Science.gov

Sample records for braid nebula star

  1. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  2. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  3. Stars in the Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula, that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region.

  4. Messier's nebulae and star clusters.

    NASA Astrophysics Data System (ADS)

    Jones, K. G.

    Charles Messier's Catalogue of nebulae and star clusters, published in 1784, marked the start of a new era of deep sky astronomy. Today, this tradition of observing galaxies and clusters is kept alive by serious amateur astronomers who study the objects of the deep sky. Nearly all the objects are visible in a small telescope. The author has revised his definitive version of Messier's Catalogue. His own observations and drawings, together with maps and diagrams, make this a valuable introduction to deep sky observing. Historical and astrophysical notes bring the science of these nebulae right up to date.

  5. Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.

    2008-12-01

    M16 (the Eagle Nebula) is a striking star forming region, with a complex morphology of gas and dust sculpted by the massive stars in NGC 6611. Detailed studies of the famous ``elephant trunks'' dramatically increased our understanding of the massive star feedback into the parent molecular cloud. A rich young stellar population (2-3 Myr) has been identified, from massive O-stars down to substellar masses. Deep into the remnant molecular material, embedded protostars, Herbig-Haro objects and maser sources bear evidence of ongoing star formation in the nebula, possibly triggered by the massive cluster members. M 16 is a excellent template for the study of star formation under the hostile environment created by massive O-stars. This review aims at providing an observational overview not only of the young stellar population but also of the gas remnant of the star formation process.

  6. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  7. BRAID

    2010-11-01

    BRAID is a rewriting system for translating abstract intermediate descriptions into light-weight, "pay only for what you need" middleware wrappers. Initial capabilities will focus on language interoperability, remote method invocation (RMI), and interface contract enforcement wrappers from Scientific Interface Definition Language (SIDL) specifications. Language interoperability will be provided for software written in C, C++, Fortran, Java, and Python, as was done with Babel, but also a subset of PGAS/HPCS languages, such as Chapel, UPC, andmore » X10. Interface contract enforcement wrappers will initially be supported in a subset of those languages.« less

  8. BRAID

    SciTech Connect

    2010-11-01

    BRAID is a rewriting system for translating abstract intermediate descriptions into light-weight, "pay only for what you need" middleware wrappers. Initial capabilities will focus on language interoperability, remote method invocation (RMI), and interface contract enforcement wrappers from Scientific Interface Definition Language (SIDL) specifications. Language interoperability will be provided for software written in C, C++, Fortran, Java, and Python, as was done with Babel, but also a subset of PGAS/HPCS languages, such as Chapel, UPC, and X10. Interface contract enforcement wrappers will initially be supported in a subset of those languages.

  9. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  10. Al-Sufi's Investigation of Stars, Star Clusters and Nebulae

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. R.; Orchiston, W.

    2011-01-01

    The distinguished Arabic astronomer, Al-Sufi (AD 903-986) is justly famous for his Book of the Fixed Stars, an outstanding Medieval treatise on astronomy that was assembled in 964. Developed from Ptolemy's Algamest, but based upon al-Sufi's own stellar observations, the Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. Among other things, this major work contains 55 astronomical tables, plus star charts for 48 constellations. For the first time a long-overdue English translation of this important early work is in active preparation. In this paper we provide biographical material about Al-Sufi and the contents of his Book of the Fixed Stars, before examining his novel stellar magnitude system, and his listing of star clusters and nebulae (including the first-ever mention of the Great Nebula in Andromeda).

  11. Planetary nebulae and their central stars - origin and evolution.

    NASA Astrophysics Data System (ADS)

    Iben, I., Jr.

    This very detailed review deals with the following topics: star evolution to the AGB phase, thermally pulsating AGB stars, evolution from the AGB to the planetary nebula phase and from there to the white dwarf stage, pulsation, dust and mass loss, OH/IR sources, carbon-rich IR sources, and protoplanetary nebulae, classical planetary nebulae and their central stars, chemistry of the central stars and the born-again phenomenon, common-envelope PNe and binary central stars and final fate of central stars.

  12. Temperature Scale of Central Stars Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffry

    2005-01-01

    The goal of this project was to gain new insight into both the true temperatures of the central stars of planetary nebulae and their evolutionary histories. The temperature scale of the hottest central stars of planetary nebulae is poorly known. The temperature diagnostics available at visible wavelengths are not useful for these very hot stars, or suffer from as-yet unresolved systematic uncertainties. However, the combination of FUSE FUV spectra and HST NUV spectra allows precise temperature determinations by utilizing ionization balances of C III, C IV and O V, O VI lines. The sample comprises hot hydrogen-rich central stars covering the hottest phase of post-AGB evolution (T_eff greater than 70,000K). The spectra were analyzed with fully metal line blanketed NLTE model atmospheres in order to determine T_eff, surface gravity, and chemical composition. In addition to the temperature scale, the spectra help address the question of metal abundances at the surface of these stars. Depending on the particular star, the metal abundances are either dominated by ongoing diffusion processes or they originate from dredge-up phases during previous AGB evolution. The sample was selected so as to include objects that were expected to exhibit both processes, in order to assess their relative importance and to gain insight into the evolutionary history of the stars. The objects that show qualitatively a metal abundance pattern which points at dredge-up phases, can be used to quantitatively check against abundance predictions of stellar evolution theory. The other objects, where gravitational diffusion and radiative acceleration determine the photospheric metal abundances, will be used to check our NLTE models which for the first time include diffusion processes self-consistently.

  13. Physical characteristics of diffuse nebulae and nonstationary stars

    NASA Astrophysics Data System (ADS)

    Kharitonov, A. V.

    Papers are presented on a variety of topics, including a one-dimensional scattering model for the interpretation of emission from globules and dust nebulae; the properties of silicate particles in the IR range connected with gas-dust nebulae; the central stars of planetary nebulae; and spectrophotometry of the Triffid nebula (NGC 6514, M20). Attention is also given to Be-star spectrophotometry, the use of a scanning Fabry-Perot spectrometer to observe extended objects of low surface brightness, and star-identification techniques.

  14. Star Formation Sequence in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Fukuda, N.; Hanawa, T.; Sugitani, K.

    We report high density gas clouds observed in molecular pillars in the Eagle Nebula. They were observed with the Nobeyama Millimeter Array in the 13{CO}(J = 1 - 0) line, {C}18{O}(J = 1 - 0) line and 2.7-mm continuum. The 13CO line emission traces the head of the northern molecular pillar (π1). In the head, two 2.7-mm continuum sources and three C18O cores are embedded. The western continuum source is associated with a class I like source, and is the nearest object to the O5 star. The eastern 2.7-mm source over-wrapped with a C18O core, a Class 0 candidate, is the second nearest. The central C18O core associated with an NIR jet-like feature, is the third. The western C18O core is starless, and is the most distant from the O5 star. Thus, these sources are arranged in order of age. This arrangement suggests the propagation of star formation activity from west to east. A similar sequence of a young stellar object and a C18O core was found in the central molecular pillar (π2). The 2.7-mm continuum with a class I like source is the nearest object to the O5 star. A starless core is on the far side from the O5 star. These sources are also arranged in order of age.

  15. Embedded Star Formation in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.; Smith, Bradford A.; Hester, J. Jeff

    2002-05-01

    M16 (=NGC 6611), the Eagle Nebula, is a well-studied region of star formation and the source of a widely recognized Hubble Space Telescope (HST) image. High spatial resolution infrared observations with the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) on HST reveal the detailed morphology of two embedded star formation regions that are heavily obscured at optical wavelengths. It is striking that only limited portions of the visually obscured areas are opaque at 2.2 μm. Although the optical images imply substantial columns of material, the infrared images show only isolated clumps of dense gas and dust. Rather than being an active factory of star production, only a few regions are capable of sustaining current star formation. Most of the volume in the columns may be molecular gas and dust, protected by capstones of dense dust. Two active regions of star formation are located at the tips of the optical northern and central large ``elephant trunk'' features shown in the Wide Field Planetary Camera 2 (WFPC2) images. They are embedded in two capstones of infrared opaque material that contains and trails behind the sources. Although the presence of these sources was evident in previous observations at the same and longer wavelengths, the NICMOS images provide a high-resolution picture of their morphology. Two bright stars appear at the tip of the southern column and may be the result of recent star formation at the top of that column. These observations suggest that the epoch of star formation in M16 may be near its endpoint.

  16. Massive star-formation in the Trifid nebula

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Perez-Martinez, S.; Cesarsky, D.

    1999-03-01

    The Trifid nebula is a young galactic HII region where several protostellar sources have been detected using ISO and ground-based telescopes. The sources are massive (17 to 60 0.20em Modot) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense apparently still inactive cores to somewhat more evolved sources, undergoing violent mass ejection episodes, including a source which powers an optical jet. these observations suggest that the protostellar sources may have evolved by induced star formation.

  17. MULTIPLE GENERATIONS OF STARS IN THE TARANTULA NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula -- that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Note for your calendar; Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  18. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula. PMID:9774270

  19. Super Star Cluster Nebula in the Starburst Galaxy NGC 660

    NASA Astrophysics Data System (ADS)

    Naiman, J. P.; Turner, J. L.; Tsai, C.-W.; Beck, S. C.; Ho, P. T. P.

    2004-12-01

    We have mapped the starburst galaxy NGC 660 at 100mas resolution at K band (1.3 cm) with the NRAO Very Large Array. A peculiar galaxy at a distance of 13 Mpc, NGC 660 contains concentrated central star formation of power ˜ 2 x 1010 Lsun. Our 1.3 cm continuum image reveals a bright, compact source of less than 10 pc extent with a rising spectral index. We infer that this is optically thick free-free emission from a super star cluster nebula. The nebula is less than 10 pc in size, comparable in luminosity to the ``supernebula" in the dwarf galaxy, NGC 5253. We estimate that there are a few thousand O stars contained in this single young cluster. There are a number of other weaker continuum sources, either slightly smaller or more evolved clusters of similar size within the central 300 parsecs of the galaxy. This work is supported in part by the National Science Foundation.

  20. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  1. Star formation in the Eagle Nebula and NGC 6611

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; Jeffries, R. D.; van Loon, J. Th

    M16, also known as the Eagle Nebula, is a prime example for the study of star formation under the hostile environment created by massive O-stars. A rich young stellar population (NGC6611) has been identified. The well-known elephant trunks are striking examples of the massive star feedback into the parent molecular cloud. The detection of several water maser sources as well as embedded IR objects points at current star formation. I will present an overview of our recent observations that aim at characterising not only the young pre-main-sequence (PMS) and their disc, but also the still embedded population. We have discovered a rich population of low-mass PMS stars concentrated around the massive stars and the first results show that the IMF in NGC6611 is consistent with the IMF in less extreme star forming regions. I am using VLT/ VIMOS spectroscopy to determine reddening, effective temperature and gravity for a sample of ~260 cluster candidates to test the validity of the photometric techniques. We have been awarded HST observations to extend the optical and near-IR survey down to brown dwarfs and planetary mass objects. Recent theoretical developments propose that the density in the molecular cloud and/or the UV radiation from O-stars may play an role in shaping the low-mass IMF, with the signs of such influence enhanced in the brown-dwarf regime. Our HST observations will help disentangle these two effects on the IMF. We have also conducted a deep survey of the central area of NGC 6611 in L-band to determine the fraction of low-mass stars with circumstellar discs. The K-L colours indicate that 58% of objects retain their circumstellar discs, implying that the O-stars might not significantly hasten disc dissipation. We are complementing our data on NGC6611 with Spitzer/IRAC data for the outer regions where crowding is less severe, allowing us to investigate disc properties like inner disc temperature and geometry. Star formation is still ongoing in the denser

  2. A simple way to model nebulae with distributed ionizing stars

    NASA Astrophysics Data System (ADS)

    Jamet, L.; Morisset, C.

    2008-04-01

    Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.

  3. Warm Dust around Hot Stars in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Cesarsky, D.; Demyk, K.; Rodriguez, L. F.; Miville-Deschênes, M.-A.

    2001-07-01

    We report on mid-infrared observations of the central region in the Trifid nebula, carried out with ISOCAM in several broad-band filters and in the low-resolution spectroscopic mode provided by the Circular Variable Filter. Analysis of the emission indicates the presence of a hot dust component (500-1000 K) and a warm dust component at lower temperatures (150-200 K) around several members of the cluster exciting the HII region and other stars undetected at optical wavelengths. Complementary VLA observations suggest that the mid-IR emission could arise from the a dust cocoon or a circumstellar disk, evaporated under the ionization of the central source and the exciting star of the nebula. In several sources the 9.7 micron silicate band is seen in emission. Around one young stellar source we found the presence of crystalline silicates in the circumstellar dust.

  4. Disks around hot stars in the Trifid nebula

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Cesarsky, D.; Demyk, K.; Rodriguez, L. F.

    2001-03-01

    We report on mid-IR observations of the central region in the Trifid nebula, carried out with ISOCAM in several broad-band infrared filters and in the low resolution spectroscopic mode provided by the circular variable filter. Analysis of the emission indicates the presence of a hot dust component (500 to 1000 K) and a warm dust component at lower temperatures (~ 150-200 K) around several members of the cluster exciting the H II region, and other stars undetected at optical wavelengths. Complementary VLA observations suggest that the mid-IR emission could arise from a dust cocoon or a circumstellar disk, evaporated under the ionization of the central source and the exciting star of the nebula. In several sources the 9.7 kern 0.20em mu m silicate band is seen in emission. One young stellar source shows indications of crystalline silicates in the circumstellar dust.

  5. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  6. The chemical composition of Galactic ring nebulae around massive stars

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Mesa-Delgado, A.; Morisset, C.; García-Rojas, J.

    2016-08-01

    We present deep spectra of ring nebulae associated with Wolf-Rayet (WR) and O-type stars: NGC 6888, G2.4+1.4, RCW 58, S 308, NGC 7635 and RCW 52. The data have been taken with the 10m Gran Telescopio Canarias and the 6.5m Clay Telescope. We extract spectra of several apertures in some of the objects. We derive C2+ and O2+ abundances from faint recombination lines in NGC 6888 and NGC 7635, permitting to derive their C/H and C/O ratios and estimate the abundance discrepancy factor (ADF) of O2+. The ADFs are larger than the typical ones of normal H II regions but similar to those found in the ionized gas of star-forming dwarf galaxies. We find that chemical abundances are rather homogeneous in the nebulae where we have spectra of several apertures: NGC 6888, NGC 7635 and G2.4+1.4. We obtain very high values of electron temperature in a peripheral zone of NGC 6888, finding that shock excitation can reproduce its spectral properties. We find that all the objects associated with WR stars show N enrichment. Some of them also show He enrichment and O deficiency as well as a lower Ne/O than expected, this may indicate the strong action of the ON and NeNa cycles. We have compared the chemical composition of NGC 6888, G2.4+1.4, RCW 58 and S 308 with the nucleosynthesis predicted by stellar evolution models of massive stars. We find that non-rotational models of stars of initial masses between 25 and 40 M⊙ seem to reproduce the observed abundance ratios of most of the nebulae.

  7. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or

  8. Improved spectral descriptions of planetary nebulae central stars

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Méndez, R. H.; Gamen, R.

    2015-07-01

    Context. At least 492 central stars of Galactic planetary nebulae (CSPNs) have been assigned spectral types. Since many CSPNs are faint, these classification efforts are frequently made at low spectral resolution. However, the stellar Balmer absorption lines are contaminated with nebular emission; therefore in many cases a low-resolution spectrum does not enable the determination of the H abundance in the CSPN photosphere. Whether or not the photosphere is H deficient is arguably the most important fact we should expect to extract from the CSPN spectrum, and should be the basis for an adequate spectral classification system. Aims: Our purpose is to provide accurate spectral classifications and contribute to the knowledge of central stars of planetary nebulae and stellar evolution. Methods: We have obtained and studied higher quality spectra of CSPNs described in the literature as weak emission-line star (WELS). We provide descriptions of 19 CSPN spectra. These stars had been previously classified at low spectral resolution. We used medium-resolution spectra taken with the Gemini Multi-Object Spectrograph (GMOS). We provide spectral types in the Morgan-Keenan (MK) system whenever possible. Results: Twelve stars in our sample appear to have normal H rich photospheric abundances, and five stars remain unclassified. The rest (two) are most probably H deficient. Of all central stars described by other authors as WELS, we find that at least 26% of them are, in fact, H rich O stars, and at least 3% are H deficient. This supports the suggestion that the denomination WELS should not be taken as a spectral type, because, as a WELS is based on low-resolution spectra, it cannot provide enough information about the photospheric H abundance.

  9. A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana

    2016-07-01

    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M ⊙ stars with the Z = 0.008.

  10. The nebula around the post-AGB star 89 Herculis

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; van Winckel, H.; Neri, R.; Alcolea, J.; Castro-Carrizo, A.; Deroo, P.

    2007-06-01

    Aims:We aim to study the structure of the nebula around the post-AGB, binary star 89 Her. The presence of a rotating disk around this star had been proposed but not been yet confirmed by observations. Methods: We present high-resolution PdBI maps of CO J=2-1 and 1-0. Properties of the nebula are directly derived from the data and model fitting. We also present N-band interferometric data on the extent of the hot dust emission, obtained with the VLTI. Results: Two nebular components are found: (a) an extended hour-glass-like structure, with expansion velocities of 7 km s-1 and a total mass 3× 10-3 M{⊙}, and (b) an unresolved very compact component, smaller than 0.4 arcsec and with a low total velocity dispersion of 5 km s-1. We cannot determine the velocity field in the compact component, but we argue that it can hardly be in expansion, since this would require too recent and too sudden an ejection of mass. On the other hand, assuming that this component is a Keplerian disk, we derive disk properties that are compatible with expectations for such a structure; in particular, the size of the rotating gas disk should be very similar to the extent of the hot dust component from our VLTI data. Assuming that the equator of the extended nebula coincides with the binary orbital plane, we provide new results on the companion star mass and orbit. Based on observations carried out with the IRAM Plateau de Bure Interferometer, as well as on observations of the Belgian Guaranteed time on VISA (ESO). IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  11. Star Formation in Lynds Dark Nebulae

    NASA Astrophysics Data System (ADS)

    Johnson, Chelen H.; Bemis, G. E.; Paulsen, K. M.; Yueh, N. J.; Rebull, L. M.; DeWolf, C.; DeWolf, T.; Brock, S.; Boerna, J.; Schaefers, J.; McDonald, D. W.; McDonald, J.; Troudt, B.; Wilkinson, B.; Guastella, P.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Spuck, T. S.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.; Connelley, M.

    2009-01-01

    Our team observed two Lynds clouds (LDN 425 and LDN 981) using the Spitzer Space Telescope IRAC (3.6, 4.5, 5.8, and 8 microns), and MIPS (24 microns). A preliminary literature search provided IRAS data indicating star formation may be taking place in LDN 425 and LDN 981. The goals of this project were to further explore the known young stellar objects (YSOs) in the two clouds and to search for additional embedded YSOs. In this poster we present our observational methods and the results of our observations including SEDs, color-color diagrams, and color composite images. This research was made possible through the Spitzer Space Telescope Research Program for Teachers and Students and was funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion education posters by McDonald et al. titled "Spitzer - Hot and Colorful Student Activities" and Guastella et al. entitled "Research Based Astronomy in The Secondary Classroom: Lessons Developed for Investigating YSOs Using APT, Excel, and MOPEX".

  12. Central stars of planetary nebulae: New spectral classifications and catalogue

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  13. Hubble Finds an Hourglass Nebula Around a Dying Star

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Taken by the Wide Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST), this image of MyCn18, a young planetary nebula located about 8,000 light-years away, reveals its true shape to be an hourglass with an intricate pattern of 'etchings' in its walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger, flow instabilities, or could result from the action of a narrow beam of matter impinging on the hourglass walls. According to one theory on the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud, which is denser near its equator than near its poles. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green) and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of sun-like stars. An unseen companion star and accompanying gravitational effects may well be necessary in order to explain the structure of MyCn18. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  14. The Investigation of Stars, Star Clusters and Nebulae in 'Abd al-Rahman-Sufi's Book of the Fixed Stars

    NASA Astrophysics Data System (ADS)

    Hafez, Ihsan; Stephenson, F. Richard; Orchiston, Wayne

    'Abd al-Rahān al-Sūfī (AD 903-986) is justly famous for his Book of the Fixed Stars. This is an outstanding Medieval treatise on astronomy that was written in AD 964. This work was developed from Ptolemy's Almagest, but was based upon al-Sūfī's own stellar observations. The Book of the Fixed Stars has been copied down through the ages, and currently 35 copies are known to exist in various archival repositories around the world. In this paper we begin with a brief introduction to the Book of the Fixed Stars and provide biographical material about al-Sūfī before reviewing his investigation of stars, star clusters, nebulae and galaxies in his book. We examine al-Sūfī's novel stellar magnitude system, his comments on star colours, and stars mentioned in his book but not in the Almagest. We conclude with a listing of star clusters, nebulae and galaxies, including the earliest-known mention of the Great Nebula in Andromeda.

  15. Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE

    NASA Astrophysics Data System (ADS)

    Indebetouw, R.; Robitaille, T. P.; Whitney, B. A.; Churchwell, E.; Babler, B.; Meade, M.; Watson, C.; Wolfire, M.

    2007-09-01

    We present new Spitzer photometry of the Eagle Nebula (M16, containing the optical cluster NGC 6611) combined with near-infrared photometry from 2MASS. We use dust radiative transfer models, mid-infrared and near-infrared color-color analysis, and mid-infrared spectral indices to analyze point-source spectral energy distributions, select candidate YSOs, and constrain their mass and evolutionary state. Comparison of the different protostellar selection methods shows that mid-infrared methods are consistent, but as has been known for some time, near-infrared-only analysis misses some young objects. We reveal more than 400 protostellar candidates, including one massive YSO that has not been previously highlighted. The YSO distribution supports a picture of distributed low-level star formation, with no strong evidence of triggered star formation in the ``pillars.'' We confirm the youth of NGC 6611 by a large fraction of infrared excess sources and reveal a younger cluster of YSOs in the nearby molecular cloud. Analysis of the YSO clustering properties shows a possible imprint of the molecular cloud's Jeans length. Multiwavelength mid-IR imaging thus allows us to analyze the protostellar population, to measure the dust temperature and column density, and to relate these in a consistent picture of star formation in M16.

  16. Dusty disks around central stars of planetary nebulae

    SciTech Connect

    Clayton, Geoffrey C.; De Marco, Orsola; Nordhaus, Jason; Green, Joel; Rauch, Thomas; Werner, Klaus; Chu, You-Hua E-mail: orsola@science.mq.edu.au E-mail: joel@astro.as.utexas.edu E-mail: werner@astro.uni-tuebingen.de

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  17. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    SciTech Connect

    Suh, Kyung-Won

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  18. Single Rotating Stars and the Formation of Bipolar Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Garcia-Segura, G.; Villaver, E.; Langer, N.; Yoon, S. C.; Manchado, A.

    2014-04-01

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypothesis. The goal is to test if a single star can sustain in the envelope the rotational velocities needed for the magneto hydrodynamical (MHD) simulations to shape bipolar Planetary Nebulae (PNe) when the high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 Mo, and initial rotational velocities of 250 km/s have been followed all the way to the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect in increasing the rotational velocity of the envelope since the stellar angular momentum is removed efficiently by the wind. We have, as well, tested best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star rotating at the speeds needed by the MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  19. Single Rotating Stars and the Formation of Bipolar Planetary Nebula

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; Villaver, E.; Langer, N.; Yoon, S.-C.; Manchado, A.

    2014-03-01

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M ⊙ and initial rotational velocities of 250 km s-1 have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  20. Single rotating stars and the formation of bipolar planetary nebula

    SciTech Connect

    García-Segura, G.; Villaver, E.; Langer, N.; Yoon, S.-C.; Manchado, A.

    2014-03-10

    We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproduce the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.

  1. Star formation in the globules of the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Cernicharo, Jose; Lefloch, Bertrand; Garcia Lopez, Ramon; Esteban, Cesar

    We present optical and millimeter (continuum and molecular) observations of a cometary globule in the Trifid nebula showing clear signs of star formation activity. The globule is associated with a long jet finishing in a large bow shock. The HH jet can be seen in all the popular pictures of the Trifid. It has remained unrevealed although it has been in front of our eyes since the first high sensitivity photographic pictures of the Trifid. The jet emanates from the head of a cometary globule submitted to the strong UV field of the ionizing star of the Trifid. The continuum emission at 230 GHz follows the globule's head contour and consists of extended and weak emission plus a strong point source from where the jet seems to arise. High resolution spectroscopy in the SII line at 6730 A indicates that the jet is practically in the plane of the sky. The dust emission arises from a clump of ~= 5 M_\\odot. The molecular observations cover a larger surface and indicate a total mass for the globule of 30-50 M_\\odot.

  2. Estimating the binary fraction of central stars of planetary nebulae using the infrared excess method

    NASA Astrophysics Data System (ADS)

    Douchin, D.; De Marco, O.; Frew, D. J.; Jacoby, G. H.; Fitzgerald, M.; Jasniewicz, G.; Moe, M.; Passy, J. C.; Hillwig, T.; Harmer, D.

    2014-04-01

    There is no quantitative theory to explain why a high 80% of all planetary nebulae are non-spherical. The Binary Hypothesis states that a companion to the progenitor of a central star of planetary nebula is required to shape nebulae whose shapes are not spherical or mildly elliptical, implying that many single post-AGB stars do not make a PN at all. A way to test this hypothesis is to estimate the binary fraction of central stars of planetary nebula and to compare it with that of the main sequence population. Preliminary results from the infrared excess technique indicate that the binary fraction of central stars of planetary nebula is higher than that of the main sequence, implying that PNe could preferentially form via a binary channel. I will present new results from a search of red and infrared flux excess in an extended sample of central stars of planetary nebula and compare the improved estimate of the PN binary fraction with that of main sequence stars.

  3. Braided oscillators

    NASA Astrophysics Data System (ADS)

    Yildiz, A.

    2002-03-01

    A generalized oscillator algebra is proposed and the braided Hopf algebra structure for this generalized oscillator is investigated. Using the solutions for the braided Hopf algebra structure, two types of braided Fibonacci oscillators are introduced. This leads to two types of braided Biedenharn-Macfarlane oscillators as special cases of the Fibonacci oscillators. We also find the braided Hopf algebra solutions for the three dimensional braided space. One of these, as a special case, gives the Hopf algebra given in the literature.

  4. Evolution of Planetary Nebulae with WR-type Central Stars

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz

    2014-04-01

    This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast

  5. Discovering Massive Runaway Stars with Infrared Bowshock Nebulae: Identifying Twelve New Early-Type Stars using SMOG

    NASA Astrophysics Data System (ADS)

    Chick, William T.; Andrews, Julian E.; Kobulnicky, Henry A.; Povich, Matthew S.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    Massive O and B type stars are crucial to the evolution of the interstellar medium, dominating the production of ionizing radiation, mechanical energy, and heavy elements. However, due to their short lives and relative scarcity, these stars are some of the least well understood and are difficult to locate outside of large star forming regions. A small but significant fraction of these massive stars have been observed to be high-velocity runaway stars moving rapidly away from their origin. When these stars encounter nebular gas they create characteristic arc-shaped bowshocks of heated compressed dust and gas. Using the distinct infrared emission morphology of the hot dust, these bowshock nebulae are predicted to give the location of the massive early type stars.Visual inspection of 24-micron band images from the Spitzer Mapping of the Outer Galaxy (SMOG) revealed 12 new bowshock nebula candidates. Follow up optical spectroscopy from the Wyoming Infrared Observatory confirmed that all 12 of the associated stellar sources are early-type stars. Combined with related results from visual searches for bowshock nebulae using WISE and Spitzer surveys in the inner Galaxy, we have identified over 85 new early type bowshock supporting stellar sources, a 95% success rate. We conclude that morphological selection of arc-shared infrared nebulae with a symmetrically placed star is an efficient way to discover early type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  6. Star formation in the Trifid Nebula. Cores and filaments

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Pardo, J. R.

    2008-10-01

    Aims: We aim to characterize the properties of the prestellar and protostellar condensations to understand the star formation processes at work in a young HII region Methods: We have obtained maps of the 1.25 mm thermal dust emission and the molecular gas emission over a region of 20' × 10' around the Trifid Nebula (M 20), with the IRAM 30 m and the CSO telescopes as well as in the mid-infrared wavelength with ISO and SPITZER. Our survey is sensitive to features down to N (H2) ~ 1022 cm-2 in column density. Results: The cloud material is distributed in fragmented dense gas filaments (n (H2) of a few 103 cm-3) with sizes ranging from 1 to 10 pc. A massive filament, WF, with properties typical of Infra Red Dark Clouds, connects M 20 to the W28 supernova remnant. We find that these filaments pre-exist the formation of the Trifid and were originally self-gravitating. The fragments produced are very massive (typically 100M_⊙ or more) and are the progenitors of the cometary globules observed at the border of the HII region. We could identify 33 cores, 16 of which are currently forming stars. Most of the starless cores have typical H2 densities of a few 104 cm-3. They are usually gravitationally unbound and have low masses of a few M_⊙. The densest starless cores (several 105 cm-3) are located in condensation TC0, currently hit by the ionization front, and may be the site for the next generation of stars. The physical gas and dust properties of the cometary globules have been studied in detail and have been found very similar. They all are forming stars. Several intermediate-mass protostars have been detected in the cometary globules and in the deeply embedded cores. Evidence of clustering has been found in the shocked massive cores TC3-TC4-TC5. Conclusions: M 20 is a good example of massive-star forming region in a turbulent, filamentary molecular cloud. Photoionization appears to play a minor role in the formation of the cores. The observed fragmentation is well

  7. Carbonaceous compounds in carbon stars and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ryter, C.

    A recent count of the stars leaving the main sequence and the method to estimate the return of matter to the interstellar medium due to mass-loss is summarized. Stars of (1 - 5) M? would replenish the interstellar medium in (6 - 12) x 109 years. Carbonaceous compounds of the interstellar dust are believed to be formed in the atmosphere of carbon stars, but I bring evidences that the fraction of it made of very small particles and most frequently referred to as polycyclic aromatic hydrocarbons (PAH), which on average are believed to accommodate > 15% of the interstellar carbon, are not formed as soon as the dust condenses in the atmosphere of red giants. Some kind of processing seems to be required, very likely induced by the exposition of the dust to the ultraviolet radiation of the central star when the red giant becomes a planetary nebula. Heating of small grains by hard photons is believed to heat them to high enough a temperature to produce some morphological or crystallographic evolution, roughly from aliphatic to aromatic stucture. Further processing of the interstellar medium along the same line is suggested by observations of reflection nebulae, which display properties of the dust and gas at the site of star formation. Les résultats de comptages récents d'étoiles quittant la séquence principale et la méthode permettant d'évaluer le taux de perte de masse sont brièvement présentés. On trouve que les étoiles de 1 à 5 M⊙ reconstituent la masse du milieu interstellaire en (6 -12) x 109 années. Il est plausible que les géantes rouges forment d'abord les composants sHicés, puis lorsqu'elles atteignent la phase à carbone, qu'elles produisent la composante carbonée de la poussière interstellaire. Cette dernière comporte une importante fractions de très petites particules, le plus souvent considérées comme formées de grosses molécules polycycliques aromatiques (PAH), et qui contiennent au moins 15 % du carbone interstellaire. Bien qu

  8. Analysis of the WN star WR 102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula

    NASA Astrophysics Data System (ADS)

    Steinke, M.; Oskinova, L. M.; Hamann, W.-R.; Sander, A.; Liermann, A.; Todt, H.

    2016-04-01

    Context. The massive Wolf-Rayet type star WR 102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic centre region. Previous studies indicated that WR 102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims: The goals of our study are to derive the stellar parameters of WR 102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods: We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results: Our new analysis supersedes the results previously reported for WR 102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR 102c. These stars have radial velocities similar to that of WR 102c. We suggest that together with WR 102c these stars belong to a distinct star cluster with a total mass of ~ 1000 M⊙. We identify a new WR nebula around WR 102c in the SINFONI map of the diffuse Brγ emission and in the HST Paα images. The Brγ line at different locations is not significantly broadened and similar to the width of nebular emission elsewhere in the H ii region around WR 102c. Conclusions: The massive star WR 102c located in the Galactic centre region resides in a star cluster containing additional early-type stars. The stellar parameters of WR 102c are typical for hydrogen-free WN6 stars. We identify a nebula surrounding WR 102c that has a morphology similar to other nebulae around hydrogen-free WR stars, and propose that the formation of this nebula is linked to interaction of the fast stellar wind with the matter ejected at a previous evolutionary stage of WR 102c. The scientific results reported in this article are based on observations obtained during the ESO VLT program 383.D-0323(A).

  9. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    SciTech Connect

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-11-20

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  10. Chronology of star formation and disk evolution in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-10-01

    Context. Massive star-forming regions are characterized by intense ionizing fluxes, strong stellar winds and, occasionally, supernovae explosions, all of which have important effects on the surrounding media, on the star-formation process and on the evolution of young stars and their circumstellar disks. We present a multiband study of the massive young cluster NGC 6611 and its parental cloud (the Eagle Nebula) with the aim of studying how OB stars affect the early stellar evolution and the formation of other stars. Aims: We search for evidence of triggering of star formation by the massive stars inside NGC 6611 on a large spatial scale (~10 parsec) and ongoing disk photoevaporation in NGC 6611 and how its efficiency depends on the mass of the central stars. Methods: We assemble a multiband catalog of the Eagle Nebula with photometric data, ranging from B band to 8.0 μm, and X-ray data obtained with two new and one archival Chandra/ACIS-I observation. We select the stars with disks from infrared photometry and disk-less ones from X-ray emission, which are associated both with NGC 6611 and the outer region of the Eagle Nebula. We study induced photoevaporation searching for the spatial variation of disk frequency for distinct stellar mass ranges. The triggering of star formation by OB stars has been investigated by deriving the history of star formation across the nebula. Results: We find evidence of sequential star formation in the Eagle Nebula going from the southeast (2.6 Myears) to the northwest (0.3 Myears), with the median age of NGC 6611 members ~1 Myear. In NGC 6611, we observe a drop of the disk frequency close to massive stars (up to an average distance of 1 parsec), without observable effects at larger distances. Furthermore, disks are more frequent around low-mass stars (≤ 1 M⊙) than around high-mass stars, regardless of the distance from OB stars. Conclusions: The star-formation chronology we find in the Eagle Nebula does not support the hypothesis

  11. Radiation-driven winds of hot stars. V - Wind models for central stars of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Pauldrach, A.; Puls, J.; Kudritzki, R. P.; Mendez, R. H.; Heap, S. R.

    1988-01-01

    Wind models using the recent improvements of radiation driven wind theory by Pauldrach et al. (1986) and Pauldrach (1987) are presented for central stars of planetary nebulae. The models are computed along evolutionary tracks evolving with different stellar mass from the Asymptotic Giant Branch. We show that the calculated terminal wind velocities are in agreement with the observations and allow in principle an independent determination of stellar masses and radii. The computed mass-loss rates are in qualitative agreement with the occurrence of spectroscopic stellar wind features as a function of stellar effective temperature and gravity.

  12. Physical parameters for 12 planetary nebulae and their central stars in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.; Keyes, Charles D.; Maran, Stephen P.; Gull, Theodore R.; Michalitsianos, Andrew G.; Stecher, Theodore P.

    1987-01-01

    Nebular and central star parameters and elemental abundances of C, N, O, Ne, S, and Ar are presented for the planetary nebulae N2, N5, N43, N54, and N67 in the SMC and P2, P7, P9, P25, P33, and P40 in the LMC. The nebular chemical compositions are affected by nuclear processes in the precursor stars, which may not have been sufficiently massive to synthesize Ne, S, or Ar, which appear to be deficient with respect to their solar abundances by factors of roughly four and five for the LMC and SMC, respectively. Even after excluding nebulae formed by stars in which O apparently was destroyed by nuclear processes, O depletion in the LMC and SMC nebulae is significantly greater than in galactic planetaries. The estimated masses of the 12 remnant central stars range from 0.58 to 0.71 solar mass.

  13. IUE low-dispersion spectra of four luminous stars in symmetric nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1980-01-01

    The stars and nebulae are HD 56925 in NGC 2359, + 60 deg 2522 in NGC 7635, AG Car in its nebula, and 209 BAC in M1-67. A discussion of known properties of these systems precedes the IUE data, which are tabulated with types and identifications of significant line features and velocities of ultraviolet-displaced absorption features. Weaver et al.'s theory of the interaction of a stellar wind with the ambient interstellar medium is applied to the combined observational data. This gives a table of self-consistent values for stellar terminal wind velocity, rate of mass loss, and wind power; nebular mass, radius, expansion velocity, and age; also ambient interstellar density and mass swept up from the interstellar medium by the wind. The relatively infrequent occurrence of such symmetric nebulae around young, massive stars is possibly related to the short lifetimes of the nebulae in comparison with stellar evolution lifetimes.

  14. Planetary nebulae: understanding the physical and chemical evolution of dying stars.

    PubMed

    Weinberger, R; Kerber, F

    1997-05-30

    Planetary nebulae are one of the few classes of celestial objects that are active in every part of the electromagnetic spectrum. These fluorescing and often dusty expanding gaseous envelopes were recently found to be quite complex in their dynamics and morphology, but refined theoretical models can account for these discoveries. Great progress was also made in understanding the mechanisms that shape the nebulae and the spectra of their central stars. In addition, applications for planetary nebulae have been worked out; for example, they have been used as standard candles for long-range distances and as tracers of the enigmatic dark matter. PMID:9161999

  15. IUE low-dispersion spectra of six luminous stars in symmetric nebulae

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1982-01-01

    The stars and nebulae are HD 156738 and HDE 319703A, respectively centered in a pair of symmetric nebulae among the NGC 6334 group, AG Car in its nebula, HDE 250550 in nebula 8 of a catalog by Herbig, 209 BAC in Ml-67, and HD 89358 in NGC 3199. These include two O stars, two WN stars, an unstable B supergiant, and a ZAMS B star. Four of them are additions to a previous similar study, and the information about AG CAR and 209 BAC/Ml-67 is extended from that study. The objects are interpreted with Weaver et al.'s (1977) theory of the interaction of a stellar wind with the ambient interstellar medium, except where the short lifetime of the HDE 250550 nebula has forestalled such analysis. Spectral line identifications and types, and several parameters of mass loss, are tabulated. When the present mass loss rates are compared with previous results from other methods, there is an outstanding difference only for WN stars, since 1-3 x 10 to the -7th solar masses/year is derived here.

  16. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    SciTech Connect

    Balick, B.; Riera, A.; Raga, A.; Velázquez, P. F.; Kwitter, K. B. E-mail: angels.riera@upc.edu E-mail: pablo@nucleares.unam.mx

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  17. The Emerging Planetary Nebula CRL 618 and its Unsettled Central Star(s)

    NASA Astrophysics Data System (ADS)

    Balick, B.; Riera, A.; Raga, A.; Kwitter, K. B.; Velázquez, P. F.

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  18. Nothing to Hide -- An X-ray Survey of Star Formation Activity in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Posselt, Bettina; Lada, Charles J.; Covey, Kevin

    2009-09-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In a recent mid-infrared survey using Spitzer-MIPS to cover 13 square degrees, we have established that the star formation efficiency for the entire cloud is only ˜0.06%. The mid-infrared data are most sensitive for the earliest evolutionary stages of Young Stellar Objects (YSOs), covering class I protostars and typical class II sources (classical T Tauri stars). X-ray observations allow us to extend our survey to constrain any population of classical and weak-line T Tauri stars. In a first step, we use the ROSAT All-Sky Survey to constrain any overall T Tauri star population of the Pipe Nebula. Due to the fact that the Pipe Nebula is at a distance of only 130 pc, the ROSAT survey is already quite sensitive. Assuming a typical level of extinction, the completeness for G- and K-type stars is estimated to be about 50%. Subsequently, we use XMM-Newton observations pointed at three high-extinction regions within the Pipe Nebula to analyze these areas at higher sensitivity. These three regions are Barnard 59, the only core with ongoing star formation, the ``ring'' (i.e., the highest extinction region in the ``bowl'' of the Pipe), and Barnard 68. We additionally analyze the YSOs of Barnard 59 in the radio continuum to constrain high-energy processes. Overall, our results corroborate our previous Spitzer result that the star formation efficiency of the Pipe Nebula is very low.

  19. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  20. The Cocoon nebula and its ionizing star: do stellar and nebular abundances agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2014-11-01

    Context. Main-sequence massive stars embedded in an H ii region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula (IC 5146), a close-by Galactic H ii region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to compare nebular and stellar abundances in detail in the same Galactic region. Aims: We investigate the chemical content of oxygen and other elements in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum, and a detailed spectroscopic analysis of the associated early B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines and optical recombination lines in photoionized nebulae. Methods: We collected long-slit spatially resolved spectroscopy of the Cocoon nebula and a high-resolution optical spectrum of the ionizing star. Standard nebular techniques along with updated atomic data were used to compute the physical conditions and gaseous abundances of O, N, and S in eight apertures extracted across a semidiameter of the nebula. We performed a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. Results: The Cocoon nebula and its ionizing star, located at a distance of 800±80 pc, have a chemical composition very similar to the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighborhood (up to 1.5 Kpc from the Sun) as derived from the study of the local cold-gas interstellar medium. The comparison of stellar and nebular collisionally excited line abundances in the Cocoon nebula indicates that O and N gas+dust nebular values agree

  1. Optical Spectroscopy of X-Ray-selected Young Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    2015-12-01

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (˜3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1-B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and three weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81-594217.9, the B3 star J104507.84-594134.0, and the Ae star J104424.76-594555.0, which are possible X-ray variables. J104452.20-594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and Ks bands, of all sources, is found to be ˜0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ˜0.1 mag, in the Ks band. The addition of one O star and seven B1-B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.

  2. OPTICAL SPECTROSCOPY OF X-RAY-SELECTED YOUNG STARS IN THE CARINA NEBULA

    SciTech Connect

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    2015-12-15

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (∼3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1–B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and three weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81–594217.9, the B3 star J104507.84–594134.0, and the Ae star J104424.76–594555.0, which are possible X-ray variables. J104452.20–594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and K{sub s} bands, of all sources, is found to be ∼0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ∼0.1 mag, in the K{sub s} band. The addition of one O star and seven B1–B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.

  3. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars. PMID:11206538

  4. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    PubMed

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  5. Evolution of Planetary Nebulae with WR-type Central Stars

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz

    2014-04-01

    This thesis presents a study of the kinematics, physical conditions and chemical abundances for a sample of Galactic planetary nebulae (PNe) with Wolf-Rayet (WR) and weak emission-line stars (wels), based on optical integral field unit (IFU) spectroscopy obtained with the Wide Field Spectrograph (WiFeS) on the Australian National University 2.3 telescope at Siding Spring Observatory, and complemented by spectra from the literature. PNe surrounding WR-type stars constitute a particular study class for this study. A considerable fraction of currently well-identified central stars of PNe exhibit 'hydrogen-deficient' fast expanding atmospheres characterized by a large mass-loss rate. Most of them were classified as the carbon-sequence and a few of them as the nitrogen-sequence of the WR-type stars. What are less clear are the physical mechanisms and evolutionary paths that remove the hydrogen-rich outer layer from these degenerate cores, and transform it into a fast stellar wind. The aim of this thesis is to determine kinematic structure, density distribution, thermal structure and elemental abundances for a sample of PNe with different hydrogen-deficient central stars, which might provide clues about the origin and formation of their hydrogen-deficient stellar atmospheres. Hα and [N II] emission features have been used to determine kinematic structures. Based on spatially resolved observations of these emission lines, combined with archival Hubble Space Telescope imaging for compact PNe, morphological structures of these PNe have been determined. Comparing the velocity maps from the IFU spectrograph with those provided by morpho-kinematic models allowed disentangling of the different morphological components of most PNe, apart from the compact objects. The results indicate that these PNe have axisymmetric morphologies, either bipolar or elliptical. In many cases, the associated kinematic maps for PNe around hot WR-type stars also show the presence of so-called fast

  6. A far-infrared emission feature in carbon-rich stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Forrest, W. J.; Houck, J. R.; Mccarthy, J. F.

    1981-01-01

    The 16-30 micron spectra of several carbon stars and the planetary nebulae IC 418 and NGC 6572 have been obtained using the NASA C-141 Kuiper Airborne Observatory. A newly observed emission feature appears in the spectrum of IRC +10216 and several other carbon stars at wavelengths greater than 24 microns. The feature is interpreted as resulting from a solid-state resonance in the dust grains which have condensed around these stars. A similar feature appears in the spectra of IC 418 and NGC 6572, implying that the same type of dust is present. Since the dust probably condensed from a carbon-rich gas, this indicates an evolutionary link between carbon stars and these planetary nebulae. No identification for the grain material has been found, but some clues are apparent which could aid in the identification.

  7. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  8. The post-common-envelope, binary central star of the planetary nebula Hen 2-11

    NASA Astrophysics Data System (ADS)

    Jones, D.; Boffin, H. M. J.; Miszalski, B.; Wesson, R.; Corradi, R. L. M.; Tyndall, A. A.

    2014-02-01

    We present a detailed photometric study of the central star system of the planetary nebula Hen 2-11, selected for study because of its low-ionisation filaments and bipolar morphology - traits which have been strongly linked with central star binarity. Photometric monitoring with NTT-EFOSC2 reveals a highly irradiated, double-eclipsing, post-common-envelope system with a period of 0.609 d. Modelling of the lightcurve indicates that the nebular progenitor is extremely hot, while the secondary in the system is probably a K-type main sequence star. The chemical composition of the nebula is analysed, showing Hen 2-11 to be a medium-excitation non-Type i nebula. A simple photoionisation model is constructed determining abundance ratios of C/O and N/O which would be consistent with the common-envelope cutting short the AGB evolution of the nebular progenitor. The detection of a post-common-envelope binary system at the heart of Hen 2-11 further strengthens the link between binary progeny and the formation of axisymmetric planetary nebulae with patterns of low-ionisation filaments, clearly demonstrating their use as morphological indicators of central star binarity. Extracted 1D spectra, reduced 2D spectra, and table of photometry are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A89

  9. The Eagle Nebula: Pillars of Creation, EGGs, and PMS Stars in NGC 6611

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Gagné, M.; Mytyk, A.; McCaughrean, M.; Andersen, M.

    2008-04-01

    We report on Chandra ACIS-I observations of the Eagle Nebula containing the young Galactic cluster NGC~6611 and the dark columns called the ``Pillars of Creation''. We find that NGC~6611 contains a rich collection of young X-ray emitting stars, but the EGGs at the edge of the pillars are not detected at levels below the Orion young stellar objects.

  10. A Survey for hot Central Stars of Planetary Nebulae I. Methods and First Results

    NASA Astrophysics Data System (ADS)

    Kanarek, Graham C.; Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.

    2016-03-01

    We present the results of initial spectrographic followup with the Very Large Telescope (UT3, Melipal) for Ks ≥ 14 Galactic plane C IV emission-line candidates in the near-infrared (NIR). These 7 faint stars all display prominent He I and/or C IV emission lines characteristic of a carbon-rich Wolf-Rayet star. They have NIR colours which are much too blue to be those of distant, classical WR stars. The magnitudes and colours are compatible with those expected for central stars of planetary nebulae, and are likely to come from massive progenitor populations. Our survey has identified thousands of such candidates.

  11. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-01-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  12. OT2_jsokolos_1: The Origin and Nature of the Emission Nebulae around Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Sokoloski, J.

