Sample records for braid nebula star

  1. Atoms, Stars, and Nebulae

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1991-09-01

    1. Introducing stars and nebulae; 2. Stellar rainbows; 3. Atoms and molecules; 4. The climate in a stellar atmosphere; 5. Analysing the stars; 6. Dwarfs, giants, and supergiants; 7. What makes a star shine?; 8. The youth and middle age of a common star; 9. Wind, dust and pulsations; 10. A star's last hurray?; 11. The interstellar medium and gaseous nebulae; 12. Uncommon stars and their sometimes violent behaviour; 13. High energy astronomy.

  2. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  3. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  4. Magnetic fields in central stars of planetary nebulae?

    NASA Astrophysics Data System (ADS)

    Jordan, S.; Bagnulo, S.; Werner, K.; O'Toole, S. J.

    2012-06-01

    Context. Most planetary nebulae have bipolar or other non-spherically symmetric shapes. Magnetic fields in the central star may be responsible for this lack of symmetry, but observational studies published to date have reported contradictory results. Aims: We search for correlations between a magnetic field and departures from the spherical geometry of the envelopes of planetary nebulae. Methods: We determine the magnetic fields from spectropolarimetric observations of ten central stars of planetary nebulae. The results of the analysis of the observations of four stars were previously presented and discussed in the literature, while the observations of six stars, plus additional measurements of a star previously observed, are presented here for the first time. Results: All our determinations of magnetic field in the central planetary nebulae are consistent with null results. Our field measurements have a typical error bar of 150-300 G. Previous spurious field detections using data acquired with FORS1 (FOcal Reducer and low dispersion Spectrograph) of the Unit Telescope 1 (UT1) of the Very Large Telescope (VLT) were probably due to the use of different wavelength calibration solutions for frames obtained at different position angles of the retarder waveplate. Conclusions: There is currently no observational evidence of magnetic fields with a strength of the order of hundreds Gauss or higher in the central stars of planetary nebulae. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programme ID 072.D-0089 (PI = Jordan) and 075.D-0289 (PI = Jordan).

  5. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  6. A search for ejecta nebulae around Wolf-Rayet stars using the SHS Hα survey

    NASA Astrophysics Data System (ADS)

    Stock, D. J.; Barlow, M. J.

    2010-12-01

    Recent large-scale Galactic plane Hα surveys allow a re-examination of the environs of Wolf-Rayet (WR) stars for the presence of a circumstellar nebula. Using the morphologies of WR nebulae known to be composed of stellar ejecta as a guide, we constructed ejecta nebula criteria similar to those of Chu and searched for likely WR ejecta nebulae in the Southern Hα Survey (SHS). A new WR ejecta nebula around WR 8 is found and its morphology is discussed. The fraction of WR stars with ejecta-type nebulae is roughly consistent between the Milky Way (MW) and Large Magellanic Cloud (LMC) at around 5-6 per cent, with the MW sample dominated by nitrogen-rich WR central stars (WN type) and the LMC stars having a higher proportion of carbon-rich WR central stars (WC type). We compare our results with those of previous surveys, including those of Marston and Miller & Chu, and find broad consistency. We investigate several trends in the sample: most of the clear examples of ejecta nebulae have WNh central stars, and very few ejecta nebulae have binary central stars. Finally, the possibly unique evolutionary status of the nebula around the binary star WR 71 is explored.

  7. Bipolar nebulae and mass loss from red giant stars

    NASA Technical Reports Server (NTRS)

    Cohen, M.

    1985-01-01

    Observations of several bipolar nebulae are used to learn something of the nature of mass loss from the probable red-giant progenitors of these nebulae. Phenomena discussed are: (1) probable GL 2688's optical molecular emissions; (2) newly discovered very high velocity knots along the axis of OH 0739 - 14, which reveal evidence for mass ejections of + or 300 km/s from the M9 III star embedded in this nebula; (3) the bipolar structure of three extreme carbon stars, and the evidence for periodic mass ejection in IRC + 30219, also at high speed (about 80 km/s); and (4) the curious cool TiO-rich region above Parsamian 13, which may represent the very recent shedding of photospheric material from a cool, oxygen-rich giant. Several general key questions about bipolar nebulae that relate to the process of mass loss from their progenitor stars are raised.

  8. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  9. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that theymore » are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.« less

  10. Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    DTIC Science & Technology

    2007-02-01

    is a large nebula with a larger outer halo (Hewett et al. 2003; Rauch et al. 2004). Frew& Parker (2006) find that the nebula may be ionized ISM. 3...TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2...parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new

  11. INVESTIGATIONS ON FLARE STARS AND NEBULAE.

    DTIC Science & Technology

    The first part of the report deals with the searching of flare stars in the Pleiades and Praesepe clusters. 13 flares have been found on the... Pleiades and 2 on the Praesepe. Position and characteristics of the flare stars are given. The second part deals with the study of the Orion Nebula with

  12. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  13. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  14. Young stars of low mass in the Gum nebula

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1989-01-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.

  15. Young stars of low mass in the Gum nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, J.A.; Heyer, M.H.

    1989-06-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birthmore » of the sun. 53 refs.« less

  16. Hubble Finds an Hourglass Nebula around a Dying Star

    NASA Image and Video Library

    1996-01-16

    This Hubble telescope snapshot of MyCn18, a young planetary nebula, reveals that the object has an hourglass shape with an intricate pattern of etchings in its walls. A planetary nebula is the glowing relic of a dying, Sun-like star.

  17. R Coronae Borealis stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.

    1986-01-01

    IRAS observations of R Coronae Borealis type stars (R CrB's) suggests that a subset of these is inside planetary nebulae (PNs). In most cases, the PN is confirmed by the finding of a visible nebula around the star. These nebular R CrB's are identified as being the results of a final helium shell flash on the central star of old PNs. The majority of the R CrB's formed after the coalescence of a binary consisting of CO and He white dwarfs. Also presented in this paper are the results of a survey of 52 R CrB's. The normal R CrB's have power-law spectra which imply that the grain absorption coefficient varies linearly with frequency. It is estimated that R CrB's eject about 300 clouds per year, each of which subtend an angle of about 30 sq deg.

  18. Ring nebulae around Wolf-Rayet stars in M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Shara, Michael M.; Moffat, Anthony F. J.

    1991-01-01

    Results of a systematic search for H II ring nebulae surrounding Wolf-Rayet (WR) stars in M33 are presented. Eleven objects are found to be good candidates, while eight others are classified as possible WR ring nebulae. The WR rings in M33 are larger on average than their Galactic counterparts, but the H-alpha luminosity of most of them is comparable to the bright Galactic wind-blown bubbles. The rings are associated with WC as well as with WN stars.

  19. Storm of Stars in the Trifid Nebula

    NASA Image and Video Library

    2014-01-29

    Radiation and winds from massive stars have blown a cavity into the surrounding dust and gas, creating the Trifid nebula, as seen here in infrared light by NASA Wide-field Infrared Survey Explorer, or WISE.

  20. Unveiling the True Metallicity and Stellar Populations of Planetary Nebula Progenitor Stars

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Geballe, T. R.; Sterling, N. C.

    2011-01-01

    We have measured the recently identified 3.625 micron [Zn IV] fine-structure line (Dinerstein & Geballe 2001, ApJ, 562, 515) in a dozen Galactic planetary nebulae (Dinerstein et al. 2007, BAAS, 211, 100.14). Because Zn is the least refractory of the Fe peak elements, the gas phase [Zn/H] abundance can be used as a proxy for the elemental [Fe/H] in the progenitor star, in contrast to Fe itself, which is heavily depleted into dust. We find that the observed Milky Way nebulae fall into two categories: objects which have roughly solar values of [Zn/H] and [O/Zn]; and nebulae with low Zn (clustering around [Zn/H] = -0.6) and elevated [O/H]. Most of the latter group have high radial velocities, |vrad| > 60 km/s. Our interpretation is that the objects with solar abundances and low velocities originate from thin disk stars, while the nebulae with low Zn are descendants of thick disk stars. A further implication is that the common assumption that O and other alpha species are reliable indicators of metallicity in planetary nebulae is not necessarily valid, and can lead to erroneous conclusions about the parent stellar population. This effect is particularly acute for O since [O/Fe] can be large, especially in metal-poor populations. In a planetary nebula formed by a star with this abundance pattern, a high value of [(O, alpha)/Fe] can offset a low [Fe/H], producing near-solar abundances for O and other alpha species. This can make it appear that the star belongs to a more metal-rich (in [Fe/H]) population than is actually the case. Obtaining Zn abundances for larger samples of planetary nebulae will be crucial to disentangling these abundance ratios and breaking the potential degeneracy of the O and alpha abundances. (This research was supported by NSF grant 0708245.)

  1. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  2. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or

  3. [WN] central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Miszalski, B.; Toalá, J. A.; Guerrero, M. A.

    2017-10-01

    While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of these H-deficient central stars exhibit spectra very similar to massive Wolf-Rayet stars of the carbon sequence, i.e. with broad emission lines of carbon, helium, and oxygen. In analogy to the massive Wolf-Rayet stars, they are classified as [WC] stars. Their formation, which is relatively well understood, is thought to be the result of a (very) late thermal pulse of the helium burning shell. It is therefore surprising that some H-deficient central stars which have been found recently, e.g. IC 4663 and Abell 48, exhibit spectra that resemble those of the massive Wolf-Rayet stars of the nitrogen sequence, i.e. with strong emission lines of nitrogen instead of carbon. This new type of central stars is therefore labelled [WN]. We present spectral analyses of these objects and discuss the status of further candidates as well as the evolutionary status and origin of the [WN] stars.

  4. The evolved central star of the planetary nebula ESO 166-PN 21.

    NASA Astrophysics Data System (ADS)

    Pena, M.; Ruiz, M. T.; Bergeron, P.; Torres-Peimbert, S.; Heathcote, S.

    1997-02-01

    Optical and UV spectrophotometric data of the nebula and the central star of the planetary nebula ESO 166-PN 21 are presented. The analysis of the nebular lines confirms that it is a He- and N-rich PN, with He/H=0.138+/-0.005 and N/O=0.58+/-0.08. The oxygen abundance is 12+logO/H=8.60+/-0.10. A distance of 1.2+/-0.2 kpc is derived for the nebula. The central star is very faint and blue, with an apparent magnitude V=17.94+/-0.03mag and a dereddened color index (B-V)_0_=-0.38mag. It shows faint wide H and He absorption lines typical of a DAO star. By modeling the line profiles we derived T_eff_=69200+/-8700K, logg=7.14+/-0.39 and logHe/H=-1.50+/-0.49 for the star. The position of the star in a HR diagram compared with evolutionary tracks indicates a stellar mass of ~0.55Msun_. The bolometric correction derived from the model atmosphere is -5.6mag which, combined with the mass, yields an absolute visual magnitude M_V_=6.95, a luminosity of 22Lsun_ and a distance of 1185+/-700pc, in good agreement with the nebular distance. Therefore, ESO 166-PN 21 central star is among the hottest and most helium-rich DAO stars and it is one of the most evolved PN nuclei known, similar to the central stars of S216 and NGC7293. A kinematical age of 16100yr is deduced for the nebula which is lower by about two orders of magnitude than the age of the central star. The possibility that this object is a member of a close binary system is suggested.

  5. Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula

    NASA Image and Video Library

    2017-12-08

    Release Date: May 3, 2004 A Dying Star Shrouded by a Blanket of Hailstones Forms the Bug Nebula (NGC 6302) The Bug Nebula, NGC 6302, is one of the brightest and most extreme planetary nebulae known. The fiery, dying star at its center is shrouded by a blanket of icy hailstones. This NASA Hubble Wide Field Plantery Camera 2 image shows impressive walls of compressed gas, laced with trailing strands and bubbling outflows. Object Names: NGC 6302, Bug Nebula Image Type: Astronomical Credit: NASA, ESA and A.Zijlstra (UMIST, Manchester, UK) To learn more about this image go to: hubblesite.org/gallery/album/nebula/pr2004046a/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Dust in emission nebulae of the LMC derived from photometric reddening of stars

    NASA Astrophysics Data System (ADS)

    Greve, A.; van Genderen, A. M.; Laval, A.

    1990-10-01

    VBLUW photometric observations of stars in emission nebulae of the LMC are reported. The luminosities and extinctions of the stars are derived. Agreement is found between the average photometric extinctions of the nebulae and the extinctions derived from the Balmer line decrement measured by Caplan and Deharveng (1985 and 1986). The photometric extinctions are shown in the CO map of the LMC (Cohen et al., 1988).

  7. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  8. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  9. Evolutionary status of the Of?p star HD 148937 and of its surrounding nebula NGC 6164/5

    NASA Astrophysics Data System (ADS)

    Mahy, L.; Hutsemékers, D.; Nazé, Y.; Royer, P.; Lebouteiller, V.; Waelkens, C.

    2017-03-01

    Aims: The magnetic star HD 148937 is the only Galactic Of?p star surrounded by a nebula. The structure of this nebula is particularly complex and is composed, from the center out outwards, of a close bipolar ejecta nebula (NGC 6164/5), an ellipsoidal wind-blown shell, and a spherically symmetric Strömgren sphere. The exact formation process of this nebula and its precise relation to the star's evolution remain unknown. Methods: We analyzed infrared Spitzer IRS and far-infrared Herschel/PACS observations of the NGC 6164/5 nebula. The Herschel imaging allowed us to constrain the global morphology of the nebula. We also combined the infrared spectra with optical spectra of the central star to constrain its evolutionary status. We used these data to derive the abundances in the ejected material. To relate this information to the evolutionary status of the star, we also determined the fundamental parameters of HD 148937 using the CMFGEN atmosphere code. Results: The Hα image displays a bipolar or "8"-shaped ionized nebula, whilst the infrared images show dust to be more concentrated around the central object. We determine nebular abundance ratios of N/O = 1.06 close to the star, and N/O = 1.54 in the bright lobe constituting NGC 6164. Interestingly, the parts of the nebula located further from HD 148937 appear more enriched in stellar material than the part located closer to the star. Evolutionary tracks suggest that these ejecta have occured 1.2-1.3 and 0.6 Myr ago, respectively. In addition, we derive abundances of argon for the nebula compatible with the solar values and we find a depletion of neon and sulfur. The combined analyses of the known kinematics and of the new abundances of the nebula suggest either a helical morphology for the nebula, possibly linked to the magnetic geometry, or the occurrence of a binary merger. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important

  10. Stellar Parameters and Radial Velocities of Hot Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hanes, Richard J.; McSwain, M. Virginia; Povich, Matthew S.

    2018-05-01

    The Carina Nebula is an active star-forming region in the southern sky that is of particular interest due to the presence of a large number of massive stars in a wide array of evolutionary stages. Here, we present the results of the spectroscopic analysis of 82 B-type stars and 33 O-type stars that were observed in 2013 and 2014. For 82 B-type stars without line blending, we fit model spectra from the Tlusty BSTAR2006 grid to the observed profiles of Hγ and He λλ4026, 4388, and 4471 to measure the effective temperatures, surface gravities, and projected rotational velocities. We also measure the masses, ages, radii, bolometric luminosities, and distances of these stars. From the radial velocities measured in our sample, we find 31 single lined spectroscopic binary candidates. We find a high dispersion of radial velocities among our sample stars, and we argue that the Carina Nebula stellar population has not yet relaxed and become virialized.

  11. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  12. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  13. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  14. OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and threemore » weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.« less

  15. A search for remnant planetary nebulae around hot sdO stars

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.; Massey, Philip; Congdon, Charles W.; Pasachoff, Jay M.

    1989-05-01

    Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars.

  16. Hubble sniffs out a brilliant star death in a “rotten egg” nebula

    NASA Image and Video Library

    2017-12-08

    The Calabash Nebula, pictured here — which has the technical name OH 231.8+04.2 — is a spectacular example of the death of a low-mass star like the sun. This image taken by the NASA/ESA Hubble Space Telescope shows the star going through a rapid transformation from a red giant to a planetary nebula, during which it blows its outer layers of gas and dust out into the surrounding space. The recently ejected material is spat out in opposite directions with immense speed — the gas shown in yellow is moving close to one million kilometers per hour (621,371 miles per hour). Astronomers rarely capture a star in this phase of its evolution because it occurs within the blink of an eye — in astronomical terms. Over the next thousand years the nebula is expected to evolve into a fully-fledged planetary nebula. The nebula is also known as the Rotten Egg Nebula because it contains a lot of sulphur, an element that, when combined with other elements, smells like a rotten egg — but luckily, it resides over 5,000 light-years away in the constellation of Puppis. Credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. A far-infrared emission feature in carbon-rich stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.

    1981-01-01

    The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.

  18. A simple way to model nebulae with distributed ionizing stars

    NASA Astrophysics Data System (ADS)

    Jamet, L.; Morisset, C.

    2008-04-01

    Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.

  19. A search for remnant planetary nebulae around hot sdO stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitter, K.B.; Congdon, C.W.; Pasachoff, J.M.

    1989-05-01

    Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars. 21 refs.

  20. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  1. Discovery of a new Wolf-Rayet star and its ring nebula in Cygnus

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Fabrika, S.; Hamann, W.-R.; Sholukhova, O.; Valeev, A. F.; Goranskij, V. P.; Cherepashchuk, A. M.; Bomans, D. J.; Oskinova, L. M.

    2009-11-01

    We report the serendipitous discovery of a ring nebula around a candidate Wolf-Rayet (WR) star, HBHA4202-22, in Cygnus using the Spitzer Space Telescope archival data. Our spectroscopic follow-up observations confirmed the WR nature of this star (we named it WR138a) and showed that it belongs to the WN8-9h subtype. We thereby add a new example to the known sample of late WN stars with circumstellar nebulae. We analysed the spectrum of WR138a by using the Potsdam Wolf-Rayet (PoWR) model atmospheres, obtaining a stellar temperature of 40kK. The stellar wind composition is dominated by helium with 20 per cent of hydrogen. The stellar spectrum is highly reddened and absorbed (EB- V = 2.4mag, AV = 7.4mag). Adopting a stellar luminosity of logL/Lsolar = 5.3, the star has a mass-loss rate of 10-4.7Msolaryr-1, and resides in a distance of 4.2 kpc. We measured the proper motion for WR138a and found that it is a runaway star with a peculiar velocity of ~=50kms-1. Implications of the runaway nature of WR138a for constraining the mass of its progenitor star and understanding the origin of its ring nebula are discussed.

  2. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balick, B.; Riera, A.; Raga, A.

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whosemore » compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.« less

  3. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montez, R. Jr.; Kastner, J. H.; Freeman, M.

    2015-02-10

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-raymore » emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.« less

  4. An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Blake, Adam C.

    2011-01-01

    The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.

  5. Star Formation in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  6. He 2-104 - A link between symbiotic stars and planetary nebulae?

    NASA Technical Reports Server (NTRS)

    Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin

    1989-01-01

    Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.

  7. He 2-104: A link between symbiotic stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin

    1989-01-01

    Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.

  8. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-01-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  9. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Astrophysics Data System (ADS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-11-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  10. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  11. Protoplanetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwok, S.; Murdin, P.

    2000-11-01

    Protoplanetary nebulae (or pre-planetary nebulae, PPNs) are defined as objects that are in transition between the asymptotic giant branch (AGB) and planetary nebula phases of STELLAR EVOLUTION. Stars on the AGB lose mass at a high rate ((10-7-10-4)M⊙ yr-1) in the form of a stellar wind. Such mass loss eventually depletes the hydrogen envelope of the star and exposes the electron-degenerate carbon...

  12. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A., E-mail: sergey.marchenko@ssaihq.co, E-mail: moffat@astro.umontreal.c, E-mail: Paul.Crowther@sheffield.ac.u

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected formore » stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.« less

  13. The Unusual Central Star of the Planetary Nebula Sh 2-71

    NASA Astrophysics Data System (ADS)

    Močnik, Teo

    2013-08-01

    This thesis presents new photometric and spectroscopic observational results for the unusual central star of bipolar planetary nebula Sh2-71. The combined lightcurve, composed from the photometric datasets of three different telescopes, was in agreement with the reported ephemeris of the sinusoidal brightness variations with a period of 68 days. The two sharp brightness dips, indicated by the preliminary automated data reduction process, were confirmed. The presence of three additional dips tentatively suggested that the dips, possibly eclipses, are occurring periodically with a period of 17.2 days. The comparison between U and V lightcurves revealed that the 68 day brightness variations are accompanied by a variable reddening effect. Spectroscopic observations revealed pronounced spectral variations, which were not correlated with the 68 days brightness phase. On the other hand, the high-cadence echelle spectra did not exhibit any variability on hourly timescales, which implied that the spectral variations must occur on timescales of a few days. Radial velocity measurements suggested an amplitude of ±40 km/s but were not correlated with the brightness phase. The measured average radial velocity of the observed star 26 km/s was in near agreement with the reported mean radial velocity of the planetary nebula. As some doubt has been raised recently that the central star could be another field star, this near agreement between the radial velocities provided supporting evidence that the observed star actually is the central star of the planetary nebula. The comparison between the measured and synthetic spectra yielded stellar atmospheric parameters T_eff 12000 K, log(g) 4.0 cm/s^2, vrot\\cdot sin(i) 200 km/s with an indicated high value of metallicity. Fitted stellar parameters and the comparison with standard spectra classified the star as B8V. The obtained spectrophotometric observations have been used to construct a model for the central star. A previously

  14. Discovery of a [WO] central star in the planetary nebula Th 2-A

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  15. Hydrogen-deficient Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  16. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  17. Wolf-Rayet nebulae - Chemical enrichment and effective temperatures of the exciting stars

    NASA Technical Reports Server (NTRS)

    Rosa, Michael R.; Mathis, John S.

    1990-01-01

    Extensive new spectrophotometric observations of five Wolf-Rayet nebulas are analyzed by means of models photoionized by plane-parallel and also WR atmosphere models. Abundance ratios O/H and Ne, S, Cl, and Ar relative to O are close to solar. N/H is enriched relative to solar and variable over the faces of the nebulas. He/H varies from one to three times solar. The O(+)/O - S(+)/S(2+) diagram is used in estimating T(eff) for the exciting stars. It indicates that S 308, NGC 3199, NGC 6888, and NGC 2359 are ionized by hot stars. RCW 58, RCW 104, MR 26, and MR 100 have such low-excitation spectra that their stellar T(eff) and nebular He/H cannot be reliably determined.

  18. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks aremore » the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.« less

  19. The Trifid Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.

  20. Runaway stars in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Got, J. R., III; Ostriker, J. P.

    1971-01-01

    It is proposed that the two pulsars PSR 0833-45 (the Vela pulsar) and MP 0835 are runaways from a common binary system originally located in the B association around gamma Velorum. Arguments are presented for a simple model of the Gum nebula in which two distinct ionized regions are present. The first consists of the Stromgren spheres of gamma Velorum and zeta Puppis, while the second is a larger, more filamentary region ionized by the supernova explosion associated with PSR 0833-45. Using this model and the available dispersion measures, the distances to the two pulsars were estimated and found to be compatible with a runaway origin. The position angle of the rotation axis of PSR 0833-45 is also compatible with this origin. The masses of the parent stars of the two pulsars can be deduced from the runaway star dynamics and an assumed age for MP 0835. It is concluded that the masses were in excess of 10 solar masses. The dynamically-determined parent star masses are in agreement with the values expected for evolved members of the B association around gamma Velorum.

  1. The planetary nebula IC 4776 and its post-common-envelope binary central star

    NASA Astrophysics Data System (ADS)

    Sowicka, Paulina; Jones, David; Corradi, Romano L. M.; Wesson, Roger; García-Rojas, Jorge; Santander-García, Miguel; Boffin, Henri M. J.; Rodríguez-Gil, Pablo

    2017-11-01

    We present a detailed analysis of IC 4776, a planetary nebula displaying a morphology believed to be typical of central star binarity. The nebula is shown to comprise a compact hourglass-shaped central region and a pair of precessing jet-like structures. Time-resolved spectroscopy of its central star reveals a periodic radial velocity variability consistent with a binary system. Whilst the data are insufficient to accurately determine the parameters of the binary, the most likely solutions indicate that the secondary is probably a low-mass main-sequence star. An empirical analysis of the chemical abundances in IC 4776 indicates that the common-envelope phase may have cut short the asymptotic giant branch evolution of the progenitor. Abundances calculated from recombination lines are found to be discrepant by a factor of approximately 2 relative to those calculated using collisionally excited lines, suggesting a possible correlation between low-abundance discrepancy factors and intermediate-period post-common-envelope central stars and/or Wolf-Rayet central stars. The detection of a radial velocity variability associated with the binarity of the central star of IC 4776 may be indicative of a significant population of (intermediate-period) post-common-envelope binary central stars that would be undetected by classic photometric monitoring techniques.

  2. Nucleosynthesis of intermediate mass stars: inferences from the observed abundances in photoionized nebulae of the Local Group

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Cavichia, O.

    2018-01-01

    Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) to compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) to compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) to investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, especially for oxygen and neon, which places constraints on the amount of these elements that can be produced by intermediate mass stars.

  3. Nebula-based Primordial Atmospheres of Planets Around Solar-Like Stars Revised

    NASA Astrophysics Data System (ADS)

    Scherf, Manuel; Lammer, H.; Leitzinger, M.; Odert, P.; Güdel, M.; Hanslmeier, A.

    2012-05-01

    At the beginning of a planetary system, in the stage of the stellar nebula and the growing-phase of the planets, planetesimals and Earth-like proto-planets accumulate a remarkable amount of gas, mainly consisting of hydrogen and helium. The mass of such a primordial atmosphere was first estimated for the proto-Earth by Hayashi et al. (1979), with up to 1026 g accumulated within 106 years. Furthermore it is commonly expected that these primordial atmospheres will be completely dissipated due to irradiation of the stellar EUV-flux during the first 108 years. Recent observations of young solar-like stars indicate that the efficiency and effect of the EUV-flux after the nebula disappeared, was highly overestimated by previous studies. We show that parts of these dense hydrogen/helium-gas envelopes may sustain this early active stage of a young star. Implications on the habitability are also discussed.

  4. IUE observations of stars in the neighborhood of the Lambda Orionis nebula

    NASA Technical Reports Server (NTRS)

    Bergoffen, Martin J.; Van Buren, Dave

    1988-01-01

    Results are presented from an IUE archive study of five stars along the line of sight towards the Lambda Ori H II region. H I, Fe II, Si II, and Mn II column densities have been found using a profile-fitting technique for H I and the curve-of-growth method for the ions. HD 36861 and HD 36822 lie at or near the center of the H II region, while HD 35468 and HD 37490 are imbedded in the dense neutral shell surrounding the H II region. HD 38899 is a foreground star. The depletion factors in the gas of this nebula are indicative of some shock processing of the material along these lines of sight. This processing probably occurred in the early stages of the nebula's evolution.

  5. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less

  6. A butterfly-shaped 'Papillon Nebula' yields secrets of massive star birth

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The newly found massive newborn stars are in one of our satellite galaxies, the Large Magellanic Cloud (LMC), 170,000 light-years away - right in our cosmic backyard. The Hubble image shows a view of a turbulent cauldron of starbirth, unromantically called N159. Fierce stellar winds from the hot newborn massive stars sculpt ridges, arcs and filaments in the vast cloud, which is over 150 light-years across. This is the clearest image ever obtained of this region. Seen for the first time is the butterfly-shaped or 'Papillon' (French for butterfly) nebula, buried in the centre of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 1/2000th of a degree in the sky), are seen in the inset. This bipolar shape might be explained by the outflow of gas from the massive star (over 10 times the mass of our Sun) hidden in the central absorption zone. Such stars are so hot and bright that the pressure created by their light halts the infall of gas and directs it away from the star in two opposite directions. This mechanism is not fully understood, but presumably the outflow is constrained around the star's equator and directed to escape along the star's rotation axis. This observation is part of a search for young massive stars in the LMC. This butterfly-shaped nebula is considered to be a rare class of compact 'blob' around newborn, massive stars. The red in this true-colour image comes from the emission of hydrogen and the yellow from hotter oxygen gas. The picture was taken on 5 September 1998 with Wide Field Planetary Camera 2.

  7. A radial velocity survey of the Carina Nebula's O-type stars

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  8. On the formation of runaway stars BN and x in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Tan, J. C.

    2018-05-01

    We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.

  9. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 solar mass). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the

  10. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  11. IC 4663: The First Unambiguous [WN] Wolf-Rayet Central Star of a Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.

    2013-01-01

    Several [WC]-type central stars of planetary nebulae (PNe) are known to mimic the spectroscopic appearance of massive carbon-rich or WC-type Wolf-Rayet stars. In stark contrast, no [WN]-type central stars have yet been identified as clear-cut analogues of the common nitrogen-rich or WN-type Wolf-Rayet stars. We have identified the [WN3] central star of IC 4663 to be the first unambiguous example in PNe. The low luminosity nucleus and an asymptotic giant branch (AGB) halo surrounding the main nebula prove the bona-fide PN nature of IC 4663. Model atmosphere analysis reveals the [WN3] star to have an exotic chemical composition of helium (95%), hydrogen (<2%), nitrogen (0.8%), neon (0.2%) and oxygen (0.05%) by mass. Such an extreme helium-dominated composition cannot be predicted by current evolutionary scenarios for hydrogen deficient [WC]-type central stars. Only with the discovery of IC 4663 and its unusual composition can we now connect [WN] central stars to the O(He) central stars in a second H-deficient and He-rich evolutionary sequence, [WN]→O(He), that exists in parallel to the carbon-rich [WC]→PG1159 sequence. This suggests a simpler mechanism, perhaps a binary merger, can better explain H-deficiency in PNe and potentially other H-deficient/He-rich stars. In this respect IC 4663 is the best supported case for a possible merged binary central star of a PN.

  12. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionarymore » tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.« less

  13. Star counts and visual extinctions in dark nebulae

    NASA Technical Reports Server (NTRS)

    Dickman, R. L.

    1978-01-01

    Application of star count techniques to the determination of visual extinctions in compact, fairly high-extinction dark nebulae is discussed. Particular attention is devoted to the determination of visual extinctions for a cloud having a possibly anomalous ratio of total to selective extinction. The techniques discussed are illustrated in application at two colors to four well-known compact dust clouds or Bok globules: Barnard 92, B 133, B 134, and B 335. Minimum masses and lower limits to the central extinction of these objects are presented.

  14. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  15. SALT reveals the barium central star of the planetary nebula Hen 2-39

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Boffin, H. M. J.; Jones, D.; Karakas, A. I.; Köppen, J.; Tyndall, A. A.; Mohamed, S. S.; Rodríguez-Gil, P.; Santander-García, M.

    2013-12-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here, we present evidence for a barium star in the PN Hen 2-39 (PN G283.8-04.2) as one of only a few known systems. The polluted giant is very similar to that found in WeBo 1 (PN G135.6+01.0). It is a cool (Teff = 4250 ± 150 K) giant enhanced in carbon ([C/H] = 0.42 ± 0.02 dex) and barium ([Ba/Fe] = 1.50 ± 0.25 dex). A spectral type of C-R3 C24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars; however, the barium enhancement and likely binary status mean that it is more likely to be a barium star with similar properties, rather than a true member of this class. An AGB star model of initial mass 1.8 M⊙ and a relatively large carbon pocket size can reproduce the observed abundances well, provided mass is transferred in a highly conservative way from the AGB star to the polluted star (e.g. wind Roche lobe overflow). It also shows signs of chromospheric activity and photometric variability with a possible rotation period of ˜5.5 d likely induced by wind accretion. The nebula exhibits an apparent ring morphology in keeping with the other PNe around barium stars (WeBo 1 and A 70) and shows a high degree of ionization implying the presence of an invisible hot pre-WD companion that will require confirmation with UV observations. In contrast to A 70, the nebular chemical abundance pattern is consistent with non-Type I PNe, in keeping with the

  16. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view.

    The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view.

    Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars.

    The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope.

    The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ.

    This popular celestial target was the clear

  17. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    NASA Astrophysics Data System (ADS)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  18. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  19. Planetary Nebula

    NASA Image and Video Library

    2017-12-08

    This planetary nebula's simple, graceful appearance is thought to be due to perspective: our view from Earth looking straight into what is actually a barrel-shaped cloud of gas shrugged off by a dying central star. Hot blue gas near the energizing central star gives way to progressively cooler green and yellow gas at greater distances with the coolest red gas along the outer boundary. Credit: NASA/Hubble Heritage Team ---- The Ring Nebula's distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA's Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist. "The nebula is not like a bagel, but rather, it's like a jelly doughnut, because it's filled with material in the middle," said C. Robert O'Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula. "With Hubble's detail, we see a completely different shape than what's been thought about historically for this classic nebula," O'Dell said. "The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought." The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers. Read more: 1.usa.gov/14VAOMk NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Soul Nebula

    NASA Image and Video Library

    2010-04-05

    This mosaic from NASA WISE Telescope is of the Soul Nebula. It is an open cluster of stars surrounded by a cloud of dust and gas located about 6,500 light-years from Earth in the constellation Cassiopeia, near the Heart Nebula.

  1. LMC X-1: A New Spectral Analysis of the O-star in the Binary and Surrounding Nebula

    NASA Astrophysics Data System (ADS)

    Hyde, E. A.; Russell, D. M.; Ritter, A.; Filipović, M. D.; Kaper, L.; Grieve, K.; O'Brien, A. N.

    2017-09-01

    We provide new observations of the LMC X-1 O star and its extended nebula structure using spectroscopic data from VLT/UVES as well as Hα imaging from the Wide Field Imager on the Max Planck Gesellschaft/European Southern Observatory 2.2 m telescope and ATCA imaging of the 2.1 GHz radio continuum. This nebula is one of the few known to be energized by an X-ray binary. We use a new spectrum extraction technique that is superior to other methods used to obtain both radial velocities and fluxes. This provides an updated spatial velocity of ≃ 21.0 +/- 4.8 km s-1 for the O star. The slit encompasses both the photo-ionized and shock-ionized regions of the nebula. The imaging shows a clear arc-like structure reminiscent of a wind bow shock in between the ionization cone and shock-ionized nebula. The observed structure can be fit well by the parabolic shape of a wind bow shock. If an interpretation of a wind bow shock system is valid, we investigate the N159-O1 star cluster as a potential parent of the system, suggesting a progenitor mass of ˜60 M ⊙ for the black hole. We further note that the radio emission could be non-thermal emission from the wind bow shock, or synchrotron emission associated with the jet-inflated nebula. For both wind- and jet-powered origins, this would represent one of the first radio detections of such a structure.

