Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
Characterization and manufacture of braided composites for large commercial aircraft structures
NASA Technical Reports Server (NTRS)
Fedro, Mark J.; Willden, Kurtis
1992-01-01
Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.
Design and Testing of Braided Composite Fan Case Materials and Components
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.; Arnold, William a.; Dorer, James D.; Watson, William R/.
2009-01-01
Triaxial braid composite materials are beginning to be used in fan cases for commercial gas turbine engines. The primary benefit for the use of composite materials is reduced weight and the associated reduction in fuel consumption. However, there are also cost benefits in some applications. This paper presents a description of the braided composite materials and discusses aspects of the braiding process that can be utilized for efficient fabrication of composite cases. The paper also presents an approach that was developed for evaluating the braided composite materials and composite fan cases in a ballistic impact laboratory. Impact of composite panels with a soft projectile is used for materials evaluation. Impact of composite fan cases with fan blades or blade-like projectiles is used to evaluate containment capability. A post-impact structural load test is used to evaluate the capability of the impacted fan case to survive dynamic loads during engine spool down. Validation of these new test methods is demonstrated by comparison with results of engine blade-out tests.
Characterization and manufacture of braided composites for large commercial aircraft structures
NASA Technical Reports Server (NTRS)
Fedro, Mark J.; Willden, Kurtis
1992-01-01
Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.
Material and Mechanical Characterizations for Braided Composite Pressure Vessels
1990-05-01
Effects on Mechanical Properties......... 16 2.3 Predictions of Hygrothermal Behavior of Braided Composites ....23 2.4 Summary... Behavior of Braided Composites 0 Predictions of the mechanical response of braided composites have not enjoyed the same plethora of attention given to...specific data for braided composite hygrothermomechanical behavior , broad conclusions developed from other studies may provide some insightful information
Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.
2010-01-01
In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix composite within the environment of a transient dynamic finite-element code such as LS-DYNA in a manner which accounts for the local physical mechanisms but is still computationally efficient. This methodology is tightly coupled to experimental tests on the braided composite, which ensures that the material properties have physical significance. Aerospace or automotive companies interested in using triaxially braided composites in their structures, particularly for impact or crash applications, would find the technology useful. By the development of improved design tools, the amount of very expensive impact testing that will need to be performed can be significantly reduced.
Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.
Investigation of a Macromechanical Approach to Analyzing Triaxially-Braided Polymer Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The material stiffness and strength values required for the constitutive model are determined based on coupon level tests on the braided composite. Simulations of quasi-static coupon tests of a representative braided composite are conducted. Varying the strength values that are input to the material model is found to have a significant influence on the effective material response predicted by the finite element analysis, sometimes in ways that at first glance appear non-intuitive. A parametric study involving the input strength parameters provides guidance on how the analysis model can be improved.
Braided reinforced composite rods for the internal reinforcement of concrete
NASA Astrophysics Data System (ADS)
Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.
2008-05-01
This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.
Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Dexter, H. Benson (Editor); Markus, Alan; Rohwer, Kim
1995-01-01
Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program.
Analysis, design, fabrication, and performance of three-dimensional braided composites
NASA Astrophysics Data System (ADS)
Kostar, Timothy D.
1998-11-01
Cartesian 3-D (track and column) braiding as a method of composite preforming has been investigated. A complete analysis of the process was conducted to understand the limitations and potentials of the process. Knowledge of the process was enhanced through development of a computer simulation, and it was discovered that individual control of each track and column and multiple-step braid cycles greatly increases possible braid architectures. Derived geometric constraints coupled with the fundamental principles of Cartesian braiding resulted in an algorithm to optimize preform geometry in relation to processing parameters. The design of complex and unusual 3-D braids was investigated in three parts: grouping of yarns to form hybrid composites via an iterative simulation; design of composite cross-sectional shape through implementation of the Universal Method; and a computer algorithm developed to determine the braid plan based on specified cross-sectional shape. Several 3-D braids, which are the result of variations or extensions to Cartesian braiding, are presented. An automated four-step braiding machine with axial yarn insertion has been constructed and used to fabricate two-step, double two-step, four-step, and four-step with axial and transverse yarn insertion braids. A working prototype of a multi-step braiding machine was used to fabricate four-step braids with surrogate material insertion, unique hybrid structures from multiple track and column displacement and multi-step cycles, and complex-shaped structures with constant or varying cross-sections. Braid materials include colored polyester yarn to study the yarn grouping phenomena, Kevlar, glass, and graphite for structural reinforcement, and polystyrene, silicone rubber, and fasteners for surrogate material insertion. A verification study for predicted yarn orientation and volume fraction was conducted, and a topological model of 3-D braids was developed. The solid model utilizes architectural parameters, generated from the process simulation, to determine the composite elastic properties. Methods of preform consolidation are investigated and the results documented. The extent of yarn deformation (packing) resulting from preform consolidation was investigated through cross-sectional micrographs. The fiber volume fraction of select hybrid composites was measured and representative unit cells are suggested. Finally, a comparison study of the elastic performance of Kevlar/epoxy and carbon/Kevlar hybrid composites was conducted.
Characterization and Analysis of Triaxially Braided Polymer Composites under Static and Impact Loads
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Roberts, Gary D.; Blinzler, Brina J.; Kohlman, Lee W.; Binienda, Wieslaw K.
2012-01-01
In order to design impact resistant aerospace components made of triaxially-braided polymer matrix composite materials, a need exists to have reliable impact simulation methods and a detailed understanding of the material behavior. Traditional test methods and specimen designs have yielded unrealistic material property data due to material mechanisms such as edge damage. To overcome these deficiencies, various alternative testing geometries such as notched flat coupons have been examined to alleviate difficulties observed with standard test methods. The results from the coupon level tests have been used to characterize and validate a macro level finite element-based model which can be used to simulate the mechanical and impact response of the braided composites. In the analytical model, the triaxial braid unit cell is approximated by using four parallel laminated composites, each with a different fiber layup, which roughly simulates the braid architecture. In the analysis, each of these laminated composites is modeled as a shell element. Currently, each shell element is considered to be a smeared homogeneous material. Simplified micromechanics techniques and lamination theory are used to determine the equivalent stiffness properties of each shell element, and results from the coupon level tests on the braided composite are used to back out the strength properties of each shell element. Recent improvements to the model include the incorporation of strain rate effects into the model. Simulations of ballistic impact tests have been carried out to investigate and verify the analysis approach.
Through-the Thickness(R) braided composites for aircraft applications
NASA Technical Reports Server (NTRS)
Brown, Richard T.
1992-01-01
Material and structural specimens of Through-the-Thickness(R) braided textile composites were tested in a variety of experiments. The results have demonstrated that the preform architecture provides significant payoffs in damage tolerance, delamination resistance, and attachment strength. This paper describes the braiding process, surveys the experimental data base, and illustrates the application of three dimensional braiding in aircraft structures.
NASA Technical Reports Server (NTRS)
Martin, Richard E.
2010-01-01
This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed thermography techniques in the as received condition. These same specimens were then examined following extended thermal-humidity cycling. Results of this examination did not show a significant change in the resulting (NDE) signals.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. For the current analytical approach, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The constitutive model requires stiffness and strength properties of an equivalent unidirectional composite. Simplified micromechanics methods are used to determine the equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to back out the required strength properties. Simulations of quasi-static coupon tests of several representative braided composites are conducted to demonstrate the correlation of the model. Impact simulations of a represented braided composites are conducted to demonstrate the capability of the model to predict the penetration velocity and damage patterns obtained experimentally.
Mechanical and analytical screening of braided composites for transport fuselage applications
NASA Technical Reports Server (NTRS)
Fedro, Mark J.; Gunther, Christian; Ko, Frank K.
1991-01-01
The mechanics of materials progress in support of the goal of understanding the application of braided composites in a transport aircraft fuselage are summarized. Composites consisting of both 2-D and 3-D braid patterns are investigated. Both consolidation of commingled graphite/PEEK and resin transfer molding of graphite-epoxy braided composite processes are studied. Mechanical tests were used to examine unnotched tension, open hole tension, compression, compression after impact, in-plane shear, out-of-plane tension, bearing, and crippling. Analytical methods are also developed and applied to predict the stiffness and strengths of test specimens. A preliminary study using the test data and analytical results is performed to assess the applicability of braided composites to a commercial aircraft fuselage.
NASA Astrophysics Data System (ADS)
Montesano, John
The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.
Modelling of Damage Evolution in Braided Composites: Recent Developments
NASA Astrophysics Data System (ADS)
Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong
2017-12-01
Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.
Mechanical properties of 2D and 3D braided textile composites
NASA Technical Reports Server (NTRS)
Norman, Timothy L.
1991-01-01
The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.
2010-01-01
The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.
Braided composite bore evacuator chambers for tank cannons
NASA Technical Reports Server (NTRS)
Wheeler, Philip C.
1990-01-01
Typically, continuous filament composite components are fabricated using a filament winding technique. In this operation, fibers are introduced to a rotating mandrel while a guide holding the material traverses back and forth to place the material in a helical pattern over the surface of the mandrel. This procedure is continued until complete coverage is obtained. An alternative method for fabricating continuous filament composite components is braiding. In the braiding operation a mandrel is traversed through the center of the braider while 144 strands of material traverse around a carrier ring. As the fibers are applied to a mandrel surface, 72 carriers holding the fibers travel clockwise, while another 72 carriers travel counterclockwise to interlock fibers. An additional 72 carriers located on the back of the braider introduce longitudinal fibers to the composite giving the composite lateral strength. The goal of using the braider is to reduce production time by simultaneously applying 144 strands of material onto a mandrel as opposed to the four-strand wrapping most filament winding techniques offer. Benefits to braiding include the ability to (1) introduce longitudinal fibers to the composite structure; (2) fabricate non-symmetric components without using complex functions to produce full coverage; and (3) produce a component with a higher degree of damage tolerance due to the interlocking of fibers. The fabrication of bore evacuator chambers for a tank cannon system is investigated by utilizing a 144 carrier braiding machine, an industrial robot, and a resin applicator system.