    2011-09-01

    There is much controversy concerning the ionized nebula that produces the radio through FIR emission from symbiotic stars. The goal of the proposed Herschel observations is to test two popular models for this emission; whether it is produced by a wind from the red giant that is photoionized by Lyman continuum photons from the hot WD (STB) or it comes from plasma that is shock heated as the winds from the two stars collide by constraining the submm SED and measuring the free-free turnover frequency of the ionised component. These two models predict distinctly different shapes for the submm portion of the SED and different dependence of the turnover frequency on binary separation. Thus, submm photometry of a diverse sample of symbiotic stars with know binary parameters that only Herschel can perform is an ideal way to quantitatively test and discriminate between these models (as well as motivate new ones). In terms of astrophysical significance, determining the origin of the radio-through-FIR emission from symbiotic stars has implications for the nature and geometry of mass transfer in wide binaries, mass loss from accreting compact objects, the shaping of asymmetric nebulae around binary stars (including binary planetary nebulae), and the likelihood that symbiotic stars can explode as type Ia supernovae.

  13. Abell 41: shaping of a planetary nebula by a binary central star

    NASA Astrophysics Data System (ADS)

    Jones, D.; Lloyd, M.; Santander-García, M.; López, J. A.; Meaburn, J.; Mitchell, D. L.; O'Brien, T. J.; Pollacco, D.; Rubio-Díez, M. M.; Vaytet, N. M. H.

    2010-11-01

    We present the first detailed spatiokinematical analysis and modelling of the planetary nebula Abell 41, which is known to contain the well-studied close-binary system MT Ser. This object represents an important test case in the study of the evolution of planetary nebulae with binary central stars as current evolutionary theories predict that the binary plane should be aligned perpendicular to the symmetry axis of the nebula. Deep narrow-band imaging in the light of [NII]6584Å, [OIII]5007 Å and [SII]6717+6731Å, obtained using ACAM on the William Herschel Telescope, has been used to investigate the ionization structure of Abell 41. Long-slit observations of the Hα and [NII]6584Å emission were obtained using the Manchester Echelle Spectrometer on the 2.1-m San Pedro Mártir Telescope. These spectra, combined with the narrow-band imagery, were used to develop a spatiokinematical model of [NII]6584Å emission from Abell 41. The best-fitting model reveals Abell 41 to have a waisted, bipolar structure with an expansion velocity of ~40 km s-1 at the waist. The symmetry axis of the model nebula is within 5° of perpendicular to the orbital plane of the central binary system. This provides strong evidence that the close-binary system, MT Ser, has directly affected the shaping of its nebula, Abell 41. Although the theoretical link between bipolar planetary nebulae and binary central stars is long established, this nebula is only the second to have this link, between nebular symmetry axis and binary plane, proved observationally. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. E-mail: david.jones-3@postgrad.manchester.ac.uk

  14. The Puzzle of the Narrow Brackett Lines in Super Star Cluster Nebulae

    NASA Astrophysics Data System (ADS)

    Turner, J. L.; Beck, S. C.; Crosthwaite, L. P.; Meier, D. S.

    2001-12-01

    We have high resolution (R ~ 25000) spectra of Brackett recombination line emission from nebulae surrounding young, optically obscured super star clusters in the process of formation. We used the NIRSPEC spectrometer on the Keck Telescope for these observations. We detected Brackett γ emission from nebulae in NGC 660, He 2-10, II Zw 40, and M83. The slit positions were the locations of bright radio nebulae (Carral et al. 1990, ApJ, 362, 434; Turner & Ho 1994, ApJ, 421, 122; Kobulnicky & Johnson, 1999, ApJ, 527, 154; and Beck et al. 2001, in prep.) The Brackett γ intensities confirm that these bright and compact radio sources are indeed HII regions, or ``supernebulae" surrounding young clusters containing several thousand O stars, and potentially millions of cluster stars. The Brackett γ linewidths are in general remarkably small for the sizes and inferred masses of the clusters. Although there is some evidence for cluster winds, we suggest that these nebulae may be graviationally bound, as seems to be the case for the supernebula in NGC 5253 (Turner et al. 2001, submitted.) This research is supported by NSF grant AST-0071276 to J.L.T., the Israel Academy Center for Multi-Wavelength Astronomy Grant to S.C.B., and Sigma Xi Grants-in-Aid of Research to L.P.C. and D.S.M.

  15. Stellar evolution in real time: The exciting star of the Stingray nebula

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Kruk, J. W.

    2014-04-01

    SAO 244567 (Hen 3-1357) was classified as a B-type supergiant in the 1970s. Within twenty years only, nebula emission lines became visible in the ultraviolet and optical wavelength range. Imaging in 1994 showed that SAO 244567 had become the central star of the bi-polar Stingray nebula. Prominent P-Cygni profiles that were exhibited in the first ultraviolet spectra from 1988 became weaker with time, but can still be seen in the FUSE spectrum in 2006. Recent observations show that the rapid evolution of this enigmatic star is still going on. For the first time, we performed a comprehensive spectral analysis by means of state-of-the NLTE models for static and expanding atmospheres based on all available spectra from 1988 until 2006. We determined the temporal evolution of its effective temperature, surface gravity, mass-loss rate, and photospheric abundances. We discuss possible single- and binary-star evolutionary scenarios.

  16. Post Asymptotic Giant Branch and Central Stars of Planetary Nebulae in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Weston, Simon

    2012-01-01

    Post asymptotic giant branch (post-AGB) stars, central stars of planetary nebulae (CSPNe) and planetary nebulae (PNe) are important phases of stellar evolution as the material they feedback is the seed of subsequent star formation in a galaxy. The majority of low and intermediate mass stars are expected to evolve through these channels, however, it is uncertain how many actually do, and at what rate. The Galactic halo, with its older population, provides a direct test of evolutionary models for low mass stars. Birthrate estimates of PNe are uncertain and worse still, are in contradiction with accepted white dwarf (WD) birthrate estimates. Much of the uncertainty stems from the lack of complete samples and poorly determined distance estimates. New surveys such as the Sloan Digital Sky Survey (SDSS), Galaxy Evolutionary Explorer (GALEX) and the INT Photometric Ha Survey (IPHAS) have discovered many new PNe and have observed the far edges of the Galaxy. Improved methods of determining distances to CSPNe are presented here, using model atmospheres, evolutionary tracks and high resolution reddening maps utilising these revolutionary surveys. Locating the CSPN is non-trivial particularly for evolved PNe, as they are extended with their central star often displaced from the centre of the nebula. Therefore, photometric criteria are required to locate the CSPN in the nebula's field. Synthetic photometry of the CSPNe is derived from spectral energy distributions (SEDs) computed from a grid of model atmospheres covering the parameter range of CSPNe. The SEDs are convolved with filter transmission curves to compute synthetic magnitudes for a given photometric system which are then calibrated with standard stars and WDs. A further project borne out of a search for luminous central stars of faint PNe, resulted in a systematic search for post-AGB stars in the Galactic halo. In this work, new candidate halo post-AGB stars are discovered from a search through the SDSS spectroscopic

  17. Outflows, dusty cores, and a burst of star formation in the North America and Pelican nebulae

    SciTech Connect

    Bally, John; Ginsburg, Adam; Probst, Ron; Reipurth, Bo; Shirley, Yancy L.; Stringfellow, Guy S. E-mail: aginsburg@eso.org E-mail: reipurth@ifa.hawaii.edu E-mail: Guy.Stringfellow@colorado.edu

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  18. Outflows, Dusty Cores, and a Burst of Star Formation in the North America and Pelican Nebulae

    NASA Astrophysics Data System (ADS)

    Bally, John; Ginsburg, Adam; Probst, Ron; Reipurth, Bo; Shirley, Yancy L.; Stringfellow, Guy S.

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The "Gulf of Mexico," located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M ⊙ BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An "activity index" formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  19. X-Rays from Young Stars and Eggs in the Eagle Nebula (M16)

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Gagne, Marc; Mytyk, Anna

    The Chandra X-ray Observatory observed the Eagle Nebula (M16) a young star forming region containing the dark columns of dust and cold molecular gas known as the ""Pillars of Creation"" or ""elephant trunks"". We identify more than 1000 X-ray sources coincident with K-band stars that are premain sequence stars ranging in spectral type from O to M. A handful of the hard X-ray sources in the pillars are spatially coincident with deeply embedded young stellar objects seen in JHK images. However none of the X-ray sources are associated with the evaporating gaseous globules (EGGs) first observed by Hester et al. (1996).

  20. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  1. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    SciTech Connect

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao

    2009-10-10

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg{sup 2} of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 mum and 70 mum, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L {sub bol} approx 0.2 L {sub sun} and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only approx0.06%.

  2. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  3. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    SciTech Connect

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; García-Díaz, Ma. T.; Rubin, Robert H.

    2015-10-15

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.

  4. The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; García-Díaz, Ma. T.; Rubin, Robert H.

    2015-10-01

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database. Based on observations at the San Pedro Martir Observatory operated by the Universidad Nacional Autónoma de México.

  5. Herschel imaging and spectroscopy of the nebula around the luminous blue variable star WRAY 15-751

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Nazé, Y.; Magain, P.; Exter, K.; Waelkens, C.; Groenewegen, M. A. T.

    2013-09-01

    We have obtained far-infrared Herschel-PACS imaging and spectroscopic observations of the nebular environment of the luminous blue variable (LBV) WRAY 15-751. The far-infrared images clearly show that the main, dusty nebula is a shell of radius 0.5 pc and width 0.35 pc extending outside the Hα nebula. Furthermore, these images reveal a second, bigger and fainter dust nebula that is observed for the first time. Both nebulae lie in an empty cavity, very likely the remnant of the O-star wind bubble formed when the star was on the main sequence. The kinematic ages of the nebulae are calculated to be about 2 × 104 and 8 × 104 years, and we estimated that each nebula contains ~0.05 M⊙ of dust. Modeling of the inner nebula indicates a Fe-rich dust. The far-infrared spectrum of the main nebula revealed forbidden emission lines coming from ionized and neutral gas. Our study shows that the main nebula consists of a shell of ionized gas surrounded by a thin photodissociation region illuminated by an "average" early-B star. We derive the abundance ratios N/O = 1.0 ± 0.4 and C/O = 0.4 ± 0.2, which indicate a mild N/O enrichment. From both the ionized and neutral gas components we estimate that the inner shell contains 1.7 ± 0.6 M⊙ of gas. Assuming a similar dust-to-gas ratio for the outer nebula, the total mass ejected by WRAY 15-751 amounts to 4 ± 2 M⊙. The measured abundances, masses and kinematic ages of the nebulae were used to constrain the evolution of the star and the epoch at which the nebulae were ejected. Our results point to an ejection of the nebulae during the red super-giant (RSG) evolutionary phase of an ~40 M⊙ star. The multiple shells around the star suggest that the mass-loss was not a continuous ejection but rather a series of episodes of extreme mass-loss. Our measurements are compatible with the recent evolutionary tracks computed for an ~40 M⊙ star with little rotation. They support the O-BSG-RSG-YSG-LBV filiation and the idea that high

  6. Magnetic Fields in Massive Stars, Their Winds, and Their Nebulae

    NASA Astrophysics Data System (ADS)

    Walder, Rolf; Folini, Doris; Meynet, Georges

    2012-05-01

    Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30 kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.

  7. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    NASA Technical Reports Server (NTRS)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  8. The Guitar nebula - A bow shock from a slow-spin, high-velocity neutron star

    NASA Technical Reports Server (NTRS)

    Cordes, James M.; Romani, Roger W.; Lundgren, Scott C.

    1993-01-01

    The discovery is reported of a prominent nebula produced by the motion of a high-velocity pulsar, PSR 2224 + 65, through partially neutral gas. The pulsar's transverse speed of over about 800 km/s makes it arguably the fastest known star in the Galaxy and guarantees that it will ultimately escape the Galactic potential well. A deep H-alpha image reveals a bright head and a giant limb-brightened 'body' whose variable width suggests that the ambient interstellar gas has density variations on length scales less than 0.1 pc. Thermalization of shock energy occurs at a rate of about 0.01 times the pulsar's spindown loss rate. These observations provide some insights into the likelihood of finding shocks around other pulsars and the use of nebulae to find high-velocity neutron stars either not acting as pulsars or with their radiation beamed away from the earth.

  9. IC 4663: the first unambiguous [WN] Wolf-Rayet central star of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Crowther, P. A.; De Marco, O.; Köppen, J.; Moffat, A. F. J.; Acker, A.; Hillwig, T. C.

    2012-06-01

    We report on the serendipitous discovery of the first central star of a planetary nebula (PN) that mimics the helium- and nitrogen-rich WN sequence of massive Wolf-Rayet (WR) stars. The central star of IC 4663 (PN G346.2-08.2) is dominated by broad He II and N V emission lines which correspond to a [WN3] spectral type. Unlike previous [WN] candidates, the surrounding nebula is unambiguously a PN. At an assumed distance of 3.5 kpc, corresponding to a stellar luminosity of 4000 L⊙, the V= 16.9 mag central star remains 4-6 mag fainter than the average luminosity of massive WN3 stars even out to an improbable d= 8 kpc. The nebula is typical of PNe with an elliptical morphology, a newly discovered asymptotic giant branch (AGB) halo, a relatively low expansion velocity (vexp= 30 km s-1) and a highly ionized spectrum with an approximately solar chemical abundance pattern. The [WN3] star is hot enough to show Ne VII emission (T*= 140 ± 20 kK) and exhibits a fast wind (v∞= 1900 km s-1), which at d= 3.5 kpc would yield a clumped mass-loss rate of ?= 1.8 × 10-8 M⊙ yr-1 with a small stellar radius (R*= 0.11 R⊙). Its atmosphere consists of helium (95 per cent), hydrogen (<2 per cent), nitrogen (0.8 per cent), neon (0.2 per cent) and oxygen (0.05 per cent) by mass. Such an unusual helium-dominated composition cannot be produced by any extant scenario used to explain the H-deficiency of post-AGB stars. The O(He) central stars share a similar composition and the discovery of IC 4663 provides the first evidence for a second He-rich/H-deficient post-AGB evolutionary sequence [WN] →O(He). This suggests that there is an alternative mechanism responsible for producing the majority of H-deficient post-AGB stars that may possibly be expanded to include other He-rich/H-deficient stars such as R Coronae Borealis stars and AM Canum Venaticorum stars. The origin of the unusual composition of [WN] and O(He) central stars remains unexplained. Based on observations made with Gemini

  10. DT Serpentis: neither a symbiotic star nor a planetary nebula associate

    NASA Astrophysics Data System (ADS)

    Frew, David J.; Bento, Joao; Bojičić, Ivan S.; Parker, Quentin A.

    2014-12-01

    We present an alternative interpretation for the putative symbiotic star DT Serpentis, and its proposed planetary nebula (PN), recently announced by Munari et al. Our analysis is based on their data combined with additional archival data trawled from Virtual Observatory data bases. We show that the star known as DT Ser is not a symbiotic star, and is merely superposed on the newly discovered but unrelated background PN. There is no evidence for any periodic variability for DT Ser as expected for a symbiotic star. We further establish that there is no physical association between DT Ser and the PN, which has a considerably higher extinction, befitting the larger distance we estimate. The significantly different radial velocities of the star and nebula also likely preclude any association. Finally, we show that the mid-infrared source detected by the IRAS and WISE surveys is actually coincident with the PN so there is no evidence for DT Ser being a dusty post-asymptotic giant branch star.

  11. The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.

    1977-01-01

    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.

  12. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, J. O.; Imura, K.; Omodaka, T.; Handa, T.; Nagayama, T.; Fujisawa, K.; Sunada, K.; Nakano, M.; Kamezaki, T.; Yamaguchi, Y.

    2013-03-01

    We mapped the NH3 (1,1), (2,2), and (3,3) lines of the molecular cloud associated with the Monkey Head Nebula (MHN) with 1'.6 angular resolution using Kashima 34 m telescope. Its kinetic temperature distribution was contrary to what is expected for a molecular cloud at the edge of an expanding H II region and suggested that the massive star associated with S252A compact HII region formed spontaneously rather than through a sequential process.

  13. An Analysis and Classification of Dying AGB Stars Transitioning to Pre-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Blake, Adam C.

    2011-01-01

    The principal objective of the project is to understand part of the life and death process of a star. During the end of a star's life, it expels its mass at a very rapid rate. We want to understand how these Asymptotic Giant Branch (AGB) stars begin forming asymmetric structures as they start evolving towards the planetary nebula phase and why planetary nebulae show a very large variety of non-round geometrical shapes. To do this, we analyzed images of just-forming pre-planetary nebula from Hubble surveys. These images were run through various image correction processes like saturation correction and cosmic ray removal using in-house software to bring out the circumstellar structure. We classified the visible structure based on qualitative data such as lobe, waist, halo, and other structures. Radial and azimuthal intensity cuts were extracted from the images to quantitatively examine the circumstellar structure and measure departures from the smooth spherical outflow expected during most of the AGB mass-loss phase. By understanding the asymmetrical structure, we hope to understand the mechanisms that drive this stellar evolution.

  14. Discovery of a [WO] central star in the planetary nebula Th 2-A

    NASA Astrophysics Data System (ADS)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  15. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA MONTAGE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This picture, taken in visible light with the Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2), represents a sweeping view of the 30 Doradus Nebula. But Hubble's infrared camera - the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) - has probed deeper into smaller regions of this nebula to unveil the stormy birth of massive stars. The montages of images in the upper left and upper right represent this deeper view. Each square in the montages is 15.5 light-years (19 arcseconds) across. The brilliant cluster R136, containing dozens of very massive stars, is at the center of this image. The infrared and visible-light views reveal several dust pillars that point toward R136, some with bright stars at their tips. One of them, at left in the visible-light image, resembles a fist with an extended index finger pointing directly at R136. The energetic radiation and high-speed material emitted by the massive stars in R136 are responsible for shaping the pillars and causing the heads of some of them to collapse, forming new stars. The infrared montage at upper left is enlarged in an accompanying image. Credits for NICMOS montages: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)

  16. Following the rapid evolution of the central star of the Stingray Nebula in real time

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole

    2014-10-01

    SAO 244567 is an unusually fast evolving star. Within twenty years only, it has turned from a B-type supergiant into the central star of the Stingray nebula. Space and ground-based observations obtained over the last decades have revealed that its spectrum changes noticeably over just a few years, showing stellar evolution in real time. Previous analysis indicates it must be a low mass star and thus the observed fast evolution is in strong contradiction with canonical post-asymptotic giant branch (AGB) evolution. A late He-shell flash is able to account for the rapid evolution. This scenario would predict an evolution back to the AGB, e.g. a decrease of the effective temperature (which is already indicated by the FUSE observations in 2006) and an increase of luminosity. With COS spectroscopy we want to follow the evolution of the surface properties of SAO 244567 to verify this thesis. The very compact nebula of SAO 244567 makes it impossible to derive these parameters from optical spectra, because most of the photospheric lines are blended by nebular emission lines thus they are not suitable for a spectral analysis. The derived surface parameters will establish constraints for late thermal pulse evolutionary calculations. With these calculations we aim not only to explain the nature of SAO 244567, but they also will provide a deeper insight in the formation process of hydrogen deficient stars, which make up 25% of the post AGB-stars and white dwarfs.

  17. IRAS 03063+5735: A BOWSHOCK NEBULA POWERED BY AN EARLY B STAR

    SciTech Connect

    Kobulnicky, Henry A.; Lundquist, Michael J.; Bhattacharjee, Anirban; Kerton, C. R. E-mail: mlundqui@uwyo.edu E-mail: kerton@iastate.edu

    2012-03-15

    Mid-infrared images from the Spitzer Space Telescope Galactic Legacy Infrared MidPlane Survey Extraordinaire program reveal that the infrared source IRAS 03063+5735 is a bowshock nebula produced by an early B star, 2MASS 03101044+5747035. We present new optical spectra of this star, classify it as a B1.5 V, and determine a probable association with a molecular cloud complex at V{sub LSR} = -38 to -42 km s{sup -1} in the outer Galaxy near l = 140.{sup 0}59, b = -0.{sup 0}250. On the basis of spectroscopic parallax, we estimate a distance of 4.0 {+-} 1 kpc to both the bowshock nebula and the molecular complex. One plausible scenario is that this is a high-velocity runaway star impinging upon a molecular cloud. We identify the H II region and stellar cluster associated with IRAS 03064+5638 at a projected distance of 64 pc as one plausible birth site. The spectrophotometric distance and linkage to a molecular feature provides another piece of data helping to secure the ill-determined rotation curve in the outer Galaxy. As a by-product of spectral typing this star, we present empirical spectral diagnostic diagrams suitable for approximate spectral classification of O and B stars using He lines in the little-used yellow-red portion of the optical spectrum.

  18. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer

  19. High Resolution Radio Observations of the Nebulae of Luminous Blue Variable Stars

    NASA Astrophysics Data System (ADS)

    Mercer, Allison; Chizek, M.; Lang, C. C.; Figer, D. F.; Najarro, P.

    2006-12-01

    Luminous Blue Variable (LBV) stars represent an important, but short-lived, evolutionary phase of massive stars marked by extreme mass-loss events. The ejecta from these events appear as associated LBV nebulae (LBVN). Radio observations of the LBVN can provide insight into previous and current mass loss rates of the star, as well as the details of expansion into the surrounding ISM. Here, we report new multi-frequency, multi-configuration Very Large Array (VLA) observations of seven Galactic LBVN. We present preliminary 8.5 and 22.5 GHz results on LBVN sources AFGL2298, NaSt1, G79.29+0.46, G26.47+0.02, the Galactic Center Pistol Star, Galactic Center FMM362 and LBV 1806-20. These high-resolution observations reveal structure in the LBVN.

  20. Low-excitation atomic gas around evolved stars. I. ISO observations of C-rich nebulae

    NASA Astrophysics Data System (ADS)

    Fong, D.; Meixner, M.; Castro-Carrizo, A.; Bujarrabal, V.; Latter, W. B.; Tielens, A. G. G. M.; Kelly, D. M.; Sutton, E. C.

    2001-02-01

    We present ISO LWS and SWS spectra of far-infrared (FIR) atomic fine structure lines in 12 carbon-rich evolved stars including asymptotic giant branch (AGB) stars, proto-planetary nebulae (PPNe) and planetary nebulae (PNe). The spectra include grating and Fabry-Perot measurements of the line emission of [O I], [C Ii], [Si I], [Si Ii], [S I], [Fe I], [Fe Ii], [Ne Ii] and [N Ii]. Only 5 out of our 12 object sample have been detected in at least one of these FIR lines. When we include the 12 oxygen-rich evolved stars from Castro-Carrizo et al. (\\cite{CastroCarrizo00}, Paper II), we find that atomic line emission is observed only in those sources in which the central star's T_eff >= 10 000 K. Above this cutoff, the number of detectable lines and the intensity of the line emission increase as T_eff increases. These trends suggest that the atomic lines originate from photodissociation regions (PDRs). In general, the kinematics of the atomic gas, derived from line fits to the Fabry-Perot data, are comparable to the molecular expansion velocities. These kinematics are expected for atomic cooling lines associated with circumstellar PDRs. AFGL 618, however, appears exceptional with dual velocity components: a narrow component (<20 km s-1) that may be associated with a PDR, and a broad component (~66 km s-1) that may be produced in post-shocked, accelerated gas. A new PDR code which properly treats enhanced carbon abundances was used to model the observations of our carbon-rich objects. The predicted line intensities agree reasonably well with the observations. Shock models, however, do not compare well with the observed line intensities. PDR mass estimates ranging from ~0.01-0.2 M_sun were derived from the [C Ii] 158 mu m line emission. The atomic gas constitutes only a small fraction of the total mass for young planetary nebulae, but its importance grows significantly as the nebulae evolve. Our overall analysis shows that photodissociation, and not shocks, dominates the

  1. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 solar mass). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the

  2. SPH Simulations of Star Formation in the Eagle Nebula (M16)

    NASA Astrophysics Data System (ADS)

    Morgan, Larry; Miao, Jingqi; Thompson, Mark; White, Glenn

    We present 3D-SPH simulations of triggered star formation at the tips of the well-observed Eagle Nebula in order to understand induced star formation by radiation fields, to gain an overview about the evolutionary processes occurring at the tips of these "elephant trunks". We attempt to answer questions such as: are the tips of the Eagle Nebula trunks starting the final stages of collapse? Or are the structures seen in M16 in a near-steady state? The modelling is based on an existing SPH code, which includes a large chemical network, refined chemical and dust properties, and has been upgraded to include the interaction of an external radiation field with molecular clouds as well as relative abundances of molecular species subject to different boundary and initial conditions. We investigate the effects of the initial density distribution and chaotic motion of the molecular clouds on the dynamical collapse of their cores. The role of the radiation field flux strength in triggering star formation at the tips of these elephant trunks is examined in order to explain the observed star formation.

  3. Star Formation and Mysterious Hard X-Ray Emission in the Very Young HII Region, Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee

    2001-09-01

    The Trifid Nebula (M~20) is one of the best-known HII regions, ionized by a single O7.5 star, HD 164492. The Trifid was rediscovered as a dynamic, "pre-Orion" star forming region containing young stars undergoing violent mass ejections. The ROSAT image revealed strong emission from HD 164492 and a dozen X-ray sources. ASCA spectra of the O star show an unexpectedly hot (3 keV) component in addition to a cooler component from the O star atmosphere. We propose an ACIS-S observation of the Trifid Nebula for 60 ks. The sub arcsec image will resolve the O star from its immediate environment, and likely detect hundreds of low mass objects. We will examine the high-energy interaction between the wind from the O star and the dense ISM.

  4. Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Damiani, F.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-10-01

    Context. NGC 6611 and its parental cloud, the Eagle Nebula (M 16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. In our previous studies of the Eagle Nebula, we identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 μ m. Aims: In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. Methods: We confirm the membership of these stars to M 16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T Tauri stars with disks and envelopes. Results: We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. Conclusions: The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of Class II stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light. Table with the

  5. Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Reach, William

    2004-09-01

    The Trifid Nebula (M20) is a double-nebula, with a blue reflection nebula above a red ionized nebula, the latter being trisected by dark lanes. This observing program iamges the reflection and ionized nebulae and the dark lanes. The mid-infrared emission will trace the reflection nebula via aromatic hydrocarbon emissions and the dark lane via hot, small grains. Massive protostars have been detected in the dark lanes using submillimeter observations; the new mid-infrared observations will fully sample the lower-mass protostars. The Trifid is one of the youngest known HII regions, and the interaciton of its young, massive O-type star with its surrounding placental material is clearly affecting its ability to form new stars.

  6. Herschel observations of the nebula M1-67 around the Wolf-Rayet star WR 124

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Waelkens, C.; Groenewegen, M. A. T.; Barlow, M. J.

    2016-04-01

    Infrared Herschel imaging and spectroscopic observations of the nebula M1-67 around the Wolf-Rayet star WR 124 have been obtained along with optical imaging observations. The infrared images reveal a clumpy dusty nebula that extends up to 1 pc. The comparison with the optical images shows that the ionized gas nebula coincides with the dust nebula, the dust and the gas being mixed together. A photodissociation region is revealed from the infrared spectroscopic analysis. The analysis of the infrared spectrum of the nebula, where forbidden emission lines of ionized elements were detected, showed that the nebula consists of mildly processed material with the calculated abundance number ratios being N/O = 1.0 ± 0.5 and C/O = 0.46 ± 0.27. Based on a radiative transfer model, the dust mass of the nebula was estimated to be 0.22 M⊙ with a population of large grains being necessary to reproduce the observations. The comparison of the mass-loss rate and the abundance ratios to theoretical models of stellar evolution led to the conclusion that the nebular ejection took place during a RSG/YSG evolutionary phase of a central star with an initial mass of 32 M⊙. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, La Silla, Chile.

  7. Revealing spectacular, young and sequential star forming regions of the Trifid Nebula with Spitzer

    NASA Astrophysics Data System (ADS)

    Rho, J.; Reach, W. T.; Lefloch, B.; Fazio, G.

    2004-12-01

    Spitzer IRAC and MIPS images of a young HII region, the Trifid Nebula (M20), reveal its spectacular appearance in infrared light, with recently formed massive protostars and numerous young stars illuminating the surrounding molecular clouds from which they formed and unveiling large scale filamentary dark clouds, which demonstrate a special evolutionary stage of HII regions. The hot dust grains show contrasting infrared colors in shells, arcs, bow-shocks and dark cores. Infrared emission is detected from the central O star complex, including the protoplanetary disks. Large populations of young stars including three dozen protostars (Classes I and 0) and over one hundred Class II pre-main sequence stars, are identified. The protostars are clustered along the filamentary dark lanes on western side of M20, which include the reflection nebula in the northern portion of the Trifid. Class II stars are distributed along the ionization front at the circular shape of HII regions. We suggest that the distribution of the protostars revealed by Spitzer is a result of sequential star formation triggered by the expansion of the young HII region of the Trifid Nebula along the filamentary dark clouds, where the massive stars tend to form in groups. The Spitzer images revealed clusters of protostars within the Class 0 objects, which were previously believed to be "starless" cores. These Spitzer images, with unprecedented sensitivity, now uncover the Class 0 protostars in infrared that are powering the SiO and CO outflows. Clusters of protostars are also detected from each of the continuum peaks TC3 and TC4, and some of these sources feature silicate absorption lines in their spectral energy distribution. The driving infrared source of a SiO outflow and submillimeter core TC1, near the exciting O star, is detected within a heated, infrared shell surrounding a dark, cold envelope. Lastly, the images also unveil three infrared sources lying along axis of the photoionized jet HH399 and

  8. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE

    SciTech Connect

    Montez, R. Jr.; Kastner, J. H.; Freeman, M.; and others

    2015-02-10

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.

  9. The Chandra Planetary Nebula Survey (ChanPlaNS). III. X-Ray Emission from the Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Montez, R., Jr.; Kastner, J. H.; Balick, B.; Behar, E.; Blackman, E.; Bujarrabal, V.; Chu, Y.-H.; Corradi, R. L. M.; De Marco, O.; Frank, A.; Freeman, M.; Frew, D. J.; Guerrero, M. A.; Jones, D.; Lopez, J. A.; Miszalski, B.; Nordhaus, J.; Parker, Q. A.; Sahai, R.; Sandin, C.; Schonberner, D.; Soker, N.; Sokoloski, J. L.; Steffen, M.; Toalá, J. A.; Ueta, T.; Villaver, E.; Zijlstra, A.

    2015-02-01

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively "hard" (>=0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, L X, that appear uncorrelated with the CSPN bolometric luminosity, L bol and (2) lower-temperature plasmas with L X/L bol ~ 10-7. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.

  10. The Nearby AGB Star L2 Puppis: The Birth Of a Planetary Nebula?

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Montargès, M.; Lagadec, E.

    2015-12-01

    Adaptive optics observations in the infrared (VLT/NACO, Kervella et al. [6]) and visible (VLT/SPHERE, Kervella et al. [7]) domains revealed that the nearby AGB star L2 Pup (d = 64 pc) is surrounded by a dust disk seen almost edge-on. Thermal emission from a large dust "loop" is detected at 4 μm up to more than 10 AU from the star. We also detect a secondary source at a separation of 32 mas, whose nature is uncertain. L2 Pup is currently a relatively "young" AGB star, so we may witness the formation of a planetary nebula. The mechanism that breaks the spherical symmetry of mass loss is currently uncertain, but we propose that the dust disk and companion are key elements in the shaping of the bipolar structure. L2 Pup emerges as an important system to test this hypothesis.

  11. The central star of the planetary nebula Abell 78

    NASA Technical Reports Server (NTRS)

    Kaler, J. B.; Feibelman, W. A.

    1984-01-01

    The ultraviolet spectrum of the nucleus of Abell 78, one of the two planetaries known to contain zones of nearly pure helium, is studied. The line spectrum and wind velocities are examined, the determination of interstellar extinction for assessing circumstellar dust is improved, and the temperature, luminosity, and core mass are derived. The results for A78 are compared with results for A30, and it is concluded that the dust distributions around the two central stars are quite different. The temperature of the A78 core is not as high as previously believed, and almost certainly lies between 67,000 K and 130,000 K. The most likely temperature range is 77,000-84,000 K. The core mass lies between 0.56 and 0.70 solar mass, with the most likely values between 0.56 and 0.58 solar mass.

  12. Rotational velocities of single and binary O-type stars in the Tarantula Nebula

    NASA Astrophysics Data System (ADS)

    Ramírez-Agudelo, O. H.; Sana, H.; de Koter, A.; Simón-Díaz, S.; de Mink, S. E.; Tramper, F.; Dufton, P. L.; Evans, C. J.; Gräfener, G.; Herrero, A.; Langer, N.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Puls, J.; Taylor, W. D.; Vink, J. S.

    2015-01-01

    Rotation is a key parameter in the evolution of massive stars, affecting their evolution, chemical yields, ionizing photon budget, and final fate. We determined the projected rotational velocity, υ e sin i, of ~330 O-type objects, i.e. ~210 spectroscopic single stars and ~110 primaries in binary systems, in the Tarantula nebula or 30 Doradus (30 Dor) region. The observations were taken using VLT/FLAMES and constitute the largest homogeneous dataset of multi-epoch spectroscopy of O-type stars currently available. The most distinctive feature of the υ e sin i distributions of the presumed-single stars and primaries in 30 Dor is a low-velocity peak at around 100 km s-1. Stellar winds are not expected to have spun-down the bulk of the stars significantly since their arrival on the main sequence and therefore the peak in the single star sample is likely to represent the outcome of the formation process. Whereas the spin distribution of presumed-single stars shows a well developed tail of stars rotating more rapidly than 300 km s-1, the sample of primaries does not feature such a high-velocity tail. The tail of the presumed-single star distribution is attributed for the most part - and could potentially be completely due - to spun-up binary products that appear as single stars or that have merged. This would be consistent with the lack of such post-interaction products in the binary sample, that is expected to be dominated by pre-interaction systems. The peak in this distribution is broader and is shifted toward somewhat higher spin rates compared to the distribution of presumed-single stars. Systems displaying large radial velocity variations, typical for short period systems, appear mostly responsible for these differences.

  13. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  14. The Eagle Nebula: Pillars of Creation, EGGs, and PMS Stars in NGC 6611

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey; Gagne, M.; Mytyk, A.; McCaughrean, M.; Andersen, M.

    2006-12-01

    We report on our 78 ks Chandra ACIS-I observation of the Eagle Nebula (M16) and the young cluster NGC 6611. We detected a total of 1101 X-ray sources, most of which are PMS stars in the cluster. Near the tip of the one of the Pillars of Creation, we detect a luminous X-ray source M16ES-1 which we believe is a high mass embedded protostar perhaps heated by magnetically channeled wind shocks. We detected no X-rays from the EGGs, the evaporating gaseous globules first observed in a WFPC2 image by Hester et al. (1996) near the edges of the Pillars. The EGGs could contain condensations that are very early stages of low mass star formation. The nondetection of EGGs with embedded infrared sources at X-ray luminosities well below the low-mass PMS stars in Orion indicates either that the EGGs do not contain protostars or that at the very early stage of evolution low-mass protostars have not yet become X-ray active. We also report on the X-ray properties of the YSOs in NGC 6611 and compare their properties to the YSOs in the Orion Nebula Cluster and other young clusters. This work is supported by NASA through grant H-04630D to the University of Colorado.

  15. He 2-104: A link between symbiotic stars and planetary nebulae

    NASA Technical Reports Server (NTRS)

    Lutz, Julie H.; Kaler, James B.; Shaw, Richard A.; Schwarz, Hugo E.; Aspin, Colin

    1989-01-01

    Ultraviolet, optical and infrared observations of He 2-104 are presented, and estimates for some of the physical properties of the nebular shell are made. It is argued that He 2-104 is in transition between the D-type symbiotic star and bipolar planetary nebula phases and, as such, represents a link between subclasses of these two types of objects. The model includes a binary system with a Mira variable and a hot, evolved star. Previous mass loss has resulted in the formation of a disk of gas and dust around the whole system, while the hot star has an accretion disk which produces the observed highly ionized emission line spectrum. Emission lines from cooler, lower density gas is also observed to come from the nebula. In addition, matter is flowing out of the system in a direction perpendicular to the disk with a high velocity and is impacting upon the previously-ejected red giant wind and/or the ambient interstellar medium.

  16. Photometry and spectroscopy of the central star of the Trifid nebula

    NASA Astrophysics Data System (ADS)

    Kohoutek, L.; Mayer, P.; Lorenz, R.

    1999-01-01

    UBV photometry of the central star of the Trifid nebula - HD 164492, which has so far been suspected of photometric as well as of radial velocity variability - is presented. The results of our photometry do not confirm any variability. Moreover, based on new high resolution CCD spectra any radial velocity variability can be discarded. Photometry of several other members of the multiple stellar system is included; according to this photometry, the system is a physical one. Equivalent widths for the main component of HD 164492 are given. Positions measured on CCD exposures are presented too. Based on observations collected at the European Southern Observatory, La Silla, Chile.

  17. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    NASA Astrophysics Data System (ADS)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2016-10-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping thorough the poles. Then we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with "close collimated lobes".

  18. Chandra Reveals a Compact Nebula Created by a Shooting Neutron Star

    NASA Astrophysics Data System (ADS)

    2000-06-01

    In one of its most bizarre images yet, NASA's Chandra X-ray Observatory shows the details of a compact nebula that resembles a gigantic cosmic crossbow. The nebula, located in the Vela supernova remnant, is created as a rapidly rotating neutron star, or pulsar, spins out rings and jets of high-energy particles while shooting through space. "What is fascinating is that the jets from the pulsar are directed exactly along the direction of the pulsar's motion," said Dr. George Pavlov of Penn State University, University Park today at the 196th national meeting of the American Astronomical Society in Rochester, New York. "The southern jet looks like a rocket exhaust!" The X-ray jet can be traced all the way in to the neutron star, and an inner ring is seen for the first time. This ring is thought to represent a shock wave due to matter rushing away from the neutron star. More focused flows at the neutron star's polar regions produce jets of particles that blast away at near the speed of light. Pavlov explained that shortly after the star exploded, jets with unequal thrust along the poles of the neutron star could have accelerated it like a rocket. The neutron star is enveloped in a cloud of high-energy particles emitting X rays as they spiral around magnetic field lines. This cloud, or nebula, is embedded in a much larger cloud produced by the supernova and has a swept-back, cometary shape because of its motion through the larger cloud. The dramatic bow-like structure at the leading edge of the nebula is perpendicular to the jets and has the appearance of a cosmic crossbow with the jets as the arrows. This bow and the smaller one inside it, are thought to be the near edges of tilted rings of X-ray emission from high-energy particles produced by the central neutron star. The neutron star-ring-jet system, which resulted from an explosion in the constellation Vela ten thousand or more years ago, is similar to the remarkable structure observed by Chandra in the Crab Nebula

  19. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Miller Bertolami, Marcelo Miguel

    2016-04-01

    Context. The post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The two grids of models presently available are based on outdated micro- and macrophysics and do not agree with each other. Studies of the central stars of planetary nebulae (CSPNe) and post-AGB stars in different stellar populations point to significant discrepancies with the theoretical predictions of post-AGB models. Aims: We study the timescales of post-AGB and CSPNe in the context of our present understanding of the micro- and macrophysics of stars. We want to assess whether new post-AGB models, based on the latter improvements in TP-AGB modeling, can help us to understand the discrepancies between observation and theory and within theory itself. In addition, we aim to understand the impact of the previous AGB evolution for post-AGB phases. Methods: We computed a grid of post-AGB full evolutionary sequences that include all previous evolutionary stages from the zero age main sequence to the white dwarf phase. We computed models for initial masses between 0.8 and 4 M⊙ and for a wide range of initial metallicities (Z0 = 0.02, 0.01, 0.001, 0.0001). This allowed us to provide post-AGB timescales and properties for H-burning post-AGB objects with masses in the relevant range for the formation of planetary nebulae (~0.5-0.8 M⊙). We included an updated treatment of the constitutive microphysics and included an updated description of the mixing processes and winds that play a key role during the thermal pulses (TP) on the AGB phase. Results: We present a new grid of models for post-AGB stars that take into account the improvements in the modeling of AGB stars in recent decades. These new models are particularly suited to be inputs in studies of the formation of planetary nebulae and for the determination of the properties of CSPNe from their observational parameters. We find post-AGB timescales that are at

  20. Far-Ultraviolet Temperature Diagnostics for Hot Central Stars of Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Ipin, R. C.; Herald, J.

    2007-01-01

    The effective temperature of hot central stars of planetary nebulae is usually determined from the ratios of optical He II lines. However, far-ultraviolet spectra from the FUSE satellite of several hot (T(sub eff) > 70,000 K) hydrogen-rich central stars have stellar features that imply a significantly hotter effective temperature than that determined from He II. There are many stellar features in the long wavelength portion of the FUSE spectrum. These include O VI 1146-47, F VI 1039.5, FeVII 1118.6, 1141.4, FeVI 1120.9, 1131.5, and NiVI 1124.2, 1148.2. The strong FVI 1139.5 line is of interest because of the large overabundance (over 100X solar) of F in some PG1159 stars reported recently by Werner et al. (2005). Modeling these spectral features may provide an method for measuring the effective temperature of these stars independent of the He II lines. An example of HD 200516, the central star of NGC 7009 (T(sub eff)= 82000 K from He II vs 95000 K from Far-W metal lines) is presented.

  1. The post-common envelope central stars of the planetary nebulae Henize 2-155 and Henize 2-161

    NASA Astrophysics Data System (ADS)

    Jones, D.; Boffin, H. M. J.; Rodríguez-Gil, P.; Wesson, R.; Corradi, R. L. M.; Miszalski, B.; Mohamed, S.

    2015-08-01

    We present a study of Hen 2-155 and Hen 2-161, two planetary nebulae which bear striking morphological similarities to other planetary nebulae known to host close-binary central stars. Both central stars are revealed to be photometric variables while spectroscopic observations confirm that Hen 2-155 is host to a double-eclipsing, post-common-envelope system with an orbital period of 3h33m making it one of the shortest period binary central stars known. The observations of Hen 2-161 are found to be consistent with a post-common-envelope binary of period ~1 day. A detailed model of the central star of Hen 2-155 is produced, showing the nebular progenitor to be a hot, post-AGB remnant of approximately 0.62 M⊙, consistent with the age of the nebula, and the secondary star to be an M dwarf whose radius is almost twice the expected zero age main sequence radius for its mass. In spite of the small numbers, all main-sequence companions, of planetary nebulae central stars, to have had their masses and radii constrained by both photometric and spectroscopic observations have also been found to display this "inflation". The cause of the "inflation" is uncertain but is probably related to rapid accretion, immediately before the recent common-envelope phase, to which the star has not yet thermally adjusted. The chemical composition of both nebulae is also analysed, showing both to display elevated abundance discrepancy factors. This strengthens the link between elevated abundance discrepancy factors and close binarity in the nebular progenitor. Full Tables 2-5, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A19

  2. BD-22°3467, a DAO-type star exciting the nebula Abell 35

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Köppen, J.; Kruk, J. W.

    2012-12-01

    Context. Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (Teff), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims: Previous spectral analyses of the exciting star of the nebula A 35, BD-22°3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22°3467 and to determine the abundances of the respective species precisely. Methods: For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results: The best agreement with the UV observation of BD-22°3467 is achieved at Teff = 80 ± 10 kK and log g = 7.2 ± 0.3. While Teff of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M ≈ 0.48 M⊙. Conclusions.BD-22°3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf

  3. The Photoionization of a Star-forming Core in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Cernicharo, J.; Rodríguez, L. F.; Miville-Deschênes, M. A.; Cesarsky, D.; Heras, A.

    2002-12-01

    We have carried out a comprehensive multiwavelength study of the bright-rimmed globule TC2 in the Trifid Nebula, using the IRAM 30 m telescope, the VLA centimeter array, and the Infrared Space Observatory (ISO). TC2 is one of the very few globules to exhibit signs of active ongoing star formation while being photoevaporated by the Lyman continuum flux of the exciting star of the nebula (~1010 cm-2 s-1). The globule consists of a cold dense core of mass 27 Msolar surrounded by a lower density envelope of molecular gas. The impinging Lyman continuum photons induce the propagation of an ionization front into the globule. The evaporation of the ionized gas forms a thin layer of density ne=(1-2)×103 cm-3 around the globule, which could be mapped with the VLA. The globule is illuminated mainly on its rear side, by a far-ultraviolet field of intensity G0~=1000. It creates a photon-dominated region (PDR) below the surface, which was mapped and characterized with the ISOCAM circular variable filter and the Short Wavelength Spectrometer (SWS) on board ISO. The physical conditions derived from the analysis of the far-infrared lines [O I] 63, 145 μm and [C II] 158 μm and the continuum emission are in good agreement with some recent PDR models. The emission of the polycyclic aromatic hydrocarbon band at 6.2, 7.7, 8.6, and 11.3 μm is detected over the whole globule. The relative intensity variations observed across the globule, in the PDR and the photoionized envelope, are consistent with the changes in the ionization fraction. In the head of TC2, we find a second kinematic component, which is the signature of the radiatively driven collapse undergone by the globule. This component indicates that the PDR propagates at low velocity inside the body of TC2. The molecular emission suggests that the star formation process was probably initiated a few times 105 years ago, in the large burst that led to the formation of the nebula. The globule has already evaporated half the mass

  4. BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35

    NASA Technical Reports Server (NTRS)

    Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.

    2013-01-01

    Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch

  5. Spectacular Spitzer images of the Trifid Nebula: Protostars in a young, massive-star-forming region

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Reach, W. T.; Lefloch, B.; Fazio, G.

    2005-07-01

    Spitzer IRAC and MIPS images of the Trifid Nebula (M20) reveal its spectacular appearance in infrared light, demonstrating its special evolutionary stage: recently-formed massive protostars and numerous young stars, including a single O star that illuminates the surrounding molecular cloud from which it formed and unveiling large-scale, filamentary dark clouds. The hot dust grains show contrasting infrared colors in shells, arcs, bow-shocks and dark cores. Multiple protostars, previously defined as Class 0 from dust continuum and molecular outflow observations, are revealed in the infrared within the cold dust continuum peaks TC3 and TC4. The cold dust continuum cores of TC1 and TC2 contain only one protostar each; the newly-discovered infrared protostar in TC2 is the driving source of the HH399 jet. The Spitzer color-color diagram allowed us to identify ~150 young stellar objects (YSO) and classify them into different evolutionary stages, and also revealed a new class of YSO which are bright at 24μm but with spectral energy distribution peaking at 5-8μm; we name these sources ``Hot excess'' YSO. Despite of expectation that Class 0 sources would be ``starless'' cores, the Spitzer images, with unprecedented sensitivity, uncover mid-infrared emission from these Class 0 protostars. The mid-infrared detections of Class 0 protostars show that the emission escapes the dense, cold envelope of young protostars; the mid-infrared emission cannot arise from the same location as the mm-wave emission, and instead must arise from a much smaller region with less intervening extinction to the central accretion. The presence of multiple protostars within the cold cores of Class 0 objects implies that clustering occurs at this early stage of star formation. The most massive stars are located at the center of the cluster and are formed simultaneously with low-mass stars. The angular and mass distributions of protostars within the dust cores imply that these early protostars are

  6. Binary Central Stars of Planetary Nebulae Discovered through Photometric Variability. IV. The Central Stars of HaTr 4 and Hf 2-2

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Bond, Howard E.; Frew, David J.; Schaub, S. C.; Bodman, Eva H. L.