  2. Proper motions of five OB stars with candidate dusty bow shocks in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kiminki, Megan M.; Smith, Nathan; Reiter, Megan; Bally, John

    2017-06-01

    We constrain the proper motions of five OB stars associated with candidate stellar wind bow shocks in the Carina Nebula using Hubble Space Telescope ACS imaging over 9-10 yr baselines. These proper motions allow us to directly compare each star's motion to the orientation of its candidate bow shock. Although these stars are saturated in our imaging, we assess their motion by the shifts required to minimize residuals in their airy rings. The results limit the direction of each star's motion to sectors less than 90° wide. None of the five stars are moving away from the Carina Nebula's central clusters as runaway stars would be, confirming that a candidate bow shock is not necessarily indicative of a runaway star. Two of the five stars are moving tangentially relative to the orientation of their candidate bow shocks, both of which point at the OB cluster Trumpler 14. In these cases, the large-scale flow of the interstellar medium, powered by feedback from the cluster, appears to dominate over the motion of the star in producing the observed candidate bow shock. The remaining three stars all have some component of motion towards the central clusters, meaning that we cannot distinguish whether their candidate bow shocks are indicators of stellar motion, of the flow of ambient gas or of density gradients in their surroundings. In addition, these stars' lack of outward motion hints that the distributed massive-star population in Carina's South Pillars region formed in place, rather than migrating out from the association's central clusters.

  3. Central stars of planetary nebulae: New spectral classifications and catalogue

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  4. Planetary Nebula NGC 7293 also Known as the Helix Nebula

    NASA Image and Video Library

    2005-05-05

    This ultraviolet image from NASA Galaxy Evolution Explorer is of the planetary nebula NGC 7293 also known as the Helix Nebula. It is the nearest example of what happens to a star, like our own Sun, as it approaches the end of its life when it runs out of fuel, expels gas outward and evolves into a much hotter, smaller and denser white dwarf star. http://photojournal.jpl.nasa.gov/catalog/PIA07902

  5. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA MONTAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture, taken in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2), represents a sweeping view of the 30 Doradus Nebula. But Hubble's infrared camera - the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) - has probed deeper into smaller regions of this nebula to unveil the stormy birth of massive stars. The montages of images in the upper left and upper right represent this deeper view. Each square in the montages is 15.5 light-years (19 arcseconds) across. The brilliant cluster R136, containing dozens of very massive stars, is at the center of this image. The infrared and visible-light views reveal several dust pillars that point toward R136, some with bright stars at their tips. One of them, at left in the visible-light image, resembles a fist with an extended index finger pointing directly at R136. The energetic radiation and high-speed material emitted by the massive stars in R136 are responsible for shaping the pillars and causing the heads of some of them to collapse, forming new stars. The infrared montage at upper left is enlarged in an accompanying image. Credits for NICMOS montages: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)

  6. A nitrogen-rich nebula

    NASA Image and Video Library

    2015-06-29

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the Sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionised by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the Solar System. The nebula contains a whopping five times more nitrogen than the Sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained lots more of these elements. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Matej Novak. Links Matej Novak’s image on Flickr

  7. VizieR Online Data Catalog: Parenago Catalog of Stars in Orion Nebula (Parenago 1954)

    NASA Astrophysics Data System (ADS)

    Parenago, P. P.

    1997-10-01

    The present catalogue is a machine-readable version of the catalogue of stars in the area of the Orion nebula, published by P.P. Parenago (1954). The sky area between 5h 24m and 5h 36m in right ascension (1900.0) and between -4 and -7 degrees in declination (1900.0), containing the Orion nebula, has been investigated in that work. Ten of variable stars in original Parenago (1954) catalogue had CSV numbers (Kukarkin et al., 1951) but since that time all of them were confirmed as variables and included in GCVS (Kholopov et al., 1985a&b, 1987). We superseded CSV-numbers by GCVS-names in the machine-readable version for the following stars: ------------------------------------------------ Number in CSV-number GCVS-name the catalogue ------------------------------------------------ 1605 606 V372 ORI 1613 607 V373 ORI 1635 608 V374 ORI 1713 609 V375 ORI 1748 610 V387 ORI 1762 100569 V376 ORI 1974 617 V377 ORI 2183 625 V388 ORI 2393 630 V380 ORI 2478 634 V381 ORI ------------------------------------------------ (1 data file).

  8. Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula

    NASA Astrophysics Data System (ADS)

    Fernandes, Beatriz; Gregorio-Hetem, Jane

    Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as Hα emission and strong absorption on the Li I line.

  9. Photographs of Stars, Star-Clusters and Nebulae 2 Volume Paperback Set

    NASA Astrophysics Data System (ADS)

    Roberts, Isaac

    2010-10-01

    Volume 1: Preface; Isaac Roberts' observatory, Crowborough Hill; Isaac Roberts' telescopes; List of the plates; List of the abbreviations; 1. The negatives; 2. Arrangement of the photographs; 3. Epoch of the Fiducial stars (A.D. 1900); 4. A table for converting measurements in right ascensions into intervals of time; 5. Illustrations of the method for determining the right ascensions and declinations of the stars; 6. Introduction; Utility of the photographic charts; 7. Refractors and reflectors as photo-instruments; 8. Requirements and adjustments of a reflector for celestial photography; 9. Collimation of the mirror; 10. Essentials of a photo-telescope; 11. Method for testing the stability of a photo-instrument; 12. Photographic plates: their exposures and development; 13. Description of the photographs and references concerning them; 14. Deductions from the photographs. Volume 2: Preface; List of the plates; Instruments; List of abbreviations adopted in this work; 1. The negatives; 2. Epoch of the Fiducial stars, A.D. 1900; 3. Table for converting the measured right ascensions; 4. Deterioration of the negatives; 5. Effects of atmospheric glare and of diffraction upon the films of photographic plates; 6. Arrangement of the plates; 7. Method for micro-puncturing the photographic discs of stars on plates; 8. Star catalogues and photographic charts; 9. Duration of the effective exposures given to photographic plates in the 20-inch reflector; 10. Are the millions of stars and the numerous nebulosities limited in number and extent; 11. The evolution of stellar systems; 12. Inferences suggested by examination of the photographs; 13. Description of the photographs; 14. M.31. Andromedae; 15. M.99 Virginis; 16. M.51 Canum Venaticorum; 17. Region of 7 Cassiopeiae; 18. Nebulae in the Pleiades; 19. M.42. Orionis; 20. General conclusions concerning the evolution of stellar systems.

  10. Revisiting the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Orion the Hunter is perhaps the best-known constellation in the sky, well placed in the winter for observers in both the northern and southern hemispheres, and instantly recognisable. Just below Orion's belt (three distinctive stars in a row), the hilt of his sword holds a great jewel in the sky, the beautiful Orion Nebula. Bright enough to be seen with the naked eye, the nebula, also known as Messier 42, is a wide complex of gas and dust, illuminated by several massive and hot stars at its core, the famous Trapezium stars. For astronomers, Orion is surely one of the most important constellations, as it contains one of the nearest and most active stellar nurseries in the Milky Way, the galaxy in which we live. Here tens of thousands of new stars have formed within the past ten million years or so - a very short span of time in astronomical terms. For comparison: our own Sun is now 4,600 million years old and has not yet reached half-age. Reduced to a human time-scale, star formation in Orion would have been going on for just one month as compared to the Sun's 40 years. In fact, located at a distance of 1500 light years, the Orion Nebula plays such an important role in astrophysics that it can be argued that our understanding of star formation is for a large part based on the Orion Nebula. It is thus no surprise that the Orion Nebula is one of the most studied objects in the night sky (see for example the various related ESO Press Photos and Releases: ESO Press Photo 03a/98, ESO Press Photos 03a-d/01, ESO Press Photos 12a-e/01, ESO Press Release 14/01,...). The richness of the stellar cluster inside the Orion Nebula makes it an ideal, and unique, target for high resolution and wide-field imaging. Following some pioneering work made a few years ago, an international team of astronomers [1], led by Massimo Robberto (European Space Agency and Space Telescope Science Institute), used the Wide Field Imager (WFI), a 67-million pixel digital camera that is installed at the

  11. Chandra Finds X-ray Star Bonanza in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic

  12. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  13. The Light and Dark Face of a Star-Forming Nebula

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see

  14. The peculiar O6f star HD 148937 and the symmetrically surrounding nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1972-01-01

    The ultraviolet continuum of the star is observed and, after standard reddening corrections are applied, it is found to be hotter than a model 05 V star. The Of star and its two companions are photometered around wavelength 4640, 4686, and 4861 A. The results confirm Westerlund's (1960) absolute visual magnitude of about -6 for the Of star and confirm his rejection of NGC 6164-5 as a planetary nebula. Peculiarities of the system of nebular shells around HD 148937, of which NGC 6164-5 are the innermost, are discussed with reference to radiofrequency data. A standard extrapolation from the optical flux density of NGC 6164-5 predicts a detectable radio source but it does not appear in the relevant surveys.

  15. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  16. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W.

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps ofmore » the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.« less

  17. Doradus Nebula

    NASA Image and Video Library

    1999-12-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope. The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://hubblesite.org/newscenter/archive/releases/2001/21/image/a/. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars. The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago. The stars in R136 produce intense "stellar winds," streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust. This mosaic image of 30 Doradus consists of five overlapping pictures taken between January 1994 and

  18. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  19. Interstellar gas in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  20. The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5

    NASA Astrophysics Data System (ADS)

    Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.

    2017-04-01

    The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  1. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  2. Abell 48 - a rare WN-type central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  3. Far-Ultraviolet Temperature Diagnostics for Hot Central Stars of Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Ipin, R. C.; Herald, J.

    2007-01-01

    The effective temperature of hot central stars of planetary nebulae is usually determined from the ratios of optical He II lines. However, far-ultraviolet spectra from the FUSE satellite of several hot (T(sub eff) > 70,000 K) hydrogen-rich central stars have stellar features that imply a significantly hotter effective temperature than that determined from He II. There are many stellar features in the long wavelength portion of the FUSE spectrum. These include O VI 1146-47, F VI 1039.5, FeVII 1118.6, 1141.4, FeVI 1120.9, 1131.5, and NiVI 1124.2, 1148.2. The strong FVI 1139.5 line is of interest because of the large overabundance (over 100X solar) of F in some PG1159 stars reported recently by Werner et al. (2005). Modeling these spectral features may provide an method for measuring the effective temperature of these stars independent of the He II lines. An example of HD 200516, the central star of NGC 7009 (T(sub eff)= 82000 K from He II vs 95000 K from Far-W metal lines) is presented.

  4. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center

  5. The Trifid Nebula: Stellar Sibling Rivalry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  6. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  7. Interstellar gas in the Gum Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallerstein, G.; Silk, J.; Jenkins, E.B.

    1980-09-15

    We have surveyed the interstellar gas in and around the Gum Nebula by optically observing 67 stars at Ca II, 42 stars at Na I, and 14 stars in the ultraviolet with the Copernicus satellite. Velocity dispersions for gas in the Gum Nebula, excluding the region of Vela remnant filaments, are not significantly larger than in the general interstellar medium. The ionization structure is predominantly that of an H II region with moderately high ionization, i.e., strong Si III and S III, in clouds with Vertical BarV/sub LSR/Vertical Bar> or approx. =10 km s/sup -1/. Furthermore, we find an increasemore » in fine-structure excitation with increasing component LSR velocity, suggestive of ram-pressure confinement for the intermediate-velocity clouds. These denser, more highly ionized clouds appear to be concentrated toward the inner Gum Nebula, where a somewhat higher velocity dispersion is found than in the outer regions. Clouds in the Gum Nebula do not show the anomalously high ionization seen in the Vela remnant clouds. The observational data are generally consistent with a model of the Gum Nebula as an H II region ionized by OB stars and stirred up by multiple stellar winds.« less

  8. Crab Nebula from Five Observatories

    NASA Image and Video Library

    2017-05-10

    In the summer of the year 1054 AD, Chinese astronomers saw a new "guest star," that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months. This "guest star" was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms. In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves. This image combines data from five different telescopes: the VLA (radio) in red; Spitzer Space Telescope (infrared) in yellow; Hubble Space Telescope (visible) in green; XMM-Newton (ultraviolet) in blue; and Chandra X-ray Observatory (X-ray) in purple. More images and an animation are available at https://photojournal.jpl.nasa.gov/catalog/PIA21474

  9. Large-Scale Structure of the Carina Nebula.

    PubMed

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  10. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    NASA Technical Reports Server (NTRS)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  11. The Twin Jet Nebula

    NASA Image and Video Library

    2015-08-26

    The Twin Jet Nebula, or PN M2-9, is a striking example of a bipolar planetary nebula. Bipolar planetary nebulae are formed when the central object is not a single star, but a binary system, Studies have shown that the nebula’s size increases with time, and measurements of this rate of increase suggest that the stellar outburst that formed the lobes occurred just 1200 years ago.

  12. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer

  13. Comets Kick up Dust in Helix Nebula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.

    The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.

    Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

    In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.

    The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.

    So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.

    This image

  14. Distinguishing between symbiotic stars and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, K.; Mikołajewska, J.

    2017-10-01

    Context. The number of known symbiotic stars (SySt) is still significantly lower than their predicted population. One of the main problems in finding the total population of SySt is the fact that their spectrum can be confused with other objects, such as planetary nebulae (PNe) or dense H II regions. This problem is reinforced by the fact that in a significant fraction of established SySt the emission lines used to distinguish them from other objects are not present. Aims: We aim at finding new diagnostic diagrams that could help separate SySt from PNe. Additionally, we examine a known sample of extragalactic PNe for candidate SySt. Methods: We employed emission line fluxes of known SySt and PNe from the literature. Results: We found that among the forbidden lines in the optical region of spectrum, only the [O III] and [N II] lines can be used as a tool for distinguishing between SySt and PNe, which is consistent with the fact that they have the highest critical densities. The most useful diagnostic that we propose is based on He I lines, which are more common and stronger in SySt than forbidden lines. All these useful diagnostic diagrams are electron density indicators that better distinguish PNe and ionized symbiotic nebulae. Moreover, we found six new candidate SySt in the Large Magellanic Cloud and one in M 81. If confirmed, the candidate in M 81 would be the farthest known SySt thus far.

  15. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  16. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  17. Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.

    1988-01-01

    Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.

  18. VizieR Online Data Catalog: MIPS 24um nebulae (Gvaramadze+, 2010)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2011-03-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24um data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). (1 data file).

  19. WISE Spies the Tarantula Nebula

    NASA Image and Video Library

    2010-07-06

    Sending chills down the spine of all arachnophobes is the Tarantula nebula, seen in this image from NASA Wide-field Infrared Survey Explorer; the nebula is the largest star-forming region known in our entire Local Group of galaxies.

  20. Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Damiani, F.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-10-01

    Context. NGC 6611 and its parental cloud, the Eagle Nebula (M 16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. In our previous studies of the Eagle Nebula, we identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 μ m. Aims: In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. Methods: We confirm the membership of these stars to M 16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T Tauri stars with disks and envelopes. Results: We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. Conclusions: The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of Class II stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light. Table with the

  1. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  2. Hubble Images Searchlight Beams from a Preplanetary Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 27, 2012 The NASA/ESA Hubble Space Telescope has been at the cutting edge of research into what happens to stars like our sun at the ends of their lives. One stage that stars pass through as they run out of nuclear fuel is called the preplanetary or protoplanetary nebula stage. This Hubble image of the Egg Nebula shows one of the best views to date of this brief but dramatic phase in a star’s life. The preplanetary nebula phase is a short period in the cycle of stellar evolution, and has nothing to do with planets. Over a few thousand years, the hot remains of the aging star in the center of the nebula heat it up, excite the gas, and make it glow as a subsequent planetary nebula. The short lifespan of preplanetary nebulae means there are relatively few of them in existence at any one time. Moreover, they are very dim, requiring powerful telescopes to be seen. This combination of rarity and faintness means they were only discovered comparatively recently. The Egg Nebula, the first to be discovered, was first spotted less than 40 years ago, and many aspects of this class of object remain shrouded in mystery. At the center of this image, and hidden in a thick cloud of dust, is the nebula’s central star. While we can’t see the star directly, four searchlight beams of light coming from it shine out through the nebula. It is thought that ring-shaped holes in the thick cocoon of dust, carved by jets coming from the star, let the beams of light emerge through the otherwise opaque cloud. The precise mechanism by which stellar jets produce these holes is not known for certain, but one possible explanation is that a binary star system, rather than a single star, exists at the center of the nebula. The onion-like layered structure of the more diffuse cloud surrounding the central cocoon is caused by periodic bursts of material being ejected from the dying star. The bursts typically occur every few hundred years. The distance to the Egg Nebula is

  3. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  4. The mysterious age invariance of the planetary nebula luminosity function bright cut-off

    NASA Astrophysics Data System (ADS)

    Gesicki, K.; Zijlstra, A. A.; Miller Bertolami, M. M.

    2018-05-01

    Planetary nebulae mark the end of the active life of 90% of all stars. They trace the transition from a red giant to a degenerate white dwarf. Stellar models1,2 predicted that only stars above approximately twice the solar mass could form a bright nebula. But the ubiquitous presence of bright planetary nebulae in old stellar populations, such as elliptical galaxies, contradicts this: such high-mass stars are not present in old systems. The planetary nebula luminosity function, and especially its bright cut-off, is almost invariant between young spiral galaxies, with high-mass stars, and old elliptical galaxies, with only low-mass stars. Here, we show that new evolutionary tracks of low-mass stars are capable of explaining in a simple manner this decades-old mystery. The agreement between the observed luminosity function and computed stellar evolution validates the latest theoretical modelling. With these models, the planetary nebula luminosity function provides a powerful diagnostic to derive star formation histories of intermediate-age stars. The new models predict that the Sun at the end of its life will also form a planetary nebula, but it will be faint.

  5. The Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's new Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of the Tarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars.

    At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years.

    The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon.

    The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars.

    The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers

  6. The Tarantula Nebula

    NASA Image and Video Library

    2004-01-13

    NASA Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of theTarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars. At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years. The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon. The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars. The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers closest to the

  7. THE TRIFID NEBULA: STELLAR SIBLING RIVALRY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the Trifid Nebula reveals a stellar nursery being torn apart by radiation from a nearby, massive star. The picture also provides a peek at embryonic stars forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. This stellar activity is a beautiful example of how the life cycles of stars like our Sun is intimately connected with their more powerful siblings. The Hubble image shows a small part of a dense cloud of dust and gas, a stellar nursery full of embryonic stars. This cloud is about 8 light-years away from the nebula's central star, which is beyond the top of this picture. Located about 9,000 light-years from Earth, the Trifid resides in the constellation Sagittarius. A stellar jet [the thin, wispy object pointing to the upper left] protrudes from the head of a dense cloud and extends three-quarters of a light-year into the nebula. The jet's source is a very young stellar object that lies buried within the cloud. Jets such as this are the exhaust gases of star formation. Radiation from the massive star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow. The jet in the Trifid is a 'ticker tape,' telling the history of one particular young stellar object that is continuing to grow as its gravity draws in gas from its surroundings. But this particular ticker tape will not run for much longer. Within the next 10,000 years the glare from the central, massive star will continue to erode the nebula, overrunning the forming star, and bringing its growth to an abrupt and possibly premature end. Another nearby star may have already faced this fate. The Hubble picture shows a 'stalk' [the finger-like object] pointing from the head of the dense cloud directly toward the star that powers the Trifid. This stalk is a prominent example of the evaporating gaseous globules, or 'EGGs,' that were seen

  8. Family ties of WR to LBV nebulae yielding clues for stellar evolution

    NASA Astrophysics Data System (ADS)

    Weis, K.

    Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.

  9. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  10. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2016-06-21

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Credit: ESA/XMM-Newton/Younes et al. 2016

  11. Discovery of a parsec-scale bipolar nebula around MWC 349A

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Menten, K. M.

    2012-05-01

    We report the discovery of a bipolar nebula around the peculiar emission-line star MWC 349A using archival Spitzer Space Telescope 24 μm data. The nebula extends over several arcminutes (up to 5 pc) and has the same orientation and geometry as the well-known subarcsecond-scale (~400 times smaller) bipolar radio nebula associated with this star. We discuss the physical relationship between MWC 349A and the nearby B0 III star MWC 349B and propose that both stars were members of a hierarchical triple system, which was ejected from the core of the Cyg OB2 association several Myr ago and recently was dissolved into a binary system (now MWC 349A) and a single unbound star (MWC 349B). Our proposal implies that MWC 349A is an evolved massive star (likely a luminous blue variable) in a binary system with a low-mass star. A possible origin of the bipolar nebula around MWC 349A is discussed.

  12. The Making of a Pre-Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    The gas expelled by dying stars gets twisted into intricate shapes and patterns as nebulae form. Now a team of researchers might have some answers about how this happens.Whats a Pre-Planetary Nebula?This H-R diagram for the globular cluster M5 shows where AGB stars lie: they are represented by blue markers here. The AGB is one of the final stages in a low- to intermediate-mass stars lifetime. [Lithopsian]When a low- to intermediate-mass star approaches the end of its lifetime, it moves onto the Asymptotic Giant Branch (AGB) in the Herzsprung-Russell diagram. As the star exhausts its fuel here, it shrugs off its outer layers. These layers of gas then encase the stars core, which is not yet hot enough to ionize the gas and cause it to glow.Instead, during this time the gas is relatively cool and dark, faintly reflecting light from the star and emitting only very dim infrared emission of its own. At this stage, the gas represents a pre-planetary nebula. Only later when the stellar core contracts enough to heat up and emit ionizing radiation does the nebula begin to properly glow, at which point it qualifies as a full planetary nebula.Images of OH231 in optical light (top) and 12CO (bottom) taken from the literature. [See Balick et al. 2017 for full credit]Unexpected ShapesPre-planetary nebulae are a very short-lived evolutionary stage, so weve observed only a few hundred of them which has left many unanswered questions about these objects.One particular mystery is that of their shapes: if these nebulae are formed by stars expelling their outer layers, we would naively expect them to be simple spherical shells and yet we observe pre-planetary nebulae to have intricate shapes and patterns. How does the star create these asymmetric shapes? A team of scientists led by Bruce Balick (University of Washington, Seattle) has now used simulations to address this question.Injecting MassBalick and collaborators use 3D hydrodynamic simulations to model one particular pre

  13. The Class of Jsolated Stars and Luminous Planetary Nebulae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-06-01

    We suggest that stars whose angular momentum (J) does not increase by a companion, star or planet, along their post-main sequence evolution have much lower mass loss rates along their giant branches. Their classification to a separate group can bring insight on their late evolution stages. We here term these Jsolated stars. We argue that the mass loss rate of Jsolated stars is poorly determined because the mass loss rate expressions on the giant branches are empirically based on samples containing stars that experience strong binary interaction, with stellar or sub-stellar companions, e.g., planetary nebula (PN) progenitors. We use our earlier claim for a low mass loss rate of asymptotic giant branch (AGB) stars that are not spun-up by a stellar or substellar companion to show that we can account for the enigmatic finding that the brightest PNe in old stellar populations reach the same luminosity as the brightest PNe in young populations. It is quite likely that the best solution to the existence of bright PNe in old stellar populations is the combination of higher AGB luminosities, as obtained in some new stellar models, and the lower mass loss rates invoked here.

  14. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    If you examined images of planetary nebulae, you would find that many of them have an appearance that is too messy to be accounted for in the standard model of how planetary nebulae form. So what causes these structures?Examples of planetary nebulae that have a low probability of having beenshaped by a triple stellar system. They are mostly symmetric, with only slight departures (labeled) that can be explained by instabilities, interactions with the interstellar medium, etc. [Bear and Soker 2017]A Range of LooksAt the end of a stars lifetime, in the red-giant phase, strong stellar winds can expel the outer layers of the star. The hot, luminous core then radiates in ultraviolet, ionizing the gas of the ejected stellar layers and causing them to shine as a brightly colored planetary nebula for a few tens of thousands of years.Planetary nebulae come in a wide variety of morphologies. Some are approximately spherical, but others can be elliptical, bipolar, quadrupolar, or even more complex.Its been suggested that non-spherical planetary nebulae might be shaped by the presence of a second star in a binary system with the source of the nebula but even this scenario should still produce a structure with axial or mirror symmetry.A pair of scientists from Technion Israel Institute of Technology, Ealeal Bear and Noam Soker, argue that planetary nebulae with especially messy morphologies those without clear axial or point symmetries may have been shaped by an interacting triple stellar system instead.Examples of planetary nebulae that might have been shaped by a triple stellar system. They have some deviations from symmetry but also show signs of interacting with the interstellar medium. [Bear and Soker 2017]Departures from SymmetryTo examine this possibility more closely, Bear and Soker look at a sample of thousands planetary nebulae and qualitatively classify each of them into one of four categories, based on the degree to which they show signs of having been shaped by a

  15. The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.

    1977-01-01

    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.

  16. NGC 7293, the Helix Nebula

    NASA Image and Video Library

    2012-05-16

    NGC 7293, better known as the Helix nebula, displays its ultraviolet glow courtesy of NASA GALEX. The Helix is the nearest example of a planetary nebula, which is the eventual fate of a star, like our own Sun, as it approaches the end of its life.

  17. Weighing in on the Dumbbell Nebula

    NASA Image and Video Library

    2011-08-10

    The Dumbbell nebula, also known as Messier 27, pumps out infrared light in this image from NASA Spitzer Space Telescope. Planetary nebulae are now known to be the remains of stars that once looked a lot like our sun.

  18. Menkhib and the California Nebula

    NASA Image and Video Library

    2010-05-07

    This infrared image from NASA Wide-field Infrared Survey Explorer features one of the bright stars in the constellation Perseus, named Menkhib, along with a large star forming cloud commonly called the California Nebula.

  19. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The

  20. Iridescent Glory of Nearby Helix Nebula

    NASA Image and Video Library

    2014-04-04

    This composite picture is a seamless blend of ultra-sharp NASA Hubble Space Telescope (HST) images combined with the wide view of the Mosaic Camera on the National Science Foundation's 0.9-meter telescope at Kitt Peak National Observatory, part of the National Optical Astronomy Observatory, near Tucson, Ariz. Astronomers at the Space Telescope Science Institute assembled these images into a mosaic. The mosaic was then blended with a wider photograph taken by the Mosaic Camera. The image shows a fine web of filamentary "bicycle-spoke" features embedded in the colorful red and blue gas ring, which is one of the nearest planetary nebulae to Earth. Because the nebula is nearby, it appears as nearly one-half the diameter of the full Moon. This required HST astronomers to take several exposures with the Advanced Camera for Surveys to capture most of the Helix. HST views were then blended with a wider photo taken by the Mosaic Camera. The portrait offers a dizzying look down what is actually a trillion-mile-long tunnel of glowing gases. The fluorescing tube is pointed nearly directly at Earth, so it looks more like a bubble than a cylinder. A forest of thousands of comet-like filaments, embedded along the inner rim of the nebula, points back toward the central star, which is a small, super-hot white dwarf. The tentacles formed when a hot "stellar wind" of gas plowed into colder shells of dust and gas ejected previously by the doomed star. Ground-based telescopes have seen these comet-like filaments for decades, but never before in such detail. The filaments may actually lie in a disk encircling the hot star, like a collar. The radiant tie-die colors correspond to glowing oxygen (blue) and hydrogen and nitrogen (red). Valuable Hubble observing time became available during the November 2002 Leonid meteor storm. To protect the spacecraft, including HST's precise mirror, controllers turned the aft end into the direction of the meteor stream for about half a day. Fortunately

  1. Detection of O VII Lambda 1522 in IUE Spectra of Planetary Nebula Nuclei and Other Hot Stars

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.

    1999-01-01

    We present the first detection of O VII lambda 1522 emission or absorption from archival IUE spectra in 14 planetary nebula nuclei and three PG 1159-type stars. The n = 5 approaching 6 transition of O VII was determined by Kruk & Werner and observed by them in the spectrum of the very hot PG 1159-type star H1504+65 from data obtained with the Hopkins Ultraviolet Telescope (HUT). Emission-line fluxes or absorption equivalent widths as well as radial velocities for the program stars are presented. The precise rest wavelength for the 5 approaching 6 transition requires further investigation.

  2. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  3. Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.

    2007-09-01

    We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.

  4. X-ray Emission from Hot Bubbles in nebulae around Evolved Stars

    NASA Astrophysics Data System (ADS)

    Toalá Sánz, Jesús Alberto

    This thesis presents an observational and numerical study on the X-ray emission related to the formation and evolution from hot bubbles in nebulae around evolved stars. The observational part of this study consists mainly in observations obtained from the X-ray satellites X-ray Multi Mirror Mission (XMM-Newton) and Chandra X-ray Observatory (CXO). We have made use of optical, infrared, and ultraviolet observations that have complemented our results and analysis. These observations have allowed us to study the Wolf-Rayet (WR) nebulae S 308 and NGC 6888 and that around the WR star WR 16. We have also studied the planetary nebulae (PNe) NGC 6543 and Abell 78 (A 78). The X-ray telescopes, XMM-Newton and CXO, have allowed us to study the distribution and physical characteristics of the hot and diffuse gas in the WR nebulae S 308 and NGC 6888 with exquisite detail. Even though the CXO observations do not map entirely NGC 6888, we are able to estimate global parameters of the X-ray emission making use of ROSAT observations. Previous observations performed with were hampered by Suzaku, ROSAT, and ASCA were hampered by a large number of point sources in the line of sight of the nebulae. S 308 was observed with XMM-Newton with four pointings. We have made use of the most up-to-date tools for the analysis of soft and diffuse X-ray emission (the ESAS tasks). We found that in both nebulae the hot gas has a plasma temperature of 1-1.5×10^6 K and it is delineated by the [O III] emission and not the Hα as stated in previous studies. A notable difference between these two WR nebulae is that S 308 has a limb-brightened morphology in the distribution of its hot gas, while NGC 6888 displays three maxima. We have studied the WR nebula around WR 16 with archived XMM-Newton observations. Even though it was expected that diffuse X-ray emission should be detected from a spherical, non-disrupted WR nebula, by comparison with S 308 and NGC 6888, we are not able to detect such emission

  5. Evolution of Planetary Nebulae with WR-type Central Stars

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz

    2014-04-01

    This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast

  6. Rotten Egg Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae.

    'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2.

    The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2.

    The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

    A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and

  7. Deep Stromvil Photometry for Star Formation in the Head of the Pelican Nebula

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; J., S.; Stott, J.; J., S.; Janusz, R.; J., S.; Straizys, V.

    2010-01-01

    The North America and Pelican Nebulae, and specifically the dark cloud L935 contain regions of active star formation (Herbig, G. H. 1958, ApJ, 128,259). Previously we reported on Vatican telescope observations by Stromvil intermediate-band filters in a 12-arcmin field in the "Gulf of Mexico" region of L935. There we classify A, F, and G-type stars. However, the many faint K and M-type dwarf stars remain somewhat ambiguous in calibration and classification. But attaining reasonable progress, we turn to another part of L935 located near the Pelican head. This area includes the "bright rim" which is formed by dust and gas condensed by the light pressure of an unseen O-type star hidden behind the dense dark cloud. Straizys and Laugalys (2008 Baltic Astronomy, 17, 143 ) have identified this star to be one of the 2MASS objects with Av=23 mag. A few concentrations of faint stars, V 13 to 14 mag. are immersed in this dark region. Among these stars are a few known emission-line objects (T-Tauri or post T-Tauri stars). A half degree nearby are some photometric Vilnius standards we use to calibrate our new field. We call on 2MASS data for correlative information. Also the Stromvil photometry offers candidate stars for spectral observations. The aim of this study in the Vilnius and Stromvil photometric systems is to classify stars down to V = 18 mag., to confirm the existence of the young star clusters, and to determine the distance of the cloud covering the suspected hidden ionizing star.

  8. VizieR Online Data Catalog: Stars associated to Eagle Nebula (M16=NGC6611) (Guarcello+ 2010)

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-08-01

    This catalog contains coordinates and both optical and infrared photometry, plus usefull tags, of the candidate stars associated to the Eagle Nebula (M16), bost disk-less and disk-bearing, selected in Guarcello et al. 2010: "Chronology of star formation and disks evolution in the Eagle Nebula". The optical photometry in BVI bands comes from observations with WFI@ESO (Guarcello et al. 2007, Cat. J/A+A/462/245); JHK photometry have been obtained from 2MASS/PSC (Bonatto et al. 2006A&A...445..567B, Guarcello et al. 2007, Cat. J/A+A/462/245) and UKIDSS/GPS catalogs (Guarcello et al., 2010, in prep.) ; IRAC data are from GLIMPSE public survey (Indebetouw 2007ApJ...666..321I, Guarcello et al., 2009, Cat. J/A+A/496/453); X-ray data from three observations with Chandra/ACIS-I (Linsky et al., 2007, Cat. J/ApJ/654/347, Guarcello et al., 2007, J/A+A/462/245, Guarcello et al. 2010, in prep.). (1 data file).

  9. Photometry and Classification of Stars around the Reflection Nebula NGC 7023 IN Cepheus. I. A Catalog of Magnitudes, Color Indices and Spectral Types of 1240 Stars

    NASA Astrophysics Data System (ADS)

    Zdanavičius, K.; Zdanavičius, J.; Straižys, V.; Kotovas, A.

    The catalog contains magnitudes and color indices of 1240 stars down to ˜ 16.7 mag in V measured in the seven-color Vilnius photometric system in the area of 1.5 square degrees around the reflection nebula NGC 7023 in Cepheus. For most of the stars spectral types determined from the photometric data are given. A large number of visual binaries with separations between 3'' and 10'' are identified using the DSS2 images.

  10. Doradus Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/21 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars.

    The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago.

    The stars in R136 produce intense 'stellar winds,' streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust.

