of neonatal rats. These cultures were loaded with [3H]-noradrenaline and the outflow of radioactivity was determined under continuous superfusion. 2. Bradykinin (100 nmol l[-1] applied for 10 min) caused a transient increase in tritium outflow that reached a peak within four minutes after the beginning of the application and then declined towards the baseline, despite the continuing presence of the peptide. ATP (100 micromol l[-1]) and nicotine (10 micromol l[-1]) caused elevations in 3H outflow with similar kinetics, whereas outflow remained elevated during a 10 min period of electrical field stimulation (0.5 ms, 50 mA, 50 V cm[-1], 1.0 Hz). 3. When bradykinin was applied for periods of 2 min, the evoked 3H overflow was half-maximal at 12 nmol l(-1) and reached a maximum of 2.3% of cellular radioactivity. The preferential B1 receptor agonist des-Arg9-bradykinin failed to alter 3H outflow. The B2 receptor antagonists, [D-Phe7]-bradykinin (1 micromol l[-1]) and Hoe 140 (10 nmol l[-1]), per se did not alter 3H outflow, but shifted the concentration-response curve for bradykinin-evoked 3H overflow to the right by a factor of 7.9 and 4.3, respectively. 4. Bradykinin-induced overflow was abolished in the absence of extracellular Ca2+ and in the presence of either 1 micromol l(-1) tetrodotoxin or 300 micromol l(-1) Cd2+, as was electrically-induced overflow. Activation of alpha2-adrenoceptors by 1 micromol l(-1) UK 14,304 reduced both bradykinin- and electrically-triggered overflow. The Ca2+-ATPase inhibitor thapsigargin (0.3 micromol l[-1]) failed to alter either type of stimulated overflow. Caffeine (10 mmol l[-1]) enhanced bradykinin-induced overflow, but reduced overflow triggered by electrical field stimulation. 5. Inclusion of Ba2+ (0.1 to 1 mmol l[-1]) in the superfusion medium enhanced

  5. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  6. Heteromerization Between the Bradykinin B2 Receptor and the Angiotensin-(1-7) Mas Receptor: Functional Consequences.

    PubMed

    Cerrato, Bruno D; Carretero, Oscar A; Janic, Brana; Grecco, Hernán E; Gironacci, Mariela M

    2016-10-01

    Bradykinin B2 receptor (B2R) and angiotensin-(1-7) Mas receptor (MasR)-mediated effects are physiologically interconnected. The molecular basis for such cross talk is unknown. It is hypothesized that the cross talk occurs at the receptor level. We investigated B2R-MasR heteromerization and the functional consequences of such interaction. B2R fused to the cyan fluorescent protein and MasR fused to the yellow fluorescent protein were transiently coexpressed in human embryonic kidney293T cells. Fluorescence resonance energy transfer analysis showed that B2R and MasR formed a constitutive heteromer, which was not modified by their agonists. B2R or MasR antagonists decreased fluorescence resonance energy transfer efficiency, suggesting that the antagonist promoted heteromer dissociation. B2R-MasR heteromerization induced an 8-fold increase in the MasR ligand-binding affinity. On agonist stimulation, the heteromer was internalized into early endosomes with a slower sequestration rate from the plasma membrane, compared with single receptors. B2R-MasR heteromerization induced a greater increase in arachidonic acid release and extracellular signal-regulated kinase phosphorylation after angiotensin-(1-7) stimulation, and this effect was blocked by the B2R antagonist. Concerning serine/threonine kinase Akt activity, a significant bradykinin-promoted activation was detected in B2R-MasR but not in B2R-expressing cells. Angiotensin-(1-7) and bradykinin elicited antiproliferative effects only in cells expressing B2R-MasR heteromers, but not in cells expressing each receptor alone. Proximity ligation assay confirmed B2R-MasR interaction in human glomerular endothelial cells supporting the interaction between both receptors in vivo. Our findings provide an explanation for the cross talk between bradykinin B2R and angiotensin-(1-7) MasR-mediated effects. B2R-MasR heteromerization induces functional changes in the receptor that may lead to long-lasting protective properties.

  7. Synthesis and biological evaluation of bradykinin B(1)/B(2) and selective B(1) receptor antagonists.

    PubMed

    Amblard, M; Bedos, P; Olivier, C; Daffix, I; Luccarini, J M; Dodey, P; Pruneau, D; Paquet, J L; Martinez, J

    2000-06-15

    We recently described a potent bradykinin B(2) receptor agonist (JMV1116) obtained by replacing the D-Tic-Oic dipeptide moiety of HOE140 by a (3S)-amino-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety. This compound inhibited the specific binding of [(3)H]BK on membranes of CHO cells expressing the human cloned B(2) receptor with nanomolar affinity and contracted both isolated rat uterus and human umbilical vein. These data demonstrated that D-BT could be a good mimic of the Pro-Phe dipeptide. In the present study we characterized B(1) receptor antagonists containing the D-BT moiety. We prepared an analogue of compound JMV1116 deleting the C-terminal arginine residue. The resulting compound (1) had an affinity of 83 nM for the human cloned B(1) receptor. The most remarkable property of 1 is its ability to bind also the B(2) receptor with an affinity of 4.4 nM despite the absence of the C-terminal arginine residue. Modifications at the N-terminal part of 1 associated with the substitution of the thienylalanine residue by alpha-(2-indanyl)glycine resulted in analogues selectively binding to the B(1) receptor with an affinity in the picomolar range.

  8. Inhibition of RNA synthesis by bradykinin involves both the B1 and B2 receptor subtypes.

    PubMed

    Yau, L; Pinsk, M; Zahradka, P

    1996-04-01

    The efficacy of angiotensin converting enzyme inhibitors in the treatment of heart disease is due in part to the accumulation of bradykinin (BK). Since BK can exert its effect by influencing cell proliferation, we chose to study the effect of BK on the growth of A10 vascular smooth muscle cells. Ligand binding studies to determine which BK receptor subtypes are present on A10 cells showed that both B1 and B2 receptors were present in approximately equal numbers. Examination of RNA synthesis demonstrated that BK inhibits uridine incorporation in a dose-dependent manner. This decrease in RNA synthesis was blocked by both B1 and B2 receptor antagonists, as well as by addition of indomethacin, a cyclooxygenase inhibitor. The latter result suggested that prostaglandins mediate the biological actions of BK. Consequently, we examined the direct effect of two prostaglandins, PGE2 and PGI2 (prostacyclin), on A10 cells. PGE2 caused a decrease in RNA synthesis, thus mimicking the effect of BK, while PGI2 did not. Therefore, the inhibition of RNA synthesis in A10 vascular smooth muscle cells by BK requires both B1 and B2 receptor subtypes and this action of BK is apparently mediated by de novo synthesis of prostaglandins.

  9. Bradykinin B2-receptor-mediated modulation of membrane currents in guinea-pig cardiomyocytes

    PubMed Central

    Sakamoto, Naoya; Uemura, Hiroko; Hara, Yukio; Saito, Toshihiro; Masuda, Yoshiaki; Nakaya, Haruaki

    1998-01-01

    In order to define the electrophysiological mechanism(s) responsible for bradykinin (BK)-induced positive inotropic and chronotropic responses in isolated guinea-pig atria, effects of BK on the membrane currents were examined in isolated atrial cells using patch clamp techniques.BK (0.1–1000 nM) increased the L-type Ca2+ current (ICa), which was recorded from enzymatically-dissociated atrial myocytes by the nystatin-perforated patch method, in a concentration-dependent fashion, and the calculated EC50 value for increasing ICa was 5.2 nM. In conventional ruptured patch experiments, BK inhibited the muscarinic acetylcholine receptor-operated K+ current (IK.ACh) that was activated by the muscarinic agonist carbachol (1 μM) with an EC50 value of 0.57 nM. Both the increase in ICa and the decrease in IK.ACh were blocked by HOE140, a selective bradykinin B2 receptor antagonist.The BK-induced inhibition of IK.ACh was significantly attenuated by staurosporine and calphostin C, protein kinase C inhibitors. In addition, the IK.ACh inhibition by BK was also attenuated by the tyrosine kinase inhibitor genistein or tyrphostin but not by daidzein, an inactive analogue of genistein. However, neither protein kinase C inhibitor nor tyrosine kinase inhibitor affected the BK-induced increase in ICa.In the presence and absence of muscarinic stimulation, BK prolonged the action potential recorded from the atrial cells in the current clamp mode.We conclude that BK increases ICa and decreases IK.ACh in atrial cells, resulting in positive inotropic and chronotropic responses in atrial preparations. Protein kinase C activation, and possibly tyrosine kinase activation, may be involved in the B2-receptor-mediated IK.ACh inhibition. PMID:9786500

  10. Bradykinin B2 receptor contributes to the exaggerated muscle mechanoreflex in rats with femoral artery occlusion

    PubMed Central

    Lu, Jian; Xing, Jihong

    2013-01-01

    Static muscle contraction activates the exercise pressor reflex, which in turn increases sympathetic nerve activity (SNA) and blood pressure (BP). Bradykinin (BK) is considered as a muscle metabolite responsible for modulation of the sympathetic and cardiovascular responses to muscle contraction. Prior studies have suggested that kinin B2 receptor mediates the effects of BK on the reflex SNA and BP responses during stimulation of skeletal muscle afferents. In patients with peripheral artery disease and a rat model with femoral artery ligation, amplified SNA and BP responses to static exercise were observed. This dysfunction of the exercise pressor reflex has previously been shown to be mediated, in part, by muscle mechanoreflex overactivity. Thus, in this report, we determined whether kinin B2 receptor contributes to the augmented mechanoreflex activity in rats with 24 h of femoral artery occlusion. First, Western blot analysis was used to examine protein expression of B2 receptors in dorsal root ganglion tissues of control limbs and ligated limbs. Our data show that B2 receptor displays significant overexpression in ligated limbs as compared with control limbs (optical density: 0.94 ± 0.02 in control and 1.87 ± 0.08 after ligation, P < 0.05 vs. control; n = 6 in each group). Second, mechanoreflex was evoked by muscle stretch and the reflex renal SNA (RSNA) and mean arterial pressure (MAP) responses to muscle stretch were examined after HOE-140, a B2 receptors blocker, was injected into the arterial blood supply of the hindlimb muscles. The results demonstrate that the stretch-evoked reflex responses were attenuated by administration of HOE-140 in control rats and ligated rats; however, the attenuating effects of HOE-140 were significantly greater in ligated rats, i.e., after 5 μg/kg of HOE-140 RSNA and MAP responses evoked by 0.5 kg of muscle tension were attenuated by 43% and 25% in control vs. 54% and 34% in ligation (P < 0.05 vs. control group; n = 11 in

  11. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  12. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors

    PubMed Central

    Kakoki, Masao; Kizer, Catherine M.; Yi, Xianwen; Takahashi, Nobuyuki; Kim, Hyung-Suk; Bagnell, C. Robert; Edgell, Cora-Jean S.; Maeda, Nobuyo; Jennette, J. Charles; Smithies, Oliver

    2006-01-01

    We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon — diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptor–null mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptor–null mice. Renal expression of several genes that encode proteins associated with senescence and/or apoptosis (TGF-β1, connective tissue growth factor, p53, α-synuclein, and forkhead box O1) increases in the same progression. Concomitant increases occur in 8-hydroxy-2′-deoxyguanosine, point mutations and deletions in kidney mitochondrial DNA, and thiobarbituric acid–reactive substances in plasma, together with decreases in the reduced form of glutathione in erythrocytes. Thus, absence of the bradykinin B2 receptor increases the oxidative stress, mitochondrial DNA damage, and many senescence-associated phenotypes already present in untreated Akita diabetic mice. PMID:16604193

  13. B-9972 (D-Arg-[Hyp3,Igl5,Oic7,Igl8]-bradykinin) is an inactivation-resistant agonist of the bradykinin B2 receptor derived from the peptide antagonist B-9430 (D-Arg-[Hyp3,Igl5,D-Igl7,Oic8]-bradykinin): pharmacologic profile and effective induction of receptor degradation.

    PubMed

    Bawolak, Marie-Thérèse; Gera, Lajos; Morissette, Guillaume; Stewart, John M; Marceau, François

    2007-11-01

    The bradykinin B(2) receptor is a heptahelical receptor regulated by a cycle of phosphorylation, endocytosis, and extensive recycling at the cell surface following agonist stimulation. B-9430 (d-Arg-[Hyp(3),Igl(5),D-Igl(7),Oic(8)]-bradykinin) is a second generation peptide antagonist found to be competitive at the human B(2) receptor and insurmountable at the rabbit B(2) receptor (contractility assays, isolated human umbilical and rabbit jugular veins). Two isomers of this peptide were prepared: B-10344 (D-Arg-[Hyp(3),Igl(5),Oic(7),D-Igl(8)]-bradykinin; inverted sequence Oic(7), D-Igl(8)) and B-9972 (D-Arg-[Hyp(3),Igl(5),Oic(7),Igl(8)]-bradykinin); they are low- and high-potency agonists, respectively, in vascular preparations. The potency gap between bradykinin and B-9972 is narrow in contractility assays, despite the fact that B-9972 affinity is 7-fold inferior at the rabbit B(2) receptor (radioligand binding competition assay). The effects of agonists on receptors were compared using two chimerical constructions based on rabbit B(2) receptors: conjugate of the B(2) receptor with green fluorescent protein (B(2)R-GFP) and the N-terminally tagged conjugate of the myc epitope with the B(2) receptor. Imaging and immunoblotting showed that B-9972 induced a persistent endocytosis of cell surface B(2) receptors in human embryonic kidney 293 cells with slow receptor degradation (weak after 3 h of treatment, important at 12 h) and B(2)R-GFP desensitization ([(3)H]bradykinin endocytosis and extracellular signal-regulated kinase 1/2 phosphorylation assays). Bradykinin was not active in this respect but when combined with captopril, induced some degradation. B-9430 reduced the endocytosis and degradation of B(2) receptors by the agonists. The results illustrate the agonist-antagonist transition in B(2) receptor peptide ligands with a constrained C-terminal structure, the importance of species in their pharmacological profile, and the possibility of selectively degrading

  14. B1 bradykinin receptors and sensory neurones.

    PubMed Central

    Davis, C. L.; Naeem, S.; Phagoo, S. B.; Campbell, E. A.; Urban, L.; Burgess, G. M.

    1996-01-01

    1. The location of the B1 bradykinin receptors involved in inflammatory hyperalgesia was investigated. 2. No specific binding of the B1 bradykinin receptor ligand [3H]-des-Arg10-kallidin was detected in primary cultures of rat dorsal root ganglion neurones, even after treatment with interleukin-1 beta (100 iu ml-1). 3. In dorsal root ganglion neurones, activation of B2 bradykinin receptors stimulated polyphosphoinositidase C. In contrast, B1 bradykinin receptor agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM) failed to activate polyphosphoinositidase C, even in neurones that had been treated with interleukin-1 beta (100 iu ml-1), prostaglandin E2 (1 microM) or prostaglandin I2 (1 microM). 4. Dorsal root ganglion neurones removed from rats (both neonatal and 14 days old) that had been pretreated with inflammatory mediators (Freund's complete adjuvant, or carrageenan) failed to respond to B1 bradykinin receptor selective agonists (des-Arg9-bradykinin up to 10 microM and des-Arg10-kallidin up to 1 microM). 5. Bradykinin (25 nM to 300 nM) evoked ventral root responses when applied to peripheral receptive fields or central terminals of primary afferents in the neonatal rat spinal cord and tail preparation. In contrast, des-Arg9-bradykinin (50 nM to 500 nM) failed to evoke ventral root depolarizations in either control rats or in animals that developed inflammation following ultraviolet irradiation of the tail skin. 6. The results of the present study imply that the B1 bradykinin receptors that contribute to hypersensitivity in models of persistent inflammatory hyperalgesia are located on cells other than sensory neurones where they may be responsible for releasing mediators that sensitize or activate the nociceptors. PMID:8832074

  15. Ranakinestatin-PPF from the Skin Secretion of the Fukien Gold-Striped Pond Frog, Pelophylax plancyi fukienensis: A Prototype of a Novel Class of Bradykinin B2 Receptor Antagonist Peptide from Ranid Frogs

    PubMed Central

    Ma, Jie; Ge, Lilin; Zhang, Yingqi; Duan, Jinao; Shaw, Chris

    2014-01-01

    The defensive skin secretions of many amphibians are a rich source of bradykinins and bradykinin-related peptides (BRPs). Members of this peptide group are also common components of reptile and arthropod venoms due to their multiple biological functions that include induction of pain, effects on many smooth muscle types, and lowering systemic blood pressure. While most BRPs are bradykinin receptor agonists, some have curiously been found to be exquisite antagonists, such as the maximakinin gene-related peptide, kinestatin—a specific bradykinin B2-receptor antagonist from the skin of the giant fire-bellied toad, Bombina maxima. Here, we describe the identification, structural and functional characterization of a heptadecapeptide (DYTIRTRLHQGLSRKIV), named ranakinestatin-PPF, from the skin of the Chinese ranid frog, Pelophylax plancyi fukienensis, representing a prototype of a novel class of bradykinin B2-receptor specific antagonist. Using a preconstricted preparation of rat tail arterial smooth muscle, a single dose of 10−6 M of the peptide effectively inhibited the dose-dependent relaxation effect of bradykinin between 10−11 M and 10−5 M and subsequently, this effect was pharmacologically-characterized using specific bradykinin B1- (desArg-HOE140) and B2-receptor (HOE140) antagonists; the data from which demonstrated that the antagonism of the novel peptide was mediated through B2-receptors. Ranakinestatin—PPF—thus represents a prototype of an amphibian skin peptide family that functions as a bradykinin B2-receptor antagonist herein demonstrated using mammalian vascular smooth muscle. PMID:25161395

  16. A cleavable signal peptide enhances cell surface delivery and heterodimerization of Cerulean-tagged angiotensin II AT1 and bradykinin B2 receptor

    SciTech Connect

    Quitterer, Ursula; Pohl, Armin; Langer, Andreas; Koller, Samuel; AbdAlla, Said

    2011-06-10

    Highlights: {yields} A new FRET-based method detects AT1/B2 receptor heterodimerization. {yields} First time application of AT1-Cerulean as a FRET donor. {yields} Method relies on signal peptide-enhanced cell surface delivery of AT1-Cerulean. {yields} A high FRET efficiency revealed efficient heterodimerization of AT1/B2R proteins. {yields} AT1/B2R heterodimers were functionally coupled to desensitization mechanisms. -- Abstract: Heterodimerization of the angiotensin II AT1 receptor with the receptor for the vasodepressor bradykinin, B2R, is known to sensitize the AT1-stimulated response of hypertensive individuals in vivo. To analyze features of that prototypic receptor heterodimer in vitro, we established a new method that uses fluorescence resonance energy transfer (FRET) and applies for the first time AT1-Cerulean as a FRET donor. The Cerulean variant of the green fluorescent protein as donor fluorophore was fused to the C-terminus of AT1, and the enhanced yellow fluorescent protein (EYFP) as acceptor fluorophore was fused to B2R. In contrast to AT1-EGFP, the AT1-Cerulean fusion protein was retained intracellularly. To facilitate cell surface delivery of AT1-Cerulean, a cleavable signal sequence was fused to the receptor's amino terminus. The plasma membrane-localized AT1-Cerulean resembled the native AT1 receptor regarding ligand binding and receptor activation. A high FRET efficiency of 24.7% between membrane-localized AT1-Cerulean and B2R-EYFP was observed with intact, non-stimulated cells. Confocal FRET microscopy further revealed that the AT1/B2 receptor heterodimer was functionally coupled to receptor desensitization mechanisms because activation of the AT1-Cerulean/B2R-EYFP heterodimer with a single agonist triggered the co-internalization of AT1/B2R. Receptor co-internalization was sensitive to inhibition of G protein-coupled receptor kinases, GRKs, as evidenced by a GRK-specific peptide inhibitor. In agreement with efficient AT1/B2R heterodimerization

  17. Ramipril-induced delayed myocardial protection against free radical injury involves bradykinin B2 receptor-NO pathway and protein synthesis

    PubMed Central

    Jin, Zhu-Qiu; Chen, Xiu

    1998-01-01

    The aim of the present study was to examine whether ramipril induces delayed myocardial protection against free radical injuries ex vivo and to determine the possible role of the bradykinin B2–nitric oxide (NO) pathway, prostaglandins(PGs) and protein synthesis in this delayed adaptive response.Rats were pretreated with ramipril (10 or 50 μg kg−1, i.v.) and hearts were isolated after 24, 48 and 72 h. Langendorff hearts were subjected to 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical-induced injury.Left ventricular developed pressure (LVDP) and its maximal increase velocity (+dP/dtmax), coronary flow (CF), heart rate (HR), lactate dehydrogenase (LDH) in coronary effluent and thiobarbituric acid reactive substances (TBARS) in the myocardium were measured.The results showed that in the DPPH control group, 20 min after free radical-induced injury, LVDP, +dP/dtmax, CF, HR declined, whereas TBARS and LDH increased significantly. The above cardiac function parameters were significantly improved in RAM-pretreated rats after 24 and 48 h.Pretreatment with HOE 140, the selective bradykinin B2 receptor antagonist, NG-nitro-L-arginine, the NO synthase inhibitor, and actinomycin D, the RNA transcription inhibitor, prior to ramipril injection abolished the beneficial effects of ramipril at 24 h while indomethacin, a cyclooxygenase inhibitor, pretreatment had no effect on ramipril-induced delayed protection.In conclusion, ramipril induces delayed myocardial protection against free radical injury in the rat heart. This delayed protection was sustained for 48 h, is associated with the bradykinin B2 receptor–NO pathway and depends on protein but not prostaglandin synthesis. PMID:9806340

  18. Enhanced Ca(2+) response and stimulation of prostaglandin release by the bradykinin B2 receptor in human retinal pigment epithelial cells primed with proinflammatory cytokines.

    PubMed

    Catalioto, Rose-Marie; Valenti, Claudio; Maggi, Carlo Alberto; Giuliani, Sandro

    2015-09-15

    Kallikrein, kininogen and kinin receptors are present in human ocular tissues including the retinal pigment epithelium (RPE), suggesting a possible role of bradykinin (BK) in physiological and/or pathological conditions. To test this hypothesis, kinin receptors expression and function was investigated for the first time in human fetal RPE cells, a model close to native RPE, in both control conditions and after treatment with proinflammatory cytokines. Results showed that BK evoked intracellular Ca(2+) transients in human RPE cells by activating the kinin B2 receptor. Pretreatment of the cells with TNF-α and/or IL-1β enhanced Ca(2+) response in a time- and concentration-dependent additive manner, whereas the potency of BK and that of the selective B2 receptor antagonist, fasitibant chloride, both in the nanomolar range, remained unaffected. Cytokines have no significant effect on cell number and viability and on the activity of other GPCRs such as the kinin B1, acetylcholine, ATP and thrombin receptors. Immunoblot analysis and immunofluorescence studies revealed that cytokines treatment was associated with an increase in both kinin B2 receptor and COX-2 expression and with the secretion of prostaglandin E1 and E2 into the extracellular medium. BK, through activation of the kinin B2 receptor, potentiated the COX-2 mediated prostaglandin release in cytokines-primed RPE cells while new protein synthesis and prostaglandin production contribute to the potentiating effect of cytokines on BK-induced Ca(2+) response. In conclusion, overall data revealed a cross-talk between the kinin B2 receptor and cytokines in human RPE in promoting inflammation, a key feature in retinal pathologies including diabetic retinopathy and macular edema.

  19. Species-specific pharmacology of maximakinin, an amphibian homologue of bradykinin: putative prodrug activity at the human B2 receptor and peptidase resistance in rats

    PubMed Central

    Jean, Melissa

    2017-01-01

    Maximakinin (MK), an amphibian peptide possessing the C-terminal sequence of bradykinin (BK), is a BK B2 receptor (B2R) agonist eliciting prolonged signaling. We reinvestigated this 19-mer for species-specific pharmacologic profile, in vivo confirmation of resistance to inactivation by angiotensin converting enzyme (ACE), value as a module for the design of fusion proteins that bind to the B2R in mammalian species and potential activity as a histamine releaser. Competition of the binding of [3H]BK to recombinant human myc-B2Rs in cells that express these receptors revealed that MK possessed a tenuous fraction (<0.1%) of the affinity of BK, despite being only ∼20-fold less potent than BK in a contractility assay based on the human isolated umbilical vein. These findings are reconciled by the generation of C-terminal fragments, like Lys-Gly-Pro-BK and Gly-Pro-BK, when the latent MK is incubated with human venous tissue (LC-MS), supporting activation via hydrolysis upstream of the BK sequence. At the rat recombinant myc-B2R, MK had a lesser affinity than that of BK, but with a narrower margin (6.2-fold, radioligand binding competition). Accordingly, MK (10 nM) stimulated calcium transients in cells that expressed the rat receptors, but not the human B2R. Recombinant MRGPRX2, a receptor that mediates cationic peptide-induced mast cell secretion, minimally responded by increased [Ca+2]i to MK at 10 µM. Enhanced green fluorescent protein fused to MK (EGFP-MK) labeled cells that expressed rat, but not human B2Rs. Intravenous MK induced dose-dependent hypotensive, vasodilator and tachycardic responses in anesthetized rats and the effects were antagonized by pretreatment with icatibant but not modified by pyrilamine or enalaprilat. Strong species-specific responses to the toxin-derived peptide MK and its prodrug status in the isolated human vein were evidenced. Accordingly, MK in the EGFP-MK fusion protein is a pharmacophore module that confers affinity for the rat B2R

  20. Interruption of the ionic lock in the bradykinin B2 receptor results in constitutive internalization and turns several antagonists into strong agonists.

    PubMed

    Leschner, Jasmin; Wennerberg, Goeran; Feierler, Jens; Bermudez, Marcel; Welte, Benjamin; Kalatskaya, Irina; Wolber, Gerhard; Faussner, Alexander

    2013-01-01

    The DRY motif with the highly conserved R3.50 is a hallmark of family A G protein-coupled receptors (GPCRs). The crystal structure of rhodopsin revealed a salt bridge between R135(3.50) and another conserved residue, E247(6.30), in helix 6. This ionic lock was shown to maintain rhodopsin in its inactive state. Thus far, little information is available on how interruption of this ionic bond affects signaling properties of nonrhodopsin GPCRs, because the focus has been on mutations of R3.50, although this residue is indispensable for G protein activation. To investigate the importance of an ionic lock for overall receptor activity in a nonrhodopsin GPCR, we mutated R128(3.50) and E238(6.30) in the bradykinin (BK) B(2) receptor (B(2)R) and stably expressed the constructs in HEK293 cells. As expected, mutation of R3.50 resulted in lack of G protein activation. In addition, this mutation led to considerable constitutive receptor internalization. Mutation of E6.30 (mutants E6.30A and E6.30R) also caused strong constitutive internalization. Most intriguingly, however, although the two E6.30 mutants displayed no increased basal phosphatidylinositol hydrolysis, they gave a response to three different B(2)R antagonists that was almost comparable to that obtained with BK. In contrast, swapping of R3.50 and E6.30, thus allowing the formation of an inverse ionic bond, resulted in rescue of the wild type phenotype. These findings demonstrate for the first time, to our knowledge, that interruption of the ionic lock in a family A GPCR can have distinctly different effects on receptor internalization and G protein stimulation, shedding new light on its role in the activation process.

  1. Involvement of B2 receptor in bradykinin-induced proliferation and proinflammatory effects in human nasal mucosa-derived fibroblasts isolated from chronic rhinosinusitis patients.

    PubMed

    Tsai, Yih-Jeng; Hao, Sheng-Po; Chen, Chih-Li; Lin, Brian J; Wu, Wen-Bin

    2015-01-01

    Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the sinonasal mucosa either accompanied by polyp formation (CRSwNP) or without polyps (CRSsNP). CRSsNP accounts for the majority of CRS cases and is characterized by fibrosis and neutrophilic inflammation. However, the pathogenesis of CRS, especially CRSsNP, remains unclear. Immunohistochemistry of CRSsNP specimens in the present study showed that the submucosa, perivascular areas, and the mucous glands were abundant in fibroblasts. Therefore, we investigated the effects bradykinin (BK), an autacoid known to participate in inflammation, on human CRSsNP nasal mucosa-derived fibroblasts (NMDFs). BK increased CXCL1 and -8 secretion and mRNA expression with EC50 ranging from 0.15~0.35 μM. Moreover, BK enhanced cell proliferation and upregulated the expressions of proinflammatory molecules, including cell adhesion molecules (CAMs) and cyclooxygenase (COX)-1 and -2. These functionally caused an increase in monocyte adhesion to fibroblast monolayer. Using pharmacological intervention and BKR siRNA knockdown, we demonstrated that the BK-induced CXCL chemokine release, cell proliferation and COX and CAM expressions were mainly through the B2 receptor (B2R). Accordingly, the B2R was preferentially expressed in the NMDFs than B1R. The B2R was highly expressed in the CRSsNP than the control specimens, while the B1R and kininogen (KNG)/BK expression slightly increased in the CRSsNP mucosa. Collectively, we report here for the first time that fibroblasts, KNG/BK, and BKRs are overexpressed in CRSsNP mucosa and BK upregulates chemokine expression, proliferation, and proinflammatory molecule expression in NMDFs via B2R activation, which lead to a functional increase in monocyte-fibroblast interaction. Our findings reveal a critical role of fibroblast, KNG/BK, and BKRs in the development of CRSsNP.

  2. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury

    PubMed Central

    2009-01-01

    Background Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. Methods Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). Results 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0·76 to 2·46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. Conclusion This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious

  3. The influence of angiotensin converting enzyme and bradykinin receptor B2 gene variants on voluntary fluid intake and fluid balance in healthy men during moderate-intensity exercise in the heat.

    PubMed

    Yau, Adora M W; Moss, Andrew D; James, Lewis John; Gilmore, William; Ashworth, Jason J; Evans, Gethin H

    2015-02-01

    Angiotensin converting enzyme (ACE) and bradykinin receptor B2 (B2R) genetic variation may affect thirst because of effects on angiotensin II production and bradykinin activity, respectively. To examine this, 45 healthy Caucasian men completed 60 min of cycle exercise at 62% ± 5% peak oxygen uptake in a room heated to 30.5 ± 0.3 °C with ad libitum fluid intake. Blood samples were collected pre-, mid-, and immediately post-cycle. Fluid intake, body mass loss (BML), sweat loss (determined via changes in body mass and fluid intake), and thirst sensation were recorded. All participants were genotyped for the ACE insert fragment (I) and the B2R insert sequence (P). Participants were homozygous for the wild-type allele (WW or MM), heterozygous (WI or MP) or homozygous for the insert (II or PP). No differences between genotype groups were found in mean (±SD) voluntary fluid intake (WW: 613 ± 388, WI: 753 ± 385, II: 862 ± 421 mL, p = 0.31; MM: 599 ± 322, MP: 745 ± 374, PP: 870 ± 459 mL, p = 0.20), percentage BML or any other fluid balance variables for both the ACE and B2R genes, respectively. Mean thirst perception in the B2R PP group, however, was higher (p < 0.05) than both MM and MP at 30, 45, and 60 min. In conclusion, the results of this study suggest that voluntary fluid intake and fluid balance in healthy men performing 60 min of moderate-intensity exercise in the heat are not predominantly influenced by ACE or B2R genetic variation.

  4. Bradykinin promotes Toll like receptor-4 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2012-12-01

    Bacterial infections are a potent mechanism for enzymatic generation of kinins such as bradykinin (BK), a universal mediator for inducing inflammatory reaction by associating with the B2 receptor and stimulating liberation of arachidonic acid and synthesis of prostaglandin E2 (PGE2). In this study we evaluate the role of bradykinin in regulating the expression of TLR4 receptor in human gingival fibroblasts. We examine the ability of bradykinin to modulate inflammatory response of human gingival fibroblasts to Gram-negative components and evaluated the role of Toll-like receptors (TLR)-4 in the co-operation between bradykinin and bacterial pathogens. We show that treatment with bradykinin promotes TLR4 receptor expression in human gingival fibroblasts (HGF) and amplifies inflammatory responses to the bacterial components of Gram-negative bacteria. The TLR4 expression induced by bradykinin was blocked with Hoe 140, a B2R antagonist. When HGF cells were incubated with BK resulted of an increased in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 synthesis. Bradykinin and lipopolysaccharide, a specific TLR4 ligand stimulated COX-2 expression. In other series of experiments we found that ERK, phosphatidylinositol-3 kinase, protein kinase C and NFkB are involved in BK promoted-increased in TLR4 expression. The results demonstrate that bradykinin up-regulates the expression of TLR4 and promotes an additive increase in inflammatory responses to lipopolysaccharides.

  5. Pronociceptive Actions of Dynorphin via Bradykinin Receptors

    PubMed Central

    Lai, Josephine; Luo, Miaw-chyi; Chen, Qingmin; Porreca, Frank

    2008-01-01

    The endogenous opioid peptide dynorphin A is distinct from other endogenous opioid peptides in having significant neuronal excitatory and neurotoxic effects that are not mediated by opioid receptors. Some of these non-opioid actions of dynorphin contribute to the development of abnormal pain resulting from a number of pathological conditions. Identifying the mechanisms and the sites of action of dynorphin is essential for understanding the pathophysiology of dynorphin and for exploring novel therapeutic targets for pain. This review will discuss the mechanisms that have been proposed and the recent finding that spinal dynorphin may be an endogenous ligand of bradykinin receptors under pathological conditions to promote pain. PMID:18450375

  6. Synthesis and pharmacological evaluation of dimer derivatives of the bradykinin receptor antagonist HOE-140.

    PubMed

    Daffix, I; Amblard, M; Bergé, G; Dodey, P; Pruneau, D; Paquet, J L; Fouchet, C; Franck, R M; Defrêne, E; Luccarini, J M; Bélichard, P; Martinez, J

    1998-07-01

    The synthesis and pharmacological evaluation of dimer derivatives of the C-terminal fragments of the potent bradykinin antagonist HOE-140, linked through their N-termini, were performed. The influence of peptide moiety length was studied using the succinyl moiety as a linker. Our attention focused on the dimer of the C-terminal tetrapeptide of HOE-140 (compound JMV 980), which displayed some inhibiting activity (IC50 = 247 nM) for bradykinin B2 receptors. Unexpectedly, it was orally active in inhibiting bradykinin-induced hypotension in the rat. Based on this tetrapeptide dimer model, we synthesized pseudotetrapeptide dimer bradykinin antagonists 29 and 33, which exhibited high affinity (Ki = 76 and 61 nM, respectively) for the human cloned B2 receptor. In addition, compound 29 inhibited bradykinin-induced contraction of the human umbilical vein giving a pKB value of 6.45. Compounds 29 and 33 were selective toward B2 receptors because they did not bind to the cloned human B1 receptor up to 10 microM.

  7. Kinin-B2 Receptor Exerted Neuroprotection After Diisopropylfluorophosphate-induced Neuronal Damage

    PubMed Central

    Torres-Rivera, Wilmarie; Pérez, Dinely; Park, Keon-Young; Carrasco, Marimée; Platt, Manu O.; Eterović, Vesna A.; Ferchmin, Pedro A.; Ulrich, Henning; Martins, Antonio H.

    2013-01-01

    The kinin-B2 receptor (B2BKR) activated by its endogenous ligand bradykinin participates in various metabolic processes including control of arterial pressure and inflammation. Recently, functions for this receptor in brain development and protection against glutamate-provoked excitotoxicity have been proposed. Here, we report neuroprotective properties for bradykinin against organophosphate poisoning using acute hippocampal slices as an in vitro model. Following slice perfusion for 10 min with diisopropylfluorophosphate (DFP) to initiate the noxious stimulus, responses of pyramidal neurons upon an electric impulse were reduced to less than 30 % of control amplitudes. Effects on synaptic-elicited population spikes were reverted when preparations had been exposed to bradykinin 30 min after challenging with DFP. Accordingly, bradykinin-induced population spike recovery was abolished by HOE-140, a B2BKR antagonist. However, the kinin-B1 receptor (B1BKR) agonist Lys-des-Arg9-bradykinin, inducing phosphorylation of MEK/MAPK and cell death, abolished bradykinin-mediated neuroprotection, an effect, which was reverted by the ERK inhibitor PD98059. In agreement with pivotal B1BKR functions in this process, antagonism of endogenous B1BKR activity alone was enough for restoring population spike activity. On the other hand pralidoxime, an oxime, reactivating AChE after organophosphate poisoning, induced population spike recovery after DFP exposure in the presence of bradykinin and Lys-des-Arg9-bradykinin. Lys-des-Arg9-bradykinin did not revert protection exerted by pralidoxime, however when instead bradykinin and Ly-des-Arg9-bradykinin were superfused together, recovery of population spikes diminished. These findings again confirm the neuroprotective feature of bradykinin, which is, diminished by its endogenous metabolites, stimulating the B1BKR, providing a novel understanding of physiological roles of these receptors. PMID:23735753

  8. Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions

    SciTech Connect

    Steranka, L.R.; Manning, D.C.; DeHaas, C.J.; Ferkany, J.W.; Borosky, S.A.; Connor, J.R.; Vavrek, R.J.; Stewart, J.M.; Snyder, S.H.

    1988-05-01

    Autoradiographic studies localize (/sup 3/H)bradykinin receptor binding sites to the substantia gelatinosa, dorsal root, and a subset of small cells in both the dorsal root and trigeminal ganglia of the guinea pig. (/sup 3/H)Bradykinin labeling is also observed over myocardinal/coronary visceral afferent fibers. The localization of (/sup 3/H)bradykinin receptors to nociceptive pathways supports a role for bradykinin in pain mediation. Several bradkykinin antagonists block bradykinin-induced acute vascular pain in the rat. The bradykinin antagonists also relieve bradykinin- and urate-induced hyperalgesia in the rat paw. These results indicate that bradykinin is a physiologic mediator of pain and that bradykinin antagonists have analgesic activity in both acute and chronic pain models.

  9. Autoregulation of bradykinin receptors and bradykinin-induced prostacyclin formation in human fibroblasts.

    PubMed Central

    Roscher, A A; Manganiello, V C; Jelsema, C L; Moss, J

    1984-01-01

    The interaction of bradykinin (BK) with its specific receptors on intact cultured human fibroblasts results in production of prostaglandins, including prostacyclin (PGI2), and accumulation of cyclic AMP. Incubation of cells with 1 microM BK for 5 min at 37 degrees C led to a marked reduction (75-90%) in BK-induced PGI2 release and in total number of [3H]BK-binding sites with no change in dissociation constant (6.1 and 7.6 nM for control and BK-treated cells, respectively). The decrease in receptor number did not result from BK transferred from the first incubation into the binding assay. BK-induced receptor loss was temperature dependent; exposure of cells to BK at 4 degrees C had little or no effect on receptor number. After incubation with BK for approximately equal to 15 min, further incubation in the absence of BK for 30 min at 37 degrees C almost completely restored both receptor number and BK-induced PGI2 release. With more prolonged exposure to BK (greater than 1 h), restoration of receptors was inversely related to the length of exposure and the concentration of BK. Recovery was unaffected by cycloheximide. During prolonged incubation without removal of BK, cells began to recover receptors by 5 h; greater than 99% of the bradykinin initially present disappeared by 3 h. Bacitracin greatly retarded BK disappearance and totally prevented recovery. These observations provide direct evidence that the number of BK receptors on cultured human fibroblasts can be regulated by BK itself. In addition, it appears that BK-degrading systems, by influencing local concentrations of the peptide, may play an important role in the autoregulation of BK receptors. The presence of highly active degradation systems might serve to protect target tissues from developing chronic insensitivity to BK and, perhaps, similar peptides. PMID:6146639

  10. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors

    PubMed Central

    Mikrut, Kinga; Kupsz, Justyna; Koźlik, Jacek; Krauss, Hanna; Pruszyńska-Oszmałek, Ewa; Gibas-Dorna, Magdalena

    2016-01-01

    Aim To investigate whether bradykinin-independent antioxidative effects of angiotensin-converting enzyme inhibitors (ACEIs) exist in acute hyperglycemia. Methods Male Wistar rats were divided into the normoglycemic group (n = 40) and the hyperglycemic group (n = 40). Hyperglycemia was induced by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) dissolved in 0.1 mol/L citrate buffer (pH 4.5) 72 hours before sacrifice. The normoglycemic group received the same volume of citrate buffer. Each group was divided into five subgroups (n = 8): control group, captopril group, captopril + bradykinin B1 and B2 receptor antagonists group, enalapril group, and enalapril + bradykinin B1 and B2 receptor antagonists group. Captopril, enalapril, B1 and B2 receptor antagonists, or 0.15 mol/L NaCl were given at 2 and 1 hour before sacrifice. Oxidative status was determined by measuring the concentration of malondialdehyde and H2O2, and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Results In STZ-induced hyperglycemic rats ACEIs significantly reduced H2O2 and MDA concentration, while they significantly enhanced SOD and GPx activity. The hyperglycemic group treated simultaneously with ACEIs and bradykinin B1 and B2 receptor antagonists showed a significant decrease in H2O2 concentration compared to the control hyperglycemic group. Conclusion These results suggest the existence of additional antioxidative effect of ACEIs in hyperglycemic conditions, which is not related to the bradykinin mediation and the structure of the drug molecule. PMID:27586552

  11. Upregulation of bradykinin receptors is implicated in the pain associated with caerulein-induced acute pancreatitis.

    PubMed

    Takemura, Yoshinori; Furuta, Sadayoshi; Hirayama, Shigeto; Miyashita, Kazuhiko; Imai, Satoshi; Narita, Michiko; Kuzumaki, Naoko; Tsukiyama, Yoshi; Yamazaki, Mitsuaki; Suzuki, Tsutomu; Narita, Minoru

    2011-07-01

    Although the way for pain management associated with acute pancreatitis has been searched for, there are not enough medications available for it. The aim of the present study was to investigate the role of bradykinin (BK) in pain related to acute pancreatitis. After repeated injections of caerulein (50 μg/kg and 6 times), mice showed edema in the pancreas, and blood concentrations of pancreatic enzymes (amylase and lipase) were clearly elevated. A histopathological study demonstrated that caerulein caused tissue damage characterized by edema, acinar cell necrosis, interstitial hemorrhage, and inflammatory cell infiltrates. Furthermore, the mRNA levels of interleukin-1β and monocyte chemotactic protein (MCP)-1 were significantly increased in the pancreas of caerulein-treated mice. The sensitivity of abdominal organs as measured by abdominal balloon distension was enhanced in caerulein-injected mice, suggesting that caerulein caused pancreatic hyperalgesia. Moreover, repeated treatment with caerulein resulted in cutaneous tactile allodynia of the upper abdominal region as demonstrated by the use of von Frey filaments, indicating that caerulein-treated mice exhibited referred pain. Under this condition, the mRNA levels of bradykinin B1 receptor (BKB1R) and bradykinin B2 receptor (BKB2R) were significantly increased in the dorsal root ganglion (DRG). Finally, we found that des-Arg⁹-(Leu⁸)-bradykinin (BKB1R antagonist) and HOE-140 (BKB2R antagonist) attenuated the acute pancreatitis pain-like state in caerulein-treated mice. These findings suggest that the upregulation of BK receptors in the DRG may, at least in part, contribute to the development of the acute pancreatitis pain-like state in mice.

  12. A rational approach to the design and synthesis of a new bradykinin B(1) receptor antagonist.

    PubMed

    Bedos, P; Amblard, M; Subra, G; Dodey, P; Luccarini, J M; Paquet, J L; Pruneau, D; Aumelas, A; Martinez, J

    2000-06-15

    We have previously synthesized a potent and selective B(1) bradykinin receptor antagonist, JMV1645 (H-Lys-Arg-Pro-Hyp-Gly-Igl-Ser-D-BT-OH), containing a dipeptide mimetic ((3S)-amino-5-carbonylmethyl-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety) at the C-terminal. Analogues of this potent B(1) bradykinin receptor antagonist in which the central Pro(2)-Hyp(3)-Gly(4)-Igl(5) tetrapeptide has been replaced by constrained N-1-substituted-1,3,8-triazaspiro¿4. 5decan-4-one ring system were synthesized. Among these analogues, compound JMV1640 (1) was found to have an affinity of 24.10 +/- 9.48 nM for the human cloned B(1) receptor. It antagonized the ¿des-Arg(10)-kallidin-induced contraction of the human umbilical vein (pA(2) = 6.1 +/- 0.1). Compound 1 was devoid of agonist activity at the kinin B(1) receptor. Moreover, it did not bind to the human cloned B(2) receptor. Therefore, JMV1640 constitutes a lead compound for the rational search of nonpeptide B(1) receptor analogues based on the BK sequence.

  13. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation

    PubMed Central

    2013-01-01

    Background Chronic musculoskeletal pain involves connective tissue remodeling triggered by inflammatory mediators, such as bradykinin. Fibroblast cells signaling involve changes in intracellular Ca2+ ([Ca2+]i). ATP has been related to connective tissue mechanotransduction, remodeling and chronic inflammatory pain, via P2 purinoceptors activation. Here, we investigated the involvement of ATP in bradykinin-induced Ca2+ signals in human subcutaneous fibroblasts. Results Bradykinin, via B2 receptors, caused an abrupt rise in [Ca2+]i to a peak that declined to a plateau, which concentration remained constant until washout. The plateau phase was absent in Ca2+-free medium; [Ca2+]i signal was substantially reduced after depleting intracellular Ca2+ stores with thapsigargin. Extracellular ATP inactivation with apyrase decreased the [Ca2+]i plateau. Human subcutaneous fibroblasts respond to bradykinin by releasing ATP via connexin and pannexin hemichannels, since blockade of connexins, with 2-octanol or carbenoxolone, and pannexin-1, with 10Panx, attenuated bradykinin-induced [Ca2+]i plateau, whereas inhibitors of vesicular exocytosis, such as brefeldin A and bafilomycin A1, were inactive. The kinetics of extracellular ATP catabolism favors ADP accumulation in human fibroblast cultures. Inhibition of ectonucleotidase activity and, thus, ADP formation from released ATP with POM-1 or by Mg2+ removal from media reduced bradykinin-induced [Ca2+]i plateau. Selective blockade of the ADP-sensitive P2Y12 receptor with AR-C66096 attenuated bradykinin [Ca2+]i plateau, whereas the P2Y1 and P2Y13 receptor antagonists, respectively MRS 2179 and MRS 2211, were inactive. Human fibroblasts exhibited immunoreactivity against connexin-43, pannexin-1 and P2Y12 receptor. Conclusions Bradykinin induces ATP release from human subcutaneous fibroblasts via connexin and pannexin-1-containing hemichannels leading to [Ca2+]i mobilization through the cooperation of B2 and P2Y12 receptors. PMID

  14. Bradykinin Enhances AMPA and NMDA Receptor Activity in Spinal Cord Dorsal Horn Neurons by Activating Multiple Kinases to Produce Pain Hypersensitivity

    PubMed Central

    Kohno, Tatsuro; Wang, Haibin; Amaya, Fumimasa; Brenner, Gary J.; Cheng, Jen-Kun; Ji, Ru-Rong; Woolf, Clifford J.

    2009-01-01

    Bradykinin potentiates synaptic glutamate release and action in the spinal cord via presynaptic and postsynaptic B2 receptors, contributing thereby to activity-dependent central sensitization and pain hypersensitivity (Wang et al., 2005). We have now examined the signaling pathways that are responsible for the postsynaptic modulatory actions of bradykinin on glutamatergic action and transmission in superficial dorsal horn neurons. B2 receptors are coexpressed in dorsal horn neurons with protein kinase A (PKA) and the δ isoform of protein kinase C (PKC), and we find that the augmentation by bradykinin of AMPA and NMDA receptor-mediated currents in lamina II neurons requires coactivation of both PKC and PKA. The activation of PKA is downstream of COX1 (cyclooxygenase-1). Extracellular signal-regulated kinase (ERK) activation is involved after the PKC and PKA coactivation, and intrathecal administration of bradykinin induces a thermal hyperalgesia in vivo, which is reduced by inhibition of ERK, PKA, and PKC. We conclude that bradykinin, by activating multiple kinases in dorsal horn neurons, potentiates glutamatergic synaptic transmission to produce pain hypersensitivity. PMID:18434532

  15. Blockade of hippocampal bradykinin B1 receptors improves spatial learning and memory deficits in middle-aged rats.

    PubMed

    Bitencourt, Rafael M; Guerra de Souza, Ana C; Bicca, Maíra A; Pamplona, Fabrício A; de Mello, Nelson; Passos, Giselle F; Medeiros, Rodrigo; Takahashi, Reinaldo N; Calixto, João B; Prediger, Rui D

    2017-01-01

    Previous studies have demonstrated that targeting bradykinin receptors is a promising strategy to counteract the cognitive impairment related with aging and Alzheimer's disease (AD). The hippocampus is critical for cognition, and abnormalities in this brain region are linked to the decline in mental ability. Nevertheless, the impact of bradykinin signaling on hippocampal function is unknown. Therefore, we sought to determine the role of hippocampal bradykinin receptors B1R and B2R on the cognitive decline of middle-aged rats. Twelve-month-old rats exhibited impaired ability to acquire and retrieve spatial information in the Morris water maze task. A single intra-hippocampal injection of the selective B1R antagonist des-Arg(9)-[Leu(8)]-bradykinin (DALBK, 3 nmol), but not the selective B2R antagonist D-Arg-[Hyp(3),Thi(5),D-Tic(7),Oic(8)]-BK (Hoe 140, 3 nmol), reversed the spatial learning and memory deficits on these animals. However, both drugs did not affect the cognitive function in 3-month-old rats, suggesting absence of nootropic properties. Molecular biology analysis revealed an up-regulation of B1R expression in the hippocampal CA1 sub-region and in the pre-frontal cortex of 12-month-old rats, whereas no changes in the B2R expression were observed in middle-aged rats. These findings provide new evidence that inappropriate hippocampal B1R expression and activation exert a critical role on the spatial learning and memory deficits in middle-aged rats. Therefore, selective B1R antagonists, especially orally active non-peptide antagonists, may represent drugs of potential interest to counteract the age-related cognitive decline.

  16. Glioblastoma-mesenchymal stem cell communication modulates expression patterns of kinin receptors: Possible involvement of bradykinin in information flow.

    PubMed

    Pillat, Micheli M; Oliveira, Mona N; Motaln, Helena; Breznik, Barbara; Glaser, Talita; Lah, Tamara T; Ulrich, Henning

    2016-04-01

    The most aggressive subtype of brain tumors is glioma WHO grade IV, the glioblastoma (GBM). The present work aims to elucidate the role of kinin receptors in interactions between GBM cells and mesenchymal stem cells (MSC). The GBM cell line U87-MG was stably transfected to express dsRed protein, single cell cloned, expanded, and cultured with MSC, both in the direct co-cultures (DC) and indirect co-cultures (IC) at equal cell number ratio for 72 h. Up- and down-regulation of matrix metalloproteases (MMP)-9 expression in U87-MG and MSC cells, respectively, in direct co-culture points to possible MSC participation in tumor invasion. MMP9 expression is in line with significantly increased expression of kinin B1 (B1R) and B2 receptor (B2R) in U87-MG cells and their decreased levels in MSC, as confirmed by quantitative assessment using flow cytometric analysis. Similarly, in indirect cultures (IC), lacking the contact between GBM and MSC cells, an increase of B1 and B2 receptor expression was again noted in U87-MG cells, and no significant changes in kinin receptors in MSC was observed. Functionality of kinin-B1 and B2 receptors was evidenced by stimulation of intracellular calcium fluxes by their respective agonists, des-Arg9-bradykinin (DBK) and bradykinin (BK). Moreover, BK showed a feedback control on kinin receptor expression in mono-cultures, direct and indirect co-cultures. The treatment with BK resulted in down-regulation of B1 and B2 receptors in MSC, with simultaneous up-regulation of these receptors in U87-MG cells, suggesting that functions of BK in information flow between these cells is important for tumor progression and invasion. © 2015 International Society for Advancement of Cytometry.

  17. Kinin-B1 and B2 receptor activity in proliferation and neural phenotype determination of mouse embryonic stem cells.

    PubMed

    Nascimento, Isis C; Glaser, Talita; Nery, Arthur A; Pillat, Micheli M; Pesquero, João B; Ulrich, Henning

    2015-11-01

    The kinins bradykinin and des-arg(9) -bradykinin cleaved from kininogen precursors by kallikreins exert their biological actions by stimulating kinin-B2 and B1 receptors, respectively. In vitro models of neural differentiation such as P19 embryonal carcinoma cells and neural progenitor cells have suggested the involvement of B2 receptors in neural differentiation and phenotype determination; however, the involvement of B1 receptors in these processes has not been established. Here, we show that B1 and B2 receptors are differentially expressed in mouse embryonic E14Tg2A stem cells undergoing neural differentiation. Proliferation and differentiation assays, performed in the presence of receptor subtype-selective agonists and antagonists, revealed that B1 receptor activity is required for the proliferation of embryonic and differentiating cells as well as for neuronal maturation at later stages of differentiation, while the B2 receptor acts on neural phenotype choice, promoting neurogenesis over gliogenesis. Besides the elucidation of bradykinin functions in an in vitro model reflecting early embryogenesis and neurogenesis, this study contributes to the understanding of B1 receptor functions in this process.

  18. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to chagasic vasculopathy

    PubMed Central

    Andrade, Daniele; Serra, Rafaela; Svensjö, Erik; Lima, Ana Paula C; Ramos Junior, Erivan S; Fortes, Fabio S; Morandini, Ana Carolina F; Morandi, Verônica; Soeiro, Maria de N; Tanowitz, Herbert B; Scharfstein, Julio

    2012-01-01

    BACKGROUND AND PURPOSE Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ETAR and ETBR) and bradykinin B2 receptors (B2R). EXPERIMENTAL APPROACH Intravital microscopy was used to determine whether ETR/B2R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP). Inflammatory oedema was measured in the infected BALB/c paw of mice. Parasite invasion was assessed in CHO over-expressing ETRs, mouse cardiomyocytes, endothelium (human umbilical vein endothelial cells) or smooth muscle cells (HSMCs), in the presence/absence of antagonists of B2R (HOE-140), ETAR (BQ-123) and ETBR (BQ-788), specific IgG antibodies to each GPCRs; cholesterol or calcium-depleting drugs. RNA interference (ETAR or ETBR genes) in parasite infectivity was investigated in HSMCs. KEY RESULTS BQ-123, BQ-788 and HOE-140 reduced leucocyte accumulation in HCP topically exposed to trypomastigotes and blocked inflammatory oedema in infected mice. Acting synergistically, ETAR and ETBR antagonists reduced parasite invasion of HSMCs to the same extent as HOE-140. Exogenous ET-1 potentiated T. cruzi uptake by HSMCs via ETRs/B2R, whereas RNA interference of ETAR and ETBR genes conversely reduced parasite internalization. ETRs/B2R-driven infection in HSMCs was reduced in HSMC pretreated with methyl-β-cyclodextrin, a cholesterol-depleting drug, or in thapsigargin- or verapamil-treated target cells. CONCLUSIONS AND IMPLICATIONS Our findings suggest that plasma leakage, a neutrophil-driven inflammatory response evoked by trypomastigotes via the kinin/endothelin pathways, may offer a window of opportunity for enhanced parasite invasion of cardiovascular cells. LINKED ARTICLE This paper is commented on by D'Orléans-Juste et al

  19. Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade.

    PubMed

    Desposito, Dorinne; Chollet, Catherine; Taveau, Christopher; Descamps, Vincent; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine; Waeckel, Ludovic

    2016-01-01

    Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.

  20. Ca2+ signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca2+ channel blockade

    PubMed Central

    Gryshchenko, Oleksiy; Gerasimenko, Julia V.

    2015-01-01

    Key points Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions.In this study, we have investigated bradykinin‐elicited Ca2+ signal generation in normal mouse pancreatic lobules.We found complete separation of Ca2+ signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca2+ signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca2+ signals in PACs, never elicited Ca2+ signals in PSCs.The bradykinin‐elicited Ca2+ signals were due to initial Ca2+ release from inositol trisphosphate‐sensitive stores followed by Ca2+ entry through Ca2+ release‐activated channels (CRACs). The Ca2+ entry phase was effectively inhibited by a CRAC blocker.B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis‐promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. Abstract Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca2+ signals. We have compared Ca2+ signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca2+ signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto‐digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca2+ signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca2+ signals in PSCs. The BK‐induced Ca2+ signals were mediated by B2 receptors and B2

  1. Null mutations at the p66 and bradykinin 2 receptor loci induce divergent phenotypes in the diabetic kidney

    PubMed Central

    Vashistha, Himanshu; Singhal, Pravin C.; Malhotra, Ashwani; Husain, Mohammad; Mathieson, Peter; Saleem, Moin A.; Kuriakose, Cyril; Seshan, Surya; Wilk, Anna; DelValle, Luis; Peruzzi, Francesca; Giorgio, Marco; Pelicci, Pier Giuseppe; Smithies, Oliver; Kim, Hyung-Suk; Kakoki, Masao; Reiss, Krzysztof

    2012-01-01

    Candidate genes have been identified that confer increased risk for diabetic glomerulosclerosis (DG). Mice heterozygous for the Akita (Ins2+/C96Y) diabetogenic mutation with a second mutation introduced at the bradykinin 2 receptor (B2R−/−) locus express a disease phenotype that approximates human DG. Src homology 2 domain transforming protein 1 (p66) controls mitochondrial metabolism and cellular responses to oxidative stress, aging, and apoptosis. We generated p66-null Akita mice to test whether inactivating mutations at the p66 locus will rescue kidneys of Akita mice from disease-causing mutations at the Ins2 and B2R loci. Here we show null mutations at the p66 and B2R loci interact with the Akita (Ins2+/C96Y) mutation, independently and in combination, inducing divergent phenotypes in the kidney. The B2R−/− mutation induces detrimental phenotypes, as judged by increased systemic and renal levels of oxidative stress, histology, and urine albumin excretion, whereas the p66-null mutation confers a powerful protection phenotype. To elucidate the mechanism(s) of the protection phenotype, we turned to our in vitro system. Experiments with cultured podocytes revealed previously unrecognized cross talk between p66 and the redox-sensitive transcription factor p53 that controls hyperglycemia-induced ROS metabolism, transcription of p53 target genes (angiotensinogen, angiotensin II type-1 receptor, and bax), angiotensin II generation, and apoptosis. RNA-interference targeting p66 inhibits all of the above. Finally, protein levels of p53 target genes were upregulated in kidneys of Akita mice but unchanged in p66-null Akita mice. Taken together, p66 is a potential molecular target for therapeutic intervention in DG. PMID:23019230

  2. Multiple mechanisms in the motor responses of the guinea-pig isolated urinary bladder to bradykinin.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Santicioli, P.; Geppetti, P.; Cecconi, R.; Giuliani, S.; Meli, A.

    1989-01-01

    1. Bradykinin (1 nm-1 microM) produced a contraction of bladder strips excised from the dome of the guinea-pig urinary bladder, an effect which was greatly enhanced by removal of the mucosal layer or by thiorphan (10 microM). All subsequent experiments were performed in mucosa-free strips and in the presence of thiorphan. 2. In carbachol (5 microM)-contracted strips, bradykinin produced a concentration (1 nm-1 microM)-dependent transient relaxation. 3. Kallidin was slightly more potent than bradykinin in producing a contraction and a relaxation of the carbachol-induced tone. By contrast, [des-Arg9]-bradykinin, a selective B1 receptor agonist was barely effective up to 1 microM. 4. The contractile response to bradykinin was: (a) unaffected by either tetrodotoxin (1 microM), in vitro capsaicin desensitization (10 microM for 30 min) or apamin (0.1 microM); (b) antagonized by indomethacin (5 microM), the prostaglandin receptor antagonist SC-19220 (100 microM) or the B2 receptor antagonist [D-Arg0, Hyp3, Thi5,8, Phe7]-bradykinin (10 micron) and (c) almost abolished by nifedipine (1 microM). 5. The antagonism of the contractile response to bradykinin produced by indomethacin and SC-19220 was non-additive while that produced by indomethacin and the B2 receptor antagonist was additive. 6. The relaxant response to bradykinin was unaffected by tetrodotoxin, in vitro capsaicin desensitization or indomethacin but antagonized in a competitive manner by the B2 receptor antagonist. Further, this response was abolished by apamin (0.1 microM) but unaffected by glibenclamide (1 microM). 7. Bradykinin (10 microM) produced a consistent release of calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) but not substance P-LI from the guinea-pig bladder muscle. CGRP-LI release by bradykinin was greatly reduced in bladders exposed to indomethacin. [des-Arg9]-bradykinin (10 microM) was ineffective. 8. We conclude that: (a) bradykinin-induced contraction involves activation of both

  3. B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects

    PubMed Central

    Morbidelli, Lucia; Parenti, Astrid; Giovannelli, Lisa; Granger, Harris J; Ledda, Fabrizio; Ziche, Marina

    1998-01-01

    Bradykinin (BK) contributes to the inflammatory response inducing vasodilation of postcapillary venules and has been demonstrated to induce neovascular growth in subcutaneous rat sponges. In this study the ability of BK to stimulate cell growth and migration in cultured endothelium from coronary postcapillary venules (CVEC) has been investigated. [3H]-thymidine incorporation in subconfluent and synchronised CVEC was used to monitor DNA synthesis over 24 h. BK promoted a concentration-dependent increase of DNA synthesis with maximal activity at 100 nM. At this concentration BK also induced 18 fold accumulation of c-Fos protein immunoreactivity in the nucleus within 1 h from peptide exposure. The total number of cells recovered after 48 h exposure to BK was increased in a concentration-dependent manner. Maximal effect was produced by 100 nM concentration of the peptide which produced 50% increase in cell number. The selective B1 receptor agonist Des-Arg9-BK mimicked the proliferative effect of BK, while the B2 receptor agonist kallidin was devoid of any activity. The proliferation induced by BK was abolished in a concentration-dependent manner by the addition of the B1 selective antagonist Des-Arg9-Leu8-BK, while the selective B2 receptor antagonist HOE140 did not modify BK-induced growth. DNA synthesis and growth promoted by a threshold concentration of fibroblast growth factor-2 (FGF-2) (0.25 nM) were potentiated by increasing concentrations of BK and Des-Arg9-BK. Endothelial cell migration assessed by the Boyden Chamber procedure was not promoted by BK or the selective B1 and B2 receptor agonists. These data are the first demonstration that BK promotes growth of endothelial cells from postcapillary venules. The mitogenic activity of BK involves c-Fos expression and potentiates the growth promoting effect of FGF-2. Only the B1 receptor appears to be responsible for the proliferation induced by BK and suggests that this type of receptor might be

  4. The effects of bradykinin and sequence-related analogs on the response properties of cutaneous nociceptors in monkeys.

    PubMed

    Khan, A A; Raja, S N; Manning, D C; Campbell, J N; Meyer, R A

    1992-01-01

    The endogenous peptide bradykinin is found in plasma and inflammatory exudates and has been implicated as a chemical mediator of inflammatory pain and hyperalgesia. Two subtypes of bradykinin receptors, B1 and B2, have been described, and antagonists for the receptor subtypes have been synthesized. The bradykinin analogs [desArg9,Leu8]BK and DArg[Hyp3,DPhe7]BK have been reported to have antagonist activity at the B1 and B2 bradykinin receptors in smooth muscle, respectively. Behavioral studies in rats indicate that the bradykinin analogs can block the algesic effects of bradykinin. We wished to determine the effects of bradykinin and the bradykinin analogs (B1 and B2 analogs, respectively) on cutaneous nociceptors in the monkey. In addition, we wished to determine the type of bradykinin receptor that mediates the sensitizing effects of bradykinin. Recordings were made from single C-fiber and A-fiber nociceptive afferents (CMHs and AMHs) that innervated hairy skin. Heat sensitivity before and after the injections was determined with a heat test sequence consisting of stimuli that ranged, in 1 degree C increments, from 41 degrees to 49 degrees C. Intradermal injections of vehicle (neutral normal saline) failed to alter the heat response of CMHs. Bradykinin (10 nmol in 10 microliters) evoked activity in 6 of 10 CMHs and sensitized all the fibers to heat stimuli. After the bradykinin injection, the mean heat threshold of the CMHs decreased from 44 +/- 0.5 degrees to 42.7 +/- 0.5 degrees C (mean +/- SEM, p less than 0.02), and the total response to the heat test sequence increased by 87% (p less than 0.002). In a related psychophysical study in human volunteers, the same dose of bradykinin resulted in a comparable (115%) increase in ratings of pain (Manning et al., 1991). Bradykinin also evoked activity in 10 of 17 AMHs and sensitized 8 AMHs to heat stimuli. Bradykinin failed to alter the threshold for activation of CMHs to mechanical stimuli as measured by application

  5. Blocking of bradykinin receptor B1 protects from focal closed head injury in mice by reducing axonal damage and astroglia activation.

    PubMed

    Albert-Weissenberger, Christiane; Stetter, Christian; Meuth, Sven G; Göbel, Kerstin; Bader, Michael; Sirén, Anna-Leena; Kleinschnitz, Christoph

    2012-09-01

    The two bradykinin receptors B1R and B2R are central components of the kallikrein-kinin system with different expression kinetics and binding characteristics. Activation of these receptors by kinins triggers inflammatory responses in the target organ and in most situations enhances tissue damage. We could recently show that blocking of B1R, but not B2R, protects from cortical cryolesion by reducing inflammation and edema formation. In the present study, we investigated the role of B1R and B2R in a closed head model of focal traumatic brain injury (TBI; weight drop). Increased expression of B1R in the injured hemispheres of wild-type mice was restricted to the later stages after brain trauma, i.e. day 7 (P<0.05), whereas no significant induction could be observed for the B2R (P>0.05). Mice lacking the B1R, but not the B2R, showed less functional deficits on day 3 (P<0.001) and day 7 (P<0.001) compared with controls. Pharmacological blocking of B1R in wild-type mice had similar effects. Reduced axonal injury and astroglia activation could be identified as underlying mechanisms, while inhibition of B1R had only little influence on the local inflammatory response in this model. Inhibition of B1R may become a novel strategy to counteract trauma-induced neurodegeneration.