Tensile properties of textile composites
NASA Technical Reports Server (NTRS)
Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm
1992-01-01
The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Furrow, Keith W.
1993-01-01
Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.
NASA Astrophysics Data System (ADS)
Pan, Zhongxiang; Gu, Bohong; Sun, Baozhong
2015-03-01
This paper reports the longitudinal compressive behaviour of 3D braided basalt fibre tows/epoxy composite materials under strain-rate range of 1,200-2,400 s-1 and temperature range of 23-210 °C both in experimental and finite element analyses (FEA). A split Hopkinson pressure bar system with a heating device was designed to test the longitudinal compressive behaviour of 3D braided composite materials. Testing results indicate that longitudinal compression modulus, specific energy absorption and peak stress decreased with elevated temperatures, whereas the failure strain increased with elevated temperatures. At some temperatures above the T g of epoxy resin, such as at 120 and 150 °C, strain distributions and deformations in fibre tows and epoxy resin tended to be the same. It results in relatively slighter damage status of the 3D braided composite material. The FEA results reveal that heating of the material due to the dissipative energy of the inelastic deformation and damage processes generated in resin is more than that in fibre tows. The braiding structure has a significant influence on thermomechanical failure via two aspects: distribution and accumulation of the heating leads to the development of the shear band paths along braiding angle; the buckling inflection segment rather than the straight segment generates the maximum of the heating in each fibre tows. The damage occurs at the early stage when the temperature is below T g, while at the temperature above T g, damage stage occurs at the rear of plastic deformation.
Fatigue resistance of unnotched and post impact(+/- 30 deg/0 deg) 3-D braided composites
NASA Technical Reports Server (NTRS)
Portanova, Marc A.
1994-01-01
The fatigue resistance of a multiaxial braided (3-D) graphite/expoxy composite in both unnotched and post impacted conditions has been evaluated. The material tested is a (+/- 30/0 deg) multiaxial braid constructed from AS4/12K tow graphite fibers and British Petroleum E905L epoxy resin. These materials were braided as dry preforms and the epoxy was added using a resin transfer molding process (RTM). The unnotched and post-impact specimens were tested in compression-compression fatigue at 10 Hz with a stress ratio of R=10. The unnotched tension-tension fatigue specimens were tested at S Hz with a stress ration of R=0.1. Damage initiation and growth was documented through the application of radiography and ultrasonic through transmission (C-scans). Visible inspection of surface and edge damage was also noted to describe the initiation and progression of damage in these materials. The mechanisms leading to damage initiation were established and failure modes were determined. Stiffness and strength degradation were measured as a function of applied cycles. These 3-D braided composite results were compared to strain levels currently used to design primary structure in commercial aircraft composite components made from prepreg tape and autoclave cured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.
PNNL has performed mechanical property tests on two types of Hi-Nicalon Type-S fiber SiC/SiC composites for the general purpose of evaluating such composites for control rod guide tube applications in the NGNP high-temperature gas-cooled reactor design. The mechanical testing consisted of 4-point bend strength, 4-point single-edge notched bend fracture toughness, and 4-point bend slow crack growth testing on both composites from ambient to 1600°C (1873K). The two composite materials that were tested included a ±55°-braided-weave composite with Type-S fibers inclined at 55° to the principal composite axes to simulate a braided tube architecture and a Type-S 0/90 satin-weave composite asmore » a reference material.« less
Characterization of Triaxial Braided Composite Material Properties for Impact Simulation
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.
2009-01-01
The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation. Premature failure in regions of the unit cell near the edge of the straight-sided specimens was observed for transverse tensile tests in which the braid axial fibers were perpendicular to the specimen axis and the bias fibers terminated on the cut edges in the specimen gage section. This edge effect is one factor that could contribute to a measured strength that is lower than the actual material strength in a structure without edge effects.
Compression Testing of Textile Composite Materials
NASA Technical Reports Server (NTRS)
Masters, John E.
1996-01-01
The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Development of generalized 3-D braiding machines for composite preforms
NASA Technical Reports Server (NTRS)
Huey, Cecil O., Jr.; Farley, Gary L.
1993-01-01
The operating principles of two prototype braiding machines for the production of generalized braid patterns are described. Both processes afford previously unachievable control of the interlacing of fibers within a textile structure that make them especially amenable to the fabrication of textile preforms for composite materials. They enable independent control of the motion of the individual fibers being woven, thereby enabling the greatest possible freedom in controlling fiber orientation within a structure. This freedom enables the designer to prescribe local fiber orientation to better optimize material performance. The processes have been implemented on a very small scale but at a level that demonstrates their practicality and the soundness of the principles governing their operation.
Macro Scale Independently Homogenized Subcells for Modeling Braided Composites
NASA Technical Reports Server (NTRS)
Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.
2012-01-01
An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.
Piezoresistive effect of the carbon nanotube yarn embedded axially into the 3D braided composite
NASA Astrophysics Data System (ADS)
Ma, Xin; Cao, Xiaona
2018-06-01
A new method for monitoring 3D braided composite structure health in real time by embedding the carbon nanotube yarn, based on its piezoresistivity, in the composite axially has been designed. The experimental system for piezoresistive effect detection of the carbon nanotube yarn in the 3D braided composite was built, and the sensing characteristics has been analyzed for further research. Compared with other structural health monitoring methods, the monitoring technique with carbon nanotubes yarns is more suitable for internal damage detection immediately, in addition the strength of the composite can be increased by embedding carbon nanotubes yarns. This method can also be used for strain sensing, the development of intelligent materials and structure systems.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2013-01-01
Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid micromacromechanical computer model is created to simulate the behavior of these composite material systems under static and ballistic impact loading using the test data acquired. The model also quantifies the way in which the fiber/matrix interface affects material response under static and impact loading. The results show that the test methods are capable of accurately quantifying the polymer resin under a variety of strain rates and temperature for three loading conditions. The resin strength and stiffness data show a clear rate and temperature dependence. The data also show the hydrostatic stress effects and hysteresis, all of which can be used by researchers developing composite constitutive models for the resins. The results for the composite data reveal noticeable differences in strength, failure strain, and stiffness in the different material systems presented. The investigations into the microscale failure mechanisms provide information about the nature of the different material system behaviors. Finally, the developed computer model predicts composite static strength and stiffness to within 10 percent of the gathered test data and also agrees with composite impact data, where available.
Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes
2012-01-24
perform the environmental tests at cold temperatures, nitrogen tanks were purchased and connected to the environmental chamber via hoses . Fibers of... Braided Composites.” Journal of Composite Materials (30) (1) (1996): 51-68. 2. Graham, Derek. “Buckling of Thick-Section Composite Pressure Hulls
Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.
Wu, Yue; Nan, Bo; Chen, Liang
2014-01-01
3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.
NASA Astrophysics Data System (ADS)
Risicato, Jean-Vincent; Kelly, Fern; Soulat, Damien; Legrand, Xavier; Trümper, Wolfgang; Cochrane, Cedric; Koncar, Vladan
2015-02-01
This paper focuses on the design and one shot manufacturing process of complex shaped composite parts based on the overbraiding of commingled yarns. The commingled yarns contain thermoplastic fibres used as the matrix and glass fibres as the reinforcement material. This technology reduces the flow path length for the melted thermoplastic and aims to improve the impregnation of materials with high viscosity. The tensile strength behaviour of the material was firstly investigated in order to evaluate the influence of the manufacturing parameters on flat structured braids that have been consolidated on a heating press. A good compatibility between the required geometry and the braiding process was observed. Additionally, piezo-resistive sensor yarns, based on glass yarns coated with PEDOT: PSS, have been successfully integrated within the composite structure. The sensor yarns have been inserted into the braided fabric, before consolidation. The inserted sensors provide the ability to monitor the structural health of the composite part in a real time. The design and manufacture of the complete complex shaped part has then been successfully achieved.
NASA Astrophysics Data System (ADS)
Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin
2014-04-01
Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies
Tension and compression fatigue response of unnotched 3D braided composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1992-01-01
The unnotched compression and tension fatigue response of a 3-D braided composite was measured. Both gross compressive stress and tensile stress were plotted against cycles to failure to evaluate the fatigue life of these materials. Damage initiation and growth was monitored visually and by tracking compliance change during cycle loading. The intent was to establish by what means the strength of a 3-D architecture will start to degrade, at what point will it degrade beyond an acceptable level, and how this material will typically fail.
Nonlinear Deformation Behavior of New Braided Composites with Six-axis Yarn Orientations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, H.-C.; Yu, W.-R.; Guo, Z.
The braiding technology is one of fabrication methods that can produce three-dimensional fiber preforms. Braided composites have many advantages over other two-dimensional composites such as no delamination, high impact and fatigue properties, near-net shape preform, etc. Due to the undulated yarns in the braided preforms, however, their axial stiffness is lower than that of uni-directional or woven composites. To improve the axial stiffness, the longitudinal axial yarns were already introduced along with the braiding axis (five-axis braiding technology). In this study, we developed a new braided structure using six-axis braiding technology. In addition to braiding and longitudinal axial yarns, transversemore » axial yarn was introduced. New braided composites, so called six-axis braiding composites, were manufactured using ultra high molecular weight polyethylene and epoxy resin and their mechanical properties were characterized. To investigate the mechanical performance of these braided composites according to their manufacturing conditions, a numerical analysis was performed using their unit-cell modeling and finite element analysis. In the analysis the nonlinear deformation behavior will be included.« less
Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts
NASA Astrophysics Data System (ADS)
Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying
2017-10-01
The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.
Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites
NASA Astrophysics Data System (ADS)
Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun
2018-06-01
A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.