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  7. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  8. X-ray Emission from Hot Bubbles in nebulae around Evolved Stars

    NASA Astrophysics Data System (ADS)

    Toalá Sánz, Jesús Alberto

    This thesis presents an observational and numerical study on the X-ray emission related to the formation and evolution from hot bubbles in nebulae around evolved stars. The observational part of this study consists mainly in observations obtained from the X-ray satellites X-ray Multi Mirror Mission (XMM-Newton) and Chandra X-ray Observatory (CXO). We have made use of optical, infrared, and ultraviolet observations that have complemented our results and analysis. These observations have allowed us to study the Wolf-Rayet (WR) nebulae S 308 and NGC 6888 and that around the WR star WR 16. We have also studied the planetary nebulae (PNe) NGC 6543 and Abell 78 (A 78). The X-ray telescopes, XMM-Newton and CXO, have allowed us to study the distribution and physical characteristics of the hot and diffuse gas in the WR nebulae S 308 and NGC 6888 with exquisite detail. Even though the CXO observations do not map entirely NGC 6888, we are able to estimate global parameters of the X-ray emission making use of ROSAT observations. Previous observations performed with were hampered by Suzaku, ROSAT, and ASCA were hampered by a large number of point sources in the line of sight of the nebulae. S 308 was observed with XMM-Newton with four pointings. We have made use of the most up-to-date tools for the analysis of soft and diffuse X-ray emission (the ESAS tasks). We found that in both nebulae the hot gas has a plasma temperature of 1-1.5×10^6 K and it is delineated by the [O III] emission and not the Hα as stated in previous studies. A notable difference between these two WR nebulae is that S 308 has a limb-brightened morphology in the distribution of its hot gas, while NGC 6888 displays three maxima. We have studied the WR nebula around WR 16 with archived XMM-Newton observations. Even though it was expected that diffuse X-ray emission should be detected from a spherical, non-disrupted WR nebula, by comparison with S 308 and NGC 6888, we are not able to detect such emission

  9. The rapid evolution of the exciting star of the Stingray nebula

    NASA Astrophysics Data System (ADS)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J. W.; Hamann, W.-R.; Sander, A.; Todt, H.

    2014-05-01

    Context. SAO 244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (Ṁ/M⊙ yr-1) = -9.0 to -11.6 and the terminal wind velocity increased from v∞ = 1800 km s-1 to 2800 km s-1. Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO 244567 in the log Teff-log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO 244567 must be a low-mass star (M< 0.55 M⊙). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary

  10. Photometric and spectroscopic study of low mass embedded star clusters in reflection nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2005-02-01

    An analysis of the candidate embedded stellar systems in the reflection nebulae vdBH-RN 26, vdBH-RN} 38, vdBH-RN} 53a, GGD 20, ESO 95-RN 18 and NGC 6595 is presented. Optical spectroscopic data from CASLEO (Argentina) in conjunction with near infrared photometry from the 2MASS Point Source Catalogue were employed. The analysis is based on source surface density, colour-colour and colour-magnitude diagrams together with theoretical pre-main sequence isochrones. We take into account the field population affecting the analysis by carrying out a statistical subtraction. The fundamental parameters for the stellar systems were derived. The resulting ages are in the range 1-4 Myr and the objects are dominated by pre-main sequence stars. The observed masses locked in the clusters are less than 25 M⊙. The studied systems have no stars of spectral types earlier than B, indicating that star clusters do not necessarily evolve through an HII region phase. The relatively small locked mass combined with the fact that they are not numerous in catalogues suggests that these low mass clusters are not important donors of stars to the field populations. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  11. Spectacular Spitzer Images of the Trifid Nebula: Protostars in a Young, Massive-Star-forming Region

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Reach, William T.; Lefloch, Bertrand; Fazio, Giovanni G.

    2006-06-01

    Spitzer IRAC and MIPS images of the Trifid Nebula (M20) reveal its spectacular appearance in infrared light, highlighting the nebula's special evolutionary stage. The images feature recently formed massive protostars and numerous young stellar objects, and a single O star that illuminates the surrounding molecular cloud from which it formed, and unveil large-scale, filamentary dark clouds. Multiple protostars are detected in the infrared, within the cold dust cores of TC3 and TC4, which were previously defined as Class 0. The cold dust continuum cores of TC1 and TC2 contain only one protostar each. The Spitzer color-color diagram allowed us to identify ~160 young stellar objects (YSOs) and classify them into different evolutionary stages. The diagram also revealed a unique group of YSOs that are bright at 24 μm but have the spectral energy distribution peaking at 5-8 μm. Despite expectation that Class 0 sources would be ``starless'' cores, the Spitzer images, with unprecedented sensitivity, uncover mid-infrared emission from these Class 0 protostars. The mid-infrared detections of Class 0 protostars show that the emission escapes the dense, cold envelope of young protostars. The mid-infrared emission of the protostars can be fit by two temperatures of 150 and 400 K; the hot core region is probably optically thin in the mid-infrared regime, and the size of hot core is much smaller than that of the cold envelope. The presence of multiple protostars within the cold cores of Class 0 objects implies that clustering occurs at this early stage of star formation. The most massive star in the TC3 cluster is located at the center of the cluster and at the bottom of the gravitational potential well.

  12. Nonlinear reflection from the surface of neutron stars and features of radio emission from the pulsar in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2016-08-01

    There are no explanations for the high-frequency component of the emission from the pulsar in the Crab nebula, but it may be a manifestation of instability in nonlinear reflection from the star's surface. Radiation from relativistic positrons flying from the magnetosphere to the star and accelerated by the electric field of the polar gap is reflected. The instability involves stimulated scattering on surface waves.

  13. Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula

    NASA Astrophysics Data System (ADS)

    Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.

    The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.

  14. Pre-main-sequence stars older than 8 Myr in the Eagle nebula

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino; Guarcello, M. G.; Bonito, Rosaria

    2013-11-01

    Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle nebula that have prominent near-infrared excess and optical colours typical of pre-main-sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Hα emission line profile revealing active accretion. In principle, the V - I colours of all these stars would be consistent with those of young PMS objects (<1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few per cent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness, their positions in the colour-magnitude diagram and the weak Li absorption lines of the stars studied spectroscopically suggest that most of them are at least eight times older than the ˜1 Myr-old PMS stars already known in this cluster and could be as old as ˜30 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 8 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 7 per cent to the disc frequency at ˜16 Myr in NGC 6611. These values imply a characteristic exponential lifetime of ˜6 Myr for disc dissipation.

  15. The discovery and characterisation of binary central stars in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Jones, David

    2016-07-01

    Close binary central stars of planetary nebulae are key in constraining the poorly- understood common-envelope phase of evolution, which in turn is critical in understanding the formation of a wide-range of astrophysical phenomena (including cataclysmic variables, low-mass X-ray binaries and supernovae type Ia). Here, I present the results of our on-going, targeted search for close-binaries in planetary nebulae which has led to the discovery of more than ten new central binaries in just the last few years (almost the same as the total discovered during the 1980s and 1990s together). This success has been rooted in the targeted selection of objects for study, based on morphological features deemed typical of binarity, as well as novel observing strategies (including the employment of narrow-band filters for photometry to minimise nebular contamination), both of which are discussed. These new discoveries coupled with the painstaking characterisation of both newly discovered systems and those from the literature mean that we are now in a position to begin to probe the poorly understood common-envelope phase.

  16. Chemical Abundances of the Planetary Nebula IC 4634 and Its Central Star

    NASA Technical Reports Server (NTRS)

    Hyung, S.; Aller, L. H.; Feibelman, W. A.

    1999-01-01

    We have measured the spectral line intensities of the metal poor planetary nebula IC 4634. Using a photo-ionization model calculation, we try to fit the the optical and UV region spectra, i.e., Hamilton Echelle and IUE observations. From direct images, one expects complicated density variations, but the model predicts a range in densities that may be smaller than actually exist. We find N(sub epsilon) approximates 5000 /cubic meter. In spite of the geometrical complexity of the S shaped double-lobed structure, the simple photoionization model with a spherical symmetry can fit most emission lines, fairly well. The derived chemical composition has been compared with previous estimates and also with the Sun - The metallicity in IC 4634 appears to be lower than in the Sun or the average planetary nebula. The most likely temperature of the central ionizing source of IC 4634 appears to be about 55,000 K. We find a central star mass of about 0.55 Solar Mass from comparison with theoretical evolutionary tracks.

  17. The kinematics of the quadrupolar nebula M 1-75 and the identification of its central star

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Rodríguez-Gil, P.; Hernandez, O.; Corradi, R. L. M.; Jones, D.; Giammanco, C.; Beckman, J. E.; Carignan, C.; Fathi, K.; Rubio-Díez, M. M.; Jiménez-Luján, F.; Benn, C. R.

    2010-09-01

    Context. The link between how bipolar planetary nebulae are shaped and their central stars is still poorly understood. Aims: This paper investigates the kinematics and shaping of the multipolar nebula M 1-75, and briefly discusses the location and nature of its central star. Methods: Fabry-Perot data from GHαFAS on the WHT that samples the Doppler shift of the [Nii] 658.3 nm line are used to study the dynamics of the nebula by means of a detailed 3D spatio-kinematical model. Multi-wavelength images and spectra from the WFC and IDS on the INT, as well as from ACAM on the WHT, allowed us to constrain the parameters of the central star. Results: The two pairs of lobes, angularly separated by ~22°, were ejected simultaneously approx. ~3500-5000 years ago, at the adopted distance range from 3.5 to 5.0 kpc. The larger lobes show a slight degree of point symmetry. The formation of the nebula could be explained by wind interaction in a system consisting of a post-AGB star surrounded by a disc warped by radiative instabilities. This requires the system to be a close binary or a single star that engulfed a planet as it died. On the other hand, we present broad- and narrow-band images and a low S/N optical spectrum of the highly-reddened, previously unnoticed star that is likely the nebular progenitor. Its estimated V-I colour allows us to derive a rough estimate of the parameters and nature of the central star. Based on observations made with the 4.2 m William Herschel Telescope and the 2.5 m Isaac Newton Telescope, both operated on the island of la Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  18. AGB stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Gallino, R.; Busso, M.; Raiteri, C. M.

    1993-01-01

    The purpose is to estimate the possible contribution of some short-lived nuclei to the early solar nebula from asymptotic giant branch (AGB) sources. Low mass (1 to 3 solar mass) AGB stars appear to provide a site for synthesis of the main s process component for solar system material with an exponential distribution of neutron irradiations varies as exp(-tau/tau(sub 0)) (where tau is the time integrated neutron flux with a mean neutron exposure tau(sub 0)) for solar abundances with tau(sub 0) = 0.28 mb(sup -1). Previous workers estimated the synthesis of key short-lived nuclei which might be produced in AGB stars. While these calculations exhibit the basic characteristics of nuclei production by neutron exposure, there is need for a self-consistent calculation that follows AGB evolution and takes into account the net production from a star and dilution with the cloud medium. Many of the general approaches and the conclusions arrived at were presented earlier by Cameron. The production of nuclei for a star of 1.5 solar mass during the thermal pulsing of the AGB phase was evaluated. Calculations were done for a series of thermal pulses with tau(sub 0) = 0.12 and 0.28 mb(sup -1). These pulses involve s nucleosynthesis in the burning shell at the base of the He zone followed by the ignition of the H burning shell at the top of the He zone. After about 10-15 cycles the abundances of the various nuclei in the He zone become constant. Computations of the abundances of all nuclei in the He zone were made following Gallino. The mass of the solar nebula was considered to consist of some initial material of approximately solar composition plus some contributions from AGB stars. The ratios of the masses required from the AGB He burning zone to the ISM necessary to produce the observed value of Pd-107/Pd-108 in the early solar system were calculated and this dilution factor was applied to all other relevant nuclei.

  19. Butterfly Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this image of the 'butterfly wing'- shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, 1997 as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA shuttle astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles.

  20. Upper limits to the magnetic field in central stars of planetary nebulae

    SciTech Connect

    Asensio Ramos, A.; Martínez González, M. J.; Manso Sainz, R.; Corradi, R. L. M.; Leone, F.

    2014-06-01

    More than about 20 central stars of planetary nebulae (CSPNs) have been observed spectropolarimetrically, yet no clear, unambiguous signal of the presence of a magnetic field in these objects has been found. We perform a statistical (Bayesian) analysis of all the available spectropolarimetric observations of CSPN to constrain the magnetic fields in these objects. Assuming that the stellar field is dipolar and that the dipole axis of the objects is oriented randomly (isotropically), we find that the dipole magnetic field strength is smaller than 400 G with 95% probability using all available observations. The analysis introduced allows integration of future observations to further constrain the parameters of the distribution, and it is general, so that it can be easily applied to other classes of magnetic objects. We propose several ways to improve the upper limits found here.

  1. International ultraviolet explorer spectral atlas of planetary nebulae, central stars, and related objects

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Oliversen, Nancy A.; Nicholsbohlin, Joy; Garhart, Matthew P.

    1988-01-01

    The International Ultraviolet Explorer (IUE) archives contain a wealth of information on high quality ultraviolet spectra of approximately 180 planetary nebulae, their central stars, and related objects. Selected are representative low-dispersion IUE spectra in the range 1200 to 3200 A for 177 objects arranged by Right Ascension (RA) for this atlas. For most entries, the combined short wavelength (SWP) (1200to 1900) and long wavelength (LWR) (or LWP, 1900 to 3200 A) regions are shown on 30 cm by 10 cm Calcomp plots on a uniform scale to facilitate intercomparison of the spectra. Each calibrated spectrum is also shown on an expanded vertical scale to bring out some of the weaker features.

  2. Bow shock nebulae of hot massive stars in a magnetized medium

    NASA Astrophysics Data System (ADS)

    Meyer, D. M.-A.; Mignone, A.; Kuiper, R.; Raga, A.; Kley, W.

    2016-10-01

    A significant fraction of OB-type, main-sequence massive stars are classified as runaway and move supersonically through the interstellar medium (ISM). Their strong stellar winds interact with their surroundings where the typical strength of the local ISM magnetic field is about 3.5-7 μ G, which can result in the formation of bow shock nebulae. We investigate the effects of such magnetic fields, aligned with the motion of the flow, on the formation and emission properties of these circumstellar structures. Our axisymmetric, magneto-hydrodynamical simulations with optically-thin radiative cooling, heating and anisotropic thermal conduction show that the presence of the background ISM magnetic field affects the projected optical emission our bow shocks at Hα and [OIII] λ 5007 which become fainter by about 1-2 orders of magnitude, respectively. Radiative transfer calculations against dust opacity indicate that the magnetic field slightly diminishes their projected infrared emission and that our bow shocks emit brightly at 60 μ m. This may explain why the bow shocks generated by ionizing runaway massive stars are often difficult to identify. Finally, we discuss our results in the context of the bow shock of ζ Ophiuchi and we support the interpretation of its imperfect morphology as an evidence of the presence of an ISM magnetic field not aligned with the motion of its driving star.

  3. The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)

    NASA Astrophysics Data System (ADS)

    Sana, H.; Gosset, E.; Evans, C. J.

    2009-12-01

    Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.

  4. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    SciTech Connect

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  5. Problems for the WELS classification of planetary nebula central stars: self-consistent nebular modelling of four candidates

    NASA Astrophysics Data System (ADS)

    Basurah, Hassan M.; Ali, Alaa; Dopita, Michael A.; Alsulami, R.; Amer, Morsi A.; Alruhaili, A.

    2016-05-01

    We present integral field unit (IFU) spectroscopy and self-consistent photoionization modelling for a sample of four southern Galactic planetary nebulae (PNe) with supposed weak emission-line central stars. The Wide Field Spectrograph on the ANU 2.3 m telescope has been used to provide IFU spectroscopy for NGC 3211, NGC 5979, My 60, and M 4-2 covering the spectral range of 3400-7000 Å. All objects are high-excitation non-Type I PNe, with strong He II emission, strong [Ne V] emission, and weak low-excitation lines. They all appear to be predominantly optically thin nebulae excited by central stars with Teff > 105 K. Three PNe of the sample have central stars which have been previously classified as weak emission-line stars (WELS), and the fourth also shows the characteristic recombination lines of a WELS. However, the spatially resolved spectroscopy shows that rather than arising in the central star, the C IV and N III recombination line emission is distributed in the nebula, and in some cases concentrated in discrete nebular knots. This may suggest that the WELS classification is spurious, and that, rather, these lines arise from (possibly chemically enriched) pockets of nebular gas. Indeed, from careful background subtraction we were able to identify three of the sample as being hydrogen rich O(H)-Type. We have constructed fully self-consistent photoionization models for each object. This allows us to independently determine the chemical abundances in the nebulae, to provide new model-dependent distance estimates, and to place the central stars on the Hertzsprung-Russell diagram. All four PNe have similar initial mass (1.5 < M/M⊙ < 2.0) and are at a similar evolutionary stage.

  6. The Light and Dark Face of a Star-Forming Nebula

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see

  7. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA DETAILS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are two views of a highly active region of star birth located northeast of the central cluster, R136, in 30 Doradus. The orientation and scale are identical for both views. The top panel is a composite of images in two colors taken with the Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The bottom panel is a composite of pictures taken through three infrared filters with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). In both cases the colors of the displays were chosen to correlate with the nebula's and stars' true colors. Seven very young objects are identified with numbered arrows in the infrared image. Number 1 is a newborn, compact cluster dominated by a triple system of 'hefty' stars. It has formed within the head of a massive dust pillar pointing toward R136. The energetic outflows from R136 have shaped the pillar and triggered the collapse of clouds within its summit to form the new stars. The radiation and outflows from these new stars have in turn blown off the top of the pillar, so they can be seen in the visible-light as well as the infrared image. Numbers 2 and 3 also pinpoint newborn stars or stellar systems inside an adjacent, bright-rimmed pillar, likewise oriented toward R136. These objects are still immersed within their natal dust and can be seen only as very faint, red points in the visible-light image. They are, however, among the brightest objects in the infrared image, since dust does not block infrared light as much as visible light. Thus, numbers 2 and 3 and number 1 correspond respectively to two successive stages in the birth of massive stars. Number 4 is a very red star that has just formed within one of several very compact dust clouds nearby. Number 5 is another very young triple-star system with a surrounding cluster of fainter stars. They also can be seen in the visible-light picture. Most remarkable are the glowing patches numbered 6 and 7, which astronomers

  8. The Structure and Evolution of the Lagoon Nebula: Star Formation in the Sagittarius Arm

    NASA Astrophysics Data System (ADS)

    Tothill, N. F. H.

    1999-12-01

    The vast majority of star formation occurs in regions dominated by high-mass stars, such as the Orion complex. Through their hii regions, these massive stars profoundly affect the surrounding molecular gas, and quite probably trigger further star formation. This thesis presents the results of a submillimetre study of the interface between the Lagoon Nebula, M8, a large hii region in the southern hemisphere, and its associated molecular cloud. Continuum maps of M8 were obtained at wavelengths of 450 microns and 850 microns with SCUBA on the JCMT, and at 1.3 mm with the MPIfR 37-channel array at IRAM. A new subroutine was added to the data reduction facility for SCUBA (SURF); when skydip data are analysed to calculate the atmospheric opacity, this subroutine estimates the error in the fitted opacity. The performance of the subroutine is discussed, based on the M8 map data. The continuum maps are analysed by fitting gaussian profiles to the clumpy structure (on the 0.1 pc scale). Discrepancies between the fitted profiles at different wavelengths suggest that there are very considerable errors in this fitting process. There are a number of possible sources of contamination of the continuum emission, both non-thermal (free-free emission and molecular line emission) and thermal (greybody emission from hotter dust associated with the hii region and PDRs on the surfaces of the clumps). The likely magnitude of contamination from these sources is assessed: Line contamination is likely to be the largest, comprising between 10% and 50% of the detected continuum flux. The greybody emission from PDRs is likely to be in the range 10--20%. The other sources of contamination are unlikely to be larger than the calibration error (~10%). Partial maps of the Lagoon Nebula were obtained at the JCMT in the J = 3-2 transitions of various isotopomers of CO. These data are used to estimate the temperatures of the clumps, and to estimate their densities independently of the continuum

  9. The structure, dynamics, and star formation rate of the Orion nebula cluster

    SciTech Connect

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ∼1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ∼5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ε{sub ff} ∼ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  10. The Structure, Dynamics, and Star Formation Rate of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ~1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ~5-8 free-fall times (t ff). This implies a star formation efficiency per t ff of epsilonff ~ 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  11. Rapid photometric and spectroscopic evolution of the young planetary nebula Hen 3-1357 and its central star SAO 244567

    NASA Astrophysics Data System (ADS)

    Arkhipova, V. P.; Ikonnikova, N. P.; Kniazev, A. Yu.; Rajoelimanana, Andry

    2013-03-01

    We present the results of spectroscopic and photometric observations for the young compact planetary nebula Hen 3-1357 and its central star SAO 244567. High-resolution spectroscopy has allowed the expansion velocity of the nebula, V exp = 8.4 ± 1.5 km s-1, and the heliocentric velocity of the object, V r = +12.6 ± 1.7 km s-1, to be determined. The gas shell parameters ( N e , T e ), the extinction in the H β line, and the O, N, Ne, Ar, S, Cl, He, and C abundances have been determined from low-resolution spectra taken in 1992 and 2011. We have found significant changes in the relative intensities of forbidden lines in the spectrum of Hen 3-1357 within the last 20 years: the low-excitation [O I], [O II], and [N II] lines became stronger relative to H β by a factor of ˜2, while the [O III] lines weakened by a factor of ˜ 2, suggesting a decrease in the excitation class of the nebula. The V-band photometry performed under the ASAS-3 program revealed a decline in the yearly mean brightness of SAO 244 567 from 2001 to 2009 by 0_.^m 5 and rapid variability with an amplitude of a few tenths of a magnitude. Published observational data in a wide spectral range, from the near ultraviolet to the radio band, suggest an appreciable weakening of the flux from the star and the nebula.

  12. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    SciTech Connect

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W.; Reynolds, Stephen; An, Hongjun; Boggs, Steven; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Nynka, Melania; Markwardt, Craig; Zhang, William; Stern, Daniel

    2015-03-01

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps of the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.

  13. A Chandra and Spitzer census of the young star cluster in the reflection nebula NGC 7129

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Scholz, A.

    2009-11-01

    Context: The reflection nebula NGC 7129 has long been known to be a site of recent star formation as shown, e.g., by the presence of deeply embedded protostars and HH objects. However, studies of the stellar population produced in the star formation process have remained rudimentary. A major step forward has been made with recent Spitzer imaging of the region. Aims: This study represents the next step towards a systematic assessment of the pre-main sequence population in NGC 7129. Completeness of the pre-main sequence sample is necessary for studying key features that allow the star-forming process to be understood, such as disk evolution, dynamical evolution, and mass function. At a presumed age of 3 Myr, NGC 7129 is in the critical range where disks around young stars disappear. Methods: We make use of X-ray and IR imaging observations to identify the pre-main sequence stars in NGC 7129. We define a sample of young stellar objects based on color-color diagrams composed from IR photometry between 1.6 and 8 μm, from 2 MASS and Spitzer, and based on X-ray detected sources from a Chandra observation. Results: This sample is composed of 26 Class II and 25 Class III candidates. It has been selected from infrared sources in the Chandra field (287 objects with photometry in all four Spitzer/IRAC bands, 811 objects with near-IR photometry) and the 59 X-ray sources detected with Chandra. The sample is estimated to be complete down to 0.5 {M_⊙}. The most restricted and least biased subsample of pre-main sequence stars is composed of lightly absorbed (AV < 5 mag) stars in the cluster core. This sample comprises 7 Class II and 14 Class III sources and has a disk fraction of 33^+24-19% and a median X-ray luminosity of log{L_x} [erg/s] = 30.3. Conclusions: Despite the various uncertainties related to the sample selection, absorption, mass distribution, distance, and, consequently in the computation of disk fraction and X-ray luminosities, the data yield consistent results

  14. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    SciTech Connect

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Nagayama, Takumi; Sunada, Kazuyoshi; Fujisawa, Kenta; Nakano, Makoto; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  15. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Nagayama, Takumi; Fujisawa, Kenta; Sunada, Kazuyoshi; Nakano, Makoto; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH3 toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the Hα image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  16. They Might Be Giants: Confirming Candidate OB Stars While Netting a Large Sample of Massive Star Spectra in the Great Nebula in Carina

    NASA Astrophysics Data System (ADS)

    Povich, Matthew S.; McSwain, M. Virginia

    2013-02-01

    We propose one night of observations with the AAOmega instrument on the Anglo-Australian Telescope to obtain spectra of a large sample of massive stars in the Great Nebula in Carina, the nearest analog of extragalactic starburst regions. Our targets include >100 spectroscopically classified OB stars plus 55 candidate OB stars that we recently identified via X-ray emission and infrared (IR) spectral energy distributions (SEDs). These observations will confirm or reject individual candidate OB stars as massive members of the Carina Nebula stellar population, a vital test for our methodology that will pave the way to discovering new massive stars in other regions. Determining the nature of the candidate OB stars is critical to any census of the massive stellar population in Carina, impacting our understanding of the energetics and stellar initial mass function in this well-studied region. We will employ spectral modeling and broadband optical-IR SED fitting to derive physical properties (e.g. temperature, bolometric luminosity, surface gravity, and mass) of the known OB stars and those newly-confirmed candidate OB stars with high (ga100) signal-to- noise spectra.

  17. Water Fountains in the Sky: Streaming Water Jets from Aging Star Provide Clues to Planetary-Nebula Formation

    NASA Astrophysics Data System (ADS)

    2002-06-01

    Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope have found that an aging star is spewing narrow, rotating streams of water molecules into space, like a jerking garden hose that has escaped its owner's grasp. The discovery may help resolve a longstanding mystery about how the stunningly beautiful objects called planetary nebulae are formed. Artist's Conception of W43A. Artist's conception of W43A, with the aging star surrounded by a disk of material and a precessing, twisted jet of molecules streaming away from it in two directions. Credit: Kirk Woellert/National Science Foundation. The astronomers used the VLBA, operated by the National Radio Astronomy Observatory, to study a star called W43A. W43A is about 8,500 light-years from Earth in the direction of the constellation Aquila, the eagle. This star has come to the end of its normal lifetime and, astronomers believe, is about to start forming a planetary nebula, a shell of brightly glowing gas lit by the hot ember into which the star will collapse. "A prime mystery about planetary nebulae is that many are not spherical even though the star from which they are ejected is a sphere," said Phillip Diamond, director of the MERLIN radio observatory at Jodrell Bank in England, and one of the researchers using the VLBA. "The spinning jets of water molecules we found coming from this star may be one mechanism for producing the structures seen in many planetary nebulae," he added. The research team, led by Hiroshi Imai of Japan's National Astronomical Observatory (now at the Joint Institute for VLBI in Europe, based in the Netherlands), also includes Kumiko Obara of the Mizusawa Astrogeodynamics Observatory and Kagoshima University; Toshihiro Omodaka, also of Kagoshima University; and Tetsuo Sasao of the Japanese National Astronomical Observatory. The scientists reported their findings in the June 20 issue of the scientific journal Nature. As stars similar to our Sun

  18. NGC 6778: a disrupted planetary nebula around a binary central star

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Miranda, L. F.

    2012-03-01

    The planetary nebula (PN) NGC 6778 harbors a binary central star with a short orbital period and displays two systems of fast collimated outflows. To assess the influence of the evolution through a common-envelope phase of the binary system of NGC 6778 on its formation and shaping, we have used narrow-band images and high-dispersion long-slit spectra of the nebula to investigate its detailed morphology and kinematics. We find that the overall structure of NGC 6778 can be described as a bipolar PN. The equatorial ring is highly disrupted and many radial features (filamentary wisps and cometary knots) also show strong dynamical effects. There are clear connections between the bipolar lobes and the fast collimated outflows: the collimated outflows seem to arise from bright knots at the tips of the bipolar lobes, whereas the kinematics of the bipolar lobes is distorted. We suggest that the interaction of the fast collimated outflows of NGC 6778 with its nebular envelope has resulted in the disruption of the nebular shell and equatorial ring. Based on observations made with the Nordic Optical Telescope (NOT) and the Italian Telescopio Nazionale Galileo (TNG) on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC). NOT is operated jointly by Denmark, Finland, Iceland, Norway, and Sweden. TNG is operated by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica). The data presented here were obtained in part with ALFOSC, which is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOTSA.

  19. The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Nataf, David M.

    2016-06-01

    I review the literature covering the issue of interstellar extinction towards the Milky Way bulge, with emphasis placed on findings from planetary nebulae, RR Lyrae, and red clump stars. I also report on observations from HI gas and globular clusters. I show that there has been substantial progress in this field in recent decades, most particularly from red clump stars. The spatial coverage of extinction maps has increased by a factor ~ 100 × in the past 20 yr, and the total-to-selective extinction ratios reported have shifted by ~ 20-25%, indicative of the improved accuracy and separately, of a steeper-than-standard extinction curve. Problems remain in modelling differential extinction, explaining anomalies involving the planetary nebulae, and understanding the difference between bulge extinction coefficients and `standard' literature values.

  20. Probing interstellar extinction in the Tarantula Nebula with red giant stars

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, N.; Girardi, L.; Sabbi, E.

    2014-01-01

    We have studied the properties of the interstellar extinction in a field of 3‧ × 3‧ located about 6‧ SW of 30 Doradus in the Large Magellanic Cloud (LMC). The observations with with the WFPC 2 camera on board the Hubble Space Telescope in the U, B, V , I and H bands show the presence of patchy extinction in this field. In particular, the colour-magnitude diagram (CMD) reveals an elongated stellar sequence, running almost parallel to the main sequence (MS), which is in reality made up of stars belonging to the red giant clump (RC) and spread across the CMD by the considerable and uneven extinction in this region. This allows us to derive in a quantitative way both the extinction law in the range 3 000-8 000 Å and the values of the absolute extinction towards more than 100 objects, thereby setting statistically significant constraints on the properties of the extinction in this area. We find an extinction curve considerably flatter than the standard Galactic one and than those derived before towards a sample of sight lines in the LMC. The value of RV = 5.6 that we find implies that in this region large grains dominate. Comparing the extinction towards the individual RC stars and a similar number of stars in the upper MS reveals that the latter span a narrower range of E(B - V) values, contrary to what has been found elsewhere in the LMC. We are now extending these studies to 30 Doradus itself and to a large portion of the Tarantula nebula using existing HST observations at ultraviolet, optical and near infrared wavelengths.

  1. Spectacular Spitzer images of the Trifid Nebula: Protostars in a young, massive-star-forming region

    NASA Astrophysics Data System (ADS)

    Rho, J.; Reach, W. T.; Lefloch, B.; Fazio, G.

    Spitzer IRAC and MIPS images of the Trifid Nebula (M20; see Figure 1) reveal its spectacular appearance in infrared light, demonstrating its special evolutionary stage: recently-formed massive protostars and numerous young stars, including a single O star that illuminates the surrounding molecular cloud from which it formed and unveiling large-scale, filamentary dark clouds. The hot dust grains show contrasting infrared colors in shells, arcs, bow-shocks and dark cores. Multiple protostars, previously defined as Class 0 from dust continuum and molecular outflow observations, are revealed in the infrared within the cold dust continuum peaks TC3 and TC4. The cold dust continuum cores of TC1 and TC2 contain only one protostar each; the newly-discovered infrared protostar in TC2 is the driving source of the HH399 jet. The Spitzer color-color diagram allowed us to identify ~150 young stellar objects (YSO) and classify them into different evolutionary stages, and also revealed a new class of YSO which are bright at 24μm but with spectral energy distribution peaking at 5-8μm; we name these sources "Hot excess" YSO. Despite of expectation that Class 0 sources would be "starless" cores, the Spitzer images, with unprecedented sensitivity, uncover mid-infrared emission from these Class 0 protostars. The mid-infrared detections of Class 0 protostars show that the emission escapes the dense, cold envelope of young protostars; the mid-infrared emission cannot arise from the same location as the mm-wave emission, and instead must arise from a much smaller region with less intervening extinction to the central accretion. The presence of multiple protostars within the cold cores of Class 0 objects implies that clustering occurs at this early stage of star formation. The most massive stars are located at the center of the cluster and are formed simultaneously with low-mass stars. The angular and mass distributions of protostars within the dust cores imply that these early

  2. Wolf-Rayet nebulae

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2016-07-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 103 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses.

  3. Core-halo age gradients and star formation in the Orion Nebula and NGS 2024 young stellar clusters

    SciTech Connect

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    We analyze age distributions of two nearby rich stellar clusters, the NGC 2024 (Flame Nebula) and Orion Nebula cluster (ONC) in the Orion molecular cloud complex. Our analysis is based on samples from the MYStIX survey and a new estimator of pre-main sequence (PMS) stellar ages, Age{sub JX} , derived from X-ray and near-infrared photometric data. To overcome the problem of uncertain individual ages and large spreads of age distributions for entire clusters, we compute median ages and their confidence intervals of stellar samples within annular subregions of the clusters. We find core-halo age gradients in both the NGC 2024 cluster and ONC: PMS stars in cluster cores appear younger and thus were formed later than PMS stars in cluster peripheries. These findings are further supported by the spatial gradients in the disk fraction and K-band excess frequency. Our age analysis is based on Age{sub JX} estimates for PMS stars and is independent of any consideration of OB stars. The result has important implications for the formation of young stellar clusters. One basic implication is that clusters form slowly and the apparent age spreads in young stellar clusters, which are often controversial, are (at least in part) real. The result further implies that simple models where clusters form inside-out are incorrect and more complex models are needed. We provide several star formation scenarios that alone or in combination may lead to the observed core-halo age gradients.

  4. New Galactic Planetary Nebulae and the role of Central Star Binarity

    NASA Astrophysics Data System (ADS)

    Miszalski, B.

    2009-09-01

    The Galactic population of planetary nebulae (PNe) offers great potential in improving our understanding of many astrophysical problems on both large and small scales. They are revealed out to large distances by their bright emission line spectra from which their radial velocities and chemical abundances can be measured. As members of the old stellar population, PNe are particularly abundant towards the Galactic bulge where their kinematics are a valuable, relatively unbiased tracer of the dynamics of the region. Chemical abundance variations may also be traced by PNe to place constraints on chemodynamical models of the Galaxy. On much smaller scales their central stars (CSPN) are a powerful window into the poorly understood late stages of binary stellar evolution. The capacity of PNe to perform these studies is critically dependent on the size of the population. The current Galactic population of PNe was substantially increased by the Macquarie/AAO/Strasbourg Halpha (MASH) PNe catalogue. A supplement to MASH, the MASH-II catalogue, is presented with more than 360 new Galactic PNe found after a thorough search of all 233 AAO/UKST SuperCOSMOS Halpha Survey fields in digital format. Novel, semi-automated data processing and multi-wavelength visualisation techniques are developed to maximise the sensitivity of the search. MASH-II PNe are notable for being either small, star-like PNe of relatively high surface brightness, or very large, extremely low surface brightness PNe. Over 90% of the catalogue is confirmed spectroscopically during extensive observing campaigns and the catalogue is available via the VizieR catalogue service at the Centre de Donn´ees Astronomiques de Strasbourg (CDS). This thesis is based on the exploitation of the MASH and MASH-II PNe catalogues that have provided the largest and most representative sample of PNe towards the Galactic bulge. This offers a unique opportunity to contribute towards two different, largely unexplored research domains

  5. Compact planetary nebulae in the Galactic disk: Analysis of the central stars

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, Manuel; Villaver, Eva; Shaw, Richard A.; Stanghellini, Letizia

    2016-09-01

    Context. We have obtained multi-wavelength observations of compact Galactic planetary nebulae (PNe) to probe post-asymptotic giant branch (AGB) evolution from the onset of nebular ejection. Here we analyze new observations from HST to derive the masses and evolutionary status of their central stars (CSs). Aims: Our objective here is to derive the masses of the CSs hosted by compact PNe in order to better understand the relationship between the CS properties and those of the surrounding nebulae. We also compare this sample with others we obtained using the same technique in different metallicity environments: the Large and Small Magellanic Clouds. Methods: This paper is based on HST/WFC3 images of 51 targets obtained in a snapshot survey (GO-11657). The high spatial resolution of HST allows us to resolve these compact PNe and distinguish the CS emission from that of their surrounding PNe. We derive CS bolometric luminosities and effective temperatures using the Zanstra technique, from a combination of HST photometry and ground-based spectroscopic data. The targets were imaged through the filters F200LP, F350LP, and F814W from which we derive Johnson V and I magnitudes. We infer CS masses by placing the stars on a temperature-luminosity diagram and compare their location with the best available, single star post-AGB evolutionary tracks. Results: We present new, unique photometric measurements of 50 CSs, and we derive effective temperatures and luminosities for most of them. Central star masses for 23 targets were derived with the evolutionary track technique; the remaining masses were indeterminate most likely because of underestimates of the stellar temperature, or because of substantial errors in the adopted statistical distances to these objects. We expect these problems will be largely overcome when the Gaia distance catalog becomes available. We find that objects with the higher ratios of Zanstra temperatures T(H i)/T( He ii ) tend to have lower-mass progenitors

  6. X-RAY EMISSION FROM THE BINARY CENTRAL STARS OF THE PLANETARY NEBULAE HFG 1, DS 1, AND LOTR 5

    SciTech Connect

    Montez, Rodolfo; Kastner, Joel H.; De Marco, Orsola; Chu, You-Hua

    2010-10-01

    Close binary systems undergoing mass transfer or common envelope interactions can account for the morphological properties of some planetary nebulae. The search for close binary companions in planetary nebulae is hindered by the difficulty of detecting cool, late-type, main-sequence companions in binary systems with hot pre-white-dwarf primaries. However, models of binary planetary nebula progenitor systems predict that mass accretion or tidal interactions can induce rapid rotation in the companion, leading to X-ray-emitting coronae. To test such models, we have searched for, and detected, X-ray emission from three binary central stars within planetary nebulae: the post-common envelope close binaries in HFG 1 and DS 1 consisting of O-type subdwarfs with late-type, main-sequence companions and the binary system in LoTr 5 consisting of O-type subdwarf and rapidly rotating, late-type giant companion. The X-ray emission in each case is best characterized by spectral models consisting of two optically thin thermal plasma components with characteristic temperatures of {approx}10 MK and 15-40 MK and total X-ray luminosities {approx}10{sup 30} erg s{sup -1}. We consider the possible origin of the X-ray emission from these binary systems and conclude that the most likely origin is, in each case, a corona around the late-type companion, as predicted by models of interacting binaries.

  7. Rotating Stars and the Formation of Bipolar Planetary Nebulae. II. Tidal Spin-up

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; Villaver, E.; Manchado, A.; Langer, N.; Yoon, S.-C.

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M ⊙ and 0.8 M ⊙ and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (˜3.5 and ˜2 km s-1, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ˜0.03 km s-1. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ˜6 and ˜4 km s-1, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  8. Triggered star formation in bright-rimmed clouds: the Eagle nebula revisited

    NASA Astrophysics Data System (ADS)

    Miao, J.; White, Glenn J.; Nelson, R.; Thompson, M.; Morgan, L.

    2006-06-01

    A three-dimensional smoothed particle hydrodynamics model has been extended to study the radiation-driven implosion effect of massive stars on the dynamical evolution of surrounding molecular clouds. The new elements in the upgraded code are the inclusion of Lyman continuum in the incident radiation flux and the treatment of hydrogen ionization process; the introduction of ionization heating and recombination cooling effects; and the addition of a proper description of the magnetic and turbulent pressures to the internal pressure of the molecular cloud. This extended code not only provides a realistic model to trace the dynamical evolution of a molecular cloud, but also can be used to model the kinematics of the ionization and shock fronts and the photoevaporating gas surrounding the molecular cloud, which the previous code is unable to handle. The application of this newly developed model to the structure of the middle Eagle nebula finger suggests that the shock induced by the ionizing radiation at the front side of the head precedes an ionization front moving towards the centre of the core, and that the core at the fingertip is at a transition stage evolving toward a state of induced star formation. The dynamical evolution of the velocity field of the simulated cloud structure is discussed to illustrate the role of the self-gravity and the different cloud morphologies which appear at different stages in the evolutionary process of the cloud. The motion of the ionization front and the evaporating gas are also investigated. The modelled gas evaporation rate is consistent with that of other current models and the density, temperature and chemical profiles are in agreement with the observed values. The relative lifetimes of different simulated cloud morphologies suggest a possible answer to the question of why more bright-rimmed clouds are observed to possess a flat-core than an elongated-core morphology.

  9. Rotating Stars and the Formation of Bipolar Planetary Nebulae. II. Tidal Spin-up

    NASA Astrophysics Data System (ADS)

    García-Segura, G.; Villaver, E.; Manchado, A.; Langer, N.; Yoon, S.-C.

    2016-06-01

    We present new binary stellar evolution models that include the effects of tidal forces, rotation, and magnetic torques with the goal of testing planetary nebulae (PNs) shaping via binary interaction. We explore whether tidal interaction with a companion can spin-up the asymptotic giant brach (AGB) envelope. To do so, we have selected binary systems with main-sequence masses of 2.5 M ⊙ and 0.8 M ⊙ and evolve them allowing initial separations of 5, 6, 7, and 8 au. The binary stellar evolution models have been computed all the way to the PNs formation phase or until Roche lobe overflow (RLOF) is reached, whatever happens first. We show that with initial separations of 7 and 8 au, the binary avoids entering into RLOF, and the AGB star reaches moderate rotational velocities at the surface (˜3.5 and ˜2 km s‑1, respectively) during the inter-pulse phases, but after the thermal pulses it drops to a final rotational velocity of only ˜0.03 km s‑1. For the closest binary separations explored, 5 and 6 au, the AGB star reaches rotational velocities of ˜6 and ˜4 km s‑1, respectively, when the RLOF is initiated. We conclude that the detached binary models that avoid entering the RLOF phase during the AGB will not shape bipolar PNs, since the acquired angular momentum is lost via the wind during the last two thermal pulses. This study rules out tidal spin-up in non-contact binaries as a sufficient condition to form bipolar PNs.

  10. An analysis of the first three catalogues of southern star clusters and nebulae

    NASA Astrophysics Data System (ADS)

    Cozens, Glendyn John

    2008-06-01

    of the Lacaille and Herschel catalogues. In order to identify and compare the catalogues, positions given for an object by each astronomer were precessed to J2000.0 coordinates. These modern positions for an object could then be plotted onto modern photographic star atlases and digital images of the sky, to determine the accuracy of the original positions. Analysis of the three non-stellar catalogues included the determination of the radial distance of each object from its "correct" position and diagrams of both difference in Right Ascension and difference in Declination against Right Ascension and Declination, in order to identify any trends. Each catalogue contained some copy or printing errors, but these were omitted from the statistical calculations performed. The results for the three catalogues, from the astrometric perspective, showed that the Herschel catalogue contained the most accurate positions, followed closely by the Lacaille catalogue with no obvious or systematic trends in their inaccuracies. In contrast, the Dunlop catalogue showed some clear trends in the positional inaccuracies which, regardless of mitigating circumstances, to some extent warranted John Herschel's criticism. Finally an examination of the completeness of each catalogue was undertaken to determine the thoroughness of each astronomer. Firstly the effective aperture and theoretical magnitude limit for each telescope was calculated. Next the non-stellar objects were grouped into five types, open clusters, globular clusters, diffuse nebulae, planetary nebulae and galaxies, and a single working magnitude limit was found for each catalogue. A number of indicators were used to determine the working magnitude limit. The number of faint objects of each type which were seen, and the number of bright objects which were missed by the three astronomers, was assessed. In both the Dunlop and Herschel catalogues galaxies gave the best indicator of the working magnitude limit. Globular clusters

  11. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view.

    The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view.

    Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars.

    The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope.

    The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ.

    This popular celestial target was the clear

  12. The Eagle Nebula's fingers - pointers to the earliest stages of star formation?

    NASA Astrophysics Data System (ADS)

    White, G. J.; Nelson, R. P.; Holland, W. S.; Robson, E. I.; Greaves, J. S.; McCaughrean, M. J.; Pilbratt, G. L.; Balser, D. S.; Oka, T.; Sakamoto, S.; Hasegawa, T.; McCutcheon, W. H.; Matthews, H. E.; Fridlund, C. V. M.; Tothill, N. F. H.; Huldtgren, M.; Deane, J. R.

    1999-02-01

    Molecular line, millimetre/submillimetre continuum, and mid-IR observations are reported of the opaque fingers which cross the Eagle Nebula. The fingers are surprisingly warm when viewed in the CO J= 3-2 lines, with kinetic temperatures approaching 60 K, although the lines are relatively narrow. Most of the mass in the fingers is concentrated in cores which lie at the tips of the fingers, and contain from ~ 10 to 60 Msun, representing 55-80% of the mass of the individual fingers. The integrated mass contained in the three fingers and the nearby extended material is ~ 200 Msun. The velocity fields of the gas are complex and the material is very clumpy. The best evidence for coherent velocity structure is seen running along the central finger, which has a velocity gradient ~ 1.7 km s(-1) pc(-1) . The fingers contain several embedded submm continuum cores, with the most intense located at the tips of the fingers. The continuum spectra of these cores shows that they are much cooler, Tdust ~ 20 K, than Tgas ~ 60 K of their respective fingers. A simple thermal and chemical model of a finger was developed to study the physical environment, which takes into account the external UV illumination ( ~ 1700 G_0), and the chemical and thermal structure of a finger. The model predictions are consistent with all of the available observations. The fingers appear to have been formed after primordial dense clumps in the original cloud were irradiated by the light of its OB stars. These clumps then shielded material lying behind from the photoevaporative dispersal of the cloud, and facilitated the formation of the finger structures. The cores in the tips of the fingers appear to be at a very early stage of pre-protostellar development: there are no embedded infrared sources or molecular outflows present. The pressure inside the cores is just less than that of the surrounding gas, allowing them to be compressed by the external pressure. The cores are probably just starting the final

  13. Rings and arcs around evolved stars - I. Fingerprints of the last gasps in the formation process of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Santamaría, E.; Guerrero, M. A.; Marquez-Lugo, R. A.; Sabin, L.; Toalá, J. A.

    2016-10-01

    Evolved stars such as asymptotic giant branch stars (AGB), post-AGB stars, proto-planetary nebulae (proto-PNe), and planetary nebulae (PNe) show rings and arcs around them and their nebular shells. We have searched for these morphological features in optical Hubble Space Telescope and mid-infrared Spitzer Space Telescope images of ˜650 proto-PNe and PNe and discovered them in 29 new sources. Adding those to previous detections, we derive a frequency of occurrence ≃8 per cent. All images have been processed to remove the underlying envelope emission and enhance outer faint structures to investigate the spacing between rings and arcs and their number. The averaged time lapse between consecutive rings and arcs is estimated to be in the range 500-1200 yr. The spacing between them is found to be basically constant for each source, suggesting that the mechanism responsible for the formation of these structures in the final stages of evolved stars is stable during time periods of the order of the total duration of the ejection. In our sample, this period of time spans ≤4500 yr.

  14. Stingray Nebula

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue).

  15. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    SciTech Connect

    Henderson, Calen B.; Stassun, Keivan G.