  6. Design and synthesis of potent bradykinin agonists containing a benzothiazepine moiety.

    PubMed

    Amblard, M; Daffix, I; Bedos, P; Bergé, G; Pruneau, D; Paquet, J L; Luccarini, J M; Bélichard, P; Dodey, P; Martinez, J

    1999-10-07

    A bradykinin analogue (H-Arg-Pro-Pro-Gly-Phe-Ser-D-BT-Arg-OH, 3) in which the Pro-Phe dipeptide was replaced by the (3S)[amino]-5-(carbonylmethyl)-2,3-dihydro-1, 5-benzothiazepin-4(5H)-one (D-BT) moiety has been synthesized. The same modification was performed on the potent bradykinin B(2) receptor antagonist HOE 140 (H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH), in which the -D-Tic-Oic- moiety was replaced by D-BT to yield H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-BT-Arg-OH, 1 (JMV1116). These compounds were examined in vitro for their binding affinity toward bradykinin B(1) and B(2) receptors as well as for their ability to interfere with bradykinin-induced contraction of both human umbilical vein and rat uterus. The two compounds 3 and 1 competed with [(3)H]bradykinin binding to the human cloned B(2) receptor giving K(i) values of 13 +/- 2 and 0.7 +/- 0.1 nM, respectively. Unexpectedly, both compounds were full bradykinin B(2) receptor agonists on the human umbilical vein (pD(2) = 6.60 +/- 0.07 for 3 and 6.80 +/- 0.08 for 1) and rat uterus (pD(2) = 7.20 +/- 0.09 for 3 and 7.50 +/- 0.09 for 1) preparations with the same efficacy as bradykinin. In addition 1 induced a concentration-dependent phosphoinositide production in CHO cells expressing the human cloned B(2) receptor. These data provide evidence for a bioactive conformation of bradykinin constrained at the dipeptide Pro-Phe.

  7. Up-regulation of the kinin B2 receptor pathway modulates the TGF-β/Smad signaling cascade to reduce renal fibrosis induced by albumin.

    PubMed

    Cárdenas, Areli; Campos, Javiera; Ehrenfeld, Pamela; Mezzano, Sergio; Ruiz-Ortega, Marta; Figueroa, Carlos D; Ardiles, Leopoldo

    2015-11-01

    The presence of high protein levels in the glomerular filtrate plays an important role in renal fibrosis, a disorder that justifies the use of animal models of experimental proteinuria. Such models have proved useful as tools in the study of the pathogenesis of chronic, progressive renal disease. Since bradykinin and the kinin B2 receptor (B2R) belong to a renoprotective system with mechanisms still unclarified, we investigated its anti-fibrotic role in the in vivo rat model of overload proteinuria. Upon up-regulating the kinin system by a high potassium diet we observed reduction of tubulointerstitial fibrosis, decreased renal expression of α-smooth muscle actin (α-SMA) and vimentin, reduced Smad3 phosphorylation and increase of Smad7. These cellular and molecular effects were reversed by HOE-140, a specific B2R antagonist. In vitro experiments, performed on a cell line of proximal tubular epithelial cells, showed that high concentrations of albumin induced expression of mesenchymal biomarkers, in concomitance with increases in TGF-β1 mRNA and its functionally active peptide, TGF-β1. Stimulation of the tubule cells by bradykinin inhibited the albumin-induced changes, namely α-SMA and vimentin were reduced, and cytokeratin recovered together with increase in Smad7 levels and decrease in type II TGF-β1 receptor, TGF-β1 mRNA and its active fragment. The protective changes produced by bradykinin in vitro were blocked by HOE-140. The development of stable bradykinin analogues and/or up-regulation of the B2R signaling pathway may prove value in the management of chronic renal fibrosis in progressive proteinuric renal diseases.

  8. Pulmonary oedema producing toxin from Mesobuthus tamulus venom augments cardio-respiratory reflexes through B2 kinin receptors.

    PubMed

    Alex, Anitha B; Akella, Aparna; Tiwari, Anil K; Deshpande, Shripad B

    2014-01-01

    The current study was undertaken to compare the effects of pulmonary oedema producing toxin (PO-Tx) isolated from Mesobuthus tamulus venom on cardio-respiratory reflexes with exogenously administered bradykinin (BK) and to delineate the type of BK receptors mediating these responses. Jugular venous injection of phenyldiguanide (PDG) in anaesthetized rats produced reflex bradycardia, hypotension and apnoea. The PDG-induced reflex was augmented (two folds) by PO-Tx. The pulmonary water content in PO-Tx treated group was also increased. The PO-Tx-induced reflex changes as well as pulmonary oedema were blocked by-Hoe-140 implicating the involvement of B2 kinin receptors. Exogenous BK also produced augmentation (two folds) of the PDG-induced reflexes and increased the pulmonary water content. The BK-induced augmentation was blocked by pre-treatment with des-Arg10 Hoe 140 (a B1 receptor antagonist) and Hoe 140 (B2 receptor antagonist). However, these antagonists did not prevent the development of BK-induced pulmonary oedema. Present results indicate that PO-Tx augmented the PDG-induced reflex responses similar to BK and the PO-Tx induced augmentation of reflexes is mediated through B2 receptors.

  9. Heterodimerization of human apelin and bradykinin 1 receptors: novel signal transduction characteristics.

    PubMed

    Bai, Bo; Liu, Lulu; Zhang, Ning; Wang, Chunmei; Jiang, Yunlu; Chen, Jing

    2014-07-01

    Apelin receptor (APJ) and bradykinin 1 receptor (B1R) are involved in a variety of important physiological processes, which share many similar characteristics in distribution and functions in the cardiovascular system. This study explored the possibility of heterodimerization between APJ and B1R, and investigated the impact of heterodimer on the signal transduction characteristics and the physiological functions in human endothelial cells after stimulation with their agonists. We first identified the endogenous expression of APJ and B1R in HUVECs and their co-localization on HEK293 membrane. The constitutive heterodimerization between the APJ and B1R was then demonstrated by BRET and FRET assays. Stimulation with Apelin-13 and des -Arg(9)-BK enhanced the phosphorylation of eNOS in HUVECs, which could be dampened by the knockdown of APJ or B1R, indicating the co-existence of APJ and B1R is critical for eNOS phosphorylation in HUVECs. Furthermore, APJ/B1R heterodimers were found to enhance the activity of PKC signaling pathway and increase intracellular Ca(2+) concentration in HEK293 cells, which might be the mechanism of APJ/B1R heterodimers promoting the phosphorylation of eNOS and leads to increased Gαq, PKC signal pathway activities and a significant increase in cell proliferation. The results provide a new theoretical and experimental base for revealed intracellular molecular mechanisms of physiological function involved in the APJ and B1R and provide potential new targets for the development of drugs and treating cardiovascular disease.

  10. Bradykinin and histamine-induced cytosolic calcium increase in capillary endothelial cells of bovine adrenal medulla.

    PubMed

    Vinet, Raúl; Cortés, Magdalena P; Alvarez, Rocío; Delpiano, Marco A

    2014-09-01

    We have assessed the effect of bradykinin and histamine on the cytosolic free calcium concentration ([Ca(2+)]i ) of bovine adrenal medulla capillary endothelial cells (BAMCECs). To measure [Ca(2+)]i changes in BAMCECs the intracellular fluorescent probe, fluo-3 AM, was used. Bradykinin (3 µM) produced a transient monophasic increase in [Ca(2+)]i , which was depressed by B1650 (0.1 µM), a B2-bradykinin receptor antagonist (D-Arg-[Hyp(3), Thi(5,8) , D-Phe(7)]-Bradykinin). Similarly, increase in [Ca(2+)]i induced by histamine was also depressed by tripolidine (0.1 µM), an H1-histamine receptor antagonist. [Ca(2+)]i increase induced by both agonists was unaffected in the absence of extracellular Ca(2+) or presence of antagonists of voltage operated Ca(2+) channels (VOCCs). Thapsigargin (1 µM) did not abolish the increase of [Ca(2+)]i produced by bradykinin, but abolished that of histamine. In contrast, caffeine (100 µM), abolished the [Ca(2+)]i response induced by bradykinin (3 µM), but did not affect the [Ca(2+)]i increase induced by histamine (100 µM). The results indicate the presence of B2 bradykinin- and H1 histamine-receptors in BAMCECs. Liberation of Ca(2+) induced by both agonists occurs through 2 different intracellular mechanisms. While bradykinin activates a sarco(endo) plasmic reticulum (SER) containing a SER Ca(2+) -ATPase (SERCA) thapsigargin-insensitive, histamine activates a SER containing a SERCA thapsigargin-sensitive. We suggest that the increase in [Ca(2+)]i induced by bradykinin and histamine could be of physiological relevance, modulating adrenal gland microcirculation.

  11. Identification of a nonpeptidic and conformationally restricted bradykinin B1 receptor antagonist with anti-inflammatory activity.

    PubMed

    D'Amico, Derin C; Aya, Toshi; Human, Jason; Fotsch, Christopher; Chen, Jian Jeffrey; Biswas, Kaustav; Riahi, Bobby; Norman, Mark H; Willoughby, Christopher A; Hungate, Randall; Reider, Paul J; Biddlecome, Gloria; Lester-Zeiner, Dianna; Staden, Carlo Van; Johnson, Eileen; Kamassah, Augustus; Arik, Leyla; Wang, Judy; Viswanadhan, Vellarkad N; Groneberg, Robert D; Zhan, James; Suzuki, Hideo; Toro, Andras; Mareska, David A; Clarke, David E; Harvey, Darren M; Burgess, Laurence E; Laird, Ellen R; Askew, Benny; Ng, Gordon

    2007-02-22

    We report the discovery of chroman 28, a potent and selective antagonist of human, nonhuman primate, rat, and rabbit bradykinin B1 receptors (0.4-17 nM). At 90 mg/kg s.c., 28 decreased plasma extravasation in two rodent models of inflammation. A novel method to calculate entropy is introduced and ascribed approximately 30% of the gained affinity between "flexible" 4 (Ki = 132 nM) and "rigid" 28 (Ki = 0.77 nM) to decreased conformational entropy.

  12. Bradykinin promotes migration and invasion of human immortalized trophoblasts

    PubMed Central

    2011-01-01

    Having demonstrated that the bradykinin B2 receptor (B2R) is expressed in cells that participate in trophoblast invasion in humans and guinea-pigs, we investigated the role of bradykinin (BK) on cell migration and invasion in the HTR-8/SVneo trophoblast cell line using wound healing and invasion assays. First, we documented that HTR-8/SVneo cells expressed kallikrein, B2R, B1R, MMP-2 and MMP-9 using immunocytochemistry. Incubation with BK (10.0 microMol/L) for 18 hours increased the migration index 3-fold in comparison to controls or to cells preincubated with the B2R antagonist HOE-140. BK (10.0 microMol/L) incubation yielded a similar number of proliferating and viable cells as controls, therefore the enhanced closure of the wound cannot be attributed to proliferating cells. Incubation with BK (10.0 microMol/L) for 18 hours increased the invasion index 2-fold in comparison to controls or to cells preincubated with the antagonist of the B2R. Neither the B1R ligand Lys-des-Arg9 BK, nor its antagonist Lys-(des-Arg9-Leu8), modified migration and invasion. Further support for the stimulatory effect of B2R activation on migration and invasion is provided by the 3-fold increase in the number of filopodia per cell versus controls or cells preincubated with the B2R antagonist. Bradykinin had no effect on the cellular protein content of the B2R, nor the MMP-9 and MMP-2 gelatinase activity in the culture media varied after incubation with BK. This study adds bradykinin-acting on the B2R-to the stimuli of trophoblast migration and invasion, an effect that should be integrated to other modifications of the kallikrein-kinin system in normal and pathological pregnancies. PMID:21729302

  13. [Skin reactions to bradykinin].

    PubMed

    Rihoux, J P; Ramboer, I; Fadel, R

    1995-10-01

    A large series of experiments carried out in animals and humans suggest that histamine release is not involved in the leakage phenomenon induced by bradykinin (BK) challenge. These experiments comprise in vitro studies on skin and bronchial human mast cells and in vivo studies on guinea pig airways and human skin using mepyramine, chlorpheniramine and terfenadine as reference H1-anti-histamines. Nevertheless, it has been shown recently that the H1 antagonist cetirizine 10 mg p.o. markedly inhibits skin reactions induced by BK challenge (intradermal injection of 212 micrograms BK in 10 microL saline and prick test with a solution of 21.2 micrograms/microL). In a guinea pig model, this drug also inhibited the bronchospasm induced by increasing concentrations of BK given by iv route (0.25 to 2 micrograms/Kg) and aerosol (3 to 300 micrograms/Kg). This inhibition was similar to the one obtained with the specific BK antagonist HOE 140 (15 pM/Kg). New data in the literature suggest the existence of various pharmacological mediators possibly involved in the BK-induced reaction: neuromediators, nitric oxyde and PAF. They also suggest that this reaction presents itself as a well defined sequence of pharmacological events. Since we could show that there is no binding of cetirizine to a human recombinant B2 receptor in vitro, some hypotheses are raised in order to explain this unexpected inhibiting effect of cetirizine.

  14. Comparative study on the mechanism of bradykinin potentiation induced by bradykinin-potentiating peptide 9a, enalaprilat and kinin-potentiating peptide.

    PubMed

    Rodrigues, M S; Schaffel, R; Assreuy, J

    1992-06-17

    The action of a kinin-potentiating peptide (KPP) obtained from tryptic digestion of human serum proteins was compared with that of bradykinin-potentiating peptide 9a (BPP9a; obtained from snake venom) and enalaprilat (a synthetic inhibitor of angiotensin-converting enzyme; ACE) as a means of understanding the mechanism of action of KPP on smooth muscle. KPP potentiated bradykinin-induced contractile effects in guinea-pig ileum and rat uterus, but not the bradykinin-induced relaxation of pre-contracted ileum, whereas BPP9a and enalaprilat potentiated both bradykinin effects. The receptor mediating both the contraction and the relaxation elicited by bradykinin in the ileum was found to be of the B2 type. KPP retained its potentiating effect in the presence of enalaprilat in the guinea-pig ileum and rat uterus, whereas the potentiation evoked by BPP9a was abolished. Enalaprilat inhibited the activity of purified ACE, whereas KPP was completely devoid of such an effect. The potentiating effect of KPP, but not that of BPP9a or enalaprilat, was blocked by compounds that inhibit phospholipase A2 and lipoxygenase activity but not by inhibitors of cyclo-oxygenase or phosphodiesterases. The results suggest that the potentiating effect of KPP (i) does not involve inhibition of ACE; (ii) is not due to an increased affinity of the receptor for bradykinin, and (iii) probably involves post-receptor events linked to phospholipase A2 and to the lipoxygenase pathway.

  15. Stimulation of cyclic GMP production via AT2 and B2 receptors in the pressure-overloaded aorta after banding.

    PubMed

    Hiyoshi, Hiromi; Yayama, Katsutoshi; Takano, Masaoki; Okamoto, Hiroshi

    2004-06-01

    Abdominal aortic banding induces upregulation of the angiotensin II (Ang II) type-2 (AT2) receptor, thereby decreasing the contractile response to Ang II in the thoracic aorta of the rat. The aim of this study was to use a mouse model to clarify the mechanisms by which the banding elicits upregulation of the aortic AT2 receptor and the subsequent attenuation of Ang II responsiveness. Concomitantly with the elevation in blood pressure and plasma renin concentration after banding, AT2-receptor mRNA levels in the thoracic aorta rapidly increased in mice within 4 days. Upregulation of the AT2 receptor, as well as blood pressure elevation after banding, was abolished by losartan administration. The contractile response to Ang II was depressed in aortic rings of banding mice but not of sham mice, and was restored by either the AT2-receptor antagonist PD123319 or the bradykinin B2-receptor antagonist icatibant. cGMP content in the thoracic aorta of banding mice was 9-fold greater than that of sham mice, and the elevation was reduced to sham levels 1 hour after intravenous injection of PD123319 or icatibant. When aortic rings were incubated with Ang II, cGMP content increased in banding rings but not in sham rings; the pretreatment with PD123319 or icatibant inhibited Ang II-induced cGMP production. These results suggest that aortic banding induces upregulation of the AT2 receptor through increased circulating Ang II via the AT1 receptor, thereby activating a vasodilatory pathway in vessels through the AT2 receptor via the kinin/cGMP system.

  16. Bradykinin promotes TLR2 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio

    2011-12-01

    Bradykinin (BK) is implicated in the sensation of pain, vasodilation, increases in vascular permeability and pathogenic processes associated with inflammation. Studies have shown that BK promotes the intracellular movement of calcium in human gingival fibroblasts by binding to the B2 receptor. In this study we investigated the effect of BK on regulation of Toll-like receptor 2 (TLR2) expression. Our results show that BK stimulates TLR2 receptor transcription and translation by activation of protein kinase C as well as AKT. Our study contributes important information on the regulation and expression of molecules that promote chronic inflammatory processes, which lead to periodontitis and consequently to loss of the dental organ.

  17. Metallopeptidase inhibition potentiates bradykinin-induced hyperalgesia

    PubMed Central

    Gomez, Ruben; Por, Elaine D.; Berg, Kelly A.; Clarke, William P.; Glucksman, Marc J.; Jeske, Nathaniel A.

    2011-01-01

    The neuropeptide bradykinin (BK) sensitizes nociceptor activation following its release in response to inflammatory injury. Thereafter, the bioactivity of bradykinin is controlled by the enzymatic activities of circulating peptidases. One such enzyme, the metalloendopeptidase EC3.4.24.15 (EP24.15), is co-expressed with bradykinin receptors in primary afferent neurons. In this study, utilizing approaches encompassing pharmacology, biochemistry, cell biology and behavioral animal models, we discover a crucial role for EP24.15 and the closely-related EP24.16 in modulating bradykinin-mediated hyperalgesia. Pharmacological analyses indicate that EP24.15 and EP24.16 inhibition significantly enhances bradykinin type-2 receptor activation by bradykinin in primary trigeminal ganglia cultures. In addition, bradykinin-induced sensitization of TRPV1 activation is increased in the presence of the EP24.15/16 inhibitor JA-2. Furthermore, behavioral analyses illustrate a significant dose-response relationship between JA-2 and bradykinin-mediated thermal hyperalgesia. These results indicate an important physiological role for the metallopeptidases EP24.15 and EP24.16 in regulating bradykinin-mediated sensitization of primary afferent nociceptors. PMID:21458920

  18. Expression of the ephrin receptor B2 in the embryonic chicken bursa of Fabricius

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicken B-cells develop in a specific organ, the bursa of Fabricius. To understand the bursal microenvironment guiding B-cell development, previous studies identified ephrin (Eph) receptor B2 (EphB2) gene transcripts in the embryonic bursa. We hypothesize that the EphB2 receptors and their ligands r...

  19. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    PubMed

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions.

  20. Complete blockade of the vasorelaxant effects of angiotensin-(1–7) and bradykinin in murine microvessels by antagonists of the receptor Mas

    PubMed Central

    Peiró, Concepción; Vallejo, Susana; Gembardt, Florian; Palacios, Erika; Novella, Susana; Azcutia, Verónica; Rodríguez-Mañas, Leocadio; Hermenegildo, Carlos; Sánchez-Ferrer, Carlos F; Walther, Thomas

    2013-01-01

    The heptapeptide angiotensin-(1–7) is a biologically active metabolite of angiotensin II, the predominant peptide of the renin–angiotensin system. Recently, we have shown that the receptor Mas is associated with angiotensin-(1–7)-induced signalling and mediates, at least in part, the vasodilatory properties of angiotensin-(1–7). However, it remained controversial whether an additional receptor could account for angiotensin-(1–7)-induced vasorelaxation. Here, we used two different angiotensin-(1–7) antagonists, A779 and d-Pro-angiotensin-(1–7), to address this question and also to study their influence on the vasodilatation induced by bradykinin. Isolated mesenteric microvessels from both wild-type and Mas-deficient C57Bl/6 mice were precontracted with noradrenaline, and vascular reactivity to angiotensin-(1–7) and bradykinin was subsequently studied using a small-vessel myograph. Furthermore, mechanisms for Mas effects were investigated in primary human umbilical vein endothelial cells. Both angiotensin-(1–7) and bradykinin triggered a concentration-dependent vasodilatation in wild-type microvessels, which was absent in the presence of a nitric oxide synthase inhibitor. In these vessels, the pre-incubation with the Mas antagonists A779 or d-Pro-angiotensin-(1–7) totally abolished the vasodilatory capacity of both angiotensin-(1–7) and bradykinin, which was nitric oxide mediated. Accordingly, Mas-deficient microvessels lacked the capacity to relax in response to either angiotensin-(1–7) or bradykinin. Pre-incubation of human umbilical vein endothelial cells with A779 prevented bradykinin-mediated NO generation and NO synthase phosphorylation at serine 1177. The angiotensin-(1–7) antagonists A779 and d-Pro-angiotensin-(1–7) equally block Mas, which completely controls the angiotensin-(1–7)-induced vasodilatation in mesenteric microvessels. Importantly, Mas also appears to be a critical player in NO-mediated vasodilatation induced by

  1. Design, synthesis and evaluation of (18)F-labeled bradykinin B1 receptor-targeting small molecules for PET imaging.

    PubMed

    Zhang, Zhengxing; Kuo, Hsiou-Ting; Lau, Joseph; Jenni, Silvia; Zhang, Chengcheng; Zeisler, Jutta; Bénard, François; Lin, Kuo-Shyan

    2016-08-15

    Two fluorine-18 ((18)F) labeled bradykinin B1 receptor (B1R)-targeting small molecules, (18)F-Z02035 and (18)F-Z02165, were synthesized and evaluated for imaging with positron emission tomography (PET). Z02035 and Z02165 were derived from potent antagonists, and showed high binding affinity (0.93±0.44 and 2.80±0.50nM, respectively) to B1R. (18)F-Z02035 and (18)F-Z02165 were prepared by coupling 2-[(18)F]fluoroethyl tosylate with their respective precursors, and were obtained in 10±5 (n=4) and 22±14% (n=3), respectively, decay-corrected radiochemical yield with >99% radiochemical purity. (18)F-Z02035 and (18)F-Z02165 exhibited moderate lipophilicity (LogD7.4=1.10 and 0.59, respectively), and were stable in mouse plasma. PET imaging and biodistribution studies in mice showed that both tracers enabled visualization of the B1R-positive HEK293T::hB1R tumor xenografts with better contrast than control B1R-negative HEK293T tumors. Our data indicate that small molecule antagonists can be used as pharmacophores for the design of B1R-targeting PET tracers.

  2. Effects of bradykinin on venous capacitance in health and treated chronic heart failure

    PubMed Central

    Gunaruwan, Prasad; Maher, Abdul; Williams, Lynne; Sharman, James; Schmitt, Matthias; Campbell, Ross; Frenneaux, Michael

    2008-01-01

    In the present study, we investigated the effects of basal and intra-arterial infusion of bradykinin on unstressed forearm vascular volume (a measure of venous tone) and blood flow in healthy volunteers (n=20) and in chronic heart failure patients treated with ACEIs [ACE (angiotensin-converting enzyme) inhibitors] (n=16) and ARBs (angiotensin receptor blockers) (n=14). We used radionuclide plethysmography to examine the effects of bradykinin and of the bradykinin antagonists B9340 [B1 (type 1)/B2 (type 2) receptor antagonist] and HOE140 (B2 antagonist). Bradykinin infusion increased unstressed forearm vascular volume in a similar dose-dependent manner in healthy volunteers and ARB-treated CHF patients (healthy volunteers maximum 12.3±2.1%, P<0.001 compared with baseline; ARB-treated CHF patients maximum 9.3±3.3%, P<0.05 compared with baseline; P=not significant for difference between groups), but the increase in unstressed volume in ACEI-treated CHF patients was higher (maximum 28.8±7.8%, P<0.001 compared with baseline; P<0.05 for the difference between groups). In contrast, while the increase in blood flow in healthy volunteers (maximum 362±9%, P<0.001) and in ACEI-treated CHF patients (maximum 376±12%, P<0.001) was similar (P=not significant for the difference between groups), the increase in ARB-treated CHF patients was less (maximum 335±7%, P<0.001; P<0.05 for the difference between groups). Infusion of each receptor antagonist alone similarly reduced basal unstressed volume and blood flow in ACEI-treated CHF patients, but not in healthy volunteers or ARB-treated CHF patients. In conclusion, bradykinin does not contribute to basal venous tone in health, but in ACEI-treated chronic heart failure it does. In ARB-treated heart failure, venous responses to bradykinin are preserved but arterial responses are reduced compared with healthy controls. Bradykinin-mediated vascular responses in both health and heart failure are mediated by the B2, rather than the B1

  3. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    SciTech Connect

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  4. The relationship of cerb B 2 expression with estrogen receptor and progesterone receptor and prognostic parameters in endometrial carcinomas

    PubMed Central

    2010-01-01

    Background Endometrial carcinoma (EC) is the most common malignancy of the female genital tract. Gene alterations and overexpression of various oncogenes are important in tumor development. The human HER 2 neu (c-erbB-2) gene product is a transmembrane receptor with an intracellular tyrosine kinase that plays an important role in coordinating the endometrial growth factor receptor signaling network. The aim of this study was to investigate the expression of c-erbB-2 in endometrial cancer, to study its correlation to established prognostic parameters and estrogen receptor (ER) and progesterone receptor (PR) status. Methods Immunohistochemical (IHC) analyses of ER, PR and c-erbB-2 were performed in 72 EC cases. Results We detected a positive staining with c erbB 2 in 18.1% of the cases and determined a statistically significant relation between c-erbB-2 and PR. We could not find a statistically significant relation between c-erbB-2 staining and ER. There was not a statistically significant difference between c-erbB-2 and histological grade. The highest level of c-erbB-2 was found in grade 2 cases. There was not any statistically significant relation between c-erbB-2 and menstrual status, myometrial invasion, lymph node status, stage and survival. Conclusions Although our study provides additional evidence of the potential prognostic role of c-erbB-2, further prospective and controlled studies are required to validate their clinical usefulness. PMID:20167054

  5. Kinin B(1) and B(2) receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats.

    PubMed

    Luiz, Ana Paula; Schroeder, Samilla Driessen; Chichorro, Juliana Geremias; Calixto, João Batista; Zampronio, Aleksander Roberto; Rae, Giles Alexander

    2010-04-01

    Mechanisms coupled to kinin B(1) and B(2) receptors have been implicated in sensory changes associated to various models of neuropathy. The current study aimed to investigate if kinins also participate in orofacial thermal hyperalgesia induced by constriction of the infraorbital nerve (CION), a model of trigeminal neuropathic pain which displays persistent hypersensitivity to orofacial sensory stimulation, in rats and mice. Male Swiss mice (30-35g) or Wistar rats (200-250g; n=6-10 per group in both cases) underwent CION or sham surgery and were submitted repeatedly to application of heat ( approximately 50 degrees C) to the ipsilateral or contralateral snout, delivered by a heat source placed 1cm from the vibrissal pad. Decreases in latency to display head withdrawal or vigorous snout flicking were considered indicative of heat hyperalgesia. CION caused long-lasting heat hyperalgesia which started on Day 2 after surgery in both species and lasted up to Day 17 in mice and Day 10 in rats. Administration of DALBK or HOE-140 (peptidic B(1) and B(2) receptor antagonists, respectively; each at 3nmol in 10microl) onto the exposed infraorbital nerve of mice at the moment of surgery delayed the development of the thermal hyperalgesia. Systemic treatment on Day 5 (mice) or Day 4 (rats) with Des-Arg(9), Leu(8)-Bradykinin (DALBK, B(1) receptor antagonist, 0.1-1micromol/kg, i.p.) or HOE-140 (B(2) receptor antagonist, 0.001-1micromol/kg, i.p.) transiently reduced heat hyperalgesia in both species. Due to the peptidic nature of DALBK and HOE-140, it is likely that their effects reported herein resulted from blockade of peripheral kinin receptors. Thus, mechanisms operated by kinin B(1) and B(2) receptors, contribute to orofacial heat hyperalgesia induced by CION in both mice and rats. Perhaps kinin B(1) and B(2) receptor antagonists might constitute effective preventive and curative treatments for orofacial thermal hyperalgesia induced by nerve injury.

  6. Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation.

    PubMed

    Nicoletti, Natália Fontana; Sénécal, Jacques; da Silva, Vinicius Duval; Roxo, Marcelo R; Ferreira, Nelson Pires; de Morais, Rafael Leite T; Pesquero, João Bosco; Campos, Maria Martha; Couture, Réjean; Morrone, Fernanda Bueno

    2016-11-16

    This study investigated the role of kinins and their receptors in malignant brain tumors. As a first approach, GL-261 glioma cells were injected (2 × 10(5) cells in 2 μl/2 min) into the right striatum of adult C57/BL6 wild-type, kinin B1 and B2 receptor knockout (KOB1R and KOB2R) and B1 and B2 receptor double knockout mice (KOB1B2R). The animals received the selective B1R (SSR240612) and/or B2R (HOE-140) antagonists by intracerebroventricular (i.c.v.) route at 5, 10, and 15 days. The tumor size quantification, mitotic index, western blot analysis, quantitative autoradiography, immunofluorescence, and confocal microscopy were carried out in brain tumor samples, 20 days after tumor induction. Our results revealed an uncontrolled tumor growing in KOB1R or SSR240612-treated mice, which was blunted by B2R blockade with HOE-140, suggesting a crosstalk between B1R and B2R in tumor growing. Combined treatment with B1R and B2R antagonists normalized the upregulation of tumor B1R and decreased the tumor size and the mitotic index, as was seen in double KOB1B2R. The B1R was detected on astrocytes in the tumor, indicating a close relationship between this receptor and astroglial cells. Noteworthy, an immunohistochemistry analysis of tumor samples from 16 patients with glioma diagnosis revealed a marked B1R immunopositivity in low-grade gliomas or in older glioblastoma individuals. Furthermore, the clinical data revealed a significantly higher immunopositivity for B1R, when compared to a lower B2R immunolabeling. Taken together, our results show that blocking simultaneously both kinin receptors or alternatively stimulating B1R may be of therapeutic value in the treatment of brain glioblastoma growth and malignancy.

  7. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing.

  8. Angiotensin-(1-7)-dependent vasorelaxation of the renal artery exhibits unique angiotensin and bradykinin receptor selectivity.

    PubMed

    Yousif, Mariam H M; Benter, Ibrahim F; Diz, Debra I; Chappell, Mark C

    2017-02-10

    Angiotensin-(1-7) [Ang-(1-7)] exhibits blood pressure lowering actions, inhibits cell growth, and reduces tissue inflammation and fibrosis which may functionally antagonize an activated Ang II-AT1 receptor axis. Since the vascular actions of Ang-(1-7) and the associated receptor/signaling pathways vary in different vascular beds, the current study established the vasorelaxant properties of the heptapeptide in the renal artery of male Wistar male rats. Ang-(1-7) produced an endothelium-dependent vasodilator relaxation of isolated renal artery segments pre-contracted by a sub-maximal concentration of phenylephrine (PE) (3×10(-7)M). Ang-(1-7) induced vasodilation of the rat renal artery with an ED50 of 3±1nM and a maximal response of 42±5% (N=10). The two antagonists (10(-5)M each) for the AT7/Mas receptor (MasR) [D-Pro(7)]-Ang-(1-7) and [D-Ala(7)]-Ang-(1-7) significantly reduced the maximal response to 12±1% and 18±3%, respectively. Surprisingly, the AT2R receptor antagonist PD123319, the AT1R antagonist losartan and B2R antagonist HOE140 (10(-6)M each) also significantly reduced Ang-(1-7)-induced relaxation to 12±2%, 22±3% and 14±7%, respectively. Removal of the endothelium or addition of the soluble guanylate cyclase (sGC) inhibitor ODQ (10(-5)M) essentially abolished the vasorelaxant response to Ang-(1-7) (10±4% and 10±2%, P <0.05). Finally, the NOS inhibitor LNAME (10(-4)M) reduced the response to 13±2% (p<0.05), but the cyclooxygenase inhibitor indomethacin failed to block the Ang-(1-7) response. We conclude that Ang-(1-7) exhibits potent vasorelaxant actions in the isolated renal artery that are dependent on an intact endothelium and the apparent stimulation of a NO-sGC pathway. Moreover, Ang-(1-7)-dependent vasorelaxation was sensitive to antagonists against the AT7/Mas, AT1, AT2 and B2 receptor subtypes.

  9. The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2(+) mammary cancer.

    PubMed

    Matić, Slavica; Quaglino, Elena; Arata, Lucia; Riccardo, Federica; Pegoraro, Mattia; Vallino, Marta; Cavallo, Federica; Noris, Emanuela

    2016-01-01

    The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.

  10. Bradykinin enhances invasion of malignant glioma into the brain parenchyma by inducing cells to undergo amoeboid migration

    PubMed Central

    Seifert, Stefanie; Sontheimer, Harald

    2014-01-01

    Abstract The molecular and cellular mechanisms governing cell motility and directed migration in response to the neuropeptide bradykinin are largely unknown. Here, we demonstrate that human glioma cells whose migration is guided by bradykinin generate bleb-like protrusions. We found that activation of the B2 receptor leads to a rise in free Ca2+ from internal stores that activates actomyosin contraction and subsequent cytoplasmic flow into protrusions forming membrane blebs. Furthermore Ca2+ activates Ca2+-dependent K+ and Cl− channels, which participate in bleb regulation. Treatment of gliomas with bradykinin in situ increased glioma growth by increasing the speed of cell migration at the periphery of the tumour mass. To test if bleb formation is related to bradykinin-promoted glioma invasion we blocked glioma migration with blebbistatin, a blocker of myosin kinase II, which is necessary for proper bleb retraction. Our findings suggest a pivotal role of bradykinin during glioma invasion by stimulating amoeboid migration of glioma cells. PMID:25194042

  11. Ex Vivo Smooth Muscle Pharmacological Effects of a Novel Bradykinin-Related Peptide, and Its Analogue, from Chinese Large Odorous Frog, Odorrana livida Skin Secretions

    PubMed Central

    Xiang, Jie; Wang, Hui; Ma, Chengbang; Zhou, Mei; Wu, Yuxin; Wang, Lei; Guo, Shaodong; Chen, Tianbao; Shaw, Chris

    2016-01-01

    Bradykinin-related peptides (BRPs) are one of the most extensively studied frog secretions-derived peptide families identified from many amphibian species. The diverse primary structures of BRPs have been proven essential for providing valuable information in understanding basic mechanisms associated with drug modification. Here, we isolated, identified and characterized a dodeca-BRP (RAP-L1, T6-BK), with primary structure RAPLPPGFTPFR, from the skin secretions of Chinese large odorous frogs, Odorrana livida. This novel peptide exhibited a dose-dependent contractile property on rat bladder and rat ileum, and increased the contraction frequency on rat uterus ex vivo smooth muscle preparations; it also showed vasorelaxant activity on rat tail artery smooth muscle. In addition, the analogue RAP-L1, T6, L8-BK completely abolished these effects on selected rat smooth muscle tissues, whilst it showed inhibition effect on bradykinin-induced rat tail artery relaxation. By using canonical antagonist for bradykinin B1 or B2 type receptors, we found that RAP-L1, T6-BK -induced relaxation of the arterial smooth muscle was very likely to be modulated by B2 receptors. The analogue RAP-L1, T6, L8-BK further enhanced the bradykinin inhibitory activity only under the condition of co-administration with HOE140 on rat tail artery, suggesting a synergistic inhibition mechanism by which targeting B2 type receptors. PMID:27690099

  12. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus.

    PubMed

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A; Zeltina, Antra; Beaty, Shannon M; Bowden, Thomas A

    2015-04-28

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus-receptor interaction crystallographically. Compared with extant HNV-G-ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus-host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure-function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations.

  13. Molecular recognition of human ephrinB2 cell surface receptor by an emergent African henipavirus

    PubMed Central

    Lee, Benhur; Pernet, Olivier; Ahmed, Asim A.; Zeltina, Antra; Beaty, Shannon M.; Bowden, Thomas A.

    2015-01-01

    The discovery of African henipaviruses (HNVs) related to pathogenic Hendra virus (HeV) and Nipah virus (NiV) from Southeast Asia and Australia presents an open-ended health risk. Cell receptor use by emerging African HNVs at the stage of host-cell entry is a key parameter when considering the potential for spillover and infection of human populations. The attachment glycoprotein from a Ghanaian bat isolate (GhV-G) exhibits <30% sequence identity with Asiatic NiV-G/HeV-G. Here, through functional and structural analysis of GhV-G, we show how this African HNV targets the same human cell-surface receptor (ephrinB2) as the Asiatic HNVs. We first characterized this virus−receptor interaction crystallographically. Compared with extant HNV-G–ephrinB2 structures, there was significant structural variation in the six-bladed β-propeller scaffold of the GhV-G receptor-binding domain, but not the Greek key fold of the bound ephrinB2. Analysis revealed a surprisingly conserved mode of ephrinB2 interaction that reflects an ongoing evolutionary constraint among geographically distal and phylogenetically divergent HNVs to maintain the functionality of ephrinB2 recognition during virus–host entry. Interestingly, unlike NiV-G/HeV-G, we could not detect binding of GhV-G to ephrinB3. Comparative structure–function analysis further revealed several distinguishing features of HNV-G function: a secondary ephrinB2 interaction site that contributes to more efficient ephrinB2-mediated entry in NiV-G relative to GhV-G and cognate residues at the very C terminus of GhV-G (absent in Asiatic HNV-Gs) that are vital for efficient receptor-induced fusion, but not receptor binding per se. These data provide molecular-level details for evaluating the likelihood of African HNVs to spill over into human populations. PMID:25825759

  14. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain.

    PubMed

    Wang, Shenglan; Dai, Yi; Fukuoka, Tetsuo; Yamanaka, Hiroki; Kobayashi, Kimiko; Obata, Koichi; Cui, Xiuyu; Tominaga, Makoto; Noguchi, Koichi

    2008-05-01

    Bradykinin is an inflammatory mediator that plays a pivotal role in pain and hyperalgesia in inflamed tissues by exciting and/or sensitizing nociceptors. TRPA1 is an important component of the transduction machinery through which environmental irritants and endogenous proalgesic agents depolarize nociceptors to elicit inflammatory pain. Here, using electrophysiological, immunocytochemical and behavioural analyses, we showed a functional interaction of these two inflammation-related molecules in both heterologous expressing systems and primary sensory neurons. We found that bradykinin increased the TRPA1 currents evoked by allyl isothiocyanate (AITC) or cinnamaldehyde in HEK293 cells expressing TRPA1 and bradykinin receptor 2 (B2R). This potentiation was inhibited by phospholipase C (PLC) inhibitor or protein kinase A (PKA) inhibitor, and mimicked by PLC or PKA activator. The functional interaction between B2R and TRPA1, as well as the modulation mechanism, was also observed in rat dorsal root ganglia neurons. In an occlusion experiment, the PLC activator could enhance AITC-induced TRPA1 current further even in saturated PKA-mediated potentiation, indicating the additive potentiating effects of the PLC and PKA pathways. These data for the first time indicate that a cAMP-PKA signalling is involved in the downstream from B2R in dorsal root ganglia neurons in addition to PLC. Finally, subcutaneous pre-injection of a sub-inflammatory dose of bradykinin into rat hind paw enhanced AITC-induced pain behaviours, which was consistent with the observations in vitro. Collectively, these results represent a novel mechanism through which bradykinin released in response to tissue inflammation might trigger the sensation of pain by TRPA1 activation.

  15. Bradykinin and angiotensin-converting enzyme inhibition in cardioprotection

    PubMed Central

    Jancso, G; Jaberansari, MT; Gasz, B; Szanto, Z; Cserepes, B; Röth, E

    2004-01-01

    OBJECTIVES: To show that angiotensin-converting enzyme (ACE) inhibition potentiates subthreshold ischemic preconditioning (IPC) via the elevation of bradykinin activity, leading to a fully delayed cardioprotective response. METHODS: On day 1 of the experiment, pigs were subjected to sham (group 1, controls) or IPC protocols. In groups 2 and 3, 4×5 min and 2×2 min of IPC, respectively, were elicited by occluding the left anterior descending coronary artery with percutaneous transluminal coronary angioplasty inflatable balloon catheter. Group 4 was subjected to the ACE inhibitor perindoprilate only. In group 5, the pigs were pretreated with perindoprilate (0.06 mg/kg) and then subjected to 2×2 min IPC. In group 6, intracoronary HOE 140 (a selective bradykinin B2 receptor antagonist) was added before the perindoprilateaugmented subthreshold (2×2 min) PC stimulus. On the second day, all animals underwent 40 min left anterior descending coronary artery ligation and 3 h reperfusion, followed by infarct size analysis using triphenyl tetrazolium chloride staining. RESULTS: The rates of infarct size and risk zone were the following in the experimental groups: group 1, 42.8%; group 2,19.5% (P<0.05); group 3, ischemia/reperfusion (I/R) 33.4%; group 4, I/R 18.4% (P<0.05); group 5, I/R 31.2%; and group 6, I/R 36.3%. A significant increase of nuclear factor kappa B activation in groups 2 and 4 was seen. CONCLUSIONS: Results confirm that ACE inhibitors do not give total pharmacological IPC, but they enhance the induction effect of small ischemic insults, which raises the ischemic tolerance of myocardium. It was determined that enhanced bradykinin activity leads to downstream nuclear factor kappa B activation in this model. PMID:19641692

  16. Ephrin-B2 and ephrin-B3 as functional henipavirus receptors.

    PubMed

    Xu, Kai; Broder, Christopher C; Nikolov, Dimitar B

    2012-02-01

    Members of the ephrin cell-surface protein family interact with the Eph receptors, the largest family of receptor tyrosine kinases, mediating bi-directional signaling during tumorogenesis and various developmental events. Surprisingly, ephrin-B2 and -B3 were recently identified as entry receptors for henipaviruses, emerging zoonotic paramyxoviruses responsible for repeated outbreaks in humans and animals in Australia, Southeast Asia, India and Bangladesh. Nipah virus (NiV) and Hendra virus (HeV) are the only two identified members in the henipavirus genus. While the initial human infection cases came from contact with infected pigs (NiV) or horses (HeV), in the more recent outbreaks of NiV both food-borne and human-to-human transmission were reported. These characteristics, together with high mortality and morbidity rates and lack of effective anti-viral therapies, make the henipaviruses a potential biological-agent threat. Viral entry is an important target for the development of anti-viral drugs. The entry of henipavirus is initiated by the attachment of the viral G envelope glycoprotein to the host cell receptors ephrin-B2 and/or -B3, followed by activation of the F fusion protein, which triggers fusion between the viral envelop and the host membrane. We review recent progress in the study of henipavirus entry, particularly the identification of ephrins as their entry receptors, and the structural characterization of the ephrin/Henipa-G interactions.

  17. B2 adrenergic receptors and morphological changes of the enteric nervous system in colorectal adenocarcinoma

    PubMed Central

    Ciurea, Raluca Niculina; Rogoveanu, Ion; Pirici, Daniel; Târtea, Georgică-Costinel; Streba, Costin Teodor; Florescu, Cristina; Cătălin, Bogdan; Puiu, Ileana; Târtea, Elena-Anca; Vere, Cristin Constantin

    2017-01-01

    AIM To study the morphology of the enteric nervous system and the expression of beta-2 adrenergic (B2A) receptors in primary colorectal cancer. METHODS In this study, we included forty-eight patients with primary colorectal cancer and nine patients for control tissue from the excision of a colonic segment for benign conditions. We determined the clinicopathological features and evaluated the immunohistochemical expression pattern of B2A receptors as well as the morphological changes of the enteric nervous system (ENS). In order to assess statistical differences, we used the student t-test for comparing the means of two groups and one-way analysis of variance with Bonferroni’s post hoc analysis for comparing the means of more than two groups. Correlations were assessed using the Pearson’s correlation coefficient. RESULTS B2A receptors were significantly associated with tumor grading, tumor size, tumor invasion, lymph node metastasis (P < 0.05), while there were no statistically significant associations with gender, CRC location and gross appearance (P > 0.05). We observed, on one hand, a decrease of the relative area for both Auerbach and Meissner plexuses with the increase of the tumor grading, and on the other hand, an increase of the relative area of other nervous elements not in the Meissner plexus or in the Auerbach plexus with the tumor grading. For G1 tumors we found that epithelial B2A area showed an inverse correlation with the Auerbach plexus areas [r(14) = -0.531, P < 0.05], while for G2 tumors, epithelial B2A areas showed an indirect variation with both the Auerbach plexus areas [r(14) = -0.453, P < 0.05] and the Meissner areas [r(14) = -0.825, P < 0.01]. For G3 tumors, the inverse dependence increased for both Auerbach [r(14) = -0.587, P < 0.05] and Meissner [r(14) = -0.934, P < 0.05] plexuses. CONCLUSION B2A receptors play an important role in colorectal carcinogenesis and can be utilized as prognostic factors. Furthermore, study of the ENS in

  18. MRP transporters as membrane machinery in the bradykinin-inducible export of ATP.

    PubMed

    Zhao, Yumei; Migita, Keisuke; Sun, Jing; Katsuragi, Takeshi

    2010-04-01

    Adenosine triphosphate (ATP) plays the role of an autocrine/paracrine signal molecule in a variety of cells. So far, however, the membrane machinery in the export of intracellular ATP remains poorly understood. Activation of B2-receptor with bradykinin-induced massive release of ATP from cultured taenia coli smooth muscle cells. The evoked release of ATP was unaffected by gap junction hemichannel blockers, such as 18alpha-glycyrrhetinic acid and Gap 26. Furthermore, the cystic fibrosis transmembrane regulator (CFTR) coupled Cl(-) channel blockers, CFTR(inh)172, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, Gd3(+) and glibenclamide, failed to suppress the export of ATP by bradykinin. On the other, the evoked release of ATP was greatly reduced by multidrug resistance protein (MRP) transporter inhibitors, MK-571, indomethacin, and benzbromarone. From western blotting analysis, blots of MRP 1 protein only, but not MRP 2 and MRP 3 protein, appeared at 190 kD. However, the MRP 1 protein expression was not enhanced after loading with 1 muM bradykinin for 5 min. Likewise, niflumic acid and fulfenamic acid, Ca2(+)-activated Cl(-) channel blockers, largely abated the evoked release of ATP. The possibility that the MRP transporter system couples with Ca2(+)-activated Cl(-) channel activities is discussed here. These findings suggest that MRP transporters, probably MRP 1, unlike CFTR-Cl(-) channels and gap junction hemichannels, may contribute as membrane machinery to the export of ATP induced by G-protein-coupled receptor stimulation.

  19. Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance

    PubMed Central

    Reis, Felipe C. G.; Haro, Anderson S.; Bacurau, Aline V. N.; Hirabara, Sandro M.; Wasinski, Frederick; Ormanji, Milene S.; Moreira, José B. N.; Kiyomoto, Beatriz H.; Bertoncini, Clelia R. A.; Brum, Patricia C.; Curi, Rui; Bader, Michael; Bacurau, Reury F. P.; Pesquero, João B.; Araújo, Ronaldo C.

    2015-01-01

    Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance. PMID:26302153

  20. Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment.

    PubMed

    Jelinic, Maria; Leo, Chen-Huei; Post Uiterweer, Emiel D; Sandow, Shaun L; Gooi, Jonathan H; Wlodek, Mary E; Conrad, Kirk P; Parkington, Helena; Tare, Marianne; Parry, Laura J

    2014-01-01

    Relaxin is a potent vasodilator of small resistance arteries and modifies arterial compliance in some systemic vascular beds, yet receptors for relaxin, such as RXFP1, have only been localized to vascular smooth muscle. This study first aimed to localize RXFP1 in rat arteries and veins from different organ beds and determine whether receptors are present in endothelial cells. We then tested the hypothesis that region-specific vascular effects of relaxin may be influenced by the cellular localization of RXFP1 within different blood vessels. The aorta, vena cava, mesenteric artery, and vein had significantly higher (P<0.05) RXFP1 immunostaining in endothelial cells compared with vascular smooth muscle, whereas the femoral artery and vein and small pulmonary arteries had higher (P<0.01) RXFP1 immunostaining in the vascular smooth muscle. Male rats were treated subcutaneously with recombinant human relaxin-2 (serelaxin; 4 μg/h) for 5 d; vasodilation and compliance in mesenteric and femoral arteries and veins were compared with placebo controls. Serelaxin significantly (P=0.04) reduced wall stiffness and increased volume compliance in mesenteric arteries but not in the other vessels examined. This was associated with changes in geometrical properties, and not compositional changes in the extracellular matrix. Serelaxin treatment had no effect on acetylcholine-mediated relaxation but significantly (P<0.001) enhanced bradykinin (BK)-mediated relaxation in mesenteric arteries, involving enhanced nitric oxide but not endothelium-derived hyperpolarization or vasodilatory prostanoids. In conclusion, there is differential distribution of RXFP1 on endothelial and smooth muscle across the vasculature. In rats, mesenteric arteries exhibit the greatest functional response to chronic serelaxin treatment.

  1. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models

    PubMed Central

    Toscani, Andrés Martín; Sampayo, Rocío G.; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina

    2017-01-01

    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells. PMID:28306722

  2. Distinct ErbB2 receptor populations differentially interact with beta1 integrin in breast cancer cell models.

    PubMed

    Toscani, Andrés Martín; Sampayo, Rocío G; Barabas, Federico Martín; Fuentes, Federico; Simian, Marina; Coluccio Leskow, Federico

    2017-01-01

    ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells.

  3. Ligand Binding and Calcium Influx Induce Distinct Ectodomain/γ-Secretase-processing Pathways of EphB2 Receptor*

    PubMed Central

    Litterst, Claudia; Georgakopoulos, Anastasios; Shioi, Junichi; Ghersi, Enrico; Wisniewski, Thomas; Wang, Rong; Ludwig, Andreas; Robakis, Nikolaos K.

    2007-01-01

    Binding of EphB receptors to ephrinB ligands on the surface of adjacent cells initiates signaling cascades that regulate angiogenesis, axonal guidance, and neuronal plasticity. These functions require processing of EphB receptors and removal of EphB-ephrinB complexes from the cell surface, but the mechanisms involved are poorly understood. Here we show that the ectodomain of EphB2 receptor is released to extracellular space following cleavage after EphB2 residue 543. The remaining membrane-associated fragment is cleaved by the presenilin-dependent γ-secretase activity after EphB2 residue 569 releasing an intracellular peptide that contains the cytoplasmic domain of EphB2. This cleavage is inhibited by presenilin 1 familial Alzheimer disease mutations. Processing of EphB2 receptor depends on specific treatments: ephrinB ligand-induced processing requires endocytosis, and the ectodomain cleavage is sensitive to peptide inhibitor N-benzyloxycarbonyl-Val-Leu-leucinal but insensitive to metalloproteinase inhibitor GM6001. The ligand-induced processing takes place in endosomes and involves the rapid degradation of the extracellular EphB2. EphrinB ligand stimulates ubiquitination of EphB2 receptor. Calcium influx- and N-methyl-d-aspartic acid-induced processing of EphB2 is inhibited by GM6001 and ADAM10 inhibitors but not by N-benzyloxycarbonyl-Val-Leu-leucinal. This processing requires no endocytosis and promotes rapid shedding of extracellular EphB2, indicating that it takes place at the plasma membrane. Our data identify novel cleavages and modifications of EphB2 receptor and indicate that specific conditions determine the proteolytic systems and subcellular sites involved in the processing of this receptor. PMID:17428795

  4. Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model.

    PubMed

    Hu, Rui; Wei, Pan; Jin, Lu; Zheng, Teng; Chen, Wen-Yu; Liu, Xiao-Ya; Shi, Xiao-Dong; Hao, Jing-Ru; Sun, Nan; Gao, Can

    2017-03-30

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, which affects more and more people. But there is still no effective treatment for preventing or reversing the progression of the disease. Soluble amyloid-beta (Aβ) oligomers, also known as Aβ-derived diffusible ligands (ADDLs) play an important role in AD. Synaptic activity and cognition critically depend on the function of glutamate receptors. Targeting N-methyl-D-aspartic acid (NMDA) receptors trafficking and its regulation is a new strategy for AD early treatment. EphB2 is a key regulator of synaptic localization of NMDA receptors. Aβ oligomers could bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. Here we identified that overexpression of EphB2 with lentiviral vectors in dorsal hippocampus improved impaired memory deficits and anxiety or depression-like behaviors in APPswe/PS1-dE9 (APP/PS1) transgenic mice. Phosphorylation and surface expression of GluN2B-containing NMDA receptors were also improved. Overexpression of EphB2 also rescued the ADDLs-induced depletion of the expression of EphB2 and GluN2B-containing NMDA receptors trafficking in cultured hippocampal neurons. These results suggest that improving the decreased expression of EphB2 and subsequent GluN2B-containing NMDA receptors trafficking in hippocampus may be a promising strategy for AD treatment.

  5. GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer.

    PubMed

    Robbins, M J; Calver, A R; Filippov, A K; Hirst, W D; Russell, R B; Wood, M D; Nasir, S; Couve, A; Brown, D A; Moss, S J; Pangalos, M N

    2001-10-15

    GABA(B) receptors are unique among G-protein-coupled receptors (GPCRs) in their requirement for heterodimerization between two homologous subunits, GABA(B1) and GABA(B2), for functional expression. Whereas GABA(B1) is capable of binding receptor agonists and antagonists, the role of each GABA(B) subunit in receptor signaling is unknown. Here we identified amino acid residues within the second intracellular domain of GABA(B2) that are critical for the coupling of GABA(B) receptor heterodimers to their downstream effector systems. Our results provide strong evidence for a functional role of the GABA(B2) subunit in G-protein coupling of the GABA(B) receptor heterodimer. In addition, they provide evidence for a novel "sequential" GPCR signaling mechanism in which ligand binding to one heterodimer subunit can induce signal transduction through the second partner of a heteromeric complex.

  6. When Good Turns Bad: Regulation of Invasion and Metastasis by ErbB2 Receptor Tyrosine Kinase.

    PubMed

    Brix, Ditte Marie; Clemmensen, Knut Kristoffer Bundgaard; Kallunki, Tuula

    2014-01-27

    Overexpression and activation of ErbB2 receptor tyrosine kinase in breast cancer is strongly linked to an aggressive disease with high potential for invasion and metastasis. In addition to inducing very aggressive, metastatic cancer, ErbB2 activation mediates processes such as increased cancer cell proliferation and survival and is needed for normal physiological activities, such as heart function and development of the nervous system. How does ErbB2 activation make cancer cells invasive and when? Comprehensive understanding of the cellular mechanisms leading to ErbB2-induced malignant processes is necessary for answering these questions. Here we present current knowledge about the invasion-promoting function of ErbB2 and the mechanisms involved in it. Obtaining detailed information about the "bad" behavior of ErbB2 can facilitate development of novel treatments against ErbB2-positive cancers.

  7. When Good Turns Bad: Regulation of Invasion and Metastasis by ErbB2 Receptor Tyrosine Kinase

    PubMed Central

    Brix, Ditte Marie; Bundgaard Clemmensen, Knut Kristoffer; Kallunki, Tuula

    2014-01-01

    Overexpression and activation of ErbB2 receptor tyrosine kinase in breast cancer is strongly linked to an aggressive disease with high potential for invasion and metastasis. In addition to inducing very aggressive, metastatic cancer, ErbB2 activation mediates processes such as increased cancer cell proliferation and survival and is needed for normal physiological activities, such as heart function and development of the nervous system. How does ErbB2 activation make cancer cells invasive and when? Comprehensive understanding of the cellular mechanisms leading to ErbB2-induced malignant processes is necessary for answering these questions. Here we present current knowledge about the invasion-promoting function of ErbB2 and the mechanisms involved in it. Obtaining detailed information about the “bad” behavior of ErbB2 can facilitate development of novel treatments against ErbB2-positive cancers. PMID:24709902

  8. Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats.

    PubMed

    Dehghani, Aghdas; Saberi, Shadan; Nematbakhsh, Mehdi

    2015-01-01

    Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg(-1) min(-1)) were determined. Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P < 0.05). Infusion of 300 ng kg(-1) min(-1) Ang 1-7 increased RBF by 6.9 ± 1.9% in OVE group versus 0.9 ± 1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats.

  9. Role of Mas Receptor Antagonist A799 in Renal Blood Flow Response to Ang 1-7 after Bradykinin Administration in Ovariectomized Estradiol-Treated Rats

    PubMed Central

    Dehghani, Aghdas; Saberi, Shadan; Nematbakhsh, Mehdi

    2015-01-01

    Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats. Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg−1 min−1) were determined. Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P < 0.05). Infusion of 300 ng kg−1 min−1 Ang 1-7 increased RBF by 6.9 ± 1.9% in OVE group versus 0.9 ± 1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly. Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats. PMID:26421009

  10. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer.

    PubMed Central

    Karunagaran, D; Tzahar, E; Beerli, R R; Chen, X; Graus-Porta, D; Ratzkin, B J; Seger, R; Hynes, N E; Yarden, Y

    1996-01-01

    Overexpression of the erbB-2 gene contributes to aggressive behavior of various human adenocarcinomas, including breast cancer, through an unknown molecular mechanism. The erbB-2-encoded protein is a member of the ErbB family of growth factor receptors, but no direct ligand of ErbB-2 has been reported. We show that in various cells ErbB-2 can form heterodimers with both EGF receptor (ErbB-1) and NDF receptors (ErbB-3 and ErbB-4), suggesting that it may affect the action of heterologous ligands without the involvement of a direct ErbB-2 ligand. This possibility was addressed in breast cancer cells through either overexpression of ErbB-2 or by blocking its delivery to the cell surface by means of an endoplasmic reticulum-trapped antibody. We report that ErbB-2 overexpression enhanced binding affinities to both EGF and NDF, through deceleration of ligand dissociation rates. Likewise, removal of ErbB-2 from the cell surface almost completely abolished ligand binding by accelerating dissociation of both growth factors. The kinetic effects resulted in enhancement and prolongation of the stimulation of two major cytoplasmic signaling pathways, namely: MAP kinase (ERK) and c-Jun kinase (SAPK), by either ligand. Our results imply that ErbB-2 is a pan-ErbB subunit of the high affinity heterodimeric receptors for NDF and EGF. Therefore, the oncogenic action of ErbB-2 in human cancers may be due to its ability to potentiate in trans growth factor signaling. Images PMID:8617201

  11. Kinin B1 and B2 receptors are overexpressed in the hippocampus of humans with temporal lobe epilepsy.

    PubMed

    Perosa, Sandra Regina; Argañaraz, Gustavo Adolfo; Goto, Eduardo Massatoshi; Costa, Luciana Gilbert Pessoa; Konno, Ana Carla; Varella, Pedro Paulo Vasconcellos; Santiago, Joselita Ferreira Carvalho; Pesquero, João Bosco; Canzian, Mauro; Amado, Debora; Yacubian, Elza Marcia; Carrete, Henrique; Centeno, Ricardo Silva; Cavalheiro, Esper Abrão; Silva, Jose Antonio; Mazzacoratti, Maria da Graça Naffah

    2007-01-01

    Molecular biology tools have been employed to investigate the participation of peptides in human temporal lobe epilepsy (TLE). Active polypeptides and their receptors have been related to several brain processes, such as inflammation, apoptosis, brain development, K(+) and Ca(2+) channels' activation, cellular growth, and induction of neuronal differentiation. Previous works have shown a neuroprotector effect for kinin B2 receptor and a deleterious, pro-epileptogenic action for kinin B1 receptor in animal models of TLE. The present work was delineated to analyze the kinin B1 and B2 receptors expression in the hippocampus of patients presenting refractory mesial TLE. The hippocampi were removed during the patients surgery in a procedure used for seizure control and compared with tissues obtained after autopsy. Nissl staining was performed to study the tissue morphology and immunohistochemistry, and Western blot was used to compare the distribution and levels of both receptors in the hippocampus. In addition, real time PCR was employed to analyze the gene expression of these receptors. Nissl staining showed sclerotic hippocampi with hilar, granular, and pyramidal cell loss in TLE patients. Immunohistochemistry and Western blot analyses showed increased expression of kinin B1 and B2 receptors but the real-time PCR data demonstrated increased mRNA level only for kinin B2 receptors, when compared with controls. These data show for the first time a relationship between human TLE and the kallikrein-kinin system, confirming ours previous results, obtained from experimental models of epilepsy.

  12. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling.

    PubMed Central

    Graus-Porta, D; Beerli, R R; Daly, J M; Hynes, N E

    1997-01-01

    We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization. PMID:9130710

  13. The mechanism of action of two bradykinin-potentiating peptides on isolated smooth muscle.

    PubMed

    Ufkes, J G; Aarsen, P N; van der Meer, C

    1977-07-15

    Bradykinin-induced contractions in the guinea-pig ileum were potentiated by the peptides A-VI-5 (Val-Glu-Ser-Ser-Lys) and BPP5a (Pyr-Lys-Trp-Ala-Pro), while the contractions induced by other agonists were not affected. Neither peptide added alone caused any response. Previous addition of the peptides shortened the latent period following the addition of bradykinin to a value corresponding to the contraction height with an equivalent dose of bradykinin added alone. Bradykinin in contact with a piece of ileum was inactivated at a relatively slow rate. This inactivation was not inhibited by either A-VI-5 or BPP5a in doses causing potentiation. Suppression of the cholinergic activity by cooling, atropine, morphine or tetrodotoxin did not influence the potentiating activity. Addition of the peptides at the moment a submaximal contraction due to bradykinin had been fully established, increased the contraction height within seconds. The two peptides caused a parallel shift to the left of the dose-effect curve of bradykinin, whereas the maximum bradykinin effect remained unchanged. It is concluded that sensitization of bradykinin receptors due to an increased affinity of the receptor for bradykinin is the hypothesis which best fits the experimental findings.

  14. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity*

    PubMed Central

    Miyamoto, Takashi; Kim, Daniel; Knox, Joseph A.; Johnson, Erik; Mucke, Lennart

    2016-01-01

    Diverse lines of evidence suggest that amyloid-β (Aβ) peptides causally contribute to the pathogenesis of Alzheimer disease (AD), the most frequent neurodegenerative disorder. However, the mechanisms by which Aβ impairs neuronal functions remain to be fully elucidated. Previous studies showed that soluble Aβ oligomers interfere with synaptic functions by depleting NMDA-type glutamate receptors (NMDARs) from the neuronal surface and that overexpression of the receptor tyrosine kinase EphB2 can counteract this process. Through pharmacological treatments and biochemical analyses of primary neuronal cultures expressing wild-type or mutant forms of EphB2, we demonstrate that this protective effect of EphB2 depends on its PDZ-binding motif and the presence of neuronal activity but not on its kinase activity. We further present evidence that the protective effect of EphB2 may be mediated by the AMPA-type glutamate receptor subunit GluA2, which can become associated with the PDZ-binding motif of EphB2 through PDZ domain-containing proteins and can promote the retention of NMDARs in the membrane. In addition, we show that the Aβ-induced depletion of surface NMDARs does not depend on several factors that have been implicated in the pathogenesis of Aβ-induced neuronal dysfunction, including aberrant neuronal activity, tau, prion protein (PrPC), and EphB2 itself. Thus, although EphB2 does not appear to be directly involved in the Aβ-induced depletion of NMDARs, increasing its expression may counteract this pathogenic process through a neuronal activity- and PDZ-dependent regulation of AMPA-type glutamate receptors. PMID:26589795

  15. The ErbB2/Neu/HER2 receptor is a new calmodulin-binding protein

    PubMed Central

    2004-01-01

    We have demonstrated previously that the EGFR (epidermal growth factor receptor) is a calmodulin (CaM)-binding protein. To establish whether or not the related receptor ErbB2/Neu/HER2 also binds CaM, we used human breast adenocarcinoma SK-BR-3 cells, because these cells overexpress this receptor thus facilitating the detection of this interaction. In the present paper, we show that ErbB2 could be pulled-down using CaM–agarose beads in a Ca2+-dependent manner, as detected by Western blot analysis using an anti-ErbB2 antibody. ErbB2 was also isolated by Ca2+-dependent CaM-affinity chromatography. We also demonstrate using an overlay technique with biotinylated CaM that CaM binds directly to the immunoprecipitated ErbB2. The binding of biotinylated CaM to ErbB2 depends strictly on the presence of Ca2+, since it was prevented by the presence of EGTA. Moreover, the addition of an excess of free CaM prevents the binding of its biotinylated form, demonstrating that this was a specific process. We excluded any interference with the EGFR, as SK-BR-3 cells express considerably lower levels of this receptor, and no detectable EGFR signal was observed by Western blot analysis in the immunoprecipitated ErbB2 preparations used to perform the overlay assays with biotinylated CaM. We also demonstrate that treating living cells with W7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide], a cell-permeant CaM antagonist, down-regulates ErbB2 phosphorylation, and show that W7 does not interfere non-specifically with the activity of ErbB tyrosine kinases. We also show that W7 inhibits the phosphorylation (activation) of both ERK1/2 (extracellular-signal-regulated kinases 1 and 2) and Akt/PKB (protein kinase B), in accordance with the inhibition observed in ErbB2 phosphorylation. In contrast, W7 treatment increased the phosphorylation (activation) of CREB (cAMP-response-element-binding protein) and ATF1 (activating transcription factor-1), two Ca2+-sensitive transcription factors

  16. The carboxy-terminal domains of erbB-2 and epidermal growth factor receptor exert different regulatory effects on intrinsic receptor tyrosine kinase function and transforming activity.