Advanced Technology Composite Fuselage - Materials and Processes
NASA Technical Reports Server (NTRS)
Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.
1997-01-01
The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.
NASA Astrophysics Data System (ADS)
Zebdi, Oussama
High performance composites reinforced by woven or braided fabrics have several different applications in various fields such as in the aerospace, automobile and marine industry. This research project was carried out at the Ecole Polytechnique de Montreal in collaboration with an industrial sponsor, the company Composites Atlantic Ltd. Composite springs often represent an interesting alternative, given the reduction in weight that they allow with equal mechanical performance compared to metallic springs. Their good resistance to fatigue and corrosion bring additional benefits in several industrial applications. Moreover, the use of the composites increases safety by avoiding the risks of brutal rupture because of the low propagation velocity of cracks in this type of material. Lastly, in electrotechnics, another significant advantage comes into play because of the electrical insulation capability of composite springs. Few research results can be found on composite springs in the scientific literature. The first part of this thesis studies the problems connected with the design of composite springs. The results are promising, because it was confirmed that composite springs can be devised with the same mechanical performance in term of stiffness as metallic ones. Two solutions were found to replace the metallic springs of the suspension of a four wheel drive: the first spring was in carbon-epoxy, and the second one in glass-epoxy. In the second part, software was developed in order to devise a new approach to predict the mechanical properties of woven or braided composites. This work shows how an inverse method based on plate laminate theory allows creating, from experimental results on braided composites, a virtual basic ply that includes the effect of fiber architecture (undulation and braiding angle). Using this model, the properties of the composite can be predicted for any braid angle. The comparison with the experimental results shows a good correlation with numerical predictions. In third part, an experimental study on creep was conducted on composite plates manufactured with the same constitutive materials as the composite springs. Creep tests in three point bending were carried out with Q800 DMA machine. The results showed that creep behavior depends primarily on the polymer matrix. However, rigidity is a function of the fiber-matrix mixture. The braiding angle of 35° corresponds to a characteristic threshold for braided composites: beyond this value, rigidity falls in a creep test at a temperature higher than Tg. It represents also a critical angle in bending or in tensile tests. Above 35°, the failure mode of the composite goes from fragile (rupture of fibers) to a mixed mode, in which the polymer matrix comes also into play with fibers. A good stability was observed for the composites with a braiding angle lower than +/- 35° or higher than +/-60°. Long-term tests were also carried out for two braided composites at +/- 45° and +/- 55° in order to check the predictive model of the DMA. The shift factors obtained from the short and long term tests are roughly equal. This thesis has set the ground for the future development on industrial applications of composite springs. The design software predicts the mechanical effectiveness of helical composite springs. The software developed to predict the elastic properties of braided composites accelerates the preparation of characterization results for the design stage. This numerical tool could be generalized for other fiber architectures. It represents a practical tool for further investigations. Finally, the study on creep, although preliminary, provides a first evaluation of the life cycle of composite springs. It would be interesting to proceed now to the design of a first industrial application.
Graphite Fiber Textile Preform/Copper Matrix Composites
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Lee, Bruce; Bass, Lowell
1996-01-01
Graphite fiber reinforced/copper matrix composites are candidate materials for critical heat transmitting and rejection components because of their high thermal conduction. The use of textile (braid) preforms allows near-net shapes which confers additional advantages, both for enhanced thermal conduction and increased robustness of the preform against infiltration and handling damage. Issues addressed in the past year center on the determination of the braid structure following infiltration, and the braidability vs. the conductivity of the fibers. Highly conductive fibers eventuate from increased graphitization, which increases the elastic modulus, but lowers the braidability; a balance between these factors must be achieved. Good quality braided preform bars have been fabricated and infiltrated, and their thermal expansion characterized; their analytic modeling is underway. The braided preform of an integral finned tube has been fabricated and is being prepared for infiltration.
NASA Astrophysics Data System (ADS)
Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo
2018-06-01
In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.
Evaluation of the impact response of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1995-01-01
An evaluation of the impact damage resistance and impact damage tolerance of stitched and unstitched uniweaves, 2-D braids, and 3-D weaves was conducted. Uniweave laminates were tested at four thicknesses to determine the sensitivity of the tests to this parameter. Several braid and weave parameters were also varied to establish their velocity (large mass) impacts and then loaded in tension or compression to measure residual strength. Experimental results indicate that stitching significantly improves the uniweaves' damage resistance. The 2-D braids and 3-D weaves offered less damage resistance than the stitched materials. Stitching also improved the compression after impact (CAI) and tension after impact (TAI) strengths of the uniweave materials.
Analysis of woven and braided fabric reinforced composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.
Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1999-01-01
A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.
Burst Testing of Triaxial Braided Composite Tubes
NASA Technical Reports Server (NTRS)
Salem, J. A.; Bail, J. L.; Wilmoth, N. G.; Ghosn, L. J.; Kohlman, L. W.; Roberts, G. D.; Martin, R. E.
2014-01-01
Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions.
NASA Astrophysics Data System (ADS)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2017-02-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection
NASA Technical Reports Server (NTRS)
Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.
2017-01-01
During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
NASA Astrophysics Data System (ADS)
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.
High Speed Thermal Imaging on Ballistic Impact of Triaxially Braided Composites
NASA Technical Reports Server (NTRS)
Johnston, Joel P.; Pereira, J. Michael; Ruggeri, Charles R.; Roberts, Gary D.
2017-01-01
Ballistic impact experiments were performed on triaxially braided polymer matrix composites to study the heat generated in the material due to projectile velocity and penetration damage. Quantifying the heat generation phenomenon is crucial for attaining a better understanding of composite behavior and failure under impact loading. The knowledge gained can also be used to improve physics-based models which can numerically simulate impact of composites. Triaxially braided (0/+60/-60) composite panels were manufactured with T700S standard modulus carbon fiber and two epoxy resins. The PR520 (toughened) and 3502 (untoughened) resin systems were used to make different panels to study the effects of resin properties on temperature rise. Ballistic impact tests were conducted on these composite panels using a gas gun, and different projectile velocities were applied to study the effect on the temperature results. Temperature contours were obtained from the rear surface of the panel during the test through a high speed, infrared (IR) thermal imaging system. The contours show that high temperatures were locally generated and more pronounced along the axial tows for the T700S/PR520 composite specimens; whereas, tests performed on T700S/3502 composite panels using similar impact velocities demonstrated a widespread area of lower temperature rises. Nondestructive, ultrasonic C-scan analyses were performed to observe and verify the failure patterns in the impacted panels. Overall, the impact experimentation showed temperatures exceeding 525 K (485degF) in both composites which is well above the respective glass transition temperatures for the polymer constituents. This expresses the need for further high strain rate testing and measurement of the temperature and deformation fields to fully understand the complex behavior and failure of the material in order to improve the confidence in designing aerospace components with these materials.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Revilock, Duane M.; Ruggeri, Charles R.; Roberts, Gary D.; Kohlman, Lee W.; Miller, Sandi G.
2016-01-01
An experimental study was conducted to measure the effects of long term hygrothermal aging on the impact penetration resistance of triaxially braided polymer composites. Flat panels of three different materials were subjected to repeated cycles of high and low temperature and high and low humidity for two years. Samples of the panels were periodically tested under impact loading during the two year time period. The purpose of the study was to identify and quantify any degradation in impact penetration resistance of these composites under cyclic temperature and humidity conditions experienced by materials in the fan section of commercial gas turbine engines for a representative aircraft flight cycle. The materials tested consisted of Toray ® T700S carbon fibers in a 2D triaxial braid with three different resins, Cycom® PR520, a toughened resin, Hercules® 3502, an untoughened resin and EPON 862, intermediate between the two. The fiber preforms consisted of a quasi-isotropic 0/+60/-60 braid with 24K tows in the axial direction and 12K tows in the bias directions. The composite panels were manufactured using a resin transfer molding process producing panels with a thickness of 0.125 inches. The materials were tested in their as-processed condition and again after one year and two years of aging (1.6 years in the case of E862). The aging process involved subjecting the test panels to two cycles per day of high and low temperature and high and low humidity. A temperature range of -60degF to 250degF and a humidity range of 0 to 85% rh was used to simulate extreme conditions for composite components in the fan section of a commercial gas turbine engine. Additional testing was conducted on the as-processed PR520 composite under cryogenic conditions. After aging there was some change in the failure pattern, but there was no reduction in impact penetration threshold for any of the three systems, and in the case of the 3502 system, a significant increase in penetration threshold. There was also an increase in the penetration resistance of the PR520 system impacted under cryogenic conditions.
NASA Technical Reports Server (NTRS)
Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.
2016-01-01
Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work are discussed.
Test methods for textile composites
NASA Technical Reports Server (NTRS)
Minguet, Pierre J.; Fedro, Mark J.; Gunther, Christian K.
1994-01-01
Various test methods commonly used for measuring properties of tape laminate composites were evaluated to determine their suitability for the testing of textile composites. Three different types of textile composites were utilized in this investigation: two-dimensional (2-D) triaxial braids, stitched uniweave fabric, and three-dimensional (3-D) interlock woven fabric. Four 2-D braid architectures, five stitched laminates, and six 3-D woven architectures were tested. All preforms used AS4 fibers and were resin-transfer-molded with Shell RSL-1895 epoxy resin. Ten categories of material properties were investigated: tension, open-hole tension, compression, open-hole compression, in-plane shear, filled-hole tension, bolt bearing, interlaminar tension, interlaminar shear, and interlaminar fracture toughness. Different test methods and specimen sizes were considered for each category of test. Strength and stiffness properties obtained with each of these methods are documented in this report for all the material systems mentioned above.