    This mosaic image of 30 Doradus consists of five overlapping

  11. Hubble View of a Nitrogen-Rich Nebula

    NASA Image and Video Library

    2015-06-26

    This NASA/ESA Hubble Space Telescope image shows a planetary nebula named NGC 6153, located about 4,000 light-years away in the southern constellation of Scorpius (The Scorpion). The faint blue haze across the frame shows what remains of a star like the sun after it has depleted most of its fuel. When this happens, the outer layers of the star are ejected, and get excited and ionized by the energetic ultraviolet light emitted by the bright hot core of the star, forming the nebula. NGC 6153 is a planetary nebula that is elliptical in shape, with an extremely rich network of loops and filaments, shown clearly in this Hubble image. However, this is not what makes this planetary nebula so interesting for astronomers. Measurements show that NGC 6153 contains large amounts of neon, argon, oxygen, carbon and chlorine — up to three times more than can be found in the solar system. The nebula contains a whopping five times more nitrogen than our sun! Although it may be that the star developed higher levels of these elements as it grew and evolved, it is more likely that the star originally formed from a cloud of material that already contained a lot more of these elements. Text credit: European Space Agency Image credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Spectrophotometry of Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Boyd, David

    2017-06-01

    Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionises the nebula producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  13. The Rings Around the Egg Nebula

    NASA Technical Reports Server (NTRS)

    Harpaz, Amos; Rappaport, Saul; Soker, Noam

    1997-01-01

    We present an eccentric binary model for the formation of the proto-planetary nebula CRL 2688 (the Egg Nebula) that exhibits multiple concentric shells. Given the apparent regularity of the structure in the Egg Nebula, we postulate that the shells are caused by the periodic passages of a companion star. Such an orbital period would have to lie in the range of 100-500 yr, the apparent time that corresponds to the spacing between the rings. We assume, in this model, that an asymptotic giant branch (AGB) star, which is the origin of the matter within the planetary nebula, loses mass in a spherically symmetric wind. We further suppose that the AGB star has an extended atmosphere (out to approximately 10 stellar radii) in which the outflow speed is less than the escape speed; still farther out, grains form and radiation pressure accelerates the grains along with the trapped gas to the escape speed. Once escape speed has been attained, the presence of a companion star will not significantly affect the trajectories of the matter leaving in the wind and the mass loss will be approximately spherically symmetric. On the other hand, if the companion star is sufficiently close that the Roche lobe of the AGB star moves inside the extended atmosphere, then the slowly moving material will be forced to flow approximately along the critical potential surface (i.e., the Roche lobe) until it flows into the potential lobe of the companion star. Therefore, in our model, the shells are caused by periodic cessations of the isotropic wind rather than by any periodic enhancement in the mass-loss process. We carry out detailed binary evolution calculations within the context of this scenario, taking into account the nuclear evolution and stellar wind losses of the giant as well as the effects of mass loss and mass transfer on the evolution of the eccentric binary orbit. From the initial binary parameters that we find are required to produce a multiple concentric shell nebula and the known

  14. Using Photometric Variability to Detect Binarity in the Central Stars of Four Planetary Nebulae, A 43, A 74, NGC 6720, and NGC 6853

    NASA Astrophysics Data System (ADS)

    Smith, Alexander; De Marco, O.

    2007-12-01

    Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.

  15. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024more » cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.« less

  16. The blue supergiant MN18 and its bipolar circumstellar nebula

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ≈21 kK. The star is highly reddened, E(B - V) ≈ 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L⊙ ≈ 5.42 ± 0.30, a mass-loss rate of ≈(2.8-4.5) × 10- 7 M⊙ yr- 1, and resides at a distance of ≈5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ≈17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  17. Into the Depths of the Lagoon Nebula

    NASA Image and Video Library

    2011-09-16

    Swirling dust clouds and bright newborn stars dominate the view in this image of the Lagoon nebula from NASA Spitzer Space Telescope. The nebula lies in the general direction of the center of our galaxy in the constellation Sagittarius.

  18. HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in

  19. Newly discovered Wolf-Rayet and weak emission-line central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    DePew, K.; Parker, Q. A.; Miszalski, B.; De Marco, O.; Frew, D. J.; Acker, A.; Kovacevic, A. V.; Sharp, R. G.

    2011-07-01

    We present the spectra of 32 previously unpublished confirmed and candidate Wolf-Rayet ([WR]) and weak emission-line (WELS) central stars of planetary nebulae (CSPNe). 18 stars have been discovered in the Macquarie/AAO/Strasbourg Hα (MASH) PN survey sample, and we have also uncovered 14 confirmed and candidate [WR]s and WELS among the CSPNe of previously known PNe. Spectral classifications have been undertaken using both Acker & Neiner and Crowther, De Marco & Barlow schemes. 22 members in this sample are identified as probable [WR]s; the remaining 10 appear to be WELS. Observations undertaken as part of the MASH spectroscopic survey have now increased the number of known [WR]s by ˜30 per cent. This will permit a better analysis of [WR] subclass distribution, metallicity effects and evolutionary sequences in these uncommon objects.

  20. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  1. Identifying Massive Runaway Stars by Detecting Infrared Bowshock Nebula: Four OB Stars and a New Massive Early-B Binary System

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer

    2016-01-01

    Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  2. Cat's Eye Nebula

    NASA Image and Video Library

    2017-12-08

    The Cat's Eye Nebula, one of the first planetary nebulae discovered, also has one of the most complex forms known to this kind of nebula. Eleven rings, or shells, of gas make up the Cat's Eye. The full beauty of the Cat's Eye Nebula is revealed in this detailed view from NASA's Hubble Space Telescope. The image from Hubble's Advanced Camera for Surveys (ACS) shows a bull's eye pattern of eleven or even more concentric rings, or shells, around the Cat's Eye. Each 'ring' is actually the edge of a spherical bubble seen projected onto the sky -- that's why it appears bright along its outer edge. Observations suggest the star ejected its mass in a series of pulses at 1,500-year intervals. These convulsions created dust shells, each of which contain as much mass as all of the planets in our solar system combined (still only one percent of the Sun's mass). These concentric shells make a layered, onion-skin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each skin layer is discernible. The bull's-eye patterns seen around planetary nebulae come as a surprise to astronomers because they had no expectation that episodes of mass loss at the end of stellar lives would repeat every 1,500 years. Several explanations have been proposed, including cycles of magnetic activity somewhat similar to our own Sun's sunspot cycle, the action of companion stars orbiting around the dying star, and stellar pulsations. Another school of thought is that the material is ejected smoothly from the star, and the rings are created later on due to formation of waves in the outflowing material. Credit: NASA, ESA, HEIC, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science

  3. A New View of the Tarantula Nebula

    NASA Image and Video Library

    2012-04-17

    This composite of 30 Doradus, the Tarantula Nebula, contains data from Chandra blue, Hubble green, and Spitzer red. Located in the Large Magellanic Cloud, the Tarantula Nebula is one of the largest star-forming regions close to the Milky Way.

  4. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    PubMed

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  5. Hubble reveals heart of Lagoon Nebula

    NASA Image and Video Library

    2010-09-22

    Image release date September 22, 2010 To view a video of this image go here: www.flickr.com/photos/gsfc/5014452203 Caption: A spectacular new NASA/ESA Hubble Space Telescope image reveals the heart of the Lagoon Nebula. Seen as a massive cloud of glowing dust and gas, bombarded by the energetic radiation of new stars, this placid name hides a dramatic reality. The Advanced Camera for Surveys (ACS) on the NASA/ESA Hubble Space Telescope has captured a dramatic view of gas and dust sculpted by intense radiation from hot young stars deep in the heart of the Lagoon Nebula (Messier 8). This spectacular object is named after the wide, lagoon-shaped dust lane that crosses the glowing gas of the nebula. This structure is prominent in wide-field images, but cannot be seen in this close-up. However the strange billowing shapes and sandy texture visible in this image make the Lagoon Nebula’s watery name eerily appropriate from this viewpoint too. Located four to five thousand light-years away, in the constellation of Sagittarius (the Archer), Messier 8 is a huge region of star birth that stretches across one hundred light-years. Clouds of hydrogen gas are slowly collapsing to form new stars, whose bright ultraviolet rays then light up the surrounding gas in a distinctive shade of red. The wispy tendrils and beach-like features of the nebula are not caused by the ebb and flow of tides, but rather by ultraviolet radiation’s ability to erode and disperse the gas and dust into the distinctive shapes that we see. In recent years astronomers probing the secrets of the Lagoon Nebula have found the first unambiguous proof that star formation by accretion of matter from the gas cloud is ongoing in this region. Young stars that are still surrounded by an accretion disc occasionally shoot out long tendrils of matter from their poles. Several examples of these jets, known as Herbig-Haro objects, have been found in this nebula in the last five years, providing strong support for

  6. Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822

    NASA Technical Reports Server (NTRS)

    Spitzer, Lyman; Fitzpatrick, Ed

    1999-01-01

    This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young

  7. Interaction of planetary nebulae with the interstellar medium

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Sarazin, Craig L.; Soker, Noam

    1990-01-01

    The interaction of a moving planetary nebula (PN) with the interstellar medium is considered. The PN shell is compressed first in the direction of the stellar motion. This produces a dipole asymmetry in the surface brightness of the nebula, typically at a nebular density of about 40/cu cm if the nebula is located in the Galactic plane. In the later stages of the interaction, this part of the shell is significantly decelerated with respect to the central star, and the PN becomes strongly asymmetric in shape. This distortion and the subsequent stripping of the nebular gas away from the central star typically occurs at a low nebular density of about 6/cu cm. The morphology of PNs with central stars whose proper motions exceed 0.015 arcsec/yr was examined, and it was found that many of the extended nebulae are interacting with the interstellar medium (ISM). The sample doubles the number of known PNs interacting with the ISM. The morphology of nearby PNs was examined, and a number of strongly asymmetric nebuale were found.

  8. Rosette nebula globules: Seahorse giving birth to a star

    NASA Astrophysics Data System (ADS)

    Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.

    2017-09-01

    Context. The Rosette nebula is an H II region ionized mainly by the stellar cluster NGC 2244. Elephant trunks, globules, and globulettes are seen at the interface where the H II region and the surrounding molecular shell meet. Aims: We have observed a field in the northwestern part of the Rosette nebula where we study the small globules protruding from the shell. Our aim is to measure their properties and study their star-formation history in continuation of our earlier study of the features of the region. Methods: We imaged the region in broadband near-infrared (NIR) JsHKs filters and narrowband H2 1-0 S(1), Pβ, and continuum filters using the SOFI camera at the ESO/NTT. The imaging was used to study the stellar population and surface brightness, create visual extinction maps, and locate star formation. Mid-infrared (MIR) Spitzer IRAC and WISE and optical NOT images were used to further study the star formation and the structure of the globules. The NIR and MIR observations indicate an outflow, which is confirmed with CO observations made with APEX. Results: The globules have mean number densities of 4.6 × 104 cm-3. Pβ is seen in absorption in the cores of the globules where we measure visual extinctions of 11-16 mag. The shell and the globules have bright rims in the observed bands. In the Ks band 20 to 40% of the emission is due to fluorescent emission in the 2.12 μmH2 line similar to the tiny dense globulettes we studied earlier in a nearby region. We identify several stellar NIR excess candidates and four of them are also detected in the Spitzer IRAC 8.0 μm image and studied further. We find an outflow with a cavity wall bright in the 2.124 μmH2 line and at 8.0 μm in one of the globules. The outflow originates from a Class I young stellar object (YSO) embedded deep inside the globule. An Hα image suggests the YSO drives a possible parsec-scale outflow. Despite the morphology of the globule, the outflow does not seem to run inside the dusty fingers

  9. HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA

  10. N44C nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Resembling the hair in Botticelli's famous portrait of the birth of Venus, an image from NASA's Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula.

    The image, presented by the Hubble Heritage Project, was taken in 1996 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image is available online at

    http://heritage.stsci.edu , http://oposite.stsci.edu/pubinfo/pr/2002/12 orhttp://www.jpl.nasa.gov/images/wfpc .

    On the top right of the image is a source of its artistic likeness, a network of nebulous filaments surrounding the Wolf-Rayet star. This type of rare star is characterized by an exceptionally vigorous 'wind' of charged particles. The shock of the wind colliding with the surrounding gas causes the gas to glow.

    The Wolf-Rayet star is part of N44C, a nebula of glowing hydrogen gas surrounding young stars in the Large Magellanic Cloud. Visible from the Southern Hemisphere, the Large Magellanic Cloud is a small companion galaxy to the Milky Way.

    What makes N44C peculiar is the temperature of the star that illuminates it. The most massive stars -- those that are 10 to 50 times more massive than the Sun -- have maximum temperatures of 30,000 to 50,000 degrees Celsius (54,000 to 90,000 degrees Fahrenheit). The temperature of this star is about 75,000 degrees Celsius (135,000 degrees Fahrenheit). This unusually high temperature may be due to a neutron star or black hole that occasionally produces X-rays but is now inactive.

    N44C is part of a larger complex that includes young, hot, massive stars, nebulae, and a 'superbubble' blown out by multiple supernova explosions. Part of the superbubble is seen in red at the very bottom left of the Hubble image.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard

  11. Magnetic Field Measurements of T Tauri Stars in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Johns-Krull, Christopher M.

    2011-03-01

    We present an analysis of high-resolution (R ~ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and SECYT (Argentina).

  12. The (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Aller, Lawrence H.

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the 'peculiar' and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range.

  13. Spectrophotometry of Symbiotic Stars (Abstract)

    NASA Astrophysics Data System (ADS)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  14. Spectroscopy of Planetary Nebulae at the Bright End of the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Rilinger, Anneliese; Kwitter, Karen B.; Balick, Bruce; Corradi, R. L. M.; Galera Rosillo, Rebeca; Jacoby, George H.; Shaw, Richard A.

    2017-01-01

    We have obtained spectra of 8 luminous planetary nebulae (PNe) in M31 and 4 in the Large Magellanic Cloud with the goal of understanding their properties and those of their progenitor stars. These PNe are at or near the M* region (the most luminous PNe) in their respective galaxies. M31 PNe were observed at the Gran Telescopio Canarias using the OSIRIS spectrograph; LMC PNe were observed with the FORS2 spectrograph at the Very Large Telescope. Line intensities were measured in IRAF. Using our n-level atom program, ELSA (Johnson, et.al, 2006, Planetary Nebulae in our Galaxy and Beyond, 234, 439), we determined temperature, density, and elemental abundances for each nebula. We then modeled the nebulae and central stars with Cloudy (Ferland, et al. 1998, PASP, 110, 761). We plan to use these models of the central stars to estimate the masses and ages of the progenitor stars. We hope to discover whether the progenitor stars of M* PNe exhibit consistently different characteristics from those of other PNe progenitors.

  15. N44C nebula

    NASA Image and Video Library

    1999-12-03

    Resembling the hair in Botticelli famous portrait of the birth of Venus, an image from NASA Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula.

  16. The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; Caballero-Nieves, Saida M.; Castro, Norberto; Evans, Christopher J.

    2017-11-01

    We present VLT/MUSE observations of NGC 2070, the dominant ionizing nebula of 30 Doradus in the LMC, plus HST/STIS spectroscopy of its central star cluster R136. Integral Field Spectroscopy (MUSE) and pseudo IFS (STIS) together provides a complete census of all massive stars within the central 30×30 parsec2 of the Tarantula. We discuss the integrated far-UV spectrum of R136, of particular interest for UV studies of young extragalactic star clusters. Strong He iiλ1640 emission at very early ages (1-2 Myr) from very massive stars cannot be reproduced by current population synthesis models, even those incorporating binary evolution and very massive stars. A nebular analysis of the integrated MUSE dataset implies an age of ~4.5 Myr for NGC 2070. Wolf-Rayet features provide alternative age diagnostics, with the primary contribution to the integrated Wolf-Rayet bumps arising from R140 rather than the more numerous H-rich WN stars in R136. Caution should be used when interpreting spatially extended observations of extragalactic star-forming regions.

  17. Hubble Hatches Image of Rotten Egg Nebula Shocks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.

  18. The Pacman Nebula

    NASA Image and Video Library

    2011-09-28

    This composite image of the star cluster NGC 28 contains X-ray data from Chandra, in purple, with infrared observations from Spitzer, in red, green, blue. NGC 281 is known informally as the Pacman Nebula because of its appearance in optical images.

  19. Water-maser emission from a planetary nebula with a magnetized torus.

    PubMed

    Miranda, L F; Gómez, Y; Anglada, G; Torrelles, J M

    2001-11-15

    A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula.

  20. Horsehead Nebula

    NASA Image and Video Library

    2017-12-08

    Image released April 19, 2013. Astronomers have used NASA's Hubble Space Telescope to photograph the iconic Horsehead Nebula in a new, infrared light to mark the 23rd anniversary of the famous observatory's launch aboard the space shuttle Discovery on April 24, 1990. Looking like an apparition rising from whitecaps of interstellar foam, the iconic Horsehead Nebula has graced astronomy books ever since its discovery more than a century ago. The nebula is a favorite target for amateur and professional astronomers. It is shadowy in optical light. It appears transparent and ethereal when seen at infrared wavelengths. The rich tapestry of the Horsehead Nebula pops out against the backdrop of Milky Way stars and distant galaxies that easily are visible in infrared light. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) More on this image. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. WISE Catches the Lagoon Nebula in Center of Action

    NASA Image and Video Library

    2011-01-06

    This colorful picture is a mosaic of Messier 8, or the Lagoon nebula, taken by NASA Wide-field Infrared Survey Explorer. This nebula is composed of clouds of gas and dust in which new stars are forming.

  2. A Starfish Preplanetary Nebula: IRAS 19024+0044

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Sánchez Contreras, Carmen; Morris, Mark

    2005-02-01

    Using the Hubble Space Telescope, we have imaged the OH/IR star IRAS 19024+0044 (I19024) at 0.6, 0.8, 1.1, and 1.6 μm, as part of our surveys of candidate preplanetary nebulae. The images show a multipolar nebula of size ~3.7"×2.3", with at least six elongated lobes emanating from the center of the nebula. Two of the lobes show limb-brightened tips having point-symmetric structure with respect to the expected location of the central star. The central region shows two dark bands southwest and northeast of a central shallow maximum that may be either two inclined dusty toroidal structures or the dense parts of a single wide, inhomogeneous, toroid. A very faint, surface brightness-limited, diffuse halo surrounds the lobes. Long-slit/echelle optical spectroscopy obtained at the Mount Palomar and Keck observatories shows a spatially compact source of Hα emission; the Hα line shows a strong, narrow, central core with very broad (+/-1000 km s-1), weak wings, and a narrower blueshifted absorption feature signifying the presence of a ~100 km s-1 outflow. The spectrum is characterized by a strong, relatively featureless, continuum and lacks the strong forbidden emission lines characteristic of planetary nebulae, confirming that IRAS 19024 is a preplanetary nebula; the spectral type for the central star, although uncertain, is most likely early G. Interferometric observations of the CO J=1-0 line emission with the Owens Valley Radio Interferometer show a marginally resolved molecular envelope (size 5.5"×4.4") with an expansion velocity of 13 km s-1, resulting from the asymptotic giant granch (AGB) progenitor's dense, slow wind. We derive a kinematic distance of 3.5 kpc to I19024, based on its radial velocity. The bolometric flux is 7.3×10-9 ergs s-1 cm-2, and the luminosity 2850 Lsolar. The relatively low luminosity of I19024, in comparison with stellar evolutionary models, indicates that the initial mass of its central star was ~1-1.5 Msolar. The lobes, which appear to

  3. 3He Abundances in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  4. BY POPULAR DEMAND: HUBBLE OBSERVES THE HORSEHEAD NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view. The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view. Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars. The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope. The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ. This popular celestial target was the clear winner among more

  5. The Extended Region Around the Planetary Nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.'

    The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet.

    Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly.

    When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star.

    Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades.

    In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red

  6. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  7. THE ROTTEN EGG NEBULA A PLANETARY NEBULA IN THE MAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The object shown in these NASA/ESA Hubble Space Telescope images is a remarkable example of a star going through death throes just as it dramatically transforms itself from a normal red giant star into a planetary nebula. This process happens so quickly that such objects are quite rare, even though astronomers believe that most stars like the Sun will eventually go through such a phase. This star, with the prosaic name of OH231.8+4.2, is seen in these infrared pictures blowing out gas and dust in two opposite directions. So much dust has been cast off and now surrounds the star that it cannot be seen directly, only its starlight that is reflected off the dust. The flow of gas is very fast, with a velocity up to 450,000 mph (700,000 km/h). With extreme clarity, these Hubble Near Infrared Camera and Multi-Object Spectrometer (NICMOS) images reveal that the fast-moving gas and dust are being collimated into several thin streamers (on the right) and a jet-like structure (on the left), which can be seen extending away from the centers of both pictures. On the right, wisps of material in jet-like streamers appear to strike some dense blobs of gas. This interaction must produce strong shock waves in the gas. The pictures represent two views of the object. The color image is a composite of four images taken with different NICMOS infrared filters on March 28, 1998. It shows that the physical properties of the material, both composition and temperature, vary significantly throughout the outflowing material. The black-and-white image was taken with one NICMOS infrared filter. That image is able to show more clearly the faint detail and structure in the nebula than can be achieved with the color composites. Observations by radio astronomers have found many unusual molecules in the gas around this star, including many containing sulfur, such as hydrogen sulfide and sulfur dioxide. These sulfur compounds are believed to be produced in the shock waves passing through the gas

  8. Water masers and ammonia (1, 1) and (2, 2) towards six regions in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Breen, S. L.; Green, C.-E.; Cunningham, M. R.; Voronkov, M. A.; Horiuchi, S.; Green, J. A.

    2018-01-01

    We present water maser and ammonia (1, 1) and (2, 2) observations, towards six regions in the Carina Nebula, conducted with the Australia Telescope Compact Array. In total five water masers were detected within two of the target fields, and we provide their accurate positions and characteristics. These five water masers constitute all of the known masers detected towards star formation regions in the Carina Nebula and we argue, that given the evidence for active star formation, and the presence of many high-mass stars, the Carina Nebula is uncharacteristically devoid of masers. Our results are consistent with the Carina Nebula having a lack of young high-mass stars, despite the presence of older high-mass stars. Ammonia (1, 1) and (2, 2) emission was detected towards all but one of the target fields and we find that their linewidths and derived temperatures are consistent with the presence of young star formation regions.

  9. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H.; Adams, Michael L.

    2006-01-01

    This viewgraph presentation describes the effects of compression, staging and braid angle on braided rope seals. The contents include: 1) Test Fixture Schematics; 2) Comparison of Hybrid Seal Braid Architecture; 3) Residual Interference After Compression Cycling; 4) Effect of Compression, Braid, and Staging on Seal Flow; 5) Effect of Staging on Seal Pressure Drop; 6) Three Stag Seal Durability; 7) P&W Turbine Vane Seal Requirements; and 8) Next Generation Fighter F-22 P&W F119 Engines.

  10. Star-Studded Strings around Cocoon Nebula

    NASA Image and Video Library

    2011-04-13

    Dense filaments of gas in the IC5146 interstellar cloud can be seen clearly in this image taken in infrared light by the Herschel space observatory. The blue region is a stellar nursery known as the Cocoon nebula.

  11. The Helix Nebula: Unraveling at the Seams

    NASA Image and Video Library

    2012-10-03

    This image from NASA Spitzer and GALEX shows the Helix nebula, a dying star throwing a cosmic tantrum. In death, the star dusty outer layers are unraveling into space, glowing from the intense UV radiation being pumped out by the hot stellar core.

  12. THE 'SPIROGRAPH' NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl

  13. Astronomers Find the First 'Wind Nebula' Around a Rare Ultra-Magnetic Neutron Star

    NASA Image and Video Library

    2017-12-08

    Astronomers have discovered a vast cloud of high-energy particles called a wind nebula around a rare ultra-magnetic neutron star, or magnetar, for the first time. The find offers a unique window into the properties, environment and outburst history of magnetars, which are the strongest magnets in the universe. A neutron star is the crushed core of a massive star that ran out of fuel, collapsed under its own weight, and exploded as a supernova. Each one compresses the equivalent mass of half a million Earths into a ball just 12 miles (20 kilometers) across, or about the length of New York's Manhattan Island. Neutron stars are most commonly found as pulsars, which produce radio, visible light, X-rays and gamma rays at various locations in their surrounding magnetic fields. When a pulsar spins these regions in our direction, astronomers detect pulses of emission, hence the name. Read more: go.nasa.gov/28PVUop Credit: ESA/XMM-Newton/Younes et al. 2016 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Inside the Flame Nebula

    NASA Image and Video Library

    2014-05-07

    This composite image shows one of the clusters, NGC 2024, which is found in the center of the so-called Flame Nebula about 1,400 light years from Earth. Astronomers have studied two star clusters using NASA Chandra and infrared telescopes.

  15. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  16. The Gum nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1972-01-01

    The distance from the sun to the center of the star, Gamma Velorium, is determined in an effort to draw a physical model and identify the ionized energy source of the Gum nebula. The distance is calculated from the local hydrogen density of radio astronomy studies and the hydrogen measure.

  17. Polarization due to dust scattering in the planetary nebula Cn1-1

    NASA Technical Reports Server (NTRS)

    Bhatt, Harish C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula.

  18. The VISTA Carina Nebula Survey . I. Introduction and source catalog

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Zeidler, P.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2014-12-01

    Context. The Carina Nebula is one of the most massive and active star-forming regions in our Galaxy and has been studied with numerous multiwavelength observations in the past five years. However, most of these studies were restricted to the inner parts (≲1 square-degree) of the nebula, and thus covered only a small fraction of the whole cloud complex. Aims: Our aim was to conduct a near-infrared survey that covers the full spatial extent (~5 square-degrees) of the Carina Nebula complex and is sensitive enough to detect all associated young stars through extinctions of up to AV ≈ 6 mag. Methods: We used the 4m Visible and Infrared Survey Telescope for Astronomy (VISTA) of ESO to map an area of 6.7 square-degrees around the Carina Nebula in the near-infrared J-, H-, Ks-bands. Results: The analysis of our VISTA data revealed 4 840 807 individual near-infrared sources, 3 951 580 of which are detected in at least two bands. The faintest S/N ≥ 3 detections have magnitudes of J ≈ 21.2, H ≈ 19.9, and Ks ≈ 19.3. For objects at the distance of the Carina Nebula (2.3 kpc), our catalog is estimated to be complete down to stellar masses of ≈0.1 M⊙ for young stars with extinctions of AV ≈ 5 mag; for regions in the brightest parts of the central nebula with particularly strong diffuse emission, the completeness limit is at slightly higher stellar masses. We describe the photometric calibration, the characteristics, and the quality of these data. VISTA images of several newly detected or yet rarely studied clusters in the outer parts of the Carina Nebula complex are presented. Finally, a list of stars with high proper motions that were discovered in our analysis is provided in an appendix. Conclusions: Our catalog represents by far the most comprehensive deep near-infrared catalog of the Carina Nebula complex. It provides a new basis for spatially complete investigations of the young stellar population in this important star-forming complex. Based on

  19. A Large Bubble External to the Wolf-Rayet Ring Nebula NGC 6888

    NASA Astrophysics Data System (ADS)

    Marston, A. P.

    1995-05-01

    We present high spatial resolution IRAS images (HIRES) of a 2° field surrounding the Wolf-Rayet ring nebula NGC 6888. This shows the presence of an elliptical shell 1.7° × 1.4° in size and with a position angle at 45° relative to that of NGC 6888 which is also observed in our images. IRAS fluxes indicate the outer large bubble has a cooler dust temperature than NGC 6888 and has an implied gas mass of approximately 8000 Msun. It is proposed that the outer shell represents the extent of a bubble 19 pc across created in the O star phase of the Wolf-Rayet star WR 136 (HD 192163), presently at the center of NGC 6888. This bubble is estimated as being 1.9 × 106 yr old with an associated O star phase of 1.6-1.9 × 106 yr. The high spatial resolution in our IRAS images has also allowed better fluxes to be determined for the ring nebula NGC 6888 which are consistent with the previous results of Marston & Meaburn (1988). We illustrate how the nebulae around the star WR 136 are consistent with a three phase evolution for Wolf-Rayet stars. With the large mass lost in the ring nebula we suggest that a massive (>40 Msun) O star has evolved through a luminous blue variable phase before becoming the Wolf-Rayet star WR 136.

  20. Revealing evolved massive stars with Spitzer

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  1. Single rotating stars and the formation of bipolar planetary nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Segura, G.; Villaver, E.; Langer, N.

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less

  2. A Precessing Jet in a Dying Star: Adaptive Optics Imaging of the ``Water-Fountain" Nebula IRAS16342-3814

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Le Mignant, D.; Sánchez Contreras, C.; Campbell, R. D.; Chaffee, F. H.

    2004-12-01

    Collimated jets are one of the most intriguing, yet poorly understood phenomena in astrophysics. Jets have been found in a wide variety of object classes which include active galactic nuclei, young stellar objects, massive X-ray binaries, black hole X-ray transients, symbiotic stars, supersoft X-ray sources, and finally, planetary and preplanetary nebulae (PNe & PPNe). In the case of PNe and PPNe, it has been proposed that wobbling collimated jets may be the universal mechanism which can explain a wide variety of bipolar and multipolar morphologies seen in these objects (Sahai 2000, ASP Conf.Ser. 199, 209). The ``Water-Fountain Nebula'', IRAS16342-3814 (IRAS1634) belongs to a class of very young PPNe with high-velocity molecular outflows traced in either or both of radio H2O and OH maser line emission, and are believed to result from the interaction of fast jets with ambient circumstellar material shed by the AGB progenitors of these objects. Hubble Space Telescope (HST) imaging of IRAS1634 showed a small bipolar nebula, with the lobes separated by a dark equatorial waist (Sahai et al. 1999, ApJ, 514, L115) -- the morphology was interpreted as bubble-like reflection nebulae illuminated by starlight escaping through polar holes in a dense, dusty waist obscuring the central star, with the bubbles created by a fast jet-like outflow plowing into the AGB mass-loss envelope. Here we report Adaptive Optics (AO) observations with the W. M. Keck Observatory at near-infrared wavelengths (in the H, K', L', Ms bands) which probe much deeper into the lobes and reveal a remarkable corkscrew-shaped structure apparently etched into the lobe walls. The corkscrew structure represents the proverbial ``writing on the wall" signature of an underlying precessing jet, and we compare our results with predictions from published numerical simulations of such jets. The results shown provide a dramatic example of the power of ground-based AO imaging with large telescopes to uncover phenomena

  3. Million-degree plasma pervading the extended Orion Nebula.

    PubMed

    Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L

    2008-01-18

    Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.

  4. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-05-01

    X-ray emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3]× 106 K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae (PNe), Wolf-Rayet nebulae (WR) and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  5. On the X-ray temperature of hot gas in diffuse nebulae

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2018-07-01

    X-ray-emitting diffuse nebulae around hot stars are observed to have soft-band temperatures in the narrow range [1-3] × 106K, independent of the stellar wind parameters and the evolutionary stage of the central star. We discuss the origin of this X-ray temperature for planetary nebulae, Wolf-Rayet (WR) nebulae, and interstellar wind bubbles around hot young stars in our Galaxy and the Magellanic Clouds. We calculate the differential emission measure (DEM) distributions as a function of temperature from previously published simulations and combine these with the X-ray emission coefficient for the 0.3-2.0 keV band to estimate the X-ray temperatures. We find that all simulated nebulae have DEM distributions with steep negative slopes, which is due to turbulent mixing at the interface between the hot shocked stellar wind and the warm photoionized gas. Sharply peaked emission coefficients act as temperature filters and emphasize the contribution of gas with temperatures close to the peak position, which coincides with the observed X-ray temperatures for the chemical abundance sets we consider. Higher metallicity nebulae have lower temperature and higher luminosity X-ray emission. We show that the second temperature component found from spectral fitting to X-ray observations of WR nebulae is due to a significant contribution from the hot shocked stellar wind, while the lower temperature principal component is dominated by nebular gas. We suggest that turbulent mixing layers are the origin of the soft X-ray emission in the majority of diffuse nebulae.

  6. NICMOS PEELS AWAY LAYERS OF DUST TO SHOW INNER REGION OF DUSTY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has penetrated layers of dust in a star-forming cloud to uncover a dense, craggy edifice of dust and gas . This region is called the Cone Nebula (NGC 2264), so named because, in ground-based images, it has a conical shape. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the nebula's inner regions. But the Cone is so dense that even the near-infared 'eyes' of NICMOS can't penetrate all the way through it. The image shows the upper 0.5 light-years of the nebula. The entire nebula is 7 light-years long. The Cone resides in a turbulent star-forming region, located 2,500 light-years away in the constellation Monoceros. Radiation from hot, young stars [located beyond the top of the image] has slowly eroded the nebula over millions of years. Ultraviolet light heats the edges of the dark cloud, releasing gas into the relatively empty region of surrounding space. NICMOS has peeled away the outer layers of dust to reveal even denser dust. The denser regions give the nebula a more three-dimensional structure than can be seen in the visible-light picture at left, taken by the Advanced Camera for Surveys aboard the Hubble telescope. In peering through the dusty facade to the nebula's inner regions, NICMOS has unmasked several stars [yellow dots at upper right]. Astronomers don't know whether these stars are behind the dusty nebula or embedded in it. The four bright stars lined up on the left are in front of the nebula. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The NICMOS color composite image was made by combining photographs taken in J-band, H-band, and Paschen-alpha filters. The NICMOS images were taken

  7. Differential Depletion of Mg and Fe in Planetary Nebulae: Implications for the Composition of AGB-Star Dust

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Prasla, F.; Speck, A. K.

    2012-01-01

    We have investigated the gas-phase abundances of Mg and Fe, both refractory elements that are potentially major constituents of silicates and other minerals, for 25 planetary nebulae. The Mg abundances are derived from Mg II 4481 A, a recombination line of Mg++; we obtain Fe/H from [Fe III] 4658 A, after correcting for ionization structure. We find strikingly different behavior for the two elements. Fe is deficient by factors of 20-200 relative to solar, presumably due to incorporation into dust that condensed while the star was on the Asymptotic Giant Branch (AGB). On the other hand, Mg/H is virtually solar, implying that Mg is at most minimally depleted. This result is surprising since some of the nebulae display mid-infrared emission features often attributed to forsterite, the pure-Mg form of crystalline olivine. If this identification is correct, there must be only a small mass of Mg-rich crystalline silicate dust, coexisting with a larger amount of Fe-rich amorphous silicates or another Fe-bearing material. Another possibility is that the observed features might actually arise from Fe-rich crystalline silicates such as fayalite, which provide a good fit to the spectra of some AGB stars (Pitman et al. 2010, MNRAS, 406, 460; Guha Nigoya et al. 2011, ApJ, 733, 93). Finally, our Mg abundances are based on an optical recombination line (ORL), and such lines from C, N, O, Ne tend to be anomalously strong in nebulae. Although empirically Mg does not correlate with the ORL abundance discrepancy (Barlow et al. 2003, ASPC, 209, 273; Wang & Liu 2007, MNRAS, 381, 669), solving the origin of the ORL effect would increase our confidence in our Mg/H values. This work was supported by NSF grants AST-0708245 to HLD and CAREER AST-0642991 to AKS, and Big XII Faculty Fellowships to both.

  8. Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2005-02-01

    An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  9. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    NASA Astrophysics Data System (ADS)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  10. PHOTOMETRY OF THE STINGRAY NEBULA (V839 ARA) FROM 1889 TO 2015 ACROSS THE IONIZATION OF ITS PLANETARY NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Bradley E.; Edwards, Zachary I.

    Up until around 1980, the Stingray was an ordinary B1 post-AGB star, but then it suddenly sprouted bright emission lines like in a planetary nebula (PN), and soon after this the Hubble Space Telescope (HST) discovered a small PN around the star, so apparently we have caught a star in the act of ionizing a PN. We report here on a well-sampled light curve from 1889 to 2015, with unique coverage of the prior century plus the entire duration of the PN formation plus three decades of its aftermath. Surprisingly, the star anticipated the 1980s ionization event by declining frommore » B = 10.30 in 1889 to B = 10.76 in 1980. Starting in 1980, the central star faded fast, at a rate of 0.20 mag year{sup −1}, reaching B = 14.64 in 1996. This fast fading is apparently caused by the central star shrinking in size. From 1994 to 2015, the V-band light curve is almost entirely from the flux of two bright [O iii] emission lines from the unresolved nebula, and it shows a consistent decline at a rate of 0.090 mag year{sup −1}. This steady fading (also seen in the radio and infrared) has a timescale equal to that expected for ordinary recombination within the nebula, immediately after a short-duration ionizing event in the 1980s. We are providing the first direct measure of the rapidly changing luminosity of the central star on both sides of a presumed thermal pulse in 1980, with this providing a strong and critical set of constraints, and these are found to sharply disagree with theoretical models of PN evolution.« less

  11. Do stellar and nebular abundances in the Cocoon nebula agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  12. The Wolf-Rayet nebula NGC 3199 - an interstellar snow plough?