    PubMed Central

    Di Fiore, P P; Segatto, O; Lonardo, F; Fazioli, F; Pierce, J H; Aaronson, S A

    1990-01-01

    The erbB-2 gene product, gp185erbB-2, displays a potent transforming effect when overexpressed in NIH 3T3 cells. In addition, it possesses constitutively high levels of tyrosine kinase activity in the absence of exogenously added ligand. In this study, we demonstrate that its carboxy-terminal domain exerts an enhancing effect on erbB-2 kinase and transforming activities. A premature termination mutant of the erbB-2 protein, lacking the entire carboxy-terminal domain (erbB-2 delta 1050), showed a 40-fold reduction in transforming ability and a lowered in vivo kinase activity for intracellular substrates. When the carboxy-terminal domain of erbB-2 was substituted for its analogous region in the epidermal growth factor receptor (EGFR) (EGFR/erbB-2COOH chimera), it conferred erbB-2-like properties to the EGFR, including transforming ability in the absence of epidermal growth factor, elevated constitutive autokinase activity in vivo and in vitro, and constitutive ability to phosphorylate phospholipase C-gamma. Conversely, a chimeric erbB-2 molecule bearing an EGFR carboxy-terminal domain (erbB-2/EGFRCOOH chimera) showed reduced transforming and kinase activity with respect to the wild-type erbB-2 and was only slightly more efficient than the erbB-2 delta 1050 mutant. Thus, we conclude that the carboxy-terminal domains of erbB-2 and EGFR exert different regulatory effects on receptor kinase function and biological activity. The up regulation of gp185erbB-2 enzymatic activity exerted by its carboxy-terminal domain can explain, at least in part, its constitutive level of kinase activity. Images PMID:2188097

  17. Structure of the Ligand-Binding Domain of the EphB2 Receptor of 2 Angstrom Resolution

    SciTech Connect

    Goldgur, Y.; Paavilainen, S; Nikolov, D; Himanen, J

    2009-01-01

    Eph tyrosine kinase receptors, the largest group of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, shape and mobility. Recently, several Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Structural and biophysical studies have established detailed information on the binding and recognition of Eph receptors and ephrins. The initial high-affinity binding of Eph receptors to ephrin occurs through the penetration of an extended G-H loop of the ligand into a hydrophobic channel on the surface of the receptor. Consequently, the G-H loop-binding channel of Eph receptors is the main target in the search for Eph antagonists that could be used in the development of anticancer drugs and several peptides have been shown to specifically bind Eph receptors and compete with the cognate ephrin ligands. However, the molecular details of the conformational changes upon Eph/ephrin binding have remained speculative, since two of the loops were unstructured in the original model of the free EphB2 structure and their conformational changes upon ligand binding could consequently not be analyzed in detail. In this study, the X-ray structure of unbound EphB2 is reported at a considerably higher 2 A resolution, the conformational changes that the important receptor loops undergo upon ligand binding are described and the consequences that these findings have for the development of Eph antagonists are discussed.

  18. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers.

    PubMed

    Graham, Robert Leslie James; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  19. Identification and functional analysis of a novel bradykinin inhibitory peptide in the venoms of New World Crotalinae pit vipers

    SciTech Connect

    James Graham, Robert Leslie . E-mail: rl.graham@ulster.ac.uk; Graham, Ciaren; McClean, Stephen; Chen, Tianbao; O'Rourke, Martin; Hirst, David; Theakston, David; Shaw, Chris

    2005-12-23

    A novel undecapeptide has been isolated and structurally characterized from the venoms of three species of New World pit vipers from the subfamily, Crotalinae. These include the Mexican moccasin (Agkistrodon bilineatus), the prairie rattlesnake (Crotalus viridis viridis), and the South American bushmaster (Lachesis muta). The peptide was purified from all three venoms using a combination of gel permeation chromatography and reverse-phase HPLC. Automated Edman degradation sequencing and MALDI-TOF mass spectrometry established its peptide primary structure as: Thr-Pro-Pro-Ala-Gly-Pro-Asp-Val-Gly-Pro-Arg-OH, with a non-protonated molecular mass of 1063.18 Da. A synthetic replicate of the peptide was found to be an antagonist of bradykinin action at the rat vascular B2 receptor. This is the first bradykinin inhibitory peptide isolated from snake venom. Database searching revealed the peptide to be highly structurally related (10/11 residues) with a domain residing between the bradykinin-potentiating peptide and C-type natriuretic peptide domains of a recently cloned precursor from tropical rattlesnake (Crotalus durissus terrificus) venom gland. BIP thus represents a novel biological entity from snake venom.

  20. Bradykinin may be involved in neuropeptide Y-induced diuresis, natriuresis, and calciuresis.

    PubMed

    Bischoff, A; Rascher, W; Michel, M C

    1998-10-01

    Neuropeptide Y (NPY) can cause diuresis, natriuresis, and calciuresis in rats independently of the pressure-natriuresis mechanism (A. Bischoff and M. C. Michel. Pflügers Arch. 435: 443-453, 1998). Because this is seen in systemic but not intrarenal NPY infusion, we have investigated the possible mediator of tubular NPY effects in anesthetized rats. In the present study, infusion of NPY (2 micrograms . kg-1 . min-1) enhanced renovascular resistance by approximately 8 mmHg . ml-1 . min and enhanced urine and sodium excretion by approximately 450 microliter/15 min and approximately 60-85 micromol/15 min, respectively. Acute renal denervation did not alter renovascular or tubular NPY effects, indicating that a neuronally released mediator is not involved. Treatment with the angiotensin II-receptor antagonist losartan prevented the decline of the renovascular response with time but did not modify tubular NPY effects. The bradykinin B2-receptor antagonist icatibant accelerated the decline of the renovascular NPY effects with time; concomitantly, it attenuated NPY-induced diuresis and natriuresis and abolished NPY-induced calciuresis. The converting-enzyme inhibitor ramiprilat prevented the decline of the renovascular response with time; concomitantly, it magnified the NPY-induced diuresis, natriuresis, and calciuresis. We conclude that bradykinin may be involved in NPY-induced diuresis, natriuresis, and, in particular, calciuresis.

  1. Involvement of 5-HT(2A/2B/2C) receptors on memory formation: simple agonism, antagonism, or inverse agonism?

    PubMed

    Meneses, Alfredo

    2002-12-01

    1. The 5-HT2 receptors subdivision into the 5-HT(2A/2B/2C) subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation. 2. The SB-200646 (a selective 5-HT(2B/2C) receptor antagonist) and LY215840 (a nonselective 5-HT(2/7) receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP). 3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (+/-)-2.5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose. 4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine: while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs. 5. It is suggested that 5-HT(2B/2C) receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time. 6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreasedcholinergic, glutamatergic, and/or serotonergic neurotransmission.

  2. Pharmacological characterisation of a cell line expressing GABA B1b and GABA B2 receptor subunits.

    PubMed

    Hirst, Warren D; Babbs, Adam J; Green, Andrew; Minton, Jayne A L; Shaw, Tracy E; Wise, Alan; Rice, Simon Q; Pangalos, Menelas N; Price, Gary W

    2003-04-01

    The gamma-aminobutyric acid (GABA(B)) receptor has been shown to be a heterodimer consisting of two receptor subunits, GABA(B1) and GABA(B2). We have stably co-expressed these two subunits in a CHO cell line, characterised its pharmacology and compared it to the native receptor in rat brain membranes. Radioligand binding using [3H]CGP54626A demonstrated a similar rank order of potency between recombinant and native receptors: CGP62349>CGP54626A>SCH 50911>3-aminopropylphosphinicacid(3-APPA)>GABA>baclofen>saclofen>phaclofen. However, differences were observed in the affinity of agonists, which were higher at the native receptor, suggesting that in the recombinant system a large number of the receptors were in the low agonist affinity state. In contrast, [35S]GTPgammaS binding studies did not show any differences between recombinant and native receptors with the full agonists GABA and 3-APPA. Measurement of cAMP accumulation in the cells revealed a degree of endogenous coupling of the receptors to G-proteins. This is most likely to be due to the high expression levels of receptors (B(max)=22.5+/-2.5pmol/mg protein) in this experimental system. There was no evidence of GABA(B2) receptors, when expressed alone, binding [3H]CGP54626A, [3H]GABA, [3H]3-APPA nor of GABA having any effect on basal [35S]GTPgammaS binding or cAMP levels.

  3. Membrane-bound trafficking regulates nuclear transport of integral epidermal growth factor receptor (EGFR) and ErbB-2.

    PubMed

    Wang, Ying-Nai; Lee, Heng-Huan; Lee, Hong-Jen; Du, Yi; Yamaguchi, Hirohito; Hung, Mien-Chie

    2012-05-11

    Nuclear localization of multiple receptor-tyrosine kinases (RTKs), such as EGF receptor (EGFR), ErbB-2, FGF receptor (FGFR), and many others, has been reported by several groups. We previously showed that cell surface EGFR is trafficked to the nucleus through a retrograde pathway from the Golgi to the endoplasmic reticulum (ER) and that EGFR is then translocated to the inner nuclear membrane (INM) through the INTERNET (integral trafficking from the ER to the nuclear envelope transport) pathway. However, the nuclear trafficking mechanisms of other membrane RTKs, apart from EGFR, remain unclear. The purpose of this study was to compare the nuclear transport of EGFR family proteins with that of FGFR-1. Interestingly, we found that digitonin permeabilization, which selectively releases soluble nuclear transporters from the cytoplasm and has been shown to inhibit nuclear transport of FGFR-1, had no effects on EGFR nuclear transport, raising the possibility that EGFR and FGFR-1 use different pathways to be translocated into the nucleus. Using the subnuclear fractionation assay, we further demonstrated that biotinylated cell surface ErbB-2, but not FGFR-1, is targeted to the INM, associating with Sec61β in the INM, similar to the nuclear trafficking of EGFR. Thus, ErbB-2, but not FGFR-1, shows a similar trafficking pathway to EGFR for translocation to the nucleus, indicating that at least two different pathways of nuclear transport exist for cell surface receptors. This finding provides a new direction for investigating the trafficking mechanisms of various nuclear RTKs.

  4. HER2/ErbB2 receptor signaling in rat and human prolactinoma cells: strategy for targeted prolactinoma therapy.

    PubMed

    Fukuoka, Hidenori; Cooper, Odelia; Mizutani, Jun; Tong, Yunguang; Ren, Song-Guang; Bannykh, Serguei; Melmed, Shlomo

    2011-01-01

    Dopamine agonist resistance or intolerance is encountered in approximately 20% of prolactinoma patients. Because human epidermal growth factor receptor 2 (HER2)/ErbB2 is overexpressed in prolactinomas and ErbB receptor ligands regulate prolactin (PRL) gene expression, we tested the role of HER2/ErbB2 in prolactinoma hormone regulation and adenoma cell proliferation to assess the rationale for targeting this receptor for prolactinoma therapy. As we showed prolactinoma HER2 overexpression, we generated constitutively active HER2-stable GH3 cell transfectants (HER2CA). PRL mRNA levels were induced approximately 250-fold and PRL secretion was enhanced 100-fold in HER2CA cells, which also exhibited increased proliferation. Lapatinib, a dual tyrosine kinase inhibitor (TKI) of both epidermal growth factor receptor (EGFR)/ErbB1 and HER2, blocked receptor signaling, and suppressed PRL expression more than gefitinib, a TKI of EGFR/ErbB1. Lapatinib also suppressed colony formation in soft agar more than gefitinib. Oral lapatinib treatment caused tumor shrinkage and serum PRL suppression both in HER2CA transfectant-inoculated Wistar-Furth rats and in estrogen-induced Fischer344 rat prolactinomas. In cultured human cells derived from resected prolactinoma tissue, lapatinib suppressed both PRL mRNA expression and secretion. These results demonstrate that prolactinoma HER2 potently induces PRL and regulates experimental prolactinoma cell proliferation. Because pituitary HER2 signaling is abrogated by TKIs, this receptor could be an effective target for prolactinoma therapy.

  5. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors.

    PubMed

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca(2+)-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels.

  6. Bradykinin Induces TRPV1 Exocytotic Recruitment in Peptidergic Nociceptors

    PubMed Central

    Mathivanan, Sakthikumar; Devesa, Isabel; Changeux, Jean-Pierre; Ferrer-Montiel, Antonio

    2016-01-01

    Transient receptor potential vanilloid I (TRPV1) sensitization in peripheral nociceptors is a prominent phenomenon that occurs in inflammatory pain conditions. Pro-algesic agents can potentiate TRPV1 activity in nociceptors through both stimulation of its channel gating and mobilization of channels to the neuronal surface in a context dependent manner. A recent study reported that ATP-induced TRPV1 sensitization in peptidergic nociceptors involves the exocytotic release of channels trafficked by large dense core vesicles (LDCVs) that cargo alpha-calcitonin gene related peptide alpha (αCGRP). We hypothesized that, similar to ATP, bradykinin may also use different mechanisms to sensitize TRPV1 channels in peptidergic and non-peptidergic nociceptors. We found that bradykinin notably enhances the excitability of peptidergic nociceptors, and sensitizes TRPV1, primarily through the bradykinin receptor 2 pathway. Notably, bradykinin sensitization of TRPV1 in peptidergic nociceptors was significantly blocked by inhibiting Ca2+-dependent neuronal exocytosis. In addition, silencing αCGRP gene expression, but not substance P, drastically reduced bradykinin-induced TRPV1 sensitization in peptidergic nociceptors. Taken together, these findings indicate that bradykinin-induced sensitization of TRPV1 in peptidergic nociceptors is partially mediated by the exocytotic mobilization of new channels trafficked by αCGRP-loaded LDCVs to the neuronal membrane. Our findings further imply a central role of αCGRP peptidergic nociceptors in peripheral algesic sensitization, and substantiate that inhibition of LDCVs exocytosis is a valuable therapeutic strategy to treat pain, as it concurrently reduces the release of pro-inflammatory peptides and the membrane recruitment of thermoTRP channels. PMID:27445816

  7. Neurophysiological mechanisms of bradykinin-evoked mucosal chloride secretion in guinea pig small intestine

    PubMed Central

    Qu, Mei-Hua; Ji, Wan-Sheng; Zhao, Ting-Kun; Fang, Chun-Yan; Mao, Shu-Mei; Gao, Zhi-Qin

    2016-01-01

    AIM: To investigate the mechanism for bradykinin (BK) to stimulate intestinal secretomotor neurons and intestinal chloride secretion. METHODS: Muscle-stripped guinea pig ileal preparations were mounted in Ussing flux chambers for the recording of short-circuit current (Isc). Basal Isc and Isc stimulated by BK when preincubated with the BK receptors antagonist and other chemicals were recorded using the Ussing chamber system. Prostaglandin E2 (PGE2) production in the intestine was determined by enzyme immunologic assay (EIA). RESULTS: Application of BK or B2 receptor (B2R) agonist significantly increased the baseline Isc compared to the control. B2R antagonist, tetrodotoxin and scopolamine (blockade of muscarinic receptors) significantly suppressed the increase in Isc evoked by BK. The BK-evoked Isc was suppressed by cyclooxygenase (COX)-1 or COX-2 specific inhibitor as well as nonselective COX inhibitors. Preincubation of submucosa/mucosa preparations with BK for 10 min significantly increased PGE2 production and this was abolished by the COX-1 and COX-2 inhibitors. The BK-evoked Isc was suppressed by nonselective EP receptors and EP4 receptor antagonists, but selective EP1 receptor antagonist did not have a significant effect on the BK-evoked Isc. Inhibitors of PLC, PKC, calmodulin or CaMKII failed to suppress BK-induced PGE2 production. CONCLUSION: The results suggest that BK stimulates neurogenic chloride secretion in the guinea pig ileum by activating B2R, through COX increasing PGE2 production. The post-receptor transduction cascade includes activation of PLC, PKC, CaMK, IP3 and MAPK. PMID:26909238

  8. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and B2 receptors

    PubMed Central

    Kuhr, F.; Lowry, J.; Zhang, Y.; Brovkovych, V.; Skidgel, R.A.

    2010-01-01

    Kinins are vasoactive peptides that play important roles in cardiovascular homeostasis, pain and inflammation. After release from their precursor kininogens, kinins or their C-terminal des-Arg metabolites activate two distinct G protein-coupled receptors (GPCR), called B2 (B2R) or B1 (B1R). The B2R is expressed constitutively with a wide tissue distribution. In contrast, the B1R is not expressed under normal conditions but is upregulated by tissue insult or inflammatory mediators. The B2R is considered to mediate many of the acute effects of kinins while the B1R is more responsible for chronic responses in inflammation. Both receptors can couple to Gαi and Gαq families of G proteins to release mediators such as nitric oxide (NO), arachidonic acid, prostaglandins, leukotrienes and endothelium derived hyperpolarizing factor and can induce the release of other inflammatory agents. The focus of this review is on the different transduction events that take place upon B2R and B1R activation in human endothelial cells that leads to generation of NO via activation of different NOS isoforms. Importantly, B2R-mediated eNOS activation leads to a transient (~ 5 min) output of NO in control endothelial cells whereas in cytokine-treated endothelial cells, B1R activation leads to very high and prolonged (~90 min) NO production that is mediated by a novel signal transduction pathway leading to post-translational activation of iNOS. PMID:20045558

  9. Transactivation of EGF receptor and ErbB2 protects intestinal epithelial cells from TNF-induced apoptosis.

    PubMed

    Yamaoka, Toshimitsu; Yan, Fang; Cao, Hanwei; Hobbs, Stuart S; Dise, Rebecca S; Tong, Wei; Polk, D Brent

    2008-08-19

    TNF is a pleiotropic cytokine that activates both anti- and proapoptotic signaling pathways, with cell fate determined by the balance between these two pathways. Activation of ErbB family members, including EGF receptor (EGFR/ErbB1), promotes cell survival and regulates several signals that overlap with those stimulated by TNF. This study was undertaken to determine the effects of TNF on EGFR and ErbB2 activation and intestinal epithelial cell survival. Mice, young adult mouse colon epithelial cells, and EGFR knockout mouse colon epithelial cells were treated with TNF. Activation of EGFR, ErbB2, Akt, Src, and apoptosis were determined in vivo and in vitro. TNF stimulated EGFR phosphorylation in young adult mouse colon epithelial cells, and loss of EGFR expression or inhibition of kinase activity increased TNF-induced apoptosis, which was prevented in WT but not by kinase-inactive EGFR expression. Similarly, TNF injection stimulated apoptosis in EGFR-kinase-defective mice (EGFR(wa2)) compared with WT mice. TNF also activated ErbB2, and loss of ErbB2 expression increased TNF-induced apoptosis. Furthermore, Src-kinase activity and the expression of both EGFR and ErbB2 were required for TNF-induced cell survival. Akt was shown to be a downstream target of TNF-activated EGFR and ErbB2. These findings demonstrate that EGFR and ErbB2 are critical mediators of TNF-regulated antiapoptotic signals in intestinal epithelial cells. Given evidence for TNF signaling in the development of colitis-associated carcinoma, this observation has significant implications for understanding the role of EGFR in maintaining intestinal epithelial cell homeostasis during cytokine-mediated inflammatory responses.

  10. MEMO associated with an ErbB2 receptor phosphopeptide reveals a new phosphotyrosine motif.

    PubMed

    Feracci, Mikaël; Pimentel, Cyril; Bornet, Olivier; Roche, Philippe; Salaun, Danièle; Badache, Ali; Guerlesquin, Françoise

    2011-09-02

    Tyrosine phosphorylations are essential in signal transduction. Recently, a new type of phosphotyrosine binding protein, MEMO (Mediator of ErbB2-driven cell motility), has been reported to bind specifically to an ErbB2-derived phosphorylated peptide encompassing Tyr-1227 (PYD). Structural and functional analyses of variants of this peptide revealed the minimum sequence required for MEMO recognition. Using a docking approach we have generated a structural model for MEMO/PYD complex and compare this new phosphotyrosine motif to SH2 and PTB phosphotyrosine motives.

  11. Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia.

    PubMed

    Jeske, Nathaniel A; Berg, Kelly A; Cousins, Joanne C; Ferro, Emer S; Clarke, William P; Glucksman, Marc J; Roberts, James L

    2006-04-01

    Metalloendopeptidases expressed in neural tissue are characterized in terms of their neuropeptide substrates. One such neuropeptide, bradykinin (BK), is an important inflammatory mediator that activates the type-2 BK receptor (B2R) on the terminal endings of specialized pain-sensing neurons known as nociceptors. Among several metalloendopeptidases that metabolize and inactivate BK, EP24.15 and EP24.16 are known to associate with the plasma membrane in several immortalized cell lines. Potentially, the colocalization of EP24.15/16 and B2R at plasma membrane microdomains known as lipid rafts in a physiologically relevant nociceptive system would allow for discrete, peptidase regulation of BK signaling. Western blot analysis of crude subcellular fractions and lipid raft preparations of cultured rat trigeminal ganglia demonstrate similar expression profiles between EP24.15/16 and B2R on a subcellular level. Furthermore, the treatment of primary cultures of trigeminal ganglia with inhibitors of EP24.15/16 led to the potentiation of several bradykinin-induced events that occur downstream of B2R activation. EP24.15/16 inhibition by N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-AlalTyr-p-aminobenzoate (cFP) resulted in a 1000-fold increase in B2R sensitivity to BK as measured by inositol phosphate accumulation. In addition, cFP treatment resulted in a 31.1+/-5.0% potentiation of the ability of BK to inhibit protein kinase B (Akt) activity. Taken together, these data demonstrate that EP24.15/16 modulate intracellular, peptidergic signaling cascades through B2R in a physiologically relevant nociceptive system.

  12. Bradykinin-related peptides (BRPs) from skin secretions of three genera of phyllomedusine leaf frogs and their comparative pharmacological effects on mammalian smooth muscles.

    PubMed

    Jiang, Yingchun; Xi, Xinping; Ge, Lilin; Yang, Nan; Hou, Xiaojuan; Ma, Jie; Ma, Chengbang; Wu, Yuxin; Guo, Xiaoxiao; Li, Renjie; Zhou, Mei; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2014-02-01

    While bradykinin has been identified in the skin secretions from several species of amphibian, bradykinin-related peptides (BRPs) are more common constituents. These peptides display a plethora of primary structural variations from the type peptide which include single or multiple amino acid substitutions, N- and/or C-terminal extensions and post-translational modifications such as proline hydroxylation and tyrosine sulfation. Such modified peptides have been reported in species from many families, including Bombinatoridae, Hylidae and Ranidae. The spectrum of these peptides in a given species is thought to be reflective of its predator profile from different vertebrate taxa. Here we report the isolation of BRPs and parallel molecular cloning of their respective biosynthetic precursor-encoding cDNAs from the skin secretions of the Mexican leaf frog (Pachymedusa dacnicolor), the Central American red-eyed leaf frog (Agalychnis callidryas) and the South American orange-legged leaf frog (Phyllomedusa hypochondrialis). Additionally, the eight different BRPs identified were chemically synthesized and screened for bioactivity using four different mammalian smooth muscle preparations and their effects and rank potencies were found to be radically different in these with some acting preferentially through bradykinin B1-type receptors and others through B(2)-type receptors.

  13. Bradykinin stimulation of phosphoinositide hydrolysis in guinea-pig ileum longitudinal muscle.

    PubMed Central

    Ransom, R. W.; Goodman, C. B.; Young, G. S.

    1992-01-01

    1. Bradykinin (BK)-induced contraction of ileal smooth muscle is assumed to be due to phosphoinositide hydrolysis but this has never been reported. We have investigated whether BK receptors are linked to this transduction mechanism in guinea-pig ileum longitudinal muscle and determined whether these receptors are equivalent to those labelled in [3H]-BK binding assays. 2. In membranes prepared from longitudinal muscle, [3H]-BK bound to a single class of sites with high affinity. Characterization of the binding with BK analogues indicated that the radioligand selectivity labelled a B2 type receptor. 3. BK significantly elevated tissue levels of [3H]-inositol phosphates in longitudinal muscle slices preincubated with [3H]-myo-inositol. The agonists potencies of BK, Lys-BK, Met-Lys-BK, Tyr5-BK and Tyr8-BK were in agreement with their relative potencies in the binding assay. The B1 receptor agonist des-Arg9-BK, did not stimulate inositol phosphate production. The response to BK was blocked by known B2 receptor antagonists but not by the B1 antagonist des-Arg9, Leu8-BK. 4. BK-induced phosphoinositide hydrolysis was unaffected by exposure of muscle slices to either atropine or indomethacin. 5. The results indicate that the B2 receptors linked to phosphoinositide turnover in ileal longitudinal muscle exhibit properties similar to those involved in contractile responses. Also, the receptor mediating the phosphoinositide response is likely to be that labelled in the [3H]-BK binding studies. PMID:1324057

  14. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present

  15. NF-kB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2010-08-01

    characterize the role of NF-B2/p52 in the aberrant activation of AR signaling in castration-resistant prostate cancer. The growth of prostate cancer...androgen insensitive C4-2 and LNCaP- IL6+ cells can block tumor growth ). Downregulation of p52 inhibits prostate cancer cell proliferation We obtained...which express higher levels of p52 compared to LNCaP, were transfected with plasmids encoding p52 shRNA and growth was monitored in FBS and CS-FBS

  16. Enhancement of blood-tumor barrier permeability by Sar-[D-Phe8]des-Arg9BK, a metabolically resistant bradykinin B1 agonist, in a rat C6 glioma model

    PubMed Central

    Cardoso, Ronie Cleverson; Lobão-Soares, Bruno; Bianchin, Marino Muxfeldt; Carlotti, Carlos Gilberto; Walz, Roger; Alvarez-Silva, Márcio; Trentin, Andréa Gonçalves; Nicolau, Mauro

    2004-01-01

    Background While it is well known that bradykinin B2 agonists increase plasma protein extravasation (PPE) in brain tumors, the bradykinin B1 agonists tested thus far are unable to produce this effect. Here we examine the effect of the selective B1 agonist bradykinin (BK) Sar-[D-Phe8]des-Arg9BK (SAR), a compound resistant to enzymatic degradation with prolonged activity on PPE in the blood circulation in the C6 rat glioma model. Results SAR administration significantly enhanced PPE in C6 rat brain glioma compared to saline or BK (p < 0.01). Pre-administration of the bradykinin B1 antagonist [Leu8]-des-Arg (100 nmol/Kg) blocked the SAR-induced PPE in the tumor area. Conclusions Our data suggest that the B1 receptor modulates PPE in the blood tumor barrier of C6 glioma. A possible role for the use of SAR in the chemotherapy of gliomas deserves further study. PMID:15458573

  17. Expression of c-erbB-2 in breast cancer cell lines as experimental receptor of magnetic nanoparticles.

    PubMed

    Silva, Jesus G; Sánchez, Virginia; Polo, Salvador M; González, César A

    2013-01-01

    High mortality in breast cancer is associated to a late diagnosis and therapy of the disease. Our research group is working on the development of an innovative technology to promote selective ablation of breast cancer in early stages by the use of high frequency magnetic fields assisted by magnetic nanoparticles. The concept behind the technical proposal is to increase the electrical conductivity of tumoral tissue by the use of bioconjugated "magnetic nanoparticle-monoclonal antibody". Is expected that bioconjugated recognizes specific genes on the surface of cancer cells. The aim of this study was to evaluate the expression of the c-erbB-2 gene and c-erbB-2 antigen in breast cancer cells type BT-474, MCF-7 and MDA-MB-231, as previous step to propose the c-erbB-2 protein as receptor of magnetic nanoparticles. The results suggest that the elected breast cancer cell lines show well-differentiated relative expression of the elected gen and antigen, and sems suitable for experimental evaluation of selective targeting by magnetic nanoparticles.

  18. Sensitivity of epidermal growth factor receptor and ErbB2 exon 20 insertion mutants to Hsp90 inhibition.

    PubMed

    Xu, W; Soga, S; Beebe, K; Lee, M-J; Kim, Y S; Trepel, J; Neckers, L

    2007-09-17

    The mature epidermal growth factor receptor (EGFR) neither associates with nor requires the molecular chaperone heat-shock protein 90 (Hsp90). Mutations in EGFR exons 18, 19, and 21 confer Hsp90 chaperone dependence. In non-small cell lung cancer (NSCLC), these mutations are associated with enhanced sensitivity to EGFR inhibitors in vitro and with clinical response in vivo. Although less prevalent, insertions in EGFR exon 20 have also been described in NSCLC. These mutations, however, confer resistance to EGFR inhibitors. In NSCLC, exon 20 insertions have also been identified in the EGFR family member ErbB2. Here, we examined the sensitivity of exon 20 insertion mutants to an Hsp90 inhibitor currently in the clinic. Our data demonstrate that both EGFR and ErbB2 exon 20 insertion mutants retain dependence on Hsp90 for stability and downstream-signalling capability, and remain highly sensitive to Hsp90 inhibition. Use of Hsp90 inhibitors should be considered in NSCLC harbouring exon 20 insertions in either EGFR or ErbB2.

  19. Mechanism of contraction induced by bradykinin in the rabbit saphenous vein

    PubMed Central

    Eguchi, Daihiko; Nishimura, Junji; Kobayashi, Sei; Komori, Kimihiro; Sugimachi, Keizo; Kanaide, Hideo

    1997-01-01

    By using fura-PE3 fluorometry and receptor-coupled permeabilization by α-toxin, the mechanism of the bradykinin (BK)-induced contraction was determined in the rabbit saphenous vein (RSV). The receptor subtype responsible for the BK-induced contraction of RSV was determined by means of a pharmacological blocker study and reverse transcription polymerase chain reaction (RT-PCR).In the presence of extracellular Ca2+ (1.25 mM), BK (10−11–3×10−7 M) induced increases in both the cytosolic Ca2+ concentration ([Ca2+]i) and force, in a concentration-dependent manner. Both the release of Ca2+ from the store site and the influx of extracellular Ca2+ contribute to an increase in [Ca2+]i induced by BK.In the absence of extracellular Ca2+, the application of 10−7 M BK induced transient elevations of [Ca2+]i and force, both of which thereafter declined to the levels observed before the application of BK. When extracellular Ca2+ was replenished (1.25 mM), [Ca2+]i and force increased to form a peak, followed by a sustained elevation in the presence of BK. When an RSV strip was pretreated with 10−5 M thapsigargin for 20 min, the BK-induced transient increases in both [Ca2+]i and force were markedly inhibited.These responses induced by BK were inhibited by Hoe 140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8] bradykinin), a highly specific bradykinin B2 receptor antagonist, in a concentration-dependent manner. In RT-PCR, B2-receptor mRNA was expressed in the smooth muscle of RSV.The [Ca2+]i-force relationships, which were determined by cumulative applications of extracellular Ca2+ (0–5 mM) during 118 mM K+-depolarization, shifted to the upper left in the presence of BK, thus indicating that BK induced a greater force than 118 mM K+-depolarization for a given level of [Ca2+]i.In α-toxin-permeabilized preparations of RSV, application of 10−7 M BK after a steady state contraction had been induced by a mixture of 5×10−7 M Ca2+, 10−6 M GTP and 10−6

  20. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    DTIC Science & Technology

    2007-11-01

    Receptor in Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-06-1-0077 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) Elena B. Pasquale...5f. WORK UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER The Burnham...4 Body…………………………………………………………………………………….4 Key Research Accomplishments………………………………………….……… 7 Reportable Outcomes

  1. Scavenger receptor b2 as a receptor for hand, foot, and mouth disease and severe neurological diseases.

    PubMed

    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi

    2012-01-01

    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD). Infection with EV71 is occasionally associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Because cellular receptors for viruses play an important role in cell, tissue, and species tropism, it is important to identify and characterize the receptor molecule. Recently, cellular receptors and host factors that stimulate EV71 infection have been identified. Several lines of evidence suggest that scavenger receptor class B, member 2 (SCARB2) plays critical roles in efficient EV71 infection and the development of disease in humans. In this review, we will summarize the findings of recent studies on EV71 infection and on the roles of SCARB2.

  2. Multiple bradykinin-related peptides from the capture web of the spider Nephila clavipes (Araneae, Tetragnatidae).

    PubMed

    Volsi, Evelyn C F R; Mendes, Maria Anita; Marques, Maurício Ribeiro; dos Santos, Lucilene Delazari; Santos, Keity Souza; de Souza, Bibiana Monson; Babieri, Eduardo Feltran; Palma, Mario Sergio

    2006-04-01

    Three bradykinin-related peptides (nephilakinins-I to -III) and bradykinin itself were isolated from the aqueous washing extract of the capture web of the spider Nephila clavipes by gel permeation chromatography on a Sephacryl S-100 column, followed by chromatography in a Hi-Trap Sephadex-G25 Superfine column. The novel peptides occurred in low concentrations and were sequenced through ESI-MS/MS analysis: nephilakinin-I (G-P-N-P-G-F-S-P-F-R-NH2), nephilakinin-II (E-A-P-P-G-F-S-P-F-R-NH2) and nephilakinin-III (P-S-P-P-G-F-S-P-F-R-NH2). Synthetic peptides replicated the novel bradykinin-related peptides, which were submitted to biological characterizations. Nephilakinins were shown to cause constriction on isolated rat ileum preparations and relaxation on rat duodenum muscle preparations at amounts higher than bradykinin; apparently these peptides constitute B2-type agonists of ileal and duodenal smooth muscles. All peptides including the bradykinin were moderately lethal to honeybees. These bradykinin peptides may be related to the predation of insects by the webs of N. clavipes.

  3. Characterisation and mechanisms of bradykinin-evoked pain in man using iontophoresis

    PubMed Central

    Paterson, Kathryn J.; Zambreanu, Laura; Bennett, David L.H.; McMahon, Stephen B.

    2013-01-01

    Bradykinin (BK) is an inflammatory mediator that can evoke oedema and vasodilatation, and is a potent algogen signalling via the B1 and B2 G-protein coupled receptors. In naïve skin, BK is effective via constitutively expressed B2 receptors (B2R), while B1 receptors (B1R) are purported to be upregulated by inflammation. The aim of this investigation was to optimise BK delivery to investigate the algesic effects of BK and how these are modulated by inflammation. BK iontophoresis evoked dose- and temperature-dependent pain and neurogenic erythema, as well as thermal and mechanical hyperalgesia (P < 0.001 vs saline control). To differentiate the direct effects of BK from indirect effects mediated by histamine released from mast cells (MCs), skin was pretreated with compound 4880 to degranulate the MCs prior to BK challenge. The early phase of BK-evoked pain was reduced in degranulated skin (P < 0.001), while thermal and mechanical sensitisation, wheal, and flare were still evident. In contrast to BK, the B1R selective agonist des-Arg9-BK failed to induce pain or sensitise naïve skin. However, following skin inflammation induced by ultraviolet B irradiation, this compound produced a robust pain response. We have optimised a versatile experimental model by which BK and its analogues can be administered to human skin. We have found that there is an early phase of BK-induced pain which partly depends on the release of inflammatory mediators by MCs; however, subsequent hyperalgesia is not dependent on MC degranulation. In naïve skin, B2R signaling predominates, however, cutaneous inflammation results in enhanced B1R responses. PMID:23422725

  4. Bradykinin promotes vascular endothelial growth factor expression and increases angiogenesis in human prostate cancer cells.

    PubMed

    Yu, Hsin-Shan; Wang, Shih-Wei; Chang, An-Chen; Tai, Huai-Ching; Yeh, Hung-I; Lin, Yu-Min; Tang, Chih-Hsin

    2014-01-15

    Prostate cancer is the most commonly diagnosed malignancy in men and shows a tendency for metastasis to distant organs. Angiogenesis is required for metastasis. Bradykinin (BK) is an inflammatory mediator involved in tumor growth and metastasis, but its role in vascular endothelial growth factor (VEGF) expression and angiogenesis in human prostate cancer remains unknown. The aim of this study was to examine whether BK promotes prostate cancer angiogenesis via VEGF expression. We found that exogenous BK increased VEGF expression in prostate cancer cells and further promoted tube formation in endothelial progenitor cells and human umbilical vein endothelial cells. Pretreatment of prostate cancer with B2 receptor antagonist or small interfering RNA (siRNA) reduced BK-mediated VEGF production. The Akt and mammalian target of rapamycin (mTOR) pathways were activated after BK treatment, and BK-induced VEGF expression was abolished by the specific inhibitor and siRNA of the Akt and mTOR cascades. BK also promoted nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) activity. Importantly, BK knockdown reduced VEGF expression and abolished prostate cancer cell conditional medium-mediated angiogenesis. Taken together, these results indicate that BK operates through the B2 receptor, Akt, and mTOR, which in turn activate NF-κB and AP-1, activating VEGF expression and contributing to angiogenesis in human prostate cancer cells.

  5. The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues.

    PubMed

    Calver, A R; Medhurst, A D; Robbins, M J; Charles, K J; Evans, M L; Harrison, D C; Stammers, M; Hughes, S A; Hervieu, G; Couve, A; Moss, S J; Middlemiss, D N; Pangalos, M N

    2000-01-01

    GABA(B) receptors are G-protein-coupled receptors that mediate the slow and prolonged synaptic actions of GABA in the CNS via the modulation of ion channels. Unusually, GABA(B) receptors form functional heterodimers composed of GABA(B1) and GABA(B2) subunits. The GABA(B1) subunit is essential for ligand binding, whereas the GABA(B2) subunit is essential for functional expression of the receptor dimer at the cell surface. We have used real-time reverse transcriptase-polymerase chain reaction to analyse expression levels of these subunits, and their associated splice variants, in the CNS and peripheral tissues of human and rat. GABA(B1) subunit splice variants were expressed throughout the CNS and peripheral tissues, whereas surprisingly GABA(B2) subunit splice variants were neural specific. Using novel antisera specific to individual GABA(B) receptor subunits, we have confirmed these findings at the protein level. Analysis by immunoblotting demonstrated the presence of the GABA(B1) subunit, but not the GABA(B2) subunit, in uterus and spleen. Furthermore, we have shown the first immunocytochemical analysis of the GABA(B2) subunit in the brain and spinal cord using a GABA(B2)-specific antibody. We have, therefore, identified areas of non-overlap between GABA(B1) and GABA(B2) subunit expression in tissues known to contain functional GABA(B) receptors. Such areas are of interest as they may well contain novel GABA(B) receptor subunit isoforms, expression of which would enable the GABA(B1) subunit to reach the cell surface and form functional GABA(B) receptors.

  6. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    EPA Science Inventory

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  7. Cardiovascular actions of lungfish bradykinin in the unanaesthetised African lungfish, Protopterus annectens.

    PubMed

    Balment, Richard J; Masini, Maria A; Vallarino, Mauro; Conlon, J Michael

    2002-02-01

    Bradykinin (BK) isolated from plasma of the African lungfish, Protopterus annectens, contains four amino acid substitutions compared with BK from mammals (Arg(1)-->Tyr, Pro(2)-->Gly, Pro(7)-->Ala, Phe(8)-->Pro). Bolus intra-arterial injections of synthetic lungfish BK (1-1000 pmol/kg body wt.) into unanaesthetised, juvenile lungfish (n=5) produced a dose-dependent increase in arterial blood pressure and pulse pressure. The maximum pressor response occurred 2-3 min after injection and persisted for up to 15 min. The threshold dose producing a significant (P<0.01) rise in pressure was 50 pmol/kg and the maximum increase, following injection of 300 pmol/kg, was 9.3 +/- 2.3 mmHg. Injection of the higher doses of lungfish BK produced a significant (P<0.05) increase in heart rate (2.8 +/- 0.8 beats/min at 100 pmol/kg). In contrast, bolus intra-arterial injections of mammalian BK, in doses up to 1000 pmol/kg, produced no significant cardiovascular effects in the lungfish. The data support the existence of a functioning kallikrein-kinin system in the lungfish and demonstrate that the ligand-binding properties of the receptor(s) mediating the cardiovascular actions of lungfish BK are appreciably different from mammalian B1 and B2 receptors.

  8. Modulation of expression of the nuclear receptor NR0B2 (small heterodimer partner 1) and its impact on proliferation of renal carcinoma cells.

    PubMed

    Prestin, Katharina; Olbert, Maria; Hussner, Janine; Isenegger, Tamara L; Gliesche, Daniel G; Böttcher, Kerstin; Zimmermann, Uwe; Meyer Zu Schwabedissen, Henriette E

    2016-01-01

    Mammalian nuclear receptors (NRs) are transcription factors regulating the expression of target genes that play an important role in drug metabolism, transport, and cellular signaling pathways. The orphan and structurally unique receptor small heterodimer partner 1 (syn NR0B2) is not only known for its modulation of drug response, but has also been reported to be involved in hepatocellular carcinogenesis. Indeed, previous studies show that NR0B2 is downregulated in human hepatocellular carcinoma, suggesting that NR0B2 acts as a tumor suppressor via inhibition of cellular growth and activation of apoptosis in this tumor entity. The aim of our study was to elucidate whether NR0B2 may also play a role in other tumor entities. Comparing NR0B2 expression in renal cell carcinoma and adjacent nonmalignant transformed tissue revealed significant downregulation in vivo. Additionally, the impact of heterologous expression of NR0B2 on cell cycle progression and proliferation in cells of renal origin was characterized. Monitoring fluorescence intensity of resazurin turnover in RCC-EW cells revealed no significant differences in metabolic activity in the presence of NR0B2. However, there was a significant decrease of cellular proliferation in cells overexpressing this NR, and NR0B2 was more efficient than currently used antiproliferative agents. Furthermore, flow cytometry analysis showed that heterologous overexpression of NR0B2 significantly reduced the amount of cells passing the G1 phase, while on the other hand, more cells in S/G2 phase were detected. Taken together, our data suggest that downregulation of NR0B2 may also play a role in renal cell carcinoma development and progression.

  9. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A/sub 2/

    SciTech Connect

    Burch, R.M.; Axelrod, J.

    1987-09-01

    In Swiss 3T3 fibroblasts bradykinin stimulated inositol phosphate (InsP) formation and prostaglandin E/sub 2/ (PGE/sub 2/) synthesis. The EC/sub 50/ values for stimulation of PGE/sub 2/ synthesis and InsP formation by bradykinin were similar, 200 pM and 275 pM, respectively. Guanosine-5'-(..gamma..-thio)triphosphate stimulated PGE/sub 2/ synthesis and InsP formation, and guanosine-5'-(..beta..-thio)diphosphate inhibited both PGE/sub 2/ synthesis and InsP formation stimulated by bradykinin. Neither bradykinin-stimulated PGE/sub 2/ synthesis nor InsP formation was sensitive to pertussis toxin. Phorbol ester, dexamethasone, and cycloheximide distinguished between bradykinin-stimulated PGE/sub 2/ synthesis and InsP formation. Phorbol 12-myristate 13-acetate enhanced bradykinin-stimulated PGE/sub 2/ synthesis but inhibited bradykinin-stimulated InsP formation. Pretreatment of cells with dexamethasone for 24 hr inhibited bradykinin-stimulated PGE/sub 2/ synthesis but was without effect on bradykinin-stimulated InsP formation. Cycloheximide inhibited on bradykinin-stimulated InsP formation. When bradykinin was added to cells prelabeled with (/sup 3/H) choline, the phospholipase A/sub 2/ products lysophosphatidylcholine and glycerophosphocholine were generated. The data suggest that bradykinin receptors are coupled by GTP-binding proteins to both phospholipase C and phospholipase A/sub 2/ and that phospholipase A/sub 2/ is the enzyme that catalyzes release of arachidonate for prostaglandin synthesis.

  10. Lys-[Leu8,des-Arg9]-bradykinin blocks lipopolysaccharide-induced SHR aorta hyperpolarization by inhibition of Ca(++)- and ATP-dependent K+ channels.

    PubMed

    Farias, Nelson C; Feres, Teresa; Paiva, Antonio C M; Paiva, Therezinha B

    2004-09-13

    The mediators involved in the hyperpolarizing effects of lipopolysaccharide and of the bradykinin B1 receptor agonist des-Arg9-bradykinin on the rat aorta were investigated by comparing the responses of aortic rings of spontaneously hypertensive and normotensive Wistar rats. Endothelized rings from hypertensive rats were hyperpolarized by des-Arg9-bradykinin and lipopolysaccharide, whereas de-endothelized rings responded to lipopolysaccharide but not to des-Arg9-bradykinin. In endothelized preparations, the responses to des-Arg9-bradykinin were inhibited by Nomega-nitro-L-arginine and iberiotoxin. De-endothelized ring responses to lipopolysaccharide were inhibited by iberiotoxin, glibenclamide and B1 antagonist Lys-[Leu8,des-Arg9]-bradykinin. This antagonist also inhibited hyperpolarization by des-Arg9-bradykinin and by the á2-adrenoceptor agonist, brimonidine. Our results indicate that Ca(2+)-sensitive K+ channels are the final mediators of the responses to des-Arg9-bradykinin, whereas both Ca(2+)- and ATP-sensitive K+ channels mediate the responses to lipopolysaccharide. The inhibitory effects of Lys-[Leu8,des-Arg9]-bradykinin is due to a direct action on Ca(2+)- and ATP-sensitive potassium channels.

  11. The juxtamembrane regions of the epidermal growth factor receptor and gp185erbB-2 determine the specificity of signal transduction.

    PubMed Central

    Segatto, O; Lonardo, F; Wexler, D; Fazioli, F; Pierce, J H; Bottaro, D P; White, M F; Di Fiore, P P

    1991-01-01

    The epidermal growth factor receptor (EGFR) and gp185erbB-2 are closely related tyrosine kinases. Despite extensive sequence and structural homology, these two receptors display quantitative and qualitative differences in their ability to couple with mitogenic signalling pathways. By using chimeric molecules between EGFR and erbB-2, we found that the determinants responsible for the specificity of mitogenic signal transduction are located in the amino-terminal half of the tyrosine kinase domain of either receptor. In the EGFR, mutational analysis within this subdomain revealed that deletion of residues 660 to 667 impaired receptor mitogenic activity without affecting its tyrosine kinase properties. This sequence is therefore likely to contribute to the specificity of substrate recognition by the EGFR kinase. Images PMID:1674818

  12. A single amino acid substitution is sufficient to modify the mitogenic properties of the epidermal growth factor receptor to resemble that of gp185erbB-2.

    PubMed Central

    Di Fiore, P P; Helin, K; Kraus, M H; Pierce, J H; Artrip, J; Segatto, O; Bottaro, D P

    1992-01-01

    The epidermal growth factor (EGF) receptor (EGFR) and the erbB-2 gene product, gp185erbB-2, exhibit distinct abilities to stimulate mitogenesis in different target cells. By using chimeric molecules between these two receptors, we have previously shown that their intracellular juxtamembrane regions are responsible for this specificity. Here we describe a genetically engineered EGFR mutant containing a threonine for arginine substitution at position 662 in the EGFR juxtamembrane domain, corresponding to threonine 694 in gp185erbB-2. This mutant, designated EGFRThr662, displayed affinity for EGF binding and catalytic properties that were indistinguishable from those of the wild type EGFR. However, EGFRThr662 behaved much as gp185erbB-2 in a number of bioassays which readily distinguish between the mitogenic effects of EGFR and gp185erbB-2. Moreover, significant differences were detected in the pattern of intracellular proteins phosphorylated on tyrosine in vivo by EGFR and EGFRThr662 in response to EGF. Thus, small differences in the primary sequence of two closely related receptors have dramatic effects on their ability to couple with mitogenic pathways. Images PMID:1356764

  13. Central nervous system activity associated with the pain evoked by bradykinin and its alteration by morphine and aspirin.

    PubMed

    Lim, R K; Krauthamer, G; Guzman, F; Fulp, R R

    1969-07-01

    Synthetic bradykinin, a nonapeptide formed from alpha-2 globulin in plasma, injected intra-arterially or intraperitoneally in cats in doses of 10-50 mug, evoked activity in the central nervous system in pathways associated with the signaling of pain. Similar injections of bradykinin in intact normal cats and dogs evoked manifestations of pain, and in conscious humans elicited verbal reports of pain perceived in the area of injection. Single unit activity was recorded in the medial reticular formation of the brainstem, in the medial thalamus and, more laterally, among the posterior group nuclei and the suprageniculate nucleus. Bradykinin did not evoke any cortical or subcortical slow potentials such as those evoked by electrical stimulation of the foot pads. When bradykinin was given together with the electrical stimulus, the responses evoked by the latter were blocked. Morphines uppressed bradykinin-evoked activity. Aspirin caused marked fluctuations in activity, unrelated to the bradykinin injection; the bradykinin block of evoked potentials could no longer be observed after aspirin dosage. The results are discussed in terms of the peripheral and central sites of analgesic action and the likelihood of the existence of chemosensitive pain receptors.

  14. CENTRAL NERVOUS SYSTEM ACTIVITY ASSOCIATED WITH PAIN EVOKED BY BRADYKININ AND ITS ALTERATION BY MORPHINE AND ASPIRIN

    PubMed Central

    Lim, R. K. S.; Krauthamer, G.; Guzman, F.; Fulp, R. R.

    1969-01-01

    Synthetic bradykinin, a nonapeptide formed from α-2 globulin in plasma, injected intra-arterially or intraperitoneally in cats in doses of 10-50 μg, evoked activity in the central nervous system in pathways associated with the signaling of pain. Similar injections of bradykinin in intact normal cats and dogs evoked manifestations of pain, and in conscious humans elicited verbal reports of pain perceived in the area of injection. Single unit activity was recorded in the medial reticular formation of the brainstem, in the medial thalamus and, more laterally, among the posterior group nuclei and the suprageniculate nucleus. Bradykinin did not evoke any cortical or subcortical slow potentials such as those evoked by electrical stimulation of the foot pads. When bradykinin was given together with the electrical stimulus, the responses evoked by the latter were blocked. Morphines uppressed bradykinin-evoked activity. Aspirin caused marked fluctuations in activity, unrelated to the bradykinin injection; the bradykinin block of evoked potentials could no longer be observed after aspirin dosage. The results are discussed in terms of the peripheral and central sites of analgesic action and the likelihood of the existence of chemosensitive pain receptors. PMID:5259760

  15. Intermittent hypoxia induces the proliferation of rat vascular smooth muscle cell with the increases in epidermal growth factor family and erbB2 receptor

    SciTech Connect

    Kyotani, Yoji; Ota, Hiroyo; Itaya-Hironaka, Asako; Yamauchi, Akiyo; Sakuramoto-Tsuchida, Sumiyo; Zhao, Jing; Ozawa, Kentaro; Nagayama, Kosuke; Ito, Satoyasu; Takasawa, Shin; Kimura, Hiroshi; Uno, Masayuki; Yoshizumi, Masanori

    2013-11-15

    Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. - Highlights: ●In vitro system for intermittent hypoxia (IH) and sustained hypoxia (SH). ●IH, but not SH, induces the proliferation of rat vascular smooth muscle cell. ●Epiregulin m

  16. Effect of captopril in the presence of kinin B2 receptor antagonist on duration of survival after prolonged coronary artery ligation in hypertensive rats.

    PubMed

    Sharma, J N; Abbas, S A

    2006-05-01

    In the present investigation, we evaluated the potential effects of captopril, an angiotensin-converting enzyme inhibitor, in the absence and presence of kinin B(2) receptor antagonist (D-Arg-[Hyp3-D-Phe7]-BK) on the duration of survival after prolonged coronary artery ligation in spontaneously hypertensive rats (SHR). The captopril treatment (16 and 32 microg/kg; i.v.) resulted in a significant (p < 0.05) increase in survival time of SHR when compared with that of saline-treated control SHR. Kinin B(2) receptor antagonist (4 microg/kg; i.v.) pretreatment abolished (p > 0.05) the beneficial effect of captopril on the survival time when compared with that in saline-treated control SHR. Both the ligation of coronary artery and captopril treatment resulted in a significant (p < 0.001) fall in systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) of SHR when compared with those of the saline-treated control SHR. In addition, captopril administration caused a significant (p < 0.05) fall in SBP, DBP, and HR of SHR before ligation of the coronary artery (preligation). However, there was no significant change (p > 0.05) in SBP, DBP, and HR between saline- and kinin B(2) receptor antagonist plus captopril-treated SHR during preligation. These finding might indicate that captopril possesses a cardioprotective property as demonstrated by an increase in the survival time of SHR. This beneficial effect of captopril is mediated via the kinin B(2) receptor pathway because kinin B(2) receptor antagonist pretreatment blocked the captopril-induced increase in the survival time of SHR.

  17. Heregulin-dependent activation of phosphoinositide 3-kinase and Akt via the ErbB2/ErbB3 co-receptor.

    PubMed

    Hellyer, N J; Kim, M S; Koland, J G

    2001-11-09

    The ErbB2/ErbB3 heregulin co-receptor has been shown to couple to phosphoinositide (PI) 3-kinase in a heregulin-dependent manner. The recruitment and activation of PI 3-kinase by this co-receptor is presumed to occur via its interaction with phosphorylated Tyr-Xaa-Xaa-Met (YXXM) motifs occurring in the ErbB3 C terminus. In this study, mutant ErbB3 receptor proteins expressed in COS7 cells were used to investigate PI 3-kinase-dependent signaling pathways activated by the ErbB2/ErbB3 co-receptor. We observed that a mutant ErbB3 protein with each of its six YXXM motifs containing a Tyr --> Phe substitution was unable to bind either the p85 regulatory or p110 catalytic subunit of PI 3-kinase. However, restoration of a single YXXM motif was sufficient to mediate association with the PI 3-kinase holoenzyme, although at a lower level than wild-type ErbB3. When ErbB3 YXXM motifs were restored in pairs, evidence for cooperativity between two, those incorporating Tyr-1273 and Tyr-1286, was observed. Interestingly, we have shown that an apparent association of PI 3-kinase activity with ErbB2/Neu was due to the residual presence of ErbB3 in ErbB2 immunoprecipitates. The necessity of ErbB3 association with PI 3-kinase for downstream signaling to the effector kinase Akt was also investigated. Here, the heregulin-dependent translocation of Akt to the plasma membrane and its subsequent activation was observed in intact NIH-3T3 fibroblasts. Recruitment of PI 3-kinase to ErbB3 was required for both activities, and it appeared that ErbB2 activation alone was not sufficient to activate PI 3-kinase signaling in these cells.

  18. Molecular determinants of enterovirus 71 viral entry: cleft around GLN-172 on VP1 protein interacts with variable region on scavenge receptor B 2.

    PubMed

    Chen, Pan; Song, Zilin; Qi, Yonghe; Feng, Xiaofeng; Xu, Naiqing; Sun, Yinyan; Wu, Xing; Yao, Xin; Mao, Qunyin; Li, Xiuling; Dong, Wenjuan; Wan, Xiaobo; Huang, Niu; Shen, Xinliang; Liang, Zhenglun; Li, Wenhui

    2012-02-24

    Enterovirus 71 (EV71) is one of the major pathogens that cause hand, foot, and mouth disease outbreaks in young children in the Asia-Pacific region in recent years. Human scavenger receptor class B 2 (SCARB2) is the main cellular receptor for EV71 on target cells. The requirements of the EV71-SCARB2 interaction have not been fully characterized, and it has not been determined whether SCARB2 serves as an uncoating receptor for EV71. Here we compared the efficiency of the receptor from different species including human, horseshoe bat, mouse, and hamster and demonstrated that the residues between 144 and 151 are critical for SCARB2 binding to viral capsid protein VP1 of EV71 and seven residues from the human receptor could convert murine SCARB2, an otherwise inefficient receptor, to an efficient receptor for EV71 viral infection. We also identified that EV71 binds to SCARB2 via a canyon of VP1 around residue Gln-172. Soluble SCARB2 could convert the EV71 virions from 160 S to 135 S particles, indicating that SCARB2 is an uncoating receptor of the virus. The uncoating efficiency of SCARB2 significantly increased in an acidic environment (pH 5.6). These studies elucidated the viral capsid and receptor determinants of enterovirus 71 infection and revealed a possible target for antiviral interventions.

  19. Sensitization of neonatal rat lumbar motoneuron by the inflammatory pain mediator bradykinin

    PubMed Central

    Bouhadfane, Mouloud; Kaszás, Attila; Rózsa, Balázs; Harris-Warrick, Ronald M; Vinay, Laurent; Brocard, Frédéric

    2015-01-01

    Bradykinin (Bk) is a potent inflammatory mediator that causes hyperalgesia. The action of Bk on the sensory system is well documented but its effects on motoneurons, the final pathway of the motor system, are unknown. By a combination of patch-clamp recordings and two-photon calcium imaging, we found that Bk strongly sensitizes spinal motoneurons. Sensitization was characterized by an increased ability to generate self-sustained spiking in response to excitatory inputs. Our pharmacological study described a dual ionic mechanism to sensitize motoneurons, including inhibition of a barium-sensitive resting K+ conductance and activation of a nonselective cationic conductance primarily mediated by Na+. Examination of the upstream signaling pathways provided evidence for postsynaptic activation of B2 receptors, G protein activation of phospholipase C, InsP3 synthesis, and calmodulin activation. This study questions the influence of motoneurons in the assessment of hyperalgesia since the withdrawal motor reflex is commonly used as a surrogate pain model. DOI: http://dx.doi.org/10.7554/eLife.06195.001 PMID:25781633

  20. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients.

    PubMed

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm).

  1. Inhibitory Effect of the Punica granatum Fruit Extract on Angiotensin-II Type I Receptor and Thromboxane B2 in Endothelial Cells Induced by Plasma from Preeclamptic Patients

    PubMed Central

    Kusumawati, Widya; Keman, Kusnarman; Soeharto, Setyawati

    2016-01-01

    This study aims to evaluate whether the Punica granatum fruit extract modulates the Angiotensin-II Type I receptor (AT1-R) and thromboxane B2 level in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from preeclamptic patients (PP), and endothelial cells exposed to PP in the presence of ethanolic extract of Punica granatum (PP + PG) at the following three doses: 14; 28; and 56 ppm. The expression of AT1-R was observed by immunohistochemistry technique, and thromboxane B2 level was done by immunoassay technique. Plasma from PP significantly increased AT1-R expression and thromboxane B2 levels compared to cells treated by normal pregnancy plasma. The increasing of AT1-R expression significantly (P < 0.05) attenuated by high dose treatments of Punica granatum extract. Moreover, the increasing of thromboxane B2 levels significantly (P < 0.05) attenuated by lowest dose treatments of Punica granatum extract. We further concluded that Punica granatum fruit protects and inhibits the sensitivity of endothelial cells to plasma from preeclamptic patients due to inhibition of AT1-R expression (56 ppm) and reduced thromboxane B2 levels (14 ppm). PMID:26989513

  2. Tiam–Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion

    PubMed Central

    2016-01-01

    Ephrin receptors interact with membrane-bound ephrin ligands to regulate contact-mediated attraction or repulsion between opposing cells, thereby influencing tissue morphogenesis. Cell repulsion requires bidirectional trans-endocytosis of clustered Eph–ephrin complexes at cell interfaces, but the mechanisms underlying this process are poorly understood. Here, we identified an actin-regulating pathway allowing ephrinB+ cells to trans-endocytose EphB receptors from opposing cells. Live imaging revealed Rac-dependent F-actin enrichment at sites of EphB2 internalization, but not during vesicle trafficking. Systematic depletion of Rho family GTPases and their regulatory proteins identified the Rac subfamily and the Rac-specific guanine nucleotide exchange factor Tiam2 as key components of EphB2 trans-endocytosis, a pathway previously implicated in Eph forward signaling, in which ephrins act as in trans ligands of Eph receptors. However, unlike in Eph signaling, this pathway is not required for uptake of soluble ligands in ephrinB+ cells. We also show that this pathway is required for EphB2-stimulated contact repulsion. These results support the existence of a conserved pathway for EphB trans-endocytosis that removes the physical tether between cells, thereby enabling cell repulsion. PMID:27597758

  3. Bradykinin activates ADP-ribosyl cyclase in neuroblastoma cells: intracellular concentration decrease in NAD and increase in cyclic ADP-ribose.

    PubMed

    Higashida, Haruhiro; Salmina, Alla; Hashii, Minako; Yokoyama, Shigeru; Zhang, Jia-Sheng; Noda, Mami; Zhong, Zen-Guo; Jin, Duo

    2006-09-04

    ADP-ribosyl cyclase activity in the crude membrane fraction of neuroblastomaxglioma NGPM1-27 hybrid cells was measured by monitoring [(3)H] cyclic ADP-ribose (cADPR) formation from [(3)H] NAD(+). Bradykinin (BK) at 100nM increased ADP-ribosyl cyclase activity by about 2.5-fold. Application of 300nM BK to living NGPM1-27 cells decreased NAD(+) to 78% of the prestimulation level at 30s. In contrast, intracellular cADPR concentrations were increased by 2-3-fold during the period from 30 to 120s after the same treatment. Our results suggest that cADPR is one of the second messengers downstream of B(2) BK receptors.

  4. Plasma Kallikrein Promotes Epidermal Growth Factor Receptor Transactivation and Signaling in Vascular Smooth Muscle through Direct Activation of Protease-activated Receptors*

    PubMed Central

    Abdallah, Rany T.; Keum, Joo-Seob; Lee, Mi-Hye; Wang, Bing; Gooz, Monika; Luttrell, Deirdre K.; Luttrell, Louis M.; Jaffa, Ayad A.

    2010-01-01

    The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus. PMID:20826789

  5. Bradykinin-potentiating peptides: beyond captopril.

    PubMed

    Camargo, Antonio C M; Ianzer, Danielle; Guerreiro, Juliano R; Serrano, Solange M T

    2012-03-15

    The identification of novel endogenous and exogenous molecules acting in the complex mechanism of regulating the vascular tonus has always been of great interest. The discovery of bradykinin (1949) and the bradykinin-potentiating peptides (1965) had a pivotal influence in the field, respectively, in understanding cardiovascular pathophysiology and in the development of captopril, the first active-site directed inhibitor of angiotensin-converting enzyme, and used worldwide to treat human hypertension. Both discoveries originated from studies of envenoming by the snake Bothrops jararaca. The aim of the present article is to reveal that the snake proline-rich oligopeptides, known as bradykinin-potentiating peptides, are still a source of surprising scientific discoveries, some of them useful not only to reveal potential new targets but also to introduce prospective lead molecules for drug development. In particular, we emphasize argininosuccinate synthetase as a new functional target for one of bradykinin-potentiating peptides found in B. jararaca, Bj-BPP-10c. This decapeptide leads to argininosuccinate synthetase activation, consequently sustaining increased nitric oxide production, a critical endogenous molecule to reduce the arterial blood pressure.

  6. Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor.

    PubMed

    Suzuki, Tsuyoshi; Fujii, Akihiro; Ohya, Junichi; Amano, Yusaku; Kitano, Yasunori; Abe, Daisuke; Nakamura, Hideo

    2007-12-01

    Epidermal growth factor receptor (EGFR) and ErbB2 are currently recognized as validated target molecules in cancer treatment strategies. MP-412 (AV-412) is a potent dual inhibitor of EGFR and ErbB2 tyrosine kinases, including the mutant EGFR(L858R,T790M), which is clinically resistant to the EGFR-specific kinase inhibitors erlotinib and gefitinib. In an enzyme assay, MP-412 inhibited the EGFR variants and ErbB2 in the nanomolar range with over 100-fold selectivity compared with other kinases, apart from abl and flt-1, which were both moderately sensitive to the compound. In cells, MP-412 inhibited autophosphorylation of EGFR and ErbB2 with IC(50) of 43 and 282 nM, respectively. It also inhibited epidermal growth factor (EGF)-dependent cell proliferation with an IC(50) of 100 nM. Moreover, MP-412 abrogated EGFR signaling in the gefitinib-resistant H1975 cell line, which harbors a double mutation of L858R and T790M in EGFR. In animal studies using cancer xenograft models, MP-412 (30 mg/kg) demonstrated complete inhibition of tumor growth of the A431 and BT-474 cell lines, which overexpress EGFR and ErbB2, respectively. MP-412 suppressed autophosphorylation of EGFR and ErbB2 at the dose corresponding to its antitumor efficacy. When various dosing schedules were applied, MP-412 showed significant effects with daily and every-other-day schedules, but not with a once-weekly schedule, suggesting that frequent dosing is preferable for this compound. Furthermore, MP-412 showed a significant antitumor effect on the ErbB2-overexpressing breast cancer KPL-4 cell line, which is resistant to gefitinib. These studies indicate that MP-412 has potential as a therapeutic agent for the treatment of cancers expressing EGFR and ErbB2, especially those resistant to the first generation of small-molecule inhibitors.

  7. Expression of the Receptor Tyrosine Kinase EphB2 on Dendritic Cells Is Modulated by Toll-Like Receptor Ligation but Is Not Required for T Cell Activation.

    PubMed

    Mimche, Patrice N; Brady, Lauren M; Keeton, Shirley; Fenne, David S J; King, Thayer P; Quicke, Kendra M; Hudson, Lauren E; Lamb, Tracey J

    2015-01-01

    The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration.

  8. Expression of the Receptor Tyrosine Kinase EphB2 on Dendritic Cells Is Modulated by Toll-Like Receptor Ligation but Is Not Required for T Cell Activation

    PubMed Central

    Mimche, Patrice N.; Brady, Lauren M.; Keeton, Shirley; Fenne, David S. J.; King, Thayer P.; Quicke, Kendra M.; Hudson, Lauren E.; Lamb, Tracey J.

    2015-01-01

    The Eph receptor tyrosine kinases interact with their ephrin ligands on adjacent cells to facilitate contact-dependent cell communication. Ephrin B ligands are expressed on T cells and have been suggested to act as co-stimulatory molecules during T cell activation. There are no detailed reports of the expression and modulation of EphB receptors on dendritic cells, the main antigen presenting cells that interact with T cells. Here we show that mouse splenic dendritic cells (DC) and bone-marrow derived DCs (BMDC) express EphB2, a member of the EphB family. EphB2 expression is modulated by ligation of TLR4 and TLR9 and also by interaction with ephrin B ligands. Co-localization of EphB2 with MHC-II is also consistent with a potential role in T cell activation. However, BMDCs derived from EphB2 deficient mice were able to present antigen in the context of MHC-II and produce T cell activating cytokines to the same extent as intact DCs. Collectively our data suggest that EphB2 may contribute to DC responses, but that EphB2 is not required for T cell activation. This result may have arisen because DCs express other members of the EphB receptor family, EphB3, EphB4 and EphB6, all of which can interact with ephrin B ligands, or because EphB2 may be playing a role in another aspect of DC biology such as migration. PMID:26407069

  9. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats

    PubMed Central

    Chichorro, Juliana G; Lorenzetti, Berenice B; Zampronio, Aleksander R

    2004-01-01

    This study characterises some of the mechanisms and mediators involved in the orofacial nociception triggered by injection of formalin into the upper lip of the rat, by assessing the influence of various treatments on behavioural nociceptive responses (duration of facial rubbing) elicited either by a low subthreshold (i.e. non-nociceptive; 0.63%) or a higher concentration of the algogen (2.5%). The kininase II inhibitor captopril (5 mg kg−1, s.c.) and prostaglandin(PG) E2 (100 ng lip−1) potentiated both phases of the response to 0.63% formalin, whereas tumour necrosis factor (TNFα; 5 pg lip−1), interleukin(IL)-1β (0.5 pg lip−1), IL-6 (2 ng lip−1) and IL-8 (200 pg lip−1), or the indirectly acting sympathomimetic drug tyramine (200 μg lip−1), each augmented only the second phase of nociception. Conversely, both phases of nociception induced by 2.5% formalin were inhibited by the bradykinin (BK) B2 receptor antagonist HOE140 (5 μg lip−1) or the selective β1-adrenoceptor antagonist atenolol (100 μg lip−1). However, the BK B1 receptor antagonist des-Arg9-Leu8-BK (1 and 2 μg lip−1), antibody and/or antiserum against each of the cytokines, the adrenergic neurone blocker guanethidine (30 mg kg−1 day−1, s.c., for 3 days) and the cyclooxygenase(COX)-2 inhibitor celecoxib (50 and 200 μg lip−1, s.c.; or 1 and 3 mg kg−1, i.p.) reduced only the second phase of the response. The nonselective COX inhibitor indomethacin and the 5-lipoxygenase activating protein inhibitor MK886 did not change formalin-induced nociception. Our results indicate that BK, TNF-α, IL-1β, IL-6, IL-8, sympathetic amines and PGs (but not leukotrienes) contribute significantly to formalin-induced orofacial nociception in the rat and the response seems to be more susceptible to inhibition by B2 receptor antagonist and selective COX-2 inhibitor than by B1 receptor antagonist or nonselective COX inhibitor. PMID:15006904

  10. NF-kappaB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer

    PubMed Central

    Nadiminty, Nagalakshmi; Tummala, Ramakumar; Liu, Chengfei; Lou, Wei; Evans, Christopher P.; Gao, Allen C.