Standard methods for filled hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
The effects of two test specimen geometry parameters, the specimen width and W/D ratio, on filled-hole tensile strength were determined for textile composite materials. Test data generated by Boeing and Lockheed on 2-D and 3-D braids, and 3-D weaves were used to make these evaluations. The investigation indicated that filled-hole tensile-strength showed little sensitivity to either parameter. Test specimen configurations used in open-hole tension tests, such as those suggested by ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates or those proposed by MIL-HDBK-17-lD should provide adequate results for material comparisons studies. Comparisons of the materials' open-hole and filled-hole tensile strengths indicated that the latter were generally lower than the former. The 3-D braids were the exception; their filled-hole strengths were unexpected larger than their open-hole strengths. However, these increases were small compared to the scatter in the data. Thus, filled hole tension may be a critical design consideration for textile composite materials.
Experimental and analytical characterization of triaxially braided textile composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Fedro, Mark J.; Ifju, Peter G.
1993-01-01
There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.
Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites
NASA Technical Reports Server (NTRS)
Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.
2003-01-01
In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Portanova, M. A.; Masters, J. E.; Sankar, B. V.; Jackson, Wade C.
1991-01-01
Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.
Method for Coating a Tow with an Electrospun Nanofiber
NASA Technical Reports Server (NTRS)
Kohlman, Lee W. (Inventor); Roberts, Gary D. (Inventor)
2015-01-01
Method and apparatus for enhancing the durability as well as the strength and stiffness of prepreg fiber tows of the sort used in composite materials are disclosed. The method involves adhering electrospun fibers onto the surface of such composite materials as filament-wound composite objects and the surface of prepreg fiber tows of the sort that are subsequently used in the production of composite materials of the filament-wound, woven, and braided sorts. The apparatus performs the methods described herein.
Development of Textile Reinforced Composites for Aircraft Structures
NASA Technical Reports Server (NTRS)
Dexter, H. Benson
1998-01-01
NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.
Failure analysis of woven and braided fabric reinforced composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell was developed to predict overall, three dimensional, thermal and mechanical properties, damage initiation and progression, and strength. This analytical technique was implemented in a user-friendly, personal computer-based, menu-driven code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain weave and 2x2, 2-D triaxial braided composites. The calculated tension, compression, and shear strengths correlated well with available test data for both woven and braided composites. Parametric studies were performed on both woven and braided architectures to investigate the effects of parameters such as yarn size, yarn spacing, yarn crimp, braid angle, and overall fiber volume fraction on the strength properties of the textile composite.
Standard Methods for Unnotched Tension Testing of Textile Composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1995-01-01
An investigation was conducted by researchers at the Boeing Defense & Space Group to investigate the effects of specimen sizing on several braided textile materials. Test results from this and other test programs were compared in an effort to determine what effect, if any, specimen size has on elastic property measurements of unnotched tension test. In general, the unnotched tensile strength of 2-D braids was found to be insensitive to specimen width, length, or thickness effects. The results from this study suggest that standard testing methods used for tape materials may be sufficient for tension testing of textile composite materials. Specifically, the straight sided specimen geometry described in ASTM 3034, and used by Boeing, should provide acceptable results. Further experiments performed at Boeing and by other investigators on other textile architectures suggest similar results. Although specimen size studies were not conducted, failing stresses varied on the same order as those obtained with the 2-D materials. This suggests that the accuracy of the results were consistent with those obtained with the 2-D materials.
Material, process, and product design of thermoplastic composite materials
NASA Astrophysics Data System (ADS)
Dai, Heming
Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.
Characterization of Damage in Triaxial Braid Composites Under Tensile Loading
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.
2009-01-01
Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.
Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites
NASA Technical Reports Server (NTRS)
Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.
2003-01-01
In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700h436 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 degrees plus or minus 60 degrees, and 0 degrees plus or minus 45 degrees) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bow-tie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/O degrees plus or minus 45 degrees configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 degrees plus or minus 60 degrees configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.
Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes
NASA Astrophysics Data System (ADS)
Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos
2017-04-01
This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.
NASA Technical Reports Server (NTRS)
Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas
2010-01-01
An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.
Braided Composite Technologies for Rotorcraft Structures
NASA Technical Reports Server (NTRS)
Jessie, Nathan
2015-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, +/-60deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Braided Composite Technologies for Rotorcraft Structures
NASA Technical Reports Server (NTRS)
Jessie, Nathan
2014-01-01
A&P Technology has developed a braided material approach for fabricating lightweight, high-strength hybrid gears for aerospace drive systems. The conventional metallic web was replaced with a composite element made from A&P's quasi-isotropic braid. The 0deg, plus or minus 60 deg braid architecture was chosen so that inplane stiffness properties and strength would be nearly equal in all directions. The test results from the Phase I Small Spur Gear program demonstrated satisfactory endurance and strength while providing a 20 percent weight savings. (Greater weight savings is anticipated with structural optimization.) The hybrid gears were subjected to a proof-of-concept test of 1 billion cycles in a gearbox at 10,000 revolutions per minute and 490 in-lb torque with no detectable damage to the gears. After this test the maximum torque capability was also tested, and the static strength capability of the gears was 7x the maximum operating condition. Additional proof-of-concept tests are in progress using a higher oil temperature, and a loss-of-oil test is planned. The success of Phase I led to a Phase II program to develop, fabricate, and optimize full-scale gears, specifically Bull Gears. The design of these Bull Gears will be refined using topology optimization, and the full-scale Bull Gears will be tested in a full-scale gear rig. The testing will quantify benefits of weight savings, as well as noise and vibration reduction. The expectation is that vibration and noise will be reduced through the introduction of composite material in the vibration transmission path between the contacting gear teeth and the shaft-and-bearing system.
Studies of in-plane shear behaviour of braided composite reinforcements
NASA Astrophysics Data System (ADS)
Xiao, Shenglei; Wang, Peng; Soulat, Damien; Legrand, Xavier; Gao, Hang
2018-05-01
Braided fabrics are wildly used as textile reinforcements to manufacture the advanced composite parts. The braids can be used as two-dimensional reinforcement to manufacture the composite reinforced by braided fabrics. This study proposed the analysis on the in-plane shear behavior of braided structure fabric. Firstly, the geometric criterion and analytical model have been developed. Secondly, E-glass fibres reinforced braided fabrics have been performed in bias-extension tests to verify the analytical model. The conclusion was that the change of dimension ratio could influence on the shear load /displacement behavior significantly owing to the increasing area for sustaining load with an increase in ratio. However, varying dimension ratio r in axial direction had nearly no effect on shear moment/angle behavior. And the experimental and theoretical results had a good agreement.
Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves
NASA Technical Reports Server (NTRS)
Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)
1998-01-01
A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.
Lu, Helen H; Cooper, James A; Manuel, Sharron; Freeman, Joseph W; Attawia, Mohammed A; Ko, Frank K; Laurencin, Cato T
2005-08-01
The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee, and limitations in existing reconstruction grafts have prompted an interest in tissue engineered solutions. Previously, we reported on a tissue-engineered ACL scaffold fabricated using a novel, three-dimensional braiding technology. A critical factor in determining cellular response to such a graft is material selection. The objective of this in vitro study was to optimize the braided scaffold, focusing on material composition and the identification of an appropriate polymer. The selection criteria are based on cellular response, construct degradation, and the associated mechanical properties. Three compositions of poly-alpha-hydroxyester fibers, namely polyglycolic acid (PGA), poly-L-lactic acid (PLLA), and polylactic-co-glycolic acid 82:18 (PLAGA) were examined. The effects of polymer composition on scaffold mechanical properties and degradation were evaluated in physiologically relevant solutions. Prior to culturing with primary rabbit ACL cells, scaffolds were pre-coated with fibronectin (Fn, PGA-Fn, PLAGA-Fn, PLLA-Fn), an important protein which is upregulated during ligament healing. Cell attachment and growth were examined as a function of time and polymer composition. While PGA scaffolds measured the highest tensile strength followed by PLLA and PLAGA, its rapid degradation in vitro resulted in matrix disruption and cell death over time. PLLA-based scaffolds maintained their structural integrity and exhibited superior mechanical properties over time. The response of ACL cells was found to be dependent on polymer composition, with the highest cell number measured on PLLA-Fn scaffolds. Surface modification of polymer scaffolds with Fn improved cell attachment efficiency and effected the long-term matrix production by ACL cells on PLLA and PLAGA scaffolds. Therefore based on the overall cellular response and its temporal mechanical and degradation properties in vitro, the PLLA braided scaffold pre-coated with Fn was found to be the most suitable substrate for ACL tissue engineering.