    2012-03-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of {approx}50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days < P < 10 days; the short-period cutoff corresponds to breakup. We observe no obvious bimodality in the period distribution, but we do find that stars with disk signatures rotate more slowly on average. The stars' X-ray luminosities are roughly flat with rotation period, at the saturation level (log L{sub X} /L{sub bol} Almost-Equal-To -3.3). However, we find a significant positive correlation between L{sub X} /L{sub bol} and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  16. Tibetan Braid

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On October 13, 2000, the Expedition 3 crew of the International Space Station, high over Tibet, took this interesting photo of the Brahmaputra River. This mighty Asian river carves a narrow west-east valley between the Tibetan Plateau to the north and the Himalaya Mountains to the south, as it rushes eastward for more than 1500 km in southwestern China. This 15-km stretch is situated about 35 km south of the ancient Tibetan capital of Lhasa where the river flow becomes intricately braided as it works and reworks its way through extensive deposits of erosional material. This pattern is indicative of a combination heavy sediment discharge from tributaries and reduction of the river's flow from either a change in gradient or perhaps even climate conditions over the watershed. The light color of the deposits and the milky color of the water is attributed to presence of glacial 'flour,' the fine material created by erosion from glaciers. Besides erosion by water and ice, this scene also depicts features created by wind. Note the delicate field of dunes on the alluvial fan toward the right edge of the image. The riverbed here is at an elevation of over 3,500 m, and with the long west-east extent of this barren valley, strong, persistent westerly winds also move and shape these deposits. Photos such as this one bring immediate visual understanding and appreciation of natural processes in some of the most remote locations on Earth. Image ISS003-E-6632, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  17. NON-DETECTION OF MAGNETIC FIELDS IN THE CENTRAL STARS OF THE PLANETARY NEBULAE NGC 1360 AND LSS 1362

    SciTech Connect

    Leone, Francesco; Privitera, Giovanni; Martinez Gonzalez, MarIa J.; Corradi, Romano L. M.; Sainz, Rafael Manso

    2011-04-20

    The presence of magnetic fields is an attractive hypothesis for shaping planetary nebulae (PNe). We report on observations of the central star of the two PNe NGC 1360 and LSS 1326. We performed spectroscopy on circularly polarized light with the Focal Reducer and Low Dispersion Spectrograph at the Very Large Telescope of the European Southern Observatory. Contrary to previous reports, we find that the effective magnetic field, which is the average over the visible stellar disk of longitudinal components of the magnetic fields, is null within errors for both stars. We conclude that direct evidence of magnetic fields on the central stars of PNe is still missing-either the magnetic field is much weaker (<600 G) than previously reported, or more complex (thus leading to cancellations), or both. Certainly, indirect evidence (e.g., MASER emission) fully justify further efforts to point out the strength and morphology of such magnetic fields.

  18. The physical structure of planetary nebulae around sdO stars: Abell 36, DeHt 2, and RWT 152

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Vázquez, R.; Guillén, P. F.; Oreiro, R.; Ulla, A.; Solano, E.

    2015-01-01

    We present narrow-band Hα and [O III] images, and high-resolution, long-slit spectra of the planetary nebulae (PNe) Abell 36, DeHt 2, and RWT 152 aimed at studying their morphology and internal kinematics. These data are complemented with intermediate-resolution, long-slit spectra to describe the spectral properties of the central stars and nebulae. The morphokinematical analysis shows that Abell 36 consists of an inner spheroid and two bright point-symmetric arcs; DeHt 2 is elliptical with protruding polar regions and a bright non-equatorial ring; and RWT 152 is bipolar. The formation of Abell 36 and DeHt 2 requires several ejection events including collimated bipolar outflows that probably are younger than and have disrupted the main shell. The nebular spectra of the three PNe show a high excitation and also suggest a possible deficiency in heavy elements in DeHt 2 and RWT 152. The spectra of the central stars strongly suggest an sdO nature and their association with PNe points out that they have most probably evolved through the asymptotic giant branch. We analyse general properties of the few known sdOs associated with PNe and find that most of them are relatively or very evolved PNe, show complex morphologies, host binary central stars, and are located at relatively high Galactic latitudes.

  19. The star fish twins: Two young planetary nebulae with extreme multipolar morphology

    NASA Technical Reports Server (NTRS)

    Sahai, R.

    2000-01-01

    We present alpha images of two objects, He 2-47 and M1-37, obtained during a Hubble Space Telescope imaging survey of young planetary nebulae (PNs) selected on the basis of their low-excitation characteristics.

  20. The Trifid Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This NASA Hubble Space Telescope (HST) image of the Trifid Nebula reveals a stellar nursery being torn apart by a nearby massive star. Embryonic stars are forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. The cloud is about 8 light years away from the nebula' s central star. This stellar activity is a beautiful example of how the life cycle of stars like our Sun is intimately cornected with their more powerful siblings. Residing in the constellation Sagittarius, the Trifid Nebula is about 9,000 light years from Earth.

  1. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; Lawson, W. A.; Roman-Duval, J.; Misselt, K. A.; Meade, M.; Sonneborn, G.; Matsuura, M.; Meixner, M.

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  2. The rapid evolution of the central star of the Stingray Nebula — latest news from the HST

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole; Rauch, Thomas; Miller Bertolami, Marcelo M.; Werner, Klaus

    2016-07-01

    SAO 244567 is an unusually fast evolving star. Within twenty years only, it had turned from a B-type supergiant into the central star of the Stingray Nebula. Space- and ground-based observations obtained over the last decades have revealed that its spectrum changes noticeably over just a few years, showing stellar evolution in real time. The low mass of SAO 244567 is, however, in strong contradiction with canonical post-asymptotic giant branch evolution. Thus, its fast evolution has been a mystery for decades. We present preliminary results of the non-LTE spectral analyis of the recently obtained HST/COS observations, which finally allow us to shed light on the evolutionary history of this extraordinary object.

  3. Infrared nebula in the Chamaeleon T association

    SciTech Connect

    Schwartz, R.D.; Henize, K.G.

    1983-11-01

    Data are tabulated for seven nebulae in the Chamaeleon T association. Three, which are large and clearly related to illuminating stars, appear to be typical reflection nebulae. Three are small wisps attached to stars and are probably cometary-type reflection nebulae. The remaining nebula is a triangular wisp having an unusually red spectral energy distribution and showing no illuminating star on visual wavelength photographs. The western tip of this nebula coincides closely with the position of a recently reported infrared source. The nebula is probably one lobe of a bipolar nebula.

  4. Chandra Observation of the Trifid Nebula: X-Ray Emission from the O Star Complex and Actively Forming Pre-Main-Sequence Stars

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Ramírez, Solange V.; Corcoran, Michael F.; Hamaguchi, Kenji; Lefloch, Bertrand

    2004-06-01

    The Trifid Nebula, a young star-forming H II region, was observed for 16 hr by the ACIS-I detector on board the Chandra X-Ray Observatory. We detected 304 X-ray sources, 30% of which are hard sources and 70% of which have near-infrared counterparts. Chandra resolved the HD 164492 multiple system into a number of discrete X-ray sources. X-ray emission is detected from components HD 164492A (an O7.5 III star that ionizes the nebula), B and C (a B6 V star), and possibly D (a Be star). Component C is blended with an unidentified source to the northwest. HD 164492A has a soft spectrum (kT~0.5 keV), while the component C blend shows much harder emission (kT~6 keV). This blend and other hard sources are responsible for the hard emission and Fe K line seen by ASCA, which was previously attributed entirely to HD 164492A. The soft spectrum of the O star is similar to emission seen from other single O stars and is probably produced by shocks within its massive stellar wind. Lack of hard emission suggests that neither a magnetically confined wind shock nor colliding wind emission is important in HD 164492A. A dozen stars are found to have flares in the field, and most of them are pre-main-sequence stars (PMS). Six sources with flares have both optical and Two Micron All Sky Survey counterparts. These counterparts are not embedded, and thus it is likely that these sources are in a later stage of PMS evolution, possibly Class II or III. Two flare sources did not have any near-IR, optical, or radio counterparts. We suggest that these X-ray flare stars are in an early PMS stage (Class I or earlier). We also detected X-ray sources apparently associated with two massive star-forming cores, TC 1 and TC 4. The spectra of these sources show high extinction and X-ray luminosities of (2-5)×1031 ergs s-1. If these sources are Class 0 objects, it is unclear whether their X-ray emission is due to solar-type magnetic activities, as in Class I objects, or to some other mechanism.

  5. Chandra Observation of the Trifid Nebula: X-ray emission from the exciting O star complex and Pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Rho, J.; Ramirez, S.; Corcoran, M.; Hamaguchi, K.; Lefloch, B.

    2003-12-01

    The Trifid Nebula, one of the youngest star-forming HII regions, was observed for 16 hours by the ACIS-I detector on board of the Chandra X-ray Observatory. We detected 304 X-ray sources, thirty percent of which are hard sources, with near-infrared counterparts for two-thirds of the X-ray sources. Chandra resolved the HD164492 multiple system into a number of discrete X-ray sources. X-ray emission is detected from components HD164492A (an O7.5III star which ionizes the nebula), B and C (a B6V star), and possibly D (a Be star). Component C is blended with an unidentified source (we called Component C2, hereafter). HD164492A has a soft spectrum (kT 0.5 keV) while the component C blend shows much harder emission (kT 6 keV). This blend and other hard sources are responsible for the hard emission and Fe K line seen by the ASCA, which was previously attributed entirely to HD 164492A. The soft spectrum of the O star is similar to emission seen from other single O stars and is probably produced by shocks within its massive stellar wind. Lack of hard emission suggests that neither a magnetically confined wind shock nor colliding wind emission is important in HD164492A. A dozen stars are found to have flares in the field and most of them are pre-main sequence stars (PMS). Six sources with flares have both optical and 2MASS counterparts. These counterparts are not embedded and thus it is likely that these sources are in later stage of PMS evolution, possibly Class II or III. Two flare sources did not have any near-IR, optical, or radio counterparts. We suggest these X-ray flare stars are in an early pre-main sequence stage (Class I or earlier). We also detected X-ray sources apparently associated with two massive star forming cores, TC1 and TC4. The spectra of these sources show high extinction and X-ray luminosities of 2 - 5x 1031 erg s-1. If these source are Class 0 objects, it is unclear if their X-ray emission is due to solar-type magnetic activities as in Class I objects

  6. VizieR Online Data Catalog: Stars associated to Eagle Nebula (M16=NGC6611) (Guarcello+ 2010)

    NASA Astrophysics Data System (ADS)

    Guarcello, M. G.; Micela, G.; Peres, G.; Prisinzano, L.; Sciortino, S.

    2010-08-01

    This catalog contains coordinates and both optical and infrared photometry, plus usefull tags, of the candidate stars associated to the Eagle Nebula (M16), bost disk-less and disk-bearing, selected in Guarcello et al. 2010: "Chronology of star formation and disks evolution in the Eagle Nebula". The optical photometry in BVI bands comes from observations with WFI@ESO (Guarcello et al. 2007, Cat. J/A+A/462/245); JHK photometry have been obtained from 2MASS/PSC (Bonatto et al. 2006A&A...445..567B, Guarcello et al. 2007, Cat. J/A+A/462/245) and UKIDSS/GPS catalogs (Guarcello et al., 2010, in prep.) ; IRAC data are from GLIMPSE public survey (Indebetouw 2007ApJ...666..321I, Guarcello et al., 2009, Cat. J/A+A/496/453); X-ray data from three observations with Chandra/ACIS-I (Linsky et al., 2007, Cat. J/ApJ/654/347, Guarcello et al., 2007, J/A+A/462/245, Guarcello et al. 2010, in prep.). (1 data file).

  7. Spitzer Space Telescope observations of the Carina nebula: the steady march of feedback-driven star formation

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Povich, Matthew S.; Whitney, Barbara A.; Churchwell, Ed; Babler, Brian L.; Meade, Marilyn R.; Bally, John; Gehrz, Robert D.; Robitaille, Thomas P.; Stassun, Keivan G.

    2010-08-01

    We report the first results of imaging the Carina nebula (NGC 3372) with the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope, providing a photometry catalogue of over 44000 point sources as well as a catalogue of over 900 candidate young stellar objects (YSOs) based on fits to their spectral energy distributions (SEDs). We discuss several aspects of the extended emission, including the structure of dozens of dust pillars that result when a clumpy molecular cloud is shredded by feedback from massive stars. There are surprisingly few of the `extended green objects' (EGOs) that are normally taken as signposts of outflow activity in Spitzer data, and not one of the dozens of Herbig-Haro jets detected optically are seen as EGOs. EGOs are apparently poor tracers of outflow activity in strongly irradiated environments, due to the effects of massive star feedback. A population of `extended red objects' tends to be found around late O-type and early B-type stars, some with clear bow-shock morphology. These are dusty shocks where stellar winds collide with photoevaporative flows off nearby clouds. Finally, the relative distributions of O-type stars, small star clusters and subclusters of YSOs as compared to the dust pillars show that while some YSOs are located within dust pillars, many more stars and YSOs reside just outside pillar heads. We suggest that pillars are transient phenomena, part of a continuous outwardly propagating wave of star formation driven by feedback from massive stars. As the pillars are destroyed, they leave newly formed stars in their wake, and these are then subsumed into the young OB association. The YSOs are found predominantly in the cavity between pillars and massive stars, arguing that their formation was in fact triggered. Altogether, the current generation of YSOs shows no strong deviation from a normal initial mass function (IMF). The number of YSOs is consistent with a roughly constant star-formation rate over the past ~3

  8. B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Fossati, L.; Carroll, T. A.; Castro, N.; González, J. F.; Ilyin, I.; Przybilla, N.; Schöller, M.; Oskinova, L. M.; Morel, T.; Langer, N.; Scholz, R. D.; Kharchenko, N. V.; Nieva, M.-F.

    2014-04-01

    Aims: Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods: In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results: Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. Based on observations obtained in the framework of the ESO Prg. 191.D-0255(A,B).

  9. ETHOS 1: a high-latitude planetary nebula with jets forged by a post-common-envelope binary central star

    NASA Astrophysics Data System (ADS)

    Miszalski, B.; Corradi, R. L. M.; Boffin, H. M. J.; Jones, D.; Sabin, L.; Santander-García, M.; Rodríguez-Gil, P.; Rubio-Díez, M. M.

    2011-05-01

    We report on the discovery of ETHOS 1 (PN G068.1+11.0), the first spectroscopically confirmed planetary nebula (PN) from a survey of the SuperCOSMOS Science Archive for high-latitude PNe. ETHOS 1 stands out as one of the few PNe to have both polar outflows (jets) travelling at 120 ± 10 km s-1 and a close binary central star. The light curve observed with the Mercator Telescope reveals an orbital period of 0.535 d and an extremely large amplitude (0.816 mag) due to irradiation of the companion by a very hot pre-white dwarf. ETHOS 1 further strengthens the long-suspected link between binary central stars of PNe (CSPN) and jets. The Isaac Newton Telescope/Intermediate Dispersion Spectrograph and Very Large Telescope (VLT) FORS spectroscopy of the CSPN reveals weak N III, C III and C IV emission lines seen in other close binary CSPN and suggests that many CSPN with these weak emission lines are misclassified close binaries. We present VLT FORS imaging and Manchester Echelle Spectrometer long-slit observations from which a kinematic model of the nebula is built. An unusual combination of bipolar outflows and a spherical nebula conspires to produce an X-shaped appearance. The kinematic age of the jets (1750 ± 250 yr kpc-1) is found to be more than that of the inner nebula (900 ± 100 yr kpc-1), consistent with previous studies of similar PNe. Emission-line ratios of the jets are found to be consistent with that of reverse-shock models for fast low-ionization emitting regions (FLIERs) in PNe. Further large-scale surveys for close binary CSPN will be required to securely establish whether FLIERs are launched by close binaries. Based on observations made with the Flemish Mercator Telescope and Isaac Newton Telescope of the Observatorio del Roque de Los Muchachos and the VLT at the Paranal Observatory under programs 083.D-0654(A) and 085.D-0629(A).

  10. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    1996-01-01

    A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.

  11. Irradiated interfaces in the Ara OB1, Carina, Eagle Nebula, and Cyg OB2 massive star formation regions

    NASA Astrophysics Data System (ADS)

    Hartigan, P.; Palmer, J.; Cleeves, L. I.

    2012-12-01

    Regions of massive star formation offer some of the best and most easily-observed examples of radiation hydrodynamics. Boundaries where fully-ionized H II regions transition to neutral/molecular photodissociation regions (PDRs) are of particular interest because marked temperature and density contrasts across the boundaries lead to evaporative flows and fluid dynamical instabilities that can evolve into spectacular pillar-like structures. When detached from their parent clouds, pillars become ionized globules that often harbor one or more young stars. H2 molecules at the interface between a PDR and an H II region absorb ultraviolet light from massive stars, and the resulting fluoresced infrared emission lines are an ideal way to trace this boundary independent of obscuring dust. This paper presents H2 images of four regions of massive star formation that illustrate different types of PDR boundaries. The Ara OB1 star formation region contains a striking long wall that has several wavy structures which are present in H2, but the emission is not particularly bright because the ambient UV fluxes are relatively low. In contrast, the Carina star formation region shows strong H2 fluorescence both along curved walls and at the edges of spectacular pillars that in some cases have become detached from their parent clouds. The less-spectacular but more well-known Eagle Nebula has two regions that have strong fluorescence in addition to its pillars. While somewhat older than the other regions, Cyg OB2 has the highest number of massive stars of the regions surveyed and contains many isolated, fluoresced globules that have head-tail morphologies which point towards the sources of ionizing radiation. These images provide a collection of potential astrophysical analogs that may relate to ablated interfaces observed in laser experiments of radiation hydrodynamics.

  12. GTC/OSIRIS Observations of RWT 152, a Case Study of a Planetary Nebula With an sdO Central Star

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2015-12-01

    RWT 152 is one of the few planetary nebula with an sdO central star. We present subarcsecond red tunable filter imaging and intermediate-resolution, long-slit spectroscopy of RWT 152, obtained with OSIRIS/GTC, which allow us to describe in detail its morphology and to obtain its physical conditions and chemical abundances.

  13. Molecular gas toward the Trifid Nebula M20 and its ionizing star; a scrutiny of formation of the very young star cluster

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Kawamura, Akiko; Torii, Kazufumi; Furukawa, Naoko; Akio, Ohama; Okuda, Takeshi; Enokiya, Rei; Nakamura, Kouki; Furuhashi, Eri

    2011-04-01

    High-mass stars are formed in clusters, and it is important to study cluster formation in order to reveal high-mass star formation. Furukawa et al. (2009) detected giant molecular clouds with relatively larger velocity widths of ~15 km/s around Westerlund 2 (Wd2), one of the Super Star Clusters which contains several 1000 stars including ~10 high mass stars, and they suggest that the cluster was formed under triggering by a collision between the clouds. We recently analyzed a CO(2-1) data set obtained with the NANTEN2 4m telescope in M20 “Trifid Nebula” and found that two molecular clouds with different velocities (~0km/s and ~10km/s) are associated with the cluster in the nebula. These clouds show excited conditions and seem to be a miniature of Wd2. In this proposal, we plan to observe 12CO(1-0) emission and its isotopes in the whole area of M20 with high resolution. The goal of the observations is to reveal detailed structures and velocity distributions of the two parent molecular clouds in order to clarify the scenario proposed by Furukawa et al. The total observing time we request in the proposal is 19.5 hours (three days).

  14. Molecular gas toward the Trifid Nebula M20 and its ionizing star; a scrutiny of formation of the very young star cluster

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Yamamoto, Hiroaki; Kawamura, Akiko; Torii, Kazufumi; Furukawa, Naoko; Akio, Ohama; Okuda, Takeshi; Enokiya, Rei; Nakamura, Kouki; Furuhashi, Eri; Hanaoka, Naoki

    2011-10-01

    High-mass stars are formed in clusters, and it is important to study cluster formation in order to reveal high-mass star formation. Furukawa et al. (2009) detected giant molecular clouds with relatively larger velocity widths of ~15 km/s around Westerlund 2 (Wd2), one of the Super Star Clusters which contains several 1000 stars including ~10 high mass stars, and they suggest that the cluster was formed under triggering by a collision between the clouds. We recently analyzed a CO(2-1) data set obtained with the NANTEN2 4m telescope in M20 “Trifid Nebula” and found that two molecular clouds with different velocities (~0km/s and ~10km/s) are associated with the cluster in the nebula. These clouds show excited conditions and seem to be a miniature of Wd2. In this proposal, we plan to observe 12CO(1-0) emission and its isotopes in the whole area of M20 with high resolution. The goal of the observations is to reveal detailed structures and velocity distributions of the two parent molecular clouds in order to clarify the scenario proposed by Furukawa et al. The total observing time we request in the proposal is 11 hours.

  15. Star formation and chemical complexity in the Orion nebula: A new view with the IRAM and ALMA interferometers

    NASA Astrophysics Data System (ADS)

    Baudry, Alain; Brouillet, Nathalie; Despois, Didier

    2016-11-01

    The Orion nebula is one of the most observed celestial regions in the Milky Way. It is an active massive star-forming region, especially well studied in the millimeter and submillimeter domains that allow us to unveil the cool and obscured regions in which stars are being formed. After a brief introduction to the main properties of a radio telescope, we recall that the most sensitive radio interferometers, the IRAM mm array and, especially, the recently built ALMA millimeter/submillimeter array, offer an outstanding spatial resolution reaching the sub-arcsecond scale, or even about 10 milli-arcseconds for ALMA (about four times the Earth's orbit radius at the Orion distance). These interferometers can reveal the fine spatial details of the Orion clouds of gas and dust within which new stars and associated planetary systems are being formed. The high spectral resolution and sensitivity of both interferometers and the broad instantaneous bandwidth offered by ALMA allowed us to map the emission from a number of complex organic molecules, to estimate the molecular abundances, and to address some important aspects of the molecular complexity in Orion. Our observations do not lead to a unique molecular formation and excitation scheme, but the chemistry at work in the proto-stellar 'fragments' at the center of the Orion nebula can be compared with the chemistry prevailing in comets of the Solar system. We have underlined the possible links between the prebiotic molecules observed in space and the chemistry leading to the early terrestrial life. xml:lang="fr"

  16. CCD Photometry and Classification of Stars in the North America and Pelican Nebulae Region. IV. The Region of a Supposed Cluster Collinder 428

    NASA Astrophysics Data System (ADS)

    Laugalys, V.; Straižys, V.; Vrba, F. J.; Černis, K.; Kazlauskas, A.; Boyle, R. P.; Philip, A. G. Davis

    Magnitudes and color indices of 860 stars down to V = 16.7 mag in the seven-color Vilnius photometric system were obtained in the area of the suspected open cluster Collinder 428 in the North America Nebula. Spectral types, interstellar color excesses, extinctions and distances of stars were determined for 290 stars from the photometric data. The plot of extinction vs. distance gives the front edge of the dust cloud at 540 pc. We conclude that Collinder 428 is not a real star cluster.

  17. Clown Face Nebula (NGC 2392)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A planetary nebula, also known as the Eskimo Nebula, in the constellation Gemini, position RA 07 h 29.2 m, dec. +20° 55'. It is bluish, 13'' in diameter, and of ninth magnitude, with a tenth-magnitude central star. The blue-green nebula's hazy outer regions are thought to resemble an Eskimo's hood or clown's ruff....

  18. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    SciTech Connect

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.; Camp, K. A. E-mail: wfreem2@lsu.edu

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust

  19. Star formation in Carina OB1: Observations of a giant molecular cloud associated with the eta Carinae Nebula

    NASA Technical Reports Server (NTRS)

    Grabelsky, D. A.; Cohen, R. S.; Thaddeus, P.

    1987-01-01

    A giant molecular cloud associated with the eta Carinae nebula was fully mapped in CO with the Columbia Millimeter-Wave Telescope at Cerro Tololo. The cloud comples has a mass of roughly 700,000 solar mass and extends about 140 pc along the Galactic plane, with the giant Carina HII region situated at one end of the complex. Clear evidence of interaction between the HII region and the molecular cloud is found in the relative motions of the ionized gas, the molecular gas, and the dust; simple energy and momentum considerations suggest that the HII region is responsible for the observed motion of a cloud fragment. The molecular cloud complex appears to be the parent material of the entire Car OB1 Association which, in addition to the young clusters in the Carine nebula, includes the generally older cluster NGC 3325, NGC 3293, and IC 2581. The overall star formation efficiency in the cloud complex is estimated to be approximately 0.02.

  20. Resilient Braided Rope Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)

    2000-01-01

    A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.

  1. SWIFT/UVOT PHOTOMETRY OF THE PLANETARY NEBULA WeBo 1: UNMASKING A FAINT HOT COMPANION STAR

    SciTech Connect

    Siegel, Michael H.; Hoversten, Erik; Stark, Michele; Bond, Howard E.; Breeveld, Alice A. E-mail: hoversten@swift.psu.edu E-mail: bond@stsci.edu

    2012-08-15

    We present an analysis of over 150 ks of data on the planetary nebula WeBo 1 (PN G135.6+01.0) obtained with the Swift Ultraviolet Optical Telescope (UVOT). The central object of this nebula has previously been described as a late-type K giant barium star with a possible hot companion, most likely a young pre-white dwarf. UVOT photometry shows that while the optical photometry is consistent with a large cool object, the near-ultraviolet (NUV) photometry shows far more UV flux than could be produced by any late-type object. Using model stellar atmospheres and a comparison to UVOT photometry for the pre-white dwarf PG 1159-035, we find that the companion has a temperature of at least 40,000 K and a radius of, at most, 0.056 R{sub Sun }. While the temperature and radius are consistent with a hot compact stellar remnant, they are lower and larger, respectively, than expected for a typical young pre-white dwarf. This likely indicates a deficiency in the assumed UV extinction curve. We find that higher temperatures more consistent with expectations for a pre-white dwarf can be derived if the foreground dust has a strong 'blue bump' at 2175 A and a lower R{sub V}. Our results demonstrate the ability of Swift to both uncover and characterize hot hidden companion stars and to constrain the UV extinction properties of foreground dust based solely on UVOT photometry.

  2. THE INTEGRATED DIFFUSE X-RAY EMISSION OF THE CARINA NEBULA COMPARED TO OTHER MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Chu, You-Hua; Gruendl, Robert A.; Oey, M. S.; Pittard, Julian M.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) has shown that the Carina Nebula displays bright, spatially-complex soft diffuse X-ray emission. Here, we 'sum up' the CCCP diffuse emission work by comparing the global morphology and spectrum of Carina's diffuse X-ray emission to other famous sites of massive star formation with pronounced diffuse X-ray emission: M17, NGC 3576, NGC 3603, and 30 Doradus. All spectral models require at least two diffuse thermal plasma components to achieve adequate spectral fits, a softer component with kT = 0.2-0.6 keV and a harder component with kT = 0.5-0.9 keV. In several cases these hot plasmas appear to be in a state of non-equilibrium ionization that may indicate recent and current strong shocks. A cavity north of the embedded giant H II region NGC 3576 is the only region studied here that exhibits hard diffuse X-ray emission; this emission appears to be nonthermal and is likely due to a recent cavity supernova, as evidenced by a previously-known pulsar and a newly-discovered pulsar wind nebula also seen in this cavity. All of these targets exhibit X-ray emission lines that are not well modeled by variable-abundance thermal plasmas and that might be attributed to charge exchange at the shock between the hot, tenuous, X-ray-emitting plasma and cold, dense molecular material; this is likely evidence for dust destruction at the many hot/cold interfaces that characterize massive star-forming regions.

  3. Numerical nebulae

    NASA Astrophysics Data System (ADS)

    Rijkhorst, Erik-Jan

    2005-12-01

    The late stages of evolution of stars like our Sun are dominated by several episodes of violent mass loss. Space based observations of the resulting objects, known as Planetary Nebulae, show a bewildering array of highly symmetric shapes. The interplay between gasdynamics and radiative processes determines the morphological outcome of these objects, and numerical models for astrophysical gasdynamics have to incorporate these effects. This thesis presents new numerical techniques for carrying out high-resolution three-dimensional radiation hydrodynamical simulations. Such calculations require parallelization of computer codes, and the use of state-of-the-art supercomputer technology. Numerical models in the context of the shaping of Planetary Nebulae are presented, providing insight into their origin and fate.

  4. Effects of massive star radiation on circumstellar disks evolution in the Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Guarcello, Mario

    2007-09-01

    We will determine the frequency of disk and disk-less stars in the outer regions (relatively poor of massive stars) of the young cluster NGC 6611, with the aim to study the effects of UV flux due to massive stars on the evolution of circumstellar disks around low mass stars. Our previous results for the central region of the cluster show that this effect may be present, but we need to observe stars at larger distance from massive stars. This cluster is particularly well suited for our study, thanks to the irregular spatial distribution of its OB stars. CHANDRA observations are crucial for identifying the disk-less population undetectable with other method.

  5. Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.

    1994-01-01

    We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is

  6. Doradus Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A panoramic view of a vast, sculpted area of gas and dust where thousands of stars are being born has been captured by NASA's Hubble Space Telescope.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/21 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The photo offers an unprecedented, detailed view of the entire inner region of the fertile, star-forming 30 Doradus Nebula. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 (the large blue blob left of center), are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that incubate newborn stars.

    The 30 Doradus Nebula is in the Large Magellanic Cloud, a satellite galaxy of the Milky Way located 170,000 light-years from Earth. Nebulas like 30 Doradus are signposts of recent star birth. High-energy ultraviolet radiation from young, hot, massive stars in R136 causes surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths formed about 2 million years ago.

    The stars in R136 produce intense 'stellar winds,' streams of material traveling at several million miles an hour. These winds push the gas away from the cluster and compress the inner regions of the surrounding gas and dust clouds (seen in the image as the pinkish material). The intense pressure triggers the collapse of parts of the clouds, producing a new star formation around the central cluster. Most stars in the nursery are not visible because they are still encased in cocoons of gas and dust.

    This mosaic image of 30 Doradus consists of five overlapping

  7. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  8. Trifid Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 14.8' x 20.0' on the sky, of the Trifid Nebula, aka Messier 20 and NGC 6514. The Trifid is only about 1.5 degrees northwest on the sky of the larger Lagoon Nebula (Messier 8) in the constellation Sagittarius, and is at a distance from us of 1.68 kpc (or 5477 light years), near the plane of our Milky Way Galaxy. It gets its name from its optical appearance, from three dark dust lanes that divide it. Like the Lagoon, much of the optical emission is dominated by the red light from hydrogen, forming an 'H II region' of ionized gas around the bright small cluster of hot stars just to the southeast of the image center; the rest of the emission is reflected blue light from these hot stars, primarily from the brightest one, HD 164492A. In the near-infrared we can see through much of the obscuring dust in the Trifid, including the name-giving dust lanes, but still see much of the bluish light reflected by the dust. In the 2MASS image, much of the dark dust is still seen, but also many more stars than are seen optically. The Trifid is less than 1 million years old, and young, massive still-forming stellar objects can be seen as well. Visit the Trifid and other Messier objects in the 2MASSier Object Gallery. Image mosaic by E. Kopan (IPAC).

  9. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    NASA Astrophysics Data System (ADS)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  10. A SEARCH FOR STAR-DISK INTERACTION AMONG THE STRONGEST X-RAY FLARING STARS IN THE ORION NEBULA CLUSTER

    SciTech Connect

    Aarnio, Alicia N.; Stassun, Keivan G.; Matt, Sean P.

    2010-07-01

    The Chandra Orion Ultradeep Project observed hundreds of young, low-mass stars undergoing highly energetic X-ray flare events. The 32 most powerful cases have been previously modeled with the result that the magnetic structures responsible for these flares can be many stellar radii in extent. In this paper, we model the observed spectral energy distributions (SEDs) of these 32 stars in order to determine, in detail for each star, whether there is circumstellar disk material situated in sufficient proximity to the stellar surface for interaction with the large magnetic loops inferred from the observed X-ray flares. Our SEDs span the wavelength range 0.3-8 {mu}m (plus 24 {mu}m for some stars), allowing us to constrain the presence of dusty circumstellar material out to {approx_gt}10 AU from the stellar surface in most cases. For 24 of the 32 stars in our sample the available data are sufficient to constrain the location of the inner edge of the dusty disks. Six of these (25%) have SEDs consistent with inner disks within reach of the observed magnetic loops. Another four stars may have gas disks interior to the dust disk and extending within reach of the magnetic loops, but we cannot confirm this with the available data. The remaining 14 stars (58%) appear to have no significant disk material within reach of the large flaring loops. Thus, up to {approx}40% of the sample stars exhibit energetic X-ray flares that possibly arise from a magnetic star-disk interaction, and the remainder are evidently associated with extremely large, free-standing magnetic loops anchored only to the stellar surface.

  11. The binary fraction of planetary nebula central stars - I. A high-precision, I-band excess search

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola; Passy, Jean-Claude; Frew, D. J.; Moe, Maxwell; Jacoby, G. H.

    2013-01-01

    We still do not know what causes aspherical planetary nebula (PN) morphologies. A plausible hypothesis is that they are due to the presence of a close stellar or substellar companion. So far, only ˜40 binary central stars of PN have been detected, almost all of them with such short periods that their binarity is revealed by photometric variability. Here we have endeavoured to discover binary central stars at any separation, thus determining the unbiased binary fraction of central stars of PN. This number, when compared to the binary fraction of the presumed parent population, can give a first handle on the origin of PN. By detecting the central stars in the I band we have searched for cool companions. We have found that 30 per cent of our sample have an I-band excess detected between 1 and a few σ, possibly denoting companions brighter than M3-4V and with separations smaller than ˜1000 au. By accounting for the undetectable companions, we determine a debiased binary fraction of 67-78 per cent for all companions at all separations. We compare this number to a main-sequence binary fraction of (50 ± 4) per cent determined for spectral types F6V-G2V, appropriate if the progenitors of today's PN central star population are indeed the F6V-G2V stars. The error on our estimate cannot be constrained tightly, but we determine it to be between 10 and 30 per cent. We conclude that the central star binary fraction may be larger than expected from the putative parent population. However, this result is based on a sample of 27 bona fide central stars and should be considered preliminary. The success of the I-band method rests critically on high-precision photometry and a reasonably large sample. From a similar analysis, using the more sensitive J band of a subset of 11 central stars, the binary fraction is 54 per cent for companions brighter than ˜M5-6V and with separations smaller than about 900 au. Debiasing this number in the same way as was done for the I band we obtain

  12. (F)UV Spectral Analysis of Hot, Hydrogen-Rich Central Stars of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Ziegler, M.; Rauch, T.; Werner, K.; Kruk, J. W.

    2010-11-01

    Metal abundances of CSPNe are not well known although they provide important constraints on AGB nucleosynthesis. We aim to determine metal abundances of two hot, hydrogen-rich CSPNe (namely of A35 and NGC3587, the latter also known as M97 or the Owl Nebula) and to derive Teff and log g precisely from high-resolution, high-S/N (far-) ultraviolet observations obtained with FUSE and HST/STIS. For this purpose, we utilize NLTE model atmospheres calculated with TMAP, the Tübingen Model Atmosphere Package. Due to strong line absorption of the ISM, simultaneous modeling of interstellar features has become a standard tool in our analyses. We present preliminary results, demonstrating the importance of combining stellar and interstellar models, in order to clearly identify and measure the strengths of strategic photospheric lines.

  13. Braiding light quanta

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.

  14. Shuttle plate braiding machine

    NASA Technical Reports Server (NTRS)

    Huey, Jr., Cecil O. (Inventor)

    1994-01-01

    A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.

  15. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. II. MODELING THE CENTRAL STARS OF NGC 6026 AND NGC 6337

    SciTech Connect

    Hillwig, Todd C.; Bond, Howard E.; Afsar, Melike; De Marco, Orsola

    2010-08-15

    Close-binary central stars of planetary nebulae (CSPNe) provide an opportunity to explore the evolution of PNe, their shaping, and the evolution of binary systems undergoing a common-envelope phase. Here, we present the results of time-resolved photometry of the binary central stars (CSs) of the PNe NGC 6026 and NGC 6337 as well as time-resolved spectroscopy of the CS of NGC 6026. The results of a period analysis give an orbital period of 0.528086(4) days for NGC 6026 and a photometric period of 0.1734742(5) days for NGC 6337. In the case of NGC 6337, it appears that the photometric period reflects the orbital period and that the variability is the result of the irradiated hemisphere of a cool companion. The inclination of the thin PN ring is nearly face-on. Our modeled inclination range for the close central binary includes nearly face-on alignments and provides evidence for a direct binary-nebular shaping connection. For NGC 6026, however, the radial-velocity curve shows that the orbital period is twice the photometric period. In this case, the photometric variability is due to an ellipsoidal effect in which the CS nearly fills its Roche lobe and the companion is most likely a hot white dwarf. NGC 6026 then is the third PN with a confirmed central binary where the companion is compact. Based on the data and modeling using a Wilson-Devinney code, we discuss the physical parameters of the two systems and how they relate to the known sample of close-binary CSs, which comprise 15%-20% of all PNe.

  16. Hubble's Variable Nebula (NGC 2261)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A reflection nebula in the constellation Monoceros, position RA 06 h 39.2 m, dec. +08° 44'. It is small (2' by 1') but of quite high surface brightness. The nebula's average magnitude is 10, but, as Edwin Hubble discovered in 1916, it varies in brightness, mirroring the variability of its illuminating star, R Monocerotis....

  17. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  18. The Trifid Nebula: Stellar Sibling Rivalry

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A zoom into the Trifid Nebula starts with ground-based observations and ends with a Hubble Space Telescope (HST) image. Another HST image shows star formation in the nebula and the video concludes with a ground-based image of the Trifid Nebula.

  19. The binary fraction of planetary nebula central stars - II. A larger sample and improved technique for the infrared excess search

    NASA Astrophysics Data System (ADS)

    Douchin, Dimitri; De Marco, Orsola; Frew, D. J.; Jacoby, G. H.; Jasniewicz, G.; Fitzgerald, M.; Passy, Jean-Claude; Harmer, D.; Hillwig, Todd; Moe, Maxwell

    2015-04-01

    There is no conclusive explanation of why ˜80 per cent of planetary nebulae (PNe) are non-spherical. In the Binary Hypothesis, a binary interaction is a preferred channel to form a non-spherical PN. A fundamental step to corroborate or disprove the Binary Hypothesis is to estimate the binary fraction of central stars of PNe (CSPNe) and compare it with a prediction based on the binary fraction of the progenitor, main-sequence population. In this paper, the second in a series, we search for spatially unresolved I- and J-band flux excess in an extended sample of 34 CSPN by a refined measurement technique with a better quantification of the uncertainties. The detection rate of I- (J-)band flux excess is 32 ± 16 per cent (50 ± 24 per cent). This result is very close to what was obtained in Paper I with a smaller sample. We account conservatively for unobserved cool companions down to brown dwarf luminosities, increasing these fractions to 40 ± 20 per cent (62 ± 30 per cent). This step is very sensitive to the adopted brightness limit of our survey. Accounting for visual companions increases the binary fraction to 46 ± 23 per cent (71 ± 34 per cent). These figures are lower than in Paper I. The error bars are better quantified, but still unacceptably large. Taken at face value, the current CSPN binary fraction is in line with the main-sequence progenitor population binary fraction. However, including white dwarfs companions could increase this fraction by as much as 13 (21) per cent points.

  20. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  1. A Smoking Gun in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Strohmayer, Tod; Petre, Rob; Chu, You-Hua

    2009-04-01

    The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ~30 years. The soft X-ray spectrum, consistent with kT ~ 128 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicates that it is a ~106 year old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitors of the neutron star and massive stars in the Carina Nebula, in particular η Car, are coeval. This result suggests that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star may be responsible for remnants of high-energy activity seen in multiple wavelengths.

  2. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  3. FAR-INFRARED IMAGING OF POST-ASYMPTOTIC GIANT BRANCH STARS AND (PROTO)-PLANETARY NEBULAE WITH THE AKARI FAR-INFRARED SURVEYOR

    SciTech Connect

    Cox, N. L. J.; Garcia-Hernandez, D. A.; Manchado, A.

    2011-04-15

    By tracing the distribution of cool dust in the extended envelopes of post-asymptotic giant branch stars and (proto)-planetary nebulae ((P)PNe), we aim to recover, or constrain, the mass-loss history experienced by these stars in their recent past. The Far-Infrared Surveyor (FIS) instrument on board the AKARI satellite was used to obtain far-infrared maps for a selected sample of post-AGB stars and (P)PNe. We derived flux densities (aperture photometry) for 13 post-AGB stars and (P)PNe at four far-infrared wavelengths (65, 90, 140, and 160 {mu}m). Radial (azimuthally averaged) profiles are used to investigate the presence of extended emission from cool dust. No (detached) extended emission is detected for any target in our sample at levels significant with respect to background and cirrus emission. Only IRAS 21046+4739 reveals tentative excess emission between 30'' and 130''. Estimates of the total dust and gas mass from the obtained maps indicate that the envelope masses of these stars should be large in order to be detected with the AKARI FIS. Imaging with higher sensitivity and higher spatial resolution is needed to detect and resolve, if present, any cool compact or extended emission associated with these evolved stars.

  4. MOLECULAR CLOUDS IN THE TRIFID NEBULA M20: POSSIBLE EVIDENCE FOR A CLOUD-CLOUD COLLISION IN TRIGGERING THE FORMATION OF THE FIRST GENERATION STARS

    SciTech Connect

    Torii, K.; Enokiya, R.; Sano, H.; Yoshiike, S.; Hanaoka, N.; Ohama, A.; Furukawa, N.; Dawson, J. R.; Moribe, N.; Oishi, K.; Nakashima, Y.; Okuda, T.; Yamamoto, H.; Kawamura, A.; Mizuno, N.; Onishi, T.; Fukui, Y.; Maezawa, H.; Mizuno, A.

    2011-09-01

    A large-scale study of the molecular clouds toward the Trifid Nebula, M20, has been made in the J = 2-1 and J = 1-0 transitions of {sup 12}CO and {sup 13}CO. M20 is ionized predominantly by an O7.5 star HD164492. The study has revealed that there are two molecular components at separate velocities peaked toward the center of M20 and that their temperatures-30-50 K as derived by a large velocity gradient analysis-are significantly higher than the 10 K of their surroundings. We identify the two clouds as the parent clouds of the first generation stars in M20. The mass of each cloud is estimated to be {approx}10{sup 3} M{sub sun} and their separation velocity is {approx}8 km s{sup -1} over {approx}1-2 pc. We find that the total mass of stars and molecular gas in M20 is less than {approx}3.2 x 10{sup 3} M{sub sun}, which is too small by an order of magnitude to gravitationally bind the system. We argue that the formation of the first generation stars, including the main ionizing O7.5 star, was triggered by the collision between the two clouds in a short timescale of {approx}1 Myr, a second example alongside Westerlund 2, where a super-star cluster may have been formed due to cloud-cloud collision triggering.

  5. Molecular Clouds in the Trifid Nebula M20: Possible Evidence for a Cloud-Cloud Collision in Triggering the Formation of the First Generation Stars

    NASA Astrophysics Data System (ADS)

    Torii, K.; Enokiya, R.; Sano, H.; Yoshiike, S.; Hanaoka, N.; Ohama, A.; Furukawa, N.; Dawson, J. R.; Moribe, N.; Oishi, K.; Nakashima, Y.; Okuda, T.; Yamamoto, H.; Kawamura, A.; Mizuno, N.; Maezawa, H.; Onishi, T.; Mizuno, A.; Fukui, Y.

    2011-09-01

    A large-scale study of the molecular clouds toward the Trifid Nebula, M20, has been made in the J = 2-1 and J = 1-0 transitions of 12CO and 13CO. M20 is ionized predominantly by an O7.5 star HD164492. The study has revealed that there are two molecular components at separate velocities peaked toward the center of M20 and that their temperatures—30-50 K as derived by a large velocity gradient analysis—are significantly higher than the 10 K of their surroundings. We identify the two clouds as the parent clouds of the first generation stars in M20. The mass of each cloud is estimated to be ~103 M sun and their separation velocity is ~8 km s-1 over ~1-2 pc. We find that the total mass of stars and molecular gas in M20 is less than ~3.2 × 103 M sun, which is too small by an order of magnitude to gravitationally bind the system. We argue that the formation of the first generation stars, including the main ionizing O7.5 star, was triggered by the collision between the two clouds in a short timescale of ~1 Myr, a second example alongside Westerlund 2, where a super-star cluster may have been formed due to cloud-cloud collision triggering.

  6. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  7. Imaging Polarimetry of Protoplanetary and Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Scarrott, S. M.; Scarrott, R. M. J.

    1995-11-01

    Imaging polarimetry maps are presented for a sample of bipolar proto-planetary and planetary nebulae (Frosty Leo, Roberts 22, Hen 401, MZ 3, NGC 2346, IC 4406 and J 320). Each of the highly polarized proto-planetary nebulae possesses a `polarization disc' which has been observed more frequently in nebulae associated with star forming regions. In order to account for the observed high levels of polarization in protoplanetary nebulae we consider the effects of a thin coating of a volatile material on refractory grains with an original size distribution typical of the interstellar medium. The planetary nebulae are seen in a mixture of reflected and emission light and their polarization patterns suggest that, in many instances, they are emission nebulae surrounded by an extensive envelope of reflection nebulosity. The origin of the skew-symmetry and ansae in the isophotal maps of proto-planetary and planetary nebulae are discussed in terms of binary stars and magnetic fields.

  8. The Cat's Eye Nebula

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. This color picture, taken with the Wide Field Planetary Camera-2, is a composite of three images taken at different wavelengths. (red, hydrogen-alpha; blue, neutral oxygen, 6300 angstroms; green, ionized nitrogen, 6584 angstroms). The image was taken on September 18, 1994. NGC 6543 is 3,000 light- years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life.

  9. Braids, shuffles and symmetrizers

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Ogievetsky, O. V.

    2009-07-01

    Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.

  10. Modelling the cometary structure of the planetary nebula HFG1 based on the evolution of its binary central star V664 Cas

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Boumis, P.; Nanouris, N.; Meaburn, J.; Dimitriadis, G.

    2016-03-01

    HFG1 is the first well-observed planetary nebula (PN) which reveals a cometary-like structure. Its main morphological features consist of a bow-shaped shell, which surrounds the central star, accompanied by a long collimated tail. In this study, we perform two-dimensional hydrodynamic simulations modelling the formation of HFG1 from the interaction of the local ambient medium with the mass outflows of its asymptotic giant branch (AGB) progenitor star. We attribute the cometary appearance of HFG1 to the systemic motion of the PN with respect to the local ambient medium. Due to its vital importance, we re-estimate the distance of HFG1 by modelling the spectral energy distribution of its central star, V664 Cas, and we find a distance of 490 ± 50 pc. Our simulations show that none of our models with time invariant stellar wind and ambient medium properties are able to reproduce simultaneously the extended bow shock and the collimated tail observed in HFG1. Given this, we increase the complexity of our modelling considering that the stellar wind is time variable. The wind description is based on the predictions of the AGB and post-AGB evolution models. Testing a grid of models, we find that the properties of HFG1 are best reproduced by the mass outflows of a 3 M⊙ AGB star. Such a scenario is consistent with the current observed properties of V664 Cas primary star, an O-type subdwarf, and bridges the evolutionary history of HFG1 central star with the observables of the PN. We discuss the implications of our study in the understanding of the evolution of AGB/post-AGB stars towards the formation of O-type subdwarfs surrounded by PNe.

  11. The Crab Nebula's progenitor

    NASA Technical Reports Server (NTRS)

    Nomoto, K.; Sugimoto, D.; Sparks, W. M.; Fesen, R. A.; Gull, T. R.; Miyaji, S.

    1982-01-01

    The initial mass of the Crab Nebula's progenitor star is estimated by comparing the observed nebular chemical abundances with detailed evolutionary calculations for 2.4- and 2.6-solar-mass helium cores of stars with masses of 8 to 10 solar masses. The results indicate that the mass of the Crab's progenitor was between the upper limit of about 8 solar masses for carbon deflagration and the lower limit of about 9.5 solar masses set by the dredge-up of the helium layer before the development of the helium-burning convective region. A scenario is outlined for the evolution of the progenitor star. It is suggested that the Crab Nebula was probably the product of an electron-capture supernova.