    2015-01-01

    Castration resistant prostate cancer (CRPC) remains dependent on androgen receptor (AR) signaling. Alternative splicing of the AR to generate constitutively active, ligand-independent variants is one of the principal mechanisms that promote the development of resistance to next-generation anti-androgens such as enzalutamide. Here, we demonstrate that the splicing factor heterogeneous nuclear RNA-binding protein A1 (hnRNPA1) plays a pivotal role in the generation of AR splice variants such as AR-V7. HnRNPA1 is overexpressed in prostate tumors compared to benign prostates and its expression is regulated by NF-kappaB2/p52 and c-Myc. CRPC cells resistant to enzalutamide exhibit higher levels of NF-kappaB2/p52, c-Myc, hnRNPA1, and AR-V7. Levels of hnRNPA1 and of AR-V7 are positively correlated with each other in PCa. The regulatory circuit involving NF-kappaB2/p52, c-Myc and hnRNPA1 plays a central role in the generation of AR splice variants. Downregulation of hnRNPA1 and consequently of AR-V7 resensitizes enzalutamide-resistant cells to enzalutamide, indicating that enhanced expression of hnRNPA1 may confer resistance to AR-targeted therapies by promoting the generation of splice variants. These findings may provide a rationale for co-targeting these pathways to achieve better efficacy through AR blockade. PMID:26056150

  11. Endothelin Receptor B2 (EDNRB2) Gene Is Associated with Spot Plumage Pattern in Domestic Ducks (Anas platyrhynchos)

    PubMed Central

    Li, Ling; Li, Dan; Liu, Li; Li, Shijun; Feng, Yanping; Peng, Xiuli; Gong, Yanzhang

    2015-01-01

    Endothelin receptor B subtype 2 (EDNRB2) is a seven-transmembrane G-protein coupled receptor. In this study, we investigated EDNRB2 gene as a candidate gene for duck spot plumage pattern according to studies of chicken and Japanese quail. The entire coding region was cloned by the reverse transcription polymerase chain reaction (RT-PCR). Sequence analysis showed that duck EDNRB2 cDNA contained a 1311bp open reading frame and encoded a putative protein of 436 amino acids residues. The transcript shared 89%-90% identity with the counterparts in other avian species. A phylogenetic tree based on amino acid sequences showed that duck EDNRB2 was evolutionary conserved in avian clade. The entire coding region of EDNRB2 were sequenced in 20 spot and 20 non-spot ducks, and 13 SNPs were identified. Two of them (c.940G>A and c.995G>A) were non-synonymous substitutions, and were genotyped in 647 ducks representing non-spot and spot phenotypes. The c.995G>A mutation, which results in the amino acid substitution of Arg332His, was completely associated with the spot phenotype: all 152 spot ducks were carriers of the AA genotype and the other 495 individuals with non-spot phenotype were carriers of GA or GG genotype, respectively. Segregation in 17 GA×GG and 22 GA×GA testing combinations confirmed this association since the segregation ratios and genotypes of the offspring were in agreement with the hypothesis. In order to investigate the underlying mechanism of the spot phenotype, MITF gene was used as cell type marker of melanocyte progenitor cells while TYR and TYRP1 gene were used as cell type markers of mature melanocytes. Transcripts of MITF, TYR and TYRP1 gene with expected size were identified in all pigmented skin tissues while PCR products were not obtained from non-pigmented skin tissues. It was inferred that melanocytes are absent in non-pigmented skin tissues of spot ducks. PMID:25955279

  12. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training.

    PubMed Central

    Mombouli, J. V.; Nakashima, M.; Hamra, M.; Vanhoutte, P. M.

    1996-01-01

    bradykinin were also shifted to the left by perindoprilat. The shift induced by the ACE-inhibitor in either type of preparation was not significantly different. 8. These findings demonstrate that exercise-training augments the sensitivity of the coronary artery of the dog to the endothelium-dependent effects of bradykinin. This sensitization to bradykinin may reflect an increased role of both NO and EDHF, and is not the consequence of differences in ACE activity in the receptor compartment. PMID:8821528

  13. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca2+ channels

    PubMed Central

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-01-01

    T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020

  14. Mechanisms of bradykinin-induced expression of connective tissue growth factor and nephrin in podocytes.

    PubMed

    Abou Msallem, J; Chalhoub, H; Al-Hariri, M; Saad, L; Jaffa, M A; Ziyadeh, F N; Jaffa, A A

    2015-12-01

    Diabetic nephropathy (DN) is the main cause of morbidity and mortality in diabetes and is characterized by mesangial matrix deposition and podocytopathy, including podocyte loss. The risk factors and mechanisms involved in the pathogenesis of DN are still not completely defined. In the present study, we aimed to understand the cellular mechanisms through which activation of B2 kinin receptors contribute to the initiation and progression of DN. Stimulation of cultured rat podocytes with bradykinin (BK) resulted in a significant increase in ROS generation, and this was associated with a significant increase in NADPH oxidase (NOX)1 and NOX4 protein and mRNA levels. BK stimulation also resulted in a signicant increase in the phosphorylation of ERK1/2 and Akt, and this effect was inhibited in the presence of NOX1 and Nox4 small interfering (si)RNA. Furthermore, podocytes stimulated with BK resulted in a significant increase in protein and mRNA levels of connective tissue growth factor (CTGF) and, at the same time, a significant decrease in protein and mRNA levels of nephrin. siRNA targeted against NOX1 and NOX4 significantly inhibited the BK-induced increase in CTGF. Nephrin expression was increased in response to BK in the presence of NOX1 and NOX4 siRNA, thus implicating a role for NOXs in modulating the BK response in podocytes. Moreover, nephrin expression in response to BK was also significantly increased in the presence of siRNA targeted against CTGF. These findings provide novel aspects of BK signal transduction pathways in pathogenesis of DN and identify novel targets for interventional strategies.

  15. Hypotensive effects of hemopressin and bradykinin in rabbits, rats and mice. A comparative study.

    PubMed

    Blais, Paul-André; Côté, Jérôme; Morin, Josée; Larouche, Annie; Gendron, Gabrielle; Fortier, Audrey; Regoli, Domenico; Neugebauer, Witold; Gobeil, Fernand

    2005-08-01

    Hemopressin is a novel vasoactive nonapeptide derived from hemoglobin's alpha-chain as recently reported by Rioli et al. [Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, et al. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003;278(10):8547-55]. In anesthetized male Wistar rats, this peptide exhibited hypotensive actions similar to those of bradykinin (BK) when administered intravenously (i.v.), and was found to be metabolized both in vitro and in vivo by several peptidases, including the angiotensin-converting enzyme (ACE). In this study, these findings were expanded upon by examining: (i) the degradation kinetics following incubation with ACE purified from rabbit lung and (ii) the blood pressure lowering effects of HP and BK injected i.v. or intra-arterially (i.a.) in male rabbits, rats, and mice. Our findings demonstrate that, in vitro, HP and BK are both degraded by ACE, but at different velocity rates. Furthermore, both HP and BK induced transient hypotension in all animals tested, although the responses to HP relative to the administration sites were significantly lower (by 10-100-fold) on an equimolar basis compared to those of BK. In rabbits, the decrease of blood pressure induced by HP (10-100 nmol/kg) did not differ whether it was administered i.v. or i.a., suggesting an absence of pulmonary/cardiac inactivation in contrast to BK (0.1-1 nmol/kg). The in vivo effect of HP was significantly potentiated in rabbits immunostimulated with bacterial lipopolysaccharide (LPS), but was unaffected by both the B2 receptor antagonist HOE 140 (0.1 micromol/kg) and captopril (100 microg/kg), contrary to BK. Therefore, HP acts as a weak hypotensive mediator, which does not activate kinin B2 receptors, but uses a functional site and/or signaling paths appearing to be up-regulated by LPS.

  16. A comparative study of kinin, kallidin, and bradykinin

    PubMed Central

    Holdstock, D. J.; Mathias, A. P.; Schachter, M.

    1957-01-01

    Partially purified kinin, a polypeptide in wasp venom, has been found to be a potent smooth-muscle stimulating and hypotensive agent. Such a preparation was 10 to 100 times more effective than histamine in enhancing capillary permeability on intradermal injection, and 10 times more effective than acetylcholine in evoking pain on a cutaneous blister base. Some differences between the actions of salivary kallikrein and trypsin in releasing kallidin or bradykinin have been observed, and some modifications of previous methods of preparing crude kallidin and bradykinin are suggested. Kallidin and bradykinin are effective enhancers of capillary permeability in the guinea-pig and rabbit. Chemical and pharmacological tests failed to differentiate between kallidin and bradykinin which must be, therefore, closely similar compounds. The possible role of kallidin and bradykinin in physiological or pathological conditions is discussed. ImagesFIG. 3FIG. 4FIG. 7 PMID:13446366

  17. Cardiovascular actions of rattlesnake bradykinin ([Val1,Thr6]bradykinin) in the anesthetized South American rattlesnake Crotalus durissus terrificus.

    PubMed

    Galli, Gina L J; Skovgaard, Nini; Abe, Augusto S; Taylor, Edwin W; Conlon, J Michael; Wang, Tobias

    2005-02-01

    Incubation of heat-denatured plasma from the rattlesnake Crotalus atrox with trypsin generated a bradykinin (BK) that contained two amino acid substitutions (Arg1 --> Val and Ser6 --> Thr) compared with mammalian BK. Bolus intra-arterial injections of synthetic rattlesnake BK (0.01-10 nmol/kg) into the anesthetized rattlesnake, Crotalus durissus terrificus, produced a pronounced and concentration-dependent increase in systemic vascular conductance (Gsys). This caused a fall in systemic arterial blood pressure (Psys) and an increase in blood flow. Heart rate and stroke volume also increased. This primary response was followed by a significant rise in Psys and pronounced tachycardia (secondary response). Pretreatment with N(G)-nitro-L-arginine methyl ester reduced the NK-induced systemic vasodilatation, indicating that the effect is mediated through increased NO synthesis. The tachycardia associated with the late primary and secondary response to BK was abolished with propranolol and the systemic vasodilatation produced in the primary phase was also significantly attenuated by pretreatment, indicating that the responses are caused, at least in part, by release of cathecholamines and subsequent stimulation of beta-adrenergic receptors. In contrast, the pulmonary circulation was relatively unresponsive to BK.

  18. Expression of the EGF receptor family members ErbB2, ErbB3, and ErbB4 in germinal zones of the developing brain and in neurosphere cultures containing CNS stem cells.

    PubMed

    Kornblum, H I; Yanni, D S; Easterday, M C; Seroogy, K B

    2000-01-01

    The epidermal growth factor receptor family consists of four related tyrosine kinases: the epidermal growth factor receptor (EGF-R or ErbB), ErbB2, ErbB3, and ErbB4. These receptors are capable of extensive cross-activation upon the binding of their ligands - the EGF family of peptides for EGF-R and the neuregulins for ErbB3 and ErbB4. Since EGF-R is expressed by proliferating cells in the central nervous system (CNS), including multipotent CNS stem cells, we examined the expression of ErbB2, ErbB3 and ErbB4 in the germinal epithelia of the developing rat brain using in situ hybridization. ErbB2 and ErbB4 mRNAs were widely distributed within the germinal zones as early as E12. However, as development proceeded, ErbB2 mRNA was mainly present within the layers of cells immediately adjacent to the ventricular surface - the ventricular zone, while ErbB4 mRNA was predominantly expressed by subventricular zone cells, in the regions where these specialized germinal epithelia were present. ErbB3 mRNA distribution within germinal epithelia was more restricted, primarily confined to the diencephalon and rostral midbrain. Cultured neurospheres, which contain CNS stem cells, expressed ErbB2, ErbB4 and, to a lesser extent, ErbB3 protein as demonstrated by Western blot analysis. This expression declined during following differentiation. Heregulin-beta1, a neuregulin, had no effect on the proliferative capacity of neurospheres. Overall, our results indicate that ErbB2, ErbB3 and ErbB4 may play important and distinct roles in the genesis of the CNS. However, our in vitro data do not support a role for neuregulins in proliferation, per se, of CNS stem cells.

  19. Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status.

    PubMed

    Farnie, Gillian; Willan, Pamela M; Clarke, Robert B; Bundred, Nigel J

    2013-01-01

    Pathways involved in DCIS stem and progenitor signalling are poorly understood yet are critical to understand DCIS biology and to develop new therapies. Notch and ErbB1/2 receptor signalling cross talk has been demonstrated in invasive breast cancer, but their role in DCIS stem and progenitor cells has not been investigated. We have utilised 2 DCIS cell lines, MCF10DCIS.com (ErbB2-normal) and SUM225 (ErbB2-overexpressing) and 7 human primary DCIS samples were cultured in 3D matrigel and as mammospheres in the presence, absence or combination of the Notch inhibitor, DAPT, and ErbB1/2 inhibitors, lapatinib or gefitinib. Western blotting was applied to assess downstream signalling. In this study we demonstrate that DAPT reduced acini size and mammosphere formation in MCF10DCIS.com whereas there was no effect in SUM225. Lapatinb reduced acini size and mammosphere formation in SUM225, whereas mammosphere formation and Notch1 activity were increased in MCF10DCIS.com. Combined DAPT/lapatinib treatment was more effective at reducing acini size in both DCIS cell lines. Mammosphere formation in cell lines and human primary DCIS was reduced further by DAPT/lapatinib or DAPT/gefitinib regardless of ErbB2 receptor status. Our pre-clinical human models of DCIS demonstrate that Notch and ErbB1/2 both play a role in DCIS acini growth and stem cell activity. We report for the first time that cross talk between the two pathways in DCIS occurs regardless of ErbB2 receptor status and inhibition of Notch and ErbB1/2 was more efficacious than either alone. These data provide further understanding of DCIS biology and suggest treatment strategies combining Notch and ErbB1/2 inhibitors should be investigated regardless of ErbB2 receptor status.

  20. Cardiac-Specific Over-Expression of Epidermal Growth Factor Receptor 2 (ErbB2) Induces Pro-Survival Pathways and Hypertrophic Cardiomyopathy in Mice

    PubMed Central

    Guo, Xin; Belmonte, Frances; Kang, Byunghak; Bedja, Djahida; Pin, Scott; Tsuchiya, Noriko; Gabrielson, Kathleen

    2012-01-01

    Background Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. Methodology/Principal Findings We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2–3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. Conclusions/Significance These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling pathways and induce a

  1. Inhibition of ErbB2 by receptor tyrosine kinase inhibitors causes myofibrillar structural damage without cell death in adult rat cardiomyocytes

    SciTech Connect

    Pentassuglia, Laura; Graf, Michael; Lane, Heidi; Kuramochi, Yukio; Cote, Gregory; Timolati, Francesco; Sawyer, Douglas B.; Zuppinger, Christian; Suter, Thomas M.

    2009-04-15

    Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.

  2. Effects of chlorobutanol and bradykinin on myocardial excitation.

    PubMed

    Hermsmeyer, K; Aprigliano, O

    1976-02-01

    The negative inotropic effect of a commonly used formulation of bradykinin (Sandoz BRS-640) was found to be due to chlorobutanol, a constituent of the preparation. Solutions containing up to 100 mug of crystalline bradykinin/ml had no effect on tension or action-potential shape. Chlorobutanol (500 mug/ml) caused a 30% decrease in contraction amplitude and a 20% increase in action-potential duration. Chlorobutanol lowered conduction velocity and induced conduction failure and automaticity within isolated ventricular muscle strips. Chlorobutanol affected neither positive nor negative treppe. We conclude that bradykinin has no direct action on toad, frog, or rat myocardium. However, chlorobutanol does have direct effects on myocardial cells, acting on the cell membrane and decreasing isometric tension produced by the heart.

  3. Exploring the dynamics and interaction of a full ErbB2 receptor and Trastuzumab-Fab antibody in a lipid bilayer model using Martini coarse-grained force field

    NASA Astrophysics Data System (ADS)

    Franco-Gonzalez, Juan Felipe; Ramos, Javier; Cruz, Victor L.; Martinez-Salazar, Javier

    2014-11-01

    Coarse grained (CG) modeling has been applied to study the influence of the Trastuzumab monoclonal antibody on the structure and dynamics of the full ErbB2 receptor dimer, including the lipid bilayer. The usage of CG models to study such complexes is almost mandatory, at present, due to the large size of the whole system. We will show that the Martini model performs satisfactorily well, giving results well-matched with those obtained by atomistic models as well as with the experimental information existing on homolog receptors. For example, the extra and intracellular domains approach the bilayer surface in both the monomer and dimer cases. The Trastuzumab-Fab hinders the interaction of the receptors with the lipid bilayer. Another interesting effect of the antibody is the disruption of the antiparallel arrangement of the juxtamembrane segments in the dimer case. These findings might help to understand the effect of the antibody on the receptor bioactivity.

  4. NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance.

    PubMed

    Lauritzen, G; Jensen, M B F; Boedtkjer, E; Dybboe, R; Aalkjaer, C; Nylandsted, J; Pedersen, S F

    2010-09-10

    Altered pH-regulatory ion transport is characteristic of many cancers; however, the mechanisms and consequences are poorly understood. Here, we investigate how a truncated, constitutively active ErbB2 receptor (DeltaNErbB2) common in breast cancer impacts on the Na(+)/H(+)-exchanger NHE1 and the Na(+),HCO(3)(-)-cotransporter NBCn1 in MCF-7 human breast cancer cells and address the roles of these transporters in chemotherapy resistance. Upon DeltaNErbB2 expression, mRNA and protein levels of NBCn1, yet not of NHE1, increased several-fold, and the localization of both transporters was altered paralleling extensive morphological changes. The rate of pH(i) recovery after acid loading increased by 50% upon DeltaNErbB2 expression. Knockdown and pharmacological inhibition confirmed the involvement of both NHE1 and NBCn1 in acid extrusion. NHE1 inhibition or knockdown sensitized DeltaNErbB2-expressing cells to cisplatin-induced programmed cell death (PCD) in a caspase-, cathepsin-, and reactive oxygen species-dependent manner. NHE1 inhibition augmented cisplatin-induced caspase activity and lysosomal membrane permeability followed by cysteine cathepsin release. In contrast, NBCn1 inhibition attenuated cathepsin release and had no net effect on viability. These findings warrant studies of NHE1 as a potential target in breast cancer and demonstrate that in spite of their similar transport functions, NHE1 and NBCn1 serve different functions in MCF-7 cells.

  5. Anti-Ephrin Type-B Receptor 2 (EphB2) and Anti-Three Prime Histone mRNA EXonuclease 1 (THEX1) Autoantibodies in Scleroderma and Lupus

    PubMed Central

    Azzouz, Doua F.; Martin, Gabriel V.; Arnoux, Fanny; Balandraud, Nathalie; Martin, Thierry; Dubucquoi, Sylvain; Hachulla, Eric; Farge-Bancel, Dominique; Tiev, Kiet; Cabane, Jean; Bardin, Nathalie; Chiche, Laurent; Martin, Marielle; Caillet, Eléonore C.; Kanaan, Sami B.; Harlé, Jean Robert; Granel, Brigitte; Diot, Elisabeth; Roudier, Jean; Auger, Isabelle; Lambert, Nathalie C.

    2016-01-01

    In a pilot ProtoArray analysis, we identified 6 proteins out of 9483 recognized by autoantibodies (AAb) from patients with systemic sclerosis (SSc). We further investigated the 6 candidates by ELISA on hundreds of controls and patients, including patients with Systemic Lupus Erythematosus (SLE), known for high sera reactivity and overlapping AAb with SSc. Only 2 of the 6 candidates, Ephrin type-B receptor 2 (EphB2) and Three prime Histone mRNA EXonuclease 1 (THEX1), remained significantly recognized by sera samples from SSc compared to controls (healthy or with rheumatic diseases) with, respectively, 34% versus 14% (P = 2.10−4) and 60% versus 28% (P = 3.10−8). Above all, EphB2 and THEX1 revealed to be mainly recognized by SLE sera samples with respectively 56%, (P = 2.10−10) and 82% (P = 5.10−13). As anti-EphB2 and anti-THEX1 AAb were found in both diseases, an epitope mapping was realized on each protein to refine SSc and SLE diagnosis. A 15-mer peptide from EphB2 allowed to identify 35% of SLE sera samples (N = 48) versus only 5% of any other sera samples (N = 157), including SSc sera samples. AAb titers were significantly higher in SLE sera (P<0.0001) and correlated with disease activity (p<0.02). We could not find an epitope on EphB2 protein for SSc neither on THEX1 for SSc or SLE. We showed that patients with SSc or SLE have AAb against EphB2, a protein involved in angiogenesis, and THEX1, a 3’-5’ exoribonuclease involved in histone mRNA degradation. We have further identified a peptide from EphB2 as a specific and sensitive tool for SLE diagnosis. PMID:27617966

  6. Interactions of histamine and bradykinin on polymodal C-fibres in isolated rat skin.

    PubMed

    Koppert, W; Martus, P; Reeh, P W

    2001-01-01

    Patients suffering from pruritus due to atopic dermatitis show, in asymptomatic skin, reduced itch and flare responses to histamine, the major pruritogenic mediator. We hypothesized that this apparent loss in histamine sensitivity may be overcompensated in inflamed skin and investigated the interactions between histamine and bradykinin, the major inflammatory mediator. The studies were performed using the isolated rat skin-nerve preparation. Forty-two fibres were tested following four different experimental protocols. After characterization of the sensory properties, six fibres were treated repetitively with histamine (HIS1, HIS2) to exclude the possibility that the responses (spikes/min) increase simply by repetition. In 12 other units, histamine (HIS1) was followed by a wash-out period prior to bradykinin (BK) stimulation; in another 12 units, BK followed immediately after HIS1. A further 12 fibres were examined without preceding heat stimulation in order to avoid possible sensitization. If BK was administered after a wash-out period following HIS1, the BK responses were significantly higher than the HIS1 response. The BK response showed a peak discharge which was absent if BK followed directly upon HIS1. If HIS2 was applied directly following BK, the induced discharge was significantly larger than the first histamine response and not different from the BK response, whereas a washout period before HIS2 abolished the sensitizing effect of previous BK.A unidirectional sensitization by previous bradykinin or heat stimulation on the histamine responsiveness of polymodal nociceptors has been demonstrated. If 'itch fibres' in humans were subject to similar interactions of histamine with inflammatory mediators, this may compensate for a down-regulation of histamine receptors in eczematic skin and possibly account for the pruritus.

  7. A Novel Antithrombotic Mechanism Mediated by the Receptors of the Kallikrein/Kinin and Renin–Angiotensin Systems

    PubMed Central

    Schmaier, Alvin H.

    2016-01-01

    The contact activation (CAS) and kallikrein/kinin (KKS) systems regulate thrombosis risk in two ways. First, the CAS influences contact activation-induced factor XI activation and thrombin formation through the hemostatic cascade. Second, prekallikrein (PK) and bradykinin of the KKS regulate expression of three vessel wall G-protein-coupled receptors, the bradykinin B2 receptor (B2R), angiotensin receptor 2, and Mas to influence prostacyclin formation. The degree of intravascular prostacyclin formation inversely regulates intravascular thrombosis risk. A 1.5- to 2-fold increase in prostacyclin, as seen in PK deficiency, increases vessel wall Sirt1 and KLF4 to downregulate vessel wall tissue factor which alone is sufficient to lengthen induced thrombosis times. A twofold to threefold increase in prostacyclin, as seen the B2R-deficient mouse, delays thrombosis and produces a selective platelet function defect of reduced GPVI activation and platelet spreading. Regulation of CAS and KKS protein expression has a profound influence on thrombosis-generating mechanisms in the intravascular compartment. PMID:27965959

  8. Localisation Microscopy of Breast Epithelial ErbB-2 Receptors and Gap Junctions: Trafficking after γ-Irradiation, Neuregulin-1β, and Trastuzumab Application

    PubMed Central

    Pilarczyk, Götz; Nesnidal, Ines; Gunkel, Manuel; Bach, Margund; Bestvater, Felix; Hausmann, Michael

    2017-01-01

    In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin-1β application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ-irradiation or alternatively neuregulin-1β application mobilized ErbB receptors in a nucleograde fashion—a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation. PMID:28208769

  9. Determination of bradykinin and arg-bradykinin in rat muscle tissue by microdialysis and capillary column-switching liquid chromatography with mass spectrometric detection.

    PubMed

    Wilson, Steven Ray; Boix, Fernando; Holm, Anders; Molander, Pål; Lundanes, Elsa; Greibrokk, Tyge

    2005-09-01

    Quantification of bradykinin peptides in limited amounts of rat muscle tissue dialysate has been performed using a packed capillary LC-ESI-TOF-MS method. The micro dialysate samples (450 microL) with added internal standard were loaded onto a 1 mm x 5 mm loading column packed with 5 microm Kromasil C18 particles by a carrier solution of 0.1% formic acid in ACN/water (5:95, v/v) at a flow rate of 250 microL/min for online preconcentration of the analytes. Back-flushed elution onto a 150 mm x 0.5 mm Zorbax C18 column packed with 5 microm particles was conducted using a linear solvent ACN/H2O gradient containing 0.1% formic acid. (Tyr8)-bradykinin was used as an internal standard and was added to the dialysis sample prior to injection. Baseline separation of bradykinin, arg-bradykinin and (tyr8)-bradykinin was achieved within 10 min. Positive ESI was performed in the m/z range of 200-1300. The method was validated in the range 0.2-1.0 ng/mL dialysate, yielding correlation coefficients of 0.995 and 0.990 for bradykinin and arg-bradykinin, respectively. The within-assay and between-assay precisions were between 4.3-9.6% and 6.2-10.6%, respectively. Both arg-bradykinin and bradykinin were detected in dialysate from rat muscle tissue, at concentrations of 0.1 and 0.4 ng/mL for bradykinin and arg-bradykinin, respectively, confirming the presence of arg-bradykinin in rat muscles.

  10. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  11. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo.

    PubMed

    Rusnak, D W; Lackey, K; Affleck, K; Wood, E R; Alligood, K J; Rhodes, N; Keith, B R; Murray, D M; Knight, W B; Mullin, R J; Gilmer, T M

    2001-12-01

    The epidermal growth factor receptor (EGFR) and ErbB-2 transmembrane tyrosine kinases are currently being targeted by various mechanisms in the treatment of cancer. GW2016 is a potent inhibitor of the ErbB-2 and EGFR tyrosine kinase domains with IC50 values against purified EGFR and ErbB-2 of 10.2 and 9.8 nM, respectively. This report describes the efficacy in cell growth assays of GW2016 on human tumor cell lines overexpressing either EGFR or ErbB-2: HN5 (head and neck), A-431 (vulva), BT474 (breast), CaLu-3 (lung), and N87 (gastric). Normal human foreskin fibroblasts, nontumorigenic epithelial cells (HB4a), and nonoverexpressing tumor cells (MCF-7 and T47D) were tested as negative controls. After 3 days of compound exposure, average IC50 values for growth inhibition in the EGFR- and ErbB-2-overexpressing tumor cell lines were < 0.16 microM. The average selectivity for the tumor cells versus the human foreskin fibroblast cell line was 100-fold. Inhibition of EGFR and ErbB-2 receptor autophosphorylation and phosphorylation of the downstream modulator, AKT, was verified by Western blot analysis in the BT474 and HN5 cell lines. As a measure of cytotoxicity versus growth arrest, the HN5 and BT474 cells were assessed in an outgrowth assay after a transient exposure to GW2016. The cells were treated for 3 days in five concentrations of GW2016, and cell growth was monitored for an additional 12 days after removal of the compound. In each of these tumor cell lines, concentrations of GW2016 were reached where outgrowth did not occur. Furthermore, growth arrest and cell death were observed in parallel experiments, as determined by bromodeoxyuridine incorporation and propidium iodide staining. GW2016 treatment inhibited tumor xenograft growth of the HN5 and BT474 cells in a dose-responsive manner at 30 and 100 mg/kg orally, twice daily, with complete inhibition of tumor growth at the higher dose. Together, these results indicate that GW2016 achieves excellent potency on

  12. Aberrant gonadotropin-releasing hormone receptor (GnRHR) expression and its regulation of CYP11B2 expression and aldosterone production in adrenal aldosterone-producing adenoma (APA).

    PubMed

    Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu

    2014-03-25

    Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA.

  13. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice.

    PubMed

    Costa, Robson; Bicca, Maíra A; Manjavachi, Marianne N; Segat, Gabriela C; Dias, Fabiana Chaves; Fernandes, Elizabeth S; Calixto, João B

    2017-03-10

    Kinin B1 (B1R) and B2 receptors (B2R) and the transient receptor potential vanilloid 4 (TRPV4) channel are known to play a critical role in the peripheral neuropathy induced by paclitaxel (PTX) in rodents. However, the downstream pathways activated by kinin receptors as well as the sensitizers of the TRPV4 channel involved in this process remain unknown. Herein, we investigated whether kinins sensitize TRPV4 channels in order to maintain PTX-induced peripheral neuropathy in mice. The mechanical hyperalgesia induced by bradykinin (BK, a B2R agonist) or des-Arg(9)-BK (DABK, a B1R agonist) was inhibited by the selective TRPV4 antagonist HC-067047. Additionally, BK was able to sensitize TRPV4, thus contributing to mechanical hyperalgesia. This response was dependent on phospholipase C/protein kinase C (PKC) activation. The selective kinin B1R (des-Arg(9)-[Leu(8)]-bradykinin) and B2R (HOE 140) antagonists reduced the mechanical hyperalgesia induced by PTX, with efficacies and time response profiles similar to those observed for the TRPV4 antagonist (HC-067047). Additionally, both kinin receptor antagonists inhibited the overt nociception induced by hypotonic solution in PTX-injected animals. The same animals presented lower PKCε levels in skin and dorsal root ganglion samples. The selective PKCε inhibitor (εV1-2) reduced the hypotonicity-induced overt nociception in PTX-treated mice with the same magnitude observed for the kinin receptor antagonists. These findings suggest that B1R or B2R agonists sensitize TRPV4 channels to induce mechanical hyperalgesia in mice. This mechanism of interaction may contribute to PTX-induced peripheral neuropathy through the activation of PKCε. We suggest these targets represent new opportunities for the development of effective analgesics to treat chronic pain.

  14. Bradykinin-activated transmembrane signals are coupled via N/sub o/ or N/sub i/ to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells

    SciTech Connect

    Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.

    1986-02-01

    The addition of bradykinin to NG108-15 cells results in a transient hyperpolarization followed by prolonged cell depolarization. Injection of inositol 1,4,5-trisphosphate or CaS into the cytoplasm of NG108-15 cells also elicits cell hyperpolarization followed by depolarization. Tetraethylammonium ions inhibit the hyperpolarizing response of cells to bradykinin or inositol 1,4,5-trisphosphate. Thus, the hyperpolarizing phase of the cell response may be due to inositol 1,4,5-trisphosphate-dependent release of stored UVCa-labelled CaS into the cytoplasm, which activates CaS -dependent K channels. The depolarizing phase of the cell response to bradykinin is due largely to inhibition of M channels, thereby decreasing the rate of K efflux from cells and, to a lesser extent, to activation of CaS -dependent ion channels and CaS channels. In contrast, injection of inositol 1,4,5-trisphosphate or CaS into the cytosol did not alter M channel activity. Incubation of NG108-15 cells with pertussis toxin inhibits bradykinin-dependent cell hyperpolarization and depolarization. Bradykinin stimulates low K/sub m/ GTPase activity and inhibits adenylate cyclase in NG108-15 membrane preparations but not in membranes prepared from cells treated with pertussis toxin. These results show that (bradykinin-receptor) complexes interact with N/sub o/ or N/sub i/ and suggest that N/sub o/ and/or N/sub i/ mediate the transduction of signals from bradykinin receptors to phospholipase C and adenylate cyclase.

  15. Inhibition of pancreatic carcinoma by homo- and heterocombinations of antibodies against EGF-receptor and its kin HER2/ErbB-2

    PubMed Central

    Maron, Ruth; Schechter, Bilha; Mancini, Maicol; Mahlknecht, Georg; Yarden, Yosef; Sela, Michael

    2013-01-01

    Due to intrinsic aggressiveness and lack of effective therapies, prognosis of pancreatic cancer remains dismal. Because the only molecular targeted drug approved for pancreatic ductal adenocarcinoma is a kinase inhibitor specific to the epidermal growth factor receptor (EGFR), and this receptor collaborates with another kinase, called HER2 (human EGF-receptor 2), we assumed that agents targeting EGFR and/or HER2 would effectively retard pancreatic ductal adenocarcinoma. Accordingly, two immunological strategies were tested in animal models: (i) two antibodies able to engage distinct epitopes of either EGFR or HER2 were separately combined, and (ii) pairs of one antibody to EGFR and another to HER2. Unlike the respective single monoclonal antibodies, which induced weak effects, both types of antibody combinations synergized in animals in terms of tumor inhibition. Immunological cooperation may not depend on receptor density, antigenic sites, or the presence of a mutant RAS protein. Nevertheless, both types of antibody combinations enhanced receptor degradation. Future efforts will examine the feasibility of each strategy and the potential of combining them to achieve sustained tumor inhibition. PMID:24003140

  16. Regulation of glucose transport by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts: Involvement of protein kinase C-dependent and -independent mechanisms

    SciTech Connect

    Dettori, C.; Meldolesi, J. )

    1989-05-01

    Glucose transport stimulation by insulin, bombesin, and bradykinin in Swiss 3T3 fibroblasts was compared with the phosphoinositide hydrolysis effects of the same stimulants in a variety of experimental paradigms known to affect generation and/or functioning of intracellular second messengers: short- and long-term treatments with phorbol dibutyrate, that cause activation and down-regulation of protein kinase C, respectively; cell loading with high (quin2), that causes clamping of (Ca{sup 2+}){sub i} near the resting level; poisoning with pertussis toxin, that affects the GTP binding proteins of the Go/Gi class; treatment with Ca{sup 2+} ionophores. ({sup 14}C) glucose transport stimulation by maximal (insulin) was affected by neither pertussis toxin nor protein kinase C down-regulation. This result correlates with the lack of effect of insulin on phosphoinositide hydrolysis. In contrast, part of the glucose transport responses induced by bombesin and bradykinin appeared to be mediated by protein kinase C in proportion with the stimulation induced by these peptides on the phosphoinositide hydrolysis. The protein kinase C-independent portion of the response to bradykinin was found to be inhibitable by pertussis toxin. This latter result might suggest an interaction between the bradykinin receptor and a glucose transporter, mediated by a protein of the Go/Gi class.

  17. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors.

    PubMed Central

    Marrero, M B; Venema, V J; Ju, H; He, H; Liang, H; Caldwell, R B; Venema, R C

    1999-01-01

    The endothelial nitric oxide synthase (eNOS) is activated in response to stimulation of endothelial cells by a number of vasoactive substances including, bradykinin (BK), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP. In the present study we have used in vitro activity assays of purified eNOS and in vitro binding assays with glutathione S-transferase fusion proteins to show that the capacity to bind and inhibit eNOS is a common feature of membrane-proximal regions of intracellular domain 4 of the BK B2, the Ang II AT1 and the ET-1 ETB receptors, but not of the ATP P2Y2 receptor. Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the B2 receptor results in a loss of eNOS inhibition due to a decrease in the binding affinity of the receptor domain for the eNOS enzyme. Furthermore, the B2 receptor is transiently phosphorylated on tyrosine residues in cultured endothelial cells in response to BK stimulation. Phosphorylation occurs during the time in which eNOS transiently dissociates from the receptor accompanied by a transient increase in nitric oxide production. Taken together, these data support the hypotheses that eNOS is regulated in endothelial cells by reversible and inhibitory interactions with G-protein-coupled receptors and that these interactions can be modulated by receptor phosphorylation. PMID:10510297

  18. Cloning of the GABAB Receptor Subunits B1 and B2 and their Expression in the Central Nervous System of the Adult Sea Lamprey

    PubMed Central

    Romaus-Sanjurjo, Daniel; Fernández-López, Blanca; Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2016-01-01

    In vertebrates, γ-aminobutyric acid (GABA) is the main inhibitory transmitter in the central nervous system (CNS) acting through ionotropic (GABAA) and metabotropic (GABAB) receptors. The GABAB receptor produces a slow inhibition since it activates second messenger systems through the binding and activation of guanine nucleotide-binding proteins [G-protein-coupled receptors (GPCRs)]. Lampreys are a key reference to understand molecular evolution in vertebrates. The importance of the GABAB receptor for the modulation of the circuits controlling locomotion and other behaviors has been shown in pharmacological/physiological studies in lampreys. However, there is no data about the sequence of the GABAB subunits or their expression in the CNS of lampreys. Our aim was to identify the sea lamprey GABAB1 and GABAB2 transcripts and study their expression in the CNS of adults. We cloned two partial sequences corresponding to the GABAB1 and GABAB2 cDNAs of the sea lamprey as confirmed by sequence analysis and comparison with known GABAB sequences of other vertebrates. In phylogenetic analyses, the sea lamprey GABAB sequences clustered together with GABABs sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. We observed a broad and overlapping expression of both transcripts in the entire CNS. Expression was mainly observed in neuronal somas of the periventricular regions including the identified reticulospinal cells. No expression was observed in identifiable fibers. Comparison of our results with those reported in other vertebrates indicates that a broad and overlapping expression of the GABAB subunits in the CNS is a conserved character shared by agnathans and gnathostomes. PMID:28008311

  19. The chromatographic behaviour of wasp venom kinin, kallidin and bradykinin.

    PubMed

    MATHIAS, A P; SCHACHTER, M

    1958-09-01

    Wasp venom kinin which has hitherto appeared to be homogeneous can be resolved by ionexchange chromatography into a single major and two minor components. These are indistinguishable by their action on smooth muscle and by their rapid inactivation by chymotrypsin. All three components of wasp kinin are chromatographically different from kallidin or bradykinin. The close similarity of the latter compounds is confirmed by their identical behaviour on an ion-exchange resin.

  20. Diabetes modulates the expression of glomerular kinin receptors.

    PubMed

    Christopher, Julie; Jaffa, Ayad A

    2002-12-01

    The localization of kinin receptors within the kidney implicates this system in the regulation of glomerular hemodynamics. We reported that diabetes alters the activity of the renal kallikrein-kinin system, and that these alterations contribute to the development of microvascular complications of diabetes. The present study examined the influence of diabetes on the expression of glomerular B1 and B2-kinin receptors, and assessed the cellular signaling of kinin receptor activation. Rats made diabetic with streptozocin (85 mg/kg), displayed plasma glucose levels in the range of 350-500 mg/dl. At 3, 7, and 21 days, B1 and B2-kinin receptor mRNA levels were measured in isolated glomeruli from control and diabetic rats by RT-PCR. Glomeruli revealed a differential pattern of expression between the two kinin receptors. The constitutively expressed B2-receptor was increased three-fold at day 3, but returned to normal levels at day 7; whereas, the inducible B1-receptor was maximally expressed (20-fold) at day 7 and remained elevated (10-fold) at day 21. To test whether the induction of kinin receptors by diabetes translates into increased responsiveness, we measured mitogen-activated protein kinase (MAPK) phosphorylation (p42, p44) in glomeruli isolated from control and diabetic rats stimulated with B1-receptor agonist (des-Arg9-bradykinin, 10(-8) M). A three-fold increase in phosphorylation of MAPK was observed in response to B1-receptor agonist challenge in glomeruli isolated form diabetic rats compared to controls. These findings demonstrate for the first time that glomerular kinin receptors are induced by diabetes, and provide a rationale to study the contribution of these receptors to the development of glomerular injury in diabetes.

  1. Presenilin mediates neuroprotective functions of ephrinB and brain-derived neurotrophic factor and regulates ligand-induced internalization and metabolism of EphB2 and TrkB receptors.

    PubMed

    Barthet, Gael; Dunys, Julie; Shao, Zhiping; Xuan, Zhao; Ren, Yimin; Xu, Jindong; Arbez, Nicolas; Mauger, Gweltas; Bruban, Julien; Georgakopoulos, Anastasios; Shioi, Junichi; Robakis, Nikolaos K

    2013-02-01

    Activation of EphB receptors by ephrinB (efnB) ligands on neuronal cell surface regulates important functions, including neurite outgrowth, axonal guidance, and synaptic plasticity. Here, we show that efnB rescues primary cortical neuronal cultures from necrotic cell death induced by glutamate excitotoxicity and that this function depends on EphB receptors. Importantly, the neuroprotective function of the efnB/EphB system depends on presenilin 1 (PS1), a protein that plays crucial roles in Alzheimer's disease (AD) neurodegeneration. Furthermore, absence of one PS1 allele results in significantly decreased neuroprotection, indicating that both PS1 alleles are necessary for full expression of the neuroprotective activity of the efnB/EphB system. We also show that the ability of brain-derived neurotrophic factor (BDNF) to protect neuronal cultures from glutamate-induced cell death depends on PS1. Neuroprotective functions of both efnB and BDNF, however, were independent of γ-secretase activity. Absence of PS1 decreases cell surface expression of neuronal TrkB and EphB2 without affecting total cellular levels of the receptors. Furthermore, PS1-knockout neurons show defective ligand-dependent internalization and decreased ligand-induced degradation of TrkB and Eph receptors. Our data show that PS1 mediates the neuroprotective activities of efnB and BDNF against excitotoxicity and regulates surface expression and ligand-induced metabolism of their cognate receptors. Together, our observations indicate that PS1 promotes neuronal survival by regulating neuroprotective functions of ligand-receptor systems.

  2. Involvement of the TRPV1 receptor in plasma extravasation in airways of rats treated with an angiotensin-converting enzyme inhibitor.

    PubMed

    de Oliveira, Janiana Raíza Jentsch Matias; Otuki, Michel Fleith; Cabrini, Daniela Almeida; Brusco, Indiara; Oliveira, Sara Marchesan; Ferreira, Juliano; André, Eunice

    2016-12-01

    Angiotensin-converting enzyme inhibitors (ACEIs) are widely used in the treatment of hypertension, congestive heart failure and renal disease, and are considered relatively safe and generally well-tolerated drugs. However, adverse effects of ACEIs have been reported, including non-productive cough and angioedema, which can lead to poor adherence to therapy. The mechanisms by which ACEIs promote adverse effects are not fully elucidated, although increased bradykinin plasma levels following ACEI therapy seem to play an important role. Since bradykinin can sensitise the transient potential vanilloid receptor 1 (TRPV1), we investigated the role of TRPV1 in plasma extravasation in the trachea and bronchi of rats treated with the ACEI captopril. We observed that intravenous (i.v.) administration of captopril did not cause plasma extravasation in the trachea or bronchi of spontaneously breathing rats, but induced plasma extravasation in the trachea and bronchi of artificially ventilated rats. The intratracheal (i.t.) instillation of capsaicin or bradykinin also induced an increase in plasma extravasation in the trachea and bronchi of artificially ventilated rats. As expected, capsaicin-induced plasma extravasation was inhibited by i.t. pretreatment with the TRPV1 selective antagonist capsazepine (CPZ) while bradykinin-induced plasma extravasation was reduced by i.t. pretreatment with the selective B2 receptor antagonist Icatibant, originally known as HOE 140 (HOE). Interestingly, bradykinin-induced plasma extravasation was also inhibited by CPZ. The pretreatment with HOE and CPZ, singly or in combination and at doses which do not cause inhibitory effects per se, significantly inhibited the plasma extravasation induced by captopril treatment in artificially ventilated rats. In addition, treatment with a high dose of capsaicin in newborn rats, which induces degeneration of TRPV1-expressing sensory neurons, abolished both capsaicin and captopril-induced plasma extravasation

  3. An Unexpected Mode Of Binding Defines BMS948 as A Full Retinoic Acid Receptor β (RARβ, NR1B2) Selective Agonist

    PubMed Central

    Delfosse, Vanessa; Vivat, Valérie; Krishnasamy, Gunasekaran; Gronemeyer, Hinrich; Bourguet, William; Germain, Pierre

    2015-01-01

    Retinoic acid is an important regulator of cell differentiation which plays major roles in embryonic development and tissue remodeling. The biological action of retinoic acid is mediated by three nuclear receptors denoted RARα, β and γ. Multiple studies support that RARβ possesses functional characteristics of a tumor suppressor and indeed, its expression is frequently lost in neoplastic tissues. However, it has been recently reported that RARβ could also play a role in mammary gland tumorigenesis, thus demonstrating the important but yet incompletely understood function of this receptor in cancer development. As a consequence, there is a great need for RARβ-selective agonists and antagonists as tools to facilitate the pharmacological analysis of this protein in vitro and in vivo as well as for potential therapeutic interventions. Here we provide experimental evidences that the novel synthetic retinoid BMS948 is an RARβ-selective ligand exhibiting a full transcriptional agonistic activity and activating RARβ as efficiently as the reference agonist TTNPB. In addition, we solved the crystal structures of the RARβ ligand-binding domain in complex with BMS948 and two related compounds, BMS641 and BMS411. These structures provided a rationale to explain how a single retinoid can be at the same time an RARα antagonist and an RARβ full agonist, and revealed the structural basis of partial agonism. Finally, in addition to revealing that a flip by 180° of the amide linker, that usually confers RARα selectivity, accounts for the RARβ selectivity of BMS948, the structural analysis uncovers guidelines for the rational design of RARβ-selective antagonists. PMID:25933005

  4. Analysis of multiple nuclear receptor binding sites for CAR/RXR in the phenobarbital responsive unit of CYP2B2.

    PubMed

    Zhang, Quanyuan; Bae, Yangjin; Kemper, Jongsook Kim; Kemper, Byron

    2006-07-15

    The phenobarbital (PB) responsive enhancers in CYP2B genes contain a core of two direct repeat-4 nuclear receptor binding sites, NR-1 and NR-2, which flank an NF-1 site and appear to be most important for PB responsiveness. Additional sequences outside the core are required for maximal PB responsiveness, including a third direct repeat-4 site, NR-3. The PB response is mediated by constitutive androstane receptor (CAR) which binds as a CAR/RXR heterodimer to the NR sites. To determine the relative importance of the third NR site, each of the NR sites was mutated individually and in all combinations in the rat PB responsive unit (PBRU). Mutation of NR-3 resulted in similar effects on transactivation of the PBRU by CAR in HepG2 cells as did mutations of NR-1 and NR-2. The recruitment of GRIP1/SRC-2 by CAR/RXR to the PBRU assessed by gel shift assays was cooperatively enhanced if more than one NR site in the PBRU was occupied by CAR/RXR. NR-3 in combination with NR-1 or NR-2 was equal to NR-1 and NR-2 in mediating this cooperative recruitment. Recruitment of SRC-1 and GRIP1/SRC-2 was similar for all NR sites, while some selectivity of NR-1 for SRC-3 was observed. SRC-3 also exhibited CAR-independent activation of the PBRU in HepG2 cells. Micrococcal nuclease mapping of nucleosomes revealed that the NR-1/NR-2 core of the PBRU is present in a nucleosome while NR-3 is present in the linker adjacent to the nucleosome. In the linear sequence NR-3 is further from NR-1 than NR-2 is, but in a nucleosomal structure, NR-3 is well positioned for cooperative recruitment of GRIP1/SRC-2 by CAR/RXR that is bound to NR-3 and either NR-1 or NR-2, while NR-1 and NR-2 are on opposite sides of the nucleosome separated by the histone core. These results demonstrate that NR-3 is functionally similar to NR-1 and NR-2 in CAR transactivation of the PBRU in vitro and suggest that NR-3 may have a greater role in a chromatin context in vivo than is apparent from transient transfection studies.

  5. Does androgen receptor have a prognostic role in patients with estrogen/progesterone-negative and c-erbB-2-positive breast cancer?

    PubMed

    Arslan, Cagatay; Isik, Metin; Guler, Gulnur; Kulac, Ibrahim; Solak, Mustafa; Turker, Burcu; Ozisik, Yavuz; Altundag, Kadri

    2012-09-01

    Recently, it has been shown that androgen and androgen receptor (AR) also have an important role in the pathogenesis and outcome of breast cancer. However, their significance in different subtypes of breast cancer is still under investigation. The aim of this study was to study the effects of AR on clinicopathological features and prognosis in patients with estrogen and progesterone receptor (ER/PR)-negative, HER2-positive breast cancer. Tumor paraffin-embedded blocks from archives were used for AR study. Data of patients with ER/PR-negative and HER2-positive breast cancer diagnosed at our institute between 1999 and 2010 were recorded and analyzed retrospectively. We studied 36 patients with ER/PR-negative and HER2-positive breast cancer for AR status. Sixteen of them (44.4%) showed AR positivity. The median age was 47 and 56 years for AR-negative and -positive patients, respectively (P = 0.03). The number of postmenopausal patients was higher in the AR-positive than -negative group (56 vs 30%) (P = 0.01). Other demographic data were similar in both group. Histopathological parameters and tumor and nodal stages were similar in both groups. Trastuzumab treatment was more frequently given to AR-positive than -negative patients (94 vs 44%) (P = 0.01). Median follow-up was 47.1 and 34.7 months in AR-negative and -positive groups, respectively (P = 0.03). Relapse occurred in six and four patients in AR-negative and -positive groups. Median progression-free survival (PFS) was similar in both groups (15.7 and 19.6 months in AR-negative and -positive patients, respectively; P = 0.56). Two patients died at 23.4 and 46 months of follow-up in the AR-negative group. There were no deaths in the AR-positive group. Overall survival analyses were not done as a result of an unmet number of events. Median PFS was similar in AR-positive and -negative in that group of patients with ER/PR-negative and HER2-positive breast cancer. However AR-positive patients were more frequently

  6. Reactive Oxygen Species-Dependent c-Fos/Activator Protein 1 Induction Upregulates Heme Oxygenase-1 Expression by Bradykinin in Brain Astrocytes.

    PubMed

    Hsieh, Hsi-Lung; Wang, Hui-Hsin; Wu, Cheng-Ying; Yang, Chuen-Mao

    2010-12-15

    Heme oxygenase-1 (HO-1) plays a crucial role in tissue pathological changes such as brain injuries. Our previous studies have demonstrated that bradykinin (BK) induces the expression of several inflammatory proteins, including matrix metalloproteinase-9 and COX-2, via mitogen-activated protein kinases and nuclear factor-κB (NF-κB) in rat brain astrocytes (RBA-1). However, the molecular mechanisms underlying BK-induced HO-1 expression in RBA-1 cells remain poorly defined. Here we demonstrated that BK induced HO-1 expression and enzymatic activity via a B(2) BK receptor-activated reactive oxygen species (ROS)-dependent signaling pathway. NADPH oxidase (Nox)-dependent ROS generation led to activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun-N-terminal kinase (JNK) and then activated the downstream molecules NF-κB and c-Jun, respectively. The c-Fos, an activator protein 1 (AP-1) subunit, was upregulated by activation of NF-κB and c-Jun, which bound to HO-1 promoter and thereby turned on transcription of HO-1 gene. The rat HO-1 promoter containing a putative AP-1 cis-binding site was identified as a crucial domain linking to BK action. Taken together, these results suggested that in RBA-1 cells, activation of ERK/NF-κB and JNK/c-Jun cascades by a Nox/ROS-dependent event enhancing c-Fos/AP-1 activity is essential for HO-1 upregulation and activation induced by BK. Moreover, ROS-dependent NF-E2-related factor 2 activation also contributes to HO-1 induction by BK in astrocytes.

  7. Relationship between bradykinin-induced relaxation and endogenous epoxyeicosanoid synthesis in human bronchi.

    PubMed

    Tabet, Yacine; Sirois, Marco; Sirois, Chantal; Rizcallah, Edmond; Rousseau, Éric

    2013-04-15

    Epoxyeicosanoids (EETs) are produced by cytochrome P-450 epoxygenase; however, it is not yet known what triggers their endogenous production in epithelial cells. The relaxing effects of bradykinin are known to be related to endogenous production of epithelial-derived hyperpolarizing factors (EpDHF). Because of their effects on membrane potential, EETs have been reported to be EpDHF candidates (Benoit C, Renaudon B, Salvail D, Rousseau E. Am J Physiol Lung Cell Mol Physiol 280: L965-L973, 2001.). Thus, we hypothesized that bradykinin (BK) may stimulate endogenous EET production in human bronchi. To test this hypothesis, the relaxing and hyperpolarizing effects of BK and 14,15-EET were quantified on human bronchi, as well as the effects of various enzymatic inhibitors on these actions. One micromolar BK or 1 μM 14,15-EET induced a 45% relaxation on the tension induced by 30 nM U-46619 [a thromboxane-prostanoid (TP)-receptor agonist]. These BK-relaxing effects were reduced by 42% upon addition of 10 nM iberiotoxin [a large-conductance Ca(2+)-sensitive K(+) (BK(Ca)) channel blocker], by 27% following addition of 3 μM 14,15-epoxyeicosa-5(Z)-enoic acid (an EET antagonist), and by 32% with 3 μM N-methanesulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH, an epoxygenase inhibitor). Hence, BK and 14,15-EET display net hyperpolarizing effects on airway smooth muscle cells that are related to the activation of BK(Ca) channels and ultimately yielding to relaxation. Data also indicate that 3 μM MS-PPOH reduced the hyperpolarizing effects of BK by 43%. Together, the present data support the current hypothesis suggesting a direct relationship between BK and the production of EET regioisomers. Because of its potent anti-inflammatory and relaxing properties, epoxyeicosanoid signaling may represent a promising target in asthma and chronic obstructive pulmonary disease.

  8. Bradykinin-induced chemotaxis of human gliomas requires the activation of KCa3.1 and ClC-3

    PubMed Central

    Cuddapah, Vishnu Anand; Turner, Kathryn L.; Seifert, Stefanie; Sontheimer, Harald

    2013-01-01

    Previous reports demonstrate that cell migration in the nervous system is associated with stereotypic changes in intracellular calcium concentration ([Ca2+]i), yet the target of these changes are largely unknown. We examined chemotactic migration/invasion of human gliomas to study how [Ca2+]i regulates cellular movement and to identify downstream targets. Gliomas are primary brain cancers which spread exclusively within the brain, frequently migrating along blood vessels to which they are chemotactically attracted by bradykinin activating G protein-coupled receptors. Using simultaneous Fura-2 Ca2+ imaging and amphotericin B perforated patch-clamp electrophysiology, we find that bradykinin raises [Ca2+]i and induces a biphasic voltage response. This voltage response is mediated by the coordinated activation of Ca2+-dependent, TRAM-34-sensitive KCa3.1 channels, and Ca2+-depdenent, DIDS- and gluconate-sensitive Cl− channels. A significant portion of these Cl− currents can be attributed to Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation of ClC-3, a voltage-gated Cl−channel/transporter, since pharmacological inhibition of CaMKII or shRNA-mediated knockdown of ClC-3 inhibited Ca2+-activated Cl− currents. Western blots show that KCa3.1 and ClC-3 are expressed in tissue samples obtained from patients diagnosed with Grade IV gliomas. Both KCa3.1 and ClC-3 co-localize to the invading processes of glioma cells. Importantly, inhibition of either channel abrogates bradykinin-induced chemotaxis and reduces tumor expansion in mouse brain slices in situ. These channels should be further explored as future targets for anti-invasive drugs. Furthermore, this data elucidates a novel mechanism placing cation and anion channels downstream of ligand-mediated [Ca2+]i increases, which likely play similar roles in other migratory cells in the nervous system. PMID:23345219

  9. Endothelium-Derived Hyperpolarizing Factor Mediates Bradykinin Stimulated Tissue Plasminogen Activator Release In Humans

    PubMed Central

    Rahman, Ayaz M.; Murrow, Jonathan R.; Ozkor, Muhiddin A.; Kavtaradze, Nino; Lin, Ji; De Staercke, Christine; Hooper, W. Craig; Manatunga, Amita; Hayek, Salim; Quyyumi, Arshed A.

    2014-01-01

    Aims Bradykinin stimulates tissue plasminogen activator (t-PA) release from human endothelium. Although bradykinin stimulates both nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) release, the role of EDHF in t-PA release remains unexplored. This study sought to determine the mechanisms of bradykinin-stimulated t-PA release in the forearm vasculature of healthy human subjects. Methods In 33 healthy subjects (age 40.3±1.9 years) forearm blood flow (FBF) and t-PA release were measured at rest, and after intra-arterial infusions of bradykinin (400ng/min) and sodium nitroprusside (3.2 mg/min). Measurements were repeated after intra-arterial infusion of TEA (1 μmol/min), fluconazole (0.4 μmol.min-1.L-1), and NG-monomethyl-L-arginine (L-NMMA, 8 μmol/min) to block nitric oxide, and their combination in separate studies. Results Bradykinin significantly increased net t-PA release across the forearm (P<0.0001). Fluconazole attenuated both bradykinin-mediated vasodilation (-23.3±2.7% FBF, P<0.0001) and t-PA release (from 50.9±9.0 to 21.3±8.9 ng/min/100ml, P=0.02). TEA attenuated FBF (-14.7±3.2%, P=0.002) and abolished bradykinin-stimulated t-PA release (from 22.9+5.7 to - 0.8±3.6 ng/min/100ml, P=0.0002). L-NMMA attenuated FBF (P<0.0001), but did not inhibit bradykinin-induced t-PA release (P=NS). Conclusion Bradykinin-stimulated t-PA release is partly due to cytochrome P450-derived epoxides, and is inhibited by K+ca channel blockade. Thus, bradykinin stimulates both EDHF-dependent vasodilation and t-PA release. PMID:24925526

  10. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.

    PubMed

    Bandell, Michael; Story, Gina M; Hwang, Sun Wook; Viswanath, Veena; Eid, Samer R; Petrus, Matt J; Earley, Taryn J; Patapoutian, Ardem

    2004-03-25

    Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.

  11. Cardiovascular actions of python bradykinin and substance P in the anesthetized python, Python regius.

    PubMed

    Wang, T; Axelsson, M; Jensen, J; Conlon, J M

    2000-08-01

    The cardiovascular actions of python bradykinin (BK) and substance P (SP) have been investigated in the anesthetized ball python, Python regius. Bolus intra-arterial injections of python BK (0.03-3 nmol/kg) produced concentration-dependent increases in arterial blood pressure, heart rate (HR), and cardiac output concomitant with small decreases in systemic resistance and stroke volume. Intra-arterial injection of 3 nmol/kg python BK produced a tenfold increase in circulating concentration of norepinephrine, but epinephrine levels did not change. BK-induced tachycardia was attenuated (>90%) by the beta-adrenergic receptor antagonist sotalol, and the hypertensive response was attenuated (>70%) by the alpha-adrenergic receptor antagonist prazosin, indicating that effects of python BK are mediated at least in part by activation of the extensive network of adrenergic neurons present in vascular tissues. Bolus intra-arterial injections of python SP in the range 0. 01-30 pmol/kg produced concentration-dependent decreases in arterial blood pressure and systemic peripheral resistance concomitant with increases in cardiac output and stroke volume but with only minor effects on HR. The data suggest that kinins play a physiologically important role in cardiovascular regulation in the python.

  12. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  13. The structure, stability, and infrared spectrum of B 2N, B 2N +, B 2N -, BO, B 2O and B 2N 2.

    NASA Astrophysics Data System (ADS)

    Martin, J. M. L.; François, J. P.; Gijbels, R.

    1992-05-01

    The structure, infrared spectrum, and heat of formation of B 2N, B 2N -, BO, and B 2O have been studied ab initio. B 2N is very stable; B 2O even more so. B 2N, B 2N -, B 2O, and probably B 2N + have symmetric linear ground-state structures; for B 2O, an asymmetric linear structure lies about 12 kcal/mol above the ground state. B 2N +, B 2N - and B 2O have intense asymmetric stretching frequencies, predicted near 870, 1590 and 1400 cm -1, respectively. Our predicted harmonic frequencies and isotopic shifts for B 2O confirm the recent experimental identification by Andrews and Burkholder. Absorptions at 1889.5 and 1998.5 cm -1 in noble-gas trapped boron nitride vapor belong the BNB and BNBN ( 3Π), respectively; a tentative assignment of 882.5 cm -1 to BNB + is proposed. Total atomization energies Σ De (Σ D0) are computed (accuracy ±2 kcal/mol) as: BO 193.1 (190.4), B 2O 292.5 (288.7), B 2N 225.0 (250.3) kcal/mol. The ionization potential and electron affinity of B 2N are predicted to be 8.62±0.1 and 3.34±0.1 eV. The MP4-level additivity approximations involved in G1 theory results in errors on the order of 1 kcal/mol in the Σ De values.

  14. Antidiabetic efficacy of bradykinin antagonist R-954 on glucose tolerance test in diabetic type 1 mice.

    PubMed

    Catanzaro, Orlando L; Dziubecki, Damian; Obregon, Pablo; Rodriguez, Ricardo R; Sirois, Pierre

    2010-04-01

    Insulin-dependent diabetes mellitus (type 1 diabetes) is an inflammatory autoimmune disease associated with many complications including nephropathy, retinopathy, neuropathy and hyperalgesia. Experimental evidence has shown that the bradykinin B1 receptor (BKB1-R) is involved in the development of type 1 diabetes and found to be upregulated alongside the disease. In the present study the effects of the selective BKB1-R antagonist the R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8) ]des-Arg(9)-BK and the BKB1-R agonist des Arg(9)-BK (DBK) were studied on diabetic hyperglycemia. Diabetic type 1 was induced in C57 BL/KsJ mdb male mice by five consecutives doses of STZ (45mg/kg i.p.). A glucose tolerance test (GTT) was performed by an intraperitoneal administration of glucose, 8, 12 and 18days after the diabetes induction. The induction of type 1 diabetes provoked a significant hyperglycemia levels in diabetic mice at 12 and 18days after STZ. The administration of R-954 (400microg/kg i.p.) at 12 and 18days after STZ returned the glycemia levels of this animals to normal values. In addition the administration of DKB (300microg/kg i.p.) significantly potentiated the diabetes-induced hyperglycemia; this effect that was totally reversed by R-954. These results provide further evidence for the implication of BKB1-R in the type 1 diabetes mellitus (insulitis).

  15. Acute effect of inhaled bradykinin on tracheobronchial clearance in normal humans.

    PubMed Central

    Polosa, R; Hasani, A; Pavia, D; Agnew, J E; Lai, C K; Clarke, S W; Holgate, S T

    1992-01-01

    BACKGROUND: Bradykinin, a nonapeptide that contributes as a mediator to the pathogenesis of asthma, may affect lung mucociliary clearance, as it has been shown to be a potent secretagogue in canine airways and in human nasal mucosa in vivo. To evaluate this possibility the effect of inhaled bradykinin on mucociliary clearance has been studied in 10 healthy volunteers. METHODS: Subjects attended the laboratory on two occasions to take part in tracheobronchial clearance studies using a non-invasive radioisotopic technique. Inhalation of radioaerosol was followed 30 minutes later by inhalation of either bradykinin (8 mg/ml) or vehicle placebo in a randomised, double blind fashion. After each inhalation the number of coughs was recorded. Whole lung radioactivity was measured every half hour for six hours with two collimated scintillation counters, and a tracheobronchial clearance curve was plotted for each subject on each occasion. RESULTS: Mucociliary clearance, expressed as the area under the tracheobronchial radioaerosol retention curve calculated for the first six hours (AUC0-6h), was greater in nine out of 10 subjects after inhalation of bradykinin than after placebo. The median values (range) for AUC0-6h were significantly reduced from 126% (78-232%)/h with placebo to 87% (51-133%)/h with bradykinin. CONCLUSION: It is concluded that acute exposure to inhaled bradykinin accelerates tracheobronchial clearance in normal human airways. PMID:1465754

  16. Metalloendopeptidases EC 3.4.24.15/16 regulate bradykinin activity in the cerebral microvasculature.

    PubMed

    Norman, M Ursula; Lew, Rebecca A; Smith, A Ian; Hickey, Michael J

    2003-06-01

    Bradykinin is a vasoactive peptide that has been shown to increase the permeability of the cerebral microvasculature to blood-borne macromolecules. The two zinc metalloendopeptidases EC (EP 24.15) and EC (EP 24.16) degrade bradykinin in vitro and are highly expressed in the brain. However, the role that these enzymes play in bradykinin metabolism in vivo remains unclear. In the present study, we investigated the role of EP 24.15 and EP 24.16 in the regulation of bradykinin-induced alterations in microvascular permeability. Permeability of the cerebral microvasculature was assessed in anesthetized Sprague-Dawley rats by measuring the clearance of 70-kDa FITC dextran from the brain. Inhibition of EP 24.15 and EP 24.16 by the specific inhibitor N-[1-(R,S)-carboxy-3-phenylpropyl]-Ala-Aib-Tyr-p-aminobenzoate (JA-2) resulted in the potentiation of bradykinin-induced increases in cerebral microvessel permeability. The level of potentiation was comparable to that achieved by the inhibition of angiotensin-converting enzyme. These findings provide the first evidence of an in vivo role for EP 24.15/EP 24.16 in brain function, specifically in regulating alterations in microvessel permeability induced by exogenous bradykinin.