Mechanical behavior of a triaxially braided textile composite at high temperature
NASA Astrophysics Data System (ADS)
El Mourid, Amine
The work presented in this thesis aimed at understanding the influence of viscoelasticity, temperature and aging on the mechanical behaviour of a textile composite using experimental, analytical and numerical tools. The studied material was a triaxially braided composite with fibres in the 0°/+/-60° directions. The yarns were made of carbon fibres, embedded in an MVK10 temperature resistant polyimide matrix. The first step consisted in developing analytical and numerical frameworks to predict viscoelastic behaviour in textile composites. Simulations were performed for both braided and woven textile architectures, at different stiffness contrasts and yarns volume fractions. The analytical framework accuracy was verified with the help of the numerical simulations. An important finding of this study was that the analytical framework, combined with the Mori-Tanaka model, leads to relatively accurate predictions for both the permanent and transient parts. Therefore, the authors believe that the Mori-Tanaka model with an adjusted aspect ratio to take into account yarn curvature is reliable for predicting viscoelastic behaviour in textile composites. The textile composite that was studied in this project did not display viscoelastic behaviour, due to the high yarn volume fraction. However, the framework remains relevant for higher temperature applications or lower yarn volume fractions. The second step was to investigate the temperature effect on the tensile behavior of the carbon/MVK10 triaxially braided composite material studied in this project. To achieve this goal, a series of room and high temperature tensile tests on both matrix and composite samples were performed. The tests on composite samples were performed along two different material directions at the maximum service temperature allowed by the Federal Aviation Administration for aircraft components, and a dedicated replication technique was developed in order to track crack densities as a function of loading, for both test temperatures. Then, both analytical and numerical homogenization models were used to quantify the stress distribution at the yarns level as a function of the applied temperature. Finally, the homogenization models were used to explain the failure mechanisms obtained at both temperatures, for the two material directions tested. The study revealed that the impact of the temperature on the failure mechanisms of the textile composite was dependent on the loading direction. It was observed that the yarns and matrix were more compliant at high temperature, especially for the transverse and shear properties. These changes had negligible effects on the elastic properties of the composite in both directions. However, they created local stress redistributions at the yarns level, which in turn affected the ultimate tensile strength of the composite. The concentration of stress in specific yarns decreased the UTS of the composite and changed the damage profile during loading. The analysis showed the potential of analytical and numerical models to explain failure paths in textile composites. At high temperature, the evolution in the constituent elastic properties was responsible for the changes in the stress profile in the material. The final step consisted in the study of the aging effect on the tensile strength and the failure mechanisms of a carbon/MVK10 triaxially braided composite for two material directions. The damage evolution was monitored with the help of edge and cross-section microscopical observations. At the maximum service temperature, the effect of physical aging on the composite's stiffness and density was negligible while the effect of chemical aging was gradually detrimental to the UTS. It was found that the UTS decreased by 30% in Direction 1 and by 20% in Direction 2 after 9 months of aging. Cracks initiated after 1 month of aging, preferentially on the edge surfaces of the specimen and grew inward as aging time increased. The yarns that were transverse to the sample cutting direction acted as catalyst to the aging process, creating anisotropy in the reduction of mechanical properties. Thermal oxidation was the main agent behind UTS degradation in the triaxially braided composite, causing the initiation of transverse cracks on transverse yarns at the surface of the specimen. The crack density and depth increased during aging, further weakening the material. The FAA requirement for a maximum service temperature is suitable to prevent physical aging. However, it does not prevent UTS degradation caused by chemical aging when fibres are in contact with the oxidizing environment. Nevertheless, the MVK10 matrix tested in this work exhibited relative properties retention similar to that of PMR15, which might make this matrix a suitable replacement. (Abstract shortened by UMI.).
Chen, Wen-Cheng; Ko, Chia-Ling; Yang, Jia-Kai; Wu, Hui-Yu; Lin, Jia-Horng
2016-03-01
An attempt to maintain the three-dimensional space into restorative sites through the conveniently pack porous fillers are general used strategy. Advancement in the manufacturing protective shells in the scaffolds, which would be filled with brittle ceramic grafts for the development of highly connective pores provides the approach to solve crack problem for generating the tissues. Therefore, multilayered braided and alkalized poly(lactic acid) (PLA) composites with calcium phosphate bone cement (CPC) were synthesized and compared. The PLA/CPC composites were divided into various groups according to a series of heat-treatment temperatures (100-190 °C) and periods (1-3 h) and then characterized. The effects of 24-h immersion on the strength decay resistance of the samples were compared. Results showed that the residual oil capped on the surfaces of alkalized PLA braid was removed, and the structure was unaltered. However, the reduced tensile stress of alkalized PLA braids was due to ester-group formation by hydrolysis. Mechanical test results of PLA/CPC composites showed that the strength significantly increased after heat treatment, except when the heating temperature was higher than the PLA melting point at approximately 160-170 °C. The degree of PLA after recrystallization became higher than that of unheated composites, thereby leading to reduced strength and toughness of the specimen. Braiding fibers of biodegradable PLA reinforced and toughened the structure particularly of the extra-brittle material of thin-sheet CPC after implantation.
NASA Astrophysics Data System (ADS)
Ya, Jixuan; Liu, Zhenguo; Wang, Yuanhang
2017-06-01
The meso-structure is important in predicting mechanical properties of the three-dimensional (3D) braided composite. In this paper, the internal structure and porosity of three-dimensional full five-directional (3DF5D) braided composite is characterized at mesoscopic scale (the scale of the yarns) using micro-computed tomography (micro-CT) non-destructively. Glass fiber yarns as tracer are added into the sample made of carbon fiber to enhance the contrast in the sectional images. The model of tracer yarns is established with 3D reconstruction method to analyze the cross-section and path of yarns. The porosities are reconstructed and characterized in the end. The results demonstrate that the cross sections of braiding yarns and axial yarns change with the regions and the heights in one pitch of 3DF5D braided composites. The path of braiding yarns are various in the different regions while the axial yarns are always straight. Helical indentations appear on the surfaces of the axial yarns because of the squeeze from braiding yarns. Moreover, the porosities in different shapes and sizes are almost located in the matrix and between the yarns.
Braided Composites for Aerospace Applications. (Latest citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the design, fabrication, and testing of structural composites formed by braiding machines. Topics include computer aided design and associated computer aided manufacture of braided tubular and flat forms. Applications include aircraft and spacecraft structures, where high shear strength and stiffness are required.
NASA Astrophysics Data System (ADS)
Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan
2018-04-01
The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.
NASA Astrophysics Data System (ADS)
Niu, Xuming; Sun, Zhigang; Song, Yingdong
2017-11-01
In this thesis, a double-scale model for 3 Dimension-4 directional(3D-4d) braided C/SiC composites(CMCs) has been proposed to investigate mechanical properties of it. The double-scale model involves micro-scale which takes fiber/matrix/porosity in fibers tows into consideration and the unit cell scale which considers the 3D-4d braiding structure. Basing on the Micro-optical photographs of composite, we can build a parameterized finite element model that reflects structure of 3D-4d braided composites. The mechanical properties of fiber tows in transverse direction are studied by combining the crack band theory for matrix cracking and cohesive zone model for interface debonding. Transverse tensile process of 3D-4d CMCs can be simulated by introducing mechanical properties of fiber tows into finite element of 3D-4d braided CMCs. Quasi-static tensile tests of 3D-4d braided CMCs have been performed with PWS-100 test system. The predicted tensile stress-strain curve by the double scale model finds good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Computational simulation results can give the prediction of damage growth and progression and fracture toughness of composite structures. The experimental data from literature provide environmental effects on the fracture behavior of metallic or fiber composite structures. However, the traditional experimental methods to analyze the influence of the imposed conditions are expensive and time consuming. This research used the CODSTRAN code to model the temperature effects, scaling effects and the loading effects of fiber/braided composite specimens with and without fiber-optic sensors on the damage initiation and energy release rates. The load-displacement relationship and fracture toughness assessment approach is compared with the test results from literature and it is verified that the computational simulation, with the use of established material modeling and finite element modules, adequately tracks the changes of fracture toughness and subsequent fracture propagation for any fiber/braided composite structure due to the change of fiber orientations, presence of large diameter optical fibers, and any loading conditions.
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Naghipour Ghezeljeh, Paria; Bednarcyk, Brett A.
2018-01-01
This document describes a recently developed analysis tool that enhances the resident capabilities of the Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) and its application. MAC/GMC is a composite material and laminate analysis software package developed at NASA Glenn Research Center. The primary focus of the current effort is to provide a graphical user interface (GUI) capability that helps users optimize highly nonlinear viscoplastic constitutive law parameters by fitting experimentally observed/measured stress-strain responses under various thermo-mechanical conditions for braided composites. The tool has been developed utilizing the MATrix LABoratory (MATLAB) (The Mathworks, Inc., Natick, MA) programming language. Illustrative examples shown are for a specific braided composite system wherein the matrix viscoplastic behavior is represented by a constitutive law described by seven parameters. The tool is general enough to fit any number of experimentally observed stress-strain responses of the material. The number of parameters to be optimized, as well as the importance given to each stress-strain response, are user choice. Three different optimization algorithms are included: (1) Optimization based on gradient method, (2) Genetic algorithm (GA) based optimization and (3) Particle Swarm Optimization (PSO). The user can mix and match the three algorithms. For example, one can start optimization with either 2 or 3 and then use the optimized solution to further fine tune with approach 1. The secondary focus of this paper is to demonstrate the application of this tool to optimize/calibrate parameters for a nonlinear viscoplastic matrix to predict stress-strain curves (for constituent and composite levels) at different rates, temperatures and/or loading conditions utilizing the Generalized Method of Cells. After preliminary validation of the tool through comparison with experimental results, a detailed virtual parametric study is presented wherein the combined effects of temperature and loading rate on the predicted response of a braided composite is investigated.
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
Advanced resin systems and 3D textile preforms for low cost composite structures
NASA Technical Reports Server (NTRS)
Shukla, J. G.; Bayha, T. D.
1993-01-01
Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.
Influence of triaxial braid denier on ribbon-based fiber reinforced dental composites.