    NASA Astrophysics Data System (ADS)

    Dyson, J. E.; Ghanbari, J.

    1989-12-01

    The Wolf-Rayet nebula NGC 3199 has a highly asymmetric morphology, with a very bright hemisphere near the exciting star HD 89358 and a much fainter and more extended other hemisphere. This nebula is modeled in terms of the distorted bubble produced by a moving star blowing a strong stellar wind into a surrounding uniform interstellar medium; this model is fitted to the morphology and observed kinematic data. The exciting star appears to be moving at about 60 km/s into local interstellar gas of density of about 10/cu cm, and has a mass-loss rate of about 0.000027 solar mass/yr. This latter mass-loss rate is in excellent agreement with observed mass-loss rates from Wolf-Rayet stars.

  13. ESO 2.2-m WFI Image of the Tarantula Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: ESO 2.2-m WFI Image of the Tarantula Nebula A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA/ESO, J. Alves (Calar Alto, Spain), and B. Vandame and Y. Beletski (ESO) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  14. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  15. The Orion Nebula Cluster as a Paradigm of Star Formation

    NASA Astrophysics Data System (ADS)

    Robberto, Massimo

    2014-10-01

    We propose a 52-orbit Treasury Program to investigate two fundamental questions of star formation: a) the low-mass tail of the IMF, down to a few Jupiter masses; b) the dynamical evolution of clusters, as revealed by stellar proper motions. We target the Orion Nebula Cluster (ONC) using WFC3 and ACS in coordinated parallel mode to perform a synoptic survey in the 1.345micron H2O feature and Ic broad-band. Our main objectives are: 1) to discover and classify ~500 brown dwarfs and planetary-mass objects in the field, extending the IMF down to lowest masses formed by gravitational collapse. Using the latest generation of high contrast image processing we will also search for faint companions, reaching down to sub-arcsecond separations and 1E-4 flux ratios. 2) to derive high precision (~0.2km/s) relative proper motions of low-mass stars and substellar objects (about 1000 sources total), leveraging on first epoch data obtained by our previous HST Treasury Program about 10 years ago. These data will unveil the cluster dynamics: velocity dispersion vs. mass, substructures, and the fraction of escaping sources. Only HST can access the IR H2O absorption feature sensitive to the effective temperature of substellar objects, while providing the exceptionally stable PSF needed for the detection of faint companions, and the identical ACS platform for our second epoch proper-motion survey. This program will provide the definitive HST legacy dataset on the ONC. Our High-Level Science Products will be mined by the community, both statistically to constrain competing theories of star formation, and to study in depth the multitude of exotic sources harboured by the cluster.

  16. Some Characteristics of Current Star Formation in the 30 Doradus Nebula Revealed by HST/NICMOS

    NASA Astrophysics Data System (ADS)

    Walborn, Nolan R.; Barbá, Rodolfo H.; Brandner, Wolfgang; Rubio, Mónica; Grebel, Eva K.; Probst, Ronald G.

    1999-01-01

    The extensive ``second generation'' of star formation within the 30 Doradus Nebula, evidently triggered by the R136 central cluster around its periphery, has been imaged with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope. Many new IR sources, including multiple systems, clusters, and nebular structures, are found in these images. Six of the NICMOS fields are described here, in comparison with the WFPC2 images of the same fields. Knots 1-3 of Walborn & Blades (early O stars embedded in dense nebular knots) are all found to be compact multiple systems. Knot 1 is shown to reside at the top of a massive dust pillar oriented directly toward R136, whose summit has just been removed, exposing the newborn stellar system. Knots 1 and 3 are also near the brightest IR sources in the region, while parsec-scale jet structures are discovered in association with Knots 2 and 3. The Knot 2 structures consist of detached, nonstellar IR sources aligned on either side of the stellar system, which are interpreted as impact points of a highly collimated, possibly rotating bipolar jet on the surrounding dark clouds; the H_2O maser found by Whiteoak et al. is also in this field. These outflows from young massive stars in 30 Dor are the first extragalactic examples of the phenomenon. In the field of the pillars south of R136, recently discussed in comparison with the M16 pillars by Scowen et al., a new luminous stellar IR source has been discovered. These results establish the 30 Doradus Nebula as a prime region in which to investigate the formation and very early evolution of massive stars and multiple systems. The theme of triggered formation within the heads of extensive dust pillars oriented toward R136 is strong. In addition, these results provide further insights into the global structure and evolution of 30 Doradus, which are significant in view of its status as the best resolved extragalactic starburst. This paper is dedicated to W. W

  17. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  18. An IFU-view of Planetary Nebulae: Exploring NGC 6720 (Ring Nebula) with KCWI

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; Matuszewski, Matt; Hamden, Erika; Martin, Christopher; Neill, Don; Kyne, Gillian

    2018-01-01

    Studying the interaction between the ejected stellar material and interstellar clouds is important for understanding how stellar deaths influences the pollution of matter that will later form other stars. Planetary nebulae provide ideal laboratories to study such interactions. I will present on a case study of one close-by planetary nebula, the Ring Nebula (M 57, NGC 6720), to infer the abundances, temperatures, structures, and dynamics of important atomic and ionic species in two distinct regions of the nebula using a newly-commissioned integral field spectrograph (IFS) on Keck: the Keck Cosmic Web Imager (KCWI). The advantage of an IFS over traditional filter-imaging techniques is the ability to simultaneously observe the spectrum of any given pixel in the imaging area, which provides crucial information about the dynamics of the observed region. This technique is powerful for diffuse or extended astrophysical objects, and I will demonstrate the different imaging and spectral modes of KCWI used to observe the Ring Nebula.KCWI observations of the Ring Nebula focused mainly on the innermost region of the nebula, with a little coverage of the Inner Ring. We also observed the length of the Ring in one set of observations, for which we will estimate the elemental abundances, temperatures, and dynamics of the region. KCWI observations also capture an inner arc and blob that have distinctly difference characteristics than the Ring itself and may be a direct observation of either the planetary nebula ramming into an interstellar cloud projected onto the sightline or a dense interstellar cloud being illuminated by the stellar continuum from the hot central white dwarf.

  19. Forming Planets in the Hostile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are

  20. Spectral Identification of New Galactic cLBV and WR Stars

    NASA Astrophysics Data System (ADS)

    Stringfellow, G. S.; Gvaramadze, V. V.; Beletsky, Y.; Kniazev, A. Y.

    2012-12-01

    We have undertaken a near-IR spectral survey of stars associated with compact nebulae recently revealed by the Spitzer and WISE imaging surveys. These circumstellar nebulae, produced by massive evolved stars, display a variety of symmetries and shapes and are often only evident at mid-IR wavelengths. Stars associated with ˜50 of these nebulae have been observed. We also obtained recent spectra of previously confirmed (known) luminous blue variables (LBVs) and candidate LBVs (cLBVs). The spectral similarity of the stars observed when compared directly to known LBVs and Wolf-Rayet (WR) stars indicate many are newly identified cLBVs, with a few being newly discovered WR stars, mostly of WN8-9h spectral type. These results suggest that a large population of previously unidentified cLBVs and related transitional stars reside in the Galaxy and confirm that circumstellar nebulae are inherent to most (c)LBVs.

  1. Kinematics of the Huyghenian region of the Orion Nebula.

    NASA Technical Reports Server (NTRS)

    Fischel, D.; Feibelman, W. A.

    1973-01-01

    Palomar data published by Wilson et al. (1959) on Orion Nebula wavelength 3726 and 5007 forbidden OII and OIII emission lines have been used to construct a presented pair of contour maps of isovelocities in intervals of 2.5 km/sec. The space motions of theta-1 and theta-2 Ori stars and nebula measurements are discussed.

  2. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  3. Planets, Planetary Nebulae, and Intermediate Luminosity Optical Transients (ILOTs)

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2018-05-01

    I review some aspects related to the influence of planets on the evolution of stars before and beyond the main sequence. Some processes include the tidal destruction of a planet on to a very young main sequence star, on to a low mass main sequence star, and on to a brown dwarf. This process releases gravitational energy that might be observed as a faint intermediate luminosity optical transient (ILOT) event. I then summarize the view that some elliptical planetary nebulae are shaped by planets. When the planet interacts with a low mass upper asymptotic giant branch (AGB) star it both enhances the mass loss rate and shapes the wind to form an elliptical planetary nebula, mainly by spinning up the envelope and by exciting waves in the envelope. If no interaction with a companion, stellar or sub-stellar, takes place beyond the main sequence, the star is termed a Jsolated star, and its mass loss rates on the giant branches are likely to be much lower than what is traditionally assumed.

  4. Nature versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Herter, T. L.; Morris, M. R.; Adams, J. D.

    2014-04-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical "twins" that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s-1) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ~ 35 Å) having a total dust mass of 0.03 M ⊙, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 105 L ⊙. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ⊙. The total IR luminosity of the G0.120-0.048 nebula is ~105 L ⊙. From

  5. The effects of mass and metallicity upon planetary nebula formation

    NASA Astrophysics Data System (ADS)

    Papp, K. A.; Purton, C. R.; Kwok, S.

    1983-05-01

    A parameterized function is constructed which describes the possible dependence of planetary nebula formation upon metal abundance and stellar mass. Data on galaxies in the Local Group compared with predictions made from the parameterized function indicate that heavy element abundance is the principal agent influencing the formation of planetary nebulae; stars which are rich in heavy elements are the progenitors of planetary nebulae. This analysis, when compared with the observations, argues for a modest degree of pre-enrichment in a few of the sample galaxies. The heavy element dependence of planetary nebula formation also accounts for the deficit of planetary nebulae in the nuclei of NGC 221 and NGC 224, and in the bulge of our Galaxy.

  6. Near-Infrared Polarimetry of the Eagle Nebula (M 16)

    NASA Astrophysics Data System (ADS)

    Sugitani, Koji; Watanabe, Makoto; Tamura, Motohide; Kandori, Ryo; Hough, James H.; Nishiyama, Shogo; Nakajima, Yasushi; Kusakabe, Nobuhiko; Hashimoto, Jun; Nagayama, Takahiro; Nagashima, Chie; Kato, Daisuke; Fukuda, Naoya

    2007-06-01

    We carried out deep and wide (˜ 8 × 8) JHKs imaging polarimetry in the southern region of the Eagle Nebula (M 16). The polarization intensity map reveals that two YSOs with near-IR reflection nebulae are located at the tips of two famous molecular pillars (Pillars 1 and 2) facing toward the exciting stars of M 16. The centrosymmetric polarization pattern are consistent with those around Class I objects having circumstellar envelopes, confirming that star formation is now taking place at the two tips of the pillars under the influence of UV radiation from the exciting stars. Polarization measurements of point sources show that magnetic fields are aligned along some of the pillars, but in a direction that is quite different to the global structure in M 16.

  7. High-Speed Bullet Ejections during the AGB to Planetary Nebula Transition: A Study of the Carbon Star V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2017-08-01

    The carbon star V Hya is experiencing heavy mass loss as it undergoes the transition from an AGB star to a planetary nebula (PN). This is possibly the earliest object known in this brief phase, which is so short that few nearby stars are likely to be caught in the act. Molecular observations reveal that a bipolar nebula has been established even at this early stage. Using STIS, we obtained high spatial-resolution long-slit optical spectra of V Hya spanning 3 epochs spaced apart by a year during each of two periods (2002-2004, 2011-2013). These data reveal high-velocity emission in [SII] lines from compact blobs located both on- and off-source, with the ejection axis executing a flip-flop, both in, and perpendicular to, the sky-plane. We have proposed a detailed model in which V Hya ejects high-speed (200-250 km/s) bullets once every 8.5 yr associated with periastron passage of a binary companion in an eccentric orbit with an 8.5 yr period. We suggest that the jet driver is an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing. Our model predicts the locations of previously ejected bullets in V Hya and future epochs at which new bullets will emerge. We now propose new STIS observations of these remarkable bullet ejections over two new epochs well separated from previous ones, to robustly test our model. The proposed observations will provide us with an unprecedented opportunity to look on as V Hya's circumstellar envelope is sculpted by these bullets. Our study will help solve the long-standing puzzle of how the spherical mass-loss envelopes of AGB stars evolve into bipolar and multipolar PNe.

  8. Masses of the Planetary Nebula Central Stars in the Galactic Globular Cluster System from HST Imaging and Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacoby, George H.; Marco, Orsola De; Davies, James

    The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less

  9. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  10. Hubble Sees an Aging Star Wave Goodbye

    NASA Image and Video Library

    2017-12-08

    This planetary nebula is called PK 329-02.2 and is located in the constellation of Norma in the southern sky. It is also sometimes referred to as Menzel 2, or Mz 2, named after the astronomer Donald Menzel who discovered the nebula in 1922. When stars that are around the mass of the sun reach their final stages of life, they shed their outer layers into space, which appear as glowing clouds of gas called planetary nebulae. The ejection of mass in stellar burnout is irregular and not symmetrical, so that planetary nebulae can have very complex shapes. In the case of Menzel 2 the nebula forms a winding blue cloud that perfectly aligns with two stars at its center. In 1999 astronomers discovered that the star at the upper right is in fact the central star of the nebula, and the star to the lower left is probably a true physical companion of the central star. For tens of thousands of years the stellar core will be cocooned in spectacular clouds of gas and then, over a period of a few thousand years, the gas will fade away into the depths of the universe. The curving structure of Menzel 2 resembles a last goodbye before the star reaches its final stage of retirement as a white dwarf. Image credit: ESA/Hubble & NASA, Acknowledgement: Serge Meunier NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. North America Nebula in Different Lights

    NASA Image and Video Library

    2011-02-10

    This view of the North America nebula combines both visible and infrared light observations, taken by the Digitized Sky Survey and NASA Spitzer Space Telescope. Clusters of young stars about one million years old can be found throughout the image.

  12. Planet engulfment and the planetary nebula morphology mystery

    NASA Astrophysics Data System (ADS)

    Boyle, Laura A.

    2018-04-01

    This thesis presents an investigation into the galactic population of planetary nebulae (PNe) whose progenitors have evolved through the engulfment of massive planets during the asymptotic giant branch (AGB) phase of their evolution. The objective of this research was to investigate the hypothesis that planet engulfment can aid in explaining the observed non-spherical planetary nebula (PN) population, as a complementary shaping mechanism to the binary hypothesis. This was performed by the design and development of a new research tool, simsplash (SIMulationS for the PLAnet Shaping Hypothesis), which was developed for the specific purpose of conducting, for the first time, a population synthesis of planet engulfment in planetary nebula progenitors. The first step in this investigation involved modelling the tidal evolution of planets orbiting PN progenitor stars to determine the importance of the adopted initial conditions and input physics in the stellar models and their effects on the orbital evolution of star-planet systems. The next step was to determine the probabilities of stars having and engulfing massive planets as a function of stellar mass and metallicity. This was achieved by combining the tidal evolution treatment with both the known exoplanet populations, as well as theoretical planet populations, and the occurrence rates of massive planets. Finally, taking into consideration the results from the analyses described above, a PN population synthesis was performed using the star formation history and metallicity evolution of the galaxy as well as varying forms of the initial mass function and planetary nebula formation constraints. The population of visible PNe in the present-day galaxy was calculated to consist of a total of 16,500±2,200 PNe, of which 240±20 PNe (≃ 1.5%) have evolved from the engulfment of a massive planet on the AGB and 3,300±200 PNe are the result of binary interactions (≃ 20%), translating to an expected non-spherical population

  13. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, R. M.; Herter, T. L.; Adams, J. D.

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, nomore » detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G0

  14. The Binary Central Star of the Planetary Nebula A35

    NASA Astrophysics Data System (ADS)

    Herald, J. E.; Bianchi, L.

    2002-11-01

    Using new Far Ultraviolet Spectroscopic Explorer (FUSE) observations in conjunction with Space Telescope Imaging Spectrograph (STIS) and International Ultraviolet Explorer archive data, we have modeled both components of the binary central star of the planetary nebula A35. The white dwarf (the ionizing star) was modeled using the non-LTE, plane-parallel code TLUSTY. We find its parameters to be Teff=80+/-3 kK, logg=7.70+0.13-0.18 cm s-2, and [He/H]=-4+/-1 and C, N, O, Si, and Fe to be underabundant by 2 orders of magnitude with respect to their solar values. This confirms its classification as a DAO white dwarf, and using the Hipparcos distance D=163 pc, we derive a radius of RWD~=1.65×10-2 Rsolar and a mass of M~=0.5 Msolar. The modeling of the far-ultraviolet spectra also constrains the extinction value; EB-V=0.04+/-0.01. Furthermore, the FUSE and STIS data allow us to measure the molecular hydrogen (H2) and neutral hydrogen (H I) column densities along the sight line, the majority of which we believe is associated with the circumstellar material. The FUSE spectrum is best fitted with a two-component model for H2, consisting of a cool component (T=200 K) with logN(H2,cool)=19.6+0.1-0.2 cm-2 and a hot component (T~=1250 K) with logN(H2,hot)=17.4+0.3-0.4 cm-2. The H I column density is logN(HI)=20.9+/-0.1 cm-2. Assuming a typical gas/dust ratio for the interstellar medium, our value of EB-V implies that logN(HI)=20.8 cm-2 of this is circumstellar. Our low extinction value and the measured column densities imply that there is essentially no dust in the nebula. Assuming that the neutral and molecular hydrogen is contained in a sphere of comparable dimensions to the ionized shell, we derive the combined mass of the circumstellar H I and H2 to be ~2.7 Msolar. Other geometries, such as a shell surrounding the ionized region, can be excluded. The mass of the ionized hydrogen is <~1% that of the neutral material. From comparison with evolutionary calculations, we

  15. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  16. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  17. Shielded cables with optimal braided shields

    NASA Astrophysics Data System (ADS)

    Homann, E.

    1991-01-01

    Extensive tests were done in order to determine what factors govern the design of braids with good shielding effectiveness. The results are purely empirical and relate to the geometrical relationships between the braid parameters. The influence of various parameters on the shape of the transfer impedance versus frequency curve were investigated step by step. It was found that the optical coverage had been overestimated in the past. Good shielding effectiveness results not from high optical coverage as such, but from the proper type of coverage, which is a function of the braid angle and the element width. These dependences were measured for the ordinary range of braid angles (20 to 40 degrees). They apply to all plaiting machines and all gages of braid wire. The design rules are largely the same for bright, tinned, silver-plated and even lacquered copper wires. A new type of braid, which has marked advantages over the conventional design, was proposed. With the 'mixed-element' technique, an optimal braid design can be specified on any plaiting machine, for any possible cable diameter, and for any desired angle. This is not possible for the conventional type of braid.

  18. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; hide

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  19. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  20. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  1. An investigation of the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Brooks, Kate J.

    2000-10-01

    It is well known that the radiation fields and stellar winds of massive stars can drastically affect the physical conditions, structure and chemistry of the giant molecular cloud (GMC) from which they formed. It is also thought that massive stars are at least partly responsible for triggering further star formation within a GMC. The details of this interaction, however, are not well understood and additional detailed study of massive star-forming regions is needed. This study has focused on a multi-wavelength investigation of the Carina Nebula. This is a spectacular massive star-forming region that contains two of the most massive star clusters in our galaxy, Trumpler 14 and Trumpler 16, and one of the most massive stars known -- η Car. The goal of this study has been to obtain information on the molecular gas, ionized gas and photodissociation regions (PDRs) from a collection of instruments which have the highest angular resolution and sensitivity available to date. The Mopra Telescope and the Swedish-ESO Submillimeter Telescope (SEST) were used to obtain a series of molecular line observations of the GMC between 150 and 230 GHz. Observations of H110α recombination-line emission at 4.874 GHz and the related continuum emission were obtained with the Australia Telescope Compact Array and used to study the ionized gas associated with the two HII regions, Car I and Car II. H2 1--0 S(1) (2.12 microns) and Brγ (2.16 microns) observations using the University of New South Wales Infrared Fabry-Perot (UNSWIRF) and 3.29 micron narrow-band observations obtained with the SPIREX/Abu thermal infrared camera were used to study the PDRs on the surface of molecular clumps in the Keyhole region, a dark optical feature in the vicinity of η Car. The results of these observations provide detailed information on the excitation conditions, kinematics and morphology of regions within the HII region/molecular cloud complex of the Carina Nebula. In addition, the results confirm that

  2. A Rapidly Moving Shell in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Walter, Donald K.; O'Dell, C. R.; Hu, Xihai; Dufour, Reginald J.

    1995-01-01

    A well-resolved elliptical shell in the inner Orion Nebula has been investigated by monochromatic imaging plus high- and low-resolution spectroscopy. We find that it is of low ionization and the two bright ends are moving at -39 and -49 km/s with respect to OMC-1. There is no central object, even in the infrared J bandpass although H2 emission indicates a possible association with the nearby very young pre-main-sequence star J&W 352, which is one of the youngest pre-main-sequence stars in the inner Orion Nebula. Many of the characteristics of this object (low ionization, blue shift) are like those of the Herbig-Haro objects, although the symmetric form would make it an unusual member of that class.

  3. A study of the neutral hydrogen in direction to the GUM nebula

    NASA Astrophysics Data System (ADS)

    Dubner, G.; Giacani, E.; Cappa de Nicolau, C.; Reynoso, E.

    1992-12-01

    This paper presents 44 gray-scale maps at constant velocity of the distribution of H I in the direction of the Gum nebula. It is shown that there is no H I shell with a size comparable to the 36 deg diameter optical nebulosities and that there is a thick H I shell, about 7 deg in radius, shifted from the center of the optical nebula by more than 10 deg. The observations are consistent with a model in which the Gum nebula is the remnant of a supernova explosion that occurred about 2.6 million yr ago. The presence of two new H I bubbles associated with SWR 12 and 14, plus a possible one around WR 13, are disclosed from analysis of the H I gas distribution around the four WR star located beyond the Gum nebula. These H I bubbles have characteristics similar to those previously observed. Three shell-like objects probably related to OB stars and H II regions are also described.

  4. The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability

    NASA Astrophysics Data System (ADS)

    Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.

    2015-07-01

    We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.

  5. Berry phase effect on Majorana braiding

    NASA Astrophysics Data System (ADS)

    He, Yingping; Wang, Baozong; Liu, Xiong-Jun

    Majorana zero modes are predicted to exhibit Non-Abelian braiding, which can be applied to fault-tolerant quantum computation. An essential signature of the non-Abelian braiding is that after a full braiding each of the two Majorana modes under braiding gets a minus sign, namely, a π Berry phase. In this work we find a novel effect in Majorana braiding that during the adiabatic transport a Majorana mode may or may not acquire a staggered minus sign under each step that the Majorana is transported, corresponding to two different types of parameter manipulation. This additional minus sign is shown to be a consequence of translational Berry phase effect, which can qualitatively affect the braiding of Majorana modes. Furthermore, we also study the effect of vortices on the Majorana braiding, with the similar additional Berry phase effect being obtained. Our work may provide new understanding of the non-Abelian statistics of Majorana modes and help improve the experiment setup for quantum computation. MOST, NSFC, Thousand-Young-Talent Program of China.

  6. Development of braided rope engine seals

    NASA Technical Reports Server (NTRS)

    Ko, Frank K.; Cai, Zhong; Mutharasan, Rajakkannu; Steinetz, Bruce M.

    1994-01-01

    In this study, after reviewing current seal design concepts, the potential of textile structures for seal design is examined from the material, structural, and fabrication points of view. Braided structures are identified as potential candidates for hypersonic seal structures because of their conformability and design flexibility. A large family of braided structures using 2-D and 3-D architecture can be designed using well established methods to produce a wide range of braiding yarn orientation for wear resistance as well as seal porosity control. As a first demonstration of the approach, 2-D braided fiberglass seals were fabricated according to a factorial design experiment by varying braiding angles, fractional longitudinal fibers, and preload pressure levels. Factorial diagrams and response surfaces were constructed to elucidate the inter-relationship of the braiding parameters as well as the effect of preload pressures on leakage resistance of the seal. It was found that seal resistance is a strong function of fractional longitudinal fiber content. As braiding angle increases, seal leakage resistance increases, especially at high preload pressures and in seals having high proportion of longitudinal fibers.

  7. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-03-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (106 less than or equal to Tau-bar less than or equal to 2 x 107 yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau0 were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau0. It is found that small masses MHe of He-shell material (10-4-10-7 solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau0 = 0.03 mbarn-1) which contaminated the cloud with a dilution factor of MHe/solar mass approximately 1.5 x 10-4. This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10-4 of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is also found that Fe-60 is produced in small but significant quantities

  8. Photometry and Classification of Stars around the Reflection Nebula NGC 7023 IN Cepheus. II. Interstellar Extinction and Cloud Distances

    NASA Astrophysics Data System (ADS)

    Zdanavičius, K.; Zdanavičius, J.; Straižys, V.; Maskoliūnas, M.

    Interstellar extinction is investigated in a 1.5 square degree area in the direction of the reflection nebula NGC 7023 at ℓ = 104.1\\degr, b = +14.2\\degr. The study is based on photometric classification and the determination of interstellar extinctions and distances of 480 stars down to V = 16.5 mag from photometry in the Vilnius seven-color system published in Paper I (2008). The investigated area is divided into five smaller subareas with slightly different dependence of the extinction on distance. The distribution of reddened stars is in accordance with the presence of two dust clouds at 282 pc and 715 pc, however in some directions the dust distribution can be continuous or more clouds can be present.

  9. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  10. Observatories Combine to Crack Open the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Astronomers have produced a highly detailed image of the Crab Nebula, by combining data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum, from radio waves seen by the Karl G. Jansky Very Large Array (VLA) to the powerful X-ray glow as seen by the orbiting Chandra X-ray Observatory. And, in between that range of wavelengths, the Hubble Space Telescope's crisp visible-light view, and the infrared perspective of the Spitzer Space Telescope. This video starts with a composite image of the Crab Nebula, a supernova remnant that was assembled by combining data from five telescopes spanning nearly the entire breadth of the electromagnetic spectrum: the Very Large Array, the Spitzer Space Telescope, the Hubble Space Telescope, the XMM-Newton Observatory, and the Chandra X-ray Observatory. The video dissolves to the red-colored radio-light view that shows how a neutron star’s fierce “wind” of charged particles from the central neutron star energized the nebula, causing it to emit the radio waves. The yellow-colored infrared image includes the glow of dust particles absorbing ultraviolet and visible light. The green-colored Hubble visible-light image offers a very sharp view of hot filamentary structures that permeate this nebula. The blue-colored ultraviolet image and the purple-colored X-ray image shows the effect of an energetic cloud of electrons driven by a rapidly rotating neutron star at the center of the nebula. Read more: go.nasa.gov/2r0s8VC Credits: NASA, ESA, J. DePasquale (STScI)

  11. A Photometrically and Morphologically Variable Infrared Nebula IN L483

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-03-01

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H2 knots are found nearly twice as far to the east of the source as to its west, and that H2 emission extends farther east of the source than the previously known CO outflow.

  12. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  13. The Colorful Demise of a Sun-like Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image, taken by NASA's Hubble Space Telescope, shows the colorful 'last hurrah' of a star like our Sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our Sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years.

    Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers named them planetary nebulae because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of nearly 400,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bow tie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis.

    The image was taken Feb. 6, 2007 with Hubble's Wide Field Planetary Camera 2. The colors correspond to material expelled by the star. Blue corresponds to helium; blue-green to oxygen; and red to nitrogen and hydrogen.

  14. On the Stellar Population and Star-Forming History of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.

    1997-05-01

    We report on the first phase of a study of the stellar population comprising the Orion Nebula Cluster (ONC). Approximately 50% of the ~ 3500 stars identified to date within ~ 2.5 pc of the namesake Trapezium stars are optically visible, and in this paper we focus on that sample with I < 17.5 mag. The large number and number density (npeak > 10(4) pc(-3) ) of stars, the wide range in stellar mass ( ~ 0.1-50 M_⊙), and the extreme youth (< 1-2 Myr) of the stellar population, make the ONC the best site for investigating: 1) the detailed shape of a truly ``initial'' mass spectrum; 2) the apparent age spread in a region thought to have undergone triggered star formation; 3) the time sequence of star formation as a function of stellar mass; and 4) trends of all of the above with cluster radius. Nearly 60% of the ~ 1600 optical stars have sufficient data (spectroscopy and photometry) for placement on a theoretical HR diagram; this subsample is unbiased with respect to apparent brightness or cluster radius, complete down to ~ 1 M_⊙, and representative of the total optical sample below ~ 1 M_⊙ for the age and extinction ranges characteristic of the cluster. Comparison of the derived HR diagram with traditional pre-main sequence evolutionary calculations shows a trend of increasing stellar age with increasing stellar mass. To avoid the implication of earlier characteristic formation times for higher-mass stars than for lower-mass stars, refinement of early evolutionary theory in a manner similar to the birthline hypothesis of Palla & Stahler (1993), is required. Subject to uncertainties in the tracks and isochrones, we can still investigate stellar mass and age distributions in the ONC. We find the ONC as a whole to be characterized by a mass spectrum which is not grossly inconsistent with ``standard'' stellar mass spectra. In particular, although there are structural differences between the detailed ONC mass spectrum and various models constructed from solar

  15. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  16. Photometry and imaging of the peculiar planetary nebula IRAS 21282 + 5050

    NASA Technical Reports Server (NTRS)

    Kwok, Sun; Hrivnak, Bruce J.; Langill, Philip P.

    1993-01-01

    We report visible, near-infrared, and mid-infrared photometry of the IRAS planetary nebula 21282+ 5050. Narrow-band photometry at 10 microns confirms the presence of the 11.3-micron PAH feature. IRAS 21282+5050 belongs to a small group of planetary nebulae with WC11 nuclei and PAH emission. The spectral energy distribution shows that majority of the flux is emitted in the infrared, and the object has one of the highest infrared excesses among all planetary nebulae. Optical imaging (after subtraction of the central star) reveals a nebula of size of about 7 x 5 arcsec which is elongated along the N-S direction.

  17. Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.

  18. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA DETAILS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are two views of a highly active region of star birth located northeast of the central cluster, R136, in 30 Doradus. The orientation and scale are identical for both views. The top panel is a composite of images in two colors taken with the Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The bottom panel is a composite of pictures taken through three infrared filters with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). In both cases the colors of the displays were chosen to correlate with the nebula's and stars' true colors. Seven very young objects are identified with numbered arrows in the infrared image. Number 1 is a newborn, compact cluster dominated by a triple system of 'hefty' stars. It has formed within the head of a massive dust pillar pointing toward R136. The energetic outflows from R136 have shaped the pillar and triggered the collapse of clouds within its summit to form the new stars. The radiation and outflows from these new stars have in turn blown off the top of the pillar, so they can be seen in the visible-light as well as the infrared image. Numbers 2 and 3 also pinpoint newborn stars or stellar systems inside an adjacent, bright-rimmed pillar, likewise oriented toward R136. These objects are still immersed within their natal dust and can be seen only as very faint, red points in the visible-light image. They are, however, among the brightest objects in the infrared image, since dust does not block infrared light as much as visible light. Thus, numbers 2 and 3 and number 1 correspond respectively to two successive stages in the birth of massive stars. Number 4 is a very red star that has just formed within one of several very compact dust clouds nearby. Number 5 is another very young triple-star system with a surrounding cluster of fainter stars. They also can be seen in the visible-light picture. Most remarkable are the glowing patches numbered 6 and 7, which astronomers

  19. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical

  20. On the nature of the symbiotic star BF Cygni

    NASA Technical Reports Server (NTRS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S. J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star.

  1. Hubble's View of a Dying Star

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A recent image of a dying star containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. The image of protoplanetary nebula IRAS22036+5306 (in the Infrared Astronomical Satellite Point Source Catalog) was taken on Dec. 15, 2001, by the Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, onboard NASA's Hubble Space Telescope. It is one of the best images yet to capture a fleeting period at the end of a Sun-like star's life, called the protoplanetary nebula phase.

    This phase, which looks like a beautiful cloud of glowing gas lit up by ultraviolet light from the star's core, results when a star evolves into a bloated red giant and sheds its outer layers. 'Protoplanetary nebulas are rare objects with short lifetimes,' said JPL astrophysicist Dr. Raghvendra Sahai. 'It has generally been very difficult to obtain images of such objects in which their structure can be resolved in detail.'

    This image is particularly important because it contains a series of what Sahai and his colleagues call 'knotty jets,' blob-like objects emerging along roughly straight lines from the center of the cigar-shaped, bipolar nebula (See insets). There are various theories about what may produce such jets, though it is hard to prove their existence due to their short-lived, episodic nature. Detailed multi-wavelength studies of these nebulas with NASA's Great Observatories are being carried out to understand the nature and origin of these enigmatic jets, and how they may be sculpting shrouds of dying stars into exotic shapes. The Hubble Space Telescope is one of NASA's Great Observatories.

  2. Hubble Captures Spectacular "Landscape" in the Carina Nebula

    NASA Image and Video Library

    2017-12-08

    NASA image release April 22, 2010 NASA's Hubble Space Telescope captured this billowing cloud of cold interstellar gas and dust rising from a tempestuous stellar nursery located in the Carina Nebula, 7,500 light-years away in the southern constellation Carina. This pillar of dust and gas serves as an incubator for new stars and is teeming with new star-forming activity. Hot, young stars erode and sculpt the clouds into this fantasy landscape by sending out thick stellar winds and scorching ultraviolet radiation. The low-density regions of the nebula are shredded while the denser parts resist erosion and remain as thick pillars. In the dark, cold interiors of these columns new stars continue to form. In the process of star formation, a disk around the proto-star slowly accretes onto the star's surface. Part of the material is ejected along jets perpendicular to the accretion disk. The jets have speeds of several hundreds of miles per second. As these jets plow into the surround nebula, they create small, glowing patches of nebulosity, called Herbig-Haro (HH) objects. Long streamers of gas can be seen shooting in opposite directions off the pedestal on the upper right-hand side of the image. Another pair of jets is visible in a peak near the top-center of the image. These jets (known as HH 901 and HH 902, respectively) are common signatures of the births of new stars. This image celebrates the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. Hubble's Wide Field Camera 3 observed the pillar on Feb. 1-2, 2010. The colors in this composite image correspond to the glow of oxygen (blue), hydrogen and nitrogen (green), and sulfur (red). Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization

  3. Braiding errors in interacting Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Sekania, Michael; Plugge, Stephan; Greiter, Martin; Thomale, Ronny; Schmitteckert, Peter

    2017-09-01

    Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding. Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or worse, depending on the sign and magnitude of the coupling.