  17. Direct inhibition of cell surface ephrin-B2 by recombinant ephrin-B2/FC.

    PubMed

    Xiaodong, Hu; Zhen, Huang; Min, Sun; Zhiming, Cui; Hongyan, Ji; Chong, Zhang; Xuefeng, Tan; Guohua, Jin

    2013-10-18

    First messengers and viral transfection are the two most common ways to stimulate cells for signal output, although their applications are limited. We investigated mechanisms of inducing neural stem cell differentiation using recombinant ephrin-B2/Fc and found that it acted as a ligand and inhibited endogenous ephrin-B2, which maintenance of the neural progenitor cell state, by direct interference. Our results showed the movement of ephrin-B2/Fc within the cell and indicated that it recycled to the plasma membrane surface, revealing a possible pattern of ephrin trafficking. Our results also serve as proof of concept for the reconstruction of the intracellular domain of ephrin using an artificial receptor to direct input signals in future studies.

  18. Developmental acceleration of bradykinin-dependent relaxation by prenatal chronic hypoxia impedes normal development after birth

    PubMed Central

    Blum-Johnston, Carla; Thorpe, Richard B.; Wee, Chelsea; Romero, Monica; Brunelle, Alexander; Blood, Quintin; Blood, Arlin B.; Francis, Michael; Taylor, Mark S.; Longo, Lawrence D.; Pearce, William J.; Wilson, Sean M.

    2015-01-01

    Bradykinin-induced activation of the pulmonary endothelium triggers nitric oxide production and other signals that cause vasorelaxation, including stimulation of large-conductance Ca2+-activated K+ (BKCa) channels in myocytes that hyperpolarize the plasma membrane and decrease intracellular Ca2+. Intrauterine chronic hypoxia (CH) may reduce vasorelaxation in the fetal-to-newborn transition and contribute to pulmonary hypertension of the newborn. Thus we examined the effects of maturation and CH on the role of BKCa channels during bradykinin-induced vasorelaxation by examining endothelial Ca2+ signals, wire myography, and Western immunoblots on pulmonary arteries isolated from near-term fetal (∼140 days gestation) and newborn, 10- to 20-day-old, sheep that lived in normoxia at 700 m or in CH at high altitude (3,801 m) for >100 days. CH enhanced bradykinin-induced relaxation of fetal vessels but decreased relaxation in newborns. Endothelial Ca2+ responses decreased with maturation but increased with CH. Bradykinin-dependent relaxation was sensitive to 100 μM nitro-l-arginine methyl ester or 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, supporting roles for endothelial nitric oxide synthase and soluble guanylate cyclase activation. Indomethacin blocked relaxation in CH vessels, suggesting upregulation of PLA2 pathways. BKCa channel inhibition with 1 mM tetraethylammonium reduced bradykinin-induced vasorelaxation in the normoxic newborn and fetal CH vessels. Maturation reduced whole cell BKCa channel α1-subunit expression but increased β1-subunit expression. These results suggest that CH amplifies the contribution of BKCa channels to bradykinin-induced vasorelaxation in fetal sheep but stunts further development of this vasodilatory pathway in newborns. This involves complex changes in multiple components of the bradykinin-signaling axes. PMID:26637638

  19. Plexin-B2 promotes invasive growth of malignant glioma.

    PubMed

    Le, Audrey P; Huang, Yong; Pingle, Sandeep C; Kesari, Santosh; Wang, Huaien; Yong, Raymund L; Zou, Hongyan; Friedel, Roland H

    2015-03-30

    Invasive growth is a major determinant of the high lethality of malignant gliomas. Plexin-B2, an axon guidance receptor important for mediating neural progenitor cell migration during development, is upregulated in gliomas, but its function therein remains poorly understood. Combining bioinformatic analyses, immunoblotting and immunohistochemistry of patient samples, we demonstrate that Plexin-B2 is consistently upregulated in all types of human gliomas and that its expression levels correlate with glioma grade and poor survival. Activation of Plexin-B2 by Sema4C ligand in glioblastoma cells induced actin-based cytoskeletal dynamics and invasive migration in vitro. This proinvasive effect was associated with activation of the cell motility mediators RhoA and Rac1. Furthermore, costimulation of Plexin-B2 and the receptor tyrosine kinase Met led to synergistic Met phosphorylation. In intracranial glioblastoma transplants, Plexin-B2 knockdown hindered invasive growth and perivascular spreading, and resulted in decreased tumor vascularity. Our results demonstrate that Plexin-B2 promotes glioma invasion and vascularization, and they identify Plexin-B2 as a potential novel prognostic marker for glioma malignancy. Targeting the Plexin-B2 pathway may represent a novel therapeutic approach to curtail invasive growth of glioblastoma.

  20. Nucleolin-binding by ErbB2 enhances tumorigenicity of ErbB2-positive breast cancer

    PubMed Central

    Wolfson, Eya; Goldenberg, Maria; Solomon, Shira; Frishberg, Amit; Pinkas-Kramarski, Ronit

    2016-01-01

    ErbB2 is an important member of the ErbB family, which activates growth and proliferation signaling pathways. ErbB2 is often overexpressed in various malignancies, especially in breast cancer, and is a common target for anti-cancer drugs. Breast cancer is currently one of the leading mortality causes in women, and acquired resistance to ErbB2-targeted therapies is a major obstacle in its treatment. Thus, understanding ErbB2-mediated signaling is crucial for further development of anti-cancer therapeutics and disease treatment. Previously, we have reported that the ErbB receptors interact with the major nucleolar protein nucleolin. In addition to its function in the nucleoli of cells, nucleolin participates in various cellular processes at the cytoplasm and cell-surface. Deregulated nucleolin is frequently overexpressed on the membrane of cancer cells. Here, we show that nucleolin increases colony formation and anchorage-independent growth of ErbB2-overexpressing cells. Importantly, this enhanced tumorigenicity also occurs in human ErbB2-positive breast cancer patients; namely, nucleolin overexpression in these patients is associated with reduced patient survival rates and increased disease-risk. ErbB2-nucleolin complexes are formed endogenously in both normal and cancer cells, and their effect on tumorigenicity is mediated through activation of ErbB2 signaling. Accordingly, nucleolin inhibition reduces cell viability and ErbB2 activation in ErbB2-positive cancer cells. PMID:27542246

  1. Bradykinin-induced bronchoconstriction: inhibition by nedocromil sodium and sodium cromoglycate.

    PubMed Central

    Dixon, C M; Barnes, P J

    1989-01-01

    1. The effects of inhaled nedocromil sodium and sodium cromoglycate on bradykinin-induced bronchoconstriction have been studied in a double-blind, placebo controlled study, in eight mild asthmatic subjects. 2. The subjects attended on four occasions. Fifteen minutes after drug pre-treatment a bradykinin challenge was performed. Increasing concentrations were inhaled until a greater than 40% fall in expiratory flow at 30% of vital capacity from a partial flow volume manoeuvre (V p30) was demonstrated. 3. Inhaled bradykinin (0.06-8.0 mg ml-1) caused dose-related bronchoconstriction with the geometric mean cumulative dose causing a 40% fall in V p30 (PD40) of 0.035 (95% CI: 0.02-0.07) mumol, after placebo inhalation, which was similar to that measured before the trial (0.04: 0.02-0.09 mumol). 4. Both nedocromil sodium (4 mg) and sodium cromoglycate (10 mg) gave significant protection (P less than 0.05) against bradykinin-induced bronchoconstriction (PD40 0.37: 0.19-0.72 mumol after nedocromil sodium and 0.22: 0.11-0.49 after sodium cromoglycate). 5. Since bradykinin-induced bronchoconstriction is probably neurally mediated we conclude that both nedocromil sodium and sodium cromoglycate have an action on neural pathways which may be useful in the control of asthma symptoms. PMID:2547408

  2. Afferent fibers involved in the bradykinin-induced cardiovascular reflexes from the ovary in rats.

    PubMed

    Uchida, Sae; Kagitani, Fusako; Hotta, Harumi

    2015-12-01

    Bleeding or rupture of the ovary often accompanies ovarian cysts and causes severe pain and autonomic responses such as hypotension. It would be expected that ovarian afferents contribute to cardiovascular responses induced by ovarian failure. The present study examined cardiovascular responses to noxious chemical stimulation of the ovary by bradykinin, an algesic substance released by tissue damage, and explored the role of ovarian afferents in the ovarian-cardiovascular responses in anesthetized rats. Non-pregnant adult rats were anesthetized with pentobarbital and artificially ventilated. The carotid artery was cannulated to monitor blood pressure and heart rate. Noxious chemical stimulation was achieved by applying a small piece of cotton soaked with bradykinin to the surface of the ovary for 30s. Application of bradykinin (10(-4) M) to the ovary decreased heart rate and blood pressure. These cardiovascular responses were not significantly influenced by severance of the vagal nerves or the superior ovarian nerve, but were abolished by severance of the ovarian nerve plexus (ONP). Application of bradykinin (10(-4) M) to the ovary evoked afferent activity of the ONP both in vivo and in vitro preparations. These results indicate that the decreases in heart rate and blood pressure following chemical noxious stimulation of the ovary with bradykinin are reflex responses, whose afferent nerve pathway is mainly through afferent fibers in the ONP.

  3. Local L-NG-monomethyl-arginine attenuates the vasodilator action of bradykinin in the human forearm.

    PubMed Central

    O'Kane, K P; Webb, D J; Collier, J G; Vallance, P J

    1994-01-01

    1. Studies in animals indicate that bradykinin relaxes blood vessels directly through an action on smooth muscle and indirectly through the release of endothelium-derived mediators. Its precise mechanism of action in the human arterial circulation is not yet known. 2. In this study the effects of a specific inhibitor of nitric oxide synthase, L-NG-monomethyl-arginine (L-NMMA) and noradrenaline on the vasodilator responses to bradykinin were examined in the forearm arterial bed of healthy volunteers. Noradrenaline was used as a control for vasoconstriction by L-NMMA; glyceryl trinitrate (GTN) as a control vasodilator acting independently of the NO synthase enzyme. 3. L-NMMA (4 mumol min-1; 5 min) alone reduced resting forearm blood flow by 44% (P < 0.01; n = 6) confirming that nitric oxide plays an important role in regulating vascular tone. 4. Bradykinin (10 and 100 pmol min-1; 3 min each dose) and GTN (2 and 5 nmol min-1; 3 min each dose) increased forearm blood flow in a dose-dependent manner (percentage changes 171 +/- 17% and 398 +/- 35%, and 176 +/- 21% and 268 +/- 42%, respectively; n = 6). 5. The response to bradykinin, but not that to GTN, was attenuated by L-NMMA compared with noradrenaline (P < 0.05; n = 6), suggesting that bradykinin-induced vasodilatation in the forearm is mediated, at least in part, by stimulating release of nitric oxide. PMID:7833219

  4. Stimulation of phosphatidylinositol hydrolysis, protein kinase C translocation, and mitogen-activated protein kinase activity by bradykinin in rat ventricular myocytes: dissociation from the hypertrophic response.

    PubMed Central

    Clerk, A; Gillespie-Brown, J; Fuller, S J; Sugden, P H

    1996-01-01

    In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin >> BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology

  5. Exudation of plasma and production of thromboxane in human bronchi after local bradykinin challenge.

    PubMed

    Arvidsson, P; Löfdahl, C G; Skoogh, B E; Lötvall, J

    2001-05-01

    Plasma exudation has been suggested to be an important component of the inflammatory response in asthma. Bradykinin elicits many of the features of asthma, including bronchoconstriction, cough, plasma exudation and mucus secretion. In an attempt to quantify local plasma exudation, we have employed a novel low-trauma technique with the aim of challenging and lavaging a central part of the bronchial tree, by selecting a medium sized bronchus. A fibreoptic bronchoscopy was performed in non-smoking healthy volunteers. The instrument was placed proximally in the right upper lobe bronchus. A plastic catheter, equipped with an inflatable latex balloon, was inflated with air (2-4 cmH2O). A solution (100 microl of either two different concentrations of bradykinin: 0.09 and 0.9 mg ml(-1) or normal saline) was instilled through the catheter and distal to the balloon. Eight minutes later a lavage procedure with 10 ml of saline was performed through the catheter. The procedure was then repeated twice, with the other solutions, but from the lingular and middle lobe bronchi. All solutions were given in a blinded fashion, and two different studies were performed. Lavage concentrations of albumin and IgG were quantified as measurements of plasma exudation. In our first study we found that bradykinin challenge significantly increased concentrations of albumin and IgG. In study two, there was no numeric increase in plasma proteins after local bradykinin challenge, but the concentration of thromboxane was significantly increased in lavages from bradykinin-challenged bronchi. Thus, local bronchial administration of bradykinin has the capacity to induce exudation of large plasma macromolecules into the bronchial lumen, as well as local thromboxane production.

  6. Specific immunotherapy with mugwort pollen allergoid reduce bradykinin release into the nasal fluid

    PubMed Central

    Grzanka, Alicja; Jawor, Barbara; Czecior, Eugeniusz

    2016-01-01

    Introduction A pathomechanism of allergic rhinitis is complex. A neurogenic mechanism seems to play a significant role in this phenomenon. Aim The evaluation of influence of specific immunotherapy of mugwort pollen allergic patients on the bradykinin concentration in the nasal lavage fluid. Material and methods The study included 22 seasonal allergic rhinitis patients. Thirty persons with monovalent allergy to mugwort pollen, confirmed with skin prick tests and allergen-specific immunoglobulin E, underwent a 3-year-long allergen immunotherapy with the mugwort extract (Allergovit, Allergopharma, Germany). The control group was composed of 9 persons with polyvalent sensitivity to pollen, who were treated with pharmacotherapy. Before the allergen-specific immunotherapy (AIT) and in subsequent years before the pollen seasons, a provocation allergen test with the mugwort extract was performed, together with collection of nasal fluids, where bradykinin concentration was determined according to Proud method. Results There were similar levels of bradykinin in both groups at baseline prior to therapy (AIT group: 584.0 ±87.2 vs. controls 606.3 ±106.5 pg/ml) and changes after allergen challenge 1112.4 ±334.8 vs. 1013.3 ±305.9 pg/ml as well. The bradykinin concentration in nasal lavage fluid after mugwort challenge in 1 year was lower in the AIT group (824.1 ±184.2 pg/ml vs. 1000.4 ±411.5 pg/l; p < 005) with a further significant decrease after the 2nd and 3rd year of specific immunotherapy. Significant reduction of symptoms and medications use was observed in hyposensitized patients. Conclusions A decreased level of bradykinin as a result of AIT suggests that some of the symptomatic benefits of AIT may be related to the reduced release of bradykinin into nasal secretions. These values correlate with clinical improvement within the course of treatment. PMID:27605897

  7. CRADA Final Report: ErbB2 Targeted Cancer Therapeutics

    SciTech Connect

    Lupu, Ruth

    2002-08-27

    The aim of the study was to design novel therapeutic strategies for the treatment of carcinomas which overexpress the erbB-2 oncogene product and/or the activator (HRG). erbB-2 is a tyrosine kinase growth factor receptor, that overexpression of which in invasive breast, prostate, ovarian and lung carcinomas correlates with poor prognosis and poor overall survival. In breast carcinomas, erbB-2 is overexpressed in 25%-30% of the invasive phenotype and in 70% of ductal carcinomas in situ. On the other hand, the erbB-2 activator, heregulin (HRG) is expressed in about 30% of invasive breast carcinomas and it is highly expressed in other carcinoIl1as including, ovarian, lung, and prostate. Interestingly, only 6% of invasive breast carcinomas co-express both HRG and erbB-2. It is known today that tumors that overexpress erbB-2 are a leading cause of death, making erbB-2 and its activator HRG critical targets for therapy. Targeting both the receptors and the activator would be beneficial for a significant number of cancer patients. At the final stages of the project we had obtained significant improvements over the peptide quality but not significant improvements were made towards the generation of humanized monoclonal antibodies.

  8. Bradykinin-like immunoreactive neuronal systems localized histochemically in rat brain.

    PubMed Central

    Corrêa, F M; Innis, R B; Uhl, G R; Snyder, S H

    1979-01-01

    Bradykinin-like immunoreactive structures were localized in rat brain by the indirect immunofluorescence method. Specificity of staining was demonstrated by: (i) the absence of fluorescence when preimmune serum was used, (ii) the disappearance of fluorescence when sera were preadsorbed with bradykinin, and (iii) the presence of identical staining with two different antisera. Immunoreactive neuronal cells are observed only in the hypothalamus, with especially dense clusters overlying the periventricular and dorsomedial nuclei. Fibers and varicose processes are observed in the periaqueductal gray matter, hypothalamus, perirhinal and cingulate cortices, the ventral portion of caudate-putamen, and the lateral septal area. Images PMID:375238

  9. [Treatment of drugs-associated non-hereditary angioedema mediated by bradykinin].

    PubMed

    Muller, Yannick; Harr, Thomas

    2016-01-13

    Angioedema is a deep intradermal or sub-cutaneous edema, which can be mediated by histamine, bradykinin or mixture of both components. The aims of this review are to describe the clinical approach and diagnosis of non-hereditary bradykinin-mediated angioedema induced by drugs such as: angiotensin-converting inhibitor, sartan, gliptins, rapamycin or some thrombolytic reagents and renin inhibitors. Furthermore, we will discuss the drug management of these angioedema, which is mainly based on C1 inhibitor concentrate or icatibant administration.

  10. Discovery of novel selective hypotensive vasopressin peptides that exhibit little or no functional interactions with known oxytocin/vasopressin receptors

    PubMed Central

    Chan, W Y; Wo, N C; Stoev, S; Cheng, L L; Manning, M

    1998-01-01

    Arginine-vasopressin (VP) has both vasoconstricting and vasodilating action. We report here the discovery of four novel selective hypotensive VP analogues: d(CH2)5[D-Tyr(Et)2,Arg3,Val4]AVP; d(CH2)5[D-Tyr(Et)2,Lys3,Val4]AVP and their iodinatable Tyr-NH29 analogues.Bioassays in rats for activities characteristic of neurohypophysial peptides showed that the four VP peptides possessed little or no V1a, V2 or oxytocin (OT) receptor agonistic or antagonistic activities.In anaesthetized rats, these peptides (0.05–0.10 mg kg−1 i.v.) elicited a marked fall in arterial blood pressure.Blockade of cholinoceptors, adrenoceptors and bradykinin B2 receptors, and inhibition of prostaglandin synthesis had little effect on their vasodepressor action.Classical V1a, V2 and OT receptor antagonists did not block the vasodepressor response.L-NAME, 0.2 mg kg−1 min−1, markedly suppressed the hypotensive response to ACh but not the vasodepressor response to the hypotensive VP peptides. However, the duration of the vasodepressor response was shortened. Very high doses of L-NAME attenuated both the vasodepressor response and the duration of action.These findings indicate that the vasodepressor action of these VP peptides is independent of the peripheral autonomic, bradykinin and PG systems and is not mediated by the known classical OT/VP receptors. NO does not appear to have an important role in their vasodepressor action.The discovery of these novel VP peptides could lead to the development of new tools for the investigation of the complex cardiovascular actions of VP and the introduction of a new class of hypotensive agents. The two iodinatable hypotensive VP peptides could be radiolabelled as potential markers for the localization of the receptor system involved. PMID:9831918

  11. Genistein prevents calcium mobilization evoked by platelet-derived growth factor without affecting calcium release by cadmium or bradykinin

    SciTech Connect

    Rong-Ming Lyu; Barnes, S.; Smith, J.B. )

    1991-03-11

    Cadmium (Cd) strikingly increases ({sup 3}H)inositol trisphosphate and evokes a spike in cytosolic free Ca (Ca{sub i}) in human dermal fibroblasts as described previously. Cd apparently activates a membrane receptor by binding to a zinc site in its external domain. Two classes of receptors are known to induce inositol phosphate formation and release stored Ca: those that are coupled to phospholipase C via GTP-binding proteins, e.g., the bradykinin (BK) receptor; and those that are tyrosine kinases, e.g. the receptor for platelet-derived growth factor (PDGF). Cd, 100 nM BK, and 10 ng/ml PDGF increased Ca{sub i} from 142 {plus minus} 24 nM to 809 {plus minus} 36, 964 {plus minus} 74, and 401 {plus minus} 52 nM (n = 5), respectively. Cd and BK immediately increased Ca{sub i}, however, there was a lag between the addition of PDGF compared to 15 {plus minus} 1 sec for Cd and 9 {plus minus} 1 sec for BK (all n = 10). Genistein (40 {mu}M, 40 min), which selectively inhibits tyrosine kinases, had no significant effect on the Ca{sub i} spike evoked by Cd or BK. In the presence of genistein Cd and BK increased Ca{sub i} from 165 {plus minus} 14 nM to 726 {plus minus} 23 and 876 {plus minus} 31 nM (n = 4), respectively. In contrast to Cd and BK, PDGF only slightly increased Ca{sub i} in the presence of 40 {mu}M genistein. The concentration of genistein that inhibited the Ca{sub i} response to PDGF by 50% was 8 {mu}M. These findings suggest that the Cd triggers a G protein-coupled receptor rather than a tyrosine kinase.

  12. The Vaporization of B2O3(l) to B2O3(g) and B2O2(g)

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2011-01-01

    The vaporization of B2O3 in a reducing environment leads to formation of both B2O3(g) and B2O2(g). While formation of B2O3(g) is well understood, many questions about the formation of B2O2(g) remain. Previous studies using B(s) + B2O3(l) have led to inconsistent thermodynamic data. In this study, it was found that after heating, B(s) and B2O3(l) appear to separate and variations in contact area likely led to the inconsistent vapor pressures of B2O2(g). To circumvent this problem, an activity of boron is fixed with a two-phase mixture of FeB and Fe2B. Both second and third law enthalpies of formation were measured for B2O2(g) and B2O3(g). From these the enthalpies of formation at 298.15 K are calculated to be -479.9 +/- 41.5 kJ/mol for B2O2(g) and -833.4 +/- 13.1 kJ/mol for B2O3(g). Ab initio calculations to determine the enthalpies of formation of B2O2(g) and B2O3(g) were conducted using the W1BD composite method and show good agreement with the experimental values.

  13. Bradykinin-stimulated calcium influx in cultured bovine aortic endothelial cells

    SciTech Connect

    Schilling, W.P.; Ritchie, A.K.; Navarro, L.T.; Eskin, S.G. Univ. of Texas Medical Branch, Galveston )

    1988-08-01

    Bradykinin (BK)-stimulated release of endothelium-derived relaxing factor has been linked to a rise in cytosolic Ca{sup 2+} concentration and a change of K{sup +} permeability of the endothelial cell. In the present study, measurement of BK-induced changes in fura-2 fluorescence and {sup 86}Rb{sup +} efflux were used to monitor changes in cytosolic Ca{sup 2+} and K{sup +} permeability in cultured bovine aortic endothelial cells. In the presence of normal extracellular Ca{sup 2+}, BK induced a fourfold increase in cytosolic Ca{sup 2+}, which peaked at 20 s and declined within 1 min to a value that was 50% of the peak level. Subsequently, cytosolic Ca{sup 2+} decreased and approached basal levels within 8 min. In the absence of Ca{sup 2+}, BK produced a 1.5- to 2-fold increase in cytosolic Ca{sup 2+} that peaked within 20 s and declined to basal levels within 2 min. Addition of Ca{sup 2+} to the Ca-free reaction buffer 3-5 min after addition of BK resulted in a two-to three-fold increase in cytosolic Ca{sup 2+} that declined slowly back to basal levels. Thus Ca{sup 2+} influx can occur in response to BK at a time when there is minimal elevation of cytosolic Ca{sup 2+} above the resting level. Under all conditions tested, {sup 86}Rb{sup +} efflux paralleled changes in the cytosolic Ca{sup 2+}, suggesting that efflux occurred through Ca{sup 2+}-activated K{sup +} channels. Isosmotic substitution of Na{sup +} with N-methyl-D-glucamine did not affect the BK-stimulated changes in cytosolic Ca{sup 2+} or {sup 86}Rb{sup +} efflux, suggesting that Na{sup +}-Ca{sup 2+} exchange plays little role in the BK response. These results suggest that BK stimulates Ca{sup 2+} influx via a BK receptor-operated channel or a channel activated by some internal messenger other than Ca{sup 2+}.

  14. Local radiotherapy increases the level of autoantibodies to ribosomal P0 protein but not to heat shock proteins, extracellular matrix molecules and EGFR/ErbB2 receptors in prostate cancer patients.

    PubMed

    Ingrosso, Gianluca; Fantini, Massimo; Nardi, Alessandra; Benvenuto, Monica; Sacchetti, Pamela; Masuelli, Laura; Ponti, Elisabetta; Frajese, Giovanni Vanni; Lista, Florigio; Schillaci, Orazio; Santoni, Riccardo; Modesti, Andrea; Bei, Roberto

    2013-03-01

    Prostate cancer is a common cancer among men in developed countries. Although hormonotherapy and radiotherapy (RT) represent valid therapies for prostate cancer treatment, novel immunological approaches have been explored. The development of clinical trials employing cancer vaccines has indicated that immune response to tumor antigens can be boosted and that vaccine administration can improve patient survival. Immune response to tumor antigens could also be enhanced after standard therapies. In the present study, we determined the occurrence of antibodies to extracellular matrix (ECM) molecules, heat shock protein (HSP), ribosomal P0 protein, EGFR, ErbB2 and prostate-specific antigen (PSA) in 35 prostate cancer patients prior to and following local RT and hormonotherapy. We demonstrated that immunity to P0, ECM molecules [collagens (C) CI, CIII, CV, fibronectin (FN) and laminin (LM)] and to HSP90 was associated with malignancy in untreated patients. None of the patient sera showed antibodies to EGFR, while 2 and 1 patients showed reactivity to ErbB2 and PSA, respectively. We also demonstrated that 8 months after therapy the IgG serum levels to CI, CIII, FN and HSP90 significantly decreased. Conversely, the level of P0 autoantibodies increased after therapy in 10 patients. Five of the 10 patients with increased levels of P0 autoantibodies were treated with RT plus hormonotherapy. Treatment of patients did not change the levels of antibodies against EGFR, ErbB2 and PSA. Our results indicated that the modification of antibody level to self molecules after standard treatment of prostate cancer patients is influenced by the type of antigen. Ribosomal P0 protein appears to be a high immunogenic antigen and its immunogenicity increases following RT. In addition, 10 patients with increased levels of autoantibodies to P0 showed PSA mean levels lower than the remaining 25 patients at 18 months. This study may contribute to a better understanding of the

  15. Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons.

    PubMed

    Katanosaka, Kimiaki; Banik, Ratan Kumar; Giron, Rocio; Higashi, Tomohiro; Tominaga, Makoto; Mizumura, Kazue

    2008-11-01

    Bradykinin (BK), a major inflammatory mediator, excites and sensitizes nociceptor neurons/fibers, thus evoking pain and hyperalgesia. The cellular signaling mechanisms underlying these actions have remained unsolved, especially in regard to the identity of channels that mediate acute excitation. Here, to clarify the contribution of transient receptor potential vanilloid 1 (TRPV1), a heat-sensitive ion channel, to the BK-evoked nociceptor excitation and pain, we examined the behavioral and physiological BK-responses in TRPV1-deficient (KO) mice. A nocifencive behavior after BK injection (100 pmol/site) into mouse sole was reduced in TRPV1-KO mice compared with wild-type (WT). A higher dose of BK (1 nmol/site), however, induced the response in TRPV1-KO mice indistinguishable from that in the WT. BK-evoked excitation of cutaneous C-fibers in TRPV1-KO mice was comparable to that in WT. BK clearly increased intracellular calcium in cultured dorsal root ganglion (DRG) neurons of TRPV1-KO mice, although the incidence of BK-sensitive neurons was reduced. BK has been reported to activate TRPA1 indirectly, yet a considerable part of BK-sensitive DRG neurons did not respond to a TRPA1 agonist, mustard oil. These results suggest that BK-evoked nociception/nociceptor response would not be simply explained by activation of TRPV1 and A1, and that BK-evoked nociceptor excitation would be mediated by several ionic mechanisms.

  16. Role of ERK1/2 activation on itch sensation induced by bradykinin B1 activation in inflamed skin

    PubMed Central

    Chen, Yuanzhen; Jiang, Shuyan; Liu, Yuying; Xiong, Jialing; Liang, Jiexian; Ji, Wenjin

    2016-01-01

    It has previously been demonstrated that bradykinin receptor B1 (B1R) agonists evoke an itch-related scratching response in inflamed skin via the B1 receptor; however, the mechanisms responsible for this abnormal itch sensation remain unclear. Therefore, the present study utilized a complete Freund's adjuvant (CFA)-induced mouse model of inflammation to elucidate the mechanisms responsible. Over a period of 30 min, scratching behavior was quantified by the number of hind limb scratches of the area surrounding the drug injection site on the neck. Furthermore, western blot analysis was used to investigate the potential role of extracellular signal-regulated kinase (ERK) 1/2 signaling as a mediator of itch in CFA-treated mice. The results demonstrated that CFA-induced inflammation at the back of the neck is associated with sustained enhancement of ERK1/2 activation in the spinal cord. Moreover, B1R agonist treatment resulted in increased expression of phosphorylated ERK1/2 in the spinal cord, which peaked at 45 min. Consistent with these findings, inhibition of either mitogen-activated protein/ERK kinase or ERK1/2, as well as inhibition of ERK1/2 activation following inflammation, attenuated B1 receptor-mediated scratching responses to a greater extent, as compared with control mice. Collectively, the results of the present study indicated that enhanced and persistent ERK1/2 activation in the spinal cord may be required to induce a scratching response to B1R agonists following CFA-induced inflammation. PMID:27446253

  17. Iodination of (Tyr8)-bradykinin-comparison of chloramine-T and lactoperoxidase techniques

    SciTech Connect

    Redman, L.W.; Tustanoff, E.R.

    1984-01-01

    Antigen-antibody kinetics were studied using a hapten which was iodinated by two unique procedures. Using bradykinin, a vasopressor hormone as a model peptide, radioactive iodination (/sup 125/I) of its 8-tyrosyl analogue was carried out both enzymatically and chemically using modified procedures. Two distinct chemical species were obtained which were characterized on a chromatographic, chemical as well as charge basis as a mono-iodinated form of (Tyr8)-bradykinin using the lactoperoxidase procedure and a di-iodinated entity using chloramine-T technique. The addition of a second iodine atom to the antigen lowers its immunoreactivity for its antibody and thus alters the kinetics of this reaction. Further experiments on the stability (temperature, time of storage, and chemical environment) of these iodinated peptides are described.

  18. 18 CFR 1b.2 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Scope. 1b.2 Section 1b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.2 Scope. This part applies to...

  19. 18 CFR 1b.2 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Scope. 1b.2 Section 1b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.2 Scope. This part applies to...

  20. 42 CFR 52b.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 52b.2 Section 52b.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.2 Definitions. As used in this part: Act means the Public Health Service Act,...

  1. 42 CFR 52b.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 52b.2 Section 52b.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.2 Definitions. As used in this part: Act means the Public Health Service Act,...

  2. 42 CFR 52b.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 52b.2 Section 52b.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.2 Definitions. As used in this part: Act means the Public Health Service Act,...

  3. 42 CFR 52b.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Definitions. 52b.2 Section 52b.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.2 Definitions. As used in this part: Act means the Public Health Service Act,...

  4. 42 CFR 52b.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 52b.2 Section 52b.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.2 Definitions. As used in this part: Act means the Public Health Service Act,...

  5. 7 CFR 1b.2 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Policy. 1b.2 Section 1b.2 Agriculture Office of the Secretary of Agriculture NATIONAL ENVIRONMENTAL POLICY ACT § 1b.2 Policy. (a) All policies and programs of... compliance with Executive Order 12114, “Environmental Effects Abroad of Major Federal Actions.”...

  6. 18 CFR 1b.2 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Scope. 1b.2 Section 1b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.2 Scope. This part applies to...

  7. 18 CFR 1b.2 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Scope. 1b.2 Section 1b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.2 Scope. This part applies to...

  8. 18 CFR 1b.2 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Scope. 1b.2 Section 1b.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.2 Scope. This part applies to...

  9. Efficient generation of B2m-null pigs via injection of zygote with TALENs

    PubMed Central

    Wang, Yong; Du, Yinan; Zhou, Xiaoyang; Wang, Lulu; Li, Jian; Wang, Fengchao; Huang, Zhengen; Huang, Xingxu; Wei, Hong

    2016-01-01

    Donor major histocompatibility complex class I (MHC I) molecules are the main targets of the host immune response after organ allotransplantation. Whether and how MHC I-deficiency of pig donor tissues affects rejection after xenotransplantation has not been assessed. Beta2-microglobulin (B2M) is indispensable for the assembly of MHC I receptors and therefore provides an effective target to disrupt cell surface MHC I expression. Here, we report the one-step generation of mutant pigs with targeted disruptions in B2m by injection of porcine zygotes with B2m exon 2-specific TALENs. After germline transmission of mutant B2m alleles, we obtained F1 pigs with biallelic B2m frameshift mutations. F1 pigs lacked detectable B2M expression in tissues derived from the three germ layers, and their lymphocytes were devoid of MHC I surface receptors. Skin grafts from B2M deficient pigs exhibited remarkably prolonged survival on xenogeneic wounds compared to tissues of non-mutant littermates. Mutant founder pigs with bi-allelic disruption in B2m and B2M deficient F1 offspring did not display visible abnormalities, suggesting that pigs are tolerant to B2M deficiency. In summary, we show the efficient generation of pigs with germline mutations in B2m, and demonstrate a beneficial effect of donor MHC I-deficiency on xenotransplantation. PMID:27982048

  10. Role of Erbin in ErbB2-dependent breast tumor growth

    PubMed Central

    Tao, Yanmei; Shen, Chengyong; Luo, Shiwen; Traoré, Wilfried; Marchetto, Sylvie; Santoni, Marie-Josée; Xu, Linlin; Wu, Biao; Shi, Chao; Mei, Jinghong; Bates, Ryan; Liu, Xihui; Zhao, Kai; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2014-01-01

    ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression. PMID:25288731

  11. Role of Erbin in ErbB2-dependent breast tumor growth.

    PubMed

    Tao, Yanmei; Shen, Chengyong; Luo, Shiwen; Traoré, Wilfried; Marchetto, Sylvie; Santoni, Marie-Josée; Xu, Linlin; Wu, Biao; Shi, Chao; Mei, Jinghong; Bates, Ryan; Liu, Xihui; Zhao, Kai; Xiong, Wen-Cheng; Borg, Jean-Paul; Mei, Lin

    2014-10-21

    ErbB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), a receptor tyrosine kinase of the ErbB family, is overexpressed in around 25% of breast cancers. In addition to forming a heterodimer with other ErbB receptors in response to ligand stimulation, ErbB2 can be activated in a ligand-independent manner. We report here that Erbin, an ErbB2-interacting protein that was thought to act as an antitumor factor, is specifically expressed in mammary luminal epithelial cells and facilitates ErbB2-dependent proliferation of breast cancer cells and tumorigenesis in MMTV-neu transgenic mice. Disruption of their interaction decreases ErbB2-dependent proliferation, and deletion of the PDZ domain in Erbin hinders ErbB2-dependent tumor development in MMTV-neu mice. Mechanistically, Erbin forms a complex with ErbB2, promotes its interaction with the chaperon protein HSP90, and thus prevents its degradation. Finally, ErbB2 and Erbin expression correlates in human breast tumor tissues. Together, these observations establish Erbin as an ErbB2 regulator for breast tumor formation and progression.

  12. 12 CFR 264b.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Definitions. 264b.2 Section 264b.2 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM RULES... dependents (within the meaning of section 152 of the Internal Revenue Code of 1986 (26 U.S.C. 152)) of...

  13. Inhibition of ErbB-2 Mitogenic and Transforming Activity by RALT, a Mitogen-Induced Signal Transducer Which Binds to the ErbB-2 Kinase Domain†

    PubMed Central

    Fiorentino, Loredana; Pertica, Chiara; Fiorini, Monia; Talora, Claudio; Crescenzi, Marco; Castellani, Loriana; Alemà, Stefano; Benedetti, Piero; Segatto, Oreste

    2000-01-01

    The product of rat gene 33 was identified as an ErbB-2-interacting protein in a two-hybrid screen employing the ErbB-2 juxtamembrane and kinase domains as bait. This interaction was reproduced in vitro with a glutathione S-transferase fusion protein spanning positions 282 to 395 of the 459-residue gene 33 protein. Activation of ErbB-2 catalytic function was required for ErbB-2–gene 33 physical interaction in living cells, whereas ErbB-2 autophosphorylation was dispensable. Expression of gene 33 protein was absent in growth-arrested NIH 3T3 fibroblasts but was induced within 60 to 90 min of serum stimulation or activation of the ErbB-2 kinase and decreased sharply upon entry into S phase. New differentiation factor stimulation of mitogen-deprived mammary epithelial cells also caused accumulation of gene 33 protein, which could be found in a complex with ErbB-2. Overexpression of gene 33 protein in mouse fibroblasts inhibited (i) cell proliferation driven by ErbB-2 but not by serum, (ii) cell transformation induced by ErbB-2 but not by Ras or Src, and (iii) sustained activation of ERK 1 and 2 by ErbB-2 but not by serum. The gene 33 protein may convey inhibitory signals downstream to ErbB-2 by virtue of its association with SH3-containing proteins, including GRB-2, which was found to associate with gene 33 protein in living cells. These data indicate that the gene 33 protein is a feedback inhibitor of ErbB-2 mitogenic function and a suppressor of ErbB-2 oncogenic activity. We propose that the gene 33 protein be renamed with the acronym RALT (receptor-associated late transducer). PMID:11003669

  14. Inhibition of ErbB-2 mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain.

    PubMed

    Fiorentino, L; Pertica, C; Fiorini, M; Talora, C; Crescenzi, M; Castellani, L; Alemà, S; Benedetti, P; Segatto, O

    2000-10-01

    The product of rat gene 33 was identified as an ErbB-2-interacting protein in a two-hybrid screen employing the ErbB-2 juxtamembrane and kinase domains as bait. This interaction was reproduced in vitro with a glutathione S-transferase fusion protein spanning positions 282 to 395 of the 459-residue gene 33 protein. Activation of ErbB-2 catalytic function was required for ErbB-2-gene 33 physical interaction in living cells, whereas ErbB-2 autophosphorylation was dispensable. Expression of gene 33 protein was absent in growth-arrested NIH 3T3 fibroblasts but was induced within 60 to 90 min of serum stimulation or activation of the ErbB-2 kinase and decreased sharply upon entry into S phase. New differentiation factor stimulation of mitogen-deprived mammary epithelial cells also caused accumulation of gene 33 protein, which could be found in a complex with ErbB-2. Overexpression of gene 33 protein in mouse fibroblasts inhibited (i) cell proliferation driven by ErbB-2 but not by serum, (ii) cell transformation induced by ErbB-2 but not by Ras or Src, and (iii) sustained activation of ERK 1 and 2 by ErbB-2 but not by serum. The gene 33 protein may convey inhibitory signals downstream to ErbB-2 by virtue of its association with SH3-containing proteins, including GRB-2, which was found to associate with gene 33 protein in living cells. These data indicate that the gene 33 protein is a feedback inhibitor of ErbB-2 mitogenic function and a suppressor of ErbB-2 oncogenic activity. We propose that the gene 33 protein be renamed with the acronym RALT (receptor-associated late transducer).

  15. Photo-activated psoralen binds the ErbB2 catalytic kinase domain, blocking ErbB2 signaling and triggering tumor cell apoptosis.

    PubMed

    Xia, Wenle; Gooden, David; Liu, Leihua; Zhao, Sumin; Soderblom, Erik J; Toone, Eric J; Beyer, Wayne F; Walder, Harold; Spector, Neil L

    2014-01-01

    Photo-activation of psoralen with UVA irradiation, referred to as PUVA, is used in the treatment of proliferative skin disorders. The anti-proliferative effects of PUVA have been largely attributed to psoralen intercalation of DNA, which upon UV treatment, triggers the formation of interstrand DNA crosslinks (ICL) that inhibit transcription and DNA replication. Here, we show that PUVA exerts antitumor effects in models of human breast cancer that overexpress the ErbB2 receptor tyrosine kinase oncogene, through a new mechanism. Independent of ICL formation, the antitumor effects of PUVA in ErbB2+ breast cancer models can instead be mediated through inhibition of ErbB2 activation and signaling. Using a mass spectroscopy-based approach, we show for the first time that photo-activated 8MOP (8-methoxypsoralen) interacts with the ErbB2 catalytic autokinase domain. Furthermore, PUVA can reverse therapeutic resistance to lapatinib and other ErbB2 targeted therapies, including resistance mediated via expression of a phosphorylated, truncated form of ErbB2 (p85(ErbB2)) that is preferentially expressed in tumor cell nuclei. Current ErbB2 targeted therapies, small molecule kinase inhibitors or antibodies, do not block the phosphorylated, activated state of p85(ErbB2). Here we show that PUVA reduced p85(ErbB2) phosphorylation leading to tumor cell apoptosis. Thus, in addition to its effects on DNA and the formation of ICL, PUVA represents a novel ErbB2 targeted therapy for the treatment of ErbB2+ breast cancers, including those that have developed resistance to other ErbB2 targeted therapies.

  16. Subtype-specific role of phospholipase C-beta in bradykinin and LPA signaling through differential binding of different PDZ scaffold proteins.

    PubMed

    Choi, Jung Woong; Lim, Seyoung; Oh, Yong-Seok; Kim, Eung-Kyun; Kim, Sun-Hee; Kim, Yun-Hee; Heo, Kyun; Kim, Jaeyoon; Kim, Jung Kuk; Yang, Yong Ryul; Ryu, Sung Ho; Suh, Pann-Ghill

    2010-07-01

    Among phospholipase C (PLC) isozymes (beta, gamma, delta, epsilon, zeta and eta), PLC-beta plays a key role in G-protein coupled receptor (GPCR)-mediated signaling. PLC-beta subtypes are often overlapped in their distribution, but have unique knock-out phenotypes in organism, suggesting that each subtype may have the different role even within the same type of cells. In this study, we examined the possibility of the differential coupling of each PLC-beta subtype to GPCRs, and explored the molecular mechanism underlying the specificity. Firstly, we found that PLC-beta1 and PLC-beta 3 are activated by bradykinin (BK) or lysophosphatidic acid (LPA), respectively. BK-triggered phosphoinositides hydrolysis and subsequent Ca(2+) mobilization were abolished specifically by PLC-beta1 silencing, whereas LPA-triggered events were by PLC-beta 3 silencing. Secondly, we showed the evidence that PDZ scaffold proteins is a key mediator for the selective coupling between PLC-beta subtype and GPCR. We found PAR-3 mediates physical interaction between PLC-beta1 and BK receptor, while NHERF2 does between PLC-beta 3 and LPA(2) receptor. Consistently, the silencing of PAR-3 or NHERF2 blunted PLC signaling induced by BK or LPA respectively. Taken together, these data suggest that each subtype of PLC-beta is selectively coupled to GPCR via PDZ scaffold proteins in given cell types and plays differential role in the signaling of various GPCRs.

  17. Effect of an inhaled neutral endopeptidase inhibitor, phosphoramidon, on baseline airway calibre and bronchial responsiveness to bradykinin in asthma.

    PubMed Central

    Crimi, N.; Polosa, R.; Pulvirenti, G.; Magrì, S.; Santonocito, G.; Prosperini, G.; Mastruzzo, C.; Mistretta, A.

    1995-01-01

    BACKGROUND--Bradykinin is a potent vasoactive peptide which has been proposed as an important inflammatory mediator in asthma since it provokes potent bronchoconstriction in asthmatic subjects. Little is known at present about the potential role of lung peptidases in modulating bradykinin-induced airway dysfunction in vivo in man. The change in bronchial reactivity to bradykinin was therefore investigated after treatment with inhaled phosphoramidon, a potent neutral endopeptidase (NEP) inhibitor, in a double blind, placebo controlled, randomised study of 10 asthmatic subjects. METHODS--Subjects attended on six separate occasions at the same time of day during which concentration-response studies with inhaled bradykinin and histamine were carried out, without treatment and after each test drug. Subjects received nebulised phosphoramidon sodium salt (10(-5) M, 3 ml) or matched placebo for 5-7 minutes using an Inspiron Mini-neb nebuliser 5 minutes before the bronchoprovocation test with bradykinin or histamine. Agonists were administered in increasing concentrations as an aerosol generated from a starting volume of 3 ml in a nebuliser driven by compressed air at 8 1/min. Changes in airway calibre were measured as forced expiratory volume in one second (FEV1) and responsiveness as the provocative concentration causing a 20% fall in FEV1 (PC20). RESULTS--Phosphoramidon administration caused a transient fall in FEV1 from baseline, FEV1 values decreasing 6.3% and 5.3% on the bradykinin and histamine study days, respectively. When compared with placebo, phosphoramidon elicited a small enhancement of the airways response to bradykinin, the geometric mean PC20 value (range) decreasing from 0.281 (0.015-5.575) to 0.136 (0.006-2.061) mg/ml. In contrast, NEP blockade failed to alter the airways response to a subsequent inhalation with histamine, the geometric mean (range) PC20 histamine value of 1.65 (0.17-10.52) mg/ml after placebo being no different from that of 1.58 (0

  18. Bioassay methods for detection of N-palmitoylbrevetoxin-B2 (BTX-B4).

    PubMed

    Bottein, Marie-Yasmine Dechraoui; Fuquay, Jennifer Maucher; Munday, Rex; Selwood, Andrew I; van Ginkel, Roel; Miles, Christopher O; Loader, Jared I; Wilkins, Alistair L; Ramsdell, John S

    2010-01-01

    Brevetoxins (BTXs) are a class of cyclic polyether toxins produced by the dinoflagellate Karenia brevis. These substances are subject to extensive conjugative metabolism in shellfish. BTX-B forms a conjugate with cysteine and is oxidized and reduced to yield BTX-B2, which is further modified by fatty acid addition via cysteine amide linkage to give biologically active brevetoxin metabolites. In this study, we evaluated the commonly used in vitro (ELISA, radioimmunoassay, receptor binding assay and N2A cytotoxicity assay) and in vivo mouse brevetoxin bioassays for the detection of the brevetoxin fatty acid conjugate N-palmitoylBTX-B2, and compared the results to those for dihydroBTX-B and BTX-B2. The receptor binding assay for N-palmitoylBTX-B2 showed comparable sensitivity to that for dihydroBTX-B, and an 11-fold higher sensitivity than for BTX-B2. Although the ELISA showed similarly high sensitivity to dihydroBTX-B and BTX-B2, with EC(50) values of ca. 0.26 ng/ml, it was 23 times less sensitive to N-palmitoylBTX-B2. On the other hand, the N2A cytotoxicity assay was highly sensitive to N-palmitoylBTX-B2, with an EC(50) of 0.15 ng/ml, but was 12- and 40-fold less sensitive to dihydroBTX-B and BTX-B2, respectively. The relative sensitivity of the N2A cytotoxicity assay for each of these metabolites paralleled that of the mouse bioassay (relative LD(50) values 1:20:30 for N-palmitoylBTX-B2:dihydroBTX-B:BTX-B2). We conclude that the most sensitive bioassay for dihydroBTX-B and BTX-B2 is the ELISA, whereas the N2A cytotoxicity assay is most sensitive for N-palmitoylBTX-B2.

  19. Nociceptor-expressed ephrin-B2 regulates inflammatory and neuropathic pain

    PubMed Central

    2010-01-01

    Background EphB receptors and their ephrin-B ligands play an important role in nervous system development, as well as synapse formation and plasticity in the adult brain. Recent studies show that intrathecal treatment with EphB-receptor activator ephrinB2-Fc induced thermal hyperalgesia and mechanical allodynia in rat, indicating that ephrin-B2 in small dorsal root ganglia (DRG) neurons and EphB receptors in the spinal cord modulate pain processing. To examine the role of ephrin-B2 in peripheral pain pathways, we deleted ephrin-B2 in Nav1.8+ nociceptive sensory neurons with the Cre-loxP system. Sensory neuron numbers and terminals were examined using neuronal makers. Pain behavior in acute, inflammatory and neuropathic pain models was assessed in the ephrin-B2 conditional knockout (CKO) mice. We also investigated the c-Fos expression and NMDA receptor NR2B phosphorylation in ephrin-B2 CKO mice and littermate controls. Results The ephrin-B2 CKO mice were healthy with no sensory neuron loss. However, pain-related behavior was substantially altered. Although acute pain behavior and motor co-ordination were normal, inflammatory pain was attenuated in ephrin-B2 mutant mice. Complete Freund's adjuvant (CFA)-induced mechanical hyperalgesia was halved. Formalin-induced pain behavior was attenuated in the second phase, and this correlated with diminished tyrosine phosphorylation of N-methyl-D-aspartic acid (NMDA) receptor subunit NR2B in the dorsal horn. Thermal hyperalgesia and mechanical allodynia were significantly reduced in the Seltzer model of neuropathic pain. Conclusions Presynaptic ephrin-B2 expression thus plays an important role in regulating inflammatory pain through the regulation of synaptic plasticity in the dorsal horn and is also involved in the pathogenesis of some types of neuropathic pain. PMID:21059214

  20. LINGO-1 regulates oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.

    PubMed

    Lee, Xinhua; Shao, Zhaohui; Sheng, Guoqing; Pepinsky, Blake; Mi, Sha

    2014-05-01

    Oligodendrocyte differentiation is negatively regulated by LINGO-1 and positively regulated by the ErbB2 receptor tyrosine kinase. In wild-type oligodendrocytes, inhibition of ErbB2 blocks differentiation, whereas activation of ErbB2 promotes differentiation. In LINGO-1(-/-) oligodendrocytes, inhibition of ErbB2 blocks oligodendrocyte differentiation; whereas activation of ErbB2 does not enhance differentiation. Biological and biochemical evidence showing that LINGO-1 can directly bind to ErbB2, block ErbB2 translocation into lipid rafts, and inhibit its phosphorylation for activation. The study demonstrates a novel regulatory mechanism of ErbB2 function whereby LINGO-1 suppresses oligodendrocyte differentiation by inhibiting ErbB2 translocation and activation in lipid rafts.

  1. H/D exchange of gas phase bradykinin ions in a linear quadrupole ion trap.

    PubMed

    Mao, Dunmin; Douglas, D J

    2003-02-01

    The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.

  2. 38 CFR 18b.2 - Reviewing authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PRACTICE AND PROCEDURE UNDER TITLE VI OF THE CIVIL RIGHTS ACT OF 1964 AND PART 18 OF THIS CHAPTER General Rules § 18b.2 Reviewing authority. The term reviewing authority means the Secretary of Veterans...

  3. B2M — EDRN Public Portal

    Cancer.gov

    B2M, a secreted protein belonging to the beta-2-microglobulin family, is a component of the class I major histocompatibility complex (MHC) on the surface of nearly all nucleated cells and involved in the presentation of peptide antigens to the immune system. A mutation in this gene has been shown to result in hypercatabolic hypoproteinemia. B2M is detected in serum and urine.

  4. Doping-induced superconductivity of ZrB2 and HfB2

    NASA Astrophysics Data System (ADS)

    Barbero, N.; Shiroka, T.; Delley, B.; Grant, T.; Machado, A. Â. J. Â. S.; Fisk, Z.; Ott, H.-R.; Mesot, J.

    2017-03-01

    Unlike the widely studied s -type two-gap superconductor MgB2, the chemically similar compounds ZrB2 and HfB2 do not superconduct above 1 K. Yet it has been shown that small amounts of self or extrinsic doping (in particular with vanadium), can induce superconductivity in these materials. Based on results of different macroscopic and microscopic measurements, including magnetometry, nuclear magnetic resonance (NMR), resistivity, and muon-spin rotation (μ+SR ), we present a comparative study of Zr0.96V0.04B2 and Hf0.97V0.03B2 . Their key magnetic and superconducting features are determined and the results are considered within the theoretical framework of multiband superconductivity proposed for MgB2. Detailed Fermi surface (FS) and electronic structure calculations reveal the difference between MgB2 and transition-metal diborides.

  5. Predictive value of serum bradykinin and desArg9-bradykinin levels for chemotherapeutic responses in active tuberculosis patients: A retrospective case series

    PubMed Central

    Qian, Xu; Nguyen, Duc T.M.; Li, Yaojun; Lyu, Jianxin; Graviss, Edward A.; Hu, Tony Y.

    2016-01-01

    Background There is an urgent need for methods that can rapidly and accurately assess therapeutic responses in patients with active tuberculosis (TB) in order to predict treatment outcomes. Exposure to bacterial pathogens can rapidly activate the plasma contact system, triggering the release of bradykinin (BK) and its metabolite desArg9-bradykinin (DABK) to induce inflammation and innate immune responses. We hypothesized that serum BK and DABK levels might act as sensitive immune response signatures for changes in Mycobacterium tuberculosis (Mtb) burden, and therefore examined how serum levels of these markers corresponded with anti-TB therapy in a small cohort of active TB cases. Methods Nanotrap Mass-Spectrometry (MS) was used to analyze serial blood specimens from 13 HIV-negative adults with microbiologically confirmed active TB who were treated with first-line anti-TB chemotherapy. MS signal for BK (m/z 1060.5) and DABK (m/z 904.5) serum peptides were evaluated at multiple time-points (before, during, and after treatment) to evaluate how BK and DABK levels corresponded with disease status. Results Serum BK levels declined from pretreatment baseline levels during the early stage anti-TB therapy (induction phase) and tended to remain below baseline levels during extended treatment (consolidation phase) and after therapy completion. BK levels were consistent with induction phase sputum culture conversions indicative of decreased Mtb burden reflecting good treatment responses. Serum DABK levels tended to increase during the induction phase and decrease at consolidation and post-therapy time points, which may indicate a shift from active disease to chronic inflammation to a disease free state. Elevated BK and DABK levels after treatment completion in one patient may be related to the subsequent recurrent TB disease. Conclusions Our pilot data suggests that changes in the circulating BK and DABK levels in adult TB patients can be used as potential surrogate markers

  6. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells

    PubMed Central

    Knox, Alan J.

    2015-01-01

    Human airway smooth muscle cells (HASMC) contribute to asthma pathophysiology through an increased smooth muscle mass and elevated cytokine/chemokine output. Little is known about how HASMC and the airway epithelium interact to regulate chronic airway inflammation and remodeling. Amphiregulin is a member of the family of epidermal growth factor receptor (EGFR) agonists with cell growth and proinflammatory roles and increased expression in the lungs of asthma patients. Here we show that bradykinin (BK) stimulation of HASMC increases amphiregulin secretion in a mechanism dependent on BK-induced COX-2 expression, increased PGE2 output, and the stimulation of HASMC EP2 and EP4 receptors. Conditioned medium from BK treated HASMC induced CXCL8, VEGF, and COX-2 mRNA and protein accumulation in airway epithelial cells, which were blocked by anti-amphiregulin antibodies and amphiregulin siRNA, suggesting a paracrine effect of HASMC-derived amphiregulin on airway epithelial cells. Consistent with this, recombinant amphiregulin induced CXCL8, VEGF, and COX-2 in airway epithelial cells. Finally, we found that conditioned media from amphiregulin-stimulated airway epithelial cells induced amphiregulin expression in HASMC and that this was dependent on airway epithelial cell COX-2 activity. Our study provides evidence of a dynamic axis of interaction between HASMC and epithelial cells that amplifies CXCL8, VEGF, COX-2, and amphiregulin production. PMID:26047642

  7. Identification of SH2B2beta as an inhibitor for SH2B1- and SH2B2alpha-promoted Janus kinase-2 activation and insulin signaling.

    PubMed

    Li, Minghua; Li, Zhiqin; Morris, David L; Rui, Liangyou

    2007-04-01

    The SH2B family has three members (SH2B1, SH2B2, and SH2B3) that contain conserved dimerization (DD), pleckstrin homology, and SH2 domains. The DD domain mediates the formation of homo- and heterodimers between members of the SH2B family. The SH2 domain of SH2B1 (previously named SH2-B) or SH2B2 (previously named APS) binds to phosphorylated tyrosines in a variety of tyrosine kinases, including Janus kinase-2 (JAK2) and the insulin receptor, thereby promoting the activation of JAK2 or the insulin receptor, respectively. JAK2 binds to various members of the cytokine receptor family, including receptors for GH and leptin, to mediate cytokine responses. In mice, SH2B1 regulates energy and glucose homeostasis by enhancing leptin and insulin sensitivity. In this work, we identify SH2B2beta as a new isoform of SH2B2 (designated as SH2B2alpha) derived from the SH2B2 gene by alternative mRNA splicing. SH2B2beta has a DD and pleckstrin homology domain but lacks a SH2 domain. SH2B2beta bound to both SH2B1 and SH2B2alpha, as demonstrated by both the interaction of glutathione S-transferase-SH2B2beta fusion protein with SH2B1 or SH2B2alpha in vitro and coimmunoprecipitation of SH2B2beta with SH2B1 or SH2B2alpha in intact cells. SH2B2beta markedly attenuated the ability of SH2B1 to promote JAK2 activation and subsequent tyrosine phosphorylation of insulin receptor substrate-1 by JAK2. SH2B2beta also significantly inhibited SH2B1- or SH2B2alpha-promoted insulin signaling, including insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. These data suggest that SH2B2beta is an endogenous inhibitor of SH2B1 and/or SH2B2alpha, negatively regulating insulin signaling and/or JAK2-mediated cellular responses.

  8. Neuropsin cleaves EphB2 in the amygdala to control anxiety

    PubMed Central

    Attwood, Benjamin; Bourgognon, Julie-Myrtille; Patel, Satyam; Mucha, Mariusz; Schiavon, Emanuele; Skrzypiec, Anna E.; Young, Kenneth W.; Shiosaka, Sadao; Korostynski, Michał; Piechota, Marcin; Przewłocki, Ryszard; Pawlak, Robert

    2011-01-01

    Summary A minority of individuals experiencing traumatic events develop anxiety disorders. The reason for the lack of correspondence between the prevalence of exposure to psychological trauma and the development of anxiety is unknown. Extracellular proteolysis contributes to fear-associated responses by facilitating neuronal plasticity at the neuron-matrix interface1-4. Here we show that the serine protease neuropsin is critical for stress-related plasticity in the amygdala by regulating the dynamics of EphB2/NMDA receptor interaction, the expression of Fkbp5 and anxiety-like behaviour. Stress results in neuropsin-dependent cleavage of EphB2 in the amygdala causing dissociation of EphB2 from the NR1-subunit of NMDA receptor and promoting membrane turnover of EphB2 receptors. Dynamic EphB2/NR1 interaction enhances NMDA receptor current, induces the Fkbp5 gene expression and enhances behavioural signatures of anxiety. Upon stress, neuropsin-deficient mice do not show EphB2 cleavage and its dissociation from NR1 resulting in a static EphB2/NR1 interaction, attenuated induction of the Fkbp5 gene and low anxiety. The behavioural response to stress can be restored by intra-amygdala injection of neuropsin into neuropsin-deficient mice and disrupted by the injection of either anti-EphB2 antibodies or silencing the Fkbp5 gene in the amygdala of wild-type animals. Our findings establish a novel neuronal pathway linking stress-induced proteolysis of EphB2 in the amygdala to anxiety. PMID:21508957

  9. Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.

    PubMed Central

    Baron, A; Frieden, M; Chabaud, F; Bény, J L

    1996-01-01

    1. Using the cell-attached and inside-out modes of the patch-clamp technique, we studied the Ca(2+)-dependent ionic channels activated by bradykinin in cultured pig coronary artery endothelial cells to further understand electrophysiological events underlying cellular activation. 2. In the cell-attached mode, bradykinin (94 nM) activated two types of Ca(2+)-dependent channels: a high conductance K+ channel (285 pS in high symmetrical K+), whose open state probability was increased by depolarization, and a lower conductance inwardly rectifying non-selective cation channel (44 pS in high symmetrical K+). 3. The 285 pS K+ channel was half-maximally activated by cytosolic Ca2+ levels of 1.6 and 4.5 microM at +10 and -30 mV, respectively. Such local concentrations should be reached in the presence of bradykinin, which induces a mean maximal cytosolic Ca2+ rise of 1.3 microM. 4. The 285 pS K+ channel was inhibited by d-tubocurarine, which acted by reducing the mean open time duration (flickering pattern), finally reducing the channel conductance. 5. Divalent cations such as Ca2+ could flow through the 44 pS non-selective cation channel, with nearly the same permeability (P) as monovalent cations (PK: PNa: PCa = 1:1:0.7). 6. The cation channel appeared to be more sensitive to Ca2+ than the K+ channel, with a half-maximal open probability induced by 0.7 microM Ca2+ on the intracellular side of the membrane. 7. In contrast to the K+ channel, the cation channel mean open time was clearly increased by bradykinin. This effect was delayed compared with the increase in the channel open state probability and was rapidly lost in the inside-out configuration. Caffeine also activated the cation channel but more transiently than bradykinin and without any effect on the open duration. 8. In the absence of extracellular Ca2+, the bradykinin-induced increase in cytosolic free Ca2+ was shortened temporally by 52% and reduced in amplitude by 88%, whereas the bradykinin

  10. Superconductivity in MgB 2

    NASA Astrophysics Data System (ADS)

    Akimitsu, Jun; Muranaka, Takahiro

    2003-05-01

    We recently discovered that the intermetallic compound magnesium diboride (MgB2) exhibits the highest superconducting transition temperature (Tc=39 K) of all the metallic superconductors. In this paper we report on the basic superconducting characteristics of MgB2 and the current status of the research for the unanswered problem in this superconductivity. Especially, we review the several reports for the superconducting gap (Δ) by the spectroscopic measurements. Moreover we introduce the research into its anisotropic parameter (γ), which is important for the understanding of this superconducting states in this material.

  11. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast

    SciTech Connect

    Catalán, Mabel; Smolic, Christian; Contreras, Ariel; Ayala, Pedro; Olmedo, Ivonne; Copaja, Miguel; Boza, Pía; Vivar, Raúl; Avalos, Yennifer; Lavandero, Sergio; Velarde, Victoria; Díaz-Araya, Guillermo

    2012-06-15

    Kinins mediate their cellular effects through B1 (B1R) and B2 (B2R) receptors, and the activation of B2R reduces collagen synthesis in cardiac fibroblasts (CF). However, the question of whether B1R and/or B2R have a role in cardiac myofibroblasts remains unanswered. Methods: CF were isolated from neonate rats and myofibroblasts were generated by an 84 h treatment with TGF-β1 (CMF). B1R was evaluated by western blot, immunocytochemistry and radioligand assay; B2R, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and cyclooxygenases 1and 2 (COX-1, and COX-2) were evaluated by western blot; intracellular Ca{sup +2} levels were evaluated with Fluo-4AM; collagen secretion was measured in the culture media using the picrosirius red assay kit. Results: B2R, iNOS, COX-1 and low levels of B1R but not eNOS, were detected by western blot in CF. Also, B1R, B2R, and COX-2 but not iNOS, eNOS or COX-1, were detected by western blot in CMF. By immunocytochemistry, our results showed lower intracellular B1R levels in CF and higher B1R levels in CMF, mainly localized on the cell membrane. Additionally, we found B1R only in CMF cellular membrane through radioligand displacement assay. Bradykinin (BK) B2R agonist increased intracellular Ca{sup 2+} levels and reduced collagen secretion both in CF and CMF. These effects were blocked by HOE-140, and inhibited by L-NAME, 1400W and indomethacin. Des-Arg-kallidin (DAKD) B1R agonist did not increase intracellular Ca{sup 2+} levels in CF; however, after preincubation for 1 h with DAKD and re-stimulation with the same agonist, we found a low increase in intracellular Ca{sup 2+} levels. Finally, DAKD increased intracellular Ca{sup 2+} levels and decreased collagen secretion in CMF, being this effect blocked by the B1R antagonist des-Arg9-Leu8-kallidin and indomethacin, but not by L-NAME or 1400 W. Conclusion: B1R, B2R, iNOS and COX-1 were expressed differently between CF and CMF, and collagen secretion was

  12. Preubiquitinated chimeric ErbB2 is constitutively endocytosed and subsequently degraded in lysosomes

    SciTech Connect

    Vuong, Tram Thu; Berger, Christian; Bertelsen, Vibeke; Rødland, Marianne Skeie; Stang, Espen; Madshus, Inger Helene

    2013-02-01

    The oncoprotein ErbB2 is endocytosis-deficient, probably due to its interaction with Heat shock protein 90. We previously demonstrated that clathrin-dependent endocytosis of ErbB2 is induced upon incubation of cells with Ansamycin derivatives, such as geldanamycin and its derivative 17-AAG. Furthermore, we have previously demonstrated that a preubiquitinated chimeric EGFR (EGFR-Ub{sub 4}) is constitutively endocytosed in a clathrin-dependent manner. We now demonstrate that also an ErbB2-Ub{sub 4} chimera is endocytosed constitutively and clathrin-dependently. Upon expression, the ErbB2-Ub{sub 4} was further ubiquitinated, and by Western blotting, we demonstrated the formation of both Lys48-linked and Lys63-linked polyubiquitin chains. ErbB2-Ub{sub 4} was constitutively internalized and eventually sorted to late endosomes and lysosomes where the fusion protein was degraded. ErbB2-Ub{sub 4} was not cleaved prior to internalization. Interestingly, over-expression of Ubiquitin Interaction Motif-containing dominant negative fragments of the clathrin adaptor proteins epsin1 and Eps15 negatively affected endocytosis of ErbB2. Altogether, this argues that ubiquitination is sufficient to induce clathrin-mediated endocytosis and lysosomal degradation of the otherwise plasma membrane localized ErbB2. Also, it appears that C-terminal cleavage is not required for endocytosis. -- Highlights: ► A chimera containing ErbB2 and a tetra-Ubiquitin chain internalizes constitutively. ► Receptor fragmentation is not required for endocytosis of ErbB2. ► Ubiquitination is sufficient to induce endocytosis and degradation of ErbB2. ► ErbB2-Ub4 is internalized clathrin-dependently.

  13. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state.