  12. Trifid reflection nebulae

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1986-11-01

    CCD frames of reflected starlight in the blue continuum, 4693 A, associated with the Trifid emission nebulae have been used to deduce the optical depth, albedo, and phase function of the dust grains. The northern component of the Trifid, centered on the supergiant HD 164514, apparently has grains of higher albedo than those associated with the southern O star HD 164492A. IRAS data add further arguments to the assumption that the northern reflection nebula is illuminated by the supergiant, and that the dust grains surrounding the O star have a higher grain temperature. The entire complex is probably part of the Sgr OB I association and the short lifetime of the association puts constraints on the manner in which the properties of the grains can be modified by associated young stars. 26 references.

  13. The Trifid reflection nebulae

    NASA Astrophysics Data System (ADS)

    Lynds, Beverly T.; Oneil, Earl J., Jr.

    1986-11-01

    CCD frames of reflected starlight in the blue continuum, λ 4693, associated with the Trifid emission nebulae have been used to deduce the optical depth, albedo, and phase function of the dust grains. The northern component of the Trifid, centered on the supergiant HD 164514, apparently has grains of higher albedo than those associated with the southern O star HD 164492A. IRAS data add further arguments to the assumption that the northern reflection nebula is illuminated by the supergiant and that the dust grains surrounding the O star have a higher grain temperature. The entire complex is probably part of the Sgr OB I association and the short lifetime of the association puts constraints on the manner in which the properties of the grains can be modified by associated young stars.

  14. A carbon dwarf wearing a Necklace: first proof of accretion in a post-common-envelope binary central star of a planetary nebula with jets

    NASA Astrophysics Data System (ADS)

    Miszalski, Brent; Boffin, Henri M. J.; Corradi, Romano L. M.

    2013-01-01

    The formation of collimated outflows or jets in planetary nebulae (PNe) is not well understood. There is no evidence for active accretion discs in PNe, making it difficult to decide which of the several proposed jet formation scenarios may be correct. A handful of wide binary central stars of PNe are known to have accreted carbon and slow neutron capture (s-process) enhanced material, the immediate progenitors of barium stars; however, no close binary analogues are known to have passed through a common-envelope (CE) phase. Here we present spectroscopy of the Necklace taken near light-curve minimum that for the first time reveals a carbon-rich (C/O > 1) companion, a carbon dwarf, in a post-CE central star. As unevolved stars do not produce carbon, the chemical enhancement of the secondary can only be explained by accretion from the primary. Accretion most likely happened prior to the CE phase via wind accretion as not enough material can be accreted during the short CE phase. The pair of jets in the Necklace, which are observed to be older than the PN, are therefore likely to have been launched from an accretion disc around the companion during this early accretion phase. This discovery adds significant weight to the emerging scenario that jets in post-CE PNe are primarily launched by an accretion disc around a main-sequence companion before the CE phase.

  15. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Scibelli, S.; Morris, M. R.

    2016-08-01

    The well-studied carbon star, V Hya, showing evidence for high-speed, collimated outflows and dense equatorial structures, is a key object in the study of the poorly understood transition of AGB stars into aspherical planetary nebulae. Using the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope, we have obtained high spatial-resolution long-slit optical spectra of V Hya that show high-velocity emission in [S ii] and [Fe ii] lines. Our data set, spanning three epochs spaced apart by a year during each of two periods (in 2002-2004 and 2011-2013), shows that V Hya ejects high-speed (˜200-250 {km} {{{s}}}-1) bullets once every ˜8.5 years. The ejection axis flip-flops around a roughly eastern direction, both in and perpendicular to the sky-plane, and the radial velocities of the ejecta also vary in concert between low and high values. We propose a model in which the bullet ejection is associated with the periastron passage of a binary companion in an eccentric orbit around V Hya with an orbital period of ˜8.5 years. The flip-flop phenomenon is likely the result of collimated ejection from an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing, and/or that has a magnetic field that is misaligned with that of the companion or the primary star. We show how a previously observed 17 year period in V Hya’s light-cycle can also be explained in our model. Additionally, we describe how the model proposed here can be extended to account for multipolar nebulae.

  16. High-speed Bullet Ejections during the AGB-to-Planetary Nebula Transition: HST Observations of the Carbon Star, V Hydrae

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Scibelli, S.; Morris, M. R.

    2016-08-01

    The well-studied carbon star, V Hya, showing evidence for high-speed, collimated outflows and dense equatorial structures, is a key object in the study of the poorly understood transition of AGB stars into aspherical planetary nebulae. Using the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope, we have obtained high spatial-resolution long-slit optical spectra of V Hya that show high-velocity emission in [S ii] and [Fe ii] lines. Our data set, spanning three epochs spaced apart by a year during each of two periods (in 2002–2004 and 2011–2013), shows that V Hya ejects high-speed (˜200–250 {km} {{{s}}}-1) bullets once every ˜8.5 years. The ejection axis flip–flops around a roughly eastern direction, both in and perpendicular to the sky-plane, and the radial velocities of the ejecta also vary in concert between low and high values. We propose a model in which the bullet ejection is associated with the periastron passage of a binary companion in an eccentric orbit around V Hya with an orbital period of ˜8.5 years. The flip–flop phenomenon is likely the result of collimated ejection from an accretion disk (produced by gravitational capture of material from the primary) that is warped and precessing, and/or that has a magnetic field that is misaligned with that of the companion or the primary star. We show how a previously observed 17 year period in V Hya’s light-cycle can also be explained in our model. Additionally, we describe how the model proposed here can be extended to account for multipolar nebulae.

  17. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    We present a model for the photoevaporation of circumstellar disks or dense clumps of gas by an external source of ultraviolet radiation. Our model includes the thermal and dynamic effects of 6-13.6 eV far-ultraviolet (FUV) photons and Lyman continuum EUV photons incident upon disks or clumps idealized as spheres of radius rd and enclosed mass M*. For sufficiently large values of rd/M*, the radiation field evaporates the surface gas and dust. Analytical and numerical approximations to the resulting flows are presented; the model depends on rd, M*, the flux of FUV and EUV photons, and the column density of neutral gas heated by FUV photons to high temperatures. Application of this model shows that the circumstellar disks (rd ~ 1014-1015 cm) in the Orion Nebula (``proplyds'') are rapidly destroyed by the external UV radiation field. Close (d <~ 1017 cm) to θ1 Ori C, the ionizing EUV photon flux controls the mass-loss rate, and the ionization front (IF) is approximately coincident with the disk surface. Gas evaporated from the cold disk moves subsonically through a relatively thin photodissociation region (PDR) dominated by FUV photons and heated to ~1000 K. As the distance from θ1 Ori C increases, the Lyman continuum flux declines, the PDR thickens, and the IF moves away from the disk surface. At d ~ 3 × 1017 cm, the thickness of the PDR becomes comparable to the disk radius. Between 3 × 1017 cm <~ d <~ 1018 cm, spherical divergence and the resultant pressure gradient in the 103 K PDR forms a mildly supersonic (~3-6 km s-1) but neutral Parker wind. This wind flows outward until it passes through a shock, beyond which gas moves subsonically through a stationary D-type IF. The IF is moved away from the disk surface to a standoff distance rIF >~ 2.5rd. In this regime, the mass-loss rate is determined by the incident FUV photon flux and not the ionizing flux. However, at very large distances, d >~ 1018 cm, the FUV photon flux drops to values that cannot maintain the

  18. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center

  19. Binaries discovered by the SPY survey. VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star EGB 5 - a recently ejected common envelope?

    NASA Astrophysics Data System (ADS)

    Geier, S.; Napiwotzki, R.; Heber, U.; Nelemans, G.

    2011-04-01

    Hot subdwarf B stars (sdBs) in close binary systems are assumed to be formed via common envelope ejection. According to theoretical models, the amount of energy and angular momentum deposited in the common envelope scales with the mass of the companion. That low mass companions near or below the core hydrogen-burning limit are able to trigger the ejection of this envelope is well known. The currently known systems have very short periods ≃0.1-0.3 d. Here we report the discovery of a low mass companion (M2 > 0.14 M⊙) orbiting the sdB star and central star of a planetary nebula EGB 5 with an orbital period of 16.5 d at a minimum separation of 23 R⊙. Its long period is only just consistent with the energy balance prescription of the common envelope. The marked difference between the short and long period systems will provide strong constraints on the common envelope phase, in particular if the masses of the sdB stars can be measured accurately. Due to selection effects, the fraction of sdBs with low mass companions and similar or longer periods may be quite high. Low mass stellar and substellar companions may therefore play a significant role for the still unclear formation of hot subdwarf stars. Furthermore, the nebula around EGB 5 may be the remnant of the ejected common envelope making this binary a unique system to study this short und poorly understood phase of binary evolution. Based on observations at the Paranal Observatory of the European Southern Observatory for programmes No. 167.H-0407(A) and 71.D-0383(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). Some of the data used in this work were obtained at the William Herschel Telescope (WHT) operated by the Isaac Newton Group of Telescopes (ING).

  20. The chemical composition of TS 01, the most oxygen-deficient planetary nebula. AGB nucleosynthesis in a metal-poor binary star

    NASA Astrophysics Data System (ADS)

    Stasińska, G.; Morisset, C.; Tovmassian, G.; Rauch, T.; Richer, M. G.; Peña, M.; Szczerba, R.; Decressin, T.; Charbonnel, C.; Yungelson, L.; Napiwotzki, R.; Simón-Díaz, S.; Jamet, L.

    2010-02-01

    The planetary nebula TS 01 (also called PN G 135.9+55.9 or SBS 1150+599A) with its record-holding low oxygen abundance and its double degenerate close binary core (period 3.9 h) is an exceptional object located in the Galactic halo. We have secured observational data in a complete wavelength range to pin down the abundances of half a dozen elements in the nebula. The abundances are obtained via detailed photoionization modelling which takes into account all the observational constraints (including geometry and aperture effects) using the pseudo-3D photoionization code Cloudy_3D. The spectral energy distribution of the ionizing radiation is taken from appropriate model atmospheres. Incidentally we find from the new observational constraints that both stellar components contribute to the ionization: the “cool” one provides the bulk of hydrogen ionization, while the “hot” one is responsible for the presence of the most highly charged ions, which explains why previous attempts to model the nebula experienced difficulties. The nebular abundances of C, N, O, and Ne are found to be 1/3.5, 1/4.2, 1/70, and 1/11 of the solar value respectively, with uncertainties of a factor 2. Thus the extreme O deficiency of this object is confirmed. The abundances of S and Ar are less than 1/30 of solar. The abundance of He relative to H is 0.089 ± 0.009. Standard models of stellar evolution and nucleosynthesis cannot explain the abundance pattern observed in the nebula. To obtain an extreme oxygen deficiency in a star whose progenitor has an initial mass of about 1 M⊙ requires an additional mixing process, which can be induced by stellar rotation and/or by the presence of the close companion. We have computed a stellar model with an initial mass of 1 M⊙, appropriate metallicity, and initial rotation of 100 km s-1, and find that rotation greatly improves the agreement between the predicted and observed abundances. Based on observations obtained at the Canada

  1. LkH-alpha 101 - The stellar wind, the surrounding nebula, and an associated radio star cluster

    NASA Technical Reports Server (NTRS)

    Becker, Robert H.; White, Richard L.

    1988-01-01

    Radio observations of LkH-alpha 101 have been taken to determine the characteristics of the stellar wind from the central star as well as to image the surrounding nebulosity. They also revealed the presence of a high concentration of weak compact radio sources in the neighborhood of LkH-alpha 101, four of which have optical stellar counterparts. Spectra of three of the stars indicate two T Tauri stars and a highly obscured B star.

  2. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  3. Method and apparatus for three dimensional braiding

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1995-01-01

    A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.

  4. Properties of young clusters near reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1983-01-01

    Near infrared observations in the reflection nebulae NGC 7023, 2023, and 2068 are used to study clusters of young stars found associated with these nebulae. At least 30% to 60% of these stars are pre-main sequence objects, as indicated by their infrared excesses, hydrogen line emission, or irregular variability. The spatial distributions and observed luminosity functions of these young open clusters are derived, and the inferred mass function and star formation efficiencies are discussed.

  5. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  6. A Smoking Gun in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert A.; Vaidya, Kaushar; White, Stephen M.; Strohmayer, Tod; Petre, Rob; Chu, You-Hua

    2010-07-01

    Massive stars are born from giant molecular clouds along with many lower mass stars, forming a stellar cluster or association. They dominate the pressure of the interstellar gas through their strong UV radiation, stellar winds and, ultimately, supernova explosions at the end of their life. These processes help the formation of the next generation of stars, but this trigger of star formation is not yet well understood. The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ~30 years. The soft X-ray spectrum, consistent with a kT~128 eV lackbody with mild extinction, and no counterpart in the optical and infrared wavelengths indicate that it is a 106 year-old neutron star. Current star formation theory does not allow the progenitor of the neutron star and the other massive stars in the Carina Nebula (in particular η Carinae) to be coeval. This result suggests that the Carina Nebula experienced at least two episodes of massive star formation. The neutron star may be responsible for part or all of the diffuse X-ray emission which permeates the Nebula.

  7. A Smoking Gun in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, M. F.; Ezoe, Y.; Townsley, L.; Broos, P.; Gruendl, R.; Vaidya, K.; White, S. M.; Strohmayer, T.; Petre, R.; Chu, Y.-H.

    2009-09-01

    Massive stars are born from giant molecular clouds along with many lower mass stars, forming a stellar cluster or association. They dominate the pressure of the interstellar gas through their strong UV radiation, stellar winds and, ultimately, supernova explosions at the end of their life. These processes help the formation of the next generation of stars, but this trigger of star formation is not yet well understood. The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ˜30 years. The soft X-ray spectrum, consistent with a kT ˜128 eV blackbody with mild extinction, and no counterpart in the optical and infrared wavelengths indicate that it is a 106 year-old neutron star. Current star formation theory does not allow the progenitor of the neutron star and the other massive stars in the Carina Nebula (in particular Eta Carinae) to be coeval. This result suggests that the Carina Nebula experienced at least two episodes of massive star formation. The neutron star may be responsible for part or all of the diffuse X-ray emission which permeates the Nebula.

  8. Owl Nebula (M97, NGC 3587)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A planetary nebula in the constellation Ursa Major, position RA 11 h 14.8 m, dec. +55° 01'. The Owl is 3' across and gets its name from two adjacent dark patches that have the appearance of large eyes. The nebula is eleventh magnitude, and the central star is a faint magnitude 16....

  9. Trifid Nebula (M20, NGC 6514)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    An emission nebula in the constellation Sagittarius, position RA 18 h 02.6 m, dec. -23° 02'. It is of ninth magnitude, with quite a high surface brightness, and measures 29' by 27'. It surrounds the multiple star HN 40, the light of whose brightest members energize the nebula. The Trifid gets its name from dark lanes that trisect it....

  10. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  11. Revisiting the Orion Nebula

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Orion the Hunter is perhaps the best-known constellation in the sky, well placed in the winter for observers in both the northern and southern hemispheres, and instantly recognisable. Just below Orion's belt (three distinctive stars in a row), the hilt of his sword holds a great jewel in the sky, the beautiful Orion Nebula. Bright enough to be seen with the naked eye, the nebula, also known as Messier 42, is a wide complex of gas and dust, illuminated by several massive and hot stars at its core, the famous Trapezium stars. For astronomers, Orion is surely one of the most important constellations, as it contains one of the nearest and most active stellar nurseries in the Milky Way, the galaxy in which we live. Here tens of thousands of new stars have formed within the past ten million years or so - a very short span of time in astronomical terms. For comparison: our own Sun is now 4,600 million years old and has not yet reached half-age. Reduced to a human time-scale, star formation in Orion would have been going on for just one month as compared to the Sun's 40 years. In fact, located at a distance of 1500 light years, the Orion Nebula plays such an important role in astrophysics that it can be argued that our understanding of star formation is for a large part based on the Orion Nebula. It is thus no surprise that the Orion Nebula is one of the most studied objects in the night sky (see for example the various related ESO Press Photos and Releases: ESO Press Photo 03a/98, ESO Press Photos 03a-d/01, ESO Press Photos 12a-e/01, ESO Press Release 14/01,...). The richness of the stellar cluster inside the Orion Nebula makes it an ideal, and unique, target for high resolution and wide-field imaging. Following some pioneering work made a few years ago, an international team of astronomers [1], led by Massimo Robberto (European Space Agency and Space Telescope Science Institute), used the Wide Field Imager (WFI), a 67-million pixel digital camera that is installed at the

  12. N44C nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Resembling the hair in Botticelli's famous portrait of the birth of Venus, an image from NASA's Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula.

    The image, presented by the Hubble Heritage Project, was taken in 1996 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image is available online at

    http://heritage.stsci.edu , http://oposite.stsci.edu/pubinfo/pr/2002/12 orhttp://www.jpl.nasa.gov/images/wfpc .

    On the top right of the image is a source of its artistic likeness, a network of nebulous filaments surrounding the Wolf-Rayet star. This type of rare star is characterized by an exceptionally vigorous 'wind' of charged particles. The shock of the wind colliding with the surrounding gas causes the gas to glow.

    The Wolf-Rayet star is part of N44C, a nebula of glowing hydrogen gas surrounding young stars in the Large Magellanic Cloud. Visible from the Southern Hemisphere, the Large Magellanic Cloud is a small companion galaxy to the Milky Way.

    What makes N44C peculiar is the temperature of the star that illuminates it. The most massive stars -- those that are 10 to 50 times more massive than the Sun -- have maximum temperatures of 30,000 to 50,000 degrees Celsius (54,000 to 90,000 degrees Fahrenheit). The temperature of this star is about 75,000 degrees Celsius (135,000 degrees Fahrenheit). This unusually high temperature may be due to a neutron star or black hole that occasionally produces X-rays but is now inactive.

    N44C is part of a larger complex that includes young, hot, massive stars, nebulae, and a 'superbubble' blown out by multiple supernova explosions. Part of the superbubble is seen in red at the very bottom left of the Hubble image.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard

  13. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  14. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  15. The Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's new Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility, has captured in stunning detail the spidery filaments and newborn stars of the Tarantula Nebula, a rich star-forming region also known as 30 Doradus. This cloud of glowing dust and gas is located in the Large Magellanic Cloud, the nearest galaxy to our own Milky Way, and is visible primarily from the Southern Hemisphere. This image of an interstellar cauldron provides a snapshot of the complex physical processes and chemistry that govern the birth - and death - of stars.

    At the heart of the nebula is a compact cluster of stars, known as R136, which contains very massive and young stars. The brightest of these blue supergiant stars are up to 100 times more massive than the Sun, and are at least 100,000 times more luminous. These stars will live fast and die young, at least by astronomical standards, exhausting their nuclear fuel in a few million years.

    The Spitzer Space Telescope image was obtained with an infrared array camera that is sensitive to invisible infrared light at wavelengths that are about ten times longer than visible light. In this four-color composite, emission at 3.6 microns is depicted in blue, 4.5 microns in green, 5.8 microns in orange, and 8.0 microns in red. The image covers a region that is three-quarters the size of the full moon.

    The Spitzer observations penetrate the dust clouds throughout the Tarantula to reveal previously hidden sites of star formation. Within the luminescent nebula, many holes are also apparent. These voids are produced by highly energetic winds originating from the massive stars in the central star cluster. The structures at the edges of these voids are particularly interesting. Dense pillars of gas and dust, sculpted by the stellar radiation, denote the birthplace of future generations of stars.

    The Spitzer image provides information about the composition of the material at the edges of the voids. The surface layers

  16. The peculiar isolated neutron star in the Carina Nebula. Deep XMM-Newton and ESO-VLT observations of 2XMM J104608.7-594306

    NASA Astrophysics Data System (ADS)

    Pires, A. M.; Motch, C.; Turolla, R.; Schwope, A.; Pilia, M.; Treves, A.; Popov, S. B.; Janot-Pacheco, E.

    2012-08-01

    While fewer in number than the dominant rotation-powered radio pulsar population, peculiar classes of isolated neutron stars (INSs) - which include magnetars, the ROSAT-discovered "Magnificent Seven" (M7), rotating radio transients (RRATs), and central compact objects in supernova remnants (CCOs) - represent a key element in understanding the neutron star phenomenology. We report the results of an observational campaign to study the properties of the source 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The evolutionary state of the neutron star is investigated by means of deep dedicated observations obtained with the XMM-Newton Observatory, the ESO Very Large Telescope, as well as publicly available γ-ray data from the Fermi Space Telescope and the AGILE Mission. The observations confirm previous expectations and reveal a unique type of object. The source, which is likely within the Carina Nebula (NH = 2.6 × 1021 cm-2), has a spectrum that is both thermal and soft, with kT∞ = 135 eV. Non-thermal (magnetospheric) emission is not detected down to 1% (3σ, 0.1-12 keV) of the source luminosity. Significant deviations (absorption features) from a simple blackbody model are identified in the spectrum of the source around energies 0.6 keV and 1.35 keV. While the former deviation is likely related to a local oxygen overabundance in the Carina Nebula, the latter can only be accounted for by an additional spectral component, which is modelled as a Gaussian line in absorption with EW = 91 eV and σ = 0.14 keV (1σ). Furthermore, the optical counterpart is fainter than mV = 27 (2σ) and no γ-ray emission is significantly detected by either the Fermi or AGILE missions. Very interestingly, while these characteristics are remarkably similar to those of the M7 or the only RRAT so far detected in X-rays, which all have spin periods of a few seconds, we found intriguing evidence of very rapid rotation, P = 18.6 ms, at the 4σ confidence level. We interpret

  17. The Stingray nebula: watching the rapid evolution of a newly born planetary nebula.

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; García-Lario, Pedro

    The formation and early evolution of planetary nebulae represent one of the most poorly understood phases of stellar evolution ( Kwok, 1987; Maddox, 1995). One of the youngest, the Stingray Nebula (He3-1357) ( Henize, 1967; Henize, 1976), shows all the tell-tale signs of a newly born planetary nebula: it has become ionized only within the past few decades ( Parthasarathy et al., 1993); the mass-loss from the central star has ceased within the past few years; and the central star is becoming hotter and fainter as expected from a star on its way to becoming a DA white dwarf ( Parthasarathy et al., 1995). The Stingray Nebula thus provides the ideal laboratory for examining the early structure and evolution of this class of objects. Images of the Stingray Nebula, obtained with the Hubble Space Telescope, show for the first time that its multiple expulsions of matter are focused by an equatorial ring and bubbles of gas located on opposite sides of the ring ( Bobrowsky et al., 1995). The position angle of the outflows has changed, possibly as a result of precessional motion induced by the presence of a companion star. This is consistent with the precessing jet model by Livio & Pringle (1996). Indeed, we have reported the discovery of a companion star in the Stingray Nebula ( Bobrowsky et al., 1998). Finally, we present evidence of the companion star dynamically distorting the gas in this newly-born planetary nebula.

  18. SERENDIPITOUS DETECTION OF X-RAY EMISSION FROM THE HOT BORN-AGAIN CENTRAL STAR OF THE PLANETARY NEBULA K 1-16

    SciTech Connect

    Montez, Rodolfo Jr.; Kastner, Joel H. E-mail: jhk@cis.rit.edu

    2013-03-20

    We report the serendipitous detection of point-like X-ray emission from the hot, PG1159-type central star of the planetary nebula (CSPN) K 1-16 by the XMM-Newton and Chandra X-Ray Observatories. The CSPN lies superimposed on a galaxy cluster that includes an X-ray-bright quasar, but we have successfully isolated the CSPN X-ray emission from the strong diffuse background contributed by the quasar and intracluster gas. We have modeled the XMM-Newton and Chandra X-ray data, taking advantage of the contrasting detection efficiencies of the two observatories to better constrain the low-energy spectral response of Chandra's Advanced CCD Imaging Spectrometer. We find that the CSPN X-ray spectrum is well characterized by the combination of a non-local thermodynamic equilibrium model atmosphere with T{sub *} {approx} 135 kK and a carbon-rich, optically thin thermal plasma with T{sub X} {approx} 1 MK. These results for X-ray emission from the K 1-16 CSPN, combined with those obtained for other PG1159-type objects, lend support to the 'born-again' scenario for Wolf-Rayet and PG1159 CSPNe, wherein a late helium shell flash dredges up carbon-rich intershell material and ejects this material into the circumstellar environment.

  19. The Reflection Nebula in Orion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Just weeks after NASA astronauts repaired the Hubble Space Telescope in December 1999, the Hubble Heritage Project snapped this picture of NGC 1999, a nebula in the constellation Orion. The Heritage astronomers, in collaboration with scientists in Texas and Ireland, used Hubble's Wide Field and Planetary Camera 2 (WFPC2) to obtain the color image. NGC 1999 is an example of a reflection nebula. Like fog around a street lamp, a reflection nebula shines only because the light from an imbedded source illuminates its dust; the nebula does not emit any visible light of its own. NGC 1999 lies close to the famous Orion Nebula, about 1,500 light-years from Earth, in a region of our Milky Way galaxy where new stars are being formed actively. NGC 1999 was discovered some two centuries ago by Sir William Herschel and his sister Caroline, and was cataloged later in the 19th century as object 1999 in the New General Catalogue. This data was collected in January 2000 by the Hubble Heritage Team with the collaboration of star-formation experts C. Robert O'Dell (Rice University), Thomas P. Ray (Dublin Institute for Advanced Study), and David Corcoran (University of Limerick).

  20. Finite-time braiding exponents.

    PubMed

    Budišić, Marko; Thiffeault, Jean-Luc

    2015-08-01

    Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.

  1. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 < Z < 2 Z⊙. They are compared to recent precise nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  2. THE 'SPIROGRAPH' NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl

  3. Using Planetary Nebulae to Teach Physics

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  4. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, Ruben

    2015-07-01

    lowest possible energy threshold with the LSTs of CTA. Together with this work, the trigger of the MAGIC telescopes was improved. We have simulated, tested and commissioned a new concept of stereoscopic trigger. This new system, that uses the information of the position of the showers on each of the MAGIC cameras, is dubbed "Topo-trigger". The scientific fraction of the thesis deals with galactic sources observed with the MAGIC telescopes. In Part III, I talk about the analysis of the VHE γ-ray emission of Pulsar Wind Nebulae (PWNe): the discovery of VHE γ-ray emission from the puzzling PWN 3C 58, the likely remnant of the SN 1181 AD and the weakest PWN detected at VHE to date; the characterization of the VHE tail of the Crab nebula by observing it at the highest zenith angles; and the search for an additional inverse Compton component during the Crab nebula flares reported by Fermi-LAT in the synchrotron regime. Part IV is concerned with searches for VHE γ-ray emission of cataclysmic variable stars. I studied, on a multiwavelength context, the VHE γ-ray nature of the previously claimed pulsed γ-ray emission of the cataclysmic variable AE Aqr. I also performed observations of novae and a dwarf nova to pinpoint the ac- celeration mechanisms taking place in this kind of objects and to discover a putative hadronic component of the soft γ-ray emission. A conclusion chapter summarizes all the work performed and lists prospects related with the topics treated in this thesis.

  5. Spectrometry of nebulae

    NASA Astrophysics Data System (ADS)

    Acker, A.

    2011-04-01

    Nebular emission lines are easy to observe, and their spectrum contains a lot of information. We explain the mechanisms of production of the emissions, and the relation between the intensity of the recombination and forbidden lines, and the physical parameters of the objects. A gallery of emission lines spectra is presented, and a rough analysis will clarify their differences. The case of Planetary Nebulae will be developed, in order to determine the extinction constant, the plasma parameters (electron density and temperature), the chemical abundances, and also the properties of the central star (temperature, mass, stellar wind velocity, age).

  6. Searching for heavily obscured post-AGB stars and planetary nebulae. II. Near-IR observations of IRAS sources

    NASA Astrophysics Data System (ADS)

    Ramos-Larios, G.; Guerrero, M. A.; Suárez, O.; Miranda, L. F.; Gómez, J. F.

    2012-09-01

    The most massive AGB stars are expected to result in heavily obscured post-AGB stars, proto-PNe and PNe with highly axisymmetric morphologies. To investigate this evolutionary connection, we have selected a sample of 165 presumably obscured IRAS post-AGB star and PN candidates and obtained near-IR JHK images for 164 of them. These images, in conjunction with DSS, 2MASS, Spitzer GLIMPSE, MSX, AKARI, and IRAS archival data, have allowed us to identify the near-IR counterparts of 154 of these sources, providing reliable finding charts and coordinates. Near-IR narrow-band Brγ, H2, and K continuum images were acquired for 6 of these sources that were found to be resolved in near-IR JHK images. Among the extended post-AGB source and PN candidates, three are round and seven have bipolar morphologies. Five of the extended sources are ionized and may have thus entered the PN stage. We note that all extended sources with water maser emission have bipolar morphology. We have investigated the Galactic distribution of sources with the largest flux drop from the 9 μm AKARI band to the near-IR J band and found that the width of the distribution in Galactic latitude is consistent with those of bipolar PNe and DUPLEX (DUst-Prominent Longitudinally EXtended) sources. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (081.D-0812), observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations with AKARI, a JAXA project with the participation of ESA.

  7. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA (color)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This colorful photo shows a ground-based image of the entire Crab Nebula, the remnant of a supernova explosion witnessed over 900 years ago. The nebula, which is 10 light-years across, is located 7,000 light-years away in the constellation Taurus. The green, yellow and red filaments concentrated toward the edges of the nebula are remnants of the star that were ejected into space by the explosion. At the center of the Crab Nebula lies the Crab Pulsar -- the collapsed core of the exploded star. The Crab Pulsar is a rapidly rotating neutron star -- an object only about six miles across, but containing more mass than our Sun. As it rotates at a rate of 30 times per second the Crab Pulsar's powerful magnetic field sweeps around, accelerating particles, and whipping them out into the nebula at speeds close to that of light. The blue glow in the inner part of the nebula -- light emitted by energetic electrons as they spiral through the Crab's magnetic field -- is powered by the Crab Pulsar. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  8. Birth and early evolution of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Bobrowsky, Matthew; Sahu, Kailash C.; Parthasarathy, M.; García-Lario, Pedro

    1998-04-01

    The final expulsion of gas by a star as it forms a planetary nebula - the ionized shell of gas often observed surrounding a young white dwarf - is one of the most poorly understood stages of stellar evolution,. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray nebula,, which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.

  9. Orion Nebula and Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1998-01-01

    This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.

  10. Discovery of Luminous Star Formation in PMN 1452-5910/IRAS 14482-5857: the Pterodactyl Nebula

    NASA Astrophysics Data System (ADS)

    Jones, D. I.; Braiding, C. R.

    2015-02-01

    We present sensitive 1-3 GHz ATCA radio continuum observations of the hitherto unresolved star-forming region known as either IRAS 14482-5857 or PMN 1452-5910. At radio continuum frequencies, this source is characterized by a “filled bubble” structure reminiscent of a classical Hii region, dominated by three point sources and surrounded by low surface brightness emission out to the ˜ 3\\prime × 4\\prime source extent observed at other frequencies in the literature. The infrared emission corresponds well to the radio emission, with polycyclic aromatic hydrocarbon emission surrounding regions of hot dust toward the radio bubbles. A bright 4.5 μm point source is seen toward the center of the radio source, suggesting a young stellar object. There is also a linear, outflowlike structure radiating brightly at 8 and 24 μm toward the brightest peak of the radio continuum. In order to estimate the distance to this source, we have used Mopra Southern Galactic Plane CO Survey 12CO (1-0) and 13CO(1-0) molecular line emission data. Integrated intensity, velocity at peak intensity, and line fitting of the spectra all point toward the peak centered at V LSR =-1.1 km s-1 being connected to this cloud. This infers a distance to this cloud of ˜12.7 kpc. Assuming this distance, we estimate a column density and mass toward IRAS 14482-5857 of ˜ 1.5× {{10}21} cm-2 and 2 × 104 M ⊙ , implying that this source is a site of massive star formation. Reinforcing this conclusion, our broadband spectral fitting infers dust temperatures of 19 and 110 K, emission measures for the sub-parsec radio point source of EM˜ {{10}6-7} pc cm-6, electron densities of {{n}e}˜ {{10}3} cm-3, and photon ionization rates of {{N}Ly}˜ {{10}46-48} s-1. The evidence strongly suggests that IRAS 14482-5857 is a distant—hence intense—site of massive star formation.

  11. Discovery of luminous star formation in PMN 1452-5910/IRAS 14482-5857: The Pterodactyl nebula

    SciTech Connect

    Jones, D. I.

    2015-02-01

    We present sensitive 1–3 GHz ATCA radio continuum observations of the hitherto unresolved star-forming region known as either IRAS 14482-5857 or PMN 1452-5910. At radio continuum frequencies, this source is characterized by a “filled bubble” structure reminiscent of a classical Hii region, dominated by three point sources and surrounded by low surface brightness emission out to the ∼3{sup ′}×4{sup ′} source extent observed at other frequencies in the literature. The infrared emission corresponds well to the radio emission, with polycyclic aromatic hydrocarbon emission surrounding regions of hot dust toward the radio bubbles. A bright 4.5 μm point source is seen toward the center of the radio source, suggesting a young stellar object. There is also a linear, outflowlike structure radiating brightly at 8 and 24 μm toward the brightest peak of the radio continuum. In order to estimate the distance to this source, we have used Mopra Southern Galactic Plane CO Survey {sup 12}CO (1–0) and {sup 13}CO(1–0) molecular line emission data. Integrated intensity, velocity at peak intensity, and line fitting of the spectra all point toward the peak centered at V {sub LSR} =−1.1 km s{sup −1} being connected to this cloud. This infers a distance to this cloud of ∼12.7 kpc. Assuming this distance, we estimate a column density and mass toward IRAS 14482-5857 of ∼1.5×10{sup 21} cm{sup −2} and 2 × 10{sup 4} M {sub ⊙} , implying that this source is a site of massive star formation. Reinforcing this conclusion, our broadband spectral fitting infers dust temperatures of 19 and 110 K, emission measures for the sub-parsec radio point source of EM∼10{sup 6−7} pc cm{sup −6}, electron densities of n{sub e}∼10{sup 3} cm{sup −3}, and photon ionization rates of N{sub Ly}∼10{sup 46−48} s{sup −1}. The evidence strongly suggests that IRAS 14482-5857 is a distant—hence intense—site of massive star formation.

  12. Rotten Egg Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae.

    'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2.

    The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2.

    The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

    A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and

  13. Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hu, J. Y.; Slijkhuis, S.

    1989-01-01

    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates.

  14. CO-SPATIAL LONG-SLIT UV/OPTICAL SPECTRA OF TEN GALACTIC PLANETARY NEBULAE WITH HST/STIS. II. NEBULAR MODELS, CENTRAL STAR PROPERTIES, AND He+CNO SYNTHESIS

    SciTech Connect

    Henry, R. B. C.; Miller, T. R.; Balick, B.; Dufour, R. J.; Kwitter, K. B.; Shaw, R. A.; Buell, J. F.; Corradi, R. L. M.

    2015-11-10

    The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well with the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.

  15. M1-67, nebula ejected from the 200 km/s runaway WN8 star WR 124

    NASA Astrophysics Data System (ADS)

    Grosdidier, Y.; Moffat, A. F. J.; Blais-Ouellette, S.; Joncas, G.; Acker, A.

    First results concerning the HST-Hα imaging of M1-67 are found in Grosdidier et al. (1998). With the etalon of the Univ. Laval (Quebec), we have obtained complementary Fabry-Perot Hα data using CFHT/OSIS (August 1996; seeing ~0.6''; FSR ~ 392 km/s; 5.9 km/s velocity sampling). See Figure 1. From these data M1-67 appears more-or-less as a spherical shell seen almost exactly along its direction of rapid spatial motion in the ISM (Moffat et al. 1982). The radial velocity of the center of expansion is ~ 137 km/s (Sirianni et al. 1998). Instead of appearing as a nice hollow-type shell projected on the sky, we probably see the cap of the bowshock nearly straight on from behind. The far side is greatly intensity-enhanced compared to the near side, probably as a result of raming with the ISM. This was already claimed by Solf & Carsenty (1982). The bright bullets (see Grosdidier et al. 1998) are possibly, after all, Rayleigh-Taylor instabilities seen along the line of sight at or near the bow-shock head, as they slightly `fall' back towards the star. More details will be found in Grosdidier et al. (1999; in preparation).

  16. Stellar Evolution from AGB to Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2008-10-01

    Planetary nebulae are formed by an interacting winds process where the remnant of the AGB wind is compressed and accelerated by a later-developed fast wind from the central star. One-dimensional dynamical models have successfully explained the multi-shell (bubble, shell, crown, haloes) structures and the kinematics of planetary nebulae. However, the origin of the diverse asymmetric morphology of planetary nebulae is still not understood. Recent observations in the visible, infrared, and the submillimeter have suggested that the AGB mass loss becomes aspherical in the very late stages, forming an expanding torus around the star. A fast, highly collimated wind then emerges in the polar directions and carves out a cavity in the AGB envelope to form a bipolar nebula. Newly discovered structures such as concentric arcs, 2-D rings, multiple lobes, and point-symmetric structures suggest that both the slow and fast winds may have temporal and directional variations, and precession can play a role in the shaping of planetary nebulae. In this paper, we review the latest observations of planetary nebulae and proto-planetary nebulae and discuss the various physical mechanisms (rotation, binary, magnetic field, etc) that could lead to the observed morphologies.

  17. Search for continuous fluorescence in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.; Witt, A. N.

    1975-01-01

    Photometric and spectrophotometric observations have been made of the reflection nebulae NGC 1435, NGC 2068, NGC 7023, and IC 1287 in an attempt to detect continuous fluorescence by dust grains. Several effects of importance for observations of such faint objects are discussed, including instrumental light scattering, a photographic effect, and a time-delay effect which can occur if the illuminating star is a spectrum variable. It is found that continuous fluorescence by interstellar grains is not likely to exist and that it cannot account for more than 10% of the total surface brightness of these reflection nebulae. No evidence of diffuse interstellar features is found in the spectra of these nebulae.

  18. Braiding DNA: Experiments, Simulations, and Models

    PubMed Central

    Charvin, G.; Vologodskii, A.; Bensimon, D.; Croquette, V.

    2005-01-01

    DNA encounters topological problems in vivo because of its extended double-helical structure. As a consequence, the semiconservative mechanism of DNA replication leads to the formation of DNA braids or catenanes, which have to be removed for the completion of cell division. To get a better understanding of these structures, we have studied the elastic behavior of two braided nicked DNA molecules using a magnetic trap apparatus. The experimental data let us identify and characterize three regimes of braiding: a slightly twisted regime before the formation of the first crossing, followed by genuine braids which, at large braiding number, buckle to form plectonemes. Two different approaches support and quantify this characterization of the data. First, Monte Carlo (MC) simulations of braided DNAs yield a full description of the molecules' behavior and their buckling transition. Second, modeling the braids as a twisted swing provides a good approximation of the elastic response of the molecules as they are intertwined. Comparisons of the experiments and the MC simulations with this analytical model allow for a measurement of the diameter of the braids and its dependence upon entropic and electrostatic repulsive interactions. The MC simulations allow for an estimate of the effective torsional constant of the braids (at a stretching force F = 2 pN): Cb ∼ 48 nm (as compared with C ∼100 nm for a single unnicked DNA). Finally, at low salt concentrations and for sufficiently large number of braids, the diameter of the braided molecules is observed to collapse to that of double-stranded DNA. We suggest that this collapse is due to the partial melting and fraying of the two nicked molecules and the subsequent right- or left-handed intertwining of the stretched single strands. PMID:15778439

  19. Capacitor discharge process for welding braided cable

    DOEpatents

    Wilson, Rick D.

    1995-01-01

    A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

  20. On the Complexity of H2 Excitation Near Hot Stars: High Spectral and Spatial Resolution Observations of Compact Planetary Nebulae with IGRINS

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Kaplan, Kyle F.; Jaffe, Daniel T.

    2015-08-01

    Near-infrared emission lines of vibrationally-excited H2 were first detected in planetary nebulae (PNe) four decades ago. In some environments, e.g. outflows from low-mass young stellar objects, such emission is generally attributed to shock heating. The situation is more complicated for PNe, which host more than one potential agent of excitation. Shocks are indeed present within PNe, due to interactions among expanding layers of different velocities. On the other hand, the UV radiation field of the central star can populate excited vibrational levels of the ground electronic state via an indirect process, initiated by transitions to excited electronic states upon absorption of non-H-ionizing UV photons (the H2 Lyman-Werner bands), followed by radiative decay. When not modified by other processes, this produces a highly distinctive “pure fluorescent” H2 spectrum (Black & van Dishoeck 1987, ApJ, 322, 412). Such emission was first identified in a PN, Hb 12, by Dinerstein et al. 1988 (ApJ, 327, L27). Later surveys (e.g. Hora et al. 1999, ApJS, 124, 195; Likkel & Dinerstein et al. 2006, AJ, 131, 1515) found that some PNe display thermal (collisionally-dominated) spectra, a few are fluorescent, and others show intermediate line ratios. It is not always easy to distinguish whether the latter is due to a superposition of radiative and shock components (Davis et al. 2003, MNRAS, 344, 262), or to thermalization of initially radiatively excited molecules due to high density, a hard radiation field, and/or advective effects (e.g. Henney et al. 2007, ApJ, 671, 137). We present new observations of H2 in PNe obtained with the high-spectral resolution (R = 40,000), broad spectral grasp IGRINS spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147). This instrument reveals small-scale structures in position-velocity space that differ in excitation and emergent line ratios. For example, the compact PN M 1-11 contains both a fluorescent shell of H2 and higher-velocity compact

  1. The current research of planetary nebulae distance measurement

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-yuan; Zhu, Hui; Tian, Wen-wu; Wu, Dan

    2015-08-01

    Planetary Nebula is an important tracer of Galactic chemical history and evolution, star and interstellar evolution. Distance as a basic physical parameter of planetary nebula, is crucial to study its size, luminosity, ionized mass, formation rate, space density and Galactic distribution. Distance of planetary nebula has been studied for several decades, but most of their distances are not well determined, e.g. only thirty-one planetary nebulae have distance measurement with uncertainty within 20%. We summarize major distance measurement methods of planetary nebulae, i.e., trigonometric parallax, cluster member, expansion parallax, spectroscopic parallax, reddening, Na D absorption, determinations of central star gravities, Shklovsky method, kinematics method, and then discuss the limitations and applications scope of each method in detail. Actually, applying different methods to the same planetary nebulae can have a huge difference in distance, and even the same method can lead to great difference for the same planetary nebula. We focus on the kinematics method applied to planetary nebulae either seriously effected by Galactic extinction or having no observable centra star but being radio bright. The kinematics distance has been used in our on-going project of radio planetary nebulae distance measurement.

  2. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  3. Molecular hydrogen ion /H2+/ absorption in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Boggess, A.; Mccracken, C. W.; Hobbs, R. W.

    1981-01-01

    Several IUE spectra of planetary nebulae show an absorption feature shortward of 1500 A which is believed to be due to H2(+). The nebulae are excited by stars of spectral type O3-O7 or continuum, and all but one have double-shell structure.

  4. Three-dimensional evolution of early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1991-01-01

    The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.

  5. Comets Kick up Dust in Helix Nebula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.

    The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.

    Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

    In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.

    The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.

    So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.

    This image

  6. Planetary nebulae. V

    NASA Astrophysics Data System (ADS)

    Gieseking, F.

    1984-01-01

    The characterization of the central stars of planetary nebulae (CSPN) using observations of their shells (SPN), is discussed. The observability, from earth and space, of the emission spectrum of a typical CSPN (represented by a 50,000-K blackbody) at a distance of several kpc is illustrated graphically. It is shown that the most important and intense portion of this spectrum, the Lyman quanta below 912 A, is absorbed by the interstellar medium, and specifically by the SPN itself. The method developed by Zanstra in 1927 to estimate the Lyman emission of the CSPN from the Balmer emission (or the optical He-recombination spectrum) of the SPN is explained. Recent satellite observations in the 100-300-nm range have confirmed the accuracy of the H and/or He Zanstra temperature as an estimate of CSPN effective temperature.

  7. Development of braided rope engine seals

    NASA Technical Reports Server (NTRS)

    Ko, Frank K.; Cai, Zhong; Mutharasan, Rajakkannu; Steinetz, Bruce M.

    1994-01-01

    In this study, after reviewing current seal design concepts, the potential of textile structures for seal design is examined from the material, structural, and fabrication points of view. Braided structures are identified as potential candidates for hypersonic seal structures because of their conformability and design flexibility. A large family of braided structures using 2-D and 3-D architecture can be designed using well established methods to produce a wide range of braiding yarn orientation for wear resistance as well as seal porosity control. As a first demonstration of the approach, 2-D braided fiberglass seals were fabricated according to a factorial design experiment by varying braiding angles, fractional longitudinal fibers, and preload pressure levels. Factorial diagrams and response surfaces were constructed to elucidate the inter-relationship of the braiding parameters as well as the effect of preload pressures on leakage resistance of the seal. It was found that seal resistance is a strong function of fractional longitudinal fiber content. As braiding angle increases, seal leakage resistance increases, especially at high preload pressures and in seals having high proportion of longitudinal fibers.

  8. Localization of Unitary Braid Group Representations

    NASA Astrophysics Data System (ADS)

    Rowell, Eric C.; Wang, Zhenghan

    2012-05-01

    Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.

  9. The Eagle Nebula

    NASA Technical Reports Server (NTRS)

    1995-01-01

    These eerie, dark pillar-like structures are columns of cool interstellar hydrogen gas and dust that are also incubators for new stars. The pillars protrude from the interior wall of a dark molecular cloud like stalagmites from the floor of a cavern. They are part of the 'Eagle Nebula' (also called M16 -- the 16th object in Charles Messier's 18th century catalog of 'fuzzy' objects that aren't comets), a nearby star-forming region 7,000 light-years away in the constellation Serpens. Ultraviolet light is responsible for illuminating the convoluted surfaces of the columns and the ghostly streamers of gas boiling away from their surfaces, producing the dramatic visual effects that highlight the three dimensional nature of the clouds. The tallest pillar (left) is about a light-year long from base to tip. As the pillars themselves are slowly eroded away by the ultraviolet light, small globules of even denser gas buried within the pillars are uncovered. These globules have been dubbed 'EGGs.' EGGs is an acronym for 'Evaporating Gaseous Globules,' but it is also a word that describes what these objects are. Forming inside at least some of the EGGs are embryonic stars, stars that abruptly stop growing when the EGGs are uncovered and they are separated from the larger reservoir of gas from which they were drawing mass. Eventually, the stars themselves emerge from the EGGs as the EGGs themselves succumb to photoevaporation. The picture was taken on April 1, 1995 with the Hubble Space Telescope Wide Field and Planetary Camera 2. The color image is constructed from three separate images taken in the light of emission from different types of atoms. Red shows emission from singly-ionized sulfur atoms. Green shows emission from hydrogen. Blue shows light emitted by doubly- ionized oxygen atoms.