Karbhari, Vistasp M; Wang, Qiang
2007-08-01
The aim of the study was to compare the mechanical characteristics of two ultrahigh molecular weight polyethylene (UHMWPE) fiber-based triaxial braided reinforcements having different denier braider yarns used in fiber reinforced dental composites to elucidate differences in response and damage under flexural loading. Two commercially available triaxial braided reinforcing systems, differing in denier of the axial and braider yarns, using ultra high molecular weight polyethylene (UHMWPE) were used to reinforce rectangular bars towards the tensile surface which were tested in flexure. Mechanical characteristics including energy absorption were determined and results were compared based on Tukey post-test analysis and Weibull probability. Limited fatigue testing was also conducted for 100, 1000, and 10,000 cycles at a level of 75% of peak load. The effect of the braid denier on damage mechanisms was studied microscopically. The use of the triaxially braided ribbon as fiber reinforcement in the dental composite results in significant enhancement in flexural performance over that of the unreinforced dental composite (179% and 183% increase for the "thin" and "dense" braid reinforced specimens, respectively), with a fairly ductile, non-catastrophic post-peak response. With the exception of strain at peak load, there was very little difference between the performance from the two braid architectures. The intrinsic nature of the triaxial braid also results in very little decrease in flexural strength as a result of fatigue cycling at 75% of peak load. Use of the braids results in peak load levels which are substantially higher than those corresponding to points at which the dentin and unreinforced dental composites would fail. The total energy at peak load level is 56.8 and 60.7 times that at the level that dentin would fail if the reinforcement were not placed for the "thin" and "dense" reinforced braid reinforced composites, respectively. The research shows that in addition to enhancement in flexural performance characteristics, the use of a triaxial braid provides significant damage tolerance and fatigue resistance through its characteristic architecture wherein axial fibers are uncrimped and braider yarns provide shear resistance and enable local arrest of microcracks. Further, it is demonstrated that the decrease in braider yarn denier does not have a detrimental effect, with differences in performance characteristics, being in the main, statistically insignificant. This allows use of thinner reinforcement which provides ease of placement and better bonding without loss in performance.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1992-01-01
The preparation is reported of carbon fiber composites using advanced polymer resins. Current and ongoing research activities include: powder towpreg process; weaving, braiding and stitching dry powder prepreg; advanced tow placement; and customized ATP towpreg. The goal of these studies is to produce advanced composite materials for automated part fabrication using textile and robotics technology in the manufacture of subsonic and supersonic aircraft.
NASA Technical Reports Server (NTRS)
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
NASA Technical Reports Server (NTRS)
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
Microstructure-failure mode correlations in braided composites
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly
1992-01-01
Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.
Development of test methods for textile composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Ifju, Peter G.; Fedro, Mark J.
1993-01-01
NASA's Advanced Composite Technology (ACT) Program was initiated in 1990 with the purpose of developing less costly composite aircraft structures. A number of innovative materials and processes were evaluated as a part of this effort. Chief among them are composite materials reinforced with textile preforms. These new forms of composite materials bring with them potential testing problems. Methods currently in practice were developed over the years for composite materials made from prepreg tape or simple 2-D woven fabrics. A wide variety of 2-D and 3-D braided, woven, stitched, and knit preforms were suggested for application in the ACT program. The applicability of existing test methods to the wide range of emerging materials bears investigation. The overriding concern is that the values measured are accurate representations of the true material response. The ultimate objective of this work is to establish a set of test methods to evaluate the textile composites developed for the ACT Program.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc
2018-04-01
In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.
Mechanics of fiber reinforced materials
NASA Astrophysics Data System (ADS)
Sun, Huiyu
This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janke, Christopher James; Das, Sadananda; Oyola, Yatsandra
This report describes work on the successful completion of Milestone M2FT-15OR0310041 (1/30/2015) entitled, Demonstrate braided material with 3.5 g U/kg sorption capacity under seawater testing condition . This effort is part of the Seawater Uranium Recovery Program, sponsored by the U.S. Department of Energy, Office of Nuclear Energy, and involved the development of new adsorbent braided materials at the Oak Ridge National Laboratory (ORNL) and marine testing at the Pacific Northwest National Laboratory (PNNL). ORNL has recently developed four braided fiber adsorbents that have demonstrated uranium adsorption capacities greater than 3.5 g U/kg adsorbent after marine testing at PNNL. Themore » braided adsorbents were synthesized by braiding or leno weaving high surface area polyethylene fibers and conducting radiation-induced graft polymerization of itaconic acid and acrylonitrile monomers onto the braided materials followed by amidoximation and base conditioning. The four braided adsorbents demonstrated capacity values ranging from 3.7 to 4.2 g U/kg adsorbent after 56 days of exposure in natural coastal seawater at 20 oC. All data are normalized to a salinity of 35 psu.« less
Engineered Polymer Composites Through Electrospun Nanofiber Coating of Fiber Tows
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.
2013-01-01
Toughening and other property enhancements of composite materials are typically implemented by-modifying the bulk properties of the constituents, either the fiber or matrix materials. This often leads to difficulties in processing and higher material costs. Many composites consist of tows or yarns (thousands of individual fibers) that are either filament wound or processed into a fabric by weaving or braiding. The matrix material can be added to the tow or fabric before final processing, resulting in a prepreg material, or infused into the fiber material during final processing by a variety of methods. By using a direct electrospun deposition method to apply thermoplastic nanofiber to the surface of the tows, the tow-tow interface in the resulting composite can be modified while using otherwise conventional materials and handling processes. Other materials of interest could also be incorporated into the electrospun precursor.
Hennecke, Kathleen; Redeker, Joern; Kuhbier, Joern W.; Strauss, Sarah; Allmeling, Christina; Kasper, Cornelia; Reimers, Kerstin; Vogt, Peter M.
2013-01-01
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials. PMID:23613793
Karbhari, Vistasp M; Strassler, Howard
2007-08-01
The aim of this study was to compare and elucidate the differences in damage mechanisms and response of fiber-reinforced dental resin composites based on three different brands under flexural loading. The types of reinforcement consisted of a unidirectional E-glass prepreg (Splint-It from Jeneric/Petron Inc.), an ultrahigh molecular weight polyethylene fiber based biaxial braid (Connect, Kerr) and an ultrahigh molecular weight polyethylene fiber based leno-weave (Ribbond). Three different commercially available fiber reinforcing systems were used to fabricate rectangular bars, with the fiber reinforcement close to the tensile face, which were tested in flexure with an emphasis on studying damage mechanisms and response. Eight specimens (n=8) of each type were tested. Overall energy capacity as well as flexural strength and modulus were determined and results compared in light of the different abilities of the architectures used. Under flexural loading unreinforced and unidirectional prepreg reinforced dental composites failed in a brittle fashion, whereas the braid and leno-weave reinforced materials underwent significant deformation without rupture. The braid reinforced specimens showed the highest peak load. The addition of the unidirectional to the matrix resulted in an average strain of 0.06mm/mm which is 50% greater than the capacity of the unreinforced matrix, whereas the addition of the braid and leno-weave resulted in increases of 119 and 126%, respectively, emphasizing the higher capacity of both the UHM polyethylene fibers and the architectures to hold together without rupture under flexural loading. The addition of the fiber reinforcement substantially increases the level of strain energy in the specimens with the maximum being attained in the braid reinforced specimens with a 433% increase in energy absorption capability above the unreinforced case. The minimum scatter and highest consistency in response is seen in the leno-weave reinforced specimens due to the details of the architecture which restrict fabric shearing and movement during placement. It is crucial that the appropriate selection of fiber architectures be made not just from a perspective of highest strength, but overall damage tolerance and energy absorption. Differences in weaves and architectures can result in substantially different performance and appropriate selection can mitigate premature and catastrophic failure. The study provides details of materials level response characteristics which are useful in selection of the fiber reinforcement based on specifics of application.
Standard methods for open hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
Sizing effects have been investigated by comparing the open hole failure strengths of each of the four different braided architectures as a function of specimen thickness, hole diameter, and the ratio of specimen width to hole diameter. The data used to make these comparisons was primarily generated by Boeing. Direct comparisons of Boeing's results were made with experiments conducted at West Virginia University whenever possible. Indirect comparisons were made with test results for other 2-D braids and 3-D weaves tested by Boeing and Lockheed. In general, failure strength was found to decrease with increasing plate thickness, increase with decreasing hole size, and decreasing with decreasing width to diameter ratio. The interpretation of the sensitive to each of these geometrical parameters was complicated by scatter in the test data. For open hole tension testing of textile composites, the use of standard testing practices employed by industry, such as ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates should provide adequate results for material comparisons studies.
Evaluation of atomic oxygen resistant protective coatings for fiberglass-epoxy composites in LEO
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.
1989-01-01
Fiberglass-epoxy composite masts are the prime structural members for the Space Station Freedom solar array. At the altitude where Space Station Freedom will operate, atomic oxygen atoms are the most predominant species. Atomic oxygen is highly reactive and has been shown to oxidize organic and some metallic materials. Tests with random and directed atomic oxygen exposure have shown that the epoxy is removed from the composite exposing brittle glass fibers which could be easily removed from the surface where they could contaminate Space Station Freedom Systems. Protection or fiber containment systems; inorganic based paints, aluminum braid, and a metal coating; were evaluated for resistance to atomic oxygen, vacuum ultraviolet radiation, thermal cycling, and mechanical flexing. All appeared to protect well against atomic oxygen and provide fiber containment except for the single aluminum braid covering. UV radiation resistance was acceptable and in general, thermal cycling and flexure had little to no effect on the mass loss rate for most coatings.
Mechanical modeling of self-expandable stent fabricated using braiding technology.
Kim, Ju Hyun; Kang, Tae Jin; Yu, Woong-Ryeol
2008-11-14
The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.
Advances in Composites Technology
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Dexter, H. B.
1985-01-01
A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.
Investigation of Hygro-Thermal Aging on Carbon/Epoxy Materials for Jet Engine Fan Sections
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Roberts, Gary D.; Miller, Sandi G.; Pereira, J. Michael
2011-01-01
This poster summarizes 2 years of aging on E862 epoxy and E862 epoxy with triaxial braided T700s carbon fiber composite. Several test methods were used to characterize chemical, physical, and mechanical properties of both the resin and composite materials. The aging cycle that was used included varying temperature and humidity exposure. The goal was to evaluate the environmental effects on a potential jet engine fan section material. Some changes were noted in the resin which resulted in increased brittleness, though this did not significantly affect the tensile and impact test results. A potential decrease in compression strength requires additional investigation.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Paulsen, Phillip E.; Brady, Joyce A.; Ciancone, Michael L.