  14. CARDIO-i2b2: integrating arrhythmogenic disease data in i2b2.

    PubMed

    Segagni, Daniele; Tibollo, Valentina; Dagliati, Arianna; Napolitano, Carlo; G Priori, Silvia; Bellazzi, Riccardo

    2012-01-01

    The CARDIO-i2b2 project is an initiative to customize the i2b2 bioinformatics tool with the aim to integrate clinical and research data in order to support translational research in cardiology. In this work we describe the implementation and the customization of i2b2 to manage the data of arrhytmogenic disease patients collected at the Fondazione Salvatore Maugeri of Pavia in a joint project with the NYU Langone Medical Center (New York, USA). The i2b2 clinical research chart data warehouse is populated with the data obtained by the research database called TRIAD. The research infrastructure is extended by the development of new plug-ins for the i2b2 web client application able to properly select and export phenotypic data and to perform data analysis.

  15. Different structural alterations upregulate in vitro tyrosine kinase activity and transforming potency of the erbB-2 gene.

    PubMed Central

    Segatto, O; King, C R; Pierce, J H; Di Fiore, P P; Aaronson, S A

    1988-01-01

    Compared with normal erbB-2 gp185, mutant erbB-2 proteins generated by mutations either in the transmembrane domain or by NH2-terminal deletion are able to transform NIH 3T3 cells at a 10- to 100-fold greater efficiency. Mutant proteins of both classes show increased tyrosine kinase activity, suggesting that an abnormal level of receptor-associated tyrosine kinase activity is a major determinant of erbB-2 oncogenic potential. Images PMID:2907606

  16. Gemini vitamin D analog suppresses ErbB2-positive mammary tumor growth via inhibition of ErbB2/AKT/ERK signaling.

    PubMed

    Lee, Hong Jin; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Paul, Shiby; Maehr, Hubert; Uskokovic, Milan; Suh, Nanjoo

    2010-07-01

    Numerous synthetic vitamin D analogs have been studied for their effects on the prevention and treatment of breast cancer. However, the inhibitory effects of naturally occurring 1alpha,25-dihydroxyvitamin D3 or its synthetic analogs on ErbB2 overexpressing mammary tumorigenesis have not been reported. Gemini vitamin D analogs are novel synthetic vitamin D derivatives with a unique structure of two six-carbon chains at C-20. We have previously shown that Gemini vitamin D analogs significantly inhibited carcinogen-induced estrogen receptor (ER)-positive mammary tumorigenesis and reduced ER-negative MCF10DCIS.com xenograft tumor growth without hypercalcemic toxicity. In the present study, we have determined the inhibitory effect of a potent Gemini vitamin D analog BXL0124 (1alpha,25-dihydroxy-20R-21(3-hydroxy-3-deuteromethyl-4,4,4-trideuterobutyl)-23-yne-26,27-hexafluoro-cholecalciferol) on the ErbB2/Her-2/neu overexpressing mammary tumorigenesis. The Gemini BXL0124 inhibits ErbB2-positive mammary tumor growth and down-regulates the phosphorylation of ErbB2, ERK and AKT in tumors of MMTV-ErbB2/neu transgenic mice. These effects of Gemini BXL0124 in vivo were confirmed by using the ErbB2 overexpressing tumor cells derived from the mammary tumors of MMTV-ErbB2/neu mice. In conclusion, the Gemini vitamin D analog BXL0124 inhibits the growth of ErbB2 overexpressing mammary tumors through regulating the ErbB2/AKT/ERK signaling pathways, suggesting that Gemini vitamin D analog may be considered for translational studies.

  17. Neurotransmitter-blocking agents influence antinociceptive effects of carbamazepine, baclofen, pentazocine and morphine on bradykinin-induced trigeminal pain.

    PubMed

    Foong, F W; Satoh, M

    1984-06-01

    The influence of naloxone (a narcotic antagonist), bicuculline (a GABA antagonist), phentolamine (an alpha-blocking agent), propranolol (a beta-adrenergic blocking agent), haloperidol (a dopaminergic blocking agent), methysergide (a serotonergic blocking agent) and atropine (a muscarinic blocking agent), on the antinociceptive effects induced by carbamazepine, baclofen, pentazocine and morphine, were investigated with a new antinociception test, using the trigeminal pain induced by application of bradykinin onto the tooth pulp of the rat. The antinociceptive effect of carbamazepine was significantly inhibited by bicuculline, phentolamine, propranolol and haloperidol but not by naloxone, methysergide and atropine. The effect of baclofen was significantly reduced by naloxone, bicuculline, propranolol and atropine but not by phentolamine, haloperidol and methysergide. The antinociceptive actions of pentazocine and morphine on trigeminal pain were significantly reduced by naloxone and phentolamine, and by naloxone alone, respectively. These results suggest the involvement of different neurotransmitters in the antinociceptive effects of the four analgesic drugs on trigeminal pain induced by bradykinin.

  18. B11 NMR in the layered diborides OsB2 and RuB2

    NASA Astrophysics Data System (ADS)

    Suh, B. J.; Zong, X.; Singh, Y.; Niazi, A.; Johnston, D. C.

    2007-10-01

    B11 nuclear magnetic resonance (NMR) measurements have been performed on B11 enriched OsB2 and RuB2 polycrystalline powder samples in an external field of 4.7T and in the temperature range, 4.2KB2 and RuB2 , respectively. The experimental results indicate that a p character dominates the conduction electron wave function at the B site with a negligibly small s character in both compounds.

  19. Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca.

    PubMed

    de Araújo, Ianna Wivianne Fernandes; Rodrigues, José Ariévilo Gurgel; Quinderé, Ana Luíza Gomes; Silva, Jane de Fátima Teixeira; Maciel, Gabrielle de Freitas; Ribeiro, Natássia Albuquerque; de Sousa Oliveira Vanderlei, Edfranck; Ribeiro, Kátia Alves; Chaves, Hellíada Vasconcelos; Pereira, Karuza Maria Alves; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2016-11-01

    We investigated structural features of polysaccharides from Ulva lactuca and their effects on the classical models of nociception and inflammation. Crude extract was obtained by enzymatic digestion and isolated by ion exchange chromatography on DEAE-cellulose. The fraction with higher yield was used in the tests (SP-Ul). Swiss mice received SP-Ul (1, 3 or 9mg/kg; i.v.), 30min prior to injection of 0.8%-acetic acid or 1%-formalin or prior to a thermal stimulus. At same doses, SP-Ul was tested on Wistar rats on paw edema elicited by different irritants (carrageenan, dextran, bradykinin, histamine or serotonin). The results of infrared characterization indicated the presence of hydroxyl groups, sulfate, uronic acid and glycosidic linkages in all SP fractions spectrums. SP-Ul decreased significantly the antinociception in response to acetic acid or formalin (second phase), but not in the hot-plate test, suggesting that its analgesia occurs through a peripheral mechanism. SP-Ul did not reduce carrageenan-induced paw edema as supported by both histological and myeloperoxidase activity assessments. However, SP-Ul (1mg/kg; s.c.) reduced dextran-elicited edema, showing vascular anti-inflammatory effect, with bradykinin as major target because it did not reduce histamine- and serotonin-induced paw edemas. Therefore, SP-Ul acts on bradykinin pathway in its antinociceptive and anti-inflammatory responses.

  20. Lattice Thermal Conductivity from Atomistic Simulations: ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  1. Transcapillary exchange in the cat salivary gland during secretion, bradykinin infusion and after chronic duct ligation.

    PubMed Central

    Mann, G E; Smaje, L H; Yudilevich, D L

    1979-01-01

    1. Capillary permeability-surface area products for 86Rb, [51Cr]EDTA (mol. wt. 357), [57Co]cyanocobalamin (mol. wt. 1353) and [125I]insulin (approximate mol. wt. 6000) have been measured using the single-circulation, multiple-tracer dilution technique in the in situ perfused submandibular salivary gland during parasympathetic nerve stimulation, close-arterial bradykinin infusion and following chronic duct ligation. 2. In glands with a natural blood supply, permeability-surface area for 86Rb and [51Cr]EDTA increased during parasympathetic stimulation, but this was shown to be related to the concomitant increase in blood flow rather than to a change in capillary permeability or in surface area. 3. In glands perfused at constant flow, parasympathetic stimulation led to a decrease in permeability-surface area for EDTA (-19.1 +/- 5.2%, mean +/- S.E., n = 5, P less than 0.05) cyanocobalamin (-12.3 +/- 6.0, n = 12, P less than 0.05), and insulin (-15.3 +/- 4.8, n = 11, P less than 0.02). It is suggested that this may be the result of a redistribution of flow from the acinar microcirculation to a less permeable ductal vasculature. 4. Bradykinin infusion had no significant effect on permeability-surface area for EDTA and cyanocobalamin in perfused glands. 5. In perfused glands, ligation of the submandibular duct for 3--12 days reduced permeability-surface area (ml.min-1.g-1) for [51Cr]EDTA from 5.26 +/- 0.60 (mean +/- S.E., n = 9) to 4.20 +/- 0.12 (n = 4, P less than 0.30), [57Co]cyanocobalamin from 3.22 +/- 0.12 (n = 48) to 2.02 +/- 0.08 (n = 15, P less than 0.001) and [125I]insulin from 1.52 +/- 0.07 (n = 39) to 0.72 +/- 0.23 (n = 11, P less than 0.001). PMID:119844

  2. On the electron affinity of B2

    SciTech Connect

    Glezakou, Vanda A.; Taylor, Peter

    2009-02-02

    We present the results of high-level ab initio calculations on the electron affinity of B2. Our new best estimate of 1.93±0.03 eV is in agreement with previous calculations as well as the sole existing experimental estimate of 1.8 eV, as derived from quantities with an uncertainty of 0.4 eV. The electron affinity of atomic boron, which is much smaller, is also calculated for comparison, and again found to be in good agreement with experiment. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Mutational activation of ErbB2 reveals a new protein kinase autoinhibition mechanism.

    PubMed

    Fan, Ying-Xin; Wong, Lily; Ding, Jinhui; Spiridonov, Nikolay A; Johnson, Richard C; Johnson, Gibbes R

    2008-01-18

    Autoinhibition plays a key role in the control of protein kinase activity. ErbB2 is a unique receptor-tyrosine kinase that does not bind ligand but possesses an extracellular domain poised to engage other ErbBs. Little is known about the molecular mechanism for ErbB2 catalytic regulation. Here we show that ErbB2 kinase is strongly autoinhibited, and a loop connecting the alphaC helix and beta4 sheet within the kinase domain plays a major role in the control of kinase activity. Mutations of two Gly residues at positions 776 and 778 in this loop dramatically increase ErbB2 catalytic activity. Kinetic analysis demonstrates that mutational activation is due to approximately 10- and approximately 7-fold increases in ATP binding affinity and turnover number, respectively. Expression of the activated ErbB2 mutants in cells resulted in elevated ligand-independent ErbB2 autophosphorylation, ErbB3 phosphorylation, and stimulation of mitogen-activated protein kinase. Molecular modeling suggests that the ErbB2 kinase domain is stabilized in an inactive state via a hydrophobic interaction between the alphaC-beta4 and activation loops. Importantly, many ErbB2 human cancer mutations have been identified in the alphaC-beta4 loop, including the activating G776S mutation studied here. Our findings reveal a new kinase regulatory mechanism in which the alphaC-beta4 loop functions as an intramolecular switch that controls ErbB2 activity and suggests that loss of alphaC-beta4 loop-mediated autoinhibition is involved in oncogenic activation of ErbB2.

  4. ErbB2 is required for cardiomyocyte proliferation in murine neonatal hearts

    PubMed Central

    Ma, Hong; Yin, Chaoying; Zhang, Yingao; Qian, Li; Liu, Jiandong

    2017-01-01

    It has been long recognized that the mammalian heart loses its proliferative capacity soon after birth, yet, the molecular basis of this loss of cardiac proliferation postnatally is largely unknown. In this study, we found that cardiac ErbB2, a member of the epidermal growth factor receptor family, exhibits a rapid and dramatic decline in expression at the neonatal stage. We further demonstrate that conditional ablation of ErbB2 in the ventricular myocardium results in upregulation of negative cell cycle regulators and a significant reduction in cardiomyocyte proliferation during the narrow neonatal proliferative time window. Together, our data reveal a positive correlation between the expression levels of ErbB2 with neonatal cardiomyocyte proliferation and suggest that reduction in cardiac ErbB2 expression may contribute to the loss of postnatal cardiomyocyte proliferative capacity. PMID:27390088

  5. EphB2 guides axons at the midline and is necessary for normal vestibular function

    NASA Technical Reports Server (NTRS)

    Cowan, C. A.; Yokoyama, N.; Bianchi, L. M.; Henkemeyer, M.; Fritzsch, B.

    2000-01-01

    Mice lacking the EphB2 receptor tyrosine kinase display a cell-autonomous, strain-specific circling behavior that is associated with vestibular phenotypes. In mutant embryos, the contralateral inner ear efferent growth cones exhibit inappropriate pathway selection at the midline, while in mutant adults, the endolymph-filled lumen of the semicircular canals is severely reduced. EphB2 is expressed in the endolymph-producing dark cells in the inner ear epithelium, and these cells show ultrastructural defects in the mutants. A molecular link to fluid regulation is provided by demonstrating that PDZ domain-containing proteins that bind the C termini of EphB2 and B-ephrins can also recognize the cytoplasmic tails of anion exchangers and aquaporins. This suggests EphB2 may regulate ionic homeostasis and endolymph fluid production through macromolecular associations with membrane channels that transport chloride, bicarbonate, and water.

  6. Lotus corniculatus regulates the inflammation induced by bradykinin in a murine model of pleurisy.

    PubMed

    Pereira, Diana Ana; Dalmarco, Juliana Bastos; Wisniewski, Alberto; Simionatto, Edésio Luiz; Pizzolatti, Moacir Geraldo; Fröde, Tânia Silvia

    2011-03-23

    This study evaluated the anti-inflammatory efficacy of the crude extract (CE), the fractions derived from hexane (HEX), ethyl acetate (AcOEt), n-butanol (BuOH), and aqueous (Aq) and isolated compounds (oleanolic acid or kaempferitrin) obtained from the aerial parts of Lotus corniculatus var. São Gabriel in mice with bradykinin-induced pleurisy. Swiss mice were used for the In Vivo experiments. Inflammatory parameters [leukocytes; exudate concentrations; myeloperoxidase and adenosine-deaminase activities, and nitric oxide and interleukin-17 levels] were evaluated 4 h after pleurisy induction. The crude extract of Lotus corniculatus, its derived fractions, and isolated compounds inhibited leukocytes and the exudate. This inhibitory effect was associated with decreased of myeloperoxidase and adenosine-deaminase activities, nitric oxide products, and IL-17A levels. Lotus corniculatus presented important anti-inflammatory action by inhibiting leukocyte influx and exudate concentrations. This effect was directly related to the inhibition of nitric oxide and interleukinin17 levels. Oleanolic acid and kaempferitrin can account for these anti-inflammatory effects.

  7. Role of chloride channels in bradykinin-induced guinea pig airway vagal C-fibre activation.

    PubMed

    Lee, Min-Goo; Macglashan, Donald W; Undem, Bradley J

    2005-07-01

    We tested the hypothesis that an ionic current carried by chloride ions contributes to bradykinin (BK)-induced membrane depolarization and activation of vagal afferent C-fibres. In an ex vivo innervated trachea/bronchus preparation, BK (1 microM) consistently produced action potential discharge in vagal afferent C-fibres with receptive fields in the trachea or main stem bronchus. The Ca2+-activated Cl- channel (CLCA) inhibitor, niflumic acid (NFA, 100 microM), significantly reduced BK-induced action potential discharge to 21 +/- 7% of the control BK response. NFA did not inhibit capsaicin-induced or citric-acid-induced action potential discharge in tracheal C-fibres. The inhibitory effect of NFA was mimicked by another CLCA inhibitor, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 100 microM). NFA also inhibited the BK-induced inward current in gramicidin-perforated whole-cell patch-clamp recordings of capsaicin-sensitive jugular ganglion neurones retrogradely labelled from the airways. NFA did not inhibit the BK-induced increase in intracellular free Ca2+. The TRPV1 inhibitor, iodo-resiniferatoxin (1 microM), also partially inhibited BK-induced action potential discharge, and the combination of iodo-resiniferatoxin and NFA virtually abolished the BK-induced action potential discharge. We concluded that in vagal afferent C-fibres, BK evokes membrane depolarization and action potential discharge through the additive effects of TRPV1 and Cl- channel activation.

  8. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development

    PubMed Central

    Woldeyesus, Masresha T.; Britsch, Stefan; Riethmacher, Dieter; Xu, Lan; Sonnenberg-Riethmacher, Eva; Abou-Rebyeh, Faikah; Harvey, Richard; Caroni, Pico; Birchmeier, Carmen

    1999-01-01

    The ErbB2 tyrosine kinase functions as coreceptor for the neuregulin receptors ErbB3 and ErbB4 and can participate in signaling of EGF receptor (ErbB1), interleukin receptor gp130, and G-protein coupled receptors. ErbB2−/− mice die at midgestation because of heart malformation. Here, we report a genetic rescue of their heart development by myocardial expression of erbB2 cDNA that allows survival of the mutants to birth. In rescued erbB2 mutants, Schwann cells are lacking. Motoneurons form and can project to muscle, but nerves are poorly fasciculated and disorganized. Neuromuscular junctions form, as reflected in clustering of AChR and postsynaptic expression of the genes encoding the α-AChR, AChE, ε-AChR, and the RI subunit of the cAMP protein kinase. However, a severe loss of motoneurons on cervical and lumbar, but not on thoracic levels occurs. Our results define the roles of Schwann cells during motoneuron and synapse development, and reveal different survival requirements for distinct motoneuron populations. PMID:10521398

  9. The erbB-2 mitogenic signaling pathway: tyrosine phosphorylation of phospholipase C-gamma and GTPase-activating protein does not correlate with erbB-2 mitogenic potency.

    PubMed Central

    Fazioli, F; Kim, U H; Rhee, S G; Molloy, C J; Segatto, O; Di Fiore, P P

    1991-01-01

    The erbB-2 gene product, gp185erbB-2, unlike the structurally related epidermal growth factor (EGF) receptor (EGFR), exhibits constitutive kinase and transforming activity. We used a chimeric EGFR/erbB-2 expression vector to compare the mitogenic signaling pathway of the erbB-2 kinase with that of the EGFR, at similar levels of expression, in response to EGF stimulation. The EGFR/erbB-2 chimera was significantly more active in inducing DNA synthesis than the EGFR when either was expressed in NIH 3T3 cells. Analysis of biochemical pathways implicated in signal transduction by growth factor receptors indicated that both phospholipase C type gamma (PLC-gamma) and the p21ras GTPase-activating protein (GAP) are substrates for the erbB-2 kinase in NIH 3T3 fibroblasts. However, under conditions in which activation of the erbB-2 kinase induced DNA synthesis at least fivefold more efficiently than the EGFR, the levels of erbB-2- or EGFR-induced tyrosine phosphorylation of PLC-gamma and GAP were comparable. In addition, the stoichiometry of tyrosine phosphorylation of these putative substrates by erbB-2 appeared to be at least an order of magnitude lower than that induced by platelet-derived growth factor receptors at comparable levels of mitogenic potency. Thus, our results indicate that differences in tyrosine phosphorylation of PLC-gamma and GAP do not account for the differences in mitogenic activity of the erbB-2 kinase compared with either the EGFR or platelet-derived growth factor receptor in NIH 3T3 fibroblasts. Images PMID:1672440

  10. EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta

    PubMed Central

    Chen, Inn-Inn; Caprioli, Arianna; Ohnuki, Hidetaka; Kwak, Hyeongil; Porcher, Catherine; Tosato, Giovanna

    2016-01-01

    Adult-type intraembryonic hematopoiesis arises from specialized endothelial cells of the dorsal aorta (DA). Despite the critical importance of this specialized endothelium for establishment of hematopoietic stem cells and adult hematopoietic lineages, the mechanisms regulating its emergence are incompletely understood. We show that EphrinB2, a principal regulator of endothelial cell function, controls the development of endothelium producing adult-type hematopoiesis. The absence of EphrinB2 impairs DA-derived hematopoiesis. Transmembrane EphrinB2 and its EphB4 receptor interact in the emerging DA, which transiently harbors EphrinB2+ and EphB4+ endothelial cells, thereby providing an opportunity for bi-directional cell-to-cell signaling to control the emergence of the hemogenic endothelium. Embryonic Stem (ES) cell-derived EphrinB2+ cells are enriched with hemogenic endothelial precursors. EphrinB2 silencing impairs ES generation of hematopoietic cells but not generation of endothelial cells. The identification of EphrinB2 as an essential regulator of adult hematopoiesis provides important insight in the regulation of early hematopoietic commitment. PMID:27250641

  11. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    SciTech Connect

    Sung, Nak-Yun; Yang, Mi-So; Song, Du-Sub; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Park, Hyun-Jin; Kim, Jae-Hun; Byun, Eui-Baek; Byun, Eui-Hong

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  12. Role of ErbB2 in Corneal Epithelial Wound Healing

    PubMed Central

    Xu, Ke-Ping; Riggs, April; Ding, Yu; Yu, Fu-Shin X.

    2009-01-01

    Purpose Human corneal epithelial cells (HCECs) were functionally depleted of erbB2 to elucidate its role in epidermal growth factor (EGF) receptor (EGFR) activation-dependent cell migration. Methods The retrovirus pBabe-5R, which encodes an erbB2 single-chain antibody with an endoplasmic reticulum (ER)–targeting sequence, and control pBabe-puro were used to infect THCE cells (an SV40-immortalized HCEC line). Several cell lines expressing 5R were selected along with a pBabe-puro control line. The depletion of erbB2 was verified by cell surface biotinylation of proteins, followed by streptavidin precipitation and subsequent detection of erbB2 by immunoblot analysis. Activation of erbBs was analyzed by immunoprecipitation using the phosphotyrosine antibody pY20, followed by Western blot analysis with erbB1 or erbB2 antibodies. Phosphorylation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3′-kinase (PI3K) was analyzed by Western blot with antibodies specific to phosphorylated proteins. Effects of erbB2 depletion on heparin-binding EGF-like growth factor (HB-EGF)–induced cell migration were determined by Boyden chamber migration assay and by scratch wound assay. Results Wounding induced erbB2 tyrosine phosphorylation. Expression of 5R encoding an erbB2 single-chain antibody with an endoplasmic reticulum–targeting sequence depleted the cell surface expression of erbB2 in HCECs. Wounding resulted in a rapid increase in the phosphorylation of erbB1 in both 5R-expressing and control cells, whereas wound-induced erbB2 phosphorylation in 5R-expressing cells was not detectable. Depletion of functional erbB2 attenuated the healing of scratch wounds in the presence of HB-EGF and impaired both chemotactic migration stimulated by HB-EGF and haptotactic migration toward a fibronectin-collagen I (3:1; FNC) coating mix. Expression of 5R affected both the intensity and the duration of wound-induced, EGFR-elicited ERK and PI3K activation. Inhibition of

  13. Amygdala EphB2 Signaling Regulates Glutamatergic Neuron Maturation and Innate Fear

    PubMed Central

    Zhu, Xiao-Na; Liu, Xian-Dong; Zhuang, Hanyi; Henkemeyer, Mark

    2016-01-01

    The amygdala serves as emotional center to mediate innate fear behaviors that are reflected through neuronal responses to environmental aversive cues. However, the molecular mechanism underlying the initial neuron responses is poorly understood. In this study, we monitored the innate defensive responses to aversive stimuli of either elevated plus maze or predator odor in juvenile mice and found that glutamatergic neurons were activated in amygdala. Loss of EphB2, a receptor tyrosine kinase expressed in amygdala neurons, suppressed the reactions and led to defects in spine morphogenesis and fear behaviors. We further found a coupling of spinogenesis with these threat cues induced neuron activation in developing amygdala that was controlled by EphB2. A constitutively active form of EphB2 was sufficient to rescue the behavioral and morphological defects caused by ablation of ephrin-B3, a brain-enriched ligand to EphB2. These data suggest that kinase-dependent EphB2 intracellular signaling plays a major role for innate fear responses during the critical developing period, in which spinogenesis in amygdala glutamatergic neurons was involved. SIGNIFICANCE STATEMENT Generation of innate fear responses to threat as an evolutionally conserved brain feature relies on development of functional neural circuit in amygdala, but the molecular mechanism remains largely unknown. We here identify that EphB2 receptor tyrosine kinase, which is specifically expressed in glutamatergic neurons, is required for the innate fear responses in the neonatal brain. We further reveal that EphB2 mediates coordination of spinogenesis and neuron activation in amygdala during the critical period for the innate fear. EphB2 catalytic activity plays a major role for the behavior upon EphB–ephrin-B3 binding and transnucleus neuronal connections. Our work thus indicates an essential synaptic molecular signaling within amygdala that controls synapse development and helps bring about innate fear emotions

  14. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors

    PubMed Central

    Meng, Y; Zheng, L; Yang, Y; Wang, H; Dong, J; Wang, C; Zhang, Y; Yu, X; Wang, L; Xia, T; Zhang, D; Guo, Y; Li, B

    2016-01-01

    The anti-ErbB2 antibodies trastuzumab and pertuzumab in combination have recently been approved for the treatment of patients with ErbB2-positive metastatic breast cancer. Pertuzumab, which binds to ErbB2 near the center of domain II, and trastuzumab, which binds to the juxtamembrane region of ErbB2 domain IV, directly interfere with domain II- and domain IV-mediated heterodimerization contacts, respectively. In this study, we report a novel anti-ErbB2 antibody, 3E10, which binds to an epitope in domain III that appears to be located opposite to the dimerization interfaces in domain II and domain IV of ErbB2. Our data show that the 3E10 antibody inhibits ErbB2 heterodimerization via a mechanism that strikingly differs from trastuzumab and pertuzumab. It could be speculated that the 3E10 antibody may affect ErbB2 heterodimerization by causing major conformational changes of ErbB2. Furthermore, 3E10 provides synergistic inhibition of ErbB2 heterodimerization and signaling in combination with either trastuzumab or pertuzumab. The combination of these three anti-ErbB2 antibodies that have complementary mechanisms of action appears to be an extremely potent ErbB2 heterodimerization blocker. Compared with trastuzumab plus pertuzumab, the combination of trastuzumab, pertuzumab and 3E10 provides a more potent blockade of ErbB2 signaling. Consistent with this, trastuzumab plus pertuzumab plus 3E10 results in greater in vitro and in vivo antitumor activity in ErbB2-overexpressing breast tumor models, suggesting its potential use for treating ErbB2-overexpressing breast cancer. PMID:26999718

  15. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors.

    PubMed

    Meng, Y; Zheng, L; Yang, Y; Wang, H; Dong, J; Wang, C; Zhang, Y; Yu, X; Wang, L; Xia, T; Zhang, D; Guo, Y; Li, B

    2016-03-21

    The anti-ErbB2 antibodies trastuzumab and pertuzumab in combination have recently been approved for the treatment of patients with ErbB2-positive metastatic breast cancer. Pertuzumab, which binds to ErbB2 near the center of domain II, and trastuzumab, which binds to the juxtamembrane region of ErbB2 domain IV, directly interfere with domain II- and domain IV-mediated heterodimerization contacts, respectively. In this study, we report a novel anti-ErbB2 antibody, 3E10, which binds to an epitope in domain III that appears to be located opposite to the dimerization interfaces in domain II and domain IV of ErbB2. Our data show that the 3E10 antibody inhibits ErbB2 heterodimerization via a mechanism that strikingly differs from trastuzumab and pertuzumab. It could be speculated that the 3E10 antibody may affect ErbB2 heterodimerization by causing major conformational changes of ErbB2. Furthermore, 3E10 provides synergistic inhibition of ErbB2 heterodimerization and signaling in combination with either trastuzumab or pertuzumab. The combination of these three anti-ErbB2 antibodies that have complementary mechanisms of action appears to be an extremely potent ErbB2 heterodimerization blocker. Compared with trastuzumab plus pertuzumab, the combination of trastuzumab, pertuzumab and 3E10 provides a more potent blockade of ErbB2 signaling. Consistent with this, trastuzumab plus pertuzumab plus 3E10 results in greater in vitro and in vivo antitumor activity in ErbB2-overexpressing breast tumor models, suggesting its potential use for treating ErbB2-overexpressing breast cancer.

  16. The ErbB2 inhibitor Herceptin (Trastuzumab) promotes axonal outgrowth four weeks after acute nerve transection and repair.

    PubMed

    Placheta, Eva; Hendry, J Michael; Wood, Matthew D; Lafontaine, Christine W; Liu, Edward H; Cecilia Alvarez Veronesi, M; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H

    2014-10-17

    Accumulating evidence suggests that neuregulin, a potent Schwann cell mitogen, and its receptor, ErbB2, have an important role in regulating peripheral nerve regeneration. We hypothesized that Herceptin (Trastuzumab), a monoclonal antibody that binds ErbB2, would disrupt ErbB2 signaling, allowing us to evaluate ErbB2's importance in peripheral nerve regeneration. In this study, the extent of peripheral motor and sensory nerve regeneration and distal axonal outgrowth was analyzed two and four weeks after common peroneal (CP) nerve injury in rats. Outcomes analyzed included neuron counts after retrograde labeling, histomorphometry, and protein analysis. The data analysis revealed that there was no impact of Herceptin administration on either the numbers of motor or sensory neurons that regenerated their axons but histomorphometry revealed that Herceptin significantly increased the number of regenerated axons in the distal repaired nerve after 4 weeks. Protein analysis with Western blotting revealed no difference in either expression levels of ErbB2 or the amount of activated, phosphorylated ErbB2 in injured nerves. In conclusion, administration of the ErbB2 receptor inhibitor after nerve transection and surgical repair did not alter the number of regenerating neurons but markedly increased the number of regenerated axons per neuron in the distal nerve stump. Enhanced axon outgrowth in the presence of this ErbB2 inhibitor indicates that ErbB2 signaling may limit the numbers of axons that are emitted from each regenerating neuron.

  17. Producing composite materials based on ZrB2, ZrB2-SiC

    NASA Astrophysics Data System (ADS)

    Mirovoi, Yu A.; Burlachenko, A. G.; Buyakova, S. P.; Sevostiyanova, I. N.; Kulkov, S. N.

    2016-11-01

    The effect of mechanical treatment by planetary ball milling on the properties of hot pressed ZrB2 - SiC ceramics was studied. It has been shown that material densification after mechanical treatment is finished at initial stages of sintering process. Addition of SiC causes a substantial increase in density of the sample to 99% of the theoretical powder containing 20% of silicon carbide, in comparison with samples ZrB2 density not exceeding 76%. It has been shown that all defects which were accumulated during mechanical treatment anneal in hot pressure process and there are no any changes of CDD values in sintered ceramics.

  18. Effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin

    SciTech Connect

    Sugio, K.; Daly, J.W.

    1984-01-09

    The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin were investigated using (/sup 125/I) bovine serum albumin (/sup 125/I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E/sub 1/-induced response. The phosphodiesterase inhibitors, ZK 627ll, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited and prostaglandin E/sub 1/-induced response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 ..mu..g potentiated the bradykinin-induced plasma exudation, but had no effect at doses of 10 and 100 ..mu..g. 8-bromo cyclic AMP at all doses significantly inhibited the prostaglandin E/sub 1/-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E/sub 1/ in rat skin derive from activation of cyclic AMP-generating systems.

  19. Infralimbic EphB2 Modulates Fear Extinction in Adolescent Rats

    PubMed Central

    Cruz, Emmanuel; Soler-Cedeño, Omar; Negrón, Geovanny; Criado-Marrero, Marangelie; Chompré, Gladys

    2015-01-01

    Adolescent rats are prone to impaired fear extinction, suggesting that mechanistic differences in extinction could exist in adolescent and adult rats. Since the infralimbic cortex (IL) is critical for fear extinction, we used PCR array technology to identify gene expression changes in IL induced by fear extinction in adolescent rats. Interestingly, the ephrin type B receptor 2 (EphB2), a tyrosine kinase receptor associated with synaptic development, was downregulated in IL after fear extinction. Consistent with the PCR array results, EphB2 levels of mRNA and protein were reduced in IL after fear extinction compared with fear conditioning, suggesting that EphB2 signaling in IL regulates fear extinction memory in adolescents. Finally, reducing EphB2 synthesis in IL with shRNA accelerated fear extinction learning in adolescent rats, but not in adult rats. These findings identify EphB2 in IL as a key regulator of fear extinction during adolescence, perhaps due to the increase in synaptic remodeling occurring during this developmental phase. PMID:26354908

  20. Infralimbic EphB2 Modulates Fear Extinction in Adolescent Rats.

    PubMed

    Cruz, Emmanuel; Soler-Cedeño, Omar; Negrón, Geovanny; Criado-Marrero, Marangelie; Chompré, Gladys; Porter, James T

    2015-09-09

    Adolescent rats are prone to impaired fear extinction, suggesting that mechanistic differences in extinction could exist in adolescent and adult rats. Since the infralimbic cortex (IL) is critical for fear extinction, we used PCR array technology to identify gene expression changes in IL induced by fear extinction in adolescent rats. Interestingly, the ephrin type B receptor 2 (EphB2), a tyrosine kinase receptor associated with synaptic development, was downregulated in IL after fear extinction. Consistent with the PCR array results, EphB2 levels of mRNA and protein were reduced in IL after fear extinction compared with fear conditioning, suggesting that EphB2 signaling in IL regulates fear extinction memory in adolescents. Finally, reducing EphB2 synthesis in IL with shRNA accelerated fear extinction learning in adolescent rats, but not in adult rats. These findings identify EphB2 in IL as a key regulator of fear extinction during adolescence, perhaps due to the increase in synaptic remodeling occurring during this developmental phase.

  1. Bradykinin antagonists and thiazolidinone derivatives as new potential anti-cancer compounds.

    PubMed

    Avdieiev, Stanislav; Gera, Lajos; Havrylyuk, Dmytro; Hodges, Robert S; Lesyk, Roman; Ribrag, Vincent; Vassetzky, Yegor; Kavsan, Vadym

    2014-08-01

    Glioblastoma (GB), the most aggressive brain tumour, and mantle cell lymphoma (MCL), a rare but very aggressive type of lymphoma, are highly resistant to chemotherapy. GB and MCL chemotherapy gives very modest results, the vast majority of patients experience recurrent disease. To find out the new treatment modality for drug-resistant GB and MCL cells, combining of bradykinin (BK) antagonists with conventional temozolomide (TMZ) treatment, and screening of thiazolidinones derivatives were the main objectives of this work. As it was revealed here, BKM-570 was the lead compound among BK antagonists under investigation (IC50 was 3.3 μM) in human GB cells. It strongly suppressed extracellular signal-regulated kinases 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation. BK antagonists did not decrease the viability of MCL cells, thus showing the cell-specific mode, while thiazolidinone derivatives, a novel group of promising anti-tumour compounds inhibited proliferation of MCL cells: IC₅₀ of ID 4526 and ID 4527 compounds were 0.27 μM and 0.16 μM, correspondingly. However, single agents are often not effective in clinic due to activation of collateral pathways in tumour cells. We demonstrated a strong synergistic effect after combinatorial treatment by BKM-570 together with TMZ that drastically increased cytotoxic action of this drug in rat and human glioma cells. Small proportion of cells was still viable after such treatment that could be explained by presence of TMZ-resistant cells in the population. It is possible to expect that the combined therapy aimed simultaneously at different elements of tumourigenesis will be more effective with lower drug concentrations than the first-line drug temozolomide used alone in clinics.

  2. Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig

    PubMed Central

    Oh, Eun Joo; Weinreich, Daniel

    2004-01-01

    Bradykinin (BK) is an inflammatory mediator that can excite and sensitize primary afferent neurones. The nature of the ionic channels underlying the excitatory actions of BK is still incompletely understood. Using whole-cell patch-clamp recording from acutely dissociated nodose ganglion neurones (NGNs) we have examined the ionic mechanism responsible for BK's excitatory effect. Bath-applied BK (0.1 μm) depolarized the membrane potential (29 ± 3.1 mV, n = 7), evoked action potentials, and induced an inward ionic current (IBK) with two distinctive membrane conductances (gm). Initially, gm decreased; the ionic current associated with this gm had a reversal potential (Erev) value of −87 ± 1.1 mV (n = 26), a value close to EK (−89 mV). Subsequently, gm increased; the ionic current associated with this gm had an estimated Erev of 49 ± 4.3 mV (n = 23). When the second component was isolated from the first component, by replacing [K+]o with Cs+, Erev was 20 ± 4.7 mV (n = 10). Replacing external NaCl with NMDG-Cl or choline-Cl, or reducing [Ca2+]o did not significantly diminish IBK. After replacing external NaCl with sodium isethionate, Erev for the second component shifted to 56 ± 8.8 mV (n = 4), a value close to the ECl (66 mV). The second component was inhibited by intracellular BAPTA or by bath application of niflumic acid (100 μm), a Ca2+-activated Cl− channel blocker. These results suggest that the first and second components of IBK are produced by a decrease in K+ conductance and an increase in Ca2+-activated Cl− conductance, respectively. The BK-evoked Cl− conductance in NGNs may be the first demonstration of an inflammatory mediator exciting primary afferents via an anion channel. PMID:15169850

  3. Decomposition of the B2-type matrix

    NASA Astrophysics Data System (ADS)

    Gale, W. F.; King, J. E.

    1992-09-01

    The microstructural stability of aluminide diffusion coatings, prepared by means of a two-stage pack-aluminization treatment on single-crystal nickel-base superalloy substrates, is considered in this article. Edge-on specimens of coated superalloy are studied using transmission electron microscopy (TEM). The effects of coating thickness and post-coating heat treatment (duration, temperature, and atmosphere) on coating microstructure are examined. The article discusses the partial transformation of the matrix of the coating, from a B2-type phase (nominally NiAl) to a L12 phase (nominally Ni3(Al, Ti)), during exposure at temperatures of 850 °C and 950 °C in air and in vacuum for up to 138 hours. Three possible processes that can account for decom- position of the coating matrix are investigated, namely, interdiffusion between the coating and the substrate, oxidation of the coating surface, and aging of the coating. Of these processes, aging of the coating is shown to be the predominant factor in the coating transformation under the conditions considered.

  4. Effect of captopril and the bradykinin-PKC pathway on ROS production in type 1 diabetic rats.

    PubMed

    Rodrigues de Araujo, Glaucy; Granato de Faria, Karine; Lima, Wanderson Geraldo; Pádua, Bruno da Cruz; Rossoni, Joamyr Victor; Souza, Aline Arlindo; Chianca-Júnior, Deoclecio; Silva, Marcelo Eustáquio; Pedrosa, Maria Lucia; Chaves, Miriam Martins; Costa, Daniela Caldeira

    2011-12-01

    The aim of this study was to investigate the possible effects of captopril as a promoter in modulating the oxidant-antioxidant balance in rats with type 1 diabetes, and the influence of protein kinase C (PKC) pathways in the production of reactive oxygen species (ROS) induced by bradykinin in type 1 diabetic rats. This study evaluated the redox status in both the cardiac tissue and at the cellular level (neutrophils). Two concentrations of captopril were utilized: (i) 5 mg·(kg body mass)(-1), which was considered a therapeutic dose; and (ii) 10 mg·(kg body mass)(-1). Body mass, plasma glucose, and serum insulin were evaluated. To investigate the redox status of the cardiac tissue, we analyzed lipid peroxidation, concentration of carbonylated protein, catalase activity, and the concentration of glutathione. For a more accurate assessment of the possible antioxidant effect of captopril, we also analyzed ROS in neutrophils (in vivo), and ROS production induced by bradykinin and the influence of the PKC pathway in this production (in vitro). Our data show that the hearts of diabetic animals have increased oxidative damage, exemplified by the increased concentration of carbonylated protein and thiobarbituric acid reactive substances (TBARS). However, animals treated with captopril at both concentrations showed lower concentrations of carbonylated protein compared with untreated diabetic animals. We found an increase of catalase activity in the heart of diabetic rats, which was reversed by captopril treatment at both of the dosages tested. Our data showed that captopril was able to reduce ROS production in the neutrophils of diabetic rats at a dose of 10 mg captopril·(kg body mass)(-1). However, the antioxidant effect of captopril is independent of bradykinin. Diabetes induces oxidative stress, and these results suggest that captopril has an antioxidant effect and can modulate the production of ROS in circulating neutrophils.

  5. Modulation of the cell membrane expression of the kininogens regulates the rate of bradykinin delivery to cells.

    PubMed

    Schmaier, A H

    1992-01-01

    The kininogens were first recognized as the parent molecules for bradykinin. Their relative physiologic importance in plasma hemostasis and fibrinolysis and tissue cysteine protease inhibition has not been clarifed. Recent studies on the structure and function of the plasma kininogens, their interaction with cells of the intravascular compartment, and clinical investigations on contact system activation have refocused the physiologic importance of these proteins to kinin delivery for the maintance of vasodilatory tone. Kininogen expression on platelets slows the rate of kinin liberation, and kinins upregulate kininogen expression on endothelial cells. Regulation of kinin delivery by influencing kininogen expression may provide for new agents to manipulate blood pressure.

  6. Characterization of MgB2 Conductors for Coil Development

    NASA Astrophysics Data System (ADS)

    Aslanoglu, Z.; Arda, L.; Akin, Y.; Sumption, M. D.; Tomsic, M.; Hascicek, Y. S.

    2004-06-01

    The effects of the heat treatment conditions on microstructure and the transport critical current density of MgB2 wires, which were fabricated by the Continuous Tube Forming and Filling (CTFF) process, have been investigated. Two types of MgB2 conductors, Fe/MgB2 and Cu/MgB2, were studied. It was found that the sheath materials affect the optimum annealing profile of MgB2 conductor. The annealing temperature for Cu/MgB2 conductors was lower than that for the Fe/MgB2 conductors. The critical current density, Jc was measured to be 1.1×105 A/cm2 at 20 K in-self field for Cu/MgB2 conductor of 1.25 mm in diameter. The processing, microstructure and superconducting properties are presented.

  7. Isolated rat stomach ECL cells generate prostaglandin E(2) in response to interleukin-1 beta, tumor necrosis factor-alpha and bradykinin.

    PubMed

    Lindström, E; Lerner, U H; Håkanson, R

    2001-03-30

    The ECL cells control parietal cells by releasing histamine in their immediate vicinity. Gastrin and pituitary adenylate cyclase-activating peptide (PACAP) stimulate histamine secretion from isolated ECL cells, while somatostatin and galanin inhibit stimulated secretion. Prostaglandin E2 and related prostaglandins likewise suppress ECL-cell histamine secretion. Conceivably, that is how they inhibit acid secretion. In the present study, we examined if prostaglandin E2 can be generated by isolated ECL cells. Rat stomach ECL cells were purified (>90% purity) by counterflow elutriation and gradient centrifugation and cultured for 48 h. ECL cell stimulants (gastrin and PACAP) and inflammatory agents (interleukin-1 beta, tumor necrosis factor-alpha and bradykinin) were tested for their ability to induce prostaglandin E2 accumulation (24-h incubation), measured by radioimmunoassay. Gastrin and PACAP did not affect prostaglandin E2 accumulation but interleukin-1 beta (300 pg/ml), tumor necrosis factor-alpha (10 ng/ml) and bradykinin (1 microM) induced a 2- to 3-fold increase in the amount of prostaglandin E2 accumulated. While the combination of interleukin-1 beta and bradykinin induced a 9-fold increase, the combination interleukin-1 beta+tumor necrosis factor-alpha and bradykinin + tumor necrosis factor-alpha induced additive effects only. The combination of interleukin-1 beta + tumor necrosis factor-alpha + bradykinin did not induce a greater effect than interleukin-1 beta + bradykinin. The effect of interleukin-1 beta + bradykinin was abolished by adding 10 nM hydrocortisone (suppressing phospholipase A2 and cyclooxygenase) or 1 microM indomethacin (inhibiting cyclooxygenase). Incubating ECL cells in the presence of interleukin-1 beta+bradykinin for 24 h reduced their ability to secrete histamine in response to gastrin. The inhibitory effect was reversed by 1 microM indomethacin. Also, increasing the concentrations of hydrocortisone in the medium resulted in an

  8. B-2 Extremely High Frequency SATCOM and Computer Increment 1 (B-2 EHF Inc 1)

    DTIC Science & Technology

    2015-12-01

    provide upgraded flight management computer processors , increased data storage, a re-hosted Flight Management Operational Flight Program, and a high...bandwidth data bus in order to prevent degradation of existing capabilities resulting from EHF SATCOM installation. Additionally, the Increment 1...because the program is 90% or more expended and 90% or more delivered. B-2 EHF Inc 1 consists of upgraded flight management processors , increased

  9. Electronic Commerce in Tourism in China: B2B or B2C?

    NASA Astrophysics Data System (ADS)

    Li, Hongxiu; Suomi, Reima

    E-commerce has significantly changed the distribution channels of travel products in the world including China. Online channels are growing important in travel service distribution. In China tourism industry has been developed rapidly with the economic development, more and more international travel service providers are trying to expand their Chinese market through the Internet. This paper sheds lights on the e-commerce development models in China for international travel service providers. It explores the current e-tourism in China from the three different participants in the value chain in tourism industry - consumer, travel agent and travel service provider. The paper also identifies the barriers in B2C arena in international outbound travel market, and discusses the possible approaches for international travel service providers to develop their e-commerce in the huge Chinese market. The results in this study reveal that international travel service providers should focus on B2B model to expand their electronic market in China. B2C development in tourism largely depends on the change of Chinese customers' behavior and the change of international tourism regulations. The findings of the study are expected to assist international travel service providers to understand current e-tourism in China and to support their planning for future e-commerce development in China.

  10. 26 CFR 1.663(b)-2 - Election.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Election. 1.663(b)-2 Section 1.663(b)-2 Internal... TAXES Estates and Trusts Which May Accumulate Income Or Which Distribute Corpus § 1.663(b)-2 Election. (a) Manner and time of election; irrevocability—(1) When return is required to be filed. If a...

  11. 34 CFR 5b.2 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 1 2012-07-01 2012-07-01 false Purpose and scope. 5b.2 Section 5b.2 Education Office of the Secretary, Department of Education PRIVACY ACT REGULATIONS § 5b.2 Purpose and scope. (a) This part implements section 3 of the Privacy Act of 1974, 5 U.S.C. 552a (hereinafter referred to as the...

  12. Homology modeling, vasorelaxant and bradykinin-potentiating activities of a novel hypotensin found in the scorpion venom from Tityus stigmurus.

    PubMed

    Machado, Richele J A; Junior, Leônidas G M; Monteiro, Norberto K V; Silva-Júnior, Arnóbio A; Portaro, Fernanda C V; Barbosa, Euzébio G; Braga, Valdir A; Fernandes-Pedrosa, Matheus F

    2015-07-01

    In a recent work by our group involving a transcriptomics approach applied to the venom glands from Tityus stigmurus we identified a new family of peptides called Hypotensins (TSTI0006C) (Almeida et al., 2012). The cluster TSTI0006C was analyzed in the main 25 amino acid residues and named T. stigmurus Hypotensin (TistH), showing a molecular mass of 2.7 kDa, an absence of cysteines and the presence of two C-terminal proline residues, which are a bradykinin-potentiating peptide (BPP) signature. Here, we describe the homology modeling of the three-dimensional structure of TistH. In addition, we evaluated the cardiovascular effects elicited by TistH in normotensive rats. Firstly, TistH showed no cytotoxic effect on horse erythrocyte. Furthermore, in normotensive rats TistH was able to potentiate the hypotensive action of bradykinin (BK) and induced a vasorelaxant effect in mesenteric artery rings by endothelium-dependent release of nitric oxide (NO) and demonstrated independent inhibition of angiotensin converting enzyme (ACE). Our data can contribute to a better understanding of the structural and functional characteristics of TistH and suggest its potential use in cardiovascular diseases.

  13. Galactomannan Downregulates the Inflammation Responses in Human Macrophages via NFκB2/p100

    PubMed Central

    Toledano, Víctor; Hernández-Jiménez, Enrique; Cubillos-Zapata, Carolina; Flandez, Marta; Álvarez, Enrique; Varela-Serrano, Aníbal; Cantero, Ramón; Valles, Gema; García-Rio, Francisco; López-Collazo, Eduardo

    2015-01-01

    We show that galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups present on the cell wall of several fungi, induces a reprogramming of the inflammatory response in human macrophages through dectin-1 receptor. The nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed after galactomannan challenge. Knocking down NFκB2/p100 using small interfering RNA (siRNA) indicated that NFκB2/p100 expression is a crucial factor in the progression of the galactomannan-induced refractoriness. The data presented in this study could be used as a modulator of inflammatory response in clinical situations where refractory state is required. PMID:26441484

  14. Galactomannan Downregulates the Inflammation Responses in Human Macrophages via NFκB2/p100.

    PubMed

    Toledano, Víctor; Hernández-Jiménez, Enrique; Cubillos-Zapata, Carolina; Flandez, Marta; Álvarez, Enrique; Varela-Serrano, Aníbal; Cantero, Ramón; Valles, Gema; García-Rio, Francisco; López-Collazo, Eduardo

    2015-01-01

    We show that galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups present on the cell wall of several fungi, induces a reprogramming of the inflammatory response in human macrophages through dectin-1 receptor. The nuclear factor kappa-light-chain-enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed after galactomannan challenge. Knocking down NFκB2/p100 using small interfering RNA (siRNA) indicated that NFκB2/p100 expression is a crucial factor in the progression of the galactomannan-induced refractoriness. The data presented in this study could be used as a modulator of inflammatory response in clinical situations where refractory state is required.

  15. Protein kinase Cδ is required for ErbB2-driven mammary gland tumorigenesis and negatively correlates with prognosis in human breast cancer.

    PubMed

    Allen-Petersen, B L; Carter, C J; Ohm, A M; Reyland, M E

    2014-03-06

    Protein kinase C δ (PKCδ) regulates apoptosis in the mammary gland, however, the functional contribution of PKCδ to the development or progression of breast cancer has yet to be determined. Meta-analysis of ErbB2-positive breast cancers shows increased PKCδ expression, and a negative correlation between PKCδ expression and prognosis. Here, we present in-vivo evidence that PKCδ is essential for the development of mammary gland tumors in a ErbB2-overexpressing transgenic mouse model, and in-vitro evidence that PKCδ is required for proliferative signaling downstream of the ErbB2 receptor. Mouse mammary tumor virus (MMTV)-ErbB2 mice lacking PKCδ (δKO) have increased tumor latency compared with MMTV-ErbB2 wild-type (δWT) mice, and the tumors show a dramatic decrease in Ki-67 staining. To explore the relationship between PKCδ and ErbB2-driven proliferation more directly, we used MCF-10A cells engineered to express a synthetic ligand-inducible form of the ErbB2 receptor. Depletion of PKCδ with short hairpin RNA inhibited ligand-induced growth in both two-dimensional (2D) (plastic) and three-dimensional (3D) (Matrigel) culture, and correlated with decreased phosphorylation of the ErbB2 receptor and reduced activation of Src and MAPK/ERK pathways. Similarly, in human breast cancer cell lines in which ErbB2 is overexpressed, depletion of PKCδ suppresses proliferation, Src and ERK activation. PKCδ appears to drive proliferation through the formation of an active ErbB2/PKCδ/Src signaling complex, as depletion of PKCδ disrupts association of Src with the ErbB2 receptor. Taken together, our studies present the first evidence that PKCδ is a critical regulator of ErbB2-mediated tumorigenesis, and suggest further investigation of PKCδ as a target in ErbB2-positive breast cancer.

  16. Surface- and tip-enhanced Raman scattering of bradykinin onto the colloidal suspended Ag surface.

    PubMed

    Swiech, D; Ozaki, Y; Kim, Y; Proniewicz, E

    2015-07-14

    In this paper, surface- (SERS) and tip-enhanced Raman scattering (TERS) techniques were used to determine the adsorption mode of bradykinin (BK), a small peptide implicated in, for example, carcinoma growth, onto colloidal suspended Ag surfaces under various environmental conditions, including: peptide concentrations (10(-5)-10(-7) M), excitation wavelengths (514.5 and 785.0 nm), and pH of aqueous sol solutions (from pH = 3 to pH = 11). The metal surface plasmon and rheology of the colloidal suspended Ag surface were explored by ultraviolet-visible (UV-Vis) spectroscopy and atomic force/scanning electron microscopy (AFM/SEM). The SERS results indicated that the peptide concentration of 10(-5) M was the optimal peptide concentration for monolayer colloidal coverage. The Phe(5/8) and Arg(9) residues of BK generally participated in the interactions with colloidal suspended Ag surfaces. The amide group appeared to be arranged in the same manner to the Ag surface in the pH range of 3 to 11. At acidic pH of the solution (pH = 3 to 5), the BK -COO(-) terminal group binds to the Ag surface as a bidentate (at pH = 3) or monodentate (at pH = 5) chelating ligand. At pH = 11, the imino group of Arg(9), probably due to its -C[double bond, length as m-dash]N(⊕)H2 protonation state, was not involved in the interaction with Ag. The reduction in the solution alkalinity (pH = 9) produced the deprotonation of the -C=N(⊕)H2 group followed by group rearrangement in a way favoring the interaction between the lone electron pair on N and Ag. The TERS studies confirmed the proposed, on the basis of SERS, behavior of BK onto the colloidal suspended Ag at pH = 7 and showed that in different points of the colloidal suspended Ag surface the same peptide fragments approximately having the same orientations with respect to this surface interact with it.

  17. p130Cas scaffold protein regulates ErbB2 stability by altering breast cancer cell sensitivity to autophagy

    PubMed Central

    Bisaro, Brigitte; Sciortino, Marianna; Colombo, Shana; Leal, Maria Pilar Camacho; Costamagna, Andrea; Castellano, Isabella; Montemurro, Filippo; Rossi, Valentina; Valabrega, Giorgio; Turco, Emilia; Defilippi, Paola; Cabodi, Sara

    2016-01-01

    Overexpression of the ErbB2/HER2 receptor tyrosine kinase occurs in up to 20% of human breast cancers and correlates with aggressive disease. Several efficacious targeted therapies, including antibodies and kinase inhibitors, have been developed but the occurring of resistance to these agents is often observed. New therapeutic agents targeting the endocytic recycling and intracellular trafficking of membrane in tumor cells overexpressing ErbB2 are actually in clinical development. Nevertheless the mechanisms underlying ErbB2 downregulation are still obscure. We have previously demonstrated that the overexpression of the p130Cas adaptor protein in ErbB2 positive breast cancer, promotes tumor aggressiveness and progression. Here we demonstrate that lowering p130Cas expression in breast cancer cells is sufficient to induce ErbB2 degradation by autophagy. Conversely, p130Cas overexpression protects ErbB2 from degradation by autophagy. Furthermore, this autophagy-dependent preferential degradation of ErbB2 in absence of p130Cas is due to an increased ErbB2 ubiquitination. Indeed, the overexpression of p130Cas impairs ErbB2 ubiquitination by inhibiting the binding of Cbl and CHIP E3 ligases to ErbB2. Finally, our results indicate that p130Cas-dependent ErbB2 protection from degradation by autophagy may alter the sensitivity to the humanized monoclonal antibody trastuzumab. Consistently, in human ErbB2 positive breast cancers that develop resistance to trastuzumab, p130Cas expression is significantly increased suggesting that elevated levels of p130Cas can be involved in trastuzumab resistance. PMID:26716506

  18. Transgenic expression of an altered angiotensin type I AT1 receptor resulting in marked modulation of vascular type I collagen.

    PubMed

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2012-05-01

    The angiotensin II (AngII) type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle cells (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by Western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in AngII responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not AngII activated, while in the aSMCs from wild-type (WT) mice the cascade was AngII activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G-protein linked signaling remained unaltered in response to AngII. Akt and PI3K activation inhibitors blocked AngII-stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/mTOR/p70S6K regulation of collagen production by AngII with participation of Smad2 and Stat3 cascades in this process.

  19. Transgenic Expression of an Altered Angiotensin type I AT1 Receptor Resulting in Marked Modulation of Vascular Type I Collagen

    PubMed Central

    Yu, Jun; Taylor, Linda; Rich, Celeste; Toselli, Paul; Stone, Philip; Green, Daniel; Warburton, Rod; Hill, Nicholas; Goldstein, Ronald; Polgar, Peter

    2011-01-01

    The angiotensin II type I receptor (AT1) was modified by replacing its third intracellular loop and C-terminal tail with the corresponding regions from the bradykinin B2 receptor. Transgenic mice were produced that overexpress this mutated receptor (AB3T). Considerably less collagen content in the intact aorta and in primary aortic smooth muscle (aSMCs) cultures was observed in the transgenic mice. On the other hand, elastin content remained unchanged as measured by western blot, and insoluble amino acid quantitation. The contraction of isolated aortas also remained unaltered. The aSMCs derived from the transgenic mice showed a reduction in angiotensin II responsive type I collagen production. In aSMCs from transgenic mice, the cascade of Akt to the mammalian target rapamycin (mTOR) to p70 S6 kinase (p70S6K) was not angiotensin II activated, while in the aSMCs from wild type mice the cascade was angiotensin II activated. Angiotensin activation of Smad2 and Stat3 was also reduced in the AB3T aSMCs. However, no change in the effect of transforming growth factor β (TGFβ) on type I collagen production was observed. Also, the activation of ERK and JNK and G protein linked signaling remained unaltered in response to angiotensin II. Akt and PI3K activation inhibitors blocked angiotensin II stimulated type I collagen expression in WT aSMCs, whereas ERK inhibitor had no such effect. Our results point to an Akt/ mTOR/ p70S6K regulation of collagen production by angiotensin II with participation of Smad2 and Stat3 cascades in this process. PMID:21751211

  20. ErbB2-dependent chemotaxis requires microtubule capture and stabilization coordinated by distinct signaling pathways.

    PubMed

    Benseddik, Khedidja; Sen Nkwe, Nadine; Daou, Pascale; Verdier-Pinard, Pascal; Badache, Ali

    2013-01-01

    Activation of the ErbB2 receptor tyrosine kinase stimulates breast cancer cell migration. Cell migration is a complex process that requires the synchronized reorganization of numerous subcellular structures including cell-to-matrix adhesions, the actin cytoskeleton and microtubules. How the multiple signaling pathways triggered by ErbB2 coordinate, in time and space, the various processes involved in cell motility, is poorly defined. We investigated the mechanism whereby ErbB2 controls microtubules and chemotaxis. We report that activation of ErbB2 increased both cell velocity and directed migration. Impairment of the Cdc42 and RhoA GTPases, but not of Rac1, prevented the chemotactic response. RhoA is a key component of the Memo/ACF7 pathway whereby ErbB2 controls microtubule capture at the leading edge. Upon Memo or ACF7 depletion, microtubules failed to reach the leading edge and cells lost their ability to follow the chemotactic gradient. Constitutive ACF7 targeting to the membrane in Memo-depleted cells reestablished directed migration. ErbB2-mediated activation of phospholipase C gamma (PLCγ) also contributed to cell guidance. We further showed that PLCγ signaling, via classical protein kinases C, and Memo signaling converged towards a single pathway controlling the microtubule capture complex. Finally, inhibiting the PI3K/Akt pathway did not affect microtubule capture, but disturbed microtubule stability, which also resulted in defective chemotaxis. PI3K/Akt-dependent stabilization of microtubules involved repression of GSK3 activity on the one hand and inhibition of the microtubule destabilizing protein, Stathmin, on the other hand. Thus, ErbB2 triggers distinct and complementary pathways that tightly coordinate microtubule capture and microtubule stability to control chemotaxis.

  1. 49 CFR 178.33b-2 - Type and size.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Type and size. 178.33b-2 Section 178.33b-2... Specifications for Inside Containers, and Linings § 178.33b-2 Type and size. (a) Single-trip inside containers. (b) The maximum capacity of containers in this class shall not exceed one liter (61.0 cubic...

  2. 49 CFR 178.33b-2 - Type and size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Type and size. 178.33b-2 Section 178.33b-2... Containers, and Linings § 178.33b-2 Type and size. (a) Single-trip inside containers. (b) The maximum capacity of containers in this class shall not exceed one liter (61.0 cubic inches). The maximum...

  3. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2008-01-15

    public release; distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words.) A central vision of B2B e - commerce is that...OF ABSTRACT: UU - ii - THIS PAGE INTENTIONALLY LEFT BLANK - iii - Abstract A central vision of B2B e - commerce is that of...goods and services are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce

  4. B2B Models for DoD Acquisition

    DTIC Science & Technology

    2007-07-30

    ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v - i - k^s^i=mlpqdo^ar^qb=p`elli= Abstract A central vision of B2B e - commerce is that of an electronic...are purchased, pricing mechanisms, the characteristics of the markets, and ownership of marketplace. Keywords: B2B E - Commerce , Internet...interest is in the analysis, design and implementation of computer-based information systems. Specifically, he is interested in B2B and B2C e - commerce

  5. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition

    PubMed Central

    Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A.; Feng, Dan; Bielecki, Timothy A.; Band, Vimla; Cohen, Samuel M.; Bronich, Tatiana K.; Band, Hamid

    2016-01-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla®; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance

  6. Marked enhancement of lysosomal targeting and efficacy of ErbB2-targeted drug delivery by HSP90 inhibition.

    PubMed

    Raja, Srikumar M; Desale, Swapnil S; Mohapatra, Bhopal; Luan, Haitao; Soni, Kruti; Zhang, Jinjin; Storck, Matthew A; Feng, Dan; Bielecki, Timothy A; Band, Vimla; Cohen, Samuel M; Bronich, Tatiana K; Band, Hamid

    2016-03-01

    Targeted delivery of anticancer drugs to tumor cells using monoclonal antibodies against oncogenic cell surface receptors is an emerging therapeutic strategy. These strategies include drugs directly conjugated to monoclonal antibodies through chemical linkers (Antibody-Drug Conjugates, ADCs) or those encapsulated within nanoparticles that in turn are conjugated to targeting antibodies (Antibody-Nanoparticle Conjugates, ANPs). The recent FDA approval of the ADC Trastuzumab-TDM1 (Kadcyla; Genentech; San Francisco) for the treatment of ErbB2-overexpressing metastatic breast cancer patients has validated the strong potential of these strategies. Even though the activity of ANPs and ADCs is dependent on lysosomal traffic, the roles of the endocytic route traversed by the targeted receptor and of cancer cell-specific alterations in receptor dynamics on the efficiency of drug delivery have not been considered in these new targeted therapies. For example, constitutive association with the molecular chaperone HSP90 is thought to either retard ErbB2 endocytosis or to promote its recycling, traits undesirable for targeted therapy with ANPs and ADCs. HSP90 inhibitors are known to promote ErbB2 ubiquitination, targeting to lysosome and degradation. We therefore hypothesized that ErbB2-targeted drug delivery using Trastuzumab-conjugated nanoparticles could be significantly improved by HSP90 inhibitor-promoted lysosomal traffic of ErbB2. Studies reported here validate this hypothesis and demonstrate, both in vitro and in vivo, that HSP90 inhibition facilitates the intracellular delivery of Trastuzumab-conjugated ANPs carrying a model chemotherapeutic agent, Doxorubicin, specifically into ErbB2-overexpressing breast cancer cells, resulting in improved antitumor activity. These novel findings highlight the need to consider oncogene-specific alterations in receptor traffic in the design of targeted drug delivery strategies. We suggest that combination of agents that enhance receptor

  7. Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth.

    PubMed

    Yen, Lily; Cao, Zhongwei; Wu, Xiuli; Ingalla, Ellen R Q; Baron, Colin; Young, Lawrence J T; Gregg, Jeffrey P; Cardiff, Robert D; Borowsky, Alexander D; Sweeney, Colleen; Carraway, Kermit L

    2006-12-01

    Dysregulation of ErbB receptor tyrosine kinases is thought to promote mammary tumor progression by stimulating tumor cell growth and invasion. Overexpression and aberrant activation of ErbB2/HER2 confer aggressive and malignant characteristics to breast cancer cells, and patients displaying ErbB2-amplified breast cancer face a worsened prognosis. Recent studies have established that ErbB2 and ErbB3 are commonly co-overexpressed in breast tumor cell lines and in patient samples. ErbB2 heterodimerizes with and activates the ErbB3 receptor, and the two receptors synergize in promoting growth factor-induced cell proliferation, transformation, and invasiveness. Our previous studies have shown that the neuregulin receptor degradation protein-1 (Nrdp1) E3 ubiquitin ligase specifically suppresses cellular ErbB3 levels by marking the receptor for proteolytic degradation. Here, we show that overexpression of Nrdp1 in human breast cancer cells results in the suppression of ErbB3 levels, accompanied by the inhibition of cell growth and motility and the attenuation of signal transduction pathways. In contrast, either Nrdp1 knockdown or the overexpression of a dominant-negative form enhances ErbB3 levels and cellular proliferation. Additionally, Nrdp1 expression levels inversely correlate with ErbB3 levels in primary human breast cancer tissue and in a mouse model of ErbB2 mammary tumorigenesis. Our observations suggest that Nrdp1-mediated ErbB3 degradation suppresses cellular growth and motility, and that Nrdp1 loss in breast tumors may promote tumor progression by augmenting ErbB2/ErbB3 signaling.