  4. The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)

    NASA Astrophysics Data System (ADS)

    Sana, H.; Gosset, E.; Evans, C. J.

    2009-12-01

    Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.

  5. Braiding light quanta

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.

  6. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate

  7. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or = 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modelling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molecular clouds in the interstellar medium. The collapse to a star and disk occurs rapidly on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronologically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differentiated meteorites (eucrites and angrites) - appear to have experience potentially dateable nebular events. In both case, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We

  8. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  9. Chandra X-Ray Observatory Image of Crab Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  10. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  11. On the Origin and Evolution of Wolf-Rayet Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    DePew, K. D.

    2011-03-01

    The origin of hydrogen-deficiency in the central stars of planetary nebulae (CSPNe) is currently a topic of heated debate. This class of objects is comprised of Wolf-Rayet ([WR]) stars, weak emission-line stars (WELS), and PG 1159 stars, each differentiated by a set of unique spectral characteristics. For some time, there have been questions surrounding the evolutionary status of these rare stars: what environmental conditions, such as chemical abundances, are necessary for their emergence, whether any of them represent different stages of development in the same class of stars, and what the characteristics of their progenitors may be. However, such investigations have been hampered by a lack of a sufficient number of these stars and their various sub-classes until recently. This thesis presents the significant discovery of 22 new [WR] stars and 10 new WELS, many uncovered specifically during this thesis in the course of the MASH survey and through serendipitous fibre placement during follow-up of MASH objects. All examples have been carefully classified as accurately as possible using the best current available data though for many this remains a preliminary assignment pending deeper spectra. This work expands the known sample of H-deficient stars by 30%, allowing a more detailed study of their properties than previously possible and moving us closer to a more complete census of local H-deficient CSPNe. In the course of our classifications, Abell 48 was found to be a particularly interesting object. Further analysis of nebular chemical abundances, modeled temperature, and ionization state as indicated by the chemical species present suggests that the CSPN of Abell 48 is very similar to the CSPN of PB 8, which has recently been re-designated as the founding member of a new and rare [WN/WC] class (Todt et al. 2010). Its similarity to and differences with other oxygen-rich [WO] and carbon-rich [WC] stars as well as previously identified [WN] stars are examined. All

  12. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  13. A Spectroscopic and Photometric Study of the Planetary Nebulae Kn 61 and Pa 5

    NASA Astrophysics Data System (ADS)

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G.

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s-1 and the shell is currently not expanding isotropically. We derived a kinematic age of ~1.6 × 104 yr for an assumed distance of 4 kpc. A photometric period of ~5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s-1. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  14. A new look inside planetary nebula LoTr 5: a long-period binary with hints of a possible third component

    NASA Astrophysics Data System (ADS)

    Aller, A.; Lillo-Box, J.; Vučković, M.; Van Winckel, H.; Jones, D.; Montesinos, B.; Zorotovic, M.; Miranda, L. F.

    2018-05-01

    LoTr 5 is a planetary nebula with an unusual long-period binary central star. As far as we know, the pair consists of a rapidly rotating G-type star and a hot star, which is responsible for the ionization of the nebula. The rotation period of the G-type star is 5.95 d and the orbital period of the binary is now known to be ˜2700 d, one of the longest in central star of planetary nebulae. The spectrum of the G central star shows a complex H α double-peaked profile which varies with very short time-scales, also reported in other central stars of planetary nebulae and whose origin is still unknown. We present new radial velocity observations of the central star which allow us to confirm the orbital period for the long-period binary and discuss the possibility of a third component in the system at ˜129 d to the G star. This is complemented with the analysis of archival light curves from Super Wide Angle Search for Planets, All Sky Automated Survey, and Optical Monitoring Camera. From the spectral fitting of the G-type star, we obtain an effective temperature of Teff = 5410 ± 250 K and surface gravity of log g = 2.7 ± 0.5, consistent with both giant and subgiant stars. We also present a detailed analysis of the H α double-peaked profile and conclude that it does not present correlation with the rotation period and that the presence of an accretion disc via Roche lobe overflow is unlikely.

  15. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  16. The near-infrared continuum emission of visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1984-01-01

    In the past, reflection nebulae have provided an astrophysical laboratory well suited for the study of the reflection properties of interstellar dust grains at visual and ultraviolet wavelengths. The present investigation is concerned with observations which were begun with the objective to extend to near-infrared wavelengths the study of grains in reflection. Observations of three classical visual reflection nebulae were conducted in the wavelength range from 1.25 to 2.2 microns, taking into account NGC 7023, 2023, and 2068. All three nebulae were found to have similar near-infrared colors, despite widely different colors of their illuminating stars. The brightness level shown by two of the nebulae at 2.2 microns was too high to be easily accounted for on the basis of reflected light. Attention is given to a wide variety of possible emission mechanisms.

  17. Molecular and Dusty Layers of Asymptotic Giant Branch Stars Studied with the VLT Interferometer

    DTIC Science & Technology

    2011-09-01

    the evolution of low to intermediate mass stars towards planetary nebulae . It is also one of the most important sources of chemical enrichment of...planetary nebula (PN) phases, and is thus the most important driver for the further stellar evolution (e.g., Habing & Olofsson, 2003). Mass loss from AGB...branch (AGB) stars is the most important driver for the evolution of low to intermediate mass stars towards planetary nebulae . It is also one of the

  18. Episodic Mass Loss from the Hydrogen-deficient Central Star of the Planetary Nebula Longmore 4

    NASA Astrophysics Data System (ADS)

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ~5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found. Based on observations with the 1.5 m telescope operated by the SMARTS Consortium at Cerro Tololo Interamerican Observatory.

  19. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    2000-01-01

    A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.

  20. Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Gull, T.; Davidson, K.; Petre, R.; Hillier, D. J.; Smith, N.; Damineli, A.; Morse, J. A.; Walborn, N. R.

    2004-01-01

    We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.

  1. Molecular studies of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Zhang, Yong

    2017-10-01

    Circumstellar envelopes (CEs) around evolved stars are an active site for the production of molecules. After evolving through the Asymptotic Giant Branch (AGB), proto-planetary nebula (PPN), to planetary nebula (PN) phases, CEs ultimately merge with the interstellar medium (ISM). The study of molecules in PNe, therefore, is essential to understanding the transition from stellar to interstellar materials. So far, over 20 molecular species have been discovered in PNe. The molecular composition of PNe is rather different from those of AGB and PPNe, suggesting that the molecules synthesized in PN progenitors have been heavily processed by strong ultraviolet radiation from the central star. Intriguingly, fullerenes and complex organic compounds having aromatic and aliphatic structures can be rapidly formed and largely survive during the PPN/PN evolution. The similar molecular compositions in PNe and diffuse clouds as well as the detection of C60 + in the ISM reinforce the view that the mass-loss from PNe can significantly enrich the ISM with molecular species, some of which may be responsible for the diffuse interstellar bands. In this contribution, I briefly summarize some recent observations of molecules in PNe, with emphasis on their implications on circumstellar chemistry.

  2. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  3. SALT HRS discovery of a long-period double-degenerate binary in the planetary nebula NGC 1360

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Manick, R.; Mikołajewska, J.; Iłkiewicz, K.; Kamath, D.; Van Winckel, H.

    2018-01-01

    Whether planetary nebulae (PNe) are predominantly the product of binary stellar evolution as some population synthesis models (PSM) suggest remains an open question. Around 50 short-period binary central stars (P ∼ 1 d) are known, but with only four with measured orbital periods over 10 d, our knowledge is severely incomplete. Here we report on the first discovery from a systematic Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS) survey for long-period binary central stars. We find a 142 d orbital period from radial velocities of the central star of NGC 1360, HIP 16566. NGC 1360 appears to be the product of common-envelope (CE) evolution, with nebula features similar to post-CE PNe, albeit with an orbital period considerably longer than expected to be typical of post-CE PSM. The most striking feature is a newly identified ring of candidate low-ionization structures. Previous spatiokinematic modelling of the nebula gives a nebula inclination of 30° ± 10°, and assuming the binary nucleus is coplanar with the nebula, multiwavelength observations best fit a more massive, evolved white dwarf (WD) companion. A WD companion in a 142 d orbit is not the focus of many PSM, making NGC 1360 a valuable system with which to improve future PSM work. HIP 16566 is amongst many central stars in which large radial velocity variability was found by low-resolution surveys. The discovery of its binary nature may indicate long-period binaries may be more common than PSM models predict.

  4. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. Themore » [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.« less

  5. Spatially resolved spectroscopy of WR ring nebulae. I - NGC 2359 and RCW 78

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Vilchez, J. M.; Manchado, A.; Edmunds, M. G.

    1990-01-01

    We report detailed spatially resolved spectroscopy of the WR nebulae NGC 2359 and RCW 78 surrounding the WN 5 HD 56925 and WN 8 HD 117688 stars. The aim of this work has been to study possible abundance inhomogeneities and the ionization structure of the nebulae, as well as to derive reliable values for the degree of self-enrichment. In NGC 2359 the derived ratio O2+/O+ shows localized variations resulting from the compression of the gas in the filaments with respect to the shell gas. Effective temperatures for the central stars of both nebulae have been estimated on the basis of the ionization structure; the values found appear appropriate for their spectral types. Abundances of O/H, NIH, Ne/H, and He/H have been determined in twelve different positions in NGC 2359, covering its different morphological zones. No significant differences in the N/H and O/H abundances across the nebula have been found, although He/H shows marginal evidence for localized enhancements. In the case of RCW 78 the derived value of O/H is roughly solar, but He/H and NIH may be slightly overabundant. The results suggest that the amount of chemical self-enrichment of these WR nebulae is, at most, small.

  6. Discovery of a Circumstellar Disk in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  7. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  8. Braided reinforced composite rods for the internal reinforcement of concrete

    NASA Astrophysics Data System (ADS)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  9. Accounting for planet-shaped planetary nebulae

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-01-01

    By following the evolution of several observed exoplanetary systems, we show that by lowering the mass-loss rate of single solar-like stars during their two giant branches, these stars will swallow their planets at the tip of their asymptotic giant branch (AGB) phase. This will most likely lead the stars to form elliptical planetary nebulae (PNe). Under the traditional mass-loss rate these stars will hardly form observable PNe. Stars with a lower mass-loss rate as we propose, about 15 per cent of the traditional mass-loss rate of single stars, leave the AGB with much higher luminosities than what traditional evolution produces. Hence, the assumed lower mass-loss rate might also account for the presence of bright PNe in old stellar populations. We present the evolution of four exoplanetary systems that represent stellar masses in the range of 0.9-1.3 M⊙. The justification for this low mass-loss rate is our assumption that the stellar samples that were used to derive the traditional average single-star mass-loss rate were contaminated by stars that suffer binary interaction.

  10. A CATALOG OF NEW SPECTROSCOPICALLY CONFIRMED MASSIVE OB STARS IN CARINA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Michael J.; Hanes, Richard J.; McSwain, M. Virginia

    2016-12-01

    The Carina star-forming region is one of the largest in the Galaxy, and its massive star population is still being unveiled. The large number of stars combined with high, and highly variable, interstellar extinction makes it inherently difficult to find OB stars in this type of young region. We present the results of a spectroscopic campaign to study the massive star population of the Carina Nebula, with the primary goal to confirm or reject previously identified Carina OB star candidates. A total of 141 known O- and B-type stars and 94 candidates were observed, of which 73 candidates had highmore » enough signal-to-noise ratio to classify. We find 23 new OB stars within the Carina Nebula, a 32% confirmation rate. One of the new OB stars has blended spectra and is suspected to be a double-lined spectroscopic binary (SB2). We also reclassify the spectral types of the known OB stars and discover nine new SB2s among this population. Finally, we discuss the spatial distribution of these new OB stars relative to known structures in the Carina Nebula.« less

  11. Carbon Chemistry in Planetary Nebulae: Observations of the CCH Radical

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah Rose; Ziurys, Lucy

    2015-08-01

    The presence of infrared (IR) emission features observed in interstellar environments is consistent with models that suggest they are produced by complex organic species containing both aliphatic and aromatic components (Kwok & Zhang 2011). These IR signals change drastically over the course of the AGB, proto-planetary, and planetary nebulae phases, and this dramatic variation is yet to be understood. The radical CCH is a potential tracer of carbon chemistry and its evolution in dying stars. CCH is very common in carbon-rich circumstellar envelopes of AGB stars, and is present in the proto-planetary nebulae. It has also been observed at one position in the very young planetary nebula, NGC 7027 (Hasegawa & Kwok 2001), as well as at one position in the Helix Nebula (Tenenbaum et al. 2009) - a dense clump east of the central white dwarf. In order to further probe the chemistry of carbon, we have initiated a search for CCH in eight PNe previously detected in HCN and HCO+ from a survey conducted by Schmidt and Ziurys, using the telescopes of the Arizona Radio Observatory (ARO). Observations of the N=1→0 transition of CCH at 87 GHz have been conducted using the new ARO 12-m ALMA prototype antenna, while measurements of the N=3→2 transition at 262 GHz are being made with the ARO Sub-Millimeter Telescope (SMT). We also have extended our study in the Helix Nebula. Thus far, CCH has been detected at 8 new positions across the Helix Nebula, and appears to be widespread in this source. The radical has also been identified in K4-47, M3-28, K3-17, and K3-58. These sources represent a range of nebular ages. Additional observations are currently being conducted for CCH in other PNe, as well as abundance analyses. These results will be presented.

  12. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

    NASA Astrophysics Data System (ADS)

    Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun

    2018-06-01

    A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

  13. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Mitchell A.; Asgari-Targhi, Mahboubeh, E-mail: m.berger@exeter.ac.u, E-mail: m.asgari@ucl.ac.u

    2009-11-01

    The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simplemore » models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.« less

  14. Spatially extended K Iλ7699 emission in the nebula of VY CMa: kinematics and geometry

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2004-04-01

    Long-slit echelle spectra reveal bright extended emission from the K Iλ7699 resonance line in the reflection nebula surrounding the extreme red supergiant VY Canis Majoris. The central star has long been known for its unusually bright K I emission lines, but this is the first report of intrinsic emission from K I in the nebula. The extended emission is not just a reflected spectrum of the star, but is due to resonant scattering by K atoms in the outer nebula itself, and is therefore a valuable probe of the kinematics and geometry of the circumstellar environment of VY CMa. Dramatic velocity structure is seen in the long-slit spectra, and most lines of sight through the nebula intersect multiple distinct velocity components. A faint `halo' at large distances from the star does appear to show a reflected spectrum, however, and suggests a systemic velocity of +40 km s-1 with respect to the Sun. The most striking feature is blueshifted emission from the filled interior of a large shell seen in images; the kinematic structure is reminiscent of a Hubble flow, and provides strong evidence for asymmetric and episodic mass loss due to localized eruptions on the stellar surface.

  15. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  16. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  17. Near-infrared morphology of protoplanetary nebulae - The icy dust torus of Minkowski's Footprint (M1-92)

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Hodapp, K.-W.

    1989-01-01

    High-resolution near-infrared images and ice-band spectra of the protoplanetary nebula M1-92 (Minkowski's Footprint) are presented. The direct images of the object display a typical bipolar morphology with the star located in the center of the nebula illuminating two lobes. The overall dimensions are the same in the J, H, and K infrared bands, and they are similar to those in the optical range. The near-infrared color images clearly reveal a dust torus around the central star. The orientation of the object in the plane of the sky allows the simultaneous view of the illuminating star, the nebular lobes, and the dust torus in a highly favorable perspective, only rarely found in other bipolar nebulae. The ice-band spectra make it possible to locate the H2O-ice grains within the dust torus; in addition, the narrow ice feature indicates that the ices are primarily pure crystalline water.

  18. Disk Evaporation in Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Young stars produce sufficient ultraviolet photon luminosity and mechanical luminosity in their winds to significantly affect the structure and evolution of the accretion disks surrounding them. The Lyman continuum photons create a nearly static, ionized, isothermal 10(exp 4) K atmosphere forms above the neutral disk at small distances from the star. Further out, they create a photoevaporative flow which relatively rapidly destroys the disk. The resulting slow (10-50 km/s) ionized outflow, which persists for approx. greater than 10(exp 5) years for disk masses M(sub d) approx. 0.3M(sub *), may explain the observational characteristics of many ultracompact HII regions. We compare model results to the observed radio free-free spectra and luminosities of ultracompact HII regions and to the interesting source MWC349, which is observed to produce hydrogen masers. We apply the results to Ae and Be stars in order to determine the lifetimes of disks around such stars. We also apply the results to the early solar nebula to explain the the dispersal of the solar nebula and the differences in hydrogen content in the giant planets. Finally, we model the small bright objects ("proplyds") observed in the Orion Nebula as disks around young, low mass stars which are externally illuminated by the UV photons from the nearby massive star Theta(sup 1) C.

  19. Slingshot mechanism for clusters: Gas density regulates star density in the Orion Nebula Cluster (M42)

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.

    2018-02-01

    We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central ∼0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, protocluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile ρstars(r) = 5755 M⊙ pc- 3 (1 + (r/a)2)- 5/2, where a = 0.36 pc. The gas density follows a cylindrical power law ρgas(R) = 25.9 M⊙ pc- 3 (R/pc)- 1.775. The stellar density profile dominates over the gas density profile inside r ∼ 1 pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at r ∼ a. This fact alone demonstrates that the protocluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar protocluster core is dynamically young, with an age of ∼2-3 Myr, a 1D velocity dispersion of σobs = 2.6 km s-1, and a crossing time of ∼0.55 Myr. This time-scale is almost identical to the gas filament oscillation time-scale estimated recently by Stutz & Gould. This provides strong evidence that the protocluster structure is regulated by the gas filament. The protocluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales ≳ a. The analysis presented here leads to a new suggestion that clusters form by an analogue of the 'slingshot mechanism' previously proposed for stars.

  20. Physics of the primitive solar nebula and of giant gaseous protoplanets

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1978-01-01

    It has been proposed that the supernova responsible for injecting Al-26 into the early solar system was in fact responsible for triggering the collapse of an interstellar cloud in order to produce a system of stars, one of which would be the solar system. Details concerning the mechanism involved in such a process are discussed. Attention is given to the evolution of the primitive solar nebula, the instabilities in the primitive solar nebula, and the giant gaseous protoplanets. The principal conclusion to be drawn from the material presented is that the primitive solar nebula was a rather chaotic place, highly turbulent, with the multiple formation of giant gaseous protoplanets.

  1. The spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.; Parker, Robert A. R.; Henize, Karl G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought.

  2. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Cheng, Kwang-Ping; Feibelman, Walter A.; Bruhweiler, Frederick C.

    1991-01-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from the IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE.

  3. Ultraviolet Fe VII absorption and Fe II emission lines of central stars of planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Kwang-Ping; Feibelman, W.A.; Bruhweiler, F.C.

    1991-08-01

    The SWP camera of the IUE satellite was used in the high-dispersion mode to search for Fe VII absorption and Fe II high-excitation emission lines in five additional very hot central stars of planetary nebulae. Some of the Fe VII lines were detected at 1208, 1239, and 1332 A in all the objects of this program, LT 5, NGC 6058, NGC 7094, A43, and Lo 1 (= K1-26), as well as some of the Fe II emission lines at A 1360, 1776, 1869, 1881, 1884, and 1975 A. Two additional objects, NGC 2867 and He 2-131, were obtained from themore » IUE archive and were evaluated. The present study probably exhausts the list of candidates that are sufficiently bright and hot to be reached with the high-dispersion mode of the IUE. 17 refs.« less

  4. Enterprising Nebulae

    NASA Image and Video Library

    2016-09-08

    Just in time for the 50th anniversary of the TV series "Star Trek," which first aired September 8th,1966, this infrared image from NASA's Spitzer Space Telescope may remind fans of the historic show. Just as one might see the shapes of animals or other objects in clouds -- a phenomenon called pareidolia -- iconic starships from the series may seem to emerge in these nebulae./ With a little scrutiny (see Figure 1), you may see hints of the saucer and hull of the original USS Enterprise, captained by James T. Kirk, as if it were emerging from a dark nebula. To the left, its "Next Generation" successor, Jean-Luc Picard's Enterprise-D, flies off in the opposite direction. Astronomically speaking, the region pictured here falls within the disk of our Milky Way galaxy, and displays two regions of star formation that are hidden behind a haze of dust when viewed in visible light. Spitzer's ability to peer deeper into dust clouds has revealed a myriad of stellar birthplaces like these, which are officially known only by their catalog numbers, IRAS 19340+2016 and IRAS19343+2026. Trekkies, however, may prefer using the more familiar designations NCC-1701 and NCC-1701-D. This image was assembled using data from Spitzer's biggest surveys of the Milky Way, called GLIMPSE and MIPSGAL. Light with a wavelength of 3.5 microns is shown in blue, 8.0 microns is green, and 24 microns in red. The green colors highlight organic molecules in the dust clouds, illuminated by starlight. Red colors are related to thermal radiation emitted from the very hottest areas of dust. http://photojournal.jpl.nasa.gov/catalog/PIA20917

  5. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  6. Revising Star and Planet Formation Timescales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-07-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: 2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); 6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  7. Irradiated interfaces in the Ara OB1, Carina, Eagle Nebula, and Cyg OB2 massive star formation regions

    DOE PAGES

    Hartigan, P.; Palmer, J.; Cleeves, L. I.

    2012-09-05

    Regions of massive star formation offer some of the best and most easily-observed examples of radiation hydrodynamics. Boundaries where fully-ionized H II regions transition to neutral/molecular photodissociation regions (PDRs) are of particular interest because marked temperature and density contrasts across the boundaries lead to evaporative flows and fluid dynamical instabilities that can evolve into spectacular pillar-like structures. Furthermore, when detached from their parent clouds, pillars become ionized globules that often harbor one or more young stars. H2 molecules at the interface between a PDR and an H II region absorb ultraviolet light from massive stars, and the resulting fluoresced infraredmore » emission lines are an ideal way to trace this boundary independent of obscuring dust. This paper presents H2 images of four regions of massive star formation that illustrate different types of PDR boundaries. The Ara OB1 star formation region contains a striking long wall that has several wavy structures which are present in H2, but the emission is not particularly bright because the ambient UV fluxes are relatively low. In contrast, the Carina star formation region shows strong H2 fluorescence both along curved walls and at the edges of spectacular pillars that in some cases have become detached from their parent clouds. The less-spectacular but more well-known Eagle Nebula has two regions that have strong fluorescence in addition to its pillars. And while somewhat older than the other regions, Cyg OB2 has the highest number of massive stars of the regions surveyed and contains many isolated, fluoresced globules that have head–tail morphologies which point towards the sources of ionizing radiation. Our images provide a collection of potential astrophysical analogs that may relate to ablated interfaces observed in laser experiments of radiation hydrodynamics.« less

  8. Anyonic braiding in optical lattices

    PubMed Central

    Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.

    2007-01-01

    Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038

  9. HUBBLE PROBES THE COMPLEX HISTORY OF A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The dynamical effects of two stars orbiting one another most easily explains the intricate structures, which are much more complicated than features seen in most planetary nebulae. (The two stars are too close together to be individually resolved by Hubble, and instead, appear as a single point of light at the center of the nebula.) According to this model, a fast 'stellar wind' of gas blown off the central star created the elongated shell of dense, glowing gas. This structure is embedded inside two larger lobes of gas blown off the star at an earlier phase. These lobes are 'pinched' by a ring of denser gas, presumably ejected along the orbital plane of the binary companion. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. The image was taken with the Wide Field Planetary Camera-2 on September 18, 1994. NGC 6543 is 3,000 light-years away in the

  10. New Evidence for the Dynamical Decay of a Multiple System in the Orion Kleinmann–Low Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhman, K. L.; Robberto, M.; Gabellini, M. Giulia Ubeira

    We have measured astrometry for members of the Orion Nebula Cluster with images obtained in 2015 with the Wide Field Camera 3 on board the Hubble Space Telescope . By comparing those data to previous measurements with the Near-Infrared Camera and Multi-Object Spectrometer on Hubble in 1998, we have discovered that a star in the Kleinmann–Low Nebula, source x from Lonsdale et al., is moving with an unusually high proper motion of 29 mas yr{sup −1}, which corresponds to 55 km s{sup −1} at the distance of Orion. Previous radio observations have found that three other stars in the Kleinmann–Lowmore » Nebula (the Becklin–Neugebauer object and sources I and n) have high proper motions (5–14 mas yr{sup −1}) and were near a single location ∼540 years ago, and thus may have been members of a multiple system that dynamically decayed. The proper motion of source x is consistent with ejection from that same location 540 years ago, which provides strong evidence that the dynamical decay did occur and that the runaway star BN originated in the Kleinmann–Low Nebula rather than the nearby Trapezium cluster. However, our constraint on the motion of source n is significantly smaller than the most recent radio measurement, which indicates that it did not participate in the event that ejected the other three stars.« less

  11. New Evidence for the Dynamical Decay of a Multiple System in the Orion Kleinmann-Low Nebula

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Robberto, M.; Tan, J. C.; Andersen, M.; Giulia Ubeira Gabellini, M.; Manara, C. F.; Platais, I.; Ubeda, L.

    2017-03-01

    We have measured astrometry for members of the Orion Nebula Cluster with images obtained in 2015 with the Wide Field Camera 3 on board the Hubble Space Telescope. By comparing those data to previous measurements with the Near-Infrared Camera and Multi-Object Spectrometer on Hubble in 1998, we have discovered that a star in the Kleinmann-Low Nebula, source x from Lonsdale et al., is moving with an unusually high proper motion of 29 mas yr-1, which corresponds to 55 km s-1 at the distance of Orion. Previous radio observations have found that three other stars in the Kleinmann-Low Nebula (the Becklin-Neugebauer object and sources I and n) have high proper motions (5-14 mas yr-1) and were near a single location ˜540 years ago, and thus may have been members of a multiple system that dynamically decayed. The proper motion of source x is consistent with ejection from that same location 540 years ago, which provides strong evidence that the dynamical decay did occur and that the runaway star BN originated in the Kleinmann-Low Nebula rather than the nearby Trapezium cluster. However, our constraint on the motion of source n is significantly smaller than the most recent radio measurement, which indicates that it did not participate in the event that ejected the other three stars. Based on observations made with the NASA/ESA Hubble Space Telescope and the NASA Infrared Telescope Facility.

  12. Finite-time braiding exponents

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  13. Finite-time braiding exponents.

    PubMed

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  14. WISE Catches a Runaway Star in Flames

    NASA Image and Video Library

    2010-11-24

    NASA Wide-field Infrared Survey captured this view of a runaway star racing away from its original home. Surrounded by a glowing cloud of gas and dust, the star AE Aurigae appears on fire. Appropriately, the cloud is called the Flaming Star nebula.

  15. Spectral Analysis of PG 1034+001, the Exciting Star of Hewett 1

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Mahsereci, M.; Ringat, E.; Rauch, T.; Werner, K.

    2011-01-01

    PG 1034+001 is an extremely hot, helium-rich DO-type star that excites the planetary nebula Hewett 1 and large parts of the surrounding interstellar medium. We present preliminary results of an ongoing spectral analysis by means of non-LTE model atmospheres that consider most elements from hydrogen to nickel. This analysis is based on high-resolution ultraviolet (FUSE, IUE) and optical (VLT/UVES, KECK) data. The results are compared with those of PG 1034+001's spectroscopic twin, the DO star PG 0038+ 199. Keywords. stars: abundances, stars: AGB and post-AGB, stars: atmospheres, stars: evolution, stars: individual (PG 1034+001, PG 0038+ 199), planetary nebulae: individual (Hewett 1)

  16. Ring Nebulae: Tracers of the CNO Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mesa-Delgado, A.; Esteban, C.; García-Rojas, J.

    Preliminary results are presented from spectroscopic data in the optical range of the Galactic ring nebulae NGC 6888, G2:4+1:4, RCW 58 and Sh2-308. Deep observations with long exposure times were carried out at the 6.5m Clay Telescope and at the 10.4m Gran Telescopio Canarias. In NGC 6888, recombination lines of C ii, O ii and N ii are detected with signal-to-noise ratios higher than 8. The chemical content of NGC 6888 is discussed within the chemical enrichment predicted by evolution models of massive stars. For all nebulae, a forthcoming work will content in-depth details about observations, analysis and final results (Esteban et al. 2015, in prep.).

  17. Material and Mechanical Characterizations for Braided Composite Pressure Vessels

    DTIC Science & Technology

    1990-05-01

    Effects on Mechanical Properties......... 16 2.3 Predictions of Hygrothermal Behavior of Braided Composites ....23 2.4 Summary... Behavior of Braided Composites 0 Predictions of the mechanical response of braided composites have not enjoyed the same plethora of attention given to...specific data for braided composite hygrothermomechanical behavior , broad conclusions developed from other studies may provide some insightful information

  18. Observable Signatures of Energy Release in Braided Coronal Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontin, D. I.; Janvier, M.; Tiwari, S. K.

    We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to themore » observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.« less

  19. CO-SPATIAL LONG-SLIT UV/OPTICAL SPECTRA OF TEN GALACTIC PLANETARY NEBULAE WITH HST/STIS. II. NEBULAR MODELS, CENTRAL STAR PROPERTIES, AND He+CNO SYNTHESIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, R. B. C.; Miller, T. R.; Balick, B.

    The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well withmore » the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.« less

  20. Central Stars of Planetary Nebulae in the LMC

    NASA Technical Reports Server (NTRS)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 2's program B001 we studied Central Stars of Planetary Nebulae (CSPN) in the Large Magellanic Could. All FUSE observations have been successfully completed and have been reduced, analyzed and published. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.2.2). The flux of these LMC post-AGB objects is at the threshold of FUSE's sensitivity, and thus special care in the background subtraction was needed during the reduction. Because of their faintness, the targets required many orbit-long exposures, each of which typically had low (target) count-rates. Each calibrated extracted sequence was checked for unacceptable count-rate variations (a sign of detector drift), misplaced extraction windows, and other anomalies. All the good calibrated exposures were combined using FUSE pipeline routines. The default FUSE pipeline attempts to model the background measured off-target and subtracts it from the target spectrum. We found that, for these faint objects, the background appeared to be over-estimated by this method, particularly at shorter wavelengths (i.e., < 1000 A). We therefore tried two other reductions. In the first method, subtraction of the measured background is turned off and and the background is taken to be the model scattered-light scaled by the exposure time. In the second one, the first few steps of the pipeline were run on the individual exposures (correcting for effects unique to each exposure such as Doppler shift, grating motions, etc). Then the photon lists from the individual exposures were combined, and the remaining steps of the pipeline run on the combined file. Thus, more total counts for both the target and background allowed for a better extraction.

  1. NASA SOFIA Captures Images of the Planetary Nebula M2-9

    NASA Image and Video Library

    2012-03-29

    Researchers using NASA Stratospheric Observatory for Infrared Astronomy SOFIA have captured infrared images of the last exhalations of a dying sun-like star. This image is of the planetary Nebula M2-9.

  2. Hubble Discovery of Runaway Star Yields Clues to Breakup of Multiple-Star System

    NASA Image and Video Library

    2017-12-08

    NASA's Hubble Space Telescope has helped astronomers find the final piece of a celestial puzzle by nabbing a third runaway star. As British royal families fought the War of the Roses in the 1400s for control of England's throne, a grouping of stars was waging its own contentious skirmish — a star war far away in the Orion Nebula. The stars were battling each other in a gravitational tussle, which ended with the system breaking apart and at least three stars being ejected in different directions. The speedy, wayward stars went unnoticed for hundreds of years until, over the past few decades, two of them were spotted in infrared and radio observations, which could penetrate the thick dust in the Orion Nebula. Read more: go.nasa.gov/2ni3EZX NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Nucleosynthesis Predictions for Intermediate-Mass Asymptotic Giant Branch Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Karakas, Amanda I.; van Raai, Mark A.; Lugaro, Maria; Sterling, N. C.; Dinerstein, Harriet L.

    2009-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of ~3-8 M sun. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a 13C pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] lsim0.6, consistent with Galactic Type I PNe where the observed enhancements are typically lsim0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the gsim0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M gsim 5 M sun) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 M sun), if these stars are to evolve into Type I PNe. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  4. Hierarchies of Models: Toward Understanding Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2003-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  5. Hierarchies of Models: Toward Understanding Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  6. A narrowband imaging survey of symbiotic stars

    NASA Astrophysics Data System (ADS)

    Corradi, Romano L. M.; Brandi, Estela; Ferrer, Osvaldo E.; Schwarz, Hugo E.

    1999-03-01

    Narrowband images of 51 symbiotic stars were obtained at the ESO and ORM observatories to search for resolved optical nebulae. Ionized nebulae much larger than previously known are found around CH Cyg, HM Sge and V1016 Cyg, and they will be discussed in detail in forthcoming papers. A nebula with a deconvolved size between 0\\farcs9 and 1\\farcs5 is found around the symbiotic Mira H 1-36. The radio sources located few arcminutes aside of R Aqr (Hollis et al. 1987), which were suggested to be the remnant of a prehistoric eruption of the system, are found to be background galaxies. We also present a bibliographical compilation, updated to October 1998, of all the extended nebulae around symbiotic stars detected at optical and radio wavelengths, as well as a list of optical non-detections. The statistics of occurrence of these large ionized nebulae among symbiotic stars is discussed. Extended ionized nebulae appear to be a common component of the D-type symbiotics, and we infer that they are formed by the Mira wind and/or high velocity winds ejected by the hot component during outbursts. On the contrary, very few nebulae are detected around the systems containing normal red giants. Table 5 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html. Based on observations obtained at the 3.5m~NTT and 1.5m~DAN telescopes of the European Southern Observatory, and at the 2.6m~NOT telescope operated on the island of La Palma by NOTSA, in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofisica de Canarias.

  7. The "Water-Fountain Nebula" IRAS 16342-3814: Hubble Space Telescope/Very Large Array Study of a Bipolar Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Sahal, Raghvendra; teLintelHekkert, Peter; Morris, Mark; Zijlstra, Albert; Likkel, Lauren

    1999-01-01

    We present Hubble Space Telescope (HST) Wide-Field Planetary Camera 2 images and VLA OH maser emission-line maps of the cold infrared object IRAS 16342-3814, believed to be a protoplanetary nebula. The HST images show an asymmetrical bipolar nebula, with the lobes separated by a dark equatorial waist. The two bright lobes and the dark waist are simply interpreted as bubble-like reflection nebulae illuminated by starlight escaping through polar holes in a dense, flattened, optically thick cocoon of dust, which completely obscures the central star. A faint halo can be seen surrounding each of the lobes. The bubbles are likely to have been created by a fast outflow (evidenced by H2O emission) plowing into a surrounding dense, more slowly expanding, circumstellar envelope of the progenitor asymptotic giant-branch (AGB) star (evidenced by the halo). The IRAS fluxes indicate a circumstellar mass of about 0.7 solar mass (D/2 kpc) and an AGB mass-loss rate of about 10(exp -4) solar mass/yr (V(sub exp)/15 km/s)(D/2 kpc)(sup 2) (assuming a gas-to-dust ratio of 200). OH features with the largest redshifted and blueshifted velocities are concentrated around the bright eastern and western polar lobes, respectively, whereas intermediate-velocity features generally occur at low latitudes, in the dark waist region. We critically examine evidence for the post-AGB classification of IRAS 16342-3814.