1988-01-01
Fiberglass-epoxy composites are considered for use as structural members for the mast of the space station solar array panel. The low Earth orbital environment in which space station is to operate is composed mainly of atomic oxygen, which has been shown to cause erosion of many organic materials and some metals. Ground based testing in a plasma asher was performed to determine the extent of degradation of fiberglass-epoxy composites when exposed to a simulated atomic oxygen environment. During exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. Several methods of protecting the composite were evaluated in an atomic oxygen environment and with thermal cycling and flexing. The protection techniques evaluated to date include an aluminum braid covering, an indium-tin eutectic and a silicone based paint. The open aluminum braid offered little protection while the CV-1144 coating offered some initial protection against atomic oxygen, but appears to develop cracks which accelerate degradation when flexed. Coatings such as the In-Sn eutectic may provide adequate protection by containing the glass fibers even though mass loss still occurs.
An overview of the NASA textile composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson
1993-01-01
The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.
Database of Mechanical Properties of Textile Composites
NASA Technical Reports Server (NTRS)
Delbrey, Jerry
1996-01-01
This report describes the approach followed to develop a database for mechanical properties of textile composites. The data in this database is assembled from NASA Advanced Composites Technology (ACT) programs and from data in the public domain. This database meets the data documentation requirements of MIL-HDBK-17, Section 8.1.2, which describes in detail the type and amount of information needed to completely document composite material properties. The database focuses on mechanical properties of textile composite. Properties are available for a range of parameters such as direction, fiber architecture, materials, environmental condition, and failure mode. The composite materials in the database contain innovative textile architectures such as the braided, woven, and knitted materials evaluated under the NASA ACT programs. In summary, the database contains results for approximately 3500 coupon level tests, for ten different fiber/resin combinations, and seven different textile architectures. It also includes a limited amount of prepreg tape composites data from ACT programs where side-by-side comparisons were made.
Farley Three-Dimensional-Braiding Machine
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1991-01-01
Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.
Recent progress in NASA Langley Research Center textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.
Standard Test Methods for Textile Composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Portanova, Marc A.
1996-01-01
Standard testing methods for composite laminates reinforced with continuous networks of braided, woven, or stitched fibers have been evaluated. The microstructure of these textile' composite materials differs significantly from that of tape laminates. Consequently, specimen dimensions and loading methods developed for tape type composites may not be applicable to textile composites. To this end, a series of evaluations were made comparing testing practices currently used in the composite industry. Information was gathered from a variety of sources and analyzed to establish a series of recommended test methods for textile composites. The current practices established for laminated composite materials by ASTM and the MIL-HDBK-17 Committee were considered. This document provides recommended test methods for determining both in-plane and out-of-plane properties. Specifically, test methods are suggested for: unnotched tension and compression; open and filled hole tension; open hole compression; bolt bearing; and interlaminar tension. A detailed description of the material architectures evaluated is also provided, as is a recommended instrumentation practice.
Qualifications of Bonding Process of Temperature Sensors to Deep-Space Missions
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Kitiyakara, Amarit; Redick, Richard W., III; Sunada, Eric T.
2011-01-01
A process has been examined for bonding a platinum resistance thermometer (PRT) onto potential aerospace materials such as flat aluminum surfaces and a flexible copper tube to simulate coaxial cables for flight applications. Primarily, PRTs were inserted into a silver-plated copper braid to avoid stresses on the sensor while the sensor was attached with the braid to the base material for long-duration, deep-space missions. A1-1145/graphite composite (planar substrate) and copper tube have been used in this study to assess the reliability of PRT bonding materials. A flexible copper tube was chosen to simulate the coaxial cable to attach PRTs. The substrate materials were cleaned with acetone wipes to remove oils and contaminants. Later, the surface was also cleaned with ethyl alcohol and was air-dried. The materials were gently abraded and then were cleaned again the same way as previously mentioned. Initially, shielded (silver plated copper braid) PRT (type X) test articles were fabricated and cleaned. The base antenna material was pretreated and shielded, and CV-2566 NuSil silicone was used to attach the shielded PRT to the base material. The test articles were cured at room temperature and humidity for seven days. The resistance of the PRTs was continuously monitored during the thermal cycling, and the test articles were inspected prior to, at various intermediate steps during, and at the end of the thermal cycling as well. All of the PRTs survived three times the expected mission life for the JUNO project. No adhesion problems were observed in the PRT sensor area, or under the shielded PRT. Furthermore, the PRT resistance accurately tracked the thermal cycling of the chamber.
Determination of the mechanical indices of composite materials by testing multilayered samples
NASA Astrophysics Data System (ADS)
Teregulov, I. G.; Kayumov, R. A.; Butenko, Yu. I.; Safiullin, D. Kh.
1996-09-01
The mechanical indices of materials such as composites reinforced by braids and ribbons are difficult to determine by standard methods. Moreover, the indices of such materials may be greatly altered when they are converted into various structures. It has been suggested that these indices be determined by analyzing the structure testing data. The determination of linear and nonlinear elastic, plastic, and viscoelastic parameters of reinforced materials is discussed. A very simple structure, namely, cylindrical shells made by symmetric winding, is studied as an example. Equilibrium conditions are used to obtain resolving equations relative to the mechanical indices. Convergence of iteration methods is examined. The effect of the scatter of experimental data on the calculated results is analyzed.
NASA Technical Reports Server (NTRS)
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
Graphite Fiber Textile Preform/Cooper Matrix Composites
NASA Technical Reports Server (NTRS)
Filatovs, George J.
1998-01-01
The purpose of this research was to produce a finned tube constructed of a highly conductive braided graphite fiber preform infiltrated with a copper matrix. In addition, the tube was to be fabricated with an integral geometry. The preform was integral in the sense that the tube and the fin could be braided to yield one continuous part. This composite component is a candidate for situations with high heat transmitting and radiation requirements. A proof-of-concept finned tube was braided and infiltrated with a copper matrix proving that a viable process was developed to fabricate the desired component. Braiding of high conductivity carbon fibers required much trial-and-error and development of special procedures. There are many tradeoffs between braidability and fiber conductivity. To understand the properties and structure of the braided finned tube, an geometric model of the braid structure was derived. This derivation set the basis for the research because knowing the tow orientations helped decipher the thermal as well as the mechanical and conduction tendencies. Infiltration of the fibers into a copper matrix was a complex procedure, and was performed by TRA, of Salt Lake City, Utah, using a proprietary process. Several batches were fabricated with a final, high quality batch serving as a confirming proof-of-concept.
Feasibility evaluation of the monolithic braided ablative nozzle
NASA Astrophysics Data System (ADS)
Director, Mark N.; McPherson, Douglass J., Sr.
1992-02-01
The feasibility of the monolithic braided ablative nozzle was evaluated as part of an independent research and development (IR&D) program complementary to the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC) Low-Cost, High-Reliability Case, Insulation and Nozzle for Large Solid Rocket Motors (LOCCIN) Program. The monolithic braided ablative nozzle is a new concept that utilizes a continuous, ablative, monolithic flame surface that extends from the nozzle entrance, through the throat, to the exit plane. The flame surface is fabricated using a Through-the-Thickness braided carbon-fiber preform, which is impregnated with a phenolic or phenolic-like resin. During operation, the braided-carbon fiber/resin material ablates, leaving the structural backside at temperatures which are sufficiently low to preclude the need for any additional insulative materials. The monolithic braided nozzle derives its potential for low life cycle cost through the use of automated processing, one-component fabrication, low material scrap, low process scrap, inexpensive raw materials, and simplified case attachment. It also has the potential for high reliability because its construction prevents delamination, has no nozzle bondlines or leak paths along the flame surface, is amenable to simplified analysis, and is readily inspectable. In addition, the braided construction has inherent toughness and is damage-tolerant. Two static-firing tests were conducted using subscale, 1.8 - 2.0-inch throat diameter, hardware. Tests were approximately 15 seconds in duration, using a conventional 18 percent aluminum/ammonium perchlorate propellant. The first of these tests evaluated the braided ablative as an integral backside insulator and exit cone; the second test evaluated the monolithic braided ablative as an integral entrance/throat/exit cone nozzle. Both tests met their objectives. Radial ablation rates at the throat were as predicted, approximately 0.017 in/sec; these rates are comparable to those for tapewrapped carbon phenolic materials. The maximum temperature rise on the outside surface occurred one inch from the nozzle exit plane and was less than 50 F at the end of the test. Further development for this concept is scheduled as part of phase 2 on the NASA/MSFC LOCCIN Program. During this effort, the nozzle materials, architecture, and processing will be optimized and tested in nozzles with 3- and 10-inch diameter throats. Further, a design and manufacturing plan for a full-scale, 20-inch-diameter throat, nozzle will be developed.
Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto
2017-08-01
Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Design Optimization and Characterization of Helicoidal Composites with Enhanced Impact Resistance
2011-01-12
mitigating the delamination problem. The reinforcement can be achieved by many methods such as stitching, braiding , z-fibers/z-rods, fiber waviness or...that act perpendicular to the plane of the laminate. Some of these methods involve stitching, braiding , or weaving fibers together. Other methods use...temperature channels in the autoclave and attaching vacuum connector to the vacuum hose for inspecting the sealing system. For curing the composite, the
NASA Technical Reports Server (NTRS)
Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.
1992-01-01
Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.
Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite
NASA Technical Reports Server (NTRS)
Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.
2010-01-01
A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.
Design and cost drivers in 2-D braiding
NASA Technical Reports Server (NTRS)
Morales, Alberto
1993-01-01
Fundamentally, the braiding process is a highly efficient, low cost method for combining single yarns into circumferential shapes, as evidenced by the number of applications for continuous sleeving. However, this braiding approach cannot fully demonstrate that it can drastically reduce the cost of complex shape structural preforms. Factors such as part geometry, machine design and configuration, materials used, and operating parameters are described as key cost drivers and what is needed to minimize their effect on elevating the cost of structural braided preforms.
Geomorphology and bank erosion of the Matanuska River, southcentral Alaska
Curran, Janet H.; McTeague, Monica L.