  8. Hepato- and nephroprotective effects of bradykinin potentiating factor from scorpion (Buthus occitanus) venom on mercuric chloride-treated rats

    PubMed Central

    Salman, Muhammad M. A.; Kotb, Ahmed M.; Haridy, Mohie A. M.; Hammad, Seddik

    2016-01-01

    Bioactive peptides such as bradykinin potentiating factor (BPF), have, anti-oxidative, anti-inflammatory, immunomodulatory and ameliorative effects in chronic diseases and play a potential role in cancer prevention. It is known that the liver and kidney accumulate inorganic mercury upon exposure, which often leads to mercury intoxication in these organs. In this study, we investigated the effect of bradykinin potentiating factor (BPF), a scorpion venom peptide, on mercuric chloride-induced hepatic and renal toxicity in rats. We used 20 adult male Albino rats divided into four equal groups: the first group was injected with saline (control); the second group was administered daily with mercuric chloride (HgCl2) for 2 weeks; the third group was administered with BPF twice weekly for 2 successive weeks, while the fourth group was exposed to BPF followed by HgCl2. We observed that HgCl2 treated rats had a significant increase in serum ALT, AST, ALP, creatinine and urea levels compared to control. Furthermore, HgCl2 treated rats showed a marked decrease in total proteins, albumin and uric acids compared to control. The previously studied parameters were not significantly changed in BPF pretreated rats compared to control. Moreover, a significant decrease in the activities of glutathione perioxidase (GSH), superoxide dismutase (SOD), and catalase (CAT), in addition to a significant increase in the level of malondialdehyde (MDA) were observed in hepatic and renal tissues of rats after HgCl2 treatment. In contrast, the HgCl2/BPF treated rats showed a significant elevation in the activity of GSH, SOD, and CAT accompanied with a significant regression in the level of MDA compared to the HgCl2 exposed rats. We conclude that treatment with BPF is a promising prophylactic approach for the management of mercuric chloride-induced hepato- and nephro-toxicities. PMID:28337111

  9. Bowman-Birk protease inhibitor from Vigna unguiculata seeds enhances the action of bradykinin-related peptides.

    PubMed

    da Cunha Morales Álvares, Alice; Schwartz, Elisabeth Ferroni; Amaral, Nathalia Oda; Trindade, Neidiane Rosa; Pedrino, Gustavo Rodrigues; Silva, Luciano Paulino; de Freitas, Sonia Maria

    2014-10-30

    The hydrolysis of bradykinin (Bk) by different classes of proteases in plasma and tissues leads to a decrease in its half-life. Here, Bk actions on smooth muscle and in vivo cardiovascular assays in association with a protease inhibitor, Black eyed-pea trypsin and chymotrypsin inhibitor (BTCI) and also under the effect of trypsin and chymotrypsin were evaluated. Two synthetic Bk-related peptides, Bk1 and Bk2, were used to investigate the importance of additional C-terminal amino acid residues on serine protease activity. BTCI forms complexes with Bk and analogues at pH 5.0, 7.4 and 9.0, presenting binding constants ranging from 103 to 104 M-1. Formation of BTCI-Bk complexes is probably driven by hydrophobic forces, coupled with slight conformational changes in BTCI. In vitro assays using guinea pig (Cavia porcellus) ileum showed that Bk retains the ability to induce smooth muscle contraction in the presence of BTCI. Moreover, no alteration in the inhibitory activity of BTCI in complex with Bk and analogous was observed. When the BTCI and BTCI-Bk complexes were tested in vivo, a decrease of vascular resistance and consequent hypotension and potentiating renal and aortic vasodilatation induced by Bk and Bk2 infusions was observed. These results indicate that BTCI-Bk complexes may be a reliable strategy to act as a carrier and protective approach for Bk-related peptides against plasma serine proteases cleavage, leading to an increase in their half-life. These findings also indicate that BTCI could remain stable in some tissues to inhibit chymotrypsin or trypsin-like enzymes that cleave and inactivate bradykinin in situ.

  10. Bradykinin and vasopressin stimulate Na/sup +/-K/sup +/-Cl/sup -/ cotransport in cultured endothelial cells

    SciTech Connect

    Brock, T.A.; Brugnara, C.; Canessa, M.; Gimbrone, M.A. Jr.

    1986-06-01

    The authors have characterized a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in vascular endothelial cells (EC) cultured from different blood vessels and species that is inhibited by the diuretics furosemide and bumentanide. Inward /sup 86/Rb influx transported by the Na/sup +/-K/sup +/ pump in cultured EC from bovine and pig aorta, bovine vena cava, and baboon cephalic vein but not in human umbilical or saphenous vein EC. External Na/sup +/ or Cl/sup -/-stimulated, ouabain-insensitive /sup 86/Rb influx is equal to furosemide or bumetanide-sensitive /sup 86/Rb influx. Ouabain-insensitive /sup 22/Na influx is also partially inhibited by these drugs and stimulated by increasing external K/sup +/ or Cl/sup -/. Net Na/sup +/ extrusion occurs via the Na/sup +/-K/sup +/-Cl/sup -/ cotransporter in the absence of external K/sup +/, whereas net Na/sup +/ influx occurs at higher external K/sup +/. Maximal concentrations (100 nM) of bradykinin and vasopressin increase the initial rate of bumetanide-sensitive /sup 86/Rb influx by approx.60 and 70%. Addition of either ethyleneglycol-bis(..beta..-aminotethylether)-N,N'-tetraacetic acid or LaCl/sub 3/ (to block calcium influx) prevents bradykinin-stimulated /sup 86/Rb influx. When intracellular calcium is elevated using ionomycin (100 nM), a Ca/sup 2 +/ionophore, bumetanide-sensitive /sup 86/Rb influx increases approx.twofold. In contrast, isoproterenol (100 ..mu..M) and forskolin (50 /sup +/M), adenylate cyclase stimulators, decrease furosemide-sensitive /sup 86/Rb influx. Thus in certain types of cultured EC, a Na/sup +/-K/sup +/-Cl/sup -/ cotransporter mediates a fraction of K/sup +/ influx quantitatively as important as the Na/sup +/-K/sup +/ pump (ouabain-sensitive /sup 86/Rb influx) and appears to be modulated by Ca/sup 2 +/ and cyclic nucleotides.

  11. Resetting of renal tissular renin-angiotensin and bradykinin-kallikrein systems after unilateral kidney denervation in rats.

    PubMed

    Bohlender, Jürgen M; Nussberger, Jürg; Birkhäuser, Frédéric; Grouzmann, Eric; Thalmann, George N; Imboden, Hans

    2017-02-20

    The renal tissular renin-angiotensin and bradykinin-kallikrein systems control kidney function together with the renal sympathetic innervation but their interaction is still unclear. To further elucidate this relationship, we investigated these systems in rats 6 days after left kidney denervation (DNX, n = 8) compared to sham-operated controls (CTR, n = 8). Plasma renin concentration was unchanged in DNX vs. CTR (p = NS). Kidney bradykinin (BK) and angiotensin (Ang) I and II concentrations decreased bilaterally in DNX vs. CTR rats (~20 to 40%, p < 0.05) together with Ang IV and V concentrations that were extremely low (p = NS). Renin, Ang III and dopamine concentrations decreased by ~25 to 50% and norepinephrine concentrations by 99% in DNX kidneys (p < 0.05) but were unaltered in opposite kidneys. Ang II/I and KA were comparable in DNX, contralateral and CTR kidneys. Ang III/II increased in right vs. DNX or CTR kidneys (40-50%, p < 0.05). Ang II was mainly located in tubular epithelium by immunocytological staining and its cellular distribution was unaffected by DNX. Moreover, the angiotensinergic and catecholaminergic innervation of right kidneys was unchanged vs. CTR. We found an important dependency of tissular Ang and BK levels on the renal innervation that may contribute to the resetting of kidney function after DNX. The DNX-induced peptide changes were not readily explained by kidney KA, renin or plasma Ang I generation. However, tissular peptide metabolism and compartmentalization may have played a central role. The mechanisms behind the concentration changes remain unclear and deserve further clarification.

  12. 45 CFR 73b.2 - Rules and regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Rules and regulations. 73b.2 Section 73b.2 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DEBARMENT OR SUSPENSION OF FORMER... those regulations from the Assistant General Counsel, Business and Administrative Law...

  13. 45 CFR 73b.2 - Rules and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Rules and regulations. 73b.2 Section 73b.2 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION DEBARMENT OR SUSPENSION OF FORMER... those regulations from the Assistant General Counsel, Business and Administrative Law...

  14. 26 CFR 1.663(b)-2 - Election.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... extensions thereof). Such election shall become irrevocable after the last day prescribed for making it. (2... election shall become irrevocable after the last day prescribed for making it. (b) Elections under prior... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Election. 1.663(b)-2 Section 1.663(b)-2...

  15. 26 CFR 1.663(b)-2 - Election.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... extensions thereof). Such election shall become irrevocable after the last day prescribed for making it. (2... election shall become irrevocable after the last day prescribed for making it. (b) Elections under prior... 26 Internal Revenue 8 2013-04-01 2013-04-01 false Election. 1.663(b)-2 Section 1.663(b)-2...

  16. 26 CFR 1.663(b)-2 - Election.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... extensions thereof). Such election shall become irrevocable after the last day prescribed for making it. (2... election shall become irrevocable after the last day prescribed for making it. (b) Elections under prior... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Election. 1.663(b)-2 Section 1.663(b)-2...

  17. Aptamer to ErbB-2/HER2 enhances degradation of the target and inhibits tumorigenic growth

    PubMed Central

    Mahlknecht, Georg; Maron, Ruth; Mancini, Maicol; Schechter, Bilha; Sela, Michael; Yarden, Yosef

    2013-01-01

    Aptamers, oligonucleotides able to avidly bind cellular targets, are emerging as promising therapeutic agents, analogous to monoclonal antibodies. We selected from a DNA library an aptamer specifically recognizing human epidermal growth factor receptor 2 (ErbB-2/HER2), a receptor tyrosine kinase, which is overexpressed in a variety of human cancers, including breast and gastric tumors. Treatment of human gastric cancer cells with a trimeric version (42 nucleotides) of the selected aptamer (14 nucleotides) resulted in reduced cell growth in vitro, but a monomeric version was ineffective. Likewise, when treated with the trimeric aptamer, animals bearing tumor xenografts of human gastric origin reflected reduced rates of tumor growth. The antitumor effect of the aptamer was nearly twofold stronger than that of a monoclonal anti–ErbB-2/HER2 antibody. Consistent with aptamer-induced intracellular degradation of ErbB-2/HER2, incubation of gastric cancer cells with the trimeric aptamer promoted translocation of ErbB-2/HER2 from the cell surface to cytoplasmic puncta. This translocation was associated with a lysosomal hydrolase-dependent clearance of the ErbB-2/HER2 protein from cell extracts. We conclude that targeting ErbB-2/HER2 with DNA aptamers might retard the tumorigenic growth of gastric cancer by means of accelerating lysosomal degradation of the oncoprotein. This work exemplifies the potential pharmacological utility of aptamers directed at cell surface proteins, and it highlights an endocytosis-mediated mechanism of tumor inhibition. PMID:23630281

  18. All-MgB2 Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Saito, S.; Semba, K.; Makimoto, T.; Naito, M.

    2005-04-01

    Sandwich-type all-MgB2 Josephson tunnel junctions (MgB2/AlOx/MgB2) have been fabricated with as-grown MgB2 films formed by molecular-beam epitaxy. The junctions exhibit substantial superconducting current (IcRN product ˜0.8mV at 4.2 K), a well-defined superconducting gap (Δ=2.2-2.3mV), and clear Fraunhofer patterns. The superconducting gap voltage of Δ agrees well with the smaller gap in the multigap scenario. The results demonstrate that MgB2 has great promise for superconducting electronics that can be operated at T ˜20K.

  19. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A.

    PubMed

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W; Wines, Pamela G; Cryan, Ellen V; Demarest, Keith T

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A(2) (PLA(2))/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca(2+)-mobilization and enhanced bradykinin-promoted Ca(2+)-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARgamma agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  20. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    SciTech Connect

    Tang, Yuting . E-mail: ytang@prdus.jnj.com; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  1. Novel Roles for Kv7 Channels in Shaping Histamine-Induced Contractions and Bradykinin-Dependent Relaxations in Pig Coronary Arteries.

    PubMed

    Chen, Xingjuan; Li, Wennan; Hiett, S Christopher; Obukhov, Alexander G

    2016-01-01

    Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in "healthy" and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre-contracted CAs

  2. Novel Roles for Kv7 Channels in Shaping Histamine-Induced Contractions and Bradykinin-Dependent Relaxations in Pig Coronary Arteries

    PubMed Central

    Chen, Xingjuan; Li, Wennan; Hiett, S. Christopher; Obukhov, Alexander G.

    2016-01-01

    Voltage-gated Kv7 channels are inhibited by agonists of Gq-protein-coupled receptors, such as histamine. Recent works have provided evidence that inhibition of vascular Kv7 channels may trigger vessel contractions. In this study, we investigated how Kv7 activity modulates the histamine-induced contractions in “healthy” and metabolic syndrome (MetS) pig right coronary arteries (CAs). We performed isometric tension and immunohistochemical studies with domestic, lean Ossabaw, and MetS Ossabaw pig CAs. We found that neither the Kv7.2/Kv7.4/Kv7.5 activator ML213 nor the general Kv7 inhibitor XE991 altered the tension of CA rings under preload, indicating that vascular Kv7 channels are likely inactive in the preloaded rings. Conversely, ML213 potently dilated histamine-pre-contracted CAs, suggesting that Kv7 channels are activated during histamine applications and yet partially inhibited by histamine. Immunohistochemistry analysis revealed strong Kv7.4 immunostaining in the medial and intimal layers of the CA wall, whereas Kv7.5 immunostaining intensity was strong in the intimal but weak in the medial layers. The medial Kv7 immunostaining was significantly weaker in MetS Ossabaw CAs as compared to lean Ossabaw or domestic CAs. Consistently, histamine-pre-contracted MetS Ossabaw CAs exhibited attenuated ML213-dependent dilations. In domestic pig CAs, where medial Kv7 immunostaining intensity was stronger, histamine-induced contractions spontaneously decayed to ~31% of the peak amplitude within 4 minutes. Oppositely, in Ossabaw CAs, where Kv7 immunostaining intensity was weaker, the histamine-induced contractions were more sustained. XE991 pretreatment significantly slowed the decay rate of histamine-induced contractions in domestic CAs, supporting the hypothesis that increased Kv7 activity correlates with a faster rate of histamine-induced contraction decay. Alternatively, XE991 significantly decreased the amplitude of bradykinin-dependent dilations in pre

  3. Characterization of the promoter region of the human c-erbB-2 protooncogene.

    PubMed Central

    Ishii, S; Imamoto, F; Yamanashi, Y; Toyoshima, K; Yamamoto, T

    1987-01-01

    Three overlapping genomic clones that contain the 5'-terminal portion of the human c-erbB-2 gene (ERBB2) were isolated. The promoter region was identified by nuclease S1 mapping with c-erbB-2 mRNA. Seven transcriptional start sites were identified. DNA sequence analysis showed that the promoter region contains a "TATA box" and a "CAAT box" about 30 and 80 base pairs (bp), respectively, upstream of the most downstream RNA initiation site. Two putative binding sites for transcription factor Sp1 were identified about 50 and 110 bp upstream of the CAAT box, and six GGA repeats were found between the CAAT box and the TATA box. This region had strong promoter activity when placed upstream of the bacterial chloramphenicol acetyltransferase gene and transfected into monkey CV-1 cells. These data indicate that the promoter of the human c-erbB-2 protooncogene is different from that of the protooncogene c-erbB-1 (epidermal growth factor receptor gene), which does not contain either a TATA box or a CAAT box. Comparison of the promoter sequences and activities of the two protooncogenes should be helpful in analysis of the regulatory mechanism of expression of their gene products, which are growth-factor receptors. Images PMID:2885835

  4. The CYP2B2 5' flank contains a complex glucocorticoid response unit.

    PubMed

    Audet-Walsh, Etienne; Lachaud, Antoine Amaury; Anderson, Alan

    2008-11-15

    Rat CYP2B1 and CYP2B2 and mouse CYP2B10 are dramatically induced by phenobarbital (PB) in liver. PB responsiveness requires the constitutive androstane receptor (CAR). However, dexamethasone treatment can also induce CYP2B genes in both rat and mouse liver. Three regions have been shown to be involved in conferring dexamethasone responsiveness on CYP2B2 reporter constructs. They are the PB response unit, a functional glucocorticoid response element at -1.3kb in the 5' flank and a weak element in the basal promoter. We report here the identification, by deletion analysis of the CYP2B2 5' flank, of new glucocorticoid response elements or accessory factor sites. Moreover, we show that CAR acts as an accessory factor in the dexamethasone response in vivo of CYP2B10 protein in mice, by increasing both the basal and induced levels. We propose a model to explain the dexamethasone responsiveness of the CYP2B2 gene in which induction is mediated by a complex glucocorticoid response unit.

  5. Rnd3-induced cell rounding requires interaction with Plexin-B2

    PubMed Central

    McColl, Brad; Garg, Ritu; Riou, Philippe; Riento, Kirsi

    2016-01-01

    ABSTRACT Rnd proteins are atypical members of the Rho GTPase family that induce actin cytoskeletal reorganization and cell rounding. Rnd proteins have been reported to bind to the intracellular domain of several plexin receptors, but whether plexins contribute to the Rnd-induced rounding response is not known. Here we show that Rnd3 interacts preferentially with plexin-B2 of the three plexin-B proteins, whereas Rnd2 interacts with all three B-type plexins, and Rnd1 shows only very weak interaction with plexin-B proteins in immunoprecipitations. Plexin-B1 has been reported to act as a GAP for R-Ras and/or Rap1 proteins. We show that all three plexin-B proteins interact with R-Ras and Rap1, but Rnd proteins do not alter this interaction or R-Ras or Rap1 activity. We demonstrate that plexin-B2 promotes Rnd3-induced cell rounding and loss of stress fibres, and enhances the inhibition of HeLa cell invasion by Rnd3. We identify the amino acids in Rnd3 that are required for plexin-B2 interaction, and show that mutation of these amino acids prevents Rnd3-induced morphological changes. These results indicate that plexin-B2 is a downstream target for Rnd3, which contributes to its cellular function. PMID:27656111

  6. Production and characterization of aflatoxin B2a antiserum.

    PubMed Central

    Gaur, P K; Lau, H P; Pestka, J J; Chu, F S

    1981-01-01

    The specificity and sensitivity of antiserum elicited from rabbits against aflatoxin B2a-bovine serum albumin conjugates were characterized with a radioimmunoassay (RIA) and an enzyme-linked immunosorbent assay (ELISA). Aflatoxin B1 was first converted to aflatoxin B2a and then conjugated to bovine serum albumin and horseradish peroxidase by a reductive alkylation method. The antiserum was developed in New Zealand white rabbits by multiple-site injection with the aflatoxin B2a-bovine serum albumin conjugate. Antibody titers were determined by both RIA and ELISA. Competitive RIAs with various aflatoxin analogs indicated that the antiserum was most reactive with aflatoxin B1 and slightly cross-reactive with aflatoxins B2a, B2, and M1. Competitive ELISAs showed the antiserum to be equally specific for aflatoxins B2a and B12 and less reactive with aflatoxins B2 and M1. The relative sensitivities of RIA and ELISA for aflatoxin B1 quantitation were 100 and 10 pg per assay, respectively. PMID:7235694

  7. A systematic expression analysis implicates Plexin-B2 and its ligand Sema4C in the regulation of the vascular and endocrine system.

    PubMed

    Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas

    2010-09-10

    Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair.

  8. Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling.

    PubMed Central

    Graus-Porta, D; Beerli, R R; Hynes, N E

    1995-01-01

    ErbB-2 becomes rapidly phosphorylated and activated following treatment of many cell lines with epidermal growth factor (EGF) or Neu differentiation factor (NDF). However, these factors do not directly bind ErbB-2, and its activation is likely to be mediated via transmodulation by other members of the type I/EGF receptor (EGFR)-related family of receptor tyrosine kinases. The precise role of ErbB-2 in the transduction of the signals elicited by EGF and NDF is unclear. We have used a novel approach to study the role of ErbB-2 in signaling through this family of receptors. An ErbB-2-specific single-chain antibody, designed to prevent transit through the endoplasmic reticulum and cell surface localization of ErbB-2, has been expressed in T47D mammary carcinoma cells, which express all four known members of the EGFR family. We show that cell surface expression of ErbB-2 was selectively suppressed in these cells and that the activation of the mitogen-activated protein kinase pathway and p70/p85S6K, induction of c-fos expression, and stimulation of growth by NDF were dramatically impaired. Activation of mitogen-activated protein kinase and p70/p85S6K and induction of c-fos expression by EGF were also significantly reduced. We conclude that in T47D cells, ErbB-2 is a major NDF signal transducer and a potentiator of the EGF signal. Thus, our observations demonstrate that ErbB-2 plays a central role in the type I/EGFR-related family of receptors and that receptor transmodulation represents a crucial step in growth factor signaling. PMID:7532277

  9. Properties of L=1 B(1) and B(2)* mesons.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; Martins, C De Oliveira; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Williams, M R J; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-10-26

    This Letter presents the first strong evidence for the resolution of the excited B mesons B(1) and B(2)* as two separate states in fully reconstructed decays to B(+)(*)pi(-). The mass of B(1) is measured to be 5720.6+/-2.4+/-1.4 MeV/c(2) and the mass difference DeltaM between B(2)* and B(1) is 26.2+/-3.1+/-0.9 MeV/c;{2}, giving the mass of the B(2)* as 5746.8+/-2.4+/-1.7 MeV/c(2). The production rate for B(1) and B(2)* mesons is determined to be a fraction (13.9+/-1.9+/-3.2)% of the production rate of the B+ meson.

  10. Al addition effect of bulk MgB 2 superconductor

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Ikeda, H.; Yoshizaki, R.

    2007-10-01

    The properties of transport and magnetization have been investigated for bulk MgB2Alx superconductor with Al addition (x = 0, 0.5, 1 wt%). MgB2 bulk samples sintered at different temperatures at 650-740 °C were prepared in the undoped state. The temperature and applied field dependencies of resistivity and magnetization were measured for the samples. The sample sintered at 690 °C exhibited the highest critical current density (Jc) and the lowest resistivity. This undoped sample was chosen as a criterion sample, and the effect of Al addition on the MgB2 bulk was studied from the transport and magnetization properties in a magnetic field. For MgB2Alx bulk samples sintered at 690 °C, the resistivity increased and Jc decreased as amount of Al was increased.

  11. Conditional Deletion of Hsd11b2 in the Brain Causes Salt Appetite and Hypertension

    PubMed Central

    Evans, Louise C.; Ivy, Jessica R.; Wyrwoll, Caitlin; McNairn, Julie A.; Menzies, Robert I.; Christensen, Thorbjørn H.; Al-Dujaili, Emad A.S.; Kenyon, Christopher J.; Mullins, John J.; Seckl, Jonathan R.; Holmes, Megan C.

    2016-01-01

    Background— The hypertensive syndrome of Apparent Mineralocorticoid Excess is caused by loss-of-function mutations in the gene encoding 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), allowing inappropriate activation of the mineralocorticoid receptor by endogenous glucocorticoid. Hypertension is attributed to sodium retention in the distal nephron, but 11βHSD2 is also expressed in the brain. However, the central contribution to Apparent Mineralocorticoid Excess and other hypertensive states is often overlooked and is unresolved. We therefore used a Cre-Lox strategy to generate 11βHSD2 brain-specific knockout (Hsd11b2.BKO) mice, measuring blood pressure and salt appetite in adults. Methods and Results— Basal blood pressure, electrolytes, and circulating corticosteroids were unaffected in Hsd11b2.BKO mice. When offered saline to drink, Hsd11b2.BKO mice consumed 3 times more sodium than controls and became hypertensive. Salt appetite was inhibited by spironolactone. Control mice fed the same daily sodium intake remained normotensive, showing the intrinsic salt resistance of the background strain. Dexamethasone suppressed endogenous glucocorticoid and abolished the salt-induced blood pressure differential between genotypes. Salt sensitivity in Hsd11b2.BKO mice was not caused by impaired renal sodium excretion or volume expansion; pressor responses to phenylephrine were enhanced and baroreflexes impaired in these animals. Conclusions— Reduced 11βHSD2 activity in the brain does not intrinsically cause hypertension, but it promotes a hunger for salt and a transition from salt resistance to salt sensitivity. Our data suggest that 11βHSD2-positive neurons integrate salt appetite and the blood pressure response to dietary sodium through a mineralocorticoid receptor–dependent pathway. Therefore, central mineralocorticoid receptor antagonism could increase compliance to low-sodium regimens and help blood pressure management in cardiovascular disease. PMID

  12. Hyperoxic gassing with Tiron enhances bradykinin-induced endothelium-dependent and EDH-type relaxation through generation of hydrogen peroxide.

    PubMed

    Wong, Pui San; Roberts, Richard E; Randall, Michael D

    2015-01-01

    Oxygenation with 95%O2 is routinely used in organ bath studies. However, hyperoxia may affect tissue responses, particularly in studies which involve reactive oxygen species (ROS). Here, the effects of the antioxidant, Tiron, were investigated under different gassing conditions in the porcine isolated coronary artery (PCA). Distal PCAs from male and female pigs were mounted in a wire myograph gassed with either 95%O2/5%CO2 or 95% air/5%CO2 and pre-contracted with U46619. Concentration-response curves to bradykinin were constructed in the presence of Tiron (1mM), a cell permeable superoxide scavenger and catalase (1000Uml(-1)) to breakdown H2O2. The H2O2 level in Krebs'-Henseleit solution was detected using Amplex Red. Bradykinin produced concentration-dependent vasorelaxations in male and female PCAs when gassed with either 95%O2 or air, with no differences in the Rmax or EC50. Tiron increased the potency of bradykinin only when gassed with 95%O2 in PCAs from both sexes. At 95%O2, catalase prevented the leftward shift caused by Tiron in both sexes indicating that catalase prevented the formation of H2O2 by Tiron. In female PCAs, addition of catalase to Tiron significantly reduced the Rmax. In the EDH-type response (using L-NAME and indomethacin), Tiron enhanced the potency of the bradykinin-induced vasorelaxation when gassed with 95%O2 in PCAs from both sexes. Biochemical analysis using Amplex Red demonstrated that H2O2 was generated in Krebs'-Henseleit solution when gassed with 95%O2, but not with air. Therefore, hyperoxic gassing conditions could alter the environment generating superoxide within the Krebs'-Henseleit buffer, which may, in turn, influence the in vitro pharmacological responses.

  13. Mechanical and thermal properties of bulk ZrB2

    NASA Astrophysics Data System (ADS)

    Nakamori, Fumihiro; Ohishi, Yuji; Muta, Hiroaki; Kurosaki, Ken; Fukumoto, Ken-ichi; Yamanaka, Shinsuke

    2015-12-01

    ZrB2 appears to have formed in the fuel debris at the Fukushima Daiichi nuclear disaster site, through the reaction between Zircaloy cladding materials and the control rod material B4C. Since ZrB2 has a high melting point of 3518 K, the ceramic has been widely studied as a heat-resistant material. Although various studies on the thermochemical and thermophysical properties have been performed for ZrB2, significant differences exist in the data, possibly due to impurities or the porosity within the studied samples. In the present study, we have prepared a ZrB2 bulk sample with 93.1% theoretical density by sintering ZrB2 powder. On this sample, we have comprehensively examined the thermal and mechanical properties of ZrB2 by the measurement of specific heat, ultrasonic sound velocities, thermal diffusivity, and thermal expansion. Vickers hardness and fracture toughness were also measured and found to be 13-23 GPa and 1.8-2.8 MPa m0.5, respectively. The relationships between these properties were carefully examined in the present study.

  14. Magnetic lenses using different MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Choi, S.; Matsumoto, S.; Teranishi, R.; Giunchi, G.; Figini Albisetti, A.; Kiyoshi, T.

    2012-02-01

    A magnetic lens allows the concentration of magnetic fields using the diamagnetism of superconductors. The important features of the magnetic lens are a tapered inner diameter from which the magnetic flux is extruded and a slit to suppress the circumference current that shields the magnetic flux. This concept was experimentally confirmed through the use of GdBaCuO bulks and a stack of NbTi/Nb/Cu sheets. We refer to this arrangement as a magnetic lens. The Mg-reactive liquid infiltration (Mg-RLI) process developed by Edison SpA is suitable for the production of large and high-density MgB2 bulks. Three MgB2 bulk magnetic lenses, each with a different microstructure, were fabricated following the Mg-RLI process. The properties of the MgB2 magnetic lenses were measured in a cryocooler system as well as in liquid helium. The results confirmed that the MgB2 bulk magnetic lenses could concentrate a magnetic field and that their field concentration properties were greatly affected by the temperature and the external field. In addition, the microstructure of the MgB2 bulk also had an influence on the magnetic properties at different external fields. The results indicated that the MgB2 lens might be utilized as a field amplifier in intermediate fields.

  15. Memo mediates ErbB2-driven cell motility.

    PubMed

    Marone, Romina; Hess, Daniel; Dankort, David; Muller, William J; Hynes, Nancy E; Badache, Ali

    2004-06-01

    Clinical studies have revealed that cancer patients whose tumours have increased ErbB2 expression tend to have more aggressive, metastatic disease, which is associated with parameters predicting a poor outcome. The molecular basis underlying ErbB2-dependent cell motility and metastases formation, however, still remains poorly understood. In this study, we show that activation of a set of signalling molecules, including MAPK, phosphatidylinositol-3-OH kinase (PI(3)K) and Src, is required for Neu/ErbB2-dependent lamellipodia formation and for motility of breast carcinoma cells. Stimulation of these molecules, however, failed to induce efficient cell migration in the absence of Neu/ErbB2 phosphorylation at Tyr 1201 or Tyr 1227. We describe a novel molecule, Memo (mediator of ErbB2-driven cell motility), that interacts with a phospho-Tyr 1227-containing peptide, most probably through the Shc adaptor protein. After Neu/ErbB2 activation, Memo-defective cells form actin fibres and grow lamellipodia, but fail to extend microtubules towards the cell cortex. Our data suggest that Memo controls cell migration by relaying extracellular chemotactic signals to the microtubule cytoskeleton.

  16. The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts.

    PubMed Central

    Kozma, R; Ahmed, S; Best, A; Lim, L

    1995-01-01

    The Ras-related protein Cdc42 plays a role in yeast cell budding and polarity. Two related proteins, Rac1 and RhoA, promote formation in mammalian cells of membrane ruffles and stress fibers, respectively, which contain actin microfilaments. We now show that microinjection of the related human Cdc42Hs into Swiss 3T3 fibroblasts induced the formation of peripheral actin microspikes, determined by staining with phalloidin. A proportion of these microspikes was found to be components of filopodia, as analyzed by time-lapse phase-contrast microscopy. The formation of filopodia was also found to be promoted by Cdc42Hs microinjection. This was followed by activation of Rac1-mediated membrane ruffling. Treatment with bradykinin also promoted formation of microspikes and filopodia as well as subsequent effects similar to that seen upon Cdc42Hs microinjection. These effects of bradykinin were specifically inhibited by prior microinjection of dominant negative Cdc42HsT17N, suggesting that bradykinin acts by activating cellular Cdc42Hs. Since filopodia have been ascribed an important sensory function in fibroblasts and are required for guidance of neuronal growth cones, these results indicate that Cdc42Hs plays an important role in determining mammalian cell morphology. PMID:7891688

  17. EphB2 activation is required for ependymoma development as well as inhibits differentiation and promotes proliferation of the transformed cell.

    PubMed

    Chen, Phylip; Rossi, Nathan; Priddy, Samuel; Pierson, Christopher R; Studebaker, Adam W; Johnson, Robert A

    2015-03-24

    Our intracranial implantation mouse model of ependymoma clearly demonstrates overexpression of the ephrin receptor EphB2 in Ink4a/Arf((-/-)) supratentorial embryonic neural stem cells (STeNSCs) to be essential for transformation and disease development; however the requirement for and consequence of receptor activation on transformation and neural stem cell function were not examined. We definitively illustrate the necessity for receptor activation in cellular transformation and the importance of implantation site and microenvironment in directing ependymoma development. In vitro assays of EphB2 overexpressing Ink4a/Arf((-/-)) STeNSCs showed no changes in their neural stem cell characteristics (stem cell marker expression and self-renewal) upon receptor activation, but EphB2 driven tumor cells were inhibited significantly in differentiation and exhibited increased tumorsphere formation and cellular proliferation in response to ephrin-B ligand mediated receptor activation. Additionally, we observed substantial differences in the phosphorylation state of several key proteins involved in Ras and p38 MAPK signaling when comparing EphB2 overexpressing Ink4a/Arf((-/-)) STeNSCs and tumor cells with relatively little change in total protein levels. We propose that EphB2 mediated ependymoma development is a multifactorial process requiring microenvironment directed receptor activation, resulting in changes in the phosphorylation status of key regulatory proteins, maintenance of a stem-like state and cellular proliferation.

  18. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  19. B-B bond activation and NHC ring-expansion reactions of diboron(4) compounds, and accurate molecular structures of B2(NMe2)4, B2eg2, B2neop2 and B2pin2.

    PubMed

    Eck, Martin; Würtemberger-Pietsch, Sabrina; Eichhorn, Antonius; Berthel, Johannes H J; Bertermann, Rüdiger; Paul, Ursula S D; Schneider, Heidi; Friedrich, Alexandra; Kleeberg, Christian; Radius, Udo; Marder, Todd B

    2017-03-14

    In this detailed study we report on the structures of the widely employed diboron(4) compounds bis(pinacolato)diboron (B2pin2) and bis(neopentyl glycolato)diboron (B2neop2), as well as bis(ethylene glycolato)diboron (B2eg2) and tetrakis(dimethylamino)diboron (B2(NMe2)4), and their reactivity, along with that of bis(catecholato)diboron (B2cat2) with backbone saturated and backbone unsaturared N-heterocyclic carbenes (NHCs) of different steric demand. Depending on the nature of the diboron(4) compound and the NHC used, Lewis-acid/Lewis-base adducts or NHC ring-expansion products stemming from B-B and C-N bond activation have been observed. The corresponding NHC adducts and NHC ring-expanded products were isolated and characterised via solid-state and solution NMR spectroscopy and X-ray diffraction. In general, we observed B-B bond and C-N bond activation at low temperature for B2eg2, at room temperature for B2neop2 and at higher temperature for B2cat2. The reactivity strongly depends on steric effects of the NHCs and the diboron(4) compounds, as well as on the corresponding Lewis-basicity and Lewis-acidity. Our results provide profound insight into the chemistry of these diboron(4) reagents with the nowadays ubiquitous NHCs, the stability of the corresponding NHC adducts and on B-B bond activation using Lewis-bases in general. We demonstrate that B-B bond activation may be triggered even at temperatures as low as -40 °C to -30 °C without any metal species involved. For example, the reactions of B2eg2 with sterically less demanding NHCs such as Me2Im(Me) and iPr2Im in solution led to the corresponding ring-expanded products at low temperatures. Furthermore, boronium [L2B(OR)2](+) and borenium [LB(OR)2](+) cations have been observed from the reaction of the bis-borate B2eg3 with the NHCs iPr2Im and Me2Im(Me), which led to the conclusion that the activation of bis-borates with NHCs (or Lewis-bases in general) might be a facile and simple route to access such species.

  20. The deaf and the dumb: the biology of ErbB-2 and ErbB-3.

    PubMed

    Citri, Ami; Skaria, Kochupurakkal Bose; Yarden, Yosef

    2003-03-10

    ErbB-2 (also called HER2/neu) and ErbB-3 are closely related to the epidermal growth factor receptor (EGFR/ErbB-1), but unlike EGFR, ErbB-2 is a ligandless receptor, whereas ErbB-3 lacks tyrosine kinase activity. Hence, both ErbB-2 and ErbB-3 are active only in the context of ErbB heterodimers, and ErbB-2. ErbB-3 heterodimers, which are driven by neuregulin ligands, are the most prevalent and potent complexes. These stringently controlled heterodimers are repeatedly employed throughout embryonic development and dictate the establishment of several cell lineages through mesenchyme-epithelial inductive processes and the interactions of neurons with muscle, glia, and Schwann cells. Likewise, the potent combination of signaling pathways engaged by the heterodimers drives an aggressive phenotype of tumors of secretory epithelia, including breast and lung cancers. This review highlights recent structural insights into the mechanism of ligand-induced heterodimer formation, and concentrates on signaling pathways employed by ErbB-2 and ErbB-3 in normal and in malignant cells.

  1. Epitaxial MgB2 thin films on ZrB2 buffer layers: structural characterization by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Ferrando, V.; Tarantini, C.; Bellingeri, E.; Manfrinetti, P.; Pallecchi, I.; Marré, D.; Plantevin, O.; Putti, M.; Felici, R.; Ferdeghini, C.

    2004-12-01

    Structural and superconducting properties of magnesium diboride thin films grown by pulsed laser deposition on zirconium diboride buffer layers were studied. We demonstrate that the ZrB2 layer is compatible with the MgB2 two step deposition process. Synchrotron radiation measurements, in particular anomalous diffraction measurements, allowed us to separate MgB2 peaks from ZrB2 ones and revealed that both layers have a single in plane orientation with a sharp interface between them. Moreover, the buffer layer avoids oxygen contamination from the sapphire substrate. The critical temperature of this film is near 37.6 K and the upper critical field measured at the Grenoble High Magnetic Field Laboratory up to 20.3 T is comparable with the highest ones reported in literature.

  2. A new structurally atypical bradykinin-potentiating peptide isolated from Crotalus durissus cascavella venom (South American rattlesnake).

    PubMed

    Lopes, Denise M; Junior, Norberto E G; Costa, Paula P C; Martins, Patrícia L; Santos, Cláudia F; Carvalho, Ellaine D F; Carvalho, Maria D F; Pimenta, Daniel C; Cardi, Bruno A; Fonteles, Manassés C; Nascimento, Nilberto R F; Carvalho, Krishnamurti M

    2014-11-01

    Venom glands of some snakes synthesize bradykinin-potentiating peptides (BPP's) which increase bradykinin-induced hypotensive effect and decrease angiotensin I vasopressor effect by angiotensin-converting enzyme (ACE) inhibition. The present study shows a new BPP (BPP-Cdc) isolated from Crotalus durissus cascavella venom: Pro-Asn-Leu-Pro-Asn-Tyr-Leu-Gly-Ile-Pro-Pro. Although BPP-Cdc presents the classical sequence IPP in the C-terminus, it has a completely atypical N-terminal sequence, which shows very low homology with all other BPPs isolated to date. The pharmacological effects of BPP-Cdc were compared to BBP9a from Bothrops jararaca and captopril. BPP-Cdc (1 μM) significantly increased BK-induced contractions (BK; 1 μM) on the guinea pig ileum by 267.8% and decreased angiotensin I-induced contractions (AngI; 10 nM) by 62.4% and these effects were not significantly different from those of BPP9a (1 μM) or captopril (200 nM). Experiments with 4-week hypertensive 2K-1C rats show that the vasopressor effect of AngI (10 ng) was decreased by 50 μg BPP-Cdc (69.7%), and this result was similar to that obtained with 50 μg BPP9a (69.8%). However, the action duration of BPP-Cdc (60 min) was 2 times greater than that of BPP-9a (30 min). On the other hand, the hypotensive effect of BK (250 ng) was significantly increased by 176.6% after BPP-Cdc (50 μg) administration, value 2.5 times greater than that obtained with BPP9a administered at the same doses (71.4%). In addition, the duration of the action of BPP-Cdc (120 min) was also at least 4 times greater than that of BPP-9a (30 min). Taken together, these results suggest that BPP-Cdc presents more selective action on arterial blood system than BPP9a. Besides the inhibition of ACE, it may present other mechanisms of action yet to be elucidated.

  3. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  4. Theory of B(2)O and BeB(2) nanotubes: new semiconductors and metals in one dimension.

    PubMed

    Zhang, Peihong; Crespi, Vincent H

    2002-07-29

    We describe two new boron-based nanotubes: B(2)O and BeB(2). Both are isoelectronic to graphite, have reasonable curvature energies, and have already been made in their bulk planar forms. The lowest energy allotrope of planar single-layer B(2)O is a semiconductor with a moderate band gap. The local density approximation band gap of the corresponding (3,0) B(2)O nanotube [similar in size to (9,0) carbon nanotube tube] is direct and around 1.6 eV, within a range inaccessible to previous C or BN nanotubes. Single-layer BeB(2) has a fascinating structure: the Be atoms rest above the boron hexagonal faces, nearly coplanar to the boron sheet. The unusual K-point pi-pi(*) Fermi-level degeneracy of graphite survives, while a new nearly pointlike Fermi surface appears at the M point. As a result, BeB(2) nanotubes are uniformly metallic.

  5. Zinc pyrithione inhibits caspase-3 activity, promotes ErbB1-ErbB2 heterodimerization and suppresses ErbB2 downregulation in cardiomyocytes subjected to ischemia/reperfusion.

    PubMed

    Bodiga, Vijaya Lakshmi; Thokala, Sandhya; Vemuri, Praveen Kumar; Bodiga, Sreedhar

    2015-12-01

    Heart tissue becomes zinc-depleted and the capacity to mobilize labile zinc is diminished, indicating zinc dyshomeostasis during ischemia/reperfusion (I/R). Apparently, zinc pyrithione restores the basal zinc levels during I/R and prevents apoptosis by activating phosphatidyl inositol-3-kinase/Akt and targeting mitochondrial permeability transition. Receptor tyrosine kinases of the ErbB family (ErbB1 to ErbB4) are cell surface proteins that can regulate cell growth, proliferation and survival. Previous studies have shown that zinc pyrithione-induced activation of PI3kinase/Akt requires ErbB2 expression. On the other hand, while I/R decreases ErbB2 levels causing cardiomyocyte dysfunction and cell death, zinc pyrithione restores ErbB2 levels and maintains cardiomyocyte function. H9c2 cells expressed all the four ErbBs, although the expression of ErbB1 and ErbB2 were higher compared to ErbB3 and ErbB4. Hypoxia/Reoxygenation (H/R) had opposing effects on the mRNA expression of ErbB1 and ErbB2. ErbB2 mRNA levels were enhanced, but corresponding ErbB2 protein levels decreased after reoxygenation. H/R induced the degradation of ErbB2 in caspase-3 dependent manner, with the formation of a 25kDa fragment. This fragment could be detected after H/R only upon treatment of the cells with a proteasomal inhibitor, ALLN, suggesting that caspase-mediated cleavage of 185kDa ErbB2 results in C-terminal cleavage and formation of 25kDa fragment, which is further degraded by proteasome. Heterodimerization and phosphorylation of ErbB2/ErbB1 which decreased upon reoxygenation, was promoted by zinc pyrithione. Zinc pyrithione effectively suppressed the caspase activation, decreased the proteolytic cleavage of ErbB2, enhanced the phosphorylation and activation of ErbB1-ErbB2 complexes and improved the cell survival after hypoxia/reoxygenation.

  6. Comparative, general pharmacology of SDZ NKT 343, a novel, selective NK1 receptor antagonist

    PubMed Central

    Walpole, C S J; Brown, M C S; James, I F; Campbell, E A; McIntyre, P; Docherty, R; Ko, S; Hedley, L; Ewan, S; Buchheit, K-H; Urban, L A

    1998-01-01

    The in vitro and in vivo pharmacology of SDZ NKT 343 (2-nitrophenyl-carbamoyl-(S)-prolyl-(S)-3-(2-naphthyl)alanyl-N-benzyl-N-methylamide), a novel tachykinin NK1 receptor antagonist was investigated.SDZ NKT 343 inhibited [3H]-substance P binding to the human NK1 receptor in transfected Cos-7 cell membranes (IC50=0.62±0.11 nM). In comparison, in the same assay Ki values for FK888, CP 99,994, SR 140,333 and RPR 100,893 were 2.13±0.04 nM, 0.96±0.20 nM, 0.15±0.06 nM and 1.77±0.41 nM, respectively. SDZ NKT 343 showed a markedly lower affinity at rat NK1 receptors in whole forebrain membranes (IC50=451±139 nM).SDZ NKT 343 caused an increase in EC50 as well as reduction in the number of binding sites (Bmax) determined for [3H]-substance P, suggesting a non-competitive interaction at the human NK1 receptor. SDZ NKT 343 also caused a reduction in the maximum elevation of [Ca2+]i evoked by substance P (SP) in human U373MG cells and depressed the maximum [Sar9]SP sulphone-induced contraction of the guinea-pig isolated ileum. The antagonism of SP effects on U373MG cells by SDZ NKT 343 was reversible.SDZ NKT 343 showed weak affinity to human NK2 and NK3 receptors in transfected Cos-7 cells (Ki of 0.52±0.04 μM and 3.4±1.2 μM, respectively). SDZ NKT 343 was inactive in a broad array of binding assays including the bradykinin B2 receptor the histamine H1 receptor, opiate receptors and adrenoceptors. SDZ NKT 343 only weakly inhibited the voltage-activated Ca2+ and Na+currents in guinea-pig dorsal root ganglion neurones. The enantiomer of SDZ NKT 343, (R,R)-SDZ NKT 343 was about 1000 times less active at human NK1 receptors expressed in Cos-7 cell membranes.Contractions of the guinea-pig ileum by [Sar9]SP sulphone were inhibited by SDZ NKT 343 in a concentration-dependent manner, with an IC50=1.60±0.94 nM, while the enantiomer (R,R)-SDZ NKT 343 was 100 times less active (IC50=162±26 nM). In comparison, in the same assay IC50 values for other NK1

  7. Ephrin-B2 elicits differential growth cone collapse and axon retraction in retinal ganglion cells from distinct retinal regions

    PubMed Central

    Petros, Timothy J.; Bryson, J. Barney; Mason, Carol

    2010-01-01

    The circuit for binocular vision and stereopsis is established at the optic chiasm, where retinal ganglion cell (RGC) axons diverge into the ipsilateral and contralateral optic tracts. In the mouse retina, ventrotemporal (VT) RGCs express the guidance receptor EphB1, which interacts with the repulsive guidance cue ephrin-B2 on radial glia at the optic chiasm to direct VT RGC axons ipsilaterally. RGCs in the ventral retina also express EphB2, which interacts with ephrin-B2, whereas dorsal RGCs express low levels of EphB receptors. To investigate how growth cones of RGCs from different retinal regions respond upon initial contact with ephrin-B2, we utilized time-lapse imaging to characterize the effects of ephrin-B2 on growth cone collapse and axon retraction in real time. We demonstrate that bath application of ephrin-B2 induces rapid and sustained growth cone collapse and axon retraction in VT RGC axons, whereas contralaterally-projecting dorsotemporal RGCs display moderate growth cone collapse and little axon retraction. Dose response curves reveal that contralaterally-projecting ventronasal axons are less sensitive to ephrin-B2 treatment compared to VT axons. Additionally, we uncovered a specific role for Rho kinase signaling in the retraction of VT RGC axons but not in growth cone collapse. The detailed characterization of growth cone behavior in this study comprises an assay for the study of Eph signaling in RGCs, and provides insight into the phenomena of growth cone collapse and axon retraction in general. PMID:20629048

  8. Deregulated ephrin-B2 expression in the mammary gland interferes with the development of both the glandular epithelium and vasculature and promotes metastasis formation.

    PubMed

    Haldimann, Mirjam; Custer, Domenica; Munarini, Nadia; Stirnimann, Christoph; Zürcher, Gisela; Rohrbach, Valeria; Djonov, Valentin; Ziemiecki, Andrew; Andres, Anne-Catherine

    2009-09-01

    Eph receptor tyrosine kinases and their membrane-bound ephrin ligands play key roles during morphogenesis and adult tissue homeostasis. Receptor-ligand interactions result in forward and reverse signalling from the receptor and ligand respectively. To delineate the role(s) of forward and reverse signalling in mammary gland biology we have established transgenic mice exhibiting mammary epithelial-specific overexpression of either the native ephrin-B2 or a dominant negative ephrin-B2 mutant incapable of reverse signalling. During pregnancy and lactation overexpression of the native ephrin-B2 resulted in precocious differentiation, whereas overexpression of mutated ephrin-B2 caused delayed epithelial differentiation and in disturbed tissue architecture. Both transgenes affected also mammary vascularisation. Whereas ephrin-B2 induced superfluous but organised capillaries, mutant ephrin-B2 overexpression resulted in an irregular vasculature with blind-ending capillaries. Mammary tumours were not observed in either transgenic line, however, the crossing with NeuT transgenic animals revealed that mutated ephrin-B2 expression significantly accelerated tumour growth and imposed a metastatic phenotype.

  9. Bradykinin modulates potassium and calcium currents in neuroblastoma hybrid cells via different pertussis toxin-insensitive pathways.

    PubMed

    Wilk-Blaszczak, M A; Gutowski, S; Sternweis, P C; Belardetti, F

    1994-01-01

    In NG108-15 cells, bradykinin (BK) activates a potassium current (IK,BK) and inhibits the voltage-dependent calcium current (ICa,V). BK also stimulates a phosphatidylinositol-specific phospholipase C (PI-PLC). The subsequent release of inositol 1,4,5-trisphosphate and increase in intracellular calcium contribute to IK,BK, through activation of a calcium-dependent potassium current. In membranes from these cells, stimulation of PI-PLC by BK is mediated by Gq and/or G11, two homologous, pertussis toxin-insensitive G proteins. Here, we have investigated the role of Gq/11 in the electrical responses to BK. GTP gamma S mimicked and occluded both actions of BK, and both effects were insensitive to pertussis toxin. Perfusion of an anti-Gq/11 alpha antibody into the pipette suppressed IK,BK, but not the inhibition of ICa,V by BK. Thus, BK couples to IK,BK via Gq/11, but coupling to ICa,V is most likely via a different, pertussis toxin-insensitive G protein.

  10. The effects of captopril on cardiac regression, blood pressure and bradykinin components in diabetic Wistar Kyoto rats.

    PubMed

    Sharma, J N; Kesavarao, U

    2011-01-01

    The present study examined the left ventricular wall thickness (LVWT), total urinary kallikrein, total plasma kininogen and mean arterial blood pressure (MABP) in diabetic and non-diabetic Wistar Kyoto (WKY) rats. The MABP was significantly raised (P<0.01) in diabetic WKY rats compared to the respective controls. The LVWT was also significantly (P<0.01) increased in diabetic WKY rats than that of control WKY rats. The mean total urinary kallikrein level and the mean total plasma kininogen level were higher (P<0.01) in diabetic WKY rats, when these rats were treated with captopril (40 mg/kg and 80 mg/kg) against the mean value obtained from control WKY rats. In conclusion, this investigation suggests that diabetes induced in these rats can cause hypertension, increased LVWT and changes in the BK-forming components. Captopril treatment caused reduction in MABP, regression of LVWT and alterations in bradykinin (BK)-forming components. The possible significance of these observations is discussed.

  11. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  12. EBSD analysis of MgB2 bulk superconductors

    NASA Astrophysics Data System (ADS)

    Koblischka-Veneva, A.; Koblischka, M. R.; Schmauch, J.; Inoue, K.; Muralidhar, M.; Berger, K.; Noudem, J.

    2016-04-01

    The grain orientation, the texture and the grain boundary misorientations are important parameters for the understanding of the magnetic properties of the bulk MgB2 samples intended for super-magnet applications. Such data can be provided by electron backscatter diffraction (EBSD) analysis. However, as the grain size (GS) of the MgB2 bulks is preferably in the 100-200 nm range, the common EBSD technique working in reflection operates properly only on highly dense samples. In order to achieve a reasonably good Kikuchi pattern quality on all samples, we apply here the newly developed transmission EBSD (t-EBSD) technique to several bulk MgB2 samples. This method requires the preparation of TEM slices by means of focused ion-beam milling, which are then analyzed within the SEM, operating with a specific sample holder. We present several EBSD mappings of samples prepared with different techniques and at various reaction temperatures.

  13. The 23 K superconducting phase YPd 2B 2C

    NASA Astrophysics Data System (ADS)

    Sun, Y. Y.; Rusakova, I.; Meng, R. L.; Cao, Y.; Gautier-Picard, P.; Chu, C. W.

    1994-09-01

    We have carried out a systematic structural, electric, and magnetic study on YPdBC samples with different compositions with emphasis on the as-cast and annealed YPd 5B 3C 0.3 which was first reported to superconduct at ∼ 23 K by Cava et al. We found that the tetragonal body-centered YPd 2B 2C with lattice parameters a=3.71 Å and c=10.81 Å is the phase responsible for the 23 K superconductivity and that YPd 2B 2C is metastable, which is consistent with the suggestion made by Cava et al. [1]: it is not stable at high temperatures nor stabilizable by Ni doping, although its isostructural compound, YNi 2B 2C, exists. Two new phases with Y:Pd ratios of 1:7 and 2:3, respectively, have also bee detected.

  14. Neuroendocrine secretory protein 7B2: structure, expression and functions.

    PubMed Central

    Mbikay, M; Seidah, N G; Chrétien, M

    2001-01-01

    7B2 is an acidic protein residing in the secretory granules of neuroendocrine cells. Its sequence has been elucidated in many phyla and species. It shows high similarity among mammals. A Pro-Pro-Asn-Pro-Cys-Pro polyproline motif is its most conserved feature, being carried by both vertebrate and invertebrate sequences. It is biosynthesized as a precursor protein that is cleaved into an N-terminal fragment and a C-terminal peptide. In neuroendocrine cells, 7B2 functions as a specific chaperone for the proprotein convertase (PC) 2. Through the sequence around its Pro-Pro-Asn-Pro-Cys-Pro motif, it binds to an inactive proPC2 and facilitates its transport from the endoplasmic reticulum to later compartments of the secretory pathway where the zymogen is proteolytically matured and activated. Its C-terminal peptide can inhibit PC2 in vitro and may contribute to keep the enzyme transiently inactive in vivo. The PC2-7B2 model defines a new neuroendocrine paradigm whereby proteolytic activation of prohormones and proneuropeptides in the secretory pathway is spatially and temporally regulated by the dynamics of interactions between converting enzymes and their binding proteins. Interestingly, unlike PC2-null mice, which are viable, 7B2-null mutants die early in life from Cushing's disease due to corticotropin ('ACTH') hypersecretion by the neurointermediate lobe, suggesting a possible involvement of 7B2 in secretory granule formation and in secretion regulation. The mechanism of this regulation is yet to be elucidated. 7B2 has been shown to be a good marker of several neuroendocrine cell dysfunctions in humans. The possibility that anomalies in its structure and expression could be aetiological causes of some of these dysfunctions warrants investigation. PMID:11439082

  15. Validation of an in vitro model of erbB2(+) cancer cell redirection.

    PubMed

    Park, Jang Pyo; Blanding, Walker M; Feltracco, Jessica A; Booth, Brian W

    2015-09-01

    Overexpression of the oncoprotein erbB2/HER2 is present in 20-30% of breast cancer patients and inversely correlates with patient survival. Reports have demonstrated the deterministic power of the mammary microenvironment where the normal mammary microenvironment redirects cells of non-mammary origin or tumor-derived cells to adopt a mammary phenotype in an in vivo model. This phenomenon is termed tumor cell redirection. Tumor-derived cells that overexpress the erbB2 oncoprotein lose their tumor-forming capacity in this model. In this model, phosphorylation of erbB2 is attenuated thus reducing the tumor cell's tumor-forming potential. In this report, we describe our results using an in vitro model based on the in vivo model mentioned previously. Tumor-derived cells are mixed in predetermined ratios with normal mammary epithelial cells prior to seeding in vitro. In this in vitro model, the tumor-derived cells are redirected as determined by attenuated phosphorylation of the receptor and reduced sphere and colony formation. These results match those observed in the in vivo model. This in vitro model will allow expanded experimental options in the future to determine additional aspects of tumor cell redirection that can be translated to other types of cancer.

  16. Reduced thrombosis in Klkb1−/− mice is mediated by increased Mas receptor, prostacyclin, Sirt1, and KLF4 and decreased tissue factor

    PubMed Central

    Stavrou, Evi X.; Fang, Chao; Merkulova, Alona; Alhalabi, Omar; Grobe, Nadja; Antoniak, Silvio; Mackman, Nigel

    2015-01-01

    The precise mechanism for reduced thrombosis in prekallikrein null mice (Klkb1−/−) is unknown. Klkb1−/− mice have delayed carotid artery occlusion times on the rose bengal and ferric chloride thrombosis models. Klkb1−/− plasmas have long-activated partial thromboplastin times and defective contact activation–induced thrombin generation that partially corrects upon prolonged incubation. However, in contact activation–induced pulmonary thromboembolism by collagen/epinephrine or long-chain polyphosphate, Klkb1−/− mice, unlike F12−/− mice, do not have survival advantage. Klkb1−/− mice have reduced plasma BK levels and renal B2R mRNA. They also have increased expression of the renal receptor Mas and plasma prostacyclin. Increased prostacyclin is associated with elevated aortic vasculoprotective transcription factors Sirt1 and KLF4. Treatment of Klkb1−/− mice with the Mas antagonist A-779, COX-2 inhibitor nimesulide, or Sirt1 inhibitor splitomicin lowers plasma prostacyclin and normalizes arterial thrombosis times. Treatment of normal mice with the Mas agonist AVE0991 reduces thrombosis. Klkb1−/− mice have reduced aortic tissue factor (TF) mRNA, antigen, and activity. In sum, Klkb1−/− mice have a novel mechanism for thrombosis protection in addition to reduced contact activation. This pathway arises when bradykinin delivery to vasculature is compromised and mediated by increased receptor Mas, prostacyclin, Sirt1, and KLF4, leading to reduced vascular TF. PMID:25339356

  17. Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis

    PubMed Central

    Sequeira, Sharon J; Wen, Huei Chi; Avivar-Valderas, Alvaro; Farias, Eduardo F; Aguirre-Ghiso, Julio A

    2009-01-01

    Background The ErbB2/Her2/Neu receptor tyrosine kinase is amplified in ~30% of human breast cancers. Phosphorylation of the translation initiation factor, eIF2α inhibits global protein synthesis and activates a stress signaling and growth suppressive program. We have shown that forced phosphorylation of eIF2α can suppress head and neck, colorectal carcinoma and multiple myeloma tumor growth and/or survival. Here we explore whether ErbB2 modulates eIF2α phosphorylation and whether forced phosphorylation of the latter can antagonize ErbB2 deregulation of mammary acinar morphogenesis. Results We tested whether ErbB2 signaling influenced eIF2α signaling and whether enhanced phosphorylation of the latter affected ErbB2-deregulated mammary acinar development. We obtained stable MCF10A cells overexpressing wild-type (Wt) Neu/ErbB2 or a constitutively active (CA) variant via retroviral delivery or mammary tumor cells from MMTV-Neu tumors. Western blotting, RT-PCR and confocal microscopy were used to analyze the effects of ErbB2 activation on eIF2α signaling and the effect of the GADD34-PP1C inhibitor salubrinal. Wt- and MMTV-Neu cells formed aberrant acini structures resembling DCIS, while CA-ErbB2 overexpression induced invasive lesions. In these structures we found that CA-ErbB2 but not the Wt variant significantly down-regulated the pro-apoptotic gene CHOP. This occurred without apparent modulation of basal phosphorylation of PERK and eIF2α or induction of its downstream target ATF4. However, inhibition of eIF2α dephosphorylation with salubrinal was sufficient to inhibit Wt- and CA-ErbB2- as well as MMTV-Neu-induced deregulation of acinar growth. This was linked to enhanced CHOP expression, inhibition of proliferation, induction of apoptosis and luminal clearing in Wt-ErbB2 and to inhibition of cyclin D1 levels and subsequent proliferation in CA-ErbB2 cells. Conclusion Depending on the strength of ErbB2 signaling there is a differential regulation of CHOP and e

  18. Regulation of prostaglandin EP1 and EP4 receptor signaling by carrier-mediated ligand reuptake

    PubMed Central

    Chi, Yuling; Suadicani, Sylvia O; Schuster, Victor L

    2014-01-01

    After synthesis and release from cells, prostaglandin E2 (PGE2) undergoes reuptake by the prostaglandin transporter (PGT), followed by cytoplasmic oxidation. Although genetic inactivation of PGT in mice and humans results in distinctive phenotypes, and although experiments in localized environments show that manipulating PGT alters downstream cellular events, a direct mechanistic link between PGT activity and PGE2 (EP) receptor activation has not been made. Toward this end, we created two reconstituted systems to examine the effect of PGT expression on PGE2 signaling via two of its receptors (EP1 and EP4). In human embryonic kidney cells engineered to express the EP1 receptor, exogenous PGE2 induced a dose-dependent increase in cytoplasmic Ca2+. When PGT was expressed at the plasma membrane, the PGE2 dose–response curve was right-shifted, consistent with reduction in cell surface PGE2 availability; a potent PGT inhibitor acutely reversed this shift. When bradykinin was used to induce endogenous PGE2 release, PGT expression similarly induced a reduction in Ca2+ responses. In separate experiments using Madin–Darby Canine Kidney cells engineered to express the PGE2 receptor EP4, bradykinin again induced autocrine PGE2 signaling, as judged by an abrupt increase in intracellular cAMP. As in the EP1 experiments, expression of PGT at the plasma membrane caused a reduction in bradykinin-induced cAMP accumulation. Pharmacological concentrations of exogenous PGE2 induced EP4 receptor desensitization, an effect that was mitigated by PGT. Thus, at an autocrine/paracrine level, plasma membrane PGT regulates PGE2 signaling by decreasing ligand availability at cell surface receptors. PMID:25505603

  19. 26 CFR 1.167(b)-2 - Declining balance method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Declining balance method. 1.167(b)-2 Section 1... Declining balance method. (a) Application of method. Under the declining balance method a uniform rate is... declining balance rate may be determined without resort to formula. Such rate determined under section...

  20. 26 CFR 1.167(b)-2 - Declining balance method.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Declining balance method. 1.167(b)-2 Section 1... Declining balance method. (a) Application of method. Under the declining balance method a uniform rate is... declining balance rate may be determined without resort to formula. Such rate determined under section...

  1. 26 CFR 1.167(b)-2 - Declining balance method.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Declining balance method. 1.167(b)-2 Section 1... Declining balance method. (a) Application of method. Under the declining balance method a uniform rate is... declining balance rate may be determined without resort to formula. Such rate determined under section...

  2. 26 CFR 1.167(b)-2 - Declining balance method.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Declining balance method. 1.167(b)-2 Section 1... Declining balance method. (a) Application of method. Under the declining balance method a uniform rate is... declining balance rate may be determined without resort to formula. Such rate determined under section...

  3. 26 CFR 1.167(b)-2 - Declining balance method.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Declining balance method. 1.167(b)-2 Section 1... Declining balance method. (a) Application of method. Under the declining balance method a uniform rate is... declining balance rate may be determined without resort to formula. Such rate determined under section...

  4. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    DOE PAGES

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; ...

    2015-02-07

    In this study, the metastable high pressure ReB2-type hexagonal OsB2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ±more » 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB2 bulk ceramics.« less

  5. Yield stress anomaly in B2 FeAl

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.

    1996-12-31

    The studies on yield stress anomaly of B2 FeAl single crystals are reviewed in this paper. A positive temperature dependence of yield stress, so-called yield stress anomaly, is observed in B2 FeAl in which excess vacancies are fully annealed out. Associated with the anomaly, characteristic asymmetry is found between tension and compression. While the strain-rate sensitivity is almost zero in the temperature range of the yield stress anomaly, the stress relaxation becomes significant with increasing temperature, indicating that a recovery process is thermally activated. It is ascertained by the two-surface trace analysis that slip transition from <111> direction at intermediate temperature to <100> at high temperature occurs around the peak temperature. Even at the peak temperature, in addition, operative slip vector for yielding is confirmed to be predominantly <111> by TEM. Also, it is observed that <111>-type superdislocations are frequently climb-dissociated in the temperature range of the anomaly. APB formation on {l_brace}111{r_brace} plane is energetically favorable, which is in agreement with the Flinn`s calculation for the B2 superlattice that APB energy on {l_brace}111{r_brace} plane is lower than that on {l_brace}110{r_brace} plane. Such an anisotropy of APB energy would offer specific driving force for the climb dissociation on <111> superdislocations. On the basis of the observed results, the anomalous strengthening behavior of B2 FeAl single crystals is discussed.

  6. The crystal structure of URu3B2

    NASA Astrophysics Data System (ADS)

    Rogl, Peter

    1980-09-01

    The crystal structure of URu3B2 has been determined by single crystal X-ray analysis. URu3B2 crystallizes in the trigonal space group P3bar (C131) with hexagonal lattice a = 1.09531(14), c = 0.59353 (8) nm, Z = 8. Intensity measurements were obtained from a fourcircle diffractometer. The structure was solved by Patterson methods and refined by full matrix least squares calculation. The final R-value, R = ∑ |ΔF|/∑ F0, is 0.052 for an asymetric set of 962 independent reflections (l-F0l > 2 σ (F0)). The crystal structure is a twofold superstructure (distortion-derivative) of the CeCo3B2-type cell (a = 2a', c = 2c' and thus closely related to the CaCu5 type structure. The coordination numbers of U are 2 U + 12 Ru + (6 B) and those of Ru atoms 4 U + 6 Ru + 4 B. The isolated boron atoms have tetrakaidekahedral metal coordination 6 Ru + 3 U; no boron-boron contacts occur. The structural chemistry of (Th, U, RE)Ru3B2 phases is discussed.

  7. 17 CFR 240.12b-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... registrant or any of its parents or subsidiaries. Business combination related shell company: The term business combination related shell company means a shell company (as defined in § 240.12b-2) that is: (1) Formed by an entity that is not a shell company solely for the purpose of changing the corporate...

  8. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini

    SciTech Connect

    Muthuswamy, Senthil K; Li, Dongmei; Lelievre, Sophie; Bissell, Mina J; Brugge, Joan S

    2001-08-08

    Both ErbB1 and ErbB2 are overexpressed or amplified in breast tumors. To examine the effects of activating ErbB receptors in a context that mimics polarized epithelial cells in vivo, we activated ErbB1 and ErbB2 homodimers in preformed, growth-arrested mammary acini cultured in three-dimensional basement membrane gels. Activation of ErbB2, but not that of ErbB1, led to a reinitiation of cell proliferation and altered the properties of mammary acinar structures. These altered structures share several properties with early-stage tumors, including a loss of proliferative suppression, an absence of lumen, retention of the basement membrane and a lack of invasive properties. ErbB2 activation also disrupted tight junctions and the cell polarity of polarized epithelia, whereas ErbB1 activation did not have any effect. Our results indicate that ErbB receptors differ in their ability to induce early stages of mammary carcinogenesis in vitro and this three-dimensional model system can reveal biological activities of oncogenes that cannot be examined in vitro in standard transformation assays.