  8. Close-up of M27, the Dumbbell Nebula

    NASA Image and Video Library

    2003-02-11

    An aging star last hurrah creates a flurry of glowing knots of gas that appear to be streaking through space. This closeup image of the Dumbbell Nebula was taken by the JPL-built and designed WFC3 camera, onboard NASA's Hubble Space Telescope. http://photojournal.jpl.nasa.gov/catalog/PIA04249

  9. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on

  10. A New Radio Spectral Line Survey of Planetary Nebulae: Exploring Radiatively Driven Heating and Chemistry of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Bublitz, Jesse

    Planetary nebulae contain shells of cold gas and dust whose heating and chemistry is likely driven by UV and X-ray emission from their central stars and from wind-collision-generated shocks. We present the results of a survey of molecular line emissions in the 88 - 235 GHz range from nine nearby (<1.5 kpc) planetary nebulae using the 30 m telescope at the Institut de Radioastronomie Millimetrique. Rotational transitions of nine molecules, including the well-studied CO isotopologues and chemically important trace species, were observed and the results compared with and augmented by previous studies of molecular gas in PNe. Lines of the molecules HCO+, HNC, HCN, and CN, which were detected in most objects, represent new detections for five planetary nebulae in our study. Flux ratios were analyzed to identify correlations between the central star and/or nebular ultraviolet/X-ray luminosities and the molecular chemistries of the nebulae. Analysis reveals the apparent dependence of the HNC/HCN line ratio on PN central star UV luminosity. There exists no such clear correlation between PN X-rays and various diagnostics of PN molecular chemistry. The correlation between HNC/HCN ratio and central star UV luminosity hints at the potential of molecular emission line studies of PNe for improving our understanding of the role that high-energy radiation plays in the heating and chemistry of photodissociation regions.

  11. Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery.

    PubMed

    Elsayed, Yahya; Lekakou, Constantina; Ranzani, Tommaso; Cianchetti, Matteo; Morino, Mario; Arezzo, Alberto; Menciassi, Arianna; Geng, Tao; Saaj, Chakravarthini M

    2015-01-01

    This paper investigates different types of crimped, braided sleeve used for a soft arm for robotic abdominal surgery, with the sleeve required to contain balloon expansion in the pneumatically actuating arm while it follows the required bending, elongation and diameter reduction of the arm. Three types of crimped, braided sleeves from PET (BraidPET) or nylon (BraidGreyNylon and BraidNylon, with different monofilament diameters) were fabricated and tested including geometrical and microstructural characterisation of the crimp and braid, mechanical tests and medical scratching tests for organ damage of domestic pigs. BraidPET caused some organ damage, sliding under normal force of 2-5 N; this was attributed to the high roughness of the braid pattern, the higher friction coefficient of polyethylene terephthalate (PET) compared to nylon, and the high frequency of the crimp peaks for this sleeve. No organ damage was observed for the BraidNylon, attributed to both the lower roughness of the braid pattern and the low friction coefficient of nylon. BraidNylon also required the lowest tensile force during its elongation to similar maximum strain as that of BraidPET, translating to low power requirements. BraidNylon is recommended for the crimped sleeve of the arm designed for robotic abdominal surgery.

  12. Hot Gas in the Wolf-Rayet Nebula NGC 3199

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Marston, A. P.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.

    2017-09-01

    The Wolf-Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (I) regions close to the optical arc present nitrogen-rich gas enhanced by the stellar wind from WR 18 and (II) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 106 K and n e = 0.3 cm-3 with an X-ray luminosity in the 0.3-3.0 keV energy range of L X = 2.6 × 1034 erg s-1. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.

  13. Hubble View of a Dying Star

    NASA Image and Video Library

    2003-05-21

    This image of a dying star, protoplanetary nebula IRAS22036+5306, containing strange, complex structures may help explain the death throes of stars and defy our current understanding of physics. Taken by NASA Wide Field and Planetary Camera 2.

  14. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  15. Medium-resolution échelle spectroscopy of the Red Square Nebula, MWC 922

    NASA Astrophysics Data System (ADS)

    Wehres, N.; Ochsendorf, B. B.; Tielens, A. G. G. M.; Cox, N. L. J.; Kaper, L.; Bally, J.; Snow, T. P.

    2017-05-01

    Context. Medium-resolution échelle spectra of the Red Square Nebula surrounding the star MWC 922 are presented. The spectra have been obtained in 2010 and 2012 using the X-shooter spectrograph mounted on the Very Large Telescope (VLT) in Paranal, Chile. The spectrum covers a wavelength range between 300 nm-2.5 μm and shows that the nebula is rich in emission lines. Aims: We aim to identify the emission lines and use them as a tool to determine the physical and chemical characteristics of the nebula. The emission lines are also used to put constraints on the structure of the nebula and on the nature of the central stars. Methods: We analyzed and identified emission lines that indicated that the Red Square Nebula consists of a low density bipolar outflow, eminent in the broad emission component seen in [Fe II], as well as in P Cygni line profiles indicative of fast outflowing material. The narrow component in the [Fe II] lines is most likely formed in the photosphere of a surrounding disk. Some of the emission lines show a pronounced double peaked profile, such as Ca II, indicating an accretion disk in Keplerian rotation around the central star. [O I] emission lines are formed in the neutral atomic zone separating the ionized disk photosphere from the molecular gas in the interior of the disk, which is prominent in molecular CO emission in the near-IR. [N II] and [S II] emission clearly originates in a low density but fairly hot (7 000-10 000 K) nebular environment. H I recombination lines trace the extended nebula as well as the photosphere of the disk. Results: These findings put constraints on the evolution of the central objects in MWC 922. The Red Square shows strong similarities to the Red Rectangle Nebula, both in morphology and in its mid-IR spectroscopic characteristics. As for the Red Rectangle, the observed morphology of the nebula reflects mass-loss in a binary system. Specifically, we attribute the biconical morphology and the associated rung

  16. Modelling jets, tori and flares in pulsar wind nebulae

    DOE PAGES

    Porth, Oliver; Buehler, Rolf; Olmi, Barbara; ...

    2017-03-22

    In this contribution we review the recent progress in the modelling of Pulsar Wind Nebulae (PWN). We start with a brief overview of the relevant physical processes in the magnetosphere, the wind-zone and the inflated nebula bubble. Radiative signatures and particle transport processes obtained from 3D simulations of PWN are discussed in the context of optical and X-ray observations. We then proceed to consider particle acceleration in PWN and elaborate on what can be learned about the particle acceleration from the dynamical structures called GwispsG observed in the Crab nebula. We also discuss recent observational and theoretical results of gamma-raymore » flares and the inner knot of the Crab nebula, which had been proposed as the emission site of the flares. Here, we extend the discussion to GeV flares from binary systems in which the pulsar wind interacts with the stellar wind from a companion star. The chapter concludes with a discussion of solved and unsolved problems posed by PWN.« less

  17. Analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.

  18. Socket stars: UBVRJIK radial profiles

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    1995-05-01

    Visual inspectin of stars embedded in H II nebulae has shown a significant fraction to be surrounded by nearly symmetric extended regions within which the nebular brightness is apparently significantly fainter than is typical for the surrounding area. These 'socket stars' might be caused by a bubble in the nebula blown out by a stellar wind or they might be caused by a circumstellar envelope of dust hiding the emission behind the star. As such, the sockets could be the first manifestation of a previously unknown component of pre-main-sequence stars. Unfortunately, no quantitative proof of the existence of sockets has been presented. To fill this need, I have imaged 10 socket stars and six background stars with CCD cameras and infrared array cameras. From these images, I have constructed radial plots which should reveal dips in brightness immediately outside the seeing disk. The radial plots do not show any evidence for the existence of sockets. A detailed examination of the photographs orginally used to identify the sockets show that the causes of these reports are (1) artifacts resulting from the photographic process of dodging and (2) random coincidence of stars with local minima in nebular brightness. Thus, I conclude that 'socket stars' do not exist.

  19. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    NASA Astrophysics Data System (ADS)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  20. Carbon stars with alpha-C:H emission

    NASA Technical Reports Server (NTRS)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  1. GIANT Hα NEBULA SURROUNDING THE STARBURST MERGER NGC 6240

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Michitoshi; Yagi, Masafumi; Komiyama, Yutaka

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hαmore » nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.« less

  2. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  3. Shuttle plate braiding machine

    NASA Technical Reports Server (NTRS)

    Huey, Jr., Cecil O. (Inventor)

    1994-01-01

    A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

  4. The Orion Nebula: The Jewel in the Sword

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Orion the Hunter is perhaps the best known constellation in the sky, well placed in the evening at this time of the year for observers in both the northern and southern hemispheres, and instantly recognisable. And for astronomers, Orion is surely one of the most important constellations, as it contains one of the nearest and most active stellar nurseries in the Milky Way, the galaxy in which we live. Here tens of thousands of new stars have formed within the past ten million years or so - a very short span of time in astronomical terms. For comparison: our own Sun is now 4,600 million years old and has not yet reached half-age. Reduced to a human time-scale, star formation in Orion would have been going on for just one month as compared to the Sun's 40 years. Just below Orion's belt, the hilt of his sword holds a great jewel in the sky, the beautiful Orion Nebula . Bright enough to be seen with the naked eye, a small telescope or even binoculars show the nebula to be a few tens of light-years' wide complex of gas and dust, illuminated by several massive and hot stars at its core, the famous Trapezium stars . However, the heart of this nebula also conceals a secret from the casual observer. There are in fact about one thousand very young stars about one million years old within the so-called Trapezium Cluster , crowded into a space less than the distance between the Sun and its nearest neighbour stars. The cluster is very hard to observe in visible light, but is clearly seen in the above spectacular image of this area ( ESO PR 03a/01 ), obtained in December 1999 by Mark McCaughrean (Astrophysical Institute Potsdam, Germany) and his collaborators [1] with the infrared multi-mode ISAAC instrument on the ESO Very Large Telescope (VLT) at Paranal (Chile). Many details are seen in the new ISAAC image ESO PR Photo 03b/01 ESO PR Photo 03b/01 [Preview - JPEG: 400 x 589 pix - 62k] [Normal - JPEG: 800 x 1178 pix - 648k] [Hires - JPEG: 1957 x 2881 pix - 2.7M] ESO PR Photo 03c

  5. STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an

  6. Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    McGuire, Ryan

    2009-01-01

    Light and Velocity Variability in Seven Bright Proto-Planetary Nebulae R.B. McGuire, C.M. Steele, B.J. Hrivnak, W. Lu, D. Bohlender, C.D. Scarfe We present new contemporaneous light and velocity observations of seven proto-planetary nebulae obtained over the past two years. Proto-planetary nebulae are objects evolving between the AGB and planetary nebula phases. In these seven objects, the central star is bright (V= 7-10), surrounded by a faint nebula. We knew from past monitoring that the light from each of these varied by a few tenths of a magnitude over intervals of 30-150 days and that the velocity varied by 10 km/s. These appear to be due to pulsation. With these new contemporaneous observations, we are able to measure the correlation between the brightness, color, and velocity, which will constrain the pulsation models. This is an ongoing project with the light monitoring being carried out with the Valparaiso University 0.4 m telescope and CCD camera and the radial velocity observations being carried out with the Dominion Astrophysical Observatory 1.8 m telescope and spectrograph. This research is partially supported by NSF grant 0407087 and the Indiana Space Grant Consortium.

  7. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Keene, J.; Phillips, T. G.; Huggins, P. J.; Wooten, H. A.; Masson, C.; Frerking, M. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells led to the detection, in the case of the "Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  8. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. Wemore » made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.« less

  9. Festive Nebulas Light Up Milky Way Galaxy Satellite

    NASA Image and Video Library

    2017-12-08

    NASA’s Hubble Space Telescope captured two festive-looking nebulas, situated so as to appear as one. They reside in the Small Magellanic Cloud, a dwarf galaxy that is a satellite of our Milky Way galaxy. Intense radiation from the brilliant central stars is heating hydrogen in each of the nebulas, causing them to glow red. The nebulas, together, are called NGC 248. They were discovered in 1834 by the astronomer Sir John Herschel. NGC 248 is about 60 light-years long and 20 light-years wide. It is among a number of glowing hydrogen nebulas in the dwarf satellite galaxy, which is located approximately 200,000 light-years away in the southern constellation Tucana. The image is part of a study called Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE). Astronomers are using Hubble to probe the Milky Way satellite to understand how dust is different in galaxies that have a far lower supply of heavy elements needed to create dust. The Small Magellanic Cloud has between a fifth and a tenth of the amount of heavy elements that the Milky Way does. Because it is so close, astronomers can study its dust in great detail, and learn about what dust was like earlier in the history of the universe. “It is important for understanding the history of our own galaxy, too,” explained the study’s principal investigator, Dr. Karin Sandstrom of the University of California, San Diego. Most of the star formation happened earlier in the universe, at a time where there was a much lower percentage of heavy elements than there is now. “Dust is a really critical part of how a galaxy works, how it forms stars,” said Sandstrom. Credit: NASA, ESA, STScI, K. Sandstrom (University of California, San Diego), and the SMIDGE team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments

  10. Photoionization modeling of Magellanic Cloud planetary nebulae. I

    NASA Technical Reports Server (NTRS)

    Dopita, M. A.; Meatheringham, S. J.

    1991-01-01

    The results of self-consistent photoionization modeling of 38 Magellanic Cloud PNe are presented and used to construct an H-R diagram for the central stars and to obtain both the nebular chemical abundances and the physical parameters of the nebulae. T(eff)s derived from nebular excitation analysis are in agreement with temperatures derived by the classical Zanstra method. There is a linear correlation between log T(eff) and the excitation class. The majority of the central stars in the sample with optically thick nebulae have masses between 0.55 and 0.7 solar mass and are observed during their hydrogen-burning excursion toward high temperatures. Optically thin objects are found scattered throughout the H-R diagram, but tend to have a somewhat smaller mean mass. Type I PN are found to have high core masses and to lie on the descending branch of the evolutionary tracks. The nebular mass of the optically thick objects is closely related to the nebular radius, and PN with nebular masses over one solar are observed.

  11. The surface brightness of reflection nebulae. Ph.D. Thesis, Dec. 1972

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    Hubble's equation relating the maximum apparent angular extent of a reflection nebula to the apparent magnitude of the illuminating star has been reconsidered under a set of less restrictive assumptions. A computational technique is developed which permits the use of fits to observed m, log a values to determine the albedo of the particles composing reflection nebulae, providing only that one assumes a particular phase function. Despite the fact that all orders of scattering, anisotropic phase functions, and illumination by the general stellar field are considered, the albedo which is determined for reflection nebulae by this method appears larger than that for interstellar particles in general. The possibility that the higher surface brightness might be due to a continuous fluorescence mechanism is considered both theoretically and observationally.

  12. First principles cable braid electromagnetic penetration model

    DOE PAGES

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; ...

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  13. Equilibrium theory for braided elastic filaments

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.

  14. Numerical investigations of the mechanical properties of braided vascular stents.

    PubMed

    Fu, Wenyu; Xia, Qixiao; Yan, Ruobing; Qiao, Aike

    2018-01-01

    Braided stents, such as Pipeline Embolization Device (PED; ev3 Neurovascular, Irvine, CA, USA), are commonly used to treat cerebral aneurysms. However, little information is available on the compression and bending characteristics of such stents. This paper investigates how geometrical parameters of braided stents influence their radial compression and bending characteristics. Six groups of braided stent models with different braiding angles, numbers of wires and wire diameters are constructed. Parametric analyses of these models are conducted using Abaqus/Explicit software. The numerical results of a finite element analysis are validated by comparison with data of theoretical analysis. The results show that the radial stiffness is not uniform along the longitudinal direction of the stent. When the braiding angle increases from 30° to 75°, the minimum radial deformation decreases from 0.85 mm to 0.0325 mm (at a pressure of 500 Pa, for 24 braided wires). When the wire diameter increases from 0.026 mm to 0.052 mm, the minimum radial deformation decreases from 0.65 mm to 0.055 mm (at a pressure of 500 Pa and a braiding angle of 60°, for 24 braided wires). Frictions don't affect stent diameter and its axial length when braided stent is crimping, but the friction must be considered when it is related to the radial pressure required for compression the braided stent. Compared with commonly used intracranial stents, a braided stent with geometrical parameters close to PED stent has a smaller radial stiffness but a considerably greater longitudinal flexibility. The results of this analysis of braided stents can help in the design and selection of flow diverter stents for clinical treatment of cerebral aneurysms.

  15. Active star formation in NGC 2264

    NASA Technical Reports Server (NTRS)

    Schwartz, P. R.; Thronson, H. A., Jr.; Odenwald, S. F.; Glaccum, W.; Loewenstein, R. F.; Wolf, G.

    1985-01-01

    The region of NGC 2264 near the cone nebula is the site of active star formation in a rotating ring seen nearly edge on as a two lobed source. Allen's infrared source (IRS 1) surrounds a B3V star still embedded in the southern lobe of the cloud. The northern lobe, IRS 2, also probably contains young stars.

  16. Propierties of dust in circumstellar gas around Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Jiménez-Hernández, P.; Arthur, S. J.; Toalá, J. A.

    2017-11-01

    Using archive photometric observations from Herschel (70μm, 100μm, 160μm and 250μm), Spitzer (24μm) and WISE (22μm and 12μm) we obtained infrared SED's of nebulae around the Wolf-Rayet stars WR 124, WR 16 and WR 7. We used the photoionization code Cloudy to construct models of the nebulae, taking into account the spectrum of the central star and varying the density and distance of the photoionized shell as well as the size distribution and chemical composition of the dust grains mixed with the gas, and we compared the resulting SEDs with the observations in order to study the properties of the dust in these objects. We discuss whether the dust properties depend on the spectral type of the central star and the age of the nebulae.

  17. Mechanical modeling of self-expandable stent fabricated using braiding technology.

    PubMed

    Kim, Ju Hyun; Kang, Tae Jin; Yu, Woong-Ryeol

    2008-11-14

    The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.

  18. Analysis, design, fabrication, and performance of three-dimensional braided composites

    NASA Astrophysics Data System (ADS)

    Kostar, Timothy D.

    1998-11-01

    Cartesian 3-D (track and column) braiding as a method of composite preforming has been investigated. A complete analysis of the process was conducted to understand the limitations and potentials of the process. Knowledge of the process was enhanced through development of a computer simulation, and it was discovered that individual control of each track and column and multiple-step braid cycles greatly increases possible braid architectures. Derived geometric constraints coupled with the fundamental principles of Cartesian braiding resulted in an algorithm to optimize preform geometry in relation to processing parameters. The design of complex and unusual 3-D braids was investigated in three parts: grouping of yarns to form hybrid composites via an iterative simulation; design of composite cross-sectional shape through implementation of the Universal Method; and a computer algorithm developed to determine the braid plan based on specified cross-sectional shape. Several 3-D braids, which are the result of variations or extensions to Cartesian braiding, are presented. An automated four-step braiding machine with axial yarn insertion has been constructed and used to fabricate two-step, double two-step, four-step, and four-step with axial and transverse yarn insertion braids. A working prototype of a multi-step braiding machine was used to fabricate four-step braids with surrogate material insertion, unique hybrid structures from multiple track and column displacement and multi-step cycles, and complex-shaped structures with constant or varying cross-sections. Braid materials include colored polyester yarn to study the yarn grouping phenomena, Kevlar, glass, and graphite for structural reinforcement, and polystyrene, silicone rubber, and fasteners for surrogate material insertion. A verification study for predicted yarn orientation and volume fraction was conducted, and a topological model of 3-D braids was developed. The solid model utilizes architectural parameters

  19. Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula

    NASA Astrophysics Data System (ADS)

    Gregorio-Hetem, Jane

    2015-08-01

    A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296

  20. Discovery of interstellar circular polarization in the direction of the Crab Nebula.

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Illing, R.; Angel, J. R. P.

    1972-01-01

    A search in many small regions of the Crab Nebula has resulted in the detection of a small component of circular polarization. The variation of the sign and magnitude with position in the Nebula indicates that the polarization is of interstellar origin. On the basis of the polarity, strength, and colour dependence, it is concluded that the composition of the aligned grains causing this polarization is dielectric. Metallic particles are clearly ruled out. Some stars have also been observed with negative results.

  1. Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang

    2018-04-01

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar

  2. SYNCHROTRON HEATING BY A FAST RADIO BURST IN A SELF-ABSORBED SYNCHROTRON NEBULA AND ITS OBSERVATIONAL SIGNATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuan-Pei; Dai, Zi-Gao; Zhang, Bing, E-mail: zhang@physics.unlv.edu

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In themore » meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would reveal an embedded FRB in a synchrotron nebula.« less

  3. Dying star creates sculpture of gas and dust

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Sculpture of gas and dust hi-res Size hi-res: 125 Kb Credits: ESA, NASA, HEIC and The Hubble Heritage Team (STScI/AURA) Dying star creates sculpture of gas and dust The so-called Cat's Eye Nebula, formally catalogued NGC 6543 and seen here in this detailed view from the NASA/ESA Hubble Space Telescope, is one of the most complex planetary nebulae ever seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers to form bright nebulae with amazing twisted shapes. Hubble first revealed NGC 6543's surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas in 1994. This new image, taken with Hubble's Advanced Camera for Surveys (ACS), reveals the full beauty of a bull's-eye pattern of eleven or more concentric rings, or shells, around the Cat’s Eye. Each ‘ring’ is actually the edge of a spherical bubble seen projected onto the sky - which is why it appears bright along its outer edge. High resolution version (JPG format) 125 Kb High resolution version (TIFF format) 2569 Kb Acknowledgment: R. Corradi (Isaac Newton Group of Telescopes, Spain) and Z. Tsvetanov (NASA). Sculpture of gas and dust hi-res Size hi-res: 287 Kb Credits: Nordic Optical Telescope and Romano Corradi (Isaac Newton Group of Telescopes, Spain) Dying star creates sculpture of gas and dust An enormous but extremely faint halo of gaseous material surrounds the Cat’s Eye Nebula and is over three light-years across. Some planetary nebulae been found to have halos like this one, likely formed of material ejected during earlier active episodes in the star's evolution - most likely some 50 000 to 90 000 years ago. This image was taken by Romano Corradi with the Nordic Optical Telescope on La Palma in the Canary Islands. The image is constructed from two narrow-band exposures showing oxygen atoms (1800 seconds, in blue) and nitrogen atoms (1800 seconds, in red). High resolution version (JPG

  4. Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Vílchez, J. M.; Pérez-Montero, E.; Candian, A.; Sánchez, S. F.; Martín-Gordón, D.; Riera, A.

    2013-06-01

    Aims: This work aims to disentangle the morphological, kinematic, and chemical components of the nebula M1-67 to shed light on its process of formation around the central Wolf-Rayet (WR) star WR124. Methods: We have carried out integral field spectroscopy observations over two regions of M1-67, covering most of the nebula in the optical range. Maps of electron density, line ratios, and radial velocity were created to perform a detailed analysis of the two-dimensional structure. We studied the physical and chemical properties by means of integrated spectra selected over the whole nebula. Photoionization models were performed to confirm the empirical chemical results theoretically. In addition, we obtained and analysed infrared spectroscopic data and the MIPS 24 μm image of M1-67 from Spitzer. Results: We find that the ionized gas of M1-67 is condensed in knots aligned in a preferred axis along the NE-SW direction, like a bipolar structure. Both electron density and radial velocity decrease in this direction when moving away from the central star. From the derived electron temperature, Te ~ 8200 K, we have estimated chemical abundances, obtaining that nitrogen appears strongly enriched and oxygen depleted. From the last two results, we infer that this bipolarity is the consequence of an ejection of an evolved stage of WR124 with material processed in the CNO cycle. Furthermore, we find two regions placed outside of the bipolar structure with different spectral and chemical properties. The infrared study has revealed that the bipolar axis is composed of ionized gas with a low ionization degree that is well mixed with warm dust and of a spherical bubble surrounding the ejection at 24 μm. Taking the evolution of a 60 M⊙ star and the temporal scale of the bipolar ejection into account, we propose that the observed gas was ejected during an eruption in the luminous blue variable stage. The star has entered the WR phase recently without apparent signs of interaction

  5. The Life Cycles of Stars: An Information & Activity Booklet Grades K-8, 1997-1998. Star-Child--A Learning Center for Young Astronomers.

    ERIC Educational Resources Information Center

    Truelove, Elizabeth; Dejoie, Joyce

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for kindergarten through grade 8 classrooms. Background information on massive stars and medium stars and activities with subjects such as star life, constellation shapes, nebula terminology, astronomical distances, and pulsars is included. The 12…

  6. Hot Gas in the Wolf–Rayet Nebula NGC 3199

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Chu, Y.-H.; Marston, A. P.

    The Wolf–Rayet (WR) nebula NGC 3199 has been suggested to be a bow shock around its central star, WR 18, which is presumably a runaway star, because optical images of the nebula show a dominating arc of emission southwest of the star. We present the XMM-Newton detection of extended X-ray emission from NGC 3199, unveiling the powerful effect of the fast wind from WR 18. The X-ray emission is brighter in the region southeast of the star and an analysis of the spectral properties of the X-ray emission reveals abundance variations: (i) regions close to the optical arc present nitrogen-richmore » gas enhanced by the stellar wind from WR 18 and (ii) gas at the eastern region exhibits abundances close to those reported for the nebular abundances derived from optical studies, which is a signature of an efficient mixing of the nebular material with the stellar wind. The dominant plasma temperature and electron density are estimated to be T ≈ 1.2 × 10{sup 6} K and n {sub e} = 0.3 cm{sup −3} with an X-ray luminosity in the 0.3–3.0 keV energy range of L {sub X} = 2.6 × 10{sup 34} erg s{sup −1}. Combined with information derived from Herschel and the recent Gaia first data release, we conclude that WR 18 is not a runaway star and that the formation, chemical variations, and the shape of NGC 3199 depend on the initial configuration of the interstellar medium.« less

  7. Hubble Sees a Dying Star's Final Moments

    NASA Image and Video Library

    2015-07-31

    A dying star’s final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star’s demise is still quite lengthy by our standards, lasting tens of thousands of years! The star’s agony has culminated in a wonderful planetary nebula known as NGC 6565, a cloud of gas that was ejected from the star after strong stellar winds pushed the star’s outer layers away into space. Once enough material was ejected, the star’s luminous core was exposed, enabling its ultraviolet radiation to excite the surrounding gas to varying degrees and causing it to radiate in an attractive array of colors. These same colors can be seen in the famous and impressive Ring Nebula (heic1310), a prominent example of a nebula like this one. Planetary nebulae are illuminated for around 10,000 years before the central star begins to cool and shrink to become a white dwarf. When this happens, the star’s light drastically diminishes and ceases to excite the surrounding gas, so the nebula fades from view. Credit: ESA/Hubble & NASA, Acknowledgement: Matej Novak NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Black Widow Nebula Hiding in the Dust

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap.

    When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

    In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble.

    The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).

  9. Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, H.-C.; Yu, W.-R.; Guo, Z.

    The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transversemore » axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.« less

  10. Hubble Sees a Star ‘Inflating’ a Giant Bubble

    NASA Image and Video Library

    2017-12-08

    For the 26th birthday of NASA’s Hubble Space Telescope, astronomers are highlighting a Hubble image of an enormous bubble being blown into space by a super-hot, massive star. The Hubble image of the Bubble Nebula, or NGC 7635, was chosen to mark the 26th anniversary of the launch of Hubble into Earth orbit by the STS-31 space shuttle crew on April 24, 1990 “As Hubble makes its 26th revolution around our home star, the sun, we celebrate the event with a spectacular image of a dynamic and exciting interaction of a young star with its environment. The view of the Bubble Nebula, crafted from WFC-3 images, reminds us that Hubble gives us a front row seat to the awe inspiring universe we live in,” said John Grunsfeld, Hubble astronaut and associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, in Washington, D.C. The Bubble Nebula is seven light-years across—about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri, and resides 7,100 light-years from Earth in the constellation Cassiopeia. The seething star forming this nebula is 45 times more massive than our sun. Gas on the star gets so hot that it escapes away into space as a “stellar wind” moving at over four million miles per hour. This outflow sweeps up the cold, interstellar gas in front of it, forming the outer edge of the bubble much like a snowplow piles up snow in front of it as it moves forward. As the surface of the bubble's shell expands outward, it slams into dense regions of cold gas on one side of the bubble. This asymmetry makes the star appear dramatically off-center from the bubble, with its location in the 10 o’clock position in the Hubble view. Dense pillars of cool hydrogen gas laced with dust appear at the upper left of the picture, and more “fingers” can be seen nearly face-on, behind the translucent bubble. The gases heated to varying temperatures emit different colors: oxygen is hot enough to emit blue

  11. Hubble sees the beautiful demises of dying star

    NASA Image and Video Library

    2017-12-08

    This image, taken by the NASA/ESA Hubble Space Telescope, shows the colorful "last hurrah" of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star's remaining core. Ultraviolet light from the dying star makes the material glow. The burned-out star, called a white dwarf, is the white dot in the center. Our sun will eventually burn out and shroud itself with stellar debris, but not for another 5 billion years. Our Milky Way Galaxy is littered with these stellar relics, called planetary nebulae. The objects have nothing to do with planets. Eighteenth- and nineteenth-century astronomers called them the name because through small telescopes they resembled the disks of the distant planets Uranus and Neptune. The planetary nebula in this image is called NGC 2440. The white dwarf at the center of NGC 2440 is one of the hottest known, with a surface temperature of more than 360,000 degrees Fahrenheit (200,000 degrees Celsius). The nebula's chaotic structure suggests that the star shed its mass episodically. During each outburst, the star expelled material in a different direction. This can be seen in the two bowtie-shaped lobes. The nebula also is rich in clouds of dust, some of which form long, dark streaks pointing away from the star. NGC 2440 lies about 4,000 light-years from Earth in the direction of the constellation Puppis. The material expelled by the star glows with different colors depending on its composition, its density and how close it is to the hot central star. Blue samples helium; blue-green oxygen, and red nitrogen and hydrogen. Credit: NASA, ESA, and K. Noll (STScI), Acknowledgment: The Hubble Heritage Team (STScI/AURA) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  12. The Elephant Trunk Nebula and the Trumpler 37 cluster: contribution of triggered star formation to the total population of an H II region

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric D.; Sicilia-Aguilar, Aurora; Broos, Patrick S.; Kuhn, Michael A.; Garmire, Gordon P.

    2012-11-01

    Rich young stellar clusters produce H ii regions whose expansion into the nearby molecular cloud is thought to trigger the formation of new stars. However, the importance of this mode of star formation is uncertain. This investigation seeks to quantify triggered star formation (TSF) in IC 1396A (aka the Elephant Trunk Nebula), a bright-rimmed cloud (BRC) on the periphery of the nearby giant H ii region IC 1396 produced by the Trumpler 37 cluster. X-ray selection of young stars from Chandra X-ray Observatory data is combined with existing optical and infrared surveys to give a more complete census of the TSF population. Over 250 young stars in and around IC 1396A are identified; this doubles the previously known population. A spatio-temporal gradient of stars from the IC 1396A cloud towards the primary ionizing star HD 206267 is found. We argue that the TSF mechanism in IC 1396A is a radiation-driven implosion process persisting over several million years. Analysis of the X-ray luminosity and initial mass functions indicates that >140 stars down to 0.1 M⊙ were formed by TSF. Considering other BRCs in the IC 1396 H ii region, we estimate the TSF contribution for the entire H ii region exceeds 14-25 per cent today, and may be higher over the lifetime of the H ii region. Such triggering on the periphery of H ii regions may be a significant mode of star formation in the Galaxy.

  13. ROTATING STARS AND THE FORMATION OF BIPOLAR PLANETARY NEBULAE. II. TIDAL SPIN-UP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Segura, G.; Villaver, E.; Manchado, A.

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M {sub ⊙} and 0.8 M {sub ⊙} and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobemore » overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (∼3.5 and ∼2 km s{sup −1}, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ∼0.03 km s{sup −1}. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ∼6 and ∼4 km s{sup −1}, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.« less

  14. NASA's Hubble Captures the Beating Heart of the Crab Nebula

    NASA Image and Video Library

    2017-12-08

    Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields. The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating. The NASA Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core. The neutron star is a showcase for extreme physical processes and unimaginable cosmic violence. Bright wisps are moving outward from the neutron star at half the speed of light to form an expanding ring. It is thought that these wisps originate from a shock wave that turns the high-speed wind from the neutron star into extremely energetic particles. When this "heartbeat" radiation signature was first discovered in 1968, astronomers realized they had discovered a new type of astronomical object. Now astronomers know it's the archetype of a class of supernova remnants called pulsars - or rapidly spinning neutron stars. These interstellar "lighthouse beacons" are invaluable for doing observational experiments on a variety of astronomical phenomena, including measuring gravity waves. Observations of the Crab supernova were recorded by Chinese

  15. Designing ecological flows to gravely braided rivers in alpine environments

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  16. Why convective heat transport in the solar nebula was inefficient

    NASA Technical Reports Server (NTRS)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  17. IRAS surface brightness maps of reflection nebulae in the Pleiades

    NASA Technical Reports Server (NTRS)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  18. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zrake, Jonathan; Arons, Jonathan

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstratemore » the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.« less

  19. Turbulent Magnetic Relaxation in Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Zrake, Jonathan; Arons, Jonathan

    2017-09-01

    We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.

  20. Spatially Resolved Far-Infrared Spectroscopic Analysis of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Rattray, Rebecca; Ueta, Toshiya

    2015-01-01

    Planetary Nebulae (PNs) are late-life intermediate-mass (1-8 solar mass) stars that have shed their outer layers. A wide variety of morphologies and physical conditions is seen in PNs, but a complete understanding of what causes these various conditions is still needed. Spatially resolved far-infrared spectroscopic analysis has been performed on 11 targets using both PACS and SPIRE instruments on the Herschel Space Observatory as part of the Herschel Planetary Nebula Survey (HerPlaNS). Far-IR lines probe the ionized parts of the nebulae and suffer less extinction than optical lines, so observations in the far-IR are critical to our complete understanding of PNs. Because PNs are extended objects, the spectral mapping capabilities of both PACS and SPIRE allow us to better understand the spatial variations of the objects by tracking line strengths as a function of location within the nebula. The far-IR lines detected in this study can be used as tracers of electron density and electron temperature which are critical parameters in radiative transfer modeling of PNs. Information on atomic, ionic, and molecular lines identified in these 11 targets will be presented.