2011-01-01
Bank erosion along the Matanuska River, a braided, glacial river in southcentral Alaska, has damaged or threatened houses, roadways, and public facilities for decades. Mapping of river geomorphology and bank characteristics for a 65-mile study area from the Matanuska Glacier to the river mouth provided erodibility information that was assessed along with 1949-2006 erosion to establish erosion hazard data. Braid plain margins were delineated from 1949, 1962, and 2006 orthophotographs to provide detailed measurements of erosion. Bank material and height and geomorphic features within the Matanuska River valley (primarily terraces and tributary fans) were mapped in a Geographic Information System (GIS) from orthophotographs and field observations to provide categories of erodibility and extent of the erodible corridor. The braid plain expanded 861 acres between 1949 and 2006. Erosion in the highest category ranged from 225 to 1,043 feet at reaches of bank an average of 0.5 mile long, affecting 8 percent of the banks but accounting for 64 percent of the erosion. Correlation of erosion to measurable predictor variables was limited to bank height and material. Streamflow statistics, such as peak streamflow or mean annual streamflow, were not clearly linked to erosion, which can occur during the prolonged period of summer high flows where channels are adjacent to an erodible braid plain margin. The historical braid plain, which includes vegetated braid plain bars and islands and active channels, was identified as the greatest riverine hazard area on the basis of its historical occupation. In 2006, the historical braid plain was an average of 15 years old, as determined from the estimated age of vegetation visible in orthophotographs. Bank erosion hazards at the braid plain margins can be mapped by combining bank material, bank height, and geomorphology data. Bedrock bluffs at least 10 feet high (31 percent of the braid plain margins) present no erosion hazard. At unconsolidated banks (63 percent of the braid plain margins), erosion hazards are great and the distinction in hazards between banks of varying height or geomorphology is slight.
Hydrodynamic Forces on Composite Structures
2014-06-01
and placed under a vacuum of 10 mmHg overnight. The vacuum set up over the composite sample is shown in Figure 13, the hose in upper left leads to...pulley system, one of which drives the carriage via a braided steel cable. Although the pulley connection between the motor and the drive axle may...slip this system contains a tensioner device. More likely, the braided steel cable is slipping against the drive pulley which has a quarter-inch
Evaluation of Test Methods for Triaxially Braided Composites using a Meso-Scale Finite Element Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao
The characterization of triaxially braided composite is complicate due to the nonuniformity of deformation within the unit cell as well as the possibility of the freeedge effect related to the large size of the unit cell. Extensive experimental investigation has been conducted to develop more accurate test approaches in characterizing the actual mechanical properties of the material we are studying. In this work, a meso-scale finite element model is utilized to simulate two complex specimens: notched tensile specimen and tube tensile specimen, which are designed to avoid the free-edge effect and free-edge effect induced premature edge damage. The full fieldmore » strain data is predicted numerically and compared with experimental data obtained by Digit Image Correlation. The numerically predicted tensile strength values are compared with experimentally measured results. The discrepancy between numerically predicted and experimentally measured data, the capability of different test approaches are analyzed and discussed. The presented numerical model could serve as assistance to the evaluation of different test methods, and is especially useful in identifying potential local damage events.« less
The development of bioresorbable composite polymeric implants with high mechanical strength
NASA Astrophysics Data System (ADS)
Sharma, Upma; Concagh, Danny; Core, Lee; Kuang, Yina; You, Changcheng; Pham, Quynh; Zugates, Greg; Busold, Rany; Webber, Stephanie; Merlo, Jonathan; Langer, Robert; Whitesides, George M.; Palasis, Maria
2018-01-01
Implants for the treatment of tissue defects should mimic the mechanical properties of the native tissue of interest and should be resorbable as well as biocompatible. In this work, we developed a scaffold from variants of poly(glycolic) acid which were braided and coated with an elastomer of poly(glycolide-co-caprolactone) and crosslinked. The coating of the scaffold with the elastomer led to higher mechanical strength in terms of compression, expansion and elasticity compared to braids without the elastomer coating. These composite scaffolds were found to have expansion properties similar to metallic stents, utilizing materials which are typically much weaker than metal. We optimized the mechanical properties of the implant by tuning the elastomer branching structure, crosslink density, and molecular weight. The scaffolds were shown to be highly resorbable following implantation in a porcine femoral artery. Biocompatibility was studied in vivo in an ovine model by implanting the scaffolds into femoral arteries. The scaffolds were able to support an expanded open lumen over 12 months in vivo and also fully resorbed by 18 months in the ovine model.
Nasiri, F; Ajeli, S; Semnani, D; Jahanshahi, M; Emadi, R
2018-05-02
The present work investigates the mechanical properties of tubular carbon/Kevlar ® composite coated with poly(methyl methacrylate)/graphene nanoplates as used in the internal fixation of bones. Carbon fibers are good candidates for developing high-strength biomaterials and due to better stress transfer and electrical properties, they can enhance tissue formation. In order to improve carbon brittleness, ductile Kevlar ® was added to the composite. The tubular carbon/Kevlar ® composites have been prepared with tailorable braiding technology by changing the fiber pattern and angle in the composite structure and the number of composite layers. Fuzzy analyses are used for optimizing the tailorable parameters of 80 prepared samples and then mechanical properties of selected samples are discussed from the viewpoint of mechanical properties required for a bone fixation device. Experimental results showed that with optimizing braiding parameters the desired composite structure with mechanical properties close to bone properties could be produced. Results showed that carbon/Kevlar ® braid's physical properties, fiber composite distribution and diameter uniformity resulted in matrix uniformity, which enhanced strength and modulus due to better ability for distributing stress on the composite. Finally, as graphene nanoplates demonstrated their potential properties to improve wound healing intended for bone replacement, so reinforcing the PMMA matrix with graphene nanoplates enhanced the composite quality, for use as an implant.
Mechanical Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy; Ellis, David L.; Miner, Robert V.
1997-01-01
The present investigation examines the in-plane mechanical behavior of a particular woven metal matrix composite (MMC); 8-harness (8H) satin carbon/copper (C/Cu). This is accomplished via mechanical testing as well as micromechanical modeling. While the literature is replete with experimental and modeling efforts for woven and braided polymer matrix composites, little work has been done on woven and braided MMC's. Thus, the development and understanding of woven MMC's is at an early stage. 8H satin C/Cu owes its existence to the high thermal conductivity of copper and low density and thermal expansion of carbon fibers. It is a candidate material for high heat flux applications, such as space power radiator panels. The experimental portion of this investigation consists of monotonic and cyclic tension, compression, and Iosipescu shear tests, as well as combined tension-compression tests. Tests were performed on composite specimens with three copper matrix alloy types: pure Cu, Cu-0.5 weight percent Ti (Cu-Ti), and Cu-0.7 weight percent Cr (Cu-Cr). The small alloying additions are present to promote fiber/matrix interfacial bonding. The analytical modeling effort utilizes an approach in which a local micromechanical model is embedded in a global micromechanical model. This approach differs from previously developed analytical models for woven composites in that a true repeating unit cell is analyzed. However, unlike finite element modeling of woven composites, the geometry is sufficiently idealized to allow efficient geometric discretization and efficient execution.
Handbook of Analytical Methods for Textile Composites
NASA Technical Reports Server (NTRS)
Cox, Brian N.; Flanagan, Gerry
1997-01-01
The purpose of this handbook is to introduce models and computer codes for predicting the properties of textile composites. The handbook includes several models for predicting the stress-strain response all the way to ultimate failure; methods for assessing work of fracture and notch sensitivity; and design rules for avoiding certain critical mechanisms of failure, such as delamination, by proper textile design. The following textiles received some treatment: 2D woven, braided, and knitted/stitched laminates and 3D interlock weaves, and braids.
Characterization and development of materials for advanced textile composites
NASA Technical Reports Server (NTRS)
Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.
1993-01-01
Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.
Structural mechanics of 3-D braided preforms for composites. IV - The 4-step tubular braiding
NASA Technical Reports Server (NTRS)
Hammad, M.; El-Messery, M.; El-Shiekh, A.
1991-01-01
This paper presents the fundamentals of the 4-step 3D tubular braiding process and the structure of the preforms produced. Based on an idealized structural model, geometric relations between the structural parameters of the preform are analytically established. The effects of machine arrangement and operating conditions are discussed. Yarn retraction, yarn surface angle, outside diameter, and yarn volume fraction of the preform in terms of the pitch length, the inner diameter, and the machine arrangement are theoretically predicted and experimentally verified.
Code of Federal Regulations, 2014 CFR
2014-10-01
... covered with protective tubing. A set of two pieces of poly braid rope covered with light duty garden hose... line (400-lb test) or polypropylene multistrand material, known as braided or tarred mainline, and must... m) lengths of poly braid rope (3/8-inch (9.52 mm) diameter suggested), each covered with an 8-inch...
Development of braided rope engine seals
NASA Technical Reports Server (NTRS)
Ko, Frank K.; Cai, Zhong; Mutharasan, Rajakkannu; Steinetz, Bruce M.
1994-01-01
In this study, after reviewing current seal design concepts, the potential of textile structures for seal design is examined from the material, structural, and fabrication points of view. Braided structures are identified as potential candidates for hypersonic seal structures because of their conformability and design flexibility. A large family of braided structures using 2-D and 3-D architecture can be designed using well established methods to produce a wide range of braiding yarn orientation for wear resistance as well as seal porosity control. As a first demonstration of the approach, 2-D braided fiberglass seals were fabricated according to a factorial design experiment by varying braiding angles, fractional longitudinal fibers, and preload pressure levels. Factorial diagrams and response surfaces were constructed to elucidate the inter-relationship of the braiding parameters as well as the effect of preload pressures on leakage resistance of the seal. It was found that seal resistance is a strong function of fractional longitudinal fiber content. As braiding angle increases, seal leakage resistance increases, especially at high preload pressures and in seals having high proportion of longitudinal fibers.
Graphite fiber textile preform/copper matrix composites
NASA Technical Reports Server (NTRS)
Gilatovs, G