  9. Estrogen therapy may counterbalance eutrophic remodeling of coronary arteries and increase bradykinin relaxation in a rat model of menopausal hypertension

    PubMed Central

    Matrai, Mate; Hetthéssy, Judit R.; Nadasy, Gyorgy L.; Szekacs, Bela; Mericli, Metin; Acs, Nandor; Monos, Emil; Arbib, Nissim; Varbiro, Szabolcs

    2016-01-01

    Abstract Objective: Hypertension causes adverse remodeling and vasomotor alterations in coronaries. Hormones such as estrogen may help counterbalance some of these effects. The aim of this study was to analyze the effects of ovariectomy and estrogen therapy in a rat model of menopausal hypertension induced by angiotensin II (AII). Methods: We investigated diameter, tone, and mechanics of intramural coronaries taken from ovariectomized female rats (n = 11) that received chronic AII treatment to induce hypertension, and compared the results with those found in female rats that were also given estrogen therapy (n = 11). The “hypertensive control” group (n = 11) underwent an abdominal sham operation, and received AII. After 4 weeks of AII treatment, side branches of left anterior descendent coronary (approximately 200 μm in diameter) were isolated, cannulated with plastic microcannulas at both ends, and studied in vitro in a vessel chamber. The inner and outer diameter of the arteries were measured by microangiometry, and spontenuous tone, wall thickness, wall cross-sectional area, tangential stress, incremental distensibility, circumferential incremental elastic modulus, thromboxane agonist-induced tone, and bradykinin-induced dilation were calculated. Results: In hypertension, intramural small coronaries show inward eutrophic remodeling after ovariectomy comparing with hypertensive controls. Estrogen therapy had an opposite effect on vessel diameter. Hormone therapy led to an increase in spontaneous tone, allowing for greater dilatative capacity. Conclusions: Estrogen may therefore be considered to counterbalance some of the adverse changes seen in the wall of intramural coronaries in the early stages of chronic hypertension. PMID:27187011

  10. Modulation of ephrinB2 leads to increased angiogenesis in ischemic myocardium and endothelial cell proliferation

    SciTech Connect

    Mansson-Broberg, Agneta; Siddiqui, Anwar J.; Genander, Maria; Grinnemo, Karl-Henrik; Hao Xiaojin; Andersson, Agneta B.; Waerdell, Eva; Sylven, Christer Corbascio, Matthias

    2008-08-29

    Eph/ephrin signaling is pivotal in prenatal angiogenesis while its potential role in postnatal angiogenesis largely remains to be explored. Therefore its putative angiogenic and therapeutic effects were explored in endothelium and in myocardial ischemia. In culture of human aortic endothelial cells the fusion protein ephrinB2-Fc induced cell proliferation (p < 0.0005) and in the murine aortic ring model ephrinB2-Fc induced increased sprouting (p < 0.05). Myocardial infarction was induced by ligation of the left anterior descending artery in mouse. During the following 2 weeks mRNA of the receptor/ligand pair EphB4/ephrinB2 was expressed dichotomously (p < 0.05) and other Eph/ephrin pairs were expressed to a lesser degree. Twenty-four hours after intraperitoneal administration of ephrinB2-Fc it was detected in abundance throughout the myocardium along capillaries, showing signs of increased mitosis. After 4 weeks the capillary density was increased 28% in the periinfarcted area (p < 0.05) to a level not different from healthy regions of the heart where no change was observed. These results implicate that EphB4/ephrinB2 is an important signaling pathway in ischemic heart disease and its modulation may induce therapeutic angiogenesis.

  11. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    PubMed Central

    Thebault, Stéphanie; González, Carmen; García, Celina; Zamarripa, David Arredondo; Nava, Gabriel; Vaca, Luis; López-Casillas, Fernando; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2011-01-01

    Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK). Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS), as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i) upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC) channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  12. Substitution Effects on MgB2 Superconductivity

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Zhao, Yuan; Yi, Lin

    2008-02-01

    With the help of supercell method, the first-principle calculations were performed for the study of doping crystal Mg1-xAlxB2 and Mg(B1-yCy)2. Analyzing the variations of the charge distribution and the partial densities of states, we found that the compounds with doping Al to MgB2 compound and/or replacing boron by carbon exhibit new covalent bond effects and unexpected electronic properties, related to superconductivity. The study of the density of states indicates that superconductivity decreases with the increase of Al fraction and carbon concentration. There exists a transition of superconductor to non-superconductor with the change of Al doping fraction. The substitution of boron by carbon results in the decrease of the transition temperature since the decrease of the electron concentration and the lattice constant. The theoretical predictions agree with experimental observations.

  13. Active Protection of an MgB2 Test Coil

    PubMed Central

    Park, Dong Keun; Hahn, Seungyong; Bascuñán, Juan; Iwasa, Yukikazu

    2011-01-01

    This paper presents results of a study, experimental and computational, of a detect-and-activate-the-heater protection technique applied to a magnesium diboride (MgB2) test coil operated in semi-persistent mode. The test coil with a winding ID of 25 cm and wound with ~500-m long reacted MgB2 wire was operated at 4.2 K immersed in a bath of liquid helium. In this active technique, upon the initiation of a “hot spot” of a length ~10 cm, induced by a “quench heater,” a “protection heater” (PH) of ~600-cm long planted within the test coil is activated. The normal zone created by the PH is large enough to absorb the test coil’s entire initial stored energy and still keeps the peak temperature within the winding below ~260 K. PMID:22081754

  14. Attempts at doping indium in MgB2

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.

    2016-12-01

    Indium (In) doped MgB2 polycrystalline samples were prepared by solid-liquid phase reaction in Ar. After reaction at 800 °C, less than 1 at.% Mg was replaced by In in the MgB2 phase, without significant influence on its lattice parameters and only a slight decrease of its superconducting transition temperature. For all studied In concentrations in the nominal composition, the formation of InMg was evidenced by X-ray diffraction. The critical current density and accommodation field of the wires are decreased in the samples containing In. The flux pinning mechanism can be described by surface pinning in both the doped and undoped samples.

  15. Local Strain Development and Property Variability in B2 Intermetallics

    DTIC Science & Technology

    2005-09-19

    COVERED (From - To) 19092005 Final Report 15 Jan 2001 - 30 Apr 2005 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Local Strain Development and Property...Variability in B2 Intermetallics 5b. GRANT NUMBER F49620-01-1-0159 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER Professor Tresa M. Pollock 5e... 4 3.0 The Strain Mapping Technique .............................................. 4 4.0 Intermetallic

  16. Novel Drugs that Target ErbB2

    DTIC Science & Technology

    2011-05-01

    INTRODUCTION Betulinic acid (BA) is relatively non-toxic in rodent studies and highly effective against melanoma in both in vivo and in vitro assays (1...within a month. • An abstract entitled " Betulinic Acid Inhibits BT474 and SKBR3 Breast Cancer Cell Growth by Targeting Sp Proteins and ErbB2" was...presented at the annual meeting of the Society of Toxicology in Salt Lake City, UT in March, 2010. CONCLUSIONS Betulinic acid is a

  17. Photophysics and photochemistry of aflatoxins B1 and B2.

    PubMed

    Netto-Ferreira, J C; Heyne, B; Scaiano, J C

    2011-10-01

    Aflatoxins are mycotoxins produced by fungi of the genus Aspergillus, which is widely spread in the tropics and subtropics. To date, aflatoxin phototoxicity has been recognized, but the mechanism responsible for this phototoxicity has not been fully characterized. In the present paper, nanosecond laser flash photolysis studies allowed us to elucidate the photochemical processes undergone by two mycotoxins, namely aflatoxin B(1) and B(2), upon UV irradiation. In brief, photolysis (308 nm) of the aflatoxins leads to intersystem crossing, giving rise to their triplet excited state. The triplet state can readily be quenched by indole and hydroquinone, and also by molecular oxygen yielding singlet oxygen (singlet oxygen quantum yields of 0.51 and 0.59 were found for aflatoxin B(1) and B(2), respectively). In addition, our data indicate the ability of the two aflatoxins to photoionize upon 248 nm excitation. The photoionization quantum yield for aflatoxin B(1) and B(2) have been estimated to be 0.11 and 0.29, respectively.

  18. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  19. Agent-based services for B2B electronic commerce

    NASA Astrophysics Data System (ADS)

    Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun

    2000-12-01

    The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.

  20. Fine-Filament MgB2 Superconductor Wire

    NASA Technical Reports Server (NTRS)

    Cantu, Sherrie

    2015-01-01

    Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.

  1. Strength anomaly in B2 FeAl single crystals

    SciTech Connect

    Yoshimi, K.; Hanada, S.; Yoo, M.H.; Matsumoto, N.

    1994-12-31

    Strength and deformation microstructure of B2 Fe-39 and 48%Al single crystals (composition given in atomic percent), which were fully annealed to remove frozen-in vacancies, have been investigated at temperatures between room temperature and 1073K. The hardness of as-homogenized Fe-48Al is higher than that of as-homogenized Fe-39Al while after additional annealing at 698K the hardness of Fe-48Al becomes lower than that of Fe-39Al. Fe-39Al single crystals slowly cooled after homogenizing at a high temperature were deformed in compression as a function of temperature and crystal orientation. A peak of yield strength appears around 0.5T{sub m} (T{sub m} = melting temperature). The orientation dependence of the critical resolved shear stress does not obey Schmid`s law even at room temperature and is quite different from that of b.c.c. metals and B2 intermetallics at low temperatures. At the peak temperature slip transition from <111>-type to <001>-type is found to occur macroscopically and microscopically, while it is observed in TEM that some of the [111] dislocations decompose into [101] and [010] on the (1096I) plane below the peak temperature. The physical sources for the positive temperature dependence of yield stress of B2 FeAl are discussed based on the obtained results.

  2. Modernization of B-2 Data, Video, and Control Systems Infrastructure

    NASA Technical Reports Server (NTRS)

    Cmar, Mark D.; Maloney, Christian T.; Butala, Vishal D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal-vacuum facility with propellant systems capability. B-2 has completed a modernization effort of its facility legacy data, video and control systems infrastructure to accommodate modern integrated testing and Information Technology (IT) Security requirements. Integrated systems tests have been conducted to demonstrate the new data, video and control systems functionality and capability. Discrete analog signal conditioners have been replaced by new programmable, signal processing hardware that is integrated with the data system. This integration supports automated calibration and verification of the analog subsystem. Modern measurement systems analysis (MSA) tools are being developed to help verify system health and measurement integrity. Legacy hard wired digital data systems have been replaced by distributed Fibre Channel (FC) network connected digitizers where high speed sampling rates have increased to 256,000 samples per second. Several analog video cameras have been replaced by digital image and storage systems. Hard-wired analog control systems have been replaced by Programmable Logic Controllers (PLC), fiber optic networks (FON) infrastructure and human machine interface (HMI) operator screens. New modern IT Security procedures and schemes have been employed to control data access and process control flows. Due to the nature of testing possible at B-2, flexibility and configurability of systems has been central to the architecture during modernization.

  3. High temperature behavior of B2-based ruthenium aluminide systems

    NASA Astrophysics Data System (ADS)

    Cao, Fang

    Ru-modified NiAl-based bond coats have the potential to improve the durability of Superalloy-Thermal Barrier Coating systems (TBCs) for advanced gas turbine engines. A fundamental understanding of the high temperature mechanical behavior across the Ni-Al-Ru B2 phase field can provide direction for the development of these new bond coats for TBCs. The purpose of this study has been to describe the fundamental processes of creep deformation in single phase B2 Ru-Al-Ni ternary alloys which would form the basis for the bond coats. To accomplish this, five ternary alloys with compositions located within the B2 field across the NiAl-RuAl phase region were fabricated and investigated. Special emphasis was placed on characterizing creep deformation and describing the operative creep mechanisms in these alloys. At room temperature, brittle failure was observed in the Ni-rich alloys in compression, while improved strength and ductility were displayed in two Ru-rich ternary alloys at temperatures up to 700°C. Exceptional creep strength was observed in these alloys, as compared to other high melting temperature B2 intermetallics. A continuous increase of the melting temperature and creep resistance with the increasing of the Ru/Ni ratio in these alloys was observed. Post-creep dislocation analyses identified the presence of <100> and <110> edge dislocations in the Ni-rich alloys, while uniformly distributed jogged <100> screw dislocations predominated in the Ru-rich ternary alloys. A transition of the creep mechanism from viscous glide controlled to jogged screw motion in these Ru-Al-Ni ternary B2 alloys with increasing Ru/Ni ratio is demonstrated by the characteristics of the creep deformation process, stress change creep tests, post-creep dislocation analyses, and numerical modeling. Additionally, the knowledge of the cyclic oxidation behavior of ruthenium aluminide-based alloy is essential, as many high-temperature applications for which this intermetallic might be

  4. Fractographic Analysis of HfB2-SiC and ZrB2-SiC Composites

    NASA Technical Reports Server (NTRS)

    Mecholsky, J.J., Jr.; Ellerby, D. T.; Johnson, S. M.; Stackpoole, M. M.; Loehman, R. E.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Hafnium diboride-silicon carbide and zirconium diboride-silicon carbide composites are potential materials for high temperature leading edge applications on reusable launch vehicles. In order to establish material constants necessary for evaluation of in-situ fracture, bars fractured in four point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values, and the crack branching constants were established to use in forensic fractography of materials for future flight applications. The fracture toughnesses range from about 13 MPam (sup 1/2) at room temperature to about 6 MPam (sup 1/2) at 1400 C for ZrB2-SiC composites and from about 11 MPam (sup 1/2) at room temperature to about 4 MPam (sup 1/2) at 1400 C for HfB2-SiC composites.

  5. The presence of c-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SK-BR-3

    SciTech Connect

    Alper, O.; Yamaguchi, K.; Hitomi, J.; Honda, S.; Matsushima, T.; Abe, K. )

    1990-12-01

    The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by (35S)cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the (35S)-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein.

  6. C-erbB-2 onco-protein expression in breast cancer: relationship to tumour characteristics and short-term survival in Universiti Kebansaan Malaysia Medical Centre.

    PubMed

    Sharifah, N A; Lee, B R; Clarence-Ko, C H; Tan, G C; Shiran, M S; Naqiyah, I; Rohaizak, M; Fuad, I; Tamil, A M

    2008-01-01

    Breast cancer is the commonest cancer affecting females in Malaysia, contributing 31% of all newly diagnosed cases amongst Malaysian women. The present retrospective cohort study evaluated the relationship between cerbB- 2 onco-protein overexpression with various tumour characteristics and survival rate of breast cancer patients treated at the Universiti Kebangsaan Malaysia Medical Centre (UKMMC) between 1996-2000. CerbB- 2 oncoprotein overexpression was determined by immunohistochemistry (IHC) and tumors showing 2+ positivity were verified by Fluorescence In Situ Hybridization (FISH). One hundred and seventy two patients were eligible for the study with a short-term follow-up (median) of 5.1 years. C-erbB-2 oncoprotein overexpression correlated with lymph node positivity, oestrogen receptor (ER) and progesterone receptor (PR) negativity. Univariate analyses showed shorter disease free survival (DFS) and overall survival (OS) in patients with cerbB- 2 oncoprotein overexpression, Malay ethnicity, higher tumour grade, lymph node positivity, ER and PR negativity. In a subgroup of patients with c-erbB-2 oncoprotein overexpression, a shorter OS was observed in those with lymph node positivity, ER and PR negativity. In multivariate prognostic analysis, lymph node status, ER status and tumour grading were the strongest independent prognostic factors for both OS and DFS. However, c-erbB-2 status was not a significantly independent prognostic factor, even in subsets with lymph node positive or negative group. C-erbB-2 oncoprotein overexpression correlated well with lymph node status, ER and PR. Shorter OS and DFS were significantly observed in patients with c-erbB-2 oncoprotein overexpression. Lymph node status, ER status and tumour grading were the only three independent prognostic factors for OS and DFS in this study. Although c-erbB-2 expression is obviously important from a biological standpoint, multivariate analysis showed that it is not an independent prognostic

  7. Design, Synthesis and Characterization of Novel Small Molecular Inhibitors of Ephrin-B2 Binding to EphB4

    PubMed Central

    Duggineni, Srinivas; Mitra, Sayantan; Noberini, Roberta; Han, Xiaofeng; Lin, Nan; Xu, Yan; Tian, Wang; An, Jing; Pasquale, Elena B.; Huang, Ziwei

    2013-01-01

    EphB4 is a member of the large Eph receptor tyrosine kinase family. By interacting with its preferred ligand ephrin-B2, which is also a transmembrane protein, EphB4 plays a role in a variety of physiological and pathological processes ranging from bone remodeling to cancer malignancy. EphB4-ephrin-B2 binding occurs at sites of contact between cells. Ephrin-B2 causes EphB4 clustering and increased kinase activity to generate downstream signals that affect cell behavior. Previous work identified a high-affinity antagonistic peptide that targets EphB4, named TNYL-RAW. This peptide is 15 amino acid long, has a molecular weight of ~1,700 Da and binds to the ephrin-binding pocket of EphB4. Here we report the structure-based design and chemical synthesis of two novel small molecules of ~600–700 Da, which were designed starting from the small and functionally critical C-terminal portion of the TNYL-RAW peptide. These compounds inhibit ephrin-B2 binding to EphB4 at low micromolar concentrations. Additionally, although the ephrin-B2 ligand can interact with multiple other Eph receptors besides EphB4, the two compounds retain the high selectivity of the TNYL-RAW peptide in targeting EphB4. TNYL-RAW peptide displacement experiments using the more potent of the two compounds, compound 5, suggest a competitive mode of inhibition. These EphB4 antagonistic compounds can serve as promising templates for the further development of small molecule drugs targeting EphB4. PMID:23253822

  8. Specific growth inhibition of ErbB2‑expressing human breast cancer cells by genetically modified NK‑92 cells.

    PubMed

    Liu, Hui; Yang, Bo; Sun, Tingting; Lin, Lin; Hu, Yi; Deng, Muhong; Yang, Junlan; Liu, Tianyi; Li, Jinyu; Sun, Shengjie; Jiao, Shunchang

    2015-01-01

    The natural killer cell line NK‑92 shows great cytotoxicity against various types of cancer. Several types of solid tumor cells, however, can effectively resist NK-mediated lysis by interaction of major histocompatibility complex (MHC) molecules with NK cell inhibitory receptors. To generate a eukaryotic expression vector encoding chimeric antigen receptor scFv anti-erbB2-CD28-ζ and to investigate the expression and action of this chimeric antigen receptor in cancer cells both in vitro and in vivo, NK‑92 cells were genetically modified with an scFv anti-erbB2-CD28-ζ chimeric recep-tor by optimized electro-poration using the Amaxa Nucleofector system. The expression of the chimeric receptor was evaluated by RT-PCR and immunofluorescence. The ability of the genetically modified NK‑92 cells to induce cell death in tumor targets was assessed in vitro and in vivo. The transduced NK‑92-anti-erbB2 scFv-CD28-ζ cells expressing high levels of the fusion protein on the cell surface were analyzed by fluorescence-activated cell-sorting (FACS) analysis. These cells specifically enhanced the cell death of the erbB2‑expressing human breast cancer cell lines MDA-MB-453 and SKBr3. Furthermore, adoptive transfer of genetically modified NK‑92 cells specifically reduced tumor size and lung metastasis of nude mice bearing established MDA-MB-453 cells, and significantly enhanced the survival period of these mice. The genetically modified NK‑92 cells significantly enhanced the killing of erbB2‑expressing cancer and may be a novel therapeutic strategy for erbB2‑expressing cancer cells.

  9. Isolation: analysis and properties of three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom.

    PubMed

    Ferreira, L A; Galle, A; Raida, M; Schrader, M; Lebrun, I; Habermehl, G

    1998-04-01

    In the course of systematic investigations on low-molecular-weight compounds from the venom of Crotalidae and Viperidae, we have isolated and characterized at least three bradykinin-potentiating peptides (BPP-II, BPP-III, and BPP-V) from Bothrops neuwiedi venom by gel filtration on Sephadex G-25 M, Sephadex G-10 followed by HPLC. The peptides showed bradykinin-potentiating action on isolated guinea-pig ileum, for which the BPP-V was more active than of BPP-II, and BPP-III, rat arterial blood pressure, and a relevant angiotensin-converting enzyme (ACE) competitive inhibiting activity. The kinetic studies showed a Ki of the order of 9.7 x 10(-3) microM to BPP-II, 7 x 10(-3) microM to BPP-III, and 3.3 x 10(-3) microM to BPP-V. The amino acid sequence of the BPP-III has been determined to be pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro, and the amino acid compositions of the BPP-II and BPP-V by amino acid analysis were 2Glu-2Gly-1Arg-4Pro-1Ile and 2Glu-2Gly-1Ser-3Pro-2Val-1Ile, with molecular weight of 1372, 1046, and 1078, respectively.

  10. Effect of a bradykinin-potentiating factor isolated from scorpion venom (Leiurus quinquestriatus) on some blood indices and lipid profile in irradiated rats.

    PubMed

    Salman, Muhammad M A; Kotb, Ahmed M; Haridy, Mohie A M; Golka, Klaus; Hammad, Seddik

    2017-04-08

    Bradykinin appears to be an important regulator of cardiovascular function. It is also being increasingly noted as a participant in actions of drugs that affect the liver, kidney, and circulation. In our previous studies, bradykinin-potentiating factor (BPF) isolated from scorpion venom (Leiurus quinquestriatus) has been shown to be protective against hepato- and nephrotoxicity as well as healing skin burns by reducing oxidative stress in hyperglycemic conditions. Therefore, we aim to evaluate the ability of BPF in treating irradiated rats. A group of rats was exposed to γ-irradiation and subsequently treated with BPF injections aiming to elucidate the possibility of BPF to rescue γ-irradiation harmful effects. As controls, we used γ-irradiation exposed, BPF-injected, and untreated rats. The data obtained showed that the irradiated animals suffered from marked changes of many important blood parameters including red blood cells, leukocytes, platelets, hemoglobin, packed cell volume, high-density cholesterol, total cholesterol, triglycerides, and low-density cholesterol. Interestingly, BPF was able to rescue the deleterious effects of irradiation in rats and normalized their blood parameters to the basal levels. We conclude that BPF could ameliorate irradiation damaging effects.

  11. Overexpression of junctional adhesion molecule-A and EphB2 predicts poor survival in lung adenocarcinoma patients.

    PubMed

    Zhao, Chen; Wang, Aili; Lu, Funian; Chen, Hongxia; Fu, Pin; Zhao, Xianda; Chen, Honglei

    2017-02-01

    Junctional adhesion molecules are important components of tight junctions, and Eph/ephrin proteins constitute the largest family of receptor tyrosine kinases. Both junctional adhesion molecules and Eph/ephrin are involved in normal tissue development and cancer progression. However, the expression levels and clinical significances of junctional adhesion molecule-A, a member of junctional adhesion molecules, and EphB2, a member of Eph/ephrin family, in lung adenocarcinoma patients are unclear. Therefore, in this study, we aimed to identify the expression and prognostic values of junctional adhesion molecule-A and EphB2 in lung adenocarcinoma patients' cohort. In our study, 70 (55.6%) showed high expression of junctional adhesion molecule-A protein and 51 (40.5%) showed high expression of EphB2 protein in 126 lung adenocarcinoma tissues. Junctional adhesion molecule-A and EphB2 expressions were both significantly increased in tumor tissues compared with noncancerous lung tissues. Kaplan-Meier analysis and log-rank test indicated that low expression of junctional adhesion molecule-A and EphB2 proteins can predict better survival and low mortality rate of lung adenocarcinomas. In univariate analysis, high expression levels of junctional adhesion molecule-A and EphB2 were both found to be significantly correlated with poor overall survival of lung adenocarcinoma patients (hazard ratio = 1.791, 95% confidence interval = 1.041-3.084, p = 0.035; hazard ratio = 1.762, 95% confidence interval = 1.038-2.992, p = 0.036, respectively). The multivariate Cox proportional hazard model demonstrated that EphB2 expression is an independent prognosis parameter in lung adenocarcinoma patients (hazard ratio = 1.738, 95% confidence interval = 1.023-2.952, p = 0.016). Taken together, high expression of junctional adhesion molecule-A and EphB2 can predict poor overall survival and high mortality rate, and EphB2 is an independent prognostic biomarker in

  12. Physical property characterization of bulk MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Awana, V. P. S.; Vajpayee, A.; Mudgel, M.; Ganesan, V.; Awasthi, A. M.; Bhalla, G. L.; Kishan, H.

    2008-04-01

    We report synthesis, structure/micro-structure, resistivity under magnetic field [ρ(T)H], Raman spectra, thermoelectric power S(T), thermal conductivity κ(T), and magnetization of ambient pressure argon annealed polycrystalline bulk samples of MgB2, processed under identical conditions. The compound crystallizes in hexagonal structure with space group P6/mmm. Transmission electron microscopy ( TEM) reveals electron micrographs showing various types of defect features along with the presence of 3 4 nm thick amorphous layers forming the grain boundaries of otherwise crystalline MgB2. Raman spectra of the compound at room temperature exhibited characteristic phonon peak at 600 cm-1. Superconductivity is observed at 37.2 K by magnetic susceptibility χ(T), resistivity ρ(T), thermoelectric power S(T), and thermal conductivity κ(T) measurements. The power law fitting of ρ(T) give rise to Debye temperature (ΘD) at 1400 K which is found consistent with the theoretical fitting of S(T), exhibiting Θ D of 1410 K and carrier density of 3.81 × 1028/m3. Thermal conductivity κ(T) shows a jump at 38 K, i.e., at Tc, which was missing in some earlier reports. Critical current density (Jc) of up to 105 A/cm2 in 1 2 T (Tesla) fields at temperatures (T) of up to 10 K is seen from magnetization measurements. The irreversibility field, defined as the field related to merging of M(H) loops is found to be 78, 68 and 42 kOe at 4, 10 and 20 K respectively. The superconducting performance parameters viz. irreversibility field (Hirr) and critical current density Jc(H) of the studied MgB2 are improved profoundly with addition of nano-SiC and nano-diamond. The physical property parameters measured for polycrystalline MgB2 are compared with earlier reports and a consolidated insight of various physical properties is presented.

  13. Andreev reflections on a MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Aswal, D. K.; Sen, Shashwati; Gadkari, S. C.; Singh, Ajay; Gupta, S. K.; Gupta, L. C.; Bajpai, A.; Nigam, A. K.

    2002-07-01

    An Andreev-reflection study of MgB2/Ag planar junctions as a function of temperature and magnetic field is reported. The differential resistance (dV/dI) versus voltage (V) characteristics exhibited a distinct double minimum feature. This, together with a comparison of Blonder-Tinkham-Klapwijk theory of isotropic superconductor, indicates that data are not consistent with the weak-coupling BCS theory. This is further supported by unusual temperature and magnetic-field dependence of the tunneling characteristics. The results are discussed using various existing theories.

  14. NIR flaring of the blazar B2 0619+33

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Carramiñana, A.; Recillas, E.; Porras, A.; Mayya, D. Y.; Escobedo, G.

    2010-09-01

    We report on our recent observation of the blazar B2 0619+33 also known as GB6 J0622+3326 with the CANICA NIR camera on the 2.1m telescope at the Observatorio Astrofísico Guillermo Haro, located in Cananea, Mexico. On September 11th, 2010 (JD24555450.98694), we found this source to be in outburst. On this date the source was found to have a flux corresponding to H = 14.223 +/- 0.05. The source was not detected by the 2mass all sky survey.

  15. A new NIR Flare of B2 0619+33

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Carraminana, A.; Porras, A.; Recillas, E.; Mayya, D. Y.; Escobedo, G.

    2011-04-01

    We report on our recent observation of the blazar B2 0619+33 also known as GB6 J0622+3326 with the CANICA NIR camera on the 2.1m telescope at the Observatorio Astrofisico Guillermo Haro, located in Cananea, Mexico. On April 22nd, 2011 (JD24555673.635370), we found this source to be in outburst. On this date the source was found to have a flux corresponding to H = 15.328 ± 0.08. The source was not detected by the 2mass all sky survey.

  16. Site Occupancy of Ternary Additions to B2 Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Amador, Carlos

    2002-01-01

    In this broad-based survey study, the substitutional site preference of ternary alloying additions to B2 compounds (stable at room temperature and 50/50 composition) is determined using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The method is applied to Ni, Al, Ti, Cr, Cu, Co, Fe, Ta, Hf, Mo, Nb, W, V and Ru additions to NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. The results are compared, when available, to experimental data and other theoretical results.

  17. Bradykinin-mediated cardiovascular protective actions of ACE inhibitors. A new dimension in anti-ischaemic therapy?

    PubMed

    Remme, W J

    1997-01-01

    In addition to being accepted therapy in hypertension and heart failure, ACE inhibitors may well offer a new dimension in anti-ischaemic therapy. Currently, anti-ischaemic properties have been demonstrated by ACE inhibitors in selected patient groups, including patients with left ventricular dysfunction with or without a direct temporal relationship with myocardial infarction. Anti-ischaemic effects of ACE inhibitors become apparent late after initiation of treatment and suggest a structural rather than a functional effect. Underlying mechanisms may include a reduction in ventricular dilatation and (abnormal) cardiac hypertrophy, leading to less myocardial oxygen demand and, possibly, improved subendocardial blood supply, and vasculoprotective effects, i.e. anti-atherosclerotic and antiremodelling properties, a beneficial effect on the fibrinolytic system and an improvement in abnormal endothelial vasodilator function. The latter aspect is most probably the pivotal mode of action where the anti-ischaemic profile of ACE inhibition is concerned. An improvement in endothelial dysfunction has been shown in patients with mild to moderate coronary artery disease [Trial on Reversing ENdothelial Dysfunction (TREND)]. It is of importance that, in both clinical experiments and human studies, the role of bradykinin appears central in the structural and functional cardiovascular effects of ACE inhibition. This is particularly true for the improvement of impaired endothelial function. Myocardial ischaemia evokes vasoconstrictor neurohormonal activation, which may lead to coronary vasoconstriction in diseased coronary segments. The subsequent abnormal endothelial function leads to diminished coronary flow and also increases systemic vasotone and afterload, thus unfavourably altering the myocardial oxygen supply/demand ratio. Under laboratory conditions, acute ACE inhibition counteracts this activation in humans. However, it is speculated that this anti-ischaemic mechanism may

  18. Low-noise THz MgB2 Josephson mixer

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.

    2016-09-01

    The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.

  19. Characterization of MgB2 Superconducting Hot Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  20. B2FH, the Cosmic Microwave Background and Cosmology*

    NASA Astrophysics Data System (ADS)

    Burbidge, G.

    In this talk I shall start by describing how we set about and carried out the work that led to the publication of Burbidge et al. (1957, hereafter B2FH). I then shall try and relate this work and the circumstances that surrounded it to the larger problem of the origin and formation of the universe. Here it is necessary to look back at the way that ideas developed and how, in many situations, astronomers went astray. Of course this is a personal view, though I very strongly believe that if he were still here, it is the approach that Fred Hoyle would take. I start by describing the problems originally encountered by Gamow and his associates in trying to decide where the helium was made. This leads me to a modern discussion of the origin of 2D, 3He, 4He and 7Li, originally described by B2FH as due to the x-process. While it is generally argued, following Gamow, Alpher, and Herman, that these isotopes were synthesised in a big bang I shall show that it is equally likely that these isotopes were made in active galactic nuclei, as was the cosmic microwave background (CMB), in a cyclic universe model. The key piece of observational evidence is that the amount of energy released in the conversion of hydrogen to helium in the universe is very close to the energy carried by the CMB, namely ~4.5 × 10-13 erg cm-3.

  1. Analysis of the Defect Structure of B2 Feal Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Amador, Carlos

    1995-01-01

    The Bozzolo, Ferrante and Smith (BFS) method for alloys is applied to the study of the defect structure of B2 FeAI alloys. First-principles Linear Muffin Tin Orbital calculations are used to determine the input parameters to the BFS method used in this work. The calculations successfully determine the phase field of the B2 structure, as well as the dependence with composition of the lattice parameter. Finally, the method is used to perform 'static' simulations where instead of determining the ground state configuration of the alloy with a certain concentration of vacancies, a large number of candidate ordered structures are studied and compared, in order to determine not only the lowest energy configurations but other possible metastable states as well. The results provide a description of the defect structure consistent with available experimental data. The simplicity of the BFS method also allows for a simple explanation of some of the essential features found in the concentration dependence of the heat of formation, lattice parameter and the defect structure.

  2. Expression profiling during mammary epithelial cell three-dimensional morphogenesis identifies PTPRO as a novel regulator of morphogenesis and ErbB2-mediated transformation.

    PubMed

    Yu, Min; Lin, Guang; Arshadi, Niloofar; Kalatskaya, Irina; Xue, Bin; Haider, Syed; Nguyen, Francis; Boutros, Paul C; Elson, Ari; Muthuswamy, Lakshmi B; Tonks, Nicholas K; Muthuswamy, Senthil K

    2012-10-01

    Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.

  3. Tumor Suppressor Activity of the EphB2 Receptor in Prostate Cancer

    DTIC Science & Technology

    2008-11-01

    cell types (14,29) suggest that EphA2 signaling may inhibit Akt phosphorylation indirectly, by decreasing integrin-dependent cell substrate adhesion...PC3 prostate cancer cell contraction (retraction of the cell periphery and rounding) by inhibiting integrin-mediated cell substrate attachment...prevents retraction of the cell periphery. (C) PC3 cells plated on a fibronectin substrate were treated with an integrin activating antibody (a β1) to

  4. Novel Functions of NF-kappaB2/p52 in Androgen Receptor Signaling in CRPC

    DTIC Science & Technology

    2015-09-01

    as cholesterol , DHEA, and progesterone are also elevated in C4 2B MDVR cells compared with C4 2B parental cells (Fig. 4C). A B D −2 −1 0 1 2 3 4 5 6...precursors of testosterone such as cholesterol , DHEA, and pro gesterone were all elevated in C4 2B MDVR cells compared with C4 2B parental cells. These results...steroidogenic poten- tial to synthesize intracrine androgens from cholesterol by upregulation of steroidogenic enzymes [43]. The AR can also be

  5. NF-KappaB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    Sacramento, CA INTRODUCTION AND OBJECTIVES: Benign prostatic hyperplasia and the initial stages of prostate cancer (CaP) exhibit androgen dependence... prostatic hyperplasia and the initial stages of prostate cancer (CaP) exhibit androgen dependence, but androgen ablation results only in temporary...Nagalakshmi Nadiminty, Ramakumar Tummala, Jae Yeon Chun, Christopher P. Evans, Allen C. Gao. UC Davis, Sacramento, CA Abstract Body: Introduction: Benign

  6. Elucidating the Role of Truncated ErB2 Receptor (p95) in Breast Cancer

    DTIC Science & Technology

    2011-03-01

    growth. Oncogene. 2010; 29: 325-34. 13. Saez R, Molina MA, Ramsey EE, Rojo F, Keenan EJ, Albanell J, et al. p95HER-2 predicts worse outcome...prognostic factors in breast cancer. Cancer Res. 1998; 58: 5123-9. 15. Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J, et al

  7. Activation of ErbB2 and Downstream Signalling via Rho Kinases and ERK1/2 Contributes to Diabetes-Induced Vascular Dysfunction.

    PubMed

    Akhtar, Saghir; Yousif, Mariam H M; Dhaunsi, Gursev S; Sarkhouh, Fatma; Chandrasekhar, Bindu; Attur, Sreeja; Benter, Ibrahim F

    2013-01-01

    Diabetes mellitus leads to vascular complications but the underlying signalling mechanisms are not fully understood. Here, we examined the role of ErbB2 (HER2/Neu), a transmembrane receptor tyrosine kinase of the ErbB/EGFR (epidermal growth factor receptor) family, in mediating diabetes-induced vascular dysfunction in an experimental model of type 1 diabetes. Chronic treatment of streptozotocin-induced diabetic rats (1 mg/kg/alt diem) or acute, ex-vivo (10(-6), 10(-5) M) administration of AG825, a specific inhibitor of ErbB2, significantly corrected the diabetes-induced hyper-reactivity of the perfused mesenteric vascular bed (MVB) to the vasoconstrictor, norephinephrine (NE) and the attenuated responsiveness to the vasodilator, carbachol. Diabetes led to enhanced phosphorylation of ErbB2 at multiple tyrosine (Y) residues (Y1221/1222, Y1248 and Y877) in the MVB that could be attenuated by chronic AG825 treatment. Diabetes- or high glucose-mediated upregulation of ErbB2 phosphorylation was coupled with activation of Rho kinases (ROCKs) and ERK1/2 in MVB and in cultured vascular smooth muscle cells (VSMC) that were attenuated upon treatment with either chronic or acute AG825 or with anti-ErbB2 siRNA. ErbB2 likley heterodimerizes with EGFR, as evidenced by increased co-association in diabetic MVB, and further supported by our finding that ERK1/2 and ROCKs are common downstream effectors since their activation could also be blocked by AG1478. Our results show for the first time that ErbB2 is an upstream effector of ROCKs and ERK1/2 in mediating diabetes-induced vascular dysfunction. Thus, potential strategies aimed at modifying actions of signal transduction pathways involving ErbB2 pathway may prove to be beneficial in treatment of diabetes-induced vascular complications.

  8. Integrated Product and Process Data for B2B Collaboration

    SciTech Connect

    Kulvatunyou, Boonserm; Ivezic, Nenad; Jones, Albert; Wysk, Richard A.

    2003-09-01

    Collaborative development of engineered products in a business-to-business (B2B) environment will require more than just the selection of components from an on-line catalogue. It will involve the electronic exchange of product, process, and production engineering information during both design and manufacturing. While the state-of-the-practice does include a variety of ways to exchange product data electronically, it does not extend to the exchange of manufacturing process data. The reason is simple; process data is usually tied to specific manufacturing resources. These resources are not known typically at product development time. This paper proposes an approach, called an Integrated Product and Process Data (IPPD), where manufacturing process data is considered during product development. This approach replaces traditional process plans, which are resource specific, with a resource-independent process representation. Such a representation will allow a much wider collaboration among business partners and provide the necessary base for collaborative product development.

  9. Semantic ETL into i2b2 with Eureka!

    PubMed

    Post, Andrew R; Krc, Tahsin; Rathod, Himanshu; Agravat, Sanjay; Mansour, Michel; Torian, William; Saltz, Joel H

    2013-01-01

    Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns in billing and clinical data. These patterns' complexity suggests the need for a robust yet flexible extract, transform and load (ETL) process that can compute them. This capability should be accessible to investigators with limited ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud.

  10. Semantic ETL into i2b2 with Eureka!

    PubMed Central

    Post, Andrew R.; Krc, Tahsin; Rathod, Himanshu; Agravat, Sanjay; Mansour, Michel; Torian, William; Saltz, Joel H.

    Clinical phenotyping is an emerging research information systems capability. Research uses of electronic health record (EHR) data may require the ability to identify clinical co-morbidities and complications. Such phenotypes may not be represented directly as discrete data elements, but rather as frequency, sequential and temporal patterns in billing and clinical data. These patterns’ complexity suggests the need for a robust yet flexible extract, transform and load (ETL) process that can compute them. This capability should be accessible to investigators with limited ability to engage an IT department in data management. We have developed such a system, Eureka! Clinical Analytics. It extracts data from an Excel spreadsheet, computes a broad set of phenotypes of common interest, and loads both raw and computed data into an i2b2 project. A web-based user interface allows executing and monitoring ETL processes. Eureka! is deployed at our institution and is available for deployment in the cloud. PMID:24303265

  11. Magnetic flux noise in MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Khare, Neeraj; Singh, D. P.; Gupta, Ajai K.

    2008-05-01

    Magnetic flux noise in MgB2 polycrystalline sample is measured using a high-TC rf-superconducting quantum interference device in the temperature range of 6-40K. A small magnetic field (˜200mG ) was applied while cooling the sample. The flux noise exhibits 1/fα type of behavior with α ˜1.0-1.3 and shows enhanced noise around 24 and 37K. The flux noise seems to originate from thermally activated vortex hopping. The large magnetic noise at 24K indicates the presence of larger density of pinning sites with energies ˜0.061eV leading to enhanced magnetic fluctuations at temperatures much below TC.

  12. Ionization delocalization and ALCHEMI of B2-ordered alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.

    1995-06-01

    Purpose of this paper is to demonstrate that the major assumption underlying the ALCHEMI formulation is justified: that the degree of ionization localization of an elemental shell can be accounted for by a linear coefficient; and to introduce a potential method, which would be applicable to B2-ordered alloys, of independently extracting the ratio of coefficients L{sub jk} necessary for delocalization correction. A Cr-doped FeAl alloy and a series of Fe-doped NiAl alloys with 0.25-12 at. % Fe were analyzed. Excellent linearity of the data substantiates the use of linear coefficients to model ionization localization. It was investigated whether the L{sub jk} acquired at a (110) systematics orientation could be accurately applied to ALCHEMI data acquired at (200).

  13. Superconductivity of MgB2: covalent bonds driven metallic.

    PubMed

    An, J M; Pickett, W E

    2001-05-07

    A series of calculations on MgB2 and related isoelectronic systems indicates that the layer of Mg2+ ions lowers the nonbonding B pi ( p(z)) bands relative to the bonding sigma ( sp(x)p(y)) bands compared to graphite, causing sigma-->pi charge transfer and sigma band doping of 0.13 holes/cell. Because of their two dimensionality the sigma bands contribute strongly to the Fermi level density of states. Calculated deformation potentials of gamma point phonons identify the B bond stretching modes as dominating the electron-phonon coupling. Superconductivity driven by sigma band holes is consistent with the report of destruction of superconductivity by doping with Al.

  14. Fatty acyl specificity of the receptor-mediated release of polyunsaturated fatty acids from vascular endothelial cells

    SciTech Connect

    Rosenthal, M.D.

    1987-05-01

    Histamine and bradykinin appear to exhibit the same fatty acid specificity as thrombin. Incubation of human umbilical vein endothelial cells with 10 ..mu..M histamine for 10 min in buffered saline containing 50 ..mu..M fat-free albumin stimulates the release of previously incorporated (/sup 14/C)arachidonate but not (/sup 14/C)22:4(n-6) or (/sup 14/C)20:3(n-6). Similarly calf pulmonary artery endothelial cells release (/sup 14/C)arachidonate but not (/sup 14/C)22:4(n-6) in response to either bradykinin (1 /sup +/g/ml) or histamine (10..mu..M). In both types of endothelial cells, the calcium ionophore A23187 (10 ..mu..M) exhibits the same pattern of fatty acyl specificity as the receptor-mediated agonists. By contrast, mellitin (2-4 ..mu..g/ml) stimulates the release of free 22:4(n-6) and oleate in addition to arachidonate; release of 22:4(n-6) is 30-70% that of arachidonate. These results suggest that histamine, bradykinin and thrombin stimulate a common calcium-dependent fatty acyl-specific phospholipase activity.

  15. Oxidation of ZrB2-and HfB2-Based Ultra-High Temperature Ceramics: Effects of Ta Additions

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Levine, Stanley; Lorinez, Jonathan

    2003-01-01

    Several compositions of ZrB2- and HfB2-based Ultra-High Temperature Ceramics (UHTC) were oxidized in stagnant air at 1627 C in ten minute cycles for times up to 100 minutes. These compositions include: ZrB2 - 20v% SiC, HfB2 - 20v% SiC, ZrB2 - 20v% SiC - 20v% TaSi2, ZrB2 - 33v% SiC, HfB2 - 20v% SiC - 20v% TaSi2, and ZrB2 - 20v% SiC - 20v% TaC. The weight change due to oxidation was recorded. The ZrB2 - 20v% SiC - 20v% TaSi2 composition was also oxidized in stagnant air at 1927 C and in an arc jet atmosphere. Samples were analyzed after oxidation by x-ray diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy to determine the reaction products and to observe the microstructure. The ZrB2 - 20v% SiC - 20v% TaSi2 showed the lowest oxidation rate at 1627 C, but performed poorly under the more extreme tests due to liquid phase formation. Effects of Ta-additions on the oxidation of the diboride-based UHTC are discussed.

  16. Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells.

    PubMed Central

    Brown, D A; Higashida, H

    1988-01-01

    1. The role of inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG) as possible mediators of the membrane current responses of NG108-15 neuroblastoma x glioma hybrid cells to bradykinin (BK, Brown & Higashida, 1988b) has been tested using intracellular ionophoresis of InsP3 and external application of phorbol dibutyrate (PDBu) and 1-oleoyl-2-acetylglycerol (OAG). 2. Intracellular ionophoresis of InsP3 into cells clamped at -30 to -50 mV produced (i) a transient outward current, (ii) a transient outward current followed by an inward current, or (iii) an inward current. All currents were accompanied by an increased input conductance. 3. The transient outward current reversed at between -80 and -90 mV. The reversal potential was shifted to more positive potentials on raising extracellular [K+], suggesting that it resulted from an increased K+ conductance. 4. The outward current was inhibited by apamin (0.4 microM) or d-tubocurarine (0.2-0.5 mM); these drugs also inhibit the outward current produced by BK or by intracellular Ca2+ injections (Brown & Higashida, 1988 a, b). The outward current was also slowly reduced in 0 mM [Ca2+] or 0.5 mM [Cd2+] plus 2 mM [Co2+] solution. 5. Ionophoretic injection of inositol 1,3,4-trisphosphate and inositol 1,3,4,5-tetrakisphosphate, guanosine trisphosphate or inorganic phosphate did not evoke an outward current but produced only an inward current with an increased conductance, reversing at between -10 and -20 mV. 6. Bath application of PDBu (10 nM-1 microM) or OAG (1-10 microM) produced an inward current with a fall in input conductance. The inward current was voltage dependent and was accompanied by an inhibition of the time-dependent current relaxations associated with activation or deactivation of the voltage-dependent K+ current, IM. 7. PDBu did not clearly reduce the Ca2+ current or the Ca2+-dependent K+ current recorded in these cells. During superfusion with PDBu, the outward current produced by intracellular

  17. The conserved nhaAR operon is drastically divergent between B2 and non-B2 Escherichia coli and is involved in extra-intestinal virulence.

    PubMed

    Lescat, Mathilde; Reibel, Florence; Pintard, Coralie; Dion, Sara; Glodt, Jérémy; Gateau, Cecile; Launay, Adrien; Ledda, Alice; Cruveiller, Stephane; Cruvellier, Stephane; Tourret, Jérôme; Tenaillon, Olivier

    2014-01-01

    The Escherichia coli species is divided in phylogenetic groups that differ in their virulence and commensal distribution. Strains belonging to the B2 group are involved in extra-intestinal pathologies but also appear to be more prevalent as commensals among human occidental populations. To investigate the genetic specificities of B2 sub-group, we used 128 sequenced genomes and identified genes of the core genome that showed marked difference between B2 and non-B2 genomes. We focused on the gene and its surrounding region with the strongest divergence between B2 and non-B2, the antiporter gene nhaA. This gene is part of the nhaAR operon, which is in the core genome but flanked by mobile regions, and is involved in growth at high pH and high sodium concentrations. Consistently, we found that a panel of non-B2 strains grew faster than B2 at high pH and high sodium concentrations. However, we could not identify differences in expression of the nhaAR operon using fluorescence reporter plasmids. Furthermore, the operon deletion had no differential impact between B2 and non-B2 strains, and did not result in a fitness modification in a murine model of gut colonization. Nevertheless, sequence analysis and experiments in a murine model of septicemia revealed that recombination in nhaA among B2 strains was observed in strains with low virulence. Finally, nhaA and nhaAR operon deletions drastically decreased virulence in one B2 strain. This effect of nhaAR deletion appeared to be stronger than deletion of all pathogenicity islands. Thus, a population genetic approach allowed us to identify an operon in the core genome without strong effect in commensalism but with an important role in extra-intestinal virulence, a landmark of the B2 strains.

  18. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Lawson, JOhn W.; Daw, Murray S.; Bauschlicher, Charles W.

    2011-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 are candidate materials for applications in extreme environments because of their high melting point, good mechanical properties and reasonable oxidation resistance. Unlike many ceramics, these materials have high thermal conductivity which can be advantageous, for example, to reduce thermal shock. Recently, we developed Tersoff style interatomic potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current. Results at room temperature and at elevated temperatures will be reported.

  19. MgB2 tunnel junctions with native or thermal oxide barriers

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gandikota, R.; Kim, J.; Newman, N.; Rowell, J. M.

    2006-07-01

    MgB2 tunnel junctions (MgB2/barrier/MgB2) were fabricated using a native oxide grown on the bottom MgB2 film as the tunnel barrier. Such barriers therefore survive the deposition of the second electrode at 300°C, even over junction areas of ˜1mm2. Studies of such junctions and those of the type MgB2/native or thermal oxide/metal (Pb, Au, or Ag) show that tunnel barriers grown on MgB2 exhibit a wide range of barrier heights and widths.

  20. Experiences and Future Expectations towards Online Courses--An Empirical Study of the B2C-and B2B-Segments

    ERIC Educational Resources Information Center

    Krämer, Andreas; Böhrs, Sandra

    2016-01-01

    This article explores the future potential for the development of online courses. The findings are based on an empirical study with 3 sample groups: (1) B2C segment in Germany, (2) B2C segment in the United States, and (3) B2B segment (international). In the first step the status quo of the use of e-learning in general and online courses in…

  1. Solute hardening and softening effects in B2 nickel aluminides

    SciTech Connect

    Pike, L.M.; Liu, C.T.; Anderson, I.M.; Chang, Y.A.

    1998-11-01

    The effect of substitutional solute additions including Fe, Mn, and Pd on the hardness of B2-ordered NiAl alloys was investigated. The solid solution hardening behavior of intermetallics is more complex than that of typical metallic solid solutions because of complications arising from the site preference of the solute as well as the effects of the solute on the concentrations of other point defects, e.g., vacancies and anti-site defects. For this reason, care was taken to experimentally establish solute site preferences and point defect concentrations in the NiAl alloys before analyzing the hardness data. By taking these factors into account it was possible to rationalize the observed unusual hardening effects. Three distinct categories of solid solution hardening behavior were encountered. The first was hardening by the solute addition itself. This was observed in the case of Pd additions to Al-poor NiAl. However, when fe or Mn is added to Al-poor NiAl a second category is observed; these elements are seen to soften the material. The third category of behavior is observed when Fe is added to NiAl with a constant Al concentration of 50 at. %. In this case it is vacancies, rather than solute atoms, which harden the material.

  2. Effects of neutron irradiation on polycrystalline Mg11B2

    NASA Astrophysics Data System (ADS)

    Tarantini, C.; Aebersold, H. U.; Braccini, V.; Celentano, G.; Ferdeghini, C.; Ferrando, V.; Gambardella, U.; Gatti, F.; Lehmann, E.; Manfrinetti, P.; Marré, D.; Palenzona, A.; Pallecchi, I.; Sheikin, I.; Siri, A. S.; Putti, M.

    2006-04-01

    We studied the influence of the disorder introduced in polycrystalline MgB2 samples by neutron irradiation. To circumvent self-shielding effects due to the strong interaction between thermal neutrons and B10 we employed isotopically enriched B11 which contains 40 times less B10 than natural B. The comparison of electrical and structural properties of different series of samples irradiated in different neutron sources, also using Cd shields, allowed us to conclude that, despite the low B10 content, the main damage mechanisms are caused by thermal neutrons, whereas fast neutrons play a minor role. Irradiation leads to an improvement in both upper critical field and critical current density for an exposure level in the range 1-2×1018cm-2 . With increasing fluence the superconducting properties are depressed. An in-depth analysis of the critical field and current density behavior has been carried out to identify what scattering and pinning mechanisms come into play. Finally, the correlation between some characteristic lengths and the transition widths is analyzed.

  3. A Novel Stable Binary BeB2 phase

    PubMed Central

    Fan, Changzeng; Jin, Ye; Li, Jian; Dong, Xu

    2014-01-01

    Potential crystal structures of BeB2 were explored using ab initio evolutionary simulations. A new phase with a Cmcm space group was uncovered. It was determined that the Cmcm phase is mechanically and dynamically stable and has a lower enthalpy, from ambient pressure up to 13 GPa, than any previously proposed phases, as measured using first-principles calculations. The crystal structure, phonon dispersion, phase transitions, and mechanical and electronic properties of this phase were investigated. It was determined that the Cmcm phase may transform into the phase at pressures higher than 13 GPa. The band structures and density of states reveal that the Cmcm phase is metallic. In addition, the Vickers hardness was calculated using three empirical models. To explain the origin of the hardness, charge density difference maps and a Mulliken population analysis were carried out, which demonstrated that there are strong covalent interactions between B atoms. By analyzing the Crystal Orbital Hamilton Population (COHP) diagrams, it was determined that the total interaction of the Be-B bonds is stronger than that of the B-B bonds, indicating a very complex bonding feature in the new phase. It was predicted that the new Cmcm phase is nearly absent of superconductivity. PMID:25385147

  4. Lightweight MgB2 superconducting 10 MW wind generator

    NASA Astrophysics Data System (ADS)

    Marino, I.; Pujana, A.; Sarmiento, G.; Sanz, S.; Merino, J. M.; Tropeano, M.; Sun, J.; Canosa, T.

    2016-02-01

    The offshore wind market demands a higher power rate and more reliable turbines in order to optimize capital and operational costs. The state-of-the-art shows that both geared and direct-drive conventional generators are difficult to scale up to 10 MW and beyond due to their huge size and weight. Superconducting direct-drive wind generators are considered a promising solution to achieve lighter weight machines. This work presents an innovative 10 MW 8.1 rpm direct-drive partial superconducting generator using MgB2 wire for the field coils. It has a warm iron rotor configuration with the superconducting coils working at 20 K while the rotor core and the armature are at ambient temperature. A cooling system based on cryocoolers installed in the rotor extracts the heat from the superconducting coils by conduction. The generator's main parameters are compared against a permanent magnet reference machine, showing a significant weight and size reduction. The 10 MW superconducting generator concept will be experimentally validated with a small-scale magnetic machine, which has innovative components such as superconducting coils, modular cryostats and cooling systems, and will have similar size and characteristics as the 10 MW generator.

  5. Damping and modulus measurements in B2 transition metal aluminides

    NASA Technical Reports Server (NTRS)

    Harmouche, M. R.; Wolfenden, A.

    1985-01-01

    The polycrystalline intermetallic alloys FeAl (50.9 to 58.2 percent Fe), NiAl (49.2 to 55.9 percent Ni) and CoAl (48.5 to 52.3 percent Co) have the B2 structure and are of interest for high temperature applications. The PUCOT (piezoelectric ultrasonic composite oscillator technique) has been used to measure mechanical damping or internal friction and Young's modulus has been used as a function of temperature and composition for these materials. The modulus data for six CoAl alloys at temperatures up to 1300 K are presented. Examples are given of the strain amplitude dependence of internal friction for four CoAl alloys. The curves showed the break away phenomenon and are interpreted in terms of a theory dealing with the pinning of dislocation lines and their eventual break away at large strain amplitudes. The dislocation density was calculated to be about 10 to the 8th per sq m. For all the compositions (X1) of CoAl studied, a single equation could be fitted to the data.

  6. Organic Anion–Transporting Polypeptide 1b2 (Oatp1b2) Is Important for the Hepatic Uptake of Unconjugated Bile Acids: Studies in Oatp1b2-Null Mice

    PubMed Central

    Csanaky, Iván L.; Lu, Hong; Zhang, Youcai; Ogura, Kenichiro; Choudhuri, Supratim; Klaassen, Curtis D.

    2011-01-01

    The organic anion–transporting polypeptide 1b family (Oatp1b2 in rodents and OATP1B1/1B3 in humans) is liver-specific and transports various chemicals into the liver. However, the role of the Oatp1b family in the hepatic uptake of bile acids (BAs) into the liver is unknown. Therefore, in Oatp1b2-null mice, the concentrations of BAs in plasma, liver, and bile were compared with wild-type (WT) mice. It was first determined that livers of the Oatp1b2-null mice were not compensated by altered expression of other hepatic transporters. However, the messenger RNA of Cyp7a1 was 70% lower in the Oatp1b2-null mice. Increased expression of fibroblast growth factor 15 in intestines of Oatp1b2-null mice might be responsible for decreased hepatic expression of Cyp7a1 in Oatp1b2-null mice. The hepatic concentration and biliary excretion of conjugated and unconjugated BAs were essentially the same in Oatp1b2-null and WT mice. The serum concentration of taurine-conjugated BAs was essentially the same in the two genotypes. In contrast, the serum concentrations of unconjugated BAs were 3–45 times higher in Oatp1b2-null than WT mice. After intravenous administration of cholate to Oatp1b2-null mice, its clearance was 50% lower than in WT mice, but the clearance of taurocholate was similar in the two genotypes. Conclusion This study indicates that Oatp1b2 has a major role in the hepatic uptake of unconjugated BAs. PMID:20949553

  7. Domain Specific Effects of Herstatin, an Alternative HER-2 (erbB-2) Product, on erbB Positive Breast Cancer

    DTIC Science & Technology

    2006-05-01

    an Alternative HER-2 (erbB-2) Product, on erbB Positive Breast Cancer PRINCIPAL INVESTIGATOR: Lara S. Shamieh...HER-2 (erbB-2) Product, on erbB Positive Breast Cancer 5b. GRANT NUMBER W81XWH-04-1-0412 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...modulate the action of these receptors and may be critical in controlling the progression ofErbB positive breast cancer . 15. SUBJECT TERMS No

  8. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer.

    PubMed Central

    Siegel, P M; Ryan, E D; Cardiff, R D; Muller, W J

    1999-01-01

    To assess the importance of Neu activation during mammary tumorigenesis, altered receptors harboring in-frame deletions within the extracellular domain were expressed in transgenic mice. Females from several independent lines develop multiple mammary tumors that frequently metastasize to the lung. Tumor progression in these strains was associated with elevated levels of tyrosine-phosphorylated Neu and ErbB-3. Consistent with these observations, a survey of primary human breast tumors revealed frequent co-expression of both erbB-2 and erbB-3 transcripts. The ability of altered Neu receptors to induce mammary tumorigenesis in transgenic mice prompted us to examine whether similar mutations occurred in ErbB-2 during human breast cancer progression. Interestingly, an alternatively spliced form of erbB-2, closely resembling spontaneous activated forms of neu, was detected in human breast tumors. The ErbB-2 receptor encoded by this novel transcript harbors an in-frame deletion of 16 amino acids in the extracellular domain and can transform Rat-1 fibroblasts. Together, these observations argue that co-expression of ErbB-2 and ErbB-3 may play a critical role in the induction of human breast tumors, and raise the possibility that activating mutations in the ErbB-2 receptor may also contribute to this process. PMID:10205169

  9. EphB2 and EphB3 play an important role in the lymphoid seeding of murine adult thymus.

    PubMed

    Alfaro, David; García-Ceca, Javier; Farias-de-Oliveira, Desio A; Terra-Granado, Eugenia; Montero-Herradón, Sara; Cotta-de-Almeida, Vinicius; Savino, Wilson; Zapata, Agustín

    2015-12-01

    Adult thymuses lacking either ephrin type B receptor 2 (EphB2) or EphB3, or expressing a truncated form of EphB2, the forward signal-deficient EphB2LacZ, have low numbers of early thymic progenitors (ETPs) and are colonized in vivo by reduced numbers of injected bone marrow (BM) lineage-negative (Lin(-)) cells. Hematopoietic progenitors from these EphB mutants showed decreased capacities to colonize wild type (WT) thymuses compared with WT precursors, with EphB2(-/-) cells exhibiting the greatest reduction. WT BM Lin(-) cells also showed decreased colonizing capacity into mutant thymuses. The reduction was also more severe in EphB2(-/-) host thymuses, with a less severe phenotype in the EphB2LacZ thymus. These results suggest a major function for forward signaling through EphB2 and, to a lesser extent, EphB3, in either colonizing progenitor cells or thymic stromal cells, for in vivo adult thymus recruitment. Furthermore, the altered expression of the molecules involved in thymic colonization that occurs in the mutant thymus correlates with the observed colonizing capacities of different mutant mice. Reduced production of CCL21 and CCL25 occurred in the thymus of the 3 EphB-deficient mice, but their expression, similar to that of P-selectin, on blood vessels, the method of entry of progenitor cells into the vascular thymus, only showed a significant reduction in EphB2(-/-) and EphB3(-/-) thymuses. Decreased migration into the EphB2(-/-) thymuses correlated also with reduced expression of both ephrinB1 and ephrinB2, without changes in the EphB2LacZ thymuses. In the EphB3(-/-) thymuses, only ephrinB1 expression appeared significantly diminished, confirming the relevance of forward signals mediated by the EphB2-ephrinB1 pair in cell recruitment into the adult thymus.

  10. Variation of properties of glasses along the 3Bi2O3 X 5B2O3-4PbO X B2O3 and PbO X 2B2O3-2PbO X Bi2O3 sections of the PbO-Bi2O3-B2O3 ternary system

    SciTech Connect

    Zargarova, M.I.; Shuster, N.S.

    1985-07-01

    Already published data on the phase diagrams of Pb-B2O3, Bi2O3-B2O3, and PbO-Bi2O3 systems serve as the basis of this investigation, together with original experiments on the PbO-Bi2O3-B2O3 ternary system. The authors establish the quasi binary nature of the 3Bi2O3 X 5B2O3 - 4PbO X B2O3 section with the formation of the congruently melting ternary compound 3Bi2O3 X 8PbO X 7B2O3, and they demonstrate the role of the ternary compound 3Bi2O3 X 8PbO X 7B2O3 as a glass former in the PbO-Bi2O3 - B2O3 system.

  11. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  12. Thermal vacuum integrated system test at B-2

    NASA Astrophysics Data System (ADS)

    Kudlac, M. T.; Weaver, H. F.; Cmar, M. D.

    2012-04-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3 × 10-4 Pa (1 × 10-6 torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (139°R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/m2 at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber's cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  13. TiB2 nanostructured coating for GFRP injection moulds.

    PubMed

    Martinho, R P; Silva, F J G; Alexandre, R J D; Baptista, A P M

    2011-06-01

    In the injection moulding of polypropylene reinforced with hard glass fibres, die materials are commonly subjected to severe abrasive wear. In order to improve its wear resistance, an unbalanced magnetron sputtering PVD compositional monolayered coating has been produced. The film was composed by a nanostructured TiB2 monolayer. Microstructure characterization and thickness evaluation were conducted by scanning electron microscopy (SEM). Film topography and roughness were accessed by SEM and Atomic Force Microscopy (AFM). The phase analyse was investigated by X-ray diffraction (XRD), using Cu Kalpha radiation. Scratch tests were conducted in order to study the film adhesion to the substrate. Load-Displacement curves (nanoindentation analysis) allowed measuring the film hardness and Young's modulus. A ball-cratering tribometer was used to determine the micro-abrasion laboratorial wear resistance, under different tests conditions, using SiC particles in distilled water slurry. At the end of these tests, the worn surfaces were analyzed by SEM and Energy Dispersive X-ray Spectroscopy (EDS) in order to compare these results with some other coatings already tested in the same conditions. To test the practical wear resistance, 135000 injection cycles were done in a plastic injection industrial mould. Coated samples were put on the plastic feed canal, after a turbulent zone. In these tests, a 30% (wt) glass fibres reinforced polypropylene was used. Worn sample surfaces were analyzed by SEM after 45.000 and 90.000 cycles. Image analyses were made in order to evaluate the damage increases and to observe the wear mechanisms involved.

  14. Thermal Vacuum Integrated System Test at B-2

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  15. Beyond the exchange--the future of B2B.

    PubMed

    Wise, R; Morrison, D

    2000-01-01

    Using the Internet to facilitate business-to-business commerce promises many benefits, such as dramatic cost reductions and greater access to buyers and sellers. Yet little is known about how B2B e-commerce will evolve. The authors argue that changes in the financial services industry over the past two decades provide important clues. Exchanges, they say, are not the primary source of value in information-intensive markets; value tends to accumulate among a diverse group of specialists that focus on such tasks as packaging, standard setting, arbitrage, and information management. Because scale and liquidity are vitally important to efficient trading, today's exchanges will consolidate into a relatively small set of mega-exchanges. Originators will handle the origination and aggregation of complex transactions before sending them on to mega-exchanges for execution. E-speculators, seeking to capitalize on an abundance of market information, will tend to concentrate where relatively standardized products can be transferred easily among a large group of buyers. In many markets, a handful of independent solution providers with well-known brand names and solid reputations will thrive alongside mega-exchanges. Sell-side asset exchanges will create the networks and provide the tools to allow suppliers to trade orders among themselves, sometimes after initial transactions with customers are made on the mega-exchanges. For many companies, traditional skills in such areas as product development, manufacturing, and marketing may become relatively less important, while the ability to understand and capitalize on market dynamics may become considerably more important.

  16. Comparative immunohistochemical localisation of GABA(B1a), GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal root ganglion.

    PubMed

    Charles, K J; Evans, M L; Robbins, M J; Calver, A R; Leslie, R A; Pangalos, M N

    2001-01-01

    GABA(B) receptors are G-protein-coupled receptors mediating the slow onset and prolonged synaptic actions of GABA in the CNS. The recent cloning of two genes, GABA(B1) and GABA(B2), has revealed a novel requirement for GABA(B) receptor signalling. Studies have demonstrated that the two receptor subunits associate as a GABA(B1)/GABA(B2) heterodimer to form a functional GABA(B) receptor. In this study we have developed polyclonal antisera specific to two splice variants of the GABA(B1) subunit, GABA(B1a) and GABA(B1b), as well as an antiserum to the GABA(B2) subunit. Using affinity-purified antibodies derived from these antisera we have mapped out the distribution profile of each subunit in rat brain, spinal cord and dorsal root ganglion. In brain the highest areas of GABA(B1a), GABA(B1b) and GABA(B2) subunit expression were found in neocortex, hippocampus, thalamus, cerebellum and habenula. In spinal cord, GABA(B1) and GABA(B2) subunits were expressed in the superficial layers of the dorsal horn, as well as in motor neurones in the deeper layers of the ventral horn. GABA(B) receptor subunit immunoreactivity in dorsal root ganglion suggested that expression of GABA(B1b) was restricted to the large diameter neurones, in contrast to GABA(B1a) and GABA(B2) subunits which were expressed in both large and small diameter neurones. Although expression levels of GABA(B1) and GABA(B2) subunits varied we found no areas in which GABA(B1) was expressed in the absence of GABA(B2). This suggests that most, if not all, GABA(B1) immunoreactivity may represent functional GABA(B) receptors. Although our data are in general agreement with functional studies, some discrepancies in GABA(B1) subunit expression occurred with respect to other immunohistochemical studies. Overall our data suggest that GABA(B) receptors are widely expressed throughout the brain and spinal cord, and that GABA(B1a) and GABA(B1b) subunits can associate with GABA(B2) to form both pre- and post-synaptic receptors.

  17. 26 CFR 1.668(b)-2 - Illustration of the provisions of subpart D.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 8 2012-04-01 2012-04-01 false Illustration of the provisions of subpart D. 1.668(b)-2 Section 1.668(b)-2 Interna