  1. Neutron Stars and the Discovery of Pulsars.

    ERIC Educational Resources Information Center

    Greenstein, George

    1985-01-01

    Part one recounted the story of the discovery of pulsars and examined the Crab Nebula, supernovae, and neutron stars. This part (experts from the book "Frozen Star") shows how an understanding of the nature of pulsars allowed astronomers to tie these together. (JN)

  2. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Masson, C.; Frerking, M. A.; Beichman, C. A.; Keene, J.; Phillips, T. G.; Wootten, H. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells has led to the detection, in the case of the 'Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  3. Planetary nebulae with UVIT: Far ultra-violet halo around the Bow Tie nebula (NGC 40)

    NASA Astrophysics Data System (ADS)

    Kameswara Rao, N.; Sutaria, F.; Murthy, J.; Krishna, S.; Mohan, R.; Ray, A.

    2018-01-01

    Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high-speed wind from WC8 central star (CS) with the nebula. It shows strong C IV 1550 Å emission that cannot be explained by thermal processes alone. We present here the first map of this nebula in C IV emission using broad band filters on the Ultra-Violet Imaging Telescope (UVIT). Aim. We aim to map the hot C IV-emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions in order to study the shock interaction between the nebula and the ISM. We also aim to illustrate the potential of UVIT for nebular studies. Methods: We carry out a morphological study of images of the nebula obtained at an angular resolution of about 1.3″ in four UVIT filter bands that include C IV 1550 Å and [C II] 2326 Å lines as well as UV continuum. We also make comparisons with X-ray, optical, and IR images from the literature. Results: The [C II] 2326 Å images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extent to that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint far UV (FUV) halo in an FUV filter with λeff of 1608 Å. The UV halo is not present in any other UV filter. The FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, the FUV halo trails predominantly towards the south-east side of the nebular core, opposite to the CS's proper motion direction. Conclusions: Morphological similarity of C IV 1550 Å and X-ray emission in the core suggests that it results mostly from the interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the extensive existence of H2 molecules in the regions even beyond the optical and IR halos. Thus UV studies are important to estimate the amount of H2, which is

  4. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2-428.

    PubMed

    Santander-García, M; Rodríguez-Gil, P; Corradi, R L M; Jones, D; Miszalski, B; Boffin, H M J; Rubio-Díez, M M; Kotze, M M

    2015-03-05

    The planetary nebula stage is the ultimate fate of stars with masses one to eight times that of the Sun (M(⊙)). The origin of their complex morphologies is poorly understood, although several mechanisms involving binary interaction have been proposed. In close binary systems, the orbital separation is short enough for the primary star to overfill its Roche lobe as the star expands during the asymptotic giant branch phase. The excess gas eventually forms a common envelope surrounding both stars. Drag forces then result in the envelope being ejected into a bipolar planetary nebula whose equator is coincident with the orbital plane of the system. Systems in which both stars have ejected their envelopes and are evolving towards the white dwarf stage are said to be double degenerate. Here we report that Henize 2-428 has a double-degenerate core with a combined mass of ∼1.76M(⊙), which is above the Chandrasekhar limit (the maximum mass of a stable white dwarf) of 1.4M(⊙). This, together with its short orbital period (4.2 hours), suggests that the system should merge in 700 million years, triggering a type Ia supernova event. This supports the hypothesis of the double-degenerate, super-Chandrasekhar evolutionary pathway for the formation of type Ia supernovae.

  5. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation thatmore » define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the

  6. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  7. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  8. GBT, VLA Team Up to Produce New Image of Orion Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Combining the best features of the National Science Foundation's (NSF) new Robert C. Byrd Green Bank Telescope (GBT) in West Virginia with those of the NSF's Very Large Array (VLA) in New Mexico, astronomers have produced a vastly improved radio image of the Orion Nebula and developed a valuable new technique for studying star formation and other astrophysical processes. GBT-VLA Image of Orion Nebula GBT-VLA Image of Orion Nebula "Our GBT image of the Orion Nebula is the best image ever produced with a single-dish radio telescope and it illustrates the superb performance of this new telescope," said Debra Shepherd, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "By combining data from the GBT with that from the VLA, we get an image that reflects reality far better than images from the separate telescopes could do," she added. Shepherd worked with Ron Maddalena from NRAO in Green Bank and Joe McMullin, from NRAO in Socorro. The astronomers presented their work to the American Astronomical Society meeting in Washington, DC. Single-dish radio telescopes such as the GBT, dedicated in 2000, are able to capture the large-scale structure of objects such as the Orion Nebula. However, they are unable to discern the fine detail revealed by multi-antenna arrays such as the VLA. Conversely, a VLA-like array is "blind" to the larger-scale structures. Combining the data from both types of radio telescopes to produce an image showing both large- and small-scale structures in the same celestial object has been a difficult, laborious task. "We are developing new observing techniques and software to make this task much easier and quicker," said McMullin. "We now have achieved in hours what used to take months or even longer to do, but we are producing an observational tool that will allow astronomers to make much higher-fidelity images that will greatly improve our understanding of several important astronomical processes," McMullin added. For this observation

  9. Modelling of Damage Evolution in Braided Composites: Recent Developments

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong

    2017-12-01

    Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.

  10. Synthesizing Planetary Nebulae for Large Scale Surveys: Predictions for LSST

    NASA Astrophysics Data System (ADS)

    Vejar, George; Montez, Rodolfo; Morris, Margaret; Stassun, Keivan G.

    2017-01-01

    The short-lived planetary nebula (PN) phase of stellar evolution is characterized by a hot central star and a bright, ionized, nebula. The PN phase forms after a low- to intermediate-mass star stops burning hydrogen in its core, ascends the asymptotic giant branch, and expels its outer layers of material into space. The exposed hot core produces ionizing UV photons and a fast stellar wind that sweeps up the surrounding material into a dense shell of ionized gas known as the PN. This fleeting stage of stellar evolution provides insight into rare atomic processes and the nucleosynthesis of elements in stars. The inherent brightness of the PNe allow them to be used to obtain distances to nearby stellar systems via the PN luminosity function and as kinematic tracers in other galaxies. However, the prevalence of non-spherical morphologies of PNe challenge the current paradigm of PN formation. The role of binarity in the shaping of the PN has recently gained traction ultimately suggesting single stars might not form PN. Searches for binary central stars have increased the binary fraction but the current PN sample is incomplete. Future wide-field, multi-epoch surveys like the Large Synoptic Survey Telescope (LSST) can impact studies of PNe and improve our understanding of their origin and formation. Using a suite of Cloudy radiative transfer calculations, we study the detectability of PNe in the proposed LSST multiband observations. We compare our synthetic PNe to common sources (stars, galaxies, quasars) and establish discrimination techniques. Finally, we discuss follow-up strategies to verify new LSST-discovered PNe and use limiting distances to estimate the potential sample of PNe enabled by LSST.

  11. Evolution of planetary nebulae. III. Position-velocity images of butterfly-type nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icke, V.; Preston, H.L.; Balick, B.

    1989-02-01

    Observations of the motions of the shells of the planetary nebulae NGC 2346, NGC 2371-2, NGC 2440, NGC 6058, NGC 6210, IC 1747, IC 5217, J-320, and M2-9 are presented. These are all 'butterfly' type PNs, and show evidence for bipolar shocks. The observations are interpreted in terms of a fast spherical wind, driven by the central star into a quasi-toroidal envelope deposited earlier by the star, during its slow-wind phase on the asymptotic giant branch. It is shown that this model, which is a straightforward extension of a mechanism previously invoked to account for elliptical PNs, reproduces the essentialmore » kinematic features of butterfly PNs. It is inferred that the envelopes of butterflies must have a considerable equator-to-pole density gradient, and it is suggested that the origin of this asphericity must be sought in an as yet unknown mechanism during the AGB, Mira, or OH/IR phases of late stellar evolution. 28 references.« less

  12. Braided artificial muscles: modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Dragan, Liliana; Cioban, Horia

    2009-01-01

    The paper presents a few graphical modalities for constructing the double helical braid, which is the basis for the braided artificial pneumatic muscles, by using specialized software applications. This represents the first stage in achieving the method of finite element analysis of this type of linear pneumatic actuator.

  13. Through-the Thickness(R) braided composites for aircraft applications

    NASA Technical Reports Server (NTRS)

    Brown, Richard T.

    1992-01-01

    Material and structural specimens of Through-the-Thickness(R) braided textile composites were tested in a variety of experiments. The results have demonstrated that the preform architecture provides significant payoffs in damage tolerance, delamination resistance, and attachment strength. This paper describes the braiding process, surveys the experimental data base, and illustrates the application of three dimensional braiding in aircraft structures.

  14. Design and cost drivers in 2-D braiding

    NASA Technical Reports Server (NTRS)

    Morales, Alberto

    1993-01-01

    Fundamentally, the braiding process is a highly efficient, low cost method for combining single yarns into circumferential shapes, as evidenced by the number of applications for continuous sleeving. However, this braiding approach cannot fully demonstrate that it can drastically reduce the cost of complex shape structural preforms. Factors such as part geometry, machine design and configuration, materials used, and operating parameters are described as key cost drivers and what is needed to minimize their effect on elevating the cost of structural braided preforms.

  15. A SOFIA FORCAST Grism Study of the Mineralogy of Dust in the Winds of Proto-planetary Nebulae: RV Tauri Stars and SRd Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.

    We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests thatmore » the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.« less

  16. Massive runaway stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  17. Magnetic Fields And The Formation Of Aspherical Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Leal Ferreira, Marcelo L.

    2014-11-01

    The general evolution of stars with initial mass between 0.8 and 8 solar masses is believed to be well understood until the last stages, when significant mass loss starts. However, an initially spherical star may evolve into an asymmetrical planetary nebula (PN), whereas the underlying mechanism to this process remains as a puzzle. Until about a decade ago, it was believed that stars in the asymptotic giant branch (AGB) phase were still spherically symmetric. Nevertheless, observations performed in the last years show that, for some sources, elongated and asymmetrical envelopes can already be detected during the AGB phase. In the following pre-PN and planetary nebula phases, a variety of morphologies is observed, and the sources are classified into round, elliptical/elongated, bipolar, quadrupolar, multipolar, spiral, collimated lobes and irregular. It is unknown which mechanism or set of mechanisms is responsible for this change of morphology, making this topic to be one of the most discussed by the evolved stars community. To shed some light on this problem, three AGB stars (IK Tau, R Scl, and V644 Sco) and one red supergiant (VY CMa) were observed at optical wavelengths. We analyzed their dust scattered emission and searched for signs of upcoming asymmetries in their circumstellar envelope. The observations in R band reveal that the dust envelope of the AGB star IK Tau has a global elliptical morphology, and the presence of a central waist is discussed. The observation of VY CMa shows a complex morphology in the very extended nebula that surrounds the source. Furthermore, for the first time the detached shell around the AGB star V644 Sco was imaged, allowing a better investigation of the mass-loss episodes of the source. The detached shell around R Scl was also imaged and analyzed. The results reported in this thesis add together with previous works, confirming that the loss of spherical symmetry in the circumstellar envelope of evolved stars can already start

  18. The Asymmetric Nebula Surrounding the Extreme Red Supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Humphreys, Roberta M.; Davidson, Kris; Gehrz, Robert D.; Schuster, M. T.; Krautter, Joachim

    2001-02-01

    We present HST/WFPC2 images plus ground-based infrared images and photometry of the very luminous OH/IR star VY Canis Majoris. Our WFPC2 data show a complex distribution of knots and filamentary arcs in the asymmetric reflection nebula around the obscured central star. The reflection arcs may result from multiple, asymmetric ejection episodes due to localized events on VY CMa's surface. Such events probably involve magnetic fields and convection, by analogy with solar activity. Surface photometry indicates that the star may have experienced enhanced mass loss over the past 1000 yr. We also demonstrate that the apparent asymmetry of the nebula results from a combination of high extinction and backscattering by dust grains. Thermal-infrared images reveal a more symmetric distribution, elongated along a nearly east-west direction. VY CMa probably has a flattened disklike distribution of dust with a northeast-southwest polar axis and may be experiencing activity analogous to solar prominences. The presence of an axis of symmetry raises interesting questions for a star the size of Saturn's orbit. Magnetic fields and surface activity may play an important role in VY CMa's mass-loss history. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  19. Unraveling the Helix Nebula: Its Structure and Knots

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret

    2004-11-01

    Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them

  20. Image of the Eta Carinae Nebula Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This image is an x-ray view of Eta Carinae Nebula showing bright stars taken with the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. The Eta Carinae Nebula is a large and complex cloud of gas, crisscrossed with dark lanes of dust, some 6,500 light years from Earth. Buried deep in this cloud are many bright young stars and a very peculiar variable star. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  1. Hubble Spins a Web Into a Giant Red Spider Nebula

    NASA Image and Video Library

    2017-12-08

    Huge waves are sculpted in this two-lobed nebula called the Red Spider Nebula, located some 3,000 light-years away in the constellation of Sagittarius. This warm planetary nebula harbors one of the hottest stars known and its powerful stellar winds generate waves 100 billion kilometers (62.4 billion miles) high. The waves are caused by supersonic shocks, formed when the local gas is compressed and heated in front of the rapidly expanding lobes. The atoms caught in the shock emit the spectacular radiation seen in this image. Image credit: ESA/Garrelt Mellema (Leiden University, the Netherlands) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. International Ultraviolet Explorer observations of the white dwarf nucleus of the very old, diffuse planetary nebula, IW-2

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Feibelman, Walter A.

    1993-01-01

    UV low-dispersion spectra of the central star of the faint planetary nebula, IW-2, were obtained with the IUE. The apparent large diameter of the very diffuse nebula, about half that of the moon, as seen on the Palomar Sky Survey plates by Ishida and Weinberger (1987), indicates this object to be potentially quite evolved, and nearby. The IUE spectra clearly reveal a hot stellar continuum extending over the entire wavelength range of the short-wavelength prime camera (1200-2000 A). This object with V = 17.7 +/- 0.4 is definitely one of the faintest stars ever successfully observed with the IUE. Comparisons of the IUE observed fluxes with those from white dwarf model atmospheres suggest extinction near E(B - V) = 0.45 for a white dwarf of T(eff) roughly 100,000 K. Constraints from estimates of the nebular emission measure and observed visual magnitude also argue for a white dwarf of T(eff) roughly 100,000 K at a distance of 300 to 350 pc. The nucleus of IW-2 is one of the most evolved stars to be identified with a planetary nebula.

  3. Studies of in-plane shear behaviour of braided composite reinforcements

    NASA Astrophysics Data System (ADS)

    Xiao, Shenglei; Wang, Peng; Soulat, Damien; Legrand, Xavier; Gao, Hang

    2018-05-01

    Braided fabrics are wildly used as textile reinforcements to manufacture the advanced composite parts. The braids can be used as two-dimensional reinforcement to manufacture the composite reinforced by braided fabrics. This study proposed the analysis on the in-plane shear behavior of braided structure fabric. Firstly, the geometric criterion and analytical model have been developed. Secondly, E-glass fibres reinforced braided fabrics have been performed in bias-extension tests to verify the analytical model. The conclusion was that the change of dimension ratio could influence on the shear load /displacement behavior significantly owing to the increasing area for sustaining load with an increase in ratio. However, varying dimension ratio r in axial direction had nearly no effect on shear moment/angle behavior. And the experimental and theoretical results had a good agreement.

  4. Forming H-shaped and barrel-shaped nebulae with interacting jets

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Bear, Ealeal; Soker, Noam

    2018-04-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets with large opening angles launched from a binary stellar system into a previously ejected shell and show that the interaction can form barrel-like and H-like shapes in the descendant nebula. Such features are observed in planetary nebulae (PNe) and supernova remnants. Under our assumption, the dense shell is formed by a short instability phase of the giant star as it interacts with a stellar companion, and the jets are then launched by the companion as it accretes mass through an accretion disc from the giant star. We find that the H-shaped and barrel-shaped morphological features that the jets form evolve with time, and that there are complicated flow patterns, such as vortices, instabilities, and caps moving ahead along the symmetry axis. We compare our numerical results with images of 12 PNe, and show that jet-shell interaction that we simulate can account for the barrel-like or H-like morphologies that are observed in these PNe.

  5. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  6. Failure analysis of braided U-shaped metal bellows flexible hoses

    NASA Astrophysics Data System (ADS)

    Pierce, Stephen O.

    Most of the research performed extensively reviews the effects of non-reinforced metal bellows and their pressurized characteristics. However, the majority of flex hoses are manufactured with reinforcement by the means of interweaved wire braids. For this research, the outer braid reinforced metal bellows flex hoses will be examined for their failure at differing lengths. The relationship with the bellows expansion joints is such that as the length of the flex hoses increases, the pressure at which squirm occurs decreases. As such, for the testing being performed, the same approach to failure is expected. As the length of the flex hose increases, it is predicted that the hose will fail at a decreasing pressure. Since the braid is the only thing that prevents the squirm from occurring, more of the load will be displaced from the bellows and into the braid. This will ultimately cause failure of the braid to occur at a lower pressure as the length of the hoses increase due to more of the load being transmitted from the bellows and into the braid.

  7. Chandra Detects Enigmatic Point X-ray Sources in the Cat's Eye and the Helix Nebulae

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Gruendl, R. A.; Chu, Y.-H.; Kaler, J. B.; Williams, R. M.

    2000-12-01

    Central stars of planetary nebulae (PNe) with Teff greater than 100,000 K are expected to emit soft X-rays that peak below 0.1 keV. Chandra ACIS-S observations of the Cat's Eye Nebula (NGC 6543) and the Helix Nebula (NGC 7293) have detected point X-ray sources at their central stars. The point X-ray source at the central star of the Cat's Eye is both unknown previously and unexpected because the stellar temperature is only ~50,000 K. In contrast, the point X-ray source at the central star of the Helix was previously detected by ROSAT and its soft X-ray emission is expected because the stellar temperature is ~100,000 K. However, the Helix X-ray source also shows a harder X-ray component peaking at 0.8 keV that is unexpected and for which Chandra has provided the first high-resolution spectrum for detailed analysis. The spectra of the point X-ray sources in the Cat's Eye and the Helix show line features indicating an origin of thermal plasma emission. The spectrum of the Helix source can be fit by Raymond & Smith's model of plasma emission at ~9*E6 K. The spectrum of the Cat's Eye source has too few counts for a spectral fit, but appears to be consistent with plasma emission at 2-3*E6 K. The X-ray luminosities of both sources are ~5*E29 erg s-1. The observed plasma temperatures are too high for accretion disks around white dwarfs, but they could be ascribed to coronal X-ray emission. While central stars of PNe are not known to have coronae, the observed spectra are consistent with quiescent X-ray emission from dM flare stars. On the other hand, neither the central star of the Helix or the Cat's Eye are known to have a binary companion. It is possible that the X-rays from the Cat's Eye's central star originate from shocks in the stellar wind, but the central star of the Helix does not have a measurable fast stellar wind. This work is supported by the CXC grant number GO0-1004X.

  8. The Morphology and Uniformity of Circumstellar OH/H2O Masers around OH/IR Stars

    NASA Astrophysics Data System (ADS)

    Felli, Derek Sean

    Even though low mass stars ( 8 solar masses), the more massive stars drive the chemical evolution of galaxies from which the next generation of stars and planets can form. Understanding mass loss of asymptotic giant branch stars contributes to our understanding of the chemical evolution of the galaxy, stellar populations, and star formation history. Stars with mass 8 solar masses go supernova. In both cases, these stars enrich their environments with elements heavier than simple hydrogen and helium molecules. While some general info about how stars die and form planetary nebulae are known, specific details are missing due to a lack of high-resolution observations and analysis of the intermediate stages. For example, we know that mass loss in stars creates morphologically diverse planetary nebulae, but we do not know the uniformity of these processes, and therefore lack detailed models to better predict how spherically symmetric stars form asymmetric nebulae. We have selected a specific group of late-stage stars and observed them at different scales to reveal the uniformity of mass loss through different layers close to the star. This includes observing nearby masers that trace the molecular shell structure around these stars. This study revealed detailed structure that was analyzed for uniformity to place constraints on how the mass loss processes behave in models. These results will feed into our ability to create more detailed models to better predict the chemical evolution of the next generation of stars and planets.

  9. Binaries discovered by the SPY survey. VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star EGB 5 - a recently ejected common envelope?

    NASA Astrophysics Data System (ADS)

    Geier, S.; Napiwotzki, R.; Heber, U.; Nelemans, G.

    2011-04-01

    Hot subdwarf B stars (sdBs) in close binary systems are assumed to be formed via common envelope ejection. According to theoretical models, the amount of energy and angular momentum deposited in the common envelope scales with the mass of the companion. That low mass companions near or below the core hydrogen-burning limit are able to trigger the ejection of this envelope is well known. The currently known systems have very short periods ≃0.1-0.3 d. Here we report the discovery of a low mass companion (M2 > 0.14 M⊙) orbiting the sdB star and central star of a planetary nebula EGB 5 with an orbital period of 16.5 d at a minimum separation of 23 R⊙. Its long period is only just consistent with the energy balance prescription of the common envelope. The marked difference between the short and long period systems will provide strong constraints on the common envelope phase, in particular if the masses of the sdB stars can be measured accurately. Due to selection effects, the fraction of sdBs with low mass companions and similar or longer periods may be quite high. Low mass stellar and substellar companions may therefore play a significant role for the still unclear formation of hot subdwarf stars. Furthermore, the nebula around EGB 5 may be the remnant of the ejected common envelope making this binary a unique system to study this short und poorly understood phase of binary evolution. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes No. 167.H-0407(A) and 71.D-0383(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Some of the data used in this work were obtained at the William Herschel Telescope (WHT) operated by the Isaac Newton Group of Telescopes (ING).

  10. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  11. Bright Young Star Clusters in NGC5253 with LEGUS

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela; Johnson, Kelsey E.; Adamo, Angela; Gallagher, John S.; Andrews, Jennifer E.; Smith, Linda J.; Clayton, Geoffrey C.; Lee, Janice C.; Sabbi, Elena; Ubeda, Leonardo; Kim, Hwihyun; Ryon, Jenna E.; Thilker, David A.; Bright, Stacey N.; Zackrisson, Erik; Kennicutt, Robert; de Mink, Selma E.; Whitmore, Bradley C.; Aloisi, Alessandra; Chandar, Rupali; Cignoni, Michele; Cook, David; Dale, Daniel A.; Elmegreen, Bruce; Elmegreen, Debra M.; Evans, Aaron S.; Fumagalli, Michele; Gouliermis, Dimitrios; Grasha, Kathryn; Grebel, Eva; Krumholz, Mark R.; Walterbos, Rene A. M.; Wofford, Aida; Brown, Thomas M.; Christian, Carol A.; Dobbs, Claire; Herrero-Davo`, Artemio; Kahre, Lauren; Messa, Matteo; Nair, Preethi; Nota, Antonella; Östlin, Göran; Pellerin, Anne; Sacchi, Elena; Schaerer, Daniel; Tosi, Monica

    2016-01-01

    Using UV-to-H broad and narrow-band HST imaging, we derive the ages and masses of the 11 brightest star clusters in the dwarf galaxy NGC5253. This galaxy, located at ~3 Mpc, hosts an intense starburst, which includes a centrally-concentrated dusty region with strong thermal radio emission (the `radio nebula'). The HST imaging includes data from the Cycle 21 Treasury Program LEGUS (Legacy ExtraGalactic UV Survey), in addition to narrow--band H-alpha (6563 A), P-beta (12820 A), and P-alpha (18756 A). The bright clusters have ages ~1-15 Myr and masses ~1E4 - 2.5E5 Msun. Two of the 11 star clusters are located within the radio nebula, and suffer from significant dust attenuation. Both are extremely young, with a best-fit age around 1 Myr, and masses ~7.5E4 and ~2.5E5 Msun, respectively. The most massive of the two `radio nebula' clusters is 2-4 times less massive than previously estimated and is embedded within a cloud of dust with A_V~50 mag. The two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  12. IRC -10414: a bow-shock-producing red supergiant star

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T.

    2014-01-01

    Most runaway OB stars, like the majority of massive stars residing in their parent clusters, go through the red supergiant (RSG) phase during their lifetimes. Nonetheless, although many dozens of massive runaways were found to be associated with bow shocks, only two RSG bow-shock-producing stars, Betelgeuse and μ Cep, are known to date. In this paper, we report the discovery of an arc-like nebula around the late M-type star IRC -10414 using the SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC -10414 with the Southern African Large Telescope (SALT) showed that it is a M7 supergiant, which supports previous claims on the RSG nature of this star based on observations of its maser emission. This was reinforced by our new radio- and (sub)millimetre-wavelength molecular line observations made with the Atacama Pathfinder Experiment 12-m telescope and the Effelsberg 100-m radio telescope, respectively. The SALT spectrum of the nebula indicates that its emission is the result of shock excitation. This finding along with the arc-like shape of the nebula and an estimate of the space velocity of IRC -10414 (≈70 ± 20 km s-1) imply the bow shock interpretation for the nebula. Thus, IRC -10414 represents the third case of a bow-shock-producing RSG and the first one with a bow shock visible at optical wavelengths. We discuss the smooth appearance of the bow shocks around IRC -10414 and Betelgeuse and propose that one of the necessary conditions for stability of bow shocks generated by RSGs is the ionization of the stellar wind. Possible ionization sources of the wind of IRC -10414 are proposed and discussed.

  13. Astrometry With the Hubble Space Telescope: Trigonometric Parallaxes of Planetary Nebula Nuclei NGC 6853, NGC 7293, ABELL 31, and DeHt 5

    DTIC Science & Technology

    2009-12-01

    reserved. Printed in the U.S.A. ASTROMETRY WITH THE HUBBLE SPACE TELESCOPE: TRIGONOMETRIC PARALLAXES OF PLANETARY NEBULA NUCLEI NGC 6853, NGC 7293, ABELL 31...present absolute parallaxes and relative proper motions for the central stars of the planetary nebulae NGC 6853 (The Dumbbell), NGC 7293 (The Helix...Abell 31, and DeHt 5. This paper details our reduction and analysis using DeHt 5 as an example. We obtain these planetary nebula nuclei (PNNi

  14. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, M.; Kastner, J. H.; Montez, R. Jr.

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted allmore » (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.« less

  15. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  16. The Owl and other strigiform nebulae: multipolar cavities within a filled shell

    NASA Astrophysics Data System (ADS)

    García-Díaz, Ma T.; Steffen, W.; Henney, W. J.; López, J. A.; García-López, F.; González-Buitrago, D.; Áviles, A.

    2018-06-01

    We present the results of long-slit echelle spectroscopy and deep narrow-band imaging of the Owl Nebula (NGC 3587), obtained at the Observatorio Astronómico Nacional, San Pedro Mártir. These data allow us to construct an iso-velocity data cube and develop a 3-D morpho-kinematic model. We find that, instead of the previously assumed bipolar dumbbell shape, the inner cavity consists of multi-polar fingers within an overall tripolar structure. We identify three additional planetary nebulae that show very similar morphologies and kinematics to the Owl, and propose that these constitute a new class of strigiform (owl-like) nebulae. Common characteristics of the strigiform nebulae include a double-shell (thin outside thick) structure, low-luminosity and high-gravity central stars, the absence of a present-day stellar wind, and asymmetric inner cavities, visible in both optical and mid-infrared emission lines, that show no evidence for surrounding bright rims. The origin of the cavities is unclear, but they may constitute relics of an earlier stage of evolution when the stellar wind was active.

  17. Topological chaos, braiding and bifurcation of almost-cyclic sets.

    PubMed

    Grover, Piyush; Ross, Shane D; Stremler, Mark A; Kumar, Pankaj

    2012-12-01

    In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.

  18. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  19. High Temperature Planetary Nebulae in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maran, Stephen P.

    Following up on our recent discovery that a very hot planetary in the Small Magellanic Cloud has an extraordinary underabundance of carbon, we propose to observe two similar hot planetaries in the Clouds with IUE as part of an optical/UV investigation. The objectives are (1) to test the suggestion that high nebular electron temperatures can result from a strong deficiency of carbon that deprives the nebula of an important cooling channel; and (2) to determine accurate chemical abundances to constrain limits on the efficiency of "hot bottom burning" in massive progenitors of planetary nebulae. The targets are SMC 25 (Te = 34,000 K) and LMC 88 (= 25,500 K). These UV observations of targets not previously observed with IUE will be combined, for analysis, with visible wavelength spectra of both targets from the Anglo-Australian Telescope and the 2-3-m Siding Spring reflector. The objects will also be compared in the analysis stage with previous IUE observations (and consequent modeling) of type I planetaries in the Clouds. Model nebulae will be calculated, and physical parameters of the central stars will be inferred.

  20. THE TWO CENTRAL STARS OF NGC 1514: CAN THEY ACTUALLY BE RELATED?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez, Roberto H.; Kudritzki, Rolf-Peter; Urbaneja, Miguel A., E-mail: mendez@ifa.hawaii.edu

    The central star of the planetary nebula NGC 1514 is among the visually brightest central stars in the sky ( V = 9.5). It has long been known to show a composite spectrum, consisting of an A-type star and a much hotter star responsible for the ionization of the surrounding nebula. These two stars have always been assumed to form a binary system. High-resolution spectrograms obtained with Espadons at the Canada–France–Hawaii Telescope on Maunakea have allowed us to measure good radial velocities for both stars: they differ by 13 ± 2 km s{sup −1}. The stellar velocities were unchanged aftermore » 500 days. We have also estimated the metallicity of the cooler star. Combining these data with other information available in the literature, we conclude that, unless all the published nebular radial velocities are systematically wrong, the cooler star is just a chance alignment, and the two stars are not orbiting each other. The cooler star cannot have played any role in the formation of NGC 1514.« less

  1. NEW YOUNG STAR CANDIDATES IN CG4 AND Sa101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebull, L. M.; Laine, S.; Laher, R.

    2011-07-15

    The CG4 and Sa101 regions together cover a region of {approx}0.5 deg{sup 2} in the vicinity of a 'cometary globule' that is part of the Gum Nebula. There are seven previously identified young stars in this region; we have searched for new young stars using mid- and far-infrared data (3.6-70 {mu}m) from the Spitzer Space Telescope, combined with ground-based optical data and near-infrared data from the Two Micron All Sky Survey. We find infrared excesses in all six of the previously identified young stars in our maps and identify 16 more candidate young stars based on apparent infrared excesses. Mostmore » (73%) of the new young stars are Class II objects. There is a tighter grouping of young stars and young star candidates in the Sa101 region, in contrast to the CG4 region, where there are fewer young stars and young star candidates, and they are more dispersed. Few likely young objects are found in the 'fingers' of the dust being disturbed by the ionization front from the heart of the Gum Nebula.« less

  2. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V.

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate ofmore » {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  3. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  4. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  5. Failure analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  6. The star fish twins: Two young planetary nebulae with extreme multipolar morphology

    NASA Technical Reports Server (NTRS)

    Sahai, R.

    2000-01-01

    We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.

  7. Feasibility evaluation of the monolithic braided ablative nozzle

    NASA Astrophysics Data System (ADS)

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  8. Supergiant Star Near Giraffe Hind Foot

    NASA Image and Video Library

    2011-02-19

    NASA Wide-field Infrared Survey Explorer captured this colorful image of the nebula BFS 29 surrounding the star CE-Camelopardalis, found hovering in the band of the night sky comprising the Milky Way.

  9. The ALMA early science view of FUor/EXor objects - IV. Misaligned outflows in the complex star-forming environment of V1647 Ori and McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    Principe, David A.; Cieza, Lucas; Hales, Antonio; Zurlo, Alice; Williams, Jonathan; Ruíz-Rodríguez, Dary; Canovas, Hector; Casassus, Simon; Mužić, Koraljka; Perez, Sebastian; Tobin, John J.; Zhu, Zhaohuan

    2018-01-01

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-main sequence star. Dust continuum and the (J = 2 - 1) 12CO, 13CO, C18O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17°+6-9 and total disc mass of Mdisc of ∼0.1 M⊙. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ∼11 700 and 17 200 yr. These outflows are misaligned suggesting disc precession over ∼5500 yr as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ∼2 km s-1, similar in velocity to that of other FUor objects presented in this series, but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an 'arm' of material to a large unresolved structure located ∼20 arcsec to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation, which may relate to its classification as both a FUor and EXor type object.

  10. a Surprise from the Pulsar in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    1995-11-01

    New observations of the spectrum of the rapidly spinning neutron star (the `pulsar') in the Crab Nebula have been carried out with the ESO 3.5-metre New Technology Telescope (NTT) by a group of Italian astronomers [1]. Because of greatly improved spectral resolution which allows to register even very fine details in the pulsar's spectrum, they are able to determine for the first time with high accuracy the overall dependance of the emission on wavelength, i.e. the `shape' of the spectrum. Quite unexpectedly, they also detect a hitherto unknown 100 A (10 nm) broad `absorption dip', which can be securely attributed to the pulsar. These results open an exciting new window for the study of the extreme physical processes close to a pulsar. The Nature of Pulsars It is estimated that there may be as many as 100 million neutron stars in our Galaxy. A neutron star is the superdense remnant of the extremely violent supernova explosion that occurs at the end of the life of a comparatively massive star. In fact, all stars that are more than about 6 times heavier than the Sun are believed to end their lives as supernovae. During the explosion, the central core of the dying star collapses in a few milliseconds and the matter at the centre is compressed to a density comparable to that of an atomic nucleus. Due to the enormous inward pressure, the atomic particles are squeezed together into a kind of neutron jam. The outcome is the formation of a neutron star with a diameter of 10-15 kilometres, weighing as much as the Sun. In accordance with the physical law that implies that the rotation momentum of the exploding star must be conserved, newborn neutron stars will rotate very rapidly around their axis, in some cases as fast as 100 times per second. In the same way, the new neutron star is expected to possess a strong magnetic field. Of these myriads of neutron stars, about 700 have been observed to emit radio pulses (hence the name `pulsar'). A few of these can also be detected

  11. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  12. Fatigue properties of superelastic Ti-Ni filaments and braided cables for bone fixation.

    PubMed

    Baril, Y; Brailovski, V

    2010-02-01

    This work is focused on the fatigue properties of the braided hollow tubular cables for bone fixation made of superelastic Ti-Ni filaments. To evaluate the fatigue life of the cable and the impact of braiding on fatigue life, a comparative study was conducted on both the braided cable and the single filament. The results of strain-controlled fatigue testing under variable mean and alternating strain conditions demonstrated that: (a) even though alternating strain is the most influent parameter, mean strain also has a significant impact on the fatigue life of both the filament and the braid; an improvement in the braided cable's fatigue life is observed under mean strains corresponding to the middle of the superelastic loop plateau; and (b) run-out (10(5) cycles) is reached at 1% of alternating strain for the filament, and at 0.3% for the braided cable. It was proved that the negative impact of braiding on fatigue life is caused: (a) by friction-induced damage of the braided filaments during cable manufacturing and (b) by locally occurring bending in the vicinity of the filaments' crossing, combined with the interfilament fretting during repetitive stretching of the braided cable.