  10. ON THE NATURE OF THE HERBIG B[e] STAR BINARY SYSTEM V921 SCORPII: DISCOVERY OF A CLOSE COMPANION AND RELATION TO THE LARGE-SCALE BIPOLAR NEBULA

    SciTech Connect

    Kraus, Stefan; Calvet, Nuria; Hartmann, Lee; Monnier, John D.; Hofmann, Karl-Heinz; Kreplin, Alexander; Weigelt, Gerd

    2012-02-10

    Belonging to the group of B[e] stars, V921 Scorpii is associated with a strong infrared excess and permitted and forbidden line emission, indicating the presence of low- and high-density circumstellar gas and dust. Many aspects of V921 Sco and other B[e] stars still remain mysterious, including their evolutionary state and the physical conditions resulting in the class-defining characteristics. In this Letter, we employ Very Large Telescope Interferometer/AMBER spectro-interferometry in order to reconstruct high-resolution ({lambda}/2B = 0.''0013) model-independent interferometric images for three wavelength bands around 1.65, 2.0, and 2.3 {mu}m. In our images, we discover a close (25.0 {+-} 0.8 mas, corresponding to {approx}29 {+-} 0.9 AU at 1.15 kpc) companion around V921 Sco. Between two epochs in 2008 and 2009, we measure orbital motion of {approx}7 Degree-Sign , implying an orbital period of {approx}35 years (for a circular orbit). Around the primary star, we detect a disk-like structure with indications for a radial temperature gradient. The polar axis of this AU-scale disk is aligned with the arcminute-scale bipolar nebula in which V921 Sco is embedded. Using Magellan/IMACS imaging, we detect multi-layered arc-shaped substructure in the nebula, suggesting episodic outflow activity from the system with a period of {approx}25 years, roughly matching the estimated orbital period of the companion. Our study supports the hypothesis that the B[e] phenomenon is related to dynamical interaction in a close binary system.

  11. Confluence Scour in Coarse Braided Streams

    NASA Astrophysics Data System (ADS)

    Ashmore, Peter; Parker, Gary

    1983-04-01

    Laboratory models of a braided valley flat in coarse material were used in conjunction with field data to study confluence scour at braid anabranches. Correct prediction of the depth of scour is required for the design of buried pipeline crossings. Braid pattern and anabranches constantly shift and avulse so that scour holes have definable lifetimes. Although the scatter is large, the depth of water in the scour hole depends on confluence and relative anabranch discharge; this depth can be as high as six times the ambient depths in the anabranches.

  12. Systematically generated two-qubit anyon braids

    NASA Astrophysics Data System (ADS)

    Carnahan, Caitlin; Zeuch, Daniel; Bonesteel, N. E.

    2016-05-01

    Fibonacci anyons are non-Abelian particles for which braiding is universal for quantum computation. Reichardt has shown how to systematically generate nontrivial braids for three Fibonacci anyons which yield unitary operations with off-diagonal matrix elements that can be made arbitrarily small in a particular natural basis through a simple and efficient iterative procedure. This procedure does not require brute force search, the Solovay-Kitaev method, or any other numerical technique, but the phases of the resulting diagonal matrix elements cannot be directly controlled. We show that despite this lack of control the resulting braids can be used to systematically construct entangling gates for two qubits encoded by Fibonacci anyons.

  13. Spectral Analysis of the O(He)-Type Central Stars of the Planetary Nebulae K 1-27 and LoTr 4

    NASA Technical Reports Server (NTRS)

    Reindl, N.; Ringat, E.; Rauch, T.; Werner, K.; Kruk, J. W.

    2011-01-01

    The four known O(He) stars are the only amongst the hottest post-AGB stars whose atmospheres are composed of almost pure helium. Thus, their evolution deviates from the hydrogen-defiCient post-AGB evolutionary sequence of carbon-dominated stars like e.g. PG 1159 stars. The origin of the O(He) stars is still not explained. They might be either post-early AGB stars or the progeny of R Coronae Borealis stars. We present preliminary results of a non-LTE spectral analysis based on FUSE and HST/COS observations.

  14. The Crab Nebula: A Flickering X-ray Candle

    NASA Video Gallery

    The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-...

  15. First principles cable braid electromagnetic penetration model

    SciTech Connect

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  16. First principles cable braid electromagnetic penetration model

    DOE PAGESBeta

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  17. Braided magnetic fields: equilibria, relaxation and heating

    NASA Astrophysics Data System (ADS)

    Pontin, D. I.; Candelaresi, S.; Russell, A. J. B.; Hornig, G.

    2016-05-01

    We examine the dynamics of magnetic flux tubes containing non-trivial field line braiding (or linkage), using mathematical and computational modelling, in the context of testable predictions for the laboratory and their significance for solar coronal heating. We investigate the existence of braided force-free equilibria, and demonstrate that for a field anchored at perfectly-conducting plates, these equilibria exist and contain current sheets whose thickness scales inversely with the braid complexity—as measured for example by the topological entropy. By contrast, for a periodic domain braided exact equilibria typically do not exist, while approximate equilibria contain thin current sheets. In the presence of resistivity, reconnection is triggered at the current sheets and a turbulent relaxation ensues. We finish by discussing the properties of the turbulent relaxation and the existence of constraints that may mean that the final state is not the linear force-free field predicted by Taylor’s hypothesis.

  18. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  19. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  20. Fan deltas and braid deltas: conceptual problems

    SciTech Connect

    McPherson, J.G.; Shanmugam, G.; Moiola, R.J.

    1986-05-01

    The concept of fan deltas has been widely misinterpreted in the geologic literature. A true fan delta is defined as an alluvial fan deposited into a standing body of water. Such sequences are of limited areal extent and are, as expected, uncommon in the rock record. By contrast, braid deltas (herein defined), formed by progradation of a braided fluvial system into a standing body of water, are a common geomorphic feature in many modern settings, and their deposits are common in the geologic record. Braid-delta sequences are often identified as fan deltas, on the false premise that coarse-grained deposits in a deltaic setting are always part of an alluvial fan complex. The authors find that most published examples of so called fan deltas contain no direct evidence for the presence of an alluvial fan. Even in examples where an alluvial fan could be documented, the authors found that, in many cases, the alluvial fan complex was far removed from the shoreline, separated by an extensive braid plain. The authors suggest that such systems are better classified as braid deltas. They consider that it is essential to distinguish the environmental setting of true fan deltas from that of braid deltas. Misclassification will lead to incorrect interpretations of expected facies, sandstone geometry, reservoir quality, and tectonic settings. Criteria based on geometry, vertical and lateral lithofacies associations, and paleocurrent patterns should be used to correctly identify and distinguish these depositional systems.

  1. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  2. Geometrical deployment for braided stent.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Yilmaz, Hasan; Farhat, Mohamed; Erceg, Gorislav; Lovblad, Karl-Olof; Vargas, Maria Isabel; Kulcsar, Zsolt; Pereira, Vitor Mendes

    2016-05-01

    The prediction of flow diverter stent (FDS) implantation for the treatment of intracranial aneurysms (IAs) is being increasingly required for hemodynamic simulations and procedural planning. In this paper, a deployment model was developed based on geometrical properties of braided stents. The proposed mathematical description is first applied on idealized toroidal vessels demonstrating the stent shortening in curved vessels. It is subsequently generalized to patient specific vasculature predicting the position of the filaments along with the length and local porosity of the stent. In parallel, in-vitro and in-vivo FDS deployments were measured by contrast-enhanced cone beam CT (CBCT) in idealized and patient-specific geometries. These measurements showed a very good qualitative and quantitative agreement with the virtual deployments and provided experimental validations of the underlying geometrical assumptions. In particular, they highlighted the importance of the stent radius assessment in the accuracy of the deployment prediction. Thanks to its low computational cost, the proposed model is potentially implementable in clinical practice providing critical information for patient safety and treatment outcome assessment. PMID:26891065

  3. Braiding fluxes in Pauli Hamiltonian

    SciTech Connect

    Kenneth, O. Avron, J.E.

    2014-10-15

    Aharonov and Casher showed that Pauli Hamiltonians in two dimensions have gapless zero modes. We study the adiabatic evolution of these modes under the slow motion of N fluxons with fluxes Φ{sub a}∈R. The positions, r{sub a}∈R{sup 2}, of the fluxons are viewed as controls. We are interested in the holonomies associated with closed paths in the space of controls. The holonomies can sometimes be abelian, but in general are not. They can sometimes be topological, but in general are not. We analyse some of the special cases and some of the general ones. Our most interesting results concern the cases where holonomy turns out to be topological which is the case when all the fluxons are subcritical, Φ{sub a}<1, and the number of zero modes is D=N−1. If N≥3 it is also non-abelian. In the special case that the fluxons carry identical fluxes the resulting anyons satisfy the Burau representations of the braid group.

  4. Large scale processes in the solar nebula.

    NASA Astrophysics Data System (ADS)

    Boss, A. P.

    Most proposed chondrule formation mechanisms involve processes occurring inside the solar nebula, so the large scale (roughly 1 to 10 AU) structure of the nebula is of general interest for any chrondrule-forming mechanism. Chondrules and Ca, Al-rich inclusions (CAIs) might also have been formed as a direct result of the large scale structure of the nebula, such as passage of material through high temperature regions. While recent nebula models do predict the existence of relatively hot regions, the maximum temperatures in the inner planet region may not be high enough to account for chondrule or CAI thermal processing, unless the disk mass is considerably greater than the minimum mass necessary to restore the planets to solar composition. Furthermore, it does not seem to be possible to achieve both rapid heating and rapid cooling of grain assemblages in such a large scale furnace. However, if the accretion flow onto the nebula surface is clumpy, as suggested by observations of variability in young stars, then clump-disk impacts might be energetic enough to launch shock waves which could propagate through the nebula to the midplane, thermally processing any grain aggregates they encounter, and leaving behind a trail of chondrules.

  5. HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA

  6. Properties of interstellar dust in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, Kristin

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer.

  7. Polarization observations of the nebula M 20 with filters

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.

    1983-01-01

    Results are presented of polarization observations using six filters of five regions of the nebula M 20 and the star HD 164514 which is located behind the nebula. It is found that the degree of polarization in the continuum is higher than in the emission lines for three regions in the southern part of the nebula. The polarization is determined to arise due to the scattering of the radiation of the exciting star HD 164492 by dust particles (probably consisting mostly of dirty ice) in M 20. In the northern part of the nebula, it is shown that the nonspherical grains are probably oriented in such a way that their major axes are in a plane approximately perpendicular to the direction to the star HD 164492.

  8. The Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D.; Gotthelf, E.; Halpern, J.

    2000-10-01

    We present high-resolution Chandra X-ray observations of PSR0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations of the pulsar separated by one month to search for morphological changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a morphology remarkably similar to the torus-like structure observed in the Crab Nebula, along with an axial Crab-like jet. The flux from the pulsar is found to be steady to within 0.75 %; the 3 sigma limit on the fractional increase in the pulsar's X-ray flux is <10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer torus; if associated with the glitch, the inferred propogation velocity is ~0.5c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright, arc-shaped X-ray wisps are the shocked termination of a relativistic equatorial pulsar wind which is contained within the surrounding kidney-bean shaped synchrotron nebula which comprises the post-shock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter of the Vela pulsar wind is required to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B ~ 4 x 10-4G.

  9. The Galactic Bulge: the stellar and planetary nebulae populations

    NASA Astrophysics Data System (ADS)

    Cuisinier, F.; Koppen, J.; Acker, A.; Maciel, W. J.

    2000-11-01

    How the Galactic Bulge formed, what was the duration of this episode, are qu ite controversary subjects. It is even unclear wether stars are still forming there. These questions are generaly adressed with stars, but planetary nebulae are very apropriate tools to trace the Bulge history as well, due to the great variety of their progenitor lifetimes. In particular, because diferent elements are detectable in planetary nebulae and in stars, a combined analysis of the abundances patterns detected in stars and in planetary nebulae offers new insight in this problem. In long lived stars, most elements have their abundances unmodified and keep the fingerprints of the ISM when it was born. Analysing element abundances both in planetary nebulae and in stars allow thus to have a very good idea of the chemical enrichment of the ISM. We will see how we can understand these patterns in terms of supernovae of type II and type Ia explosions. Because the lifetimes of the progenitors of type II and type Ia supernovae are quite different, they offer very good chronometers for the Bulge evolution. As well, we will see how the abundances of elements synthetised in planetary nebulae progenitors can be unterstood in terms of recent star formation.

  10. IUE observations of central stars

    NASA Technical Reports Server (NTRS)

    Heap, S. R.

    1983-01-01

    IUE satellite data on sixty galactic planetary nebulae (PN) and three PNs in the Magellanic clouds are examined to establish a mass distribution among the central star types. An evolutionary lineage was determined for the observed central stars, based on UV magnitudes, demonstrating that central stars in optically thin nebulae have a narrow distribution around 0.58 solar mass, whereas stars in optically thick nebulae exhibited the highest masses of the sample, implying that highest mass stars in PN are the most difficult to detect. No definitive correlation was found between the mass of an object and its spectral type.

  11. Equilibrium theory for braided elastic filaments

    NASA Astrophysics Data System (ADS)

    van der Heijden, Gert

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.

  12. THE ROTTEN EGG NEBULA A PLANETARY NEBULA IN THE MAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The object shown in these NASA/ESA Hubble Space Telescope images is a remarkable example of a star going through death throes just as it dramatically transforms itself from a normal red giant star into a planetary nebula. This process happens so quickly that such objects are quite rare, even though astronomers believe that most stars like the Sun will eventually go through such a phase. This star, with the prosaic name of OH231.8+4.2, is seen in these infrared pictures blowing out gas and dust in two opposite directions. So much dust has been cast off and now surrounds the star that it cannot be seen directly, only its starlight that is reflected off the dust. The flow of gas is very fast, with a velocity up to 450,000 mph (700,000 km/h). With extreme clarity, these Hubble Near Infrared Camera and Multi-Object Spectrometer (NICMOS) images reveal that the fast-moving gas and dust are being collimated into several thin streamers (on the right) and a jet-like structure (on the left), which can be seen extending away from the centers of both pictures. On the right, wisps of material in jet-like streamers appear to strike some dense blobs of gas. This interaction must produce strong shock waves in the gas. The pictures represent two views of the object. The color image is a composite of four images taken with different NICMOS infrared filters on March 28, 1998. It shows that the physical properties of the material, both composition and temperature, vary significantly throughout the outflowing material. The black-and-white image was taken with one NICMOS infrared filter. That image is able to show more clearly the faint detail and structure in the nebula than can be achieved with the color composites. Observations by radio astronomers have found many unusual molecules in the gas around this star, including many containing sulfur, such as hydrogen sulfide and sulfur dioxide. These sulfur compounds are believed to be produced in the shock waves passing through the gas

  13. A PHOTOMETRICALLY AND MORPHOLOGICALLY VARIABLE INFRARED NEBULA IN L483

    SciTech Connect

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-03-15

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H{sub 2} knots are found nearly twice as far to the east of the source as to its west, and that H{sub 2} emission extends farther east of the source than the previously known CO outflow.

  14. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  15. Integrated Design for Manufacturing of Braided Preforms for Advanced Composites Part I: 2D Braiding

    NASA Astrophysics Data System (ADS)

    Gao, Yan Tao; Ko, Frank K.; Hu, Hong

    2013-12-01

    This paper presents a 2D braiding design system for advanced textile structural composites was based on dynamic models. A software package to assist in the design of braided preform manufacturing has been developed. The package allows design parameters (machine speeds, fiber volume fraction, tightness factor, etc.) to be easily obtained and the relationships between said parameters to be demonstrated graphically. The fabirc geometry model (FGM) method was adopted to evaluate the mechanical properties of the composites. Experimental evidence demonstrates the success of the use of dynamic models in the design software for the manufacture of braided fabric preforms.

  16. Coronagraphic imaging of pre-main-sequence stars: Remnant evvelopes of star formation seen in reflection

    NASA Technical Reports Server (NTRS)

    Nakajima, Tadashi; Golimowski, David A.

    1995-01-01

    We have obtained R- and I-band coronagraphic images of the vicinities of 11 pre-main sequence (PMS) stars to search for faint, small-scale reflection nebulae. The inner radius of the search and the field of view are 1.9 arcsec and 1x1 arcmin, respectively. Reflection nebulae were imaged around RY Tau, T Tau,DG Tau, SU Aur, AB Aur, FU Ori, and Z CMa. No nebulae were detected around HBC 347, GG Tau, V773 Tau, and V830 Tau. Categorically speaking, most of the classical T Tauri program stars and all the FU Orionis-type program stars are associated with the reflection nebulae, while none of the weak-line T Tauri program stars are associated with nebulae. The detected nebulae range in size from 250 to 37 000 AU. From the brightness ratios of the stars and nebulae, we obtain a lower limit to the visual extinction of PMS star light through the nebulae of (A(sub V))(sub neb) = 0.1. The lower limits of masses and volume densities of the nebulae associated with the classical T Tauri stars are 10(exp-6) Solar mass and N(sub H) = 10(exp 5)/cu cm, respectively. Lower limits for the nebulae around FU Orionis stars are 10(exp -5) Solar mass and n(sub H) = 10 (exp 5)/cu cm, respectively. Some reflection nebulae may trace the illuminated surfaces of the optically thick dust nebulae, so these mass estimates are not stringent. All the PMS stars with associated nebulae are strong far-infrared emitters. Both the far-infrared emission and the reflection nebulae appear to originate from the remnant envelopes of star formation. The 100 micrometers emitting regions of SU Aur and FU Ori are likely to be cospatial with the reflection nebulae. A spatial discontinuity between FU Ori and its reflection nebula may explain the dip in the far-infrared spectral energy distribution at 60 micrometers. The warped, disk-like nebulae around T Tau and Z CMa are aligned with and embrace the inner star/circumstellar disk systems. The arc-shaped nebula around DG Tau may be in contact with the coaligned inner

  17. THE TRIFID NEBULA: STELLAR SIBLING RIVALRY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the Trifid Nebula reveals a stellar nursery being torn apart by radiation from a nearby, massive star. The picture also provides a peek at embryonic stars forming within an ill-fated cloud of dust and gas, which is destined to be eaten away by the glare from the massive neighbor. This stellar activity is a beautiful example of how the life cycles of stars like our Sun is intimately connected with their more powerful siblings. The Hubble image shows a small part of a dense cloud of dust and gas, a stellar nursery full of embryonic stars. This cloud is about 8 light-years away from the nebula's central star, which is beyond the top of this picture. Located about 9,000 light-years from Earth, the Trifid resides in the constellation Sagittarius. A stellar jet [the thin, wispy object pointing to the upper left] protrudes from the head of a dense cloud and extends three-quarters of a light-year into the nebula. The jet's source is a very young stellar object that lies buried within the cloud. Jets such as this are the exhaust gases of star formation. Radiation from the massive star at the center of the nebula is making the gas in the jet glow, just as it causes the rest of the nebula to glow. The jet in the Trifid is a 'ticker tape,' telling the history of one particular young stellar object that is continuing to grow as its gravity draws in gas from its surroundings. But this particular ticker tape will not run for much longer. Within the next 10,000 years the glare from the central, massive star will continue to erode the nebula, overrunning the forming star, and bringing its growth to an abrupt and possibly premature end. Another nearby star may have already faced this fate. The Hubble picture shows a 'stalk' [the finger-like object] pointing from the head of the dense cloud directly toward the star that powers the Trifid. This stalk is a prominent example of the evaporating gaseous globules, or 'EGGs,' that were seen

  18. Braiding patterns on an inclined plane.

    PubMed

    Mertens, Keith; Putkaradze, Vakhtang; Vorobieff, Peter

    2004-07-01

    A jet of fluid flowing down a partially wetting, inclined plane usually meanders but--by maintaining a constant flow rate--meandering can be suppressed, leading to the emergence of a beautiful braided structure. Here we show that this flow pattern can be explained by the interplay between surface tension, which tends to narrow the jet, and fluid inertia, which drives the jet to widen. These observations dispel misconceptions about the relationship between braiding and meandering that have persisted for over 20 years.

  19. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  20. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35.1 deg

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.

    1989-01-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data.

  1. Terminal velocity of wind, mass loss, and absorption lines of the central star of the planetary nebula 75 + 35. 1 deg

    SciTech Connect

    Feibelman, W.A.; Bruhweiler, F.C. Catholic Univ. of America, Washington, DC )

    1989-12-01

    The high-galactic latitude planetary nebula 75 + 35.1 deg was observed in the high-dispersion mode of the International Ultraviolet Explorer (IUE) satellite in the wavelength range 1150-1950 A. The N V resonance doublet at 1240 A and O V subordinate line at 1371 A exhibit strong stellar P Cygni profiles with absorption extending to -2150 km/s and -1000 km/s, respectively. Application of the first moment method implies a mass-loss rate of M = (1-3) x 10 to the -8th solar mass/yr. The high ionization of the wind lines and the presence of strong Fe VI and Fe V lines in the stellar photosphere support that this object is quite hot. A Teff of 75,000 + or - 10,000 K was adopted, although Tc = 94,000 K was found previously from low-resolution IUE data. 18 refs.

  2. Planetary nebulae in 2014: A review of research

    NASA Astrophysics Data System (ADS)

    Zijlstra, A. A.

    2015-10-01

    Planetary nebulae had a double anniversary in 2014, 250 years since their discovery and 150 years since the correct spectroscopic identification. This paper gives an overview of planetary nebula research published in 2014. Topics include surveys, central stars, abundances, morphologies, magnetic fields, stellar population and galactic dynamics. An important continuing controversy is the discrepancy between recombination-line and forbidden-line abundances. A new controversy is the relation between symbiotic stars and [WC] stars. PN of the year is undoubtedly CRL 618, with papers on its binary symbiotic/[WC] nucleus, rapid stellar evolution, expanding jets and magnetic fields.

  3. The properties and environment of primitive solar nebulae as deduced from observations of solar-type pre-main sequence stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan; Strom, Karen M.

    1991-01-01

    The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment.

  4. Vela Pulsar and Its Synchrotron Nebula

    NASA Astrophysics Data System (ADS)

    Helfand, D. J.; Gotthelf, E. V.; Halpern, J. P.

    2001-07-01

    We present high-resolution Chandra X-ray observations of PSR B0833-45, the 89 ms pulsar associated with the Vela supernova remnant. We have acquired two observations separated by 1 month to search for changes in the pulsar and its environment following an extreme glitch in its rotation frequency. We find a well-resolved nebula with a toroidal morphology remarkably similar to that observed in the Crab Nebula, along with an axial Crab-like jet. Between the two observations, taken ~3×105 s and ~3×106 s after the glitch, the flux from the pulsar is found to be steady to within 0.75% the 3 σ limit on the fractional increase in the pulsar's X-ray flux is <~10-5 of the inferred glitch energy. We use this limit to constrain parameters of glitch models and neutron star structure. We do find a significant increase in the flux of the nebula's outer arc; if associated with the glitch, the inferred propagation velocity is >~0.7c, similar to that seen in the brightening of the Crab Nebula wisps. We propose an explanation for the X-ray structure of the Vela synchrotron nebula based on a model originally developed for the Crab Nebula. In this model, the bright X-ray arcs are the shocked termination of a relativistic equatorial pulsar wind that is contained within the surrounding kidney-bean shaped synchrotron nebula comprising the postshock, but still relativistic, flow. In a departure from the Crab model, the magnetization parameter σ of the Vela pulsar wind is allowed to be of order unity; this is consistent with the simplest MHD transport of magnetic field from the pulsar to the nebula, where B<=4×10-4 G. The inclination angle of the axis of the equatorial torus with respect to the line of sight is identical to that of the rotation axis of the pulsar as previously measured from the polarization of the radio pulse. The projection of the rotation axis on the sky may also be close to the direction of proper motion of the pulsar if previous radio measurements were confused by

  5. HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in

  6. Nursery of New Stars

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is a Hubble Space Telescope image (right) of a vast nebula called NGC 604, which lies in the neighboring spiral galaxy M33, located 2.7 million light-years away in the constellation Triangulum. This is a site where new stars are being born in a spiral arm of the galaxy. Though such nebulae are common in galaxies, this one is particularly large, nearly 1,500 light-years across. The nebula is so vast it is easily seen in ground-based telescopic images (left). At the heart of NGC 604 are over 200 hot stars, much more massive than our Sun (15 to 60 solar masses). They heat the gaseous walls of the nebula making the gas fluoresce. Their light also highlights the nebula's three-dimensional shape, like a lantern in a cavern. By studying the physical structure of a giant nebula, astronomers may determine how clusters of massive stars affect the evolution of the interstellar medium of the galaxy. The nebula also yields clues to its star formation history and will improve understanding of the starburst process when a galaxy undergoes a 'firestorm' of star formation. The image was taken on January 17, 1995 with Hubble's Wide Field and Planetary Camera 2. Separate exposures were taken in different colors of light to study the physical properties of the hot gas (17,000 degrees Fahrenheit, 10,000 degrees Kelvin

  7. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  8. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  9. Unit cell geometry of 3-D braided structures

    NASA Technical Reports Server (NTRS)

    Du, Guang-Wu; Ko, Frank K.

    1993-01-01

    The traditional approach used in modeling of composites reinforced by three-dimensional (3-D) braids is to assume a simple unit cell geometry of a 3-D braided structure with known fiber volume fraction and orientation. In this article, we first examine 3-D braiding methods in the light of braid structures, followed by the development of geometric models for 3-D braids using a unit cell approach. The unit cell geometry of 3-D braids is identified and the relationship of structural parameters such as yarn orientation angle and fiber volume fraction with the key processing parameters established. The limiting geometry has been computed by establishing the point at which yarns jam against each other. Using this factor makes it possible to identify the complete range of allowable geometric arrangements for 3-D braided preforms. This identified unit cell geometry can be translated to mechanical models which relate the geometrical properties of fabric preforms to the mechanical responses of composite systems.

  10. X-Ray Emission from the Guitar Nebula

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  11. Infrared polarimetry of the NGC 6334 V bipolar nebula

    SciTech Connect

    Nakagawa, Takao; Matsuhara, Hideo; Okuda, Haruyuki; Shibai, Hiroshi; Nagata, Tetsuya Kyoto Univ. )

    1990-03-01

    Exceptionally high degrees (up to about 100 percent) of polarization were observed in the L-prime band (3.8 microns) toward the NGC 6334 V bipolar nebula. The observed symmetric polarization pattern indicates that the nebula is a reflection nebula consisting of two lobes illuminated by a central obscured star. The distribution of polarization requires that one of the lobes consist of a lemon-shaped cavity which scatters light mainly at its surface, whereas a conical cavity model is appropriate for the other lobe. This asymmetry of the lobes is probably due to a density gradient in the ambient cloud material in this region. 17 refs.

  12. The Rings Around the Egg Nebula

    NASA Technical Reports Server (NTRS)

    Harpaz, Amos; Rappaport, Saul; Soker, Noam

    1997-01-01

    We present an eccentric binary model for the formation of the proto-planetary nebula CRL 2688 (the Egg Nebula) that exhibits multiple concentric shells. Given the apparent regularity of the structure in the Egg Nebula, we postulate that the shells are caused by the periodic passages of a companion star. Such an orbital period would have to lie in the range of 100-500 yr, the apparent time that corresponds to the spacing between the rings. We assume, in this model, that an asymptotic giant branch (AGB) star, which is the origin of the matter within the planetary nebula, loses mass in a spherically symmetric wind. We further suppose that the AGB star has an extended atmosphere (out to approximately 10 stellar radii) in which the outflow speed is less than the escape speed; still farther out, grains form and radiation pressure accelerates the grains along with the trapped gas to the escape speed. Once escape speed has been attained, the presence of a companion star will not significantly affect the trajectories of the matter leaving in the wind and the mass loss will be approximately spherically symmetric. On the other hand, if the companion star is sufficiently close that the Roche lobe of the AGB star moves inside the extended atmosphere, then the slowly moving material will be forced to flow approximately along the critical potential surface (i.e., the Roche lobe) until it flows into the potential lobe of the companion star. Therefore, in our model, the shells are caused by periodic cessations of the isotropic wind rather than by any periodic enhancement in the mass-loss process. We carry out detailed binary evolution calculations within the context of this scenario, taking into account the nuclear evolution and stellar wind losses of the giant as well as the effects of mass loss and mass transfer on the evolution of the eccentric binary orbit. From the initial binary parameters that we find are required to produce a multiple concentric shell nebula and the known

  13. The albedo of particles in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Rush, W. F.

    1974-01-01

    The relation between the apparent angular extent of a reflection nebula and the apparent magnitude of its illuminating star was reconsidered under a less restrictive set of assumptions. A computational technique was developed which permits the use of fits to the observed m-log a values to determine the albedo of particles composing reflection nebulae, providing only that a phase function and average optical thickness are assumed. Multiple scattering, anisotropic phase functions, and illumination by the general star field are considered, and the albedo of reflection nebular particles appears to be the same as that for interstellar particles in general. The possibility of continuous fluorescence contributions to the surface brightness is also considered.

  14. Magnetic fields in Proto Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sabin, L.; Zhang, Q.; Zijlstra, A. A.; Patel, N. A.; Vázquez, R.; Zauderer, B. A.; Contreras, M. E.; Guillén, P. F.

    2014-08-01

    The role of magnetic field in late type stars such as proto-planetary and planetary nebulae (PPNe/PNe), is poorly known from an observational point of view. We present submillimetric observations realized with the Submillimeter Array (SMA) which unveil the dust continuum polarization in the envelopes of two well known PPNe: CRL 618 and OH 231.8+4.2. Assuming the current grain alignment theory, we were then able to trace the geometry of the magnetic field.

  15. Radio continuum properties of young planetary nebulae

    NASA Astrophysics Data System (ADS)

    Cerrigone, L.; Umana, G.; Trigilio, C.; Leto, P.; Buemi, C. S.; Hora, J. L.

    2008-10-01

    We have selected a small sample of post-AGB (Asymptotic Giant Branch) stars in transition towards the planetary nebula and present new Very Large Array multi-frequency high-angular resolution radio observations of them. The multi-frequency data are used to create and model the targets' radio continuum spectra, proving that these stars started their evolution as very young planetary nebulae. In the optically thin range, the slopes are compatible with the expected spectral index (-0.1). Two targets (IRAS 18062+2410 and 17423-1755) seem to be optically thick even at high frequency, as observed in a handful of other post-AGB stars in the literature, while a third one (IRAS 20462+3416) shows a possible contribution from cold dust. In IRAS 18062+2410, where we have three observations spanning a period of four years, we detect an increase in its flux density, similar to that observed in CRL 618. High-angular resolution imaging shows bipolar structures that may be due to circumstellar tori, although a different hypothesis (i.e. jets) could also explain the observations. Further observations and monitoring of these sources will enable us to test the current evolutionary models of planetary nebulae.

  16. Collimated Outflows in the Stingray Nebula (He 3-1357)

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; Garcia-Lario, P.

    1997-12-01

    Observations over the past four decades have revealed significant changes in the spectrum of the Stingray Nebula (He 3-1357). Here we present HST images and spectra showing the most recent developments. In 1950, Henize saw only Hα in emission; but more recent observations by Parthasarathy et al. in 1992 showed strong forbidden lines consistent with a young planetary nebula. The spherically aberrated 1992 HST images, in which Bobrowsky first optically resolved the nebula, showed a compact nebula surrounding the central star. Nebular gas appeared most strongly concentrated in an ellipse with its major axis subtending 1.('') 6 from NE to SW. If this ellipse is actually a circular ring viewed obliquely, then our line of sight is inclined from the symmetry axis by 56deg . Above and below the ring of gas are two bubbles containing lower-density gas. At the tip of each bubble, there is a hole where the gas inside the bubbles has broken through and is now escaping. While images of focused jets have been obtained previously (Borkowski et al.), this is the first case where the nebular structure responsible for the focusing of an outflow can be clearly seen. The windblown appearance of the nebula is consistent with the blueshifted Si IV (1394-1403 Angstroms) and Al III (1855-1863 Angstroms) doublets observed by Parthasarathy et al. that indicated the presence of a strong stellar wind. The N V (1239-1243 Angstroms) to C IV (1548-1551 Angstroms) ratio has increased in recent years, consistent with a young nebula becoming increasingly ionized. Our new spectra reveal additional developments that show the real-time development of this young nebula. Finally, the new HST Planetary Camera images of the nebula show detailed structure indicating a much more complex object than previously known, including the presence of a companion star 0.('') from the central star.

  17. Stars

    NASA Astrophysics Data System (ADS)

    Capelato, Hugo Vicente

    1999-01-01

    We will begin our study with a more or less superficial inspection of the "forest" of stars that we see in the skies. The first thing we notice is that, as sources of light, they are much weaker than the Sun. Second, their apparent colors vary; from a bluish-white in most of them to a reddish-yellow, which is rarer. There is also a third aspect, though it is not very obvious to the naked eye: most of the stars group themselves in small families of two, three or more members. A good example is the Alpha Centauri, the closest star to us, which, in fact, is a triple system of stars. Another is the group of 7 stars that make up the Pleiades, which will be discussed later on. In fact, almost half of the stars are double systems with only two members, called binary stars. Most of these double stars, though together, are separated by several astronomical units (one astronomical unit, AU, is the distance from Earth to the sun: see Chapter 1), and revolve around each other over periods of several years. And yet the revolutions of some binary stars, separated by much smaller distances, occur in only a few hours! These stars are so close to each other that they can share enveloping material. Often this exchange occurs in a somewhat violent manner. Local explosions may occur, expelling matter away from the system. In other binary systems, where one of the components is a very compact, dense star, companion material flows more calmly, making up a light disk around the compact star.

  18. HUBBLE HERITAGE PROJECT'S FIRST ANNIVERSARY HUBBLE'S VARIABLE NEBULA (NGC 2261)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble's variable nebula is named (like the Hubble telescope itself) after the American astronomer Edwin P. Hubble, who carried out some of the early studies of this object. It is a fan-shaped cloud of gas and dust which is illuminated by R Monocerotis (R Mon), the bright star at the bottom end of the nebula. Dense condensations of dust near the star cast shadows out into the nebula, and as they move the illumination changes, giving rise to the variations first noted by Hubble. The star itself, lying about 2,500 light-years from Earth, cannot be seen directly, but only through light scattered off of dust particles in the surrounding nebula. R Mon is believed to have a mass of about 10 times that of the Sun, and to have an age of only 300,000 years. There is probably a symmetrical counterpart of the fan-shaped nebula on the southern side of the star, but it is heavily obscured from view by dust lying between this lobe and our line of sight. The Hubble Heritage team made this image from observations of R Mon acquired by William Sparks (STScI), Sylvia Baggett (STScI) and collaborators. Image Credit: NASA/The Hubble Heritage Team (AURA/STScI).

  19. Non-Abelian Braiding of Light.

    PubMed

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-12

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light. PMID:27563965

  20. Non-Abelian Braiding of Light

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    2016-08-01

    Many topological phenomena first proposed and observed in the context of electrons in solids have recently found counterparts in photonic and acoustic systems. In this work, we demonstrate that non-Abelian Berry phases can arise when coherent states of light are injected into "topological guided modes" in specially fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases, which depend on the order in which the guided beams are wound around one another. Notably, these effects survive the limit of large photon occupation, and can thus also be understood as wave phenomena arising directly from Maxwell's equations, without resorting to the quantization of light. We propose an optical interference experiment as a direct probe of this non-Abelian braiding of light.

  1. Burst Testing of Triaxial Braided Composite Tubes

    NASA Technical Reports Server (NTRS)

    Salem, J. A.; Bail, J. L.; Wilmoth, N. G.; Ghosn, L. J.; Kohlman, L. W.; Roberts, G. D.; Martin, R. E.

    2014-01-01

    Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions.

  2. Abundances, planetary nebulae, and stellar evolution

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1994-09-01

    Among Henry Norris Russell's many achievements were his contributions to solar and stellar spectroscopy, in particular, to an analysis of the chemical composition of the solar atmosphere. The question of composition differences between stars was hotly debated; some distinguished astronomers argued that all stars had the solar composition. Some early challenges to this doctrine are described. Determinations of chemical compositions of gaseous nebulae were much more difficult. If we observe the lines of a given chemical element in one ionization stage in a stellar spectrum, we can deduce readily the abundance of that element. No such luxury is available for a planetary or diffuse gaseous nebula. We must measure lines of as many ionization stages as we can. Furthermore, a nebula is an extended object. Often detailed spectroscopy is at hand only for narrow pencil columns taken through the image. Different observers use a variety of apertures. Fortunately it is possible to calculate theoretical spectra for any arbitrary cross section taken through a symmetrical model, so UV, optical, and IR observations all can be compared properly with a prediction. The value of high-resolution spectra obtained with instruments such as the Hamilton Echelle Spectrograph at Lick Observatory is emphasized. Improved fluxes for weak but important transitions are found. Close blends of lines of different ions can be resolved, and checks can be made on predictions of atomic parameters such as Einstein A-values and collision strengths. High spectral resolution data have been obtained and reduced for 22 planetary nebulae of varying size, structure, stellar population membership, dustiness, level of excitation, evolutionary status, and chemical compositions. The promise seems justified that with such extensive, high quality data, additional insights on nebular genesis and late states of stellar evolution can be found. The present survey is confined to nebulae of high surface brightness, but

  3. Abundances, planetary nebulae, and stellar evolution

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.

    1994-01-01

    Among Henry Norris Russell's many achievements were his contributions to solar and stellar spectroscopy, in particular, to an analysis of the chemical composition of the solar atmosphere. The question of composition differences between stars was hotly debated; some distinguished astronomers argued that all stars had the solar composition. Some early challenges to this doctrine are described. Determinations of chemical compositions of gaseous nebulae were much more difficult. If we observe the lines of a given chemical element in one ionization stage in a stellar spectrum, we can deduce readily the abundance of that element. No such luxury is available for a planetary or diffuse gaseous nebula. We must measure lines of as many ionization stages as we can. Furthermore, a nebula is an extended object. Often detailed spectroscopy is at hand only for narrow pencil columns taken through the image. Different observers use a variety of apertures. Fortunately it is possible to calculate theoretical spectra for any arbitrary cross section taken through a symmetrical model, so UV, optical, and IR observations all can be compared properly with a prediction. The value of high-resolution spectra obtained with instruments such as the Hamilton Echelle Spectrograph at Lick Observatory is emphasized. Improved fluxes for weak but important transitions are found. Close blends of lines of different ions can be resolved, and checks can be made on predictions of atomic parameters such as Einstein A-values and collision strengths. High spectral resolution data have been obtained and reduced for 22 planetary nebulae of varying size, structure, stellar population membership, dustiness, level of excitation, evolutionary status, and chemical compositions. The promise seems justified that with such extensive, high quality data, additional insights on nebular genesis and late states of stellar evolution can be found. The present survey is confined to nebulae of high surface brightness, but

  4. Colors of reflection nebulae. I - Phase function effects in the Merope nebula

    NASA Technical Reports Server (NTRS)

    Witt, A. N.

    1985-01-01

    The subject of color differences between reflection nebulae and their illuminating stars is reexamined in the light of developments of observational techniques, permitting accurate surface-brightness photometry over an expanded spectral region from the UV to the IR. Color-color diagrams for reflection nebulae can yield useful information about the wavelength dependence of the scattering properties of nebular dust without excessive sensitivity to the specific nebular geometry or the presence of multiple scattering, resulting in considerable savings in computational efforts. As an illustration, the color-difference method was applied to existing data for the Merope nebula, covering the spectral region 1550-5500 A. Strong evidence for a monotonically changing phase function of scattering at wavelengths less than or equal to 3500 A is found. The result is interpreted in the context of a plausible geometry for the Merope environment as providing support for a bimodal size distribution of nebular dust grains.

  5. Braid group representation on quantum computation

    SciTech Connect

    Aziz, Ryan Kasyfil; Muchtadi-Alamsyah, Intan

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  6. Radiation-driven winds of hot luminous stars. XVIII. The unreliability of stellar and wind parameter determinations from optical vs. UV spectral analysis of selected central stars of planetary nebulae and the possibility of some CSPNs as single-star supernova Ia progenitors

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Pauldrach, A. W. A.; Kaschinski, C. B.

    2016-08-01

    Context. The uncertainty in the degree to which radiation-driven winds of hot stars might be affected by small inhomogeneities in the density leads to a corresponding uncertainty in the determination of the atmospheric mass loss rates from the strength of optical recombination lines and - since the mass loss rate is not a free parameter but a function of the stellar parameters mass, radius, luminosity, and abundances - in principle also in the determination of these stellar parameters. Furthermore, the optical recombination lines also react sensitively to even small changes in the density structure resulting from the (often assumed instead of computed) velocity law of the outflow. This raises the question of how reliable the parameter determinations from such lines are. Aims: The currently existing severe discrepancy between central stars of planetary nebulae (CSPN) stellar and wind parameters derived from model fits to the optical spectra and those derived using hydrodynamically consistent model fits to the UV spectra is to be reassessed via a simultaneous optical/UV analysis using a state-of-the-art model atmosphere code. Methods: We have modified our hydrodynamically consistent model atmosphere code with an implementation of the usual ad hoc treatment of clumping (small inhomogeneities in the density) in the wind. This allows us to re-evaluate, with respect to their influence on the appearance of the UV spectra and their compatibility with the observations, the parameters determined in an earlier study that had employed clumping in its models to achieve a fit to the observed optical spectra. Results: The discrepancy between the optical and the UV analyses is confirmed to be the result of a missing consistency between stellar and wind parameters in the optical analysis. While clumping in the wind does significantly increase the emission in the optical hydrogen and helium recombination lines, the influence of the density (velocity field) is of the same order as

  7. Science on NIF Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2014-10-01

    For over fifteen years astronomers at the University of Maryland and scientists at LLNL have investigated the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. Eagle Nebula is one of the National Ignition Facility (NIF) Science programs, and has been awarded two days of NIF shots to study the cometary model of pillar formation. The NIF shots will feature a new long-duration x-ray source prototyped at the Omega EP laser, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 ns each to create a 30 ns output x-ray pulse. The drive generates deeply nonlinear hydrodynamics in the Eagle science package, which consists of a dense layered plastic and foam core embedded in lower-density background foam. The scaled Omega EP shots validated the multi-hohlraum concept, showing that earlier time hohlraums do not degrade later time hohlraums by preheat or by ejecting ablated plumes that deflect the later beams. The Omega EP shots illuminated three 2.8 mm long by 1.4 mm diameter Cu hohlraums with 4.3 kJ per hohlraum. At NIF each hohlraum will be 4 mm long by 3 mm in diameter and will be driven with 80-100 kJ. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. Braid Entropy of Two-Dimensional Turbulence.

    PubMed

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-12-22

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length NE of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy SBraid. The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of NE is positively skewed and shows strong exponential tails. Our results suggest that SBraid may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.

  9. Imperfect dark energy from kinetic gravity braiding

    SciTech Connect

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander E-mail: oriol.pujolas@cern.ch E-mail: alexander.vikman@nyu.edu

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  10. Braid Entropy of Two-Dimensional Turbulence

    PubMed Central

    Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael

    2015-01-01

    The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261

  11. Investigation of the cometary nebula Parsamyan 21

    SciTech Connect

    Petrosyan, V.M.

    1985-05-01

    The results are given of an isodensitometric and spectrophotometric investigation of the cometary nebula P 21 and its associated nucleus. The shape of the isodensities of the nucleus differs from those for normal stars, and in this the nucleus recalls R Mon. A spectral investigation of the nucleus of P 21 made on the basis of observations during 1981-1982 shows that it is a star of the class F2-F5V with an envelope expanding at about 120 km/sec.

  12. An atlas of emission line fluxes of planetary nebulae in the 1150-3200 A region

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Mccracken, C. W.

    1981-01-01

    Emission line fluxes for 28 planetary nebulae are presented. The nebulae were chosen to cover a wide range of excitation classes, apparent diameters, location in the sky, and types of central stars. All objects were observed in the low dispersion mode of the IUE spectrographs, using the large entrance aperture.

  13. Astrophysics: Violent emissions of newborn stars

    NASA Astrophysics Data System (ADS)

    Röllig, Markus

    2016-09-01

    Interactions between young stars and their parent molecular clouds are poorly understood. High-resolution observations of the Orion nebula now reveal these interactions, which have implications for star formation. See Letter p.207

  14. The Eagle Nebula on NIF

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Cooper, Amy; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir; Pound, Marc

    2011-10-01

    In one of the eight Science on NIF campaigns, dynamics of molecular clouds such as the Eagle Nebula will be studied in scaled laboratory astrophysics experiments, focusing on new hydrodynamic stabilities of ablation fronts induced by strong directionality of a sustained radiation drive, and on the formation of cometary structures as a model for the famous Eagle Pillars. The NIF Radiation Transport Platform will be adapted to drive a foam target stood off several mm from the halfraum to simulate a molecular cloud illuminated by a distant O-type star, with the drive collimated by an aperture. Pulses of length 20-100 ns generating effective radiation temperatures of 100 eV are being sought. Design of the experiment, theory of the directional radiation instabilities, and supporting astrophysical modeling will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Validation of the physical modeling approach for braided rivers

    NASA Astrophysics Data System (ADS)

    Rosatti, Giorgio

    2002-12-01

    Laboratory channels are often used to study the complexity of braiding mechanisms for the advantages with respect to field studies. Nevertheless, the extensive use of experimental data raises the question of how representative laboratory braided channels are as compared to real braided rivers. This study verifies to what extent laboratory braided patterns reproduce the main features of braided rivers. Experimental data display isotropic and anisotropic scaling of braided patterns, state-space plot of total widths, anisotropic scaling of islands, and statistical distribution of island areas that are similar to those observed in real rivers. Moreover, the data reveals scaling in the perimeter-area relation. These results support both the reliability of experimental braided channels as physical models of braided rivers and also the possibility of investigating some aspects of braiding in the laboratory that are difficult to address in the field. The lack of preferential scales in island characteristics suggests that other phenomena must play a key role in generating island shapes besides classical sediment transport-based mechanisms which tend to select well-defined length scales.

  16. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS

    SciTech Connect

    Berger, Mitchell A.; Asgari-Targhi, Mahboubeh E-mail: m.asgari@ucl.ac.u

    2009-11-01

    The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simple models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.

  17. Monitoring the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    The VYSOS (Variable Young Stars Optical Survey) project has at its disposal five small telescopes: a 5-inch and a 20-inch robotic optical imaging telescope in Hawaii funded by the NSF, and a 6-inch robotic optical imaging telescope, a 32-inch robotic infrared imaging telescope, and a 60-inch optical spectroscopic telescope in Chile, funded and operated from Germany. Through an agreement between the leaders of the two sites (B. Reipurth and R. Chini), it has been decided to devote a significant fraction of time on these facilities to a large Key Project, conducting a massive monitoring survey of the Orion Nebula Cluster. The vast data streams are being reduced through automated customized pipelines. The applicant seeks funding to employ a postdoc and an undergraduate assistant to work at the University of Hawaii and collaborate on the analysis of the data. Virtually all young stars are variable, with a wide range of amplitudes and characteristic timescales. This is mainly due to accretion shocks as material from circumstellar disks fall onto the stars along magnetic funnel flows, but also giant star spots, magnetic flares, occultations by orbiting dust condensations, and eclipses by companions can modulate the light from the nascent star. It is increasingly recognized that the rather static view of pre-main sequence evolution that has prevailed for many years is misleading, and that time-dependent phenomena may hold the key to an understanding of the way young stars grow and their circumstellar environments evolve. The VYSOS project is designed to bring sophisticated modern techniques to bear on the long neglected problem of variability in young solar type stars. To interpret the observations they will be compared to sophisticated MHD models of circumstellar disks around young stars. The Orion Nebula Cluster is the nearest rich region of star formation, and numerous, albeit heterogeneous, studies exist of the cluster members. The present study will provide the first

  18. Size distribution of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Asvarov, Abdul; Allahverdiyev, Ahad

    2015-08-01

    Despite a very long history of investigations, the nature and origin of planetary nebulae (PNe) are not fully understood. It is obvious that the observational properties of PNe are influenced by the properties of the central star and the conditions in the environment. In this presentation in order to understand the effects of these components we have modeled the evolution of radio luminosity and the expansion of PNe in the framework of different hypothesis on the origin of these objects. In this we have used the observational data on the central stars and clustered this data into gourps with the similar parameters of the central stars. For the each of these groups of PNe we have built statistical dependences radio luminosity - diameter, number of PNe - diameter which are then compared to the modeled ones. Unfortunately, the comparison of simulations with observations did not allow us to choose between the known models of the evolution of the PN shell. However with the increase of statistics the approach considered in this presentation may become more productive.

  19. The near-infrared continuum emission of visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1984-01-01

    In the past, reflection nebulae have provided an astrophysical laboratory well suited for the study of the reflection properties of interstellar dust grains at visual and ultraviolet wavelengths. The present investigation is concerned with observations which were begun with the objective to extend to near-infrared wavelengths the study of grains in reflection. Observations of three classical visual reflection nebulae were conducted in the wavelength range from 1.25 to 2.2 microns, taking into account NGC 7023, 2023, and 2068. All three nebulae were found to have similar near-infrared colors, despite widely different colors of their illuminating stars. The brightness level shown by two of the nebulae at 2.2 microns was too high to be easily accounted for on the basis of reflected light. Attention is given to a wide variety of possible emission mechanisms.

  20. Chondrule formation by clumpy accretion onto the solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Graham, J. A.

    1993-01-01

    Chondrule textures and compositions appear to require rapid heating of precursor grain aggregates to temperatures in the range 1500 K to 2100 K, cooling times on the order of hours, and episodic and variable intensity events in order to produce chondrule rims and chemically distinct groups. Nebula shock waves have been proposed by Hood and Horanyi as a physical mechanism that may be capable of meeting the meteoritical constraints. Motivated by astronomical observations of the close environments of young stars, we suggest that the source of the nebula shock waves may be clumpy accretion onto the solar nebula - that is, episodic impacts onto the nebula by discrete cloud clumps with masses of at least 10(exp 22) g. If the cloud clumps are massive enough (10(exp 26) g), the resulting shockwave may be able to propagate to the midplane and process precursor aggregates residing in a dust sub-disk.

  1. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The

  2. Forming Planets in the Hostile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are

  3. Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822

    NASA Astrophysics Data System (ADS)

    Spitzer, Lyman; Fitzpatrick, Ed

    1999-01-01

    This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young

  4. Lightning in the Protoplanetary Nebula?

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.

    1997-01-01

    Lightning in the protoplanetary nebula has been proposed as a mechanism for creating meteoritic chondrules: enigmatic mm-sized silicate spheres formed in the nebula by the brief melting of cold precursors.

  5. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  6. Braided Composite Technologies for Rotorcraft Structures

    NASA Technical Reports Server (NTRS)

    Jessie, Nathan

    2014-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  7. Braided Composite Technologies for Rotorcraft Structures

    NASA Technical Reports Server (NTRS)

    Jessie, Nathan

    2015-01-01

    A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.

  8. X-ray emission from Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Rho, J.

    1998-09-01

    The Trifid Nebula is one of the best-studied astrophysical objects, a classical nebula of ionized gas from an O6V star glowing red light, and it is trisected by obscuring dust lanes. Our ROSAT/PSPC image for the first time reveals that the Trifid Nebula emits X-rays and its emitting region is ~ 7' diameter--as large as the HII region itself. %The only previously reported X-ray emission Three main X-ray peaks appear within ~ 4 pc diameter of diffuse emission, roughly spherical. The strongest peak has 2' size near the O star, but the centroid of the X-ray peak appears 25'' away from HD 164492. % which is larger than the PSPC point spread function. Thus the emission may be a shell surrounding the O star as observed in eta Carina, originating from the interaction of a stellar wind with a circumstellar shell. There are a few other X-ray peaks: along the northeastern dust lane and in the east, none of which coincide with any identified optical stars. The PSPC spectrum extracted from the entire Trifid nebula does not clearly distinguish between thermal, bremsstrahlung, and power-law models, due to lack of counts. However, all of these models imply the X-ray luminosity (0.3 - 2.4 keV) is greater than 0.2 - 3*E(34) ergs s(-1) . The diffuse emission is possibly thermal with a temperature of 0.3-1 keV, as in the other HII regions eta Carina and RCW 49. The strong stellar wind from an O star alone can inject an energy of ~ 10(36) ergs s(-1) into ISM; this energy can be converted to heat the ionized gas to X-ray temperature. While the global diffuse X-ray emitting region is similar to the optical HII region, the bright X-ray peaks coincide with the structures in the infrared, suggesting possible embedded stars and their interaction with the circumstellar medium.

  9. Is NGC 3199 the Third Wolf-Rayet Nebula with Diffuse X-ray emission?

    NASA Astrophysics Data System (ADS)

    Toala, J. a.

    2013-10-01

    X-ray emission from Wolf-Rayet (WR) nebulae is thought to be produced by the powerful winds from their central stars slamming into the circumstellar medium. Only 4 WR nebulae have been observed with the latest generation of X-ray satellites: S 308 (WR6), RCW58 (WR40), NGC6888 (WR136), and the nebula of WR16, but only S 308 and NGC6888 have been detected. ROSAT observations toward the WR nebula NGC3199 hinted at the presence of soft X-ray emission associated with this nebula, but the low angular resolution does not allow us to disentangle the different contributions to this emission. We request a 40 ks XMM-Newton EPIC-pn observation to help us study the distribution of the diffuse hot gas within the WR nebula NGC3199 around WR18.

  10. A search for planetary nebulae on the 'POSS'

    NASA Astrophysics Data System (ADS)

    Dengel, J.; Hartl, H.; Weinberger, R.

    1980-05-01

    Results of a search for new planetary nebulae on a quarter of the Palomar Observatory Sky Survey (POSS) E plates are reported. A total of 218 prints evenly scattered over all accessible galactic longitudes and latitudes was examined, in addition to the entire region between longitudes 33 and 213 deg and latitudes + or - 2 deg. Five objects satisfying the criteria of emission nebulosity characteristic of planetary nebulae and/or a central blue star were detected, as well as another three dozen very faint, roundish unlisted objects. The coordinates, dimensions, central star magnitudes, surfaces brightnesses, nebular magnitudes, volumes and estimated distances of the five probable planetary nebulae are presented, and it is noted that all but one of them are of considerably low surface brightness.

  11. Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood

    ERIC Educational Resources Information Center

    Arnott, Luke

    2012-01-01

    "Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…

  12. Chemical Abundances of Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  13. Riparian vegetation controls on braided stream dynamics

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Paola, Chris

    2001-12-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.

  14. Tensor Network Algorithms for Braiding Anyons

    NASA Astrophysics Data System (ADS)

    Ayeni, Babatunde; Singh, Sukhwinder; Pfeifer, Robert; Brennen, Gavin

    Anyons are point-like (quasi)particles which exist only in two-dimensional systems and have exchange statistics that are neither bosonic nor fermionic. These particles were first proposed as a mere theoretical curiosity, but it was later shown that they arise in topological states of matter and that certain species of non-Abelian anyons can be used for low error quantum computation. Despite the importance of anyons, fundamentally and technologically, comparatively little is understood about their many body behaviour especially when the non local effects of braiding are taken into account. This largely due to the lack of efficient numerical methods to study them. In order to circumvent this problem, and to broaden our understanding of the physics of anyons, the authors have developed several numerical methods based on tensor network algorithms including: anyonic Matrix Product States (MPS), anyonic Time Evolving Block Decimation (TEBD), anyonic Density Matrix Renormalization Group (DMRG), and Anyonic U(1) MPS. These can be used to simulate static interacting and itinerant braiding anyons on a finite or infinite lattice. We have used our methods to study the phase diagrams of some species, such as Abelian Z3 anyons and non-Abelian Fibonacci and Ising.

  15. Approaches for Tensile Testing of Braided Composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.

    2011-01-01

    For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower

  16. River Channel Patterns: Braided, Meandering, and Straight

    USGS Publications Warehouse

    Leopold, Luna B.; Wolman, M. Gordon

    1957-01-01

    Channel pattern is used to describe the plan view of a reach of river as seen from an airplane, and includes meandering, braiding, or relatively straight channels. Natural channels characteristically exhibit alternating pools or deep reaches and riffles or shallow reaches, regardless of the type of pattern. The length of the pool or distance between riffles in a straight channel equals the straight line distance between successive points of inflection in the wave pattern of a meandering river of the same width. The points of inflection are also shallow points and correspond to riffles in the straight channel. This distance, which is half the wavelength of the meander, varies approximately as a linear function of channel width. In the data we analysed the meander wavelength, or twice the distance between successive riffles, is from 7 to 12 times the channel width. It is concluded that the mechanics which may lead to meandering operate in straight channels. River braiding is characterized by channel division around alluvial islands. The growth of an island begins as the deposition of a central bar which results from sorting and deposition of the coarser fractions of the load which locally cannot be transported. The bar grows downstream and in height by continued deposition on its surface, forcing the water into the flanking channels, which, to carry the flow, deepen and cut laterally into the original banks. Such deepening locally lowers the water surface and the central bar emerges as an island which becomes stabilized by vegetation. Braiding was observed in a small river in a laboratory. Measurements of the adjustments of velocity, depth, width, and slope associated with island development lead to the conclusion that braiding is one of the many patterns which can maintain quasi-equilibrium among discharge, load, and transporting ability. Braiding does not necessarily indicate an excess of total load. Channel cross section and pattern are ultimately controlled by

  17. X-Rays and Protostars in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Corcoran, Michael F.; Chu, You-Hua; Reach, William T.

    2001-11-01

    The Trifid Nebula is a young H II region, recently rediscovered as a ``pre-Orion'' star-forming region, containing protostars undergoing violent mass ejections visible in optical jets as seen in images from the Infrared Space Observatory and the Hubble Space Telescope. We report the first X-ray observations of the Trifid Nebula using ROSAT and ASCA. The ROSAT image shows a dozen X-ray sources, with the brightest X-ray source being the O7 star, HD 164492, which provides most of the ionization in the nebula. We also identify 85 T Tauri star and young, massive star candidates from near-infrared colors using the JHKs color-color diagram from the Two-Micron All-Sky Survey (2MASS). Ten X-ray sources have counterpart near-infrared sources. The 2MASS stars and X-ray sources suggest there are potentially numerous protostars in the young H II region of the Trifid. ASCA moderate-resolution spectroscopy of the brightest source shows hard emission up to 10 keV with a clearly detected Fe K line. The best model fit is a two-temperature (T=1.2×106 K and 39×106 K) thermal model with additional warm absorbing media. The hotter component has an unusually high temperature for either an O star or an H II region; a typical Galactic H II region could not be the primary source for such hot temperature plasma and the Fe XXV line emission. We suggest that the hotter component originates in either the interaction of the wind with another object (a companion star or a dense region of the nebula) or from flares from deeply embedded young stars.

  18. X-rays and Protostars in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Rho, J.; Corcoran, M. F.; Chu, Y.-H.; Reach, W. T.

    2001-05-01

    The Trifid Nebula is a young HII region recently rediscovered as a ``pre-Orion" star forming region, containing protostars undergoing violent mass ejections visible in optical jets as seen in images from the Infrared Space Observatory and the Hubble Space Telescope. We report the first X-ray observations of the Trifid nebula using ROSAT and ASCA. The ROSAT image shows a dozen X-ray sources, with the brightest X-ray source being the O7 star, HD 164492, which provides most of the ionization in the nebula. We also identify 85 T Tauri star and young, massive star candidates from near-infrared colors using the JHKs color-color diagram from the Two Micron All Sky Survey (2MASS). Ten X-ray sources have counterpart near-infrared sources. The 2MASS stars and X-ray sources suggest there are potentially numerous protostars in the young HII region of the Trifid. ASCA moderate resolution spectroscopy of the brightest source shows hard emission up to 10 keV with a clearly detected Fe K line. The best model fit is a two-temperature (T = 2.0x 106 K and 36 x 106 K) thermal model with additional warm absorbing media. The hotter component has an unusually high temperature for either an O star or an HII region; a typical Galactic HII region could not be the primary source for such hot temperature plasma and the Fe XXV line emission. We suggest that the hot component originates in either the interaction of the wind with another object (a companion star or a dense region of the nebula) or from flares from deeply embedded young stars.

  19. The Extended Region Around the Planetary Nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.'

    The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet.

    Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly.

    When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star.

    Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades.

    In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red

  20. The space density, environments, and physical properties of large Lyalpha nebulae

    NASA Astrophysics Data System (ADS)

    Prescott, Moire Kathleen Murphy

    Powerful forces are at work in giant Lya nebulae, a rare and mysterious population in the high redshift universe. Much like the spatially extended emission line halos around high redshift radio galaxies--but without the strong radio emission-- Lya nebulae (or Lya 'blobs') boast copious Lya emission (10^44 erg s -1 ), large sizes (~100 kpc), complex gas morphologies, and the company of numerous compact, star-forming galaxies, and may offer a window into dramatic episodes of massive galaxy formation. The small sample sizes and complex inner workings of Lya nebulae have limited progress on understanding the their space density, environments, and physical conditions. This thesis strives to answer fundamental questions about Lya nebulae and pave the way for understanding their role in the build up of massive galaxy systems. To address the frequency of collapse of these massive structures, we carried out the largest systematic Lya nebula survey to date and measured the Lya nebula space density. As an unbiased test of the environment of Lya nebulae, we studied the surroundings of a Lya nebula and confirmed that Lya nebulae reside preferentially in overdense regions. To disentangle the sources of ionization, we took a census of all the compact ionization sources within a large Lya nebula using high resolution imaging. Finally, we used photoionization modeling to put constraints on the physical conditions, the metallicity, and the sources of ionization within Lya nebulae. Future work will be able to build on this thesis by expanding the systematic search for Lya nebulae to other existing deep broad-band datasets, mapping the three-dimensional overdense structures in which Lya nebulae live out to >=50 (comoving) Mpc scales, and disentangling multiple sources of ionization within a larger sample of individual systems using deep optical and near-infrared spectroscopy and detailed photoionization modeling.

  1. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  2. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  3. The spatial distribution of infrared radiation from visible reflection nebulae

    NASA Technical Reports Server (NTRS)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  4. Catalogues of planetary nebulae.

    NASA Astrophysics Data System (ADS)

    Acker, A.

    Firstly, the general requirements concerning catalogues are studied for planetary nebulae, in particular concerning the objects to be included in a catalogue of PN, their denominations, followed by reflexions about the afterlife and comuterized versions of a catalogue. Then, the basic elements constituting a catalogue of PN are analyzed, and the available data are looked at each time.

  5. Ly(alpha) Photolysis in the Primitive Solar Nebula

    NASA Astrophysics Data System (ADS)

    Gladstone, G. Randall

    1998-01-01

    This is the final report for the third year of work on this project. Our proposal was to quantitatively investigate the importance of photochemistry in the solar nebula. In the generally accepted theory for the chemical evolution of the primitive solar nebula, Prinn and Fegley argued that photochemistry is unimportant, and that thermochemistry controls the relative abundances of molecular species throughout the planet-forming region. They provided useful estimates of the chemical energy available to the solar nebula from a variety of sources, and established that even the small photolysis rate due to starlight is more important than the photolysis rate from direct sunlight (although small, the UV flux from starlight could have processed a non-negligible fraction of the solar nebula. The reason for this is that the opacity of the disk was so large that direct sunlight could only penetrate to 0.1 AU or so, despite the expectation that the protosun, if comparable to a T-Tauri star, would be emitting up to 104 more H I Ly(alpha) photons than the current sun. We developed a Monte Carlo resonance fine radiative transfer code, capable of accurately calculating the radiation field of H I Ly(alpha), He I 584 A, and He II 304 A emissions throughout the nebula and the nearby interstellar medium in which it is embedded. We applied the code to two appropriate models of the primitive solar nebula. Our model provided the photolysis rates of various species over the entire surface layer of the nebula, and from this we evaluated the importance of UV photochemistry due to backscattered solar UV resonance line emissions on different parts of the nebula. The results discussed below were presented.

  6. Ly(alpha) Photolysis in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    1998-01-01

    This is the final report for the third year of work on this project. Our proposal was to quantitatively investigate the importance of photochemistry in the solar nebula. In the generally accepted theory for the chemical evolution of the primitive solar nebula, Prinn and Fegley argued that photochemistry is unimportant, and that thermochemistry controls the relative abundances of molecular species throughout the planet-forming region. They provided useful estimates of the chemical energy available to the solar nebula from a variety of sources, and established that even the small photolysis rate due to starlight is more important than the photolysis rate from direct sunlight (although small, the UV flux from starlight could have processed a non-negligible fraction of the solar nebula. The reason for this is that the opacity of the disk was so large that direct sunlight could only penetrate to 0.1 AU or so, despite the expectation that the protosun, if comparable to a T-Tauri star, would be emitting up to 10(exp 4) more H I Ly(alpha) photons than the current sun. We developed a Monte Carlo resonance fine radiative transfer code, capable of accurately calculating the radiation field of H I Ly(alpha), He I 584 A, and He II 304 A emissions throughout the nebula and the nearby interstellar medium in which it is embedded. We applied the code to two appropriate models of the primitive solar nebula. Our model provided the photolysis rates of various species over the entire surface layer of the nebula, and from this we evaluated the importance of UV photochemistry due to backscattered solar UV resonance line emissions on different parts of the nebula. The results discussed below were presented.

  7. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  8. CRL 618: A Nascent Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Tafoya, D.; Loinard, L.; Fonfría, J. P.; Vlemmings, W. H. T.; Martí-Vidal, I.; Pech, G.

    2014-04-01

    CRL 618 is an object that exhibits characteristics of both AGB and post-AGB star. It also displays a spectacular array of bipolar lobes with a dense equatorial region, which makes it an excellent object to study the development of asymmetries in evolved stars. In the recent decades, an elliptical compact HII region located in the center of the nebula has been seen to be increasing in size and flux. This seems to be due to the ionization of the circumstellar envelope by the central star, and it would be indicating the beginning of the planetary nebula phase for CRL 618. We analyzed interferometric radio continuum data at ~5 and 22 GHz from observations carried out at seven epochs with the VLA. We traced the increase of the flux of the ionized region over a period of ~26 years. We measured the dimensions of the HII region directly from the brightness distribution images to determine the increase of its size over time. For one of the epochs we analyzed observations at six frequencies from which we estimated the electron density distribution. We carried out model calculations of the spectral energy distribution at two different epochs to corroborate our observational results. We found that the radio continuum flux and the size of the ionized region have been increasing monotonically in the last three decades. The size of the major axis of the HII region shows a dependance with frequency, which has been interpreted as a result of a gradient of the electron density in this direction. The growth of the HII region is due to the expansion of an ionized wind whose mass-loss rate increased continuously for a period of ~100 years until a few decades ago, when the mass-loss rate experienced a sudden decline. Our results indicate that the beginning of the ionization of the circumstellar envelope began around 1971, which marks the start of the planetary nebula phase of CRL 618.

  9. The Nebula around the Luminous Blue Variable WRAY 15-751 as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemekers, D.; Royer, P.; Naze, Y.; Magain, P.; Exter, K.; Waelkens, C.; Groenewegen, M.

    2013-06-01

    To understand the evolution of massive stars it is crucial to study the nebulae associated to Luminous Blue Variables which can reveal the star mass-loss history. We obtained far-infrared Herschel PACS imaging and spectroscopic observations of the nebula associated with the Luminous Blue Variable star WRAY 15-751. These images revealed a second nebula, bigger and cooler, lying in an empty cavity that probably delineates the remnant of the O-star bubble formed when the star was on the Main Sequence. The dust mass and temperature were derived from the modeling of the far-infrared SED. The analysis of the emission line spectrum revealed that the main nebula consists of a region of photoionised gas surrounded by a thin photodissociation region. Both regions are mixed with dust. The calculated C, N, O abundances, together with the estimated mass-loss rate, show that the nebula was ejected from the star during a Red Supergiant phase. This is compatible with the latest evolutionary tracks for a ~40 Mo star with little rotation.

  10. Design of braided composite tubes by numerical analysis method

    SciTech Connect

    Hamada, Hiroyuki; Fujita, Akihiro; Maekawa, Zenichiro; Nakai, Asami; Yokoyama, Atsushi

    1995-11-01

    Conventional composite laminates have very poor strength through thickness and as a result are limited in their application for structural parts with complex shape. In this paper, the design for braided composite tube was proposed. The concept of analysis model which involved from micro model to macro model was presented. This method was applied to predict bending rigidity and initial fracture stress under bending load of the braided tube. The proposed analytical procedure can be included as a unit in CAE system for braided composites.

  11. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    photo constitutes a fine example of the subsequent use of such valuable data. Details about how the photo was made and some weblinks to other pictures are available below. The comparatively large field-of-view of the FORS2 camera (nearly 7 x 7 arcmin 2 ) and the detector resolution (0.2 arcsec/pixel) make this instrument optimally suited for imaging of this extended object and its immediate surroundings. There is obviously a wealth of detail, and scientific information can be derived from the colours shown in this photo. Three predominant colours are seen in the image: red from the hydrogen (H-alpha) emission from the HII region; brown for the foreground obscuring dust; and blue-green for scattered starlight. The blue-green regions of the Horsehead Nebula correspond to regions not shadowed from the light from the stars in the H II region to the top of the picture and scatter stellar radiation towards the observer; these are thus `mountains' of dust . The Horse's `mane' is an area in which there is less dust along the line-of-sight and the background (H-alpha) emission from ionized hydrogen atoms can be seen through the foreground dust. A chaotic area At the high resolution of this image the Horsehead appears very chaotic with many wisps and filaments and diffuse dust . At the top of the figure there is a bright rim separating the dust from the HII region. This is an `ionization front' where the ionizing photons from the HII region are moving into the cloud, destroying the dust and the molecules and heating and ionizing the gas. Dust and molecules can exist in cold regions of interstellar space which are shielded from starlight by very large layers of gas and dust. Astronomers refer to elongated structures, such as the Horsehead, as `elephant trunks' (never mind the zoological confusion!) which are common on the boundaries of HII regions. They can also be seen elsewhere in Orion - another well-known example is the pillars of M16 (the "Eagle Nebula") made famous by the

  12. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  13. Hubble Hatches Image of Rotten Egg Nebula Shocks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Some 5,000 light years (2,900 trillion miles) from Earth, in the constellation Puppis, is the 1.4 light years (more than 8 trillion miles) long Calabash Nebula, referred to as the Rotten Egg Nebula because of its sulfur content which would produce an awful odor if one could smell in space. This image of the nebula captured by NASA's Hubble Space Telescope (HST) depicts violent gas collisions that produced supersonic shock fronts in a dying star. Stars, like our sun, will eventually die and expel most of their material outward into shells of gas and dust These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae. The yellow in the image depicts the material ejected from the central star zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Due to the high speeds of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and structure of such shocks for some time, previous observations have not been able to prove the theory.

  14. Star Formation Regions in LDN 1667

    NASA Astrophysics Data System (ADS)

    Gyulbudaghian, A. L.

    2015-09-01

    A group of three star formation regions in the dark cloud LDN 1667 is examined. All three of these regions contain Trapezium type systems. 12C(1-0) observations are made of the part of the molecular cloud LDN 1667 associated with one of the star formation regions. Three molecular clouds were detected, one of which (the main cloud) has a red and a blue outflow. Three stars from the star formation regions are found to have annular nebulae and one star has a conical nebula. The dark cloud LDN 1667 is associated with a radial system of dark globules which is formed by the star HD 57061.

  15. Black Widow Nebula Hiding in the Dust

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap.

    When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

    In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble.

    The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).

  16. Near-Infrared Polarimetry of the Eagle Nebula (M 16)

    NASA Astrophysics Data System (ADS)

    Sugitani, Koji; Watanabe, Makoto; Tamura, Motohide; Kandori, Ryo; Hough, James H.; Nishiyama, Shogo; Nakajima, Yasushi; Kusakabe, Nobuhiko; Hashimoto, Jun; Nagayama, Takahiro; Nagashima, Chie; Kato, Daisuke; Fukuda, Naoya

    2007-06-01

    We carried out deep and wide (˜ 8 × 8) JHKs imaging polarimetry in the southern region of the Eagle Nebula (M 16). The polarization intensity map reveals that two YSOs with near-IR reflection nebulae are located at the tips of two famous molecular pillars (Pillars 1 and 2) facing toward the exciting stars of M 16. The centrosymmetric polarization pattern are consistent with those around Class I objects having circumstellar envelopes, confirming that star formation is now taking place at the two tips of the pillars under the influence of UV radiation from the exciting stars. Polarization measurements of point sources show that magnetic fields are aligned along some of the pillars, but in a direction that is quite different to the global structure in M 16.

  17. Million-degree plasma pervading the extended Orion Nebula.

    PubMed

    Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L

    2008-01-18

    Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.

  18. Outflows, Jets and Shocks in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    ODell, C. R.; Bally, John

    2000-01-01

    The rich young cluster of stars associated with the Orion Nebula provides a unique laboratory for the study of plasma phenomena. We see five types of flows and shocks. Photoablation outflow from the proplyds nearest theta (exp 1) Ori C form nearly stationary shocks with the high velocity wind from that star. Microjets, with scales of less than 10 (exp 4) AU, are seen around some 20 low mass stars. Isolated jets, with high velocities and scales of about, 104 AU, are less numerous but common. One also sees the shocks formed when these jets impinge on the ionized nebular gas and the neutral gas in the foreground lid. The final type of object is the stationary shock formed by the interaction from the stellar wind that arises during disk formation with the ambient, gas flowing away from the main body of the nebula.

  19. Braided coronal loops: equilibria, heating, and observational signatures

    NASA Astrophysics Data System (ADS)

    Pontin, David Iain; Hornig, Gunnar; Candelaresi, Simon

    2016-05-01

    We examine the dynamics of coronal loops containing non-trivial magnetic field line braiding. We discuss the existence of braided force-free equilibria, and demonstrate that these equilibria must contain current layers whose thickness becomes increasingly small for increasing field complexity. In practical terms, the implication is that if one considers a line-tied coronal loop that is driven by photospheric motions, then the eventual onset of reconnection and energy release is inevitable. Once the initial reconnection event is triggered a turbulent relaxation ensues. We discuss the relation with Parker’s braiding mechanism for coronal heating, and go on to describe the expected observational signatures of energy release in such a braided coronal loop.

  20. 3D braid scaffolds for regeneration of articular cartilage.

    PubMed

    Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol

    2014-06-01

    Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. PMID:24556323

  1. Failure analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  2. Failure analysis of woven and braided fabric reinforced composites

    SciTech Connect

    Naik, R.A.

    1994-09-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.

  3. Topological chaos, braiding and bifurcation of almost-cyclic sets

    NASA Astrophysics Data System (ADS)

    Grover, Piyush; Ross, Shane D.; Stremler, Mark A.; Kumar, Pankaj

    2012-12-01

    In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.

  4. Braids as a representation space of SU(5)

    NASA Astrophysics Data System (ADS)

    Cartin, Daniel

    2015-06-01

    The standard model of particle physics provides very accurate predictions of phenomena occurring at the sub-atomic level, but the reason for the choice of symmetry group and the large number of particles considered elementary is still unknown. Along the lines of previous preon models positing a substructure to explain these aspects, Bilson-Thompson showed how the first family of elementary particles is realized as the crossings of braids made of three strands, with charges resulting from twists of those strands with certain conditions; in this topological model, there are only two distinct neutrino states. Modeling the particles as braids implies these braids must be the representation space of a Lie algebra, giving the symmetries of the standard model. In this paper, this representation is made explicit, obtaining the raising operators associated with the Lie algebra of SU(5), one of the earliest grand unified theories. Because the braids form a group, the action of these operators are braids themselves, leading to their identification as gauge bosons. Possible choices for the other two families are also given. Although this realization of particles as braids is lacking a dynamical framework, it is very suggestive, especially when considered as a natural method of adding matter to loop quantum gravity.

  5. Analysis of woven and braided fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.

  6. Braids as a representation space of SU(5)

    SciTech Connect

    Cartin, Daniel

    2015-06-15

    The standard model of particle physics provides very accurate predictions of phenomena occurring at the sub-atomic level, but the reason for the choice of symmetry group and the large number of particles considered elementary is still unknown. Along the lines of previous preon models positing a substructure to explain these aspects, Bilson-Thompson showed how the first family of elementary particles is realized as the crossings of braids made of three strands, with charges resulting from twists of those strands with certain conditions; in this topological model, there are only two distinct neutrino states. Modeling the particles as braids implies these braids must be the representation space of a Lie algebra, giving the symmetries of the standard model. In this paper, this representation is made explicit, obtaining the raising operators associated with the Lie algebra of SU(5), one of the earliest grand unified theories. Because the braids form a group, the action of these operators are braids themselves, leading to their identification as gauge bosons. Possible choices for the other two families are also given. Although this realization of particles as braids is lacking a dynamical framework, it is very suggestive, especially when considered as a natural method of adding matter to loop quantum gravity.

  7. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    PubMed

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

  8. Planetary Nebulae with Supporting IR Data

    NASA Technical Reports Server (NTRS)

    Harrington, J. Patrick

    1999-01-01

    We present new HST/WFPC2 imagery for the planetary nebula (PN) NGC 6818. Observations were made in line filters F437N, F487N, F502N, and F656N plus continuum filter F547M. The primary goal was to develop a high spatial resolution (approx. 0.1 in.) map of the intrinsic line ratio [O III] 4363/5007 and thereby evaluate the electron temperature (T(sub e)) and the mean-square T(sub e) variation (t(sup 2) across the PN. In this process we developed an extinction map from the F487N (H(beta)) and F656N (H(alpha)) images by comparing the observed line ratios in each pixel to the theoretical ratio and computing a c(H(beta)) map which was used to correct the observed 4363/5007 ratios for reddening. We also adjust for the continuum contribution to the line filter data. We present color-coded pictures of the reddening (c(H(beta))) map, the [O III] T(sub e) map, as well as our determinations of t(sup 2). The T(sub e) map shows a decline from approx. 14000 K in the inner regions to approx. 11000 K at the outer edge. Such a radial T(sub e) gradient is expected for a high-excitation nebula with a prominent He(++) zone such as NGC 6818. A composite of images taken in 3 filters (F656N, red; F487N, blue; and F502N, [O III] 5007, green) shows a roughly spherical outer envelope as well as a brighter vase-shaped interior "bubble". There is a prominent orifice to the North and a smaller one to the South, along the major axis, possibly caused by a blow-out from a fast wind. This nebula has an appearance remarkably similar to that of the PN NGC 3918 previously imaged with HST by H. Bond. We note from the continuum images (F547M) two stars in the nebular field that are fainter than the prominent central star; these are roughly 2-4 sec. N and NE of the central star. Further study is needed to establish whether or not there may be a physical association of either star with the central star.

  9. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Corradi, Romano L. M.; García-Rojas, Jorge; Jones, David; Rodríguez-Gil, Pablo

    2015-04-01

    The discrepancy between abundances computed using optical recombination lines and collisionally excited lines is a major unresolved problem in nebular astrophysics. Here, we show that the largest abundance discrepancies are reached in planetary nebulae with close binary central stars. We illustrate this using deep spectroscopy of three nebulae with a post common-envelope (CE) binary star. Abell 46 and Ou 5 have O2+/H+ abundance discrepancy factors larger than 50, and as high as 300 in the inner regions of Abell 46. Abell 63 has a smaller discrepancy factor around 10, which is still above the typical values in ionized nebulae. Our spectroscopic analysis supports previous conclusions that, in addition to “standard” hot ({{T}e} ˜ 104 K) gas, there exists a colder ({{T}e} ˜ 103 K), ionized component that is highly enriched in heavy elements. These nebulae have low ionized masses, between 10-3 and 10-1 M⊙ depending on the adopted electron densities and temperatures. Since the much more massive red giant envelope is expected to be entirely ejected in the CE phase, the currently observed nebulae would be produced much later, during post-CE mass loss episodes when the envelope has already dispersed. These observations add constraints to the abundance discrepancy problem. We revise possible explanations. Some explanations are naturally linked to binarity such as, for instance, high-metallicity nova ejecta, but it is difficult at this stage to depict an evolutionary scenario consistent with all of the observed properties. We also introduce the hypothesis that these nebulae are the result of tidal destruction, accretion, and ejection of Jupiter-like planets.

  10. Carbon Chemistry in Planetary Nebulae: Observations of the CCH Radical

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah Rose; Ziurys, Lucy

    2015-08-01

    The presence of infrared (IR) emission features observed in interstellar environments is consistent with models that suggest they are produced by complex organic species containing both aliphatic and aromatic components (Kwok & Zhang 2011). These IR signals change drastically over the course of the AGB, proto-planetary, and planetary nebulae phases, and this dramatic variation is yet to be understood. The radical CCH is a potential tracer of carbon chemistry and its evolution in dying stars. CCH is very common in carbon-rich circumstellar envelopes of AGB stars, and is present in the proto-planetary nebulae. It has also been observed at one position in the very young planetary nebula, NGC 7027 (Hasegawa & Kwok 2001), as well as at one position in the Helix Nebula (Tenenbaum et al. 2009) - a dense clump east of the central white dwarf. In order to further probe the chemistry of carbon, we have initiated a search for CCH in eight PNe previously detected in HCN and HCO+ from a survey conducted by Schmidt and Ziurys, using the telescopes of the Arizona Radio Observatory (ARO). Observations of the N=1→0 transition of CCH at 87 GHz have been conducted using the new ARO 12-m ALMA prototype antenna, while measurements of the N=3→2 transition at 262 GHz are being made with the ARO Sub-Millimeter Telescope (SMT). We also have extended our study in the Helix Nebula. Thus far, CCH has been detected at 8 new positions across the Helix Nebula, and appears to be widespread in this source. The radical has also been identified in K4-47, M3-28, K3-17, and K3-58. These sources represent a range of nebular ages. Additional observations are currently being conducted for CCH in other PNe, as well as abundance analyses. These results will be presented.

  11. The Eagle Nebula Science on NIF experiment

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Heeter, Robert; Martinez, David; Pound, Marc; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir

    2012-10-01

    The Eagle Nebula NIF experiment was one of nine selected for laser time through the Science on NIF program. The goal of this scale laboratory experiment is to study the dynamic evolution of distinctive structures in star forming regions of astrophysical molecular clouds such as the Pillars of the Eagle Nebula. That evolution is driven by photoionizing radiation from nearby stars. A critical aspect of the radiation is its very directional nature at the photoionization front. The long duration of the drive and its directionality can generate new classes of instabilities and dynamic flows at the front that may be responsible for the shapes of Pillars and other structures. The experiment will leverage and modify the existing NIF Radiation Transport platform, replacing the target at the back end of the halfraum with a collimating aperture, and extending the existing 20 ns drive to longer times, using a combination of gas fill and other new design features. The apertured, quasi-collimated drive will be used to drive a target placed 2 mm away from the aperture. The astrophysical background and the status of the experimental design will be presented.

  12. Optical line intensities in the Trifid nebula

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1985-07-01

    Observations of the Trifid nebula (M20) obtained in H-alpha; He I (587.6 nm); and the forbidden lines of N II (658.3 nm), S II (671.6 and 673 nm), O III (500.7 nm), and O II (272.6 and 372.9 nm) using either the CIT long-slit spectrograph or a direct-mode CCD with narrow-band interference filters on the 92-cm telescope at KPNO are reported. The data are presented in extensive graphs and characterized in detail and a model is proposed to explain the scattering measurements. Findings discussed include a single central O7 V star with Teff = about 37,500 K, a dusty plasma ionized by this star, mean nebular electron density 150/cu cm, a central hole of radius 0.2 times that of the ionized zone, dust extending beyond the ionized region, overall temperature 7000-8000 K, filament temperatures up to 9000 K, dust optical depth 1.5 at H-beta, dust albedo 0.5, emission-nebula radius 2.8 pc, and total mass about 1700 solar mass (comprising 340 solar mass ionized material, about 800 solar mass unionized cloud material, and about 600 solar mass in an outer dust sphere). 18 references.

  13. Optical line intensities in the Trifid nebula

    NASA Astrophysics Data System (ADS)

    Lynds, B. T.; Oneil, E. J., Jr.

    1985-07-01

    Observations of the Trifid nebula (M20) obtained in H-alpha; He I (587.6 nm); and the forbidden lines of N II (658.3 nm), S II (671.6 and 673 nm), O III (500.7 nm), and O II (272.6 and 372.9 nm) using either the CIT long-slit spectrograph or a direct-mode CCD with narrow-band interference filters on the 92-cm telescope at KPNO are reported. The data are presented in extensive graphs and characterized in detail and a model is proposed to explain the scattering measurements. Findings discussed include a single central O7 V star with Teff = about 37,500 K, a dusty plasma ionized by this star, mean nebular electron density 150/cu cm, a central hole of radius 0.2 times that of the ionized zone, dust extending beyond the ionized region, overall temperature 7000-8000 K, filament temperatures up to 9000 K, dust optical depth 1.5 at H-beta, dust albedo 0.5, emission-nebula radius 2.8 pc, and total mass about 1700 solar mass (comprising 340 solar mass ionized material, about 800 solar mass unionized cloud material, and about 600 solar mass in an outer dust sphere).

  14. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  15. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Adams, Michael L.

    1997-01-01

    Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less

  16. An overview of flux braiding experiments

    PubMed Central

    Wilmot-Smith, A. L.

    2015-01-01

    In a number of papers dating back to the 1970s, Parker has hypothesized that, in a perfectly ideal environment, complex photospheric motions acting on a continuous magnetic field will result in the formation of tangential discontinuities corresponding to singular currents. I review direct numerical simulations of the problem and find that the evidence points to a tendency for thin but finite-thickness current layers to form, with thickness exponentially decreasing in time. Given a finite resistivity, these layers will eventually become important and cause the dynamical process of energy release. Accordingly, a body of work focuses on evolution under continual boundary driving. The coronal volume evolves into a highly dynamic but statistically steady state where quantities have a temporally and spatially intermittent nature and where the Poynting flux and dissipation are decoupled on short time scales. Although magnetic braiding is found to be a promising coronal heating mechanism, much work remains to determine its true viability. Some suggestions for future study are offered. PMID:25897088

  17. A search for continuous fluorescence in reflection nebulae. [using photoelectric photometry and spectrophotometric observations

    NASA Technical Reports Server (NTRS)

    Rush, W. F.; Witt, A. N.

    1973-01-01

    Photometric and spectrophotometric observations were made of the reflection nebulae NGC1435, NGC2068, NGC7023, and IC1287 in an attempt to detect continuous fluorescence by dust grains. Several effects of importance for observations of such faint objects are discussed, including instrumental light scattering, a photographic effect, and a time delay effect which can occur if the illuminating star is a spectrum variable. It is found that continuous fluorescence by interstellar grains is not likely to exist and that it cannot account for more than 10 percent of the total surface brightness of these reflection nebulae. No evidence of diffuse interstellar features is found in the spectra of these nebulae.

  18. The presence of internal dust in the nebulae M 20 and IC 5146

    NASA Astrophysics Data System (ADS)

    Rozhkovskij, D. A.

    1989-06-01

    Photographic observations of M 20 and IC 5146 were used to determine the radiation fluxes in the H-alpha spectral region and in two regions of the continuum. The observational data were introduced into a model of a nebula with internal dust which absorbs and scatters the radiation from the H II region and the central star. This made it possible to obtain probable estimates of the optical depth of the dust atmosphere of the nebula.

  19. Utilitarian models of the solar nebula

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    1994-01-01

    Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical

  20. Utilitarian models of the solar nebula

    NASA Astrophysics Data System (ADS)

    Cassen, Patrick

    1994-12-01

    Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical

  1. Symmetric and asymmetric planetary nebulae and the time variation of the radial abundance gradients

    NASA Astrophysics Data System (ADS)

    Maciel, W.; Costa, R. D. D.

    2014-04-01

    Planetary nebulae (PN) are excellent laboratories to study the chemical evolution of their host galaxies, especially concerning the radial abundance gradients and their time and spatial variations. Current chemical evolution models predict either some steepening or flattening of the abundance gradients with time, and PN can be useful in order to provide observational constraints on this issue. It is generally believed that asymmetrical nebulae, especially bipolars, are formed by younger, more massive progenitor stars, while symmetrical nebulae, such as the round and elliptical objects, are formed by older, less massive stars. As a consequence, if the abundance gradients change with time, some differences are expected between the gradients measured in symmetrical and asymmetrical nebulae. We have considered a large sample of well-studied galactic PN for which accurate abundances of O, S, Ne, and Ar are known, and for which a reliable morphological classification can be made. Average abundances and radial gradients of the ratios O/H, S/H, Ne/H and Ar/H were then determined for the main morphological classes, comprising B, E, R, and P nebulae. It is found that the average abundances of the younger objects are larger than those of the older nebulae, as expected on chemical evolution grounds, but the derived gradients are essentially the same within the uncertainties. It can then be concluded that the radial abundance gradients have not changed appreciably since the older progenitor stars were born, approximately 4 to 5 Gyr ago.

  2. The planetary nebula Abell 48 and its [WN] nucleus

    NASA Astrophysics Data System (ADS)

    Frew, David J.; Bojičić, I. S.; Parker, Q. A.; Stupar, M.; Wachter, S.; DePew, K.; Danehkar, A.; Fitzgerald, M. T.; Douchin, D.

    2014-05-01

    We have conducted a detailed multi-wavelength study of the peculiar nebula Abell 48 and its central star. We classify the nucleus as a helium-rich, hydrogen-deficient star of type [WN4-5]. The evidence for either a massive WN or a low-mass [WN] interpretation is critically examined, and we firmly conclude that Abell 48 is a planetary nebula (PN) around an evolved low-mass star, rather than a Population I ejecta nebula. Importantly, the surrounding nebula has a morphology typical of PNe, and is not enriched in nitrogen, and thus not the `peeled atmosphere' of a massive star. We estimate a distance of 1.6 kpc and a reddening, E(B - V) = 1.90 mag, the latter value clearly showing the nebula lies on the near side of the Galactic bar, and cannot be a massive WN star. The ionized mass (˜0.3 M⊙) and electron density (700 cm-3) are typical of middle-aged PNe. The observed stellar spectrum was compared to a grid of models from the Potsdam Wolf-Rayet (PoWR) grid. The best-fitting temperature is 71 kK, and the atmospheric composition is dominated by helium with an upper limit on the hydrogen abundance of 10 per cent. Our results are in very good agreement with the recent study of Todt et al., who determined a hydrogen fraction of 10 per cent and an unusually large nitrogen fraction of ˜5 per cent. This fraction is higher than any other low-mass H-deficient star, and is not readily explained by current post-AGB models. We give a discussion of the implications of this discovery for the late-stage evolution of intermediate-mass stars. There is now tentative evidence for two distinct helium-dominated post-AGB lineages, separate to the helium- and carbon-dominated surface compositions produced by a late thermal pulse. Further theoretical work is needed to explain these recent discoveries.

  3. Virtual optimization of self-expandable braided wire stents.

    PubMed

    De Beule, Matthieu; Van Cauter, Sofie; Mortier, Peter; Van Loo, Denis; Van Impe, Rudy; Verdonck, Pascal; Verhegghe, Benedict

    2009-05-01

    At present, the deployment of self-expandable braided stents has become a common and widely used minimally invasive treatment for stenotic lesions in the cardiovascular, gastrointestinal and respiratory system. To improve these revascularization procedures (e.g. increase the positioning accuracy) the optimal strategy lies in the further development of the stent design. In the context of optimizing braided stent designs, computational models can provide an excellent research tool complementary to analytical models. In this study, a finite element based modelling strategy is proposed to investigate and optimize the mechanics of braided stents. First a geometrical and finite element model of a braided Urolume endoprosthesis was built with the open source pyFormex design tool. The results of the reference simulation of the Urolume stent are in close agreement with both analytical and experimental data. Subsequently, a simplex-based design optimization algorithm automatically adjusts the reference Urolume geometry to facilitate precise positioning by reducing the foreshortening with 20% while maintaining the radial stiffness. Therefore, the proposed modelling strategy appears to be a promising optimization methodology in braided stent design.

  4. Extended near-infrared emission from visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1983-01-01

    Extended near infrared (2 to 5 microns) emission was observed from three visual reflection nebulae, NGC 7023, 2023, and 2068. The emission from each nebula consists of a smooth continuum, which can be described by a greybody with a color temperature of 1000 K, and emission features at 3.3 and 3.4 microns. The continuum emission cannot be explained by free-free emission, reflected light, or field stars, or by thermal emission from grains, with commonly accepted ratios of infrared to ultraviolet emissivities, which are in equilibrium with the stellar radiation field. A possible explanation is thermal emission from grains with extremely low ratios of infrared to ultraviolet emissivities, or from grains with a temperature determined by mechanisms other than equilibrium radiative heating. Another possibility is continuum fluorescence. Previously announced in STAR N83-25629

  5. A Rapidly Moving Shell in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Walter, Donald K.; O'Dell, C. R.; Hu, Xihai; Dufour, Reginald J.

    1995-01-01

    A well-resolved elliptical shell in the inner Orion Nebula has been investigated by monochromatic imaging plus high- and low-resolution spectroscopy. We find that it is of low ionization and the two bright ends are moving at -39 and -49 km/s with respect to OMC-1. There is no central object, even in the infrared J bandpass although H2 emission indicates a possible association with the nearby very young pre-main-sequence star J&W 352, which is one of the youngest pre-main-sequence stars in the inner Orion Nebula. Many of the characteristics of this object (low ionization, blue shift) are like those of the Herbig-Haro objects, although the symmetric form would make it an unusual member of that class.

  6. The rapidly evolving planetary nebula Hen 3-1357

    NASA Astrophysics Data System (ADS)

    Gry, C.

    Hen 3-1357 (known as the 'Stingray Nebula') is the youngest Planetary Nebula known in the sky. It has become ionized within the past few decades and its central star seems to be still rapidly evolving in the H-R diagram towards hotter effective temperatures. With this proposal we want to determine the current effective temperature of the central star and the characteristics of the stellar wind thirteen years after its discovery with IUE. This will enable us to determine whether the rapid spectral changes observed in the last few years are the consequence of an episodic post-AGB mass loss event or the result of a continuous evolution in the H-R digram. In any of these cases, the observations will help us to understand this short and, thus, still poorly known transition phase which leads to the formation of a new PN.

  7. Planetary nebulae in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ventura, P.; Stanghellini, L.; Di Criscienzo, M.; García-Hernández, D. A.; Dell'Agli, F.

    2016-08-01

    We analyse the planetary nebulae (PNe) population of the Small Magellanic Cloud (SMC), based on evolutionary models of stars with metallicities in the range 10-3 ≤ Z ≤ 4 × 10-3 and mass 0.9 M⊙ < M < 8 M⊙, evolved through the asymptotic giant branch (AGB) phase. The models used account for dust formation in the circumstellar envelope. To characterize the PNe sample of the SMC, we compare the observed abundances of the various species with the final chemical composition of the AGB models: this study allows us to identify the progenitors of the PNe observed, in terms of mass and chemical composition. According to our interpretation, most of the PNe descend from low-mass (M < 2 M⊙) stars, which become carbon rich, after experiencing repeated third dredge-up episodes, during the AGB phase. A fraction of the PNe showing the signature of advanced CNO processing are interpreted as the progeny of massive AGB stars, with mass above ˜6 M⊙, undergoing strong hot bottom burning. The differences with the chemical composition of the PNe population of the Large Magellanic Cloud is explained on the basis of the diverse star formation history and age-metallicity relation of the two galaxies. The implications of this study for some still highly debated points regarding the AGB evolution are also commented.

  8. Photometry of the Stingray Nebula (V839 Ara) from 1889 TO 2015 across the Ionization of Its Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Edwards, Zachary I.

    2015-10-01

    Up until around 1980, the Stingray was an ordinary B1 post-AGB star, but then it suddenly sprouted bright emission lines like in a planetary nebula (PN), and soon after this the Hubble Space Telescope (HST) discovered a small PN around the star, so apparently we have caught a star in the act of ionizing a PN. We report here on a well-sampled light curve from 1889 to 2015, with unique coverage of the prior century plus the entire duration of the PN formation plus three decades of its aftermath. Surprisingly, the star anticipated the 1980s ionization event by declining from B = 10.30 in 1889 to B = 10.76 in 1980. Starting in 1980, the central star faded fast, at a rate of 0.20 mag year‑1, reaching B = 14.64 in 1996. This fast fading is apparently caused by the central star shrinking in size. From 1994 to 2015, the V-band light curve is almost entirely from the flux of two bright [O iii] emission lines from the unresolved nebula, and it shows a consistent decline at a rate of 0.090 mag year‑1. This steady fading (also seen in the radio and infrared) has a timescale equal to that expected for ordinary recombination within the nebula, immediately after a short-duration ionizing event in the 1980s. We are providing the first direct measure of the rapidly changing luminosity of the central star on both sides of a presumed thermal pulse in 1980, with this providing a strong and critical set of constraints, and these are found to sharply disagree with theoretical models of PN evolution.

  9. PHOTOMETRY OF THE STINGRAY NEBULA (V839 ARA) FROM 1889 TO 2015 ACROSS THE IONIZATION OF ITS PLANETARY NEBULA

    SciTech Connect

    Schaefer, Bradley E.; Edwards, Zachary I.

    2015-10-20

    Up until around 1980, the Stingray was an ordinary B1 post-AGB star, but then it suddenly sprouted bright emission lines like in a planetary nebula (PN), and soon after this the Hubble Space Telescope (HST) discovered a small PN around the star, so apparently we have caught a star in the act of ionizing a PN. We report here on a well-sampled light curve from 1889 to 2015, with unique coverage of the prior century plus the entire duration of the PN formation plus three decades of its aftermath. Surprisingly, the star anticipated the 1980s ionization event by declining from B = 10.30 in 1889 to B = 10.76 in 1980. Starting in 1980, the central star faded fast, at a rate of 0.20 mag year{sup −1}, reaching B = 14.64 in 1996. This fast fading is apparently caused by the central star shrinking in size. From 1994 to 2015, the V-band light curve is almost entirely from the flux of two bright [O iii] emission lines from the unresolved nebula, and it shows a consistent decline at a rate of 0.090 mag year{sup −1}. This steady fading (also seen in the radio and infrared) has a timescale equal to that expected for ordinary recombination within the nebula, immediately after a short-duration ionizing event in the 1980s. We are providing the first direct measure of the rapidly changing luminosity of the central star on both sides of a presumed thermal pulse in 1980, with this providing a strong and critical set of constraints, and these are found to sharply disagree with theoretical models of PN evolution.

  10. Planetary nebulae and their mimics: The MASH-MEN Project

    NASA Astrophysics Data System (ADS)

    Boissay, Rozenn; Parker, Quentin A.; Frew, David J.; Bojicic, Ivan

    2012-08-01

    The total number of true, likely and possible planetary nebulae (PN) now known in the Milky Way is about 3000, approximately twice the number known a decade ago. The new discoveries are a legacy of the recent availability of wide-field, narrowband imaging surveys, primarily in the light of Hα. The two most important are the AAO/UKST SuperCOSMOS Hα survey SHS and the Isaac Newton photometric Hα survey IPHAS, which are responsible for most of the new discoveries. A serious problem with previous PN catalogs is that several different kinds of astrophysical objects are able to mimic PN in some of their observed properties leading to significant contamination. These objects include H~II regions and Strömgren zones around young O/B stars, reflection nebulae, Wolf-Rayet ejecta, supernova remnants, Herbig-Haro objects, young stellar objects, B[e] stars, symbiotic stars and outflows, late-type stars, cataclysmic variables, low redshift emission-line galaxies, and even image/detector flaws. PN catalogs such as the Macquarie/AAO/Strasbourg Hα Planetary Nebula catalog (MASH) have been carefully vetted to remove these mimics using the wealth of new wide-field multi-wavelength data and our 100% follow-up spectroscopy to produce a compilation of new PN discoveries of high purity. During this process significant numbers of PN mimics have been identified. The aim of this project is to compile these MASH rejects into a catalog of Miscellaneous Emission Nebulae (MEN) and to highlight the most unusual and interesting examples. A new global analysis of these MEN objects is underway before publishing the MEN catalog online categorizing objects by type together with their spectra and multi-wavelength images.

  11. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  12. Simulating the Outer Nebula of SN 1987A

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Ben; Morris, Thomas; Podsiadlowski, Philipp

    2014-01-01

    As has been shown previously, the triple-ring nebula around SN 1987A can be understood as a direct consequence of the merger of two stars, some 20,000 yr before the explosion. Here we present new SPH simulations that also include the pre-merger mass loss and show that this may be able to explain other structures observed around SN 1987A, such as Napoleon's hat and various light echoes.

  13. 3D numerical model for NGC 6888 Nebula

    NASA Astrophysics Data System (ADS)

    Reyes-Iturbide, J.; Velázquez, P. F.; Rosado, M.

    We present 3D numerical simulations of the NGC6888 nebula considering the proper motion and the evolution of the star, from the red supergiant (RSG) to the Wolf-Rayet (WR) phase. Our simulations reproduce the limb-brightened morphology observed in [OIII] and X-ray emission maps. The synthetic maps computed by the numerical simulations show filamentary and clumpy structures produced by instabilities triggered in the interaction between the WR wind and the RSG shell.

  14. Symposium on the Orion Nebula to Honor Henry Draper, New York University, New York, NY, December 4, 5, 1981, Proceedings

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E. (Editor); Huggins, P. J. (Editor); Schucking, E. L.

    1982-01-01

    The present conference on astronomical studies of the Orion Nebula covers molecular clouds in Orion, the use of the nebula's cloak as a model for gas super-shells around OB associations, optical and UV data concerning the nebula's physical conditions, the presence of atomic carbon in Orion, large scale distribution of far-IR and sub-mm line emission, star formation studies in the IR, gas dynamics in the circumstellar nebula of the Becklin-Neugebauer source, maser sources and far-IR CO line emission in Orion-KL, and synthesis maps of mm molecular lines. Also discussed are Orion's star distributions, core region nebular condensations, energetic molecular flows in star-forming cloud cores, IR observations of HH objects, compact continuum radio sources, the SiO maser, shock waves, and the chemical evolution of OB associations.

  15. Cloud structure and feedback effects in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Roccatagliata, Veronica; Preibisch, Thomas; Gaczkowski, Benjamin; Ratzka, Thorsten

    2013-07-01

    The star formation process in large clusters/associations can be strongly influenced by the feedback from high mass stars. Whether the resulting net effect of the feedback is predominantly negative (cloud dispersal) or positive (triggering of star formation due to cloud compression) is still an open question. The Carina Nebula complex (CNC) represents one of the most massive star-forming regions in our Galaxy. We use our Herschel far-infrared observations to study the properties of the clouds over the entire CNC and LABOCA/APEX telescope on the central part of the CNC.Our Herschel maps resolve, for the first time, the small-scale structure of the dense clouds over the entire spatial extent of the CNC. Several particularly interesting regions, including the prominent pillars south of eta Car, are analyzed in detail. Our maps also reveal a peculiar 'wave'-like pattern in the northern part of the Carina Nebula. The total mass of the clouds seen by Herschel in the central region is about 656 000 Msun. We derive the global spectral energy distribution in the mid-infrared to mm wavelength range and derive a total mass of < 890 000 Msun. We find that the density and temperature structure of the clouds in most parts of the CNC is dominated by the strong feedback from the numerous massive stars, rather than random turbulence. Comparing the cloud mass and the star formation rate derived for the CNC to other Galactic star forming regions suggests that the CNC is forming stars very efficiently. We suggest this to be a consequence of triggered star formation by radiative cloud compression.In our LABOCA sub-mm map, we identify about 600 individual clumps. We analyze and interpret the clump initial mass function (CIMF) as signature of turbulent pre-stellar clouds or star-forming clouds.

  16. U Antliae --- A Dying Carbon Star

    NASA Astrophysics Data System (ADS)

    Bidelman, W. P.; Cowley, C. R.; Luttermoser, D. G.

    2009-09-01

    U Antliae is one of the brightest carbon stars in the southern sky. It is classified as an N0 carbon star and an Lb irregular variable. This star has a very unique spectrum and is thought to be in a transition stage from an asymptotic giant branch star to a planetary nebula. This paper discusses possible atomic and molecular line identifications for features seen in high-dispersion spectra of this star at wavelengths from 4975 Å through 8780 Å.

  17. FLOWS AND WAVES IN BRAIDED SOLAR CORONAL MAGNETIC STRUCTURES

    SciTech Connect

    Pant, V.; Datta, A.; Banerjee, D.

    2015-03-01

    We study the high frequency dynamics in the braided magnetic structure of an active region (AR 11520) moss as observed by the High-Resolution Coronal Imager (Hi-C). We detect quasi-periodic flows and waves in these structures. We search for high frequency dynamics while looking at power maps of the observed region. We find that shorter periodicities (30–60 s) are associated with small spatial scales which can be resolved by Hi-C only. We detect quasi-periodic flows with a wide range of velocities, from 13–185 km s{sup −1}, associated with braided regions. This can be interpreted as plasma outflows from reconnection sites. We also find short period and large amplitude transverse oscillations associated with the braided magnetic region. Such oscillations could be triggered by reconnection or such oscillations may trigger reconnection.

  18. The braided single-stage protocol for quantum secure communication

    NASA Astrophysics Data System (ADS)

    Darunkar, Bhagyashri; Verma, Pramode K.

    2014-05-01

    This paper presents the concept and implementation of a Braided Single-stage Protocol for quantum secure communication. The braided single-stage protocol is a multi-photon tolerant secure protocol. This multi-photon tolerant protocol has been implemented in the laboratory using free-space optics technology. The proposed protocol capitalizes on strengths of the three-stage protocol and extends it with a new concept of braiding. This protocol overcomes the limitations associated with the three-stage protocol in the following ways: It uses the transmission channel only once as opposed to three times in the three-stage protocol, and it is invulnerable to man-in-the-middle attack. This paper also presents the error analysis resulting from the misalignment of the devices in the implementation. The experimental results validate the efficient use of transmission resources and improvement in the data transfer rate.

  19. Design and analysis of a torsion braid pendulum displacement transducer

    NASA Technical Reports Server (NTRS)

    Rind, E.; Bryant, E. L.

    1981-01-01

    The dynamic properties at various temperatures of braids impregnated with polymer can be measured by using the braid as the suspension of a torsion pendulum. This report describes the electronic and mechanical design of a torsional braid pendulum displacement transducer which is an advance in the state of the art. The transducer uses a unique optical design consisting of refracting quartz windows used in conjunction with a differential photocell to produce a null signal. The release mechanism for initiating free torsional oscillation of the pendulum has also been improved. Analysis of the precision and accuracy of the transducer indicated that the maximum relative error in measuring torsional amplitude was approximately 0. A serious problem inherent in all instruments which use a torsional suspension was analyzed: misalignment of the physical and torsional axes of the torsional member which results in modulation of the amplitude of the free oscillation.

  20. Water-maser emission from a planetary nebula with a magnetized torus.

    PubMed

    Miranda, L F; Gómez, Y; Anglada, G; Torrelles, J M

    2001-11-15

    A star like the Sun becomes a planetary nebula towards the end of its life, when the envelope ejected during the earlier giant phase becomes photoionized as the surface of the remnant star reaches a temperature of approximately 30,000 K. The spherical symmetry of the giant phase is lost in the transition to a planetary nebula, when non-spherical shells and powerful jets develop. Molecules that were present in the giant envelope are progressively destroyed by the radiation. The water-vapour masers that are typical of the giant envelopes therefore are not expected to persist in planetary nebulae. Here we report the detection of water-maser emission from the planetary nebula K3-35. The masers are in a magnetized torus with a radius of about 85 astronomical units and are also found at the surprisingly large distance of about 5,000 astronomical units from the star, in the tips of bipolar lobes of gas. The precessing jets from K3-35 are probably involved in the excitation of the distant masers, although their existence is nevertheless puzzling. We infer that K3-35 is being observed at the very moment of its transformation from a giant star to a planetary nebula. PMID:11713522

  1. The Nature of Cometary Knots in the Helix Nebula

    NASA Astrophysics Data System (ADS)

    Burkert, A.; O'dell, C. R.

    1996-12-01

    Recent HST observations have revealed heretofore unseen fine scale structure in the Helix Nebula. Thousands of well resolved neutral dark cores have been detected in extinction against the background emission of the nebula. These Cometary Knots (CK) have a remarkably uniform appearance with photoionized cusps and tails trailing away from the cusps on almost radial lines. The total mass of the CK is similar to the total mass of the ionized diffuse gas in the ring which means that they represent an important component of the nebula. We discuss the origin and future of the CK in the Helix. It has been suggested that the CK result from Rayleigh-Taylor instabilities arising at the ionization front of the nebula (Capriotti 1973, 1996). Our hydrodynamical simulations indicate that indeed Rayleigh-Taylor instabilities could lead to filamentary structures within planetary nebulae. The substructure of these fingers differs, however, from the observations in important ways. The observed CK therefore must have a different origin. The knots might represent local density fluctuations which remained behind and were compressed as the main ionization front advanced into the neutral material. Another formation scenario is a thin shell instability which results from the interaction of the nebula with a fast stellar wind. Although no stellar wind features have been detected so far, the brightness distribution of the ionized cusps of the knots indicates that this gas is in pressure equilibrium with a high-temperature surrounding gas which could be generated by a shocked stellar wind. If such a wind would have high velocities and low densities it could fall beneath the threshold for spectroscopic detection although it could be important for understanding the formation and structure of the CK. Detailed high-resolution numerical simulations which take into account a fast wind phase as well as the time variation of the Central Star's UV photon flux are presented.

  2. Manufacture of braided fabrics. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning the manufacture of braided goods. The citations examine braiding techniques and machines, including bobbin and bobbin carrier assemblies; fiber and fabrics; and the properties and end uses of braided fabrics. Machine noise emmision and noise reduction are also presented. Patents are included. (Contains a minimum of 215 citations and includes a subject term index and title list.)

  3. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  4. Feasibility evaluation of the monolithic braided ablative nozzle

    NASA Astrophysics Data System (ADS)

    Director, Mark N.; McPherson, Douglass J., Sr.

    1992-02-01

    The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in

  5. Mixed Braid Group Actions From Deformations of Surface Singularities

    NASA Astrophysics Data System (ADS)

    Donovan, Will; Segal, Ed

    2015-04-01

    We consider a set of toric Calabi-Yau varieties which arise as deformations of the small resolutions of type A surface singularities. By careful analysis of the heuristics of B-brane transport in the associated gauged linear sigma models, we predict the existence of a mixed braid group action on the derived category of each variety, and then prove that this action does indeed exist. This generalizes the braid group action found by Seidel and Thomas for the undeformed resolutions. We also show that the actions for different deformations are related, in a way that is predicted by the physical heuristics.

  6. Models for circumstellar nebulae around red and blue supergiants

    NASA Astrophysics Data System (ADS)

    Chita, S. M.

    2011-10-01

    In this thesis, we model the circumstellar medium of stars with initial masses of 8, 12, 18 and 20 solar masses, over their entire life from the main sequence until their supernova explosion. During the post-main-sequence stages, stars can evolve through several blue and red supergiant stages depending on their initial mass, composition and rotation rate. The models considered in the second Chapter have long-lasting RSG stages starting after the MS. In this phase, they develop shells of RSG wind material at the location where the free streaming RSG wind is stalled by the thermal pressure of the hot MS bubble, close to the central star. The RSG shells develop violent Rayleigh-Taylor instabilities. Once these start to grow non-linear, the RSG shell becomes highly structured as clumps form, and shell material mixes with material in the hot bubble. Later, the stars evolve to the BSG stage, during which the RSG shells are completely destroyed. These models return to the RSG stage, and build new RSG shells, which are more massive than those formed earlier. RSG shells are essential for our understanding of bipolar emission nebulae around BSGs. In the third Chapter are shown the results of the wind-wind interaction model of single star with 12 solar masses. On a time scale of a few 10000 yr, a BSG hour-glas shaped nebula expands into the sphere defined by the RSG shell. The faster polar parts of the hour glass hit the inner edge of the RSG shell first. The collision creates a pair of hot and dense polar caps. As time passes, the collision zone moves to lower latitudes of the RSG shell and becomes more confined in latitude. At the same time, the interaction of the BSG wind with the equatorial disk defines a second, ring shaped collision zone in the equatorial plane. These structures are reminiscent of the observed nebulae around the blue supergiant Sher 25. In the Chapter 3 we present calculations that predict the properties of the circumstellar medium for rapidly rotating

  7. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This picture shows a Hubble Space Telescope image of the inner parts of the Crab. The pulsar itself is visible as the left of the pair of stars near the center of the frame. Surrounding the pulsar is a complex of sharp knots and wisp-like features. This image is one of a sequence of Hubble images taken over the course of several months. This sequence shows that the inner part of the Crab Nebula is far more dynamic than previously understood. The Crab literally 'changes it stripes' every few days as these wisps stream away from the pulsar at half the speed of light. The Hubble Space Telescope photo was taken Nov. 5, 1995 by the Wide Field and Planetary Camera 2 at a wavelength of around 550 nanometers, in the middle of the visible part of the electromagnetic spectrum. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  8. Abundances in the Planetary Nebula IC 5217

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Woo-Baik; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution optical wavelength spectroscopic data were secured in the optical wavelengths, 3700A - 10,050A, for the planetary nebula IC 5217 with the Hamilton Echelle Spectrograph at Lick Observatory. These optical spectra have been analyzed along with the near-UV and UV archive data. Diagnostic analyses indicate a nebular physical condition with electron temperature of about 10,700 K (from the [O III] lines) and the density of N(sub epsilon) = 5000/cm. Ionic concentrations have been derived with the representative diagnostics, and with the aid of a photoionization model construction, we derived the elemental abundances. Contrary to the previous studies found in the literature, He and C appear to be depleted compared to the average planetary nebula and to the Sun (and S marginally so), while the remaining elements appear to be close to the average value. IC 5217 may have evolved from an O-rich progenitor and the central star temperature of IC 5217 is likely to be 92,000 K.

  9. Physics and chemistry of the solar nebula.

    PubMed

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  10. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Keene, J.; Phillips, T. G.; Huggins, P. J.; Wooten, H. A.; Masson, C.; Frerking, M. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells led to the detection, in the case of the "Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  11. The Great Crab Nebula Superflare

    NASA Video Gallery

    There are strange goings-on in the Crab Nebula. On April 12, 2011, NASA's Fermi Gamma-ray Space Telescope detected the most powerful in a series of gamma-ray flares occurring somewhere within the s...

  12. Video Zoom into Veil Nebula

    NASA Video Gallery

    This video opens with a backyard view of the nighttime sky centered on the constellation Cygnus, the Swan. We zoom into a vast donut-shaped feature called the Veil Nebula. It is the tattered expand...

  13. The spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.; Parker, Robert A. R.; Henize, Karl G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought.

  14. BY POPULAR DEMAND: HUBBLE OBSERVES THE HORSEHEAD NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view. The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view. Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars. The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope. The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ. This popular celestial target was the clear winner among more

  15. Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces

    NASA Astrophysics Data System (ADS)

    (O' Lee, Dominic J.

    2015-04-01

    Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.

  16. MCNeil's Nebula in Orion: The Outburst History

    NASA Astrophysics Data System (ADS)

    Briceño, C.; Vivas, A. K.; Hernández, J.; Calvet, N.; Hartmann, L.; Megeath, T.; Berlind, P.; Calkins, M.; Hoyer, S.

    2004-05-01

    We present a sequence of I-band images obtained at the Venezuela 1 m Schmidt telescope during the outburst of the nebula recently discovered by J. W. McNeil in the Orion L1630 molecular cloud. We derive photometry spanning the preoutburst state and the brightening itself, which is a unique record including 14 epochs and spanning a timescale of ~5 years. We constrain the beginning of the outburst at some time between 2003 October 28 and November 15. The light curve of the object at the vertex of the nebula, the likely exciting source of the outburst, reveals that it has brightened ~5 mag in about 4 months. The timescale for the nebula to develop is consistent with the light-travel time, indicating that we are observing light from the central source scattered by the ambient cloud into the line of sight. We also show recent FLWO optical spectroscopy of the exciting source and of the nearby HH 22. The spectrum of the source is highly reddened; in contrast, the spectrum of HH 22 shows a shock spectrum superposed on a continuum, most likely the result of reflected light from the exciting source reaching the HH object through a much less reddened path. The blue portion of this spectrum is consistent with an early B spectral type, similar to the early outburst spectrum of the FU Orionis variable star V1057 Cygni; we estimate a luminosity of L~219 Lsolar. The eruptive behavior of McNeil's Nebula, its spectroscopic characteristics and luminosity, suggest that we may be witnessing an FU Ori event on its way to maximum. By further monitoring this object, we will be able decide whether or not it qualifies as a member of this rare class of objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory of Venezuela, operated by CIDA for the Ministerio de Ciencia y Tecnología, and at the Fred Lawrence Whipple Observatory (FLWO) of the Smithsonian Institution.

  17. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  18. The Hubble Heritage Image of the Crab Nebula Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Blair, W. P.; English, J.; Bond, H. E.; Christian, C. A.; Frattare, L.; Hamilton, F.; Levay, Z.; Noll, K. S.

    2000-05-01

    The Hubble Heritage Project has the aim of providing the public with pictorially striking images of celestial objects obtained with NASA's Hubble Space Telescope. Here we present a 5-color Wide Field Planetary Camera 2 (WFPC2) image of the Crab Nebula, a ~950 year old supernova remnant located 6500 light-years distant in the constellation Taurus. The images were obtained in 1995 January and April, and the science investigation reporting results was published by Blair, W. P., et al. (1997, ApJS, 109, 473--480). Over 10 hours of exposure time through 5 separate optical continuum band and emission-line filters were used to study size scales and ionization structures of the filaments and newly synthesized dust within the expanding ejecta. The Heritage version of these data shows several important aspects of the Crab Nebula all in one spectacular image. The continuum image shows stars, including the enigmatic pulsar (the collapsed core of the original star) and the ghostly diffuse synchrotron nebula energized by the pulsar. The synchrotron nebula in turn heats and ionizes the surrounding clumpy filaments of gas and dust visible in the emission line images. These filaments are the supernova ejecta that were expelled during the explosion and are now expanding outward from the pulsar at high speed. The different colors in the picture show optical emission lines of hydrogen (orange), nitrogen (red), sulfur (pink) and oxygen (bluish-green). The subtle changes in color from one filament to the next arise because of varying temperatures and densities of the gas, and variable chemical abundances of the ``star stuff," or the doppler shifting of emission into or out of the various narrow filter bandpasses. Support for this work was provided by NASA through grant numbers GO-07632.01-96A and GO-5354.04-93A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  19. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  20. A HOT GAP AROUND JUPITER'S ORBIT IN THE SOLAR NEBULA

    SciTech Connect

    Turner, N. J.; Choukroun, M.; Castillo-Rogez, J.; Bryden, G.

    2012-04-01

    The Sun was an order of magnitude more luminous during the first few hundred thousand years of its existence, due in part to the gravitational energy released by material accreting from the solar nebula. If Jupiter was already near its present mass, the planet's tides opened an optically thin gap in the nebula. Using Monte Carlo radiative transfer calculations, we show that sunlight absorbed by the nebula and re-radiated into the gap raised temperatures well above the sublimation threshold for water ice, with potentially drastic consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter in size were vaporized within a single orbit if the planet was near its present location during this early epoch. Dust particles lost their ice mantles, and planetesimals were partially to fully devolatilized, depending on their size. Scenarios in which Jupiter formed promptly, such as those involving a gravitational instability of the massive early nebula, must cope with the high temperatures. Enriching Jupiter in the noble gases through delivery trapped in clathrate hydrates will be more difficult, but might be achieved by either forming the planet much farther from the star or capturing planetesimals at later epochs. The hot gap resulting from an early origin for Jupiter also would affect the surface compositions of any primordial Trojan asteroids.

  1. Why convective heat transport in the solar nebula was inefficient

    NASA Technical Reports Server (NTRS)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  2. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on

  3. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  4. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700h436 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 degrees plus or minus 60 degrees, and 0 degrees plus or minus 45 degrees) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bow-tie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/O degrees plus or minus 45 degrees configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 degrees plus or minus 60 degrees configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  5. Viscoelastic properties of 3-D braided PEEK/graphite composites

    SciTech Connect

    Hu, Jian-Ni.

    1992-01-01

    In this study, 3-D braided PEEK/AS4 graphite composites were performed and processed to investigate the viscoelastic behavior of this new system. These manufactured composites were characterized to determine their fiber volume fractions and matrix crystallinity indices using matrix digestion and wide angle x-ray diffraction. After physical characterization, the mechanical response of these composites were evaluated at various temperatures. Experimental results from tensile measurements were compared to an established fabric geometry model (FGM). This model predicts tensile modules based upon fiber and matrix properties, fiber volume fraction, and braiding angle. Model predictions and experimental results are given here, and are in good agreement with each other. In order to study the time-dependent mechanical properties of these 3-D braided composites, their stress relaxation, creep and dynamic mechanical properties were evaluated. These results were then compared to a new composite model. This model combined a Quasi/linear Viscoelastic Model (QVM) for the viscoelastic behavior of PEEK with the FGM approach to predict the viscoelastic behavior of 3-D PEEK composites. The experimental stress relaxation and creep results are in good agreement with the QVM-FGM analysis. Thus, the QVM-FGM approach was used to accurately correlate these viscoelastic properties of 3-D braided PEEK/graphite composites. Through wider use and testing, this QVM/FGM approach may be used to increase our understanding and perhaps facilitate the design of composite structures.

  6. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  7. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    PubMed

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium. PMID:11158669

  8. The Draco Nebula, a Molecular Cloud Associated with a High Velocity Cloud?

    NASA Technical Reports Server (NTRS)

    Mebold, U.; Kalberla, P. W. M.

    1984-01-01

    Extended and very faint bright nebulae are found in high galactic latitudes at the Palomar Observatory Sky Survey. Such a nebula, located in the constellation Draco and called Draco Nebula or Dracula, was found to be in detailed positional coincidence with a 21 cm emission line feature. Estimates of the minimum visual extinction from star counts ON and OFF Dracula and an estimated visual surface brightness indicate that Dracula fits the relation SBV = 24.2 - 2.5 log AV for dust clouds located above the galactic plane and reflecting the integrated starlight of the galactic disk. Hence Dracula is probably a reflection nebula. Indicators of molecular hydrogen in Dracula, molecules such as CO, were searched for by using a 2.5-m mm-telescope. Molecular hydrogen column densities were estimated. The dynamics of CO clumps was studied. Dracula has a close positional and possibly even astrophysical relationship to the high velocity cloud phenomenon.

  9. THE SINTERING REGION OF ICY DUST AGGREGATES IN A PROTOPLANETARY NEBULA

    SciTech Connect

    Sirono, Sin-iti

    2011-07-10

    Icy grain aggregates are formed in the outer region of a protoplanetary nebula. The infall of these aggregates to the central star is due to gas drag, and their temperature increases as the infall proceeds. The icy molecules on the grain move to the neck where the grains get connected through sublimation and condensation of the molecules. This process is called sintering. As the sintering proceeds, the mechanical strength of the neck changes considerably, strongly affecting the collisional evolution of the aggregates. The timescale required for sintering is determined in this study, based on which the region where the sintering proceeds within a prescribed timescale is obtained. It is found that the region covers a substantial fraction of the protoplanetary nebula, and the location of the region depends on the temperature distribution inside the nebula. If the aggregate is stirred up and the temperature of the aggregate increases temporally, the sintering region spreads to the whole nebula.

  10. High-Resolution Infrared Imaging and Spectroscopy of the Pistol Nebula: Evidence for Ejection

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; Morris, Mark; Geballe, T. R.; Rich, R. Michael; Serabyn, Eugene; McLean, Ian S.; Puetter, R. C.; Yahil, Amos

    1999-11-01

    We present new infrared images, obtained with the Hubble Space Telescope (HST) Near-Infrared Camera and Multiobject Spectrometer (NICMOS), and Brα (4.05 μm) spectroscopy, obtained using CGS4 on UKIRT, of the Pistol Star and its associated nebula. We find strong evidence to support the hypothesis that the Pistol Nebula was ejected from the Pistol Star. The Paα (1.87 μm) NICMOS image shows that the nebula completely surrounds the Pistol Star, although the line intensity is much stronger on its northern and western edges. The Brα CGS4 spectra show the classical ringlike signature of quasi-spherical expansion. The blueshifted emission (Vmax~-60 km s-1) is much weaker than the redshifted emission (Vmax~+10 km s-1), where the velocities are with respect to the velocity of the Pistol Star; further, the redshifted emission spans a very narrow range of velocities, i.e., it appears ``flattened'' in the position-velocity diagram. These data suggest that the nebula was ejected from the star several thousand years ago, with a velocity between the current terminal velocity of the stellar wind (95 km s-1) and the present expansion velocity of gas in the outer shell of the nebula (60 km s-1). The Paα image reveals several emission-line stars in the region, including two newly identified emission-line stars north of the Pistol Star, both of which are likely to be the hottest known stars in the Galactic center with spectral types earlier than WC8 and Teff>50,000 K). The presence of these stars, the morphology of the Paα emission, and the velocity field in the gas suggest that the side of the nebula farthest from us is approaching, and being ionized by, the hot stars of the Quintuplet and that the highest velocity redshifted gas has been decelerated by winds from the Quintuplet stars. We also discuss the possibility that the nebular gas might be magnetically confined by the ambient magnetic field delineated by the nearby nonthermal filaments. Based on observations with the

  11. Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations

    SciTech Connect

    Ahn, H.-C.; Yu, W.-R.; Guo, Z.

    2011-05-04

    The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transverse axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.

  12. The planetary nebula IPHASXJ211420.0+434136 (Ou5): insights into common-envelope dynamical and chemical evolution

    NASA Astrophysics Data System (ADS)

    Corradi, R. L. M.; Rodríguez-Gil, P.; Jones, D.; García-Rojas, J.; Mampaso, A.; García-Alvarez, D.; Pursimo, T.; Eenmäe, T.; Liimets, T.; Miszalski, B.

    2014-07-01

    While analysing the images of the IPHAS (INT/WFC Photometric Hα Survey of the northern Galactic plane) survey, we noticed that the central star of the candidate planetary nebula IPHASXJ211420.0+434136 (also named Ou5) was clearly variable. This is generally considered as an indication of binarity. To confirm it, we performed a photometric monitoring of the central star, and obtained images and spectra of the nebula. The nebular spectrum confirms that IPHASXJ211420.0+434136 is a planetary nebula of moderately high excitation. It has a remarkable morphology with two nested pairs of bipolar lobes and other unusual features. The light curve of the central star reveals that it is an eclipsing binary system with an orbital period of 8.74 h. It also displays a strong irradiation effect with an amplitude of 1.5 mag. The presence of multiple bipolar outflows adds constraints to the formation of these nebulae, suggesting the occurrence of discrete ejection events during, or immediately before, the common-envelope phase. IPHASXJ211420.0+434136 also adds evidence to the hypothesis that a significant fraction of planetary nebulae with close binary central stars have a peculiar nebular chemistry and a relatively low nebular mass. This may point to low-mass, low-metallicity progenitors, with additional effects related to the binary evolution. We also suggest that these objects may be relevant to understand the abundance discrepancy problem in planetary nebulae.

  13. Chandra X-Ray Observatory Image of Crab Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  14. Pre-Orion Cores in the Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Lefloch, Bertrand; Cernicharo, José

    2000-12-01

    The Trifid Nebula is a young H II region undergoing a burst of star formation. This article reports on far-infrared and millimeter continuum and line observations of several massive and bright protostellar sources in the vicinity of the exciting star of the nebula, just behind the ionization front. These objects are probably young protostars (class 0) and are associated with very massive cores (M~8-90 Msolar) powering young energetic outflows. Analysis of the far-infrared emission in the 45-200 μm range from the Infrared Space Observatory (ISO) LWS data shows that they are embedded in cold dense material. Inspection of their physical properties suggest that they are similar to the dust protostellar cores observed in Orion, although at an earlier evolutionary ``pre-Orion'' stage. The cores are embedded in a compressed layer of dense gas. Based on comparison with the models, we find that the cores could have formed from the fragmentation of the layer and that the birth of the protostars was triggered by the expansion of the Trifid Nebula.

  15. Spectroscopy of the ringlike nebula toward the open cluster NGC 3572

    NASA Astrophysics Data System (ADS)

    Noumaru, Junichi; Ogura, Katsuo

    1993-11-01

    Low-dispersion spectroscopy has been obtained for the ringlike nebula which Phelps and Janes (1991) found in the direction of the young open cluster NGC 3572 and suspected as a planetary nebula. Some nearby nebulosities have also been observed. Analyses of these data indicate that all of them, including the NGC 3572 ring, are H II regions. Morphological considerations of the region show that the nearby nebulosities are bright rims which are associated with the H II region BBW 342 and are partly hidden by the obscuring matter lying on this side. The NGC 3572 ring could be of the same nature. However, as the alternative interpretation, it could be a ring nebula (probably a wind-blown bubble) around a massive star (WR/Of star or LBV).

  16. The Investigation of the Vicinity of Cometary Nebulae and Related Objects

    NASA Astrophysics Data System (ADS)

    Petrossian, V. M.; Petrossian, A. R.

    The vicinity of 194 cometary nebulae (coma shape) and related objects (tails or arcs) was investigated on PSS prints within 10arcmin radius circles. 198 nebulous objects were discovered in the vicinity of 73 of them, 128 of which for the first time. These objects are classified as following: 78 real or suspected HH objects, 107 connected with real or suspected Orion population stars, and the nature of 13 objects is not clear. The statistical investigation of them indicated possible genetic connection between the cometary nebulae and HH objects of their vicinity. This connection is absent for the related objects. Cometary nebulae and related objects together with the Orion population stars form multiple systems, the majority for which are of Trapezium type.

  17. COMPARING SYMBIOTIC NEBULAE AND PLANETARY NEBULAE LUMINOSITY FUNCTIONS

    SciTech Connect

    Frankowski, Adam; Soker, Noam E-mail: soker@physics.technion.ac.i

    2009-10-01

    We compare the observed symbiotic nebulae (SyN) luminosity function (SyNLF) in the [O III] lambda5007 A line to the planetary nebulae (PN) luminosity function (PNLF) and find that the intrinsic SyNLF (ISyNLF) of galactic SyNs has-within its uncertainty of 0.5-0.8 mag-very similar cutoff luminosity and general shape to those of the PNLF. The [O III]/(Halpha+[N II]) line ratios of SyNs and PNs are shown to be also related. Possible implications of these results for the universality of the PNLF are briefly outlined.

  18. Formation of Primitive Bodies in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    2003-01-01

    We have developed a simple model of global transport of solids in the protoplanetary nebula, including radial drift of large particles and diffusion of small ones. The model has been applied to the formation and redistribution of the Ca-A1 rich refractory mineral inclusions (CAIs) found in primitive chondrites. These objects form at much higher temperatures, and appear to be 1-3 million years older than, the dominant (chondrule) components found in the same parent bodies. A widespread concern has been the retention of CAIs for this long against gas-drag-induced radial drift into the sun. We show that outward radial diffusion in a weakly turbulent nebula can overwhelm inward drift, and prevent significant numbers of CAI-size particles from being lost into the sun for tines on the order of several Myr. An element of this model is rapid inward radial drift of boulder-sized primitive (carbon-rich) silicate material, more like Halley-dust than CI chondrites in the early days of the nebula. Thls process can enrich the abundance of silicate and carbon material in the inner nebula, and may provide possible explanations for both chemical and isotopic properties of CAIs. The predicted enhancement of CO relative to water might be of relevance to recent IR astronomical observations of CO in the inner disks of several actively accreting T Tauri stars. This process has applications to the transport and redistribution of volatiles in general. Depending on the rubble particle size distribution, rapid radial drift of boulder-sized solids can bring more material inwards across a condensation front, to evaporate, than can subsequently be removed by nebula advection or diffusion, until a strong local enhancement is produced which allows diffusive loss to balance the drifting source. Application of this process to enhancement of the abundance of water near the "ice line" will be discussed. Supported by the Origins of Solar Systems program.

  19. The Shock-Excited P-Cygni Nebula

    NASA Astrophysics Data System (ADS)

    Barlow, M. J.; Drew, J. E.; Meaburn, J.; Massey, R. M.

    1994-05-01

    We have obtained images in the [N II] λ6584 line of the nebula around the luminous blue variable star P Cygni, using a 4 arcsec wide occulting strip. A nearly circular inner nebula is found, containing many bright condensations, with angular diameters of 21.4 arcsec in the east-west direction and 23.8 arcsec in the north-south direction. Two fainter outer arcs of [N II] emission are also visible, with angular diameters of 1 and 1.5 arcmin. A high-resolution 4900-9000 Å UES spectrum, obtained at a position 9 arcsec west of P Cygni, shows the [N II] λλ7378, 7412 doublet to be the strongest feature emitted by the nebula. High-resolution long-slit MES spectra were obtained at multiple positions across the bright inner nebula in order to investigate the density, dynamics and age of the nebula. Our [N II] λ6584 spectra show broad velocity components with an overall expansion velocity of 140 km s-1, while our [N II] λ7412 spectra show much narrower velocity components with an overall expansion velocity of only 110 km s-1. Our results are consistent with the narrow [N II] emission originating from dense, mainly neutral knots which are being overtaken by the stellar wind from P Cyg at a relative velocity of 100 km s-1, with the broader irregular [N II] and [S II] emission arising from bow shocks around the knots. This model provides a natural explanation for the larger [N II] expansion velocities compared to those of [N II].

  20. Extended near infrared emission from visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1982-01-01

    Extended near infrared (2 to 5 microns) emission was observed from three visual reflection nebulae, NGC 7023, 2023, and 2068. The emission from each nebula consists of a smooth continuum, which can be described by a greybody with a color temperature of 1000 K, and emission features at 3.3 and 3.4 microns. The continuum emission cannot be explained by free-free emission, reflected light, or field stars, or by thermal emission from grains, with commonly accepted ratios of infrared to ultraviolet emissivities, which are in equilibrium with the stellar radiation field. A possible explanation is thermal emission from grains with extremely low ratios of infrared to ultraviolet emissivities, or from grains with a temperature determined by mechanisms other than equilibrium radiative heating. Another possibility is continuum fluorescence.

  1. The violent interstellar medium associated with the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Laurent, C.; Paul, J. A.; Pettini, M.

    1982-06-01

    The physical conditions and chemical composition of the interstellar medium in line to HD 93205, an O3V star in the Great Carina Nebula, were studied, using UV spectra. The two main high velocity components show different relative abundance patterns. The red shifted component shows no depletion. For the blue shifted component, the relative abundance pattern seems difficult to explain in terms of elements locked into grains. Its composition is attributed to mixing with freshly synthetized material ejected by a recent supernova explosion. One low velocity component is identified with the normal interstellar gas in the disk of the Galaxy. In this component, column densities of interstellar CIV and SiIV, free from contamination by circumstellar material, were measured. The other low velocity component is identified with the approaching part of the expanding ionized nebula around the Carina OB associations. It consists of a dense HII region in which the two conspicuous OI fine structure lines originate.

  2. Dust polarisation and magnetic field geometry in Proto Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sabin, L.; Zhang, Q.; Zijlstra, A.; Patel, N. A.; Vázquez, R.; Zauderer, B. A.; Contreras, M. E.; Guillén, P. F.

    2014-04-01

    The role of magnetic fields in late type stars and their nebulae, such as proto-planetary (PPNe) and planetary nebulae (PNe), is poorly known from an observational point of view. We therefore present new submillimeter observations realised with the Sub-Millimeter Array (SMA) which unveil the dust continuum polarisation in two well known PPNe: CRL 618 and OH 231.8+4.2. Assuming the current grain alignment theory, we also trace the geometry of the magnetic field in these two objects. The combination of this study with previous submillimeter observations, done with SCUBA at JCMT, will then pave the way for a better understanding of the evolution of magnetic fields in the envelopes of PPNe and PNe.

  3. AN ENHANCED SPECTROSCOPIC CENSUS OF THE ORION NEBULA CLUSTER

    SciTech Connect

    Hillenbrand, Lynne A.; Hoffer, Aaron S.; Herczeg, Gregory J. E-mail: hofferaa@msu.edu

    2013-10-01

    We report new spectral types or spectral classification constraints for over 600 stars in the Orion Nebula Cluster (ONC) based on medium resolution (R ≈ 1500-2000) red optical spectra acquired using the Palomar 200'' and Kitt Peak 3.5 m telescopes. Spectral types were initially estimated for F, G, and early K stars from atomic line indices while for late K and M stars, which constitute the majority of our sample, indices involving TiO and VO bands were used. To ensure proper classification, particularly for reddened, veiled, or nebula-contaminated stars, all spectra were then visually examined for type verification or refinement. We provide an updated spectral type table that supersedes previous work, increasing the percentage of optically visible ONC stars with spectral type information from 68% to 90%. However, for many objects, repeated observations have failed to yield spectral types primarily due to the challenges of adequate sky subtraction against a bright and spatially variable nebular background. The scatter between our new and our previously determined spectral types is approximately two spectral sub-classes. We also compare our grating spectroscopy results with classification based on narrow-band TiO filter photometry, finding similar scatter. While the challenges of working in the ONC may explain much of the spread, we highlight several stars showing significant and unexplained bona fide spectral variations in observations taken several years apart; these and similar cases could be due to a combination of accretion and extinction changes. Finally, nearly 20% of ONC stars exhibit obvious Ca II triplet emission indicative of strong accretion.

  4. Microstructure Analysis and Multi-Unit Cell Model of Three Dimensionally Four-Directional Braided Composites

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Qian, Xiaomei

    2015-02-01

    In this paper, a new multi-unit cell model of three dimensionally braided composites is presented on the basis of the microstructure analysis of 3D braided preforms produced by four-step 1 × 1 method. According to a new unit cell partition scheme, the multi-unit cell model possesses five kinds of unit cells, namely interior, exterior surface, interior surface, exterior corner and interior corner unit cells. Each type of the representative volume cell has unique microstructure and volume fraction in braided composites. On the basis of these five unit cell models, the structural geometry parameters of the preforms are analyzed and the relationship between the structural parameters and the braiding parameters in different regions are derived in detail, such as the braiding angles, fiber volume fraction, yarn packing factor, braiding pitch and so on. Finally, by using the multi-unit cell model, the main structural parameters of braided composites specimens are calculated to validate the effectiveness of the model. The results are in good agreement with the available experimental data. In addition, the effect of braiding angle on the squeezing condition of braiding yarn is analyzed. The variations of the volume proportion of five unit cells to the whole specimen with rows and columns are discussed, respectively. The presented multi-unit cell model can be adopted to design 3D braided composites and predict their mechanical properties.

  5. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.

  6. Convective solar nebula

    NASA Technical Reports Server (NTRS)

    Meirellesfilho, C.; Reyes-Ruiz, M.

    1994-01-01

    Analyzing turbulent flows with rotation, Dubrulle and Valdettaro have concluded that some new effects come into play and may modify the standard picture we have concerning turbulence. In that respect the value of the Rossby number is of crucial importance since it will determine the transition between regimes where rotation is or is not important. With rotation there will be a tendency to constrain the motion to the plane perpendicular to the rotation axis and as a consequence the horizontal scale will increase as compared to the longitudinal one, which means that the turnover time in this direction will increase. The net effect is that the energy cascade down process is hindered by rotation. As a matter of fact, when rotation is present one observes two cascades: an enstrophy (vorticity) cascade from large scales to small scales; and an inverse energy cascade from small scales to large scales. Since the first process is not efficient on transporting energy to the dissipation range, what we see is energy storage in the large structures at the expense of the small structures. This kind of behavior has been confirmed experimentally. For a very large gamma we obtain, in the inertial range, a spectrum of k(exp -3) instead of the usual Kilmogorov's k(exp -5/3) spectrum. In reality, when rotation is dominant, energy gets stored in inertial waves that propagate it essentially in the longitudinal direction. In that case, we can no longer assign just one viscosity to the fluid and, what is most important, the concept of viscosity loses its meaning since we no longer have local transport of energy. Such results, however, were derived considering a hot disk, in which opacity is mainly given by electron scattering. In the present work we have applied the formulation developed in the previous work for the description of the viscous-stage solar nebula.

  7. The first published chart of the Andromeda Nebula, 1667

    NASA Astrophysics Data System (ADS)

    Gingerich, Owen

    2014-06-01

    The Parisian astronomer Ismaél Bullialdus (1605-1694) is known for his planetary tables (Astronomia philolaica, 1645) based on a geometrical approximation to the Keplerian ellipse, and for his long correspondence with the Danzig astronomer Johannes Hevelius and with Christiaan Huygens. Bullialdus became interested in the nascent study of variable stars, and in 1667 published a small pamphlet with two contributions, one on Mira Ceti and the other on the nebula in Andromeda. He found a manuscript portraying the nebula with the date 1428, and because Tycho Brahe never mentioned a nebula in Andromeda, Bullialdus conjectured that this object was a variable that had disappeared in the intervening era. “We conclude this since this conglomeration was observed neither by Hipparchus nor anyone else in antiquity, nor in the previous age by Tycho, nor in the age of our forefathers like Bayer.” His publication included a handsome engraving of the image of Andromeda and the position of the nebula, its first printed chart. I recently acquired a copy of this rare pamphlet, Ad astronomos monita duo, and realized that the image matched a manuscript now in the Gotha Research Library, a 15th-century Latin version based on the work of the tenth-century Islamic astronomer, al-Sufi. The manuscript does not carry the name of al-Sufi, and hence Bullialdus had no real clue about its origin or its date of composition. Paul Kunitzsch (The Arabs and the Stars, 1989, Article XI, “The Astronomer Abu ’l-Husayn al-Sufi”) has identified a group of eight “Latin al-Sufi” manuscripts from this period, scattered in European libraries, but only the one now in Gotha is an exact match to Bullialdus’ engraving. The al-Sufi manuscript was given to the Gotha Library in 1798 by Duke Ernst II of Saxonia-Gotha-Altenburg, who must have acquired it from France sometime in the 18th century.

  8. Synchrotron Heating by a Fast Radio Burst in a Self-absorbed Synchrotron Nebula and Its Observational Signature

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Zhang, Bing; Dai, Zi-Gao

    2016-03-01

    Fast radio bursts (FRBs) are mysterious transient sources. If extragalactic, as suggested by their relative large dispersion measures, their brightness temperatures must be extremely high. Some FRB models (e.g., young pulsar model, magnetar giant flare model, or supra-massive neutron star collapse model) suggest that they may be associated with a synchrotron nebula. Here we study a synchrotron-heating process by an FRB in a self-absorbed synchrotron nebula. If the FRB frequency is below the synchrotron self-absorption frequency of the nebula, electrons in the nebula would absorb FRB photons, leading to a harder electron spectrum and enhanced self-absorbed synchrotron emission. In the meantime, the FRB flux is absorbed by the nebula electrons. We calculate the spectra of FRB-heated synchrotron nebulae, and show that the nebula spectra would show a significant hump in several decades near the self-absorption frequency. Identifying such a spectral feature would re