  13. Probing the Molecular Outflows of the Coldest Known Object in the Universe: The Boomerang Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Vlemmings, W.; Nyman, L. A.; Huggins, P.

    2012-05-01

    The Boomerang Nebula is the coldest known object in the Universe, and an extreme member of the class of Pre-Planetary Nebulae, objects which represent a short-lived transitional phase between the AGB and Planetary Nebula evolutionary stages. The Boomerang's estimated prodigious mass-loss rate (0.001 solar masses/year) and low-luminosity (300 Lsun) lack an explanation in terms of current paradigms for dusty mass-loss and standard evolutionary theory of intermediate-mass stars. Single-dish CO J=1-0 observations (with a 45 arcsec beam) show that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. We report on our high-resolution ALMA mapping of the CO lines in this ultra-cold nebula to determine the origin of these extreme conditions and robustly confirm current estimates of the fundamental physical properties of its ultra-cold outflow.

  14. Hydrodynamical simulations of Pinwheel nebula WR 104

    NASA Astrophysics Data System (ADS)

    Lamberts, A.; Fromang, S.; Dubus, G.

    2010-12-01

    The interaction of stellar winds from two companion stars leads to the formation of a shocked structure. Several analytic solutions have been developped to model this phenomenon. We compare our 2D and 3D hydrodynamical simulations to these results and highlight their shortcomings. Analytic solutions do not take orbital motion into account although this drastically changes the structure at large distances, turning it into a spiral. This is observed in Pinwheel Nebulae, binaries composed of a Wolf-Rayet star and an early-type star. Their infrared emission is due to dust whose origin is stil poorly constrained. We perform large scale 2D simulations of one particular system, WR 104. Including the orbital motion, we follow the flow up to a few steps of the spiral. This is made possible using adaptive mesh refinement. We determine the properties of the gas in the winds and confirm the flow in the spiral has a ballistic motion.

  15. MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I.

    2009-05-10

    The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field towardmore » an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.« less

  16. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes

    NASA Astrophysics Data System (ADS)

    Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos

    2017-04-01

    This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.

  17. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-10-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  18. Baby Stars in Orion Solve Solar System Mystery

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    What do X-rays, meteoroids, infant stars in the Orion Nebula, and our solar system have in common? Perhaps much more than anyone thought. Eric Feigelson of Penn State University stumbled onto a connection one day while his thoughts were far from the solar system, turned toward the vibrant neighborhood of young stars, hot gas, and caliginous dust of the Orion Nebula. This nebula, 1500 light-years away, is visible to the naked eye in the constellation Orion, a gem to behold with a good pair of binoculars or a telescope under dark skies. In Orion, Feigelson inadvertently found a possible solution to a long-standing mystery about our own solar system: the presence of exotic isotopes locked away in meteoroids. Scientists have assumed that these short-lived isotopes - special forms of atomic nuclei, such as aluminum-26 and calcium-41 - were transported here by a nearby supernova. Only tenuous evidence for such an explosion exists, but what else could have made the isotopes? The isotopes are about as old as the solar system, and the Sun couldn t possibly have been powerful enough to create them. Well, maybe we need to give the Sun a little more credit. Feigelson found that very young, midsized stars in the Orion Nebula - in the same stellar class as our Sun except they are only a million years old - produce powerful flares visible in X-rays. His team spotted these X-ray flares with the Chandra X-Ray Observatory. These baby-tantrum flares are indeed energetic enough to forge heavy isotopes, Feigelson says. If the infant stars in Orion can do it now, then our Sun could have done the same when the solar system was forming about 4.5 billion years ago, when the Sun itself was only a few million years old.

  19. Local unitary representation of braids and N-qubit entanglements

    NASA Astrophysics Data System (ADS)

    Yu, Li-Wei

    2018-03-01

    In this paper, by utilizing the idea of stabilizer codes, we give some relationships between one local unitary representation of braid group in N-qubit tensor space and the corresponding entanglement properties of the N-qubit pure state |Ψ >, where the N-qubit state |Ψ > is obtained by applying the braiding operation on the natural basis. Specifically, we show that the separability of |Ψ > =B|0> ^{⊗ N} is closely related to the diagrammatic version of the braid operator B. This may provide us more insights about the topological entanglement and quantum entanglement.

  20. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    NASA Astrophysics Data System (ADS)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  1. Scaled Eagle Nebula Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  2. A D'-type symbiotic binary in the planetary nebula SMP LMC 88

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Miszalski, Brent; Kozłowski, Szymon; Udalski, Andrzej

    2018-05-01

    SMP LMC 88 is one of the planetary nebulae (PNe) in the Large Magellanic Cloud. We identify in its spectrum Raman scattered O VI lines at 6825 and 7083 Å. This unambiguously classifies the central object of the nebula as a symbiotic star (SySt). We identified the cold component to be a K-type giant, making this the first D'-type (yellow) SySt discovered outside the Galaxy. The photometric variability in SMP LMC 88 resembles the orbital variability of Galactic D'-type SySt with its low amplitude and sinusoidal light-curve shape. The SySt classification is also supported by the He I diagnostic diagram.

  3. Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim

    1995-01-01

    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.

  4. Pre-main-sequence isochrones - II. Revising star and planet formation time-scales

    NASA Astrophysics Data System (ADS)

    Bell, Cameron P. M.; Naylor, Tim; Mayne, N. J.; Jeffries, R. D.; Littlefair, S. P.

    2013-09-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find that they are up to a factor of 2 older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (≃ 10-12 Myr) and that the average Class I lifetime is greater (≃1 Myr) than currently believed. For each star-forming region, we derived two ages from colour-magnitude diagrams. First, we fitted models of the evolution between the zero-age main sequence and terminal-age main sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr), we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us confidence in the new age scale. This agreement is largely due to our adoption of empirical colour-Teff relations and bolometric corrections for pre-main-sequence stars cooler than 4000 K. The revised ages for the star-forming regions in our sample are: ˜2 Myr for NGC 6611 (Eagle Nebula; M 16), IC 5146 (Cocoon Nebula), NGC 6530 (Lagoon Nebula; M 8) and NGC 2244 (Rosette Nebula); ˜6 Myr for σ Ori, Cep OB3b and IC 348; ≃10 Myr for λ Ori (Collinder 69); ≃11 Myr for NGC 2169; ≃12 Myr for NGC 2362; ≃13 Myr for NGC 7160; ≃14 Myr for χ Per (NGC 884); and ≃20 Myr for NGC 1960 (M 36).

  5. Hubble Captures Bubbles And Baby Stars

    NASA Image and Video Library

    2017-12-08

    Image release June 22, 2010 A spectacular new NASA/ESA Hubble Space Telescope image — one of the largest ever released of a star-forming region — highlights N11, part of a complex network of gas clouds and star clusters within our neighbouring galaxy, the Large Magellanic Cloud. This region of energetic star formation is one of the most active in the nearby Universe. The Large Magellanic Cloud contains many bright bubbles of glowing gas. One of the largest and most spectacular has the name LHA 120-N 11, from its listing in a catalogue compiled by the American astronomer and astronaut Karl Henize in 1956, and is informally known as N11. Close up, the billowing pink clouds of glowing gas make N11 resemble a puffy swirl of fairground candy floss. From further away, its distinctive overall shape led some observers to nickname it the Bean Nebula. The dramatic and colourful features visible in the nebula are the telltale signs of star formation. N11 is a well-studied region that extends over 1000 light-years. It is the second largest star-forming region within the Large Magellanic Cloud and has produced some of the most massive stars known. It is the process of star formation that gives N11 its distinctive look. Three successive generations of stars, each of which formed further away from the centre of the nebula than the last, have created shells of gas and dust. These shells were blown away from the newborn stars in the turmoil of their energetic birth and early life, creating the ring shapes so prominent in this image. Beans are not the only terrestrial shapes to be found in this spectacular high resolution image from the NASA/ESA Hubble Space Telescope. In the upper left is the red bloom of nebula LHA 120-N 11A. Its rose-like petals of gas and dust are illuminated from within, thanks to the radiation from the massive hot stars at its centre. N11A is relatively compact and dense and is the site of the most recent burst of star development in the region. Other star

  6. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    photo constitutes a fine example of the subsequent use of such valuable data. Details about how the photo was made and some weblinks to other pictures are available below. The comparatively large field-of-view of the FORS2 camera (nearly 7 x 7 arcmin 2 ) and the detector resolution (0.2 arcsec/pixel) make this instrument optimally suited for imaging of this extended object and its immediate surroundings. There is obviously a wealth of detail, and scientific information can be derived from the colours shown in this photo. Three predominant colours are seen in the image: red from the hydrogen (H-alpha) emission from the HII region; brown for the foreground obscuring dust; and blue-green for scattered starlight. The blue-green regions of the Horsehead Nebula correspond to regions not shadowed from the light from the stars in the H II region to the top of the picture and scatter stellar radiation towards the observer; these are thus `mountains' of dust . The Horse's `mane' is an area in which there is less dust along the line-of-sight and the background (H-alpha) emission from ionized hydrogen atoms can be seen through the foreground dust. A chaotic area At the high resolution of this image the Horsehead appears very chaotic with many wisps and filaments and diffuse dust . At the top of the figure there is a bright rim separating the dust from the HII region. This is an `ionization front' where the ionizing photons from the HII region are moving into the cloud, destroying the dust and the molecules and heating and ionizing the gas. Dust and molecules can exist in cold regions of interstellar space which are shielded from starlight by very large layers of gas and dust. Astronomers refer to elongated structures, such as the Horsehead, as `elephant trunks' (never mind the zoological confusion!) which are common on the boundaries of HII regions. They can also be seen elsewhere in Orion - another well-known example is the pillars of M16 (the "Eagle Nebula") made famous by the

  7. A COMPREHENSIVE SEARCH FOR STELLAR BOWSHOCK NEBULAE IN THE MILKY WAY: A CATALOG OF 709 MID-INFRARED SELECTED CANDIDATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μ m Spitzer Space Telescope or 22 μ m Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μ m or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” starsmore » potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μ m bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.« less

  8. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  9. In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Vink, J. S.; Gräfener, G.; Harries, T. J.

    2011-12-01

    Long-duration gamma-ray bursts (GRBs) involve the most powerful cosmic explosions since the Big Bang. Whilst it has been established that GRBs are related to the death throes of massive stars, the identification of their elusive progenitors has proved challenging. Theoretical modelling suggests that rotating Wolf-Rayet (WR) stars are the best candidates. Wolf-Rayet stars are thought to be in advanced core burning stages, just prior to explosion, but their strong stellar winds shroud their surfaces, preventing a direct measurement of their rotation. Fortunately, linear spectropolarimetry may be used to probe the flattening of their winds because of stellar spin. Spectropolarimetry surveys have shown that the vast majority of WR stars (80%) have spherically symmetric winds and are therefore rotating slowly, yet a small minority (of 20%) display a spectropolarimetric signature indicative of rotation. Here we find a highly significant correlation between WR objects that carry the signature of stellar rotation and the small subset of WR stars with ejecta nebulae that have only recently transitioned from a previous red sugergiant or luminous blue variable phase. As these youthful WR stars have yet to spin-down because of mass loss, they are the best candidate GRB progenitors identified to date. When we take recently published WR ejecta nebula numbers (of Stock & Barlow 2010, MNRAS, 409, 1429), we find that five out of the six line-effect WR stars are surrounded by ejecta nebulae. The statistics imply that the null hypothesis of no correlation between line-effect WR stars and ejecta nebulae can be rejected at the 0.0004% level. Given that four line-effect and WR ejecta nebula have spectroscopically been confirmed to contain nucleo-synthetic products, we argue that the correlation is both statistically significant and physically convincing. The implication is that we have identified a sub-population of WR stars that fulfils the necessary criteria for making GRBs. Finally

  10. Mapping Excitation in the Inner Regions of the Planetary Nebula NGC 5189 Using HST WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, W. Peter; Montez, Rodolfo, Jr.

    2018-01-01

    The planetary nebula (PN) NGC 5189 around a Wolf–Rayet [WO] central star demonstrates one of the most remarkable complex morphologies among PNe with many multiscale structures, showing evidence of multiple outbursts from an asymptotic giant branch (AGB) progenitor. In this study, we use multiwavelength Hubble Space Telescope Wide Field Camera 3 observations to study the morphology of the inner 0.3 pc × 0.2 pc region surrounding the central binary that appears to be a relic of a more recent outburst of the progenitor AGB star. We applied diagnostic diagrams based on emission-line ratios of Hα λ6563, [O III] λ5007, and [S II] λ λ 6716,6731 images to identify the location and morphology of low-ionization structures within the inner nebula. We distinguished two inner, low-ionization envelopes from the ionized gas, within a radius of 55 arcsec (∼0.15 pc) extending from the central star: a large envelope expanding toward the northeast, and its smaller counterpart envelope in the opposite direction toward the southwest of the nebula. These low-ionization envelopes are surrounded by a highly ionized gaseous environment. We believe that these low-ionization expanding envelopes are a result of a powerful outburst from the post-AGB star that created shocked wind regions as they propagate through the previously expelled material along a symmetric axis. Our diagnostic mapping using high-angular resolution line-emission imaging can provide a novel approach to detection of low-ionization regions in other PNe, especially those showing a complex multiscale morphology.

  11. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    PubMed Central

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj

    2013-01-01

    Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128

  12. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  13. Chaotic Star Birth

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on the image for Poster VersionClick on the image for IRAS 4B Inset

    Located 1,000 light years from Earth in the constellation Perseus, a reflection nebula called NGC 1333 epitomizes the beautiful chaos of a dense group of stars being born. Most of the visible light from the young stars in this region is obscured by the dense, dusty cloud in which they formed. With NASA's Spitzer Space Telescope, scientists can detect the infrared light from these objects. This allows a look through the dust to gain a more detailed understanding of how stars like our sun begin their lives.

    The young stars in NGC 1333 do not form a single cluster, but are split between two sub-groups. One group is to the north near the nebula shown as red in the image. The other group is south, where the features shown in yellow and green abound in the densest part of the natal gas cloud. With the sharp infrared eyes of Spitzer, scientists can detect and characterize the warm and dusty disks of material that surround forming stars. By looking for differences in the disk properties between the two subgroups, they hope to find hints of the star and planet formation history of this region.

    The knotty yellow-green features located in the lower portion of the image are glowing shock fronts where jets of material, spewed from extremely young embryonic stars, are plowing into the cold, dense gas nearby. The sheer number of separate jets that appear in this region is unprecedented. This leads scientists to believe that by stirring up the cold gas, the jets may contribute to the eventual dispersal of the gas cloud, preventing more stars from forming in NGC 1333.

    In contrast, the upper portion of the image is dominated by the infrared light from warm dust, shown as red.

  14. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  15. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only

  16. Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution.

    PubMed

    Stanghellini; Shaw; Balick; Blades

    2000-05-10

    Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.

  17. UV and radiofrequency observations of Wolf-Rayet stars.

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1973-01-01

    Available spectrometric and photometric observations of Wolf-Rayet stars by the OAO 2 spacecraft in the UV range are discussed along with radio astronomical observations of W stars with symmetrical nebulae around them. The scanned spectrum of the WN5 star HD 50896 between 1200 and 1900 A is illustrated together with the photometered spectrum of the WN6 star HD 192163 from 1330 to 3320 A. RF observations of NGC 6888 around HD 192163 are examined relative to interpretation of the properties of a WN6 star ejecting mass into a nebular shell.

  18. Orion Nebula and Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1998-01-01

    This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.

  19. HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its

  20. 'Witch Head' Brews Baby Stars

    NASA Image and Video Library

    2017-12-08

    A witch appears to be screaming out into space in this new image from NASA's Wide-Field Infrared Survey Explorer, or WISE. The infrared portrait shows the Witch Head nebula, named after its resemblance to the profile of a wicked witch. Astronomers say the billowy clouds of the nebula, where baby stars are brewing, are being lit up by massive stars. Dust in the cloud is being hit with starlight, causing it to glow with infrared light, which was picked up by WISE's detectors. The Witch Head nebula is estimated to be hundreds of light-years away in the Orion constellation, just off the famous hunter's knee. WISE was recently "awakened" to hunt for asteroids in a program called NEOWISE. The reactivation came after the spacecraft was put into hibernation in 2011, when it completed two full scans of the sky, as planned. Image credit: NASA/JPL-Caltech NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. A new mechanical stellar wind feedback model for the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  2. 3D braid scaffolds for regeneration of articular cartilage.

    PubMed

    Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol

    2014-06-01

    Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hubble Watches Super Star Create Holiday Light Show

    NASA Image and Video Library

    2017-12-08

    This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights. The bright southern hemisphere star RS Puppis, at the center of the image, is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. The super star is ten times more massive than our sun and 200 times larger. RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. Its average intrinsic brightness is 15,000 times greater than our sun’s luminosity. The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo." Even though light travels through space fast enough to span the gap between Earth and the moon in a little over a second, the nebula is so large that reflected light can actually be photographed traversing the nebula. By observing the fluctuation of light in RS Puppis itself, as well as recording the faint reflections of light pulses moving across the nebula, astronomers are able to measure these light echoes and pin down a very accurate distance. The distance to RS Puppis has been narrowed down to 6,500 light-years (with a margin of error of only one percent). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. STScI is operated by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Acknowledgment: H. Bond (STScI and Pennsylvania State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics

  4. Planetary nebulae: 20 years of Hubble inquiry

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  5. Braid My Hair - Randy Owen sings out for sick children

    MedlinePlus

    ... Bar Home Current Issue Past Issues Braid My Hair - Randy Owen sings out for sick children Past ... debut performance of his latest song, "Braid My Hair," was the highlight during this year's Songwriter's Dinner ...

  6. DISCOVERY OF COLLIMATED BIPOLAR OUTFLOWS IN THE PLANETARY NEBULA TH 2-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danehkar, A., E-mail: ashkbiz.danehkar@cfa.harvard.edu

    We present a comprehensive set of spatially resolved, integral field spectroscopic mapping of the Wolf–Rayet planetary nebula Th 2-A, obtained using the Wide Field Spectrograph on the Australian National University 2.3-m telescope. Velocity-resolved Hα channel maps with a resolution of 20 km s{sup −1} allow us to identify different kinematic components within the nebula. This information is used to develop a three-dimensional morpho-kinematic model of the nebula using the interactive kinematic modeling tool shape. These results suggest that Th 2-A has a thick toroidal shell with an expansion velocity of 40 ± 10 km s{sup −1}, and a thin prolate ellipsoid withmore » collimated bipolar outflows toward its axis reaching velocities in the range of 70–110 km s{sup −1}, with respect to the central star. The relationship between its morpho-kinematic structure and peculiar [WO]-type stellar characteristics deserves further investigation.« less

  7. Hydrological regime as key to the morpho-texture and activity of braided streams

    NASA Astrophysics Data System (ADS)

    Storz-Peretz, Y.; Laronne, J. B.

    2012-04-01

    Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow

  8. Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.

    PubMed

    Lee, Dominic J

    2014-06-01

    In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.

  9. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  10. Multiple Shells Around Wolf-Rayet Stars: Space Based Astrometric Observing

    NASA Technical Reports Server (NTRS)

    Marston, Anthony P.

    1995-01-01

    The completion of a complementary optical emission-line survey of the nebulae associated with Wolf-Rayet stars in the southern sky is reported, along with the completion of a survey the large-scale environments of Wolf-Rayet stars using IRAS Skyflux data. HIRES IRAS maps in the four IRAS wavebands for appoximately half of all galactic Wolf-Rayet stars are created.

  11. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Adams, Michael L.

    1997-01-01

    Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less

  12. Dusty Death of a Massive Star

    NASA Image and Video Library

    2006-06-06

    NASA Spitzer Space Telescope shows the supernova remnant 1E0102.2-7219 sits next to the nebula N76 in a bright, star-forming region of the Small Magellanic Cloud, a satellite galaxy to our Milky Way galaxy.

  13. In vitro structural properties of braided tendon grafts.

    PubMed

    Nicklin, S; Waller, C; Walker, P; Chung, W K; Walsh, W R

    2000-01-01

    In an effort to increase strength in hamstring tendon grafts for anterior cruciate ligament reconstruction, braiding or weaving of the tendons has been suggested. The purpose of this study was to examine the biomechanical properties of two braiding techniques compared with a four-stranded tendon graft using a sheep model. Digital extensor tendons from 5 adult sheep were harvested in 28 matched pairs and randomly allocated to French plait or four-stranded weave. The grafts were tested in a hydraulic testing machine with the tendons secured in brass grips frozen with liquid carbon dioxide. The tendons were preconditioned to a distraction of 1 mm for 10 cycles followed by testing to failure at 50 mm/sec, with a data acquisition rate of 1,000 Hz. The stiffness, ultimate load to failure, and the mode of failure were recorded. All braided samples failed at the midsubstance, while the four-stranded controls failed at the grip interface. There was a significant reduction in strength and stiffness of the braided samples compared with the controls. This study demonstrated that braiding decreases the strength and stiffness of a four-stranded tendon graft by up to 54% and 85%, respectively. This finding is supported by the work of Hearle et al. (1969), who demonstrated that the decrease in strength of fiber bundles is equal to the square of the cosine of the twist angle. The twist angle in our samples was approximately 45 degrees, which equates to a decrease in strength of 50%.

  14. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations

  15. Detection of C60 and C70 in a young planetary nebula.

    PubMed

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-03

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.

  16. SMA Spectral Line Survey of the Proto-Planetary Nebula CRL 618

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Gottlieb, Carl; Young, Ken; Kaminski, Tomasz Tomek; McCarthy, Michael; Menten, Karl; Primiani, Rurik; Lee, Chin-Fei; Gupta, Harshal

    2018-01-01

    Carbon-rich Asymptotic Giant Branch (AGB) stars are major sources of gas and dust in the interstellar medium. AGB stars remain in their evolutionary stage for 1 to 10 Myrs, during which they have very high mass loss rates that increase at the end. During the brief (~1000 yr) period in the evolution from the AGB to the Planetary Nebula (PN) stage there are dramatic changes in the morphology from nearly spherical symmetry, to bipolar, quadrupolar and more complex structures, with the development of both slow and fast (100 km/s) outflows. The molecular composition of these objects' cirumstellar envelopes also evolves from being similar to that of parent AGB star (mainly diatomic and small polyatomic species), to more complex molecules (including ions).We have started an observational study of a sample of Proto-Planetary nebulae (PPN) with the Submillimeter Array to carry out spectral-line surveys of ~60 GHz frequency coverage in the 345 GHz band (similar to our published IRC+10216 line survey of 2011). Here we present preliminary results from the line survey of the carbon-rich PPN CRL 618, covering a frequency range of 281.9 to 359.4 GHz. Observations were carried out in January 2016 and September 2017, with the SMA in compact (3" angular resolution) and very extended (0.5") configurations, respectively.More than 1100 lines were detected in CRL 618. The majority of them can be attributed to HC3N and c-C3H2, and their isotopologues. About 350 lines are as yet unassigned. The continuum emission is unresolved even at 0.5" resolution. Several hydrogen recombination lines are detected from the central HII region. Lines of CO, HCO+, CS show the fast outflow wings, while the majority of molecular emission arises from a compact region of about 1" diameter. We present LTEmodeling and rotation temperature diagram analysis of HC3N, c-C3H2, CH3CN, and their isotopologues. We plan to observe another PPN, CRL 2688 with the SMA in 2018. Together, these imaging line surveys will

  17. Utilitarian models of the solar nebula

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    1994-01-01

    Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical

  18. Magnetic Fields Sculpt Narrow Jets From Dying Star

    NASA Astrophysics Data System (ADS)

    2006-03-01

    Molecules spewed outward from a dying star are confined into narrow jets by a tightly-wound magnetic field, according to astronomers who used the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope to study an old star about 8,500 light-years from Earth. Magnetic Field Around Jet Artist's Conception Shows Tightly-Wound Magnetic Field Confining Jet CREDIT: NRAO/AUI/NSF (Click on image for larger version) The star, called W43A, in the constellation Aquila, is in the process of forming a planetary nebula, a shell of brightly-glowing gas lit by the hot ember into which the star will collapse. In 2002, astronomers discovered that the aging star was ejecting twin jets of water molecules. That discovery was a breakthrough in understanding how many planetary nebulae are formed into elongated shapes. "The next question was, what is keeping this outpouring of material confined into narrow jets? Theoreticians suspected magnetic fields, and we now have found the first direct evidence that a magnetic field is confining such a jet," said Wouter Vlemmings, a Marie Curie Fellow working at the Jodrell Bank Observatory of the University of Manchester in England. "Magnetic fields previously have been detected in jets emitted by quasars and protostars, but the evidence was not conclusive that the magnetic fields were actually confining the jets. These new VLBA observations now make that direct connection for the very first time," Vlemmings added. By using the VLBA to study the alignment, or polarization, of radio waves emitted by water molecules in the jets, the scientists were able to determine the strength and orientation of the magnetic field surrounding the jets. "Our observations support recent theoretical models in which magnetically-confined jets produce the sometimes-complex shapes we see in planetary nebulae," said Philip Diamond, also of Jodrell Bank Observatory. During their "normal" lives, stars similar to our Sun are powered by the nuclear fusion

  19. The Mark of a Dying Star

    NASA Image and Video Library

    2006-01-19

    Six hundred and fifty light-years away in the constellation Aquarius, a dead star about the size of Earth, is refusing to fade away peacefully. NASA Hubble and Spitzer Space Telescopes have captured the complex structure of the Helix nebula.

  20. The Milky Way Project: A Citizen Science Catalog of Infrared Bow Shock Nebulae

    NASA Astrophysics Data System (ADS)

    Dixon, Don; Jayasinghe, Tharindu; Povich, Matthew S.

    2017-01-01

    We present preliminary results from the first citizen-science search for infrared stellar-wind bow shock candidates. This search uses the Milky Way project, hosted by the Zooniverse, an online platform with over 1 million volunteer citizen scientists. Milky Way Project volunteers examine 77,000 randomly-distributed Spitzer image cutouts at varying zoom levels. Volunteers mark the infrared arc of potential bow shock candidates as well as the star likely driving the nebula. We produce lists of candidates from bow shocks flagged by multiple volunteers, which after merging and final visual review form the basis for our catalog. Comparing our new catalog to a recently-published catalog of 709 infrared bow shock candidates identified by a small team of (primarily undergraduate) researchers will allow us to assess the effectiveness of citizen science for this type of search and should yield a more complete catalog. Planned studies using these large catalogs will improve constraints on the mass-loss rates for the massive stars that create these bow shock nebulae. Mass-loss rates are highly uncertain but are a critical component of evolutionary models for massive stars. This work is supported by the National Science Foundation under grants CAREER-1454334, AST-1411851 (RUI) and AST-1412845.

  1. Braid Entropy of Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-12-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.

  2. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  3. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  4. Theory of equilibria of elastic braids with applications to DNA supercoiling

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert; Starostin, Eugene

    2014-03-01

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a new theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is solved for. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Both open braid and closed braid solutions (links and knots) are computed and current applications to DNA supercoiling are discussed. Research supported by EPSRC and HFSP.

  5. Extended High Circular Polarization in the Orion Massive Star Forming Region: Implications for the Origin of Homochirality in the Solar System

    PubMed Central

    Tamura, Motohide; Kandori, Ryo; Kusakabe, Nobuhiko; Hough, James H.; Bailey, Jeremy; Whittet, Douglas C. B.; Lucas, Philip W.; Nakajima, Yasushi; Hashimoto, Jun

    2010-01-01

    We present a wide-field (∼6′ × 6′) and deep near-infrared (Ks band: 2.14 μm) circular polarization image in the Orion nebula, where massive stars and many low-mass stars are forming. Our results reveal that a high circular polarization region is spatially extended (∼0.4 pc) around the massive star-forming region, the BN/KL nebula. However, other regions, including the linearly polarized Orion bar, show no significant circular polarization. Most of the low-mass young stars do not show detectable extended structure in either linear or circular polarization, in contrast to the BN/KL nebula. If our solar system formed in a massive star-forming region and was irradiated by net circularly polarized radiation, then enantiomeric excesses could have been induced, through asymmetric photochemistry, in the parent bodies of the meteorites and subsequently delivered to Earth. These could then have played a role in the development of biological homochirality on Earth. PMID:20213160

  6. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  7. The star-forming cores in the centre of the Trifid nebula (M 20): from Herschel to the near-infrared

    NASA Astrophysics Data System (ADS)

    Tapia, M.; Persi, P.; Román-Zúñiga, C.; Elia, D.; Giovannelli, F.; Sabau-Graziati, L.

    2018-04-01

    A new detailed infrared (IR) study of eight star-forming dense condensations (TCs) in M 20, the Trifid nebula, is presented. The aim is to determine the physical properties of the dust in such globules and establish the presence and properties of their embedded protostellar and/or young stellar population. For this, we analysed new Herschel far-IR and Calar Alto near-IR images of the region, combined with Spitzer Infrared Array Camera (Spitzer/IRAC) archival observations. We confirm the presence of several young stellar objects (YSOs), most with mid-IR colours of Class II sources in all but one of the observed cores. Five TCs are dominated in the far-IR by Class I sources with bolometric luminosities between 100 and 500 L⊙. We report the discovery of a possible counterjet to HH 399 and its protostellar engine inside the photodissociation region TC2, as well as a bipolar outflow system, signposted by symmetric H2 emission knots, embedded in TC3. The present results are compatible with previous suggestions that star formation has been active in the region for some 3 × 105 yr, and that the most recent events in some of these TCs may have been triggered by the expansion of the H II region. We also obtained a revised value for the distance to M 20 of 2.0 ± 0.1 kpc.

  8. TRIGGER MECHANISM OF SOLAR SUBFLARES IN A BRAIDED CORONAL MAGNETIC STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.

    Fine-scale braiding of coronal magnetic loops by continuous footpoint motions may power coronal heating via nanoflares, which are spontaneous fine-scale bursts of internal reconnection. An initial nanoflare may trigger an avalanche of reconnection of the braids, making a microflare or larger subflare. In contrast to this internal triggering of subflares, we observe external triggering of subflares in a braided coronal magnetic field observed by the High-resolution Coronal Imager (Hi-C). We track the development of these subflares using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and registered magnetograms of SDO/HMI, over four hours centered on the Hi-Cmore » observing time. These data show numerous recurring small-scale brightenings in transition-region emission happening on polarity inversion lines where flux cancellation is occurring. We present in detail an example of an apparent burst of reconnection of two loops in the transition region under the braided coronal field which is appropriate for releasing a short reconnected loop downward and a longer reconnected loop upward. The short loop presumably submerges into the photosphere, participating in observed flux cancellation. A subflare in the overlying braided magnetic field is apparently triggered by the disturbance of the braided field by the reconnection-released upward loop. At least 10 subflares observed in this braided structure appear to be triggered this way. How common this external trigger mechanism for coronal subflares is in other active regions, and how important it is for coronal heating in general, remain to be seen.« less

  9. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  10. WISE Eyes Evolution of Massive Stars

    NASA Image and Video Library

    2011-04-08

    In the Perseus spiral arm of the Milky Way galaxy, opposite the galactic center, lies the nebula SH 2-235. As seen in infrared light, NASA Wide-field Infrared Survey Explorer reveals SH 2-235 to be a huge star formation complex.

  11. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  12. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calzetti, D.; Johnson, K. E.; Adamo, A.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses,more » and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.« less

  13. The Brightest Young Star Clusters in NGC 5253.

    NASA Astrophysics Data System (ADS)

    Calzetti, D.; Johnson, K. E.; Adamo, A.; Gallagher, J. S., III; Andrews, J. E.; Smith, L. J.; Clayton, G. C.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Kim, H.; Ryon, J. E.; Thilker, D.; Bright, S. N.; Zackrisson, E.; Kennicutt, R. C.; de Mink, S. E.; Whitmore, B. C.; Aloisi, A.; Chandar, R.; Cignoni, M.; Cook, D.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Evans, A. S.; Fumagalli, M.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Krumholz, M. R.; Walterbos, R.; Wofford, A.; Brown, T. M.; Christian, C.; Dobbs, C.; Herrero, A.; Kahre, L.; Messa, M.; Nair, P.; Nota, A.; Östlin, G.; Pellerin, A.; Sacchi, E.; Schaerer, D.; Tosi, M.

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (MV < -8.8) and the two young radio nebula clusters. The clusters have ages ˜1-15 Myr and masses ˜1 × 104-2.5 × 105 M⊙. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ˜15 Myr. The most massive cluster is in the radio nebula; with a mass ˜2.5 × 105 M⊙ and an age ˜1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with AV ˜ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ˜1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars. Based on observations obtained with the NASA/ESA Hubble Space Telescope, at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  14. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces.

    PubMed

    Lee, Dominic J O'

    2015-04-15

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.

  15. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  16. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  17. Mechanical and analytical screening of braided composites for transport fuselage applications

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Gunther, Christian; Ko, Frank K.

    1991-01-01

    The mechanics of materials progress in support of the goal of understanding the application of braided composites in a transport aircraft fuselage are summarized. Composites consisting of both 2-D and 3-D braid patterns are investigated. Both consolidation of commingled graphite/PEEK and resin transfer molding of graphite-epoxy braided composite processes are studied. Mechanical tests were used to examine unnotched tension, open hole tension, compression, compression after impact, in-plane shear, out-of-plane tension, bearing, and crippling. Analytical methods are also developed and applied to predict the stiffness and strengths of test specimens. A preliminary study using the test data and analytical results is performed to assess the applicability of braided composites to a commercial aircraft fuselage.

  18. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  19. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  20. Planetary Nebulae: Reviews and Previews of a Rapidly Evolving Field

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2015-01-01

    Observational results from the ground and space in the past decade and covering the entire spectrum have jolted and energized research into the nature, the formation, and the evolution of planetary nebulae (PNs). The 101-level bubble structure of PNs turned out to be a pleasant but misleading fantasy as observations by HST and ALMA revealed basic details of their infancy. Some combination of close geriatric binary stars (the precusrors of SN Ia's) and magnetic fields dredged into the dusty winds appear to play vital roles in the ejection and collimation of AGB atmospheres. As a result, PNe and their antecedents, AGB stars and prePNs, are providing an array of new opportunities to study asymmetric wind formation, complex gas dynamics, CNO production rates in various galactic environments, and galaxy structure and evolution. I shall review the highlights of recent results, summarize their interpretations, and show some of the observational opportunities to monitor in the next decade, many of which couple strongly to research to related fields.This talk is dedicated to the career of Olivier Chesneau (1972-2014) who pioneered new high-resolution imaging methods that peered into the deep inner cores of nascent planetary nebulae. We remember Olivier as everyone's enthusiastic friend and colleague whose career ended in full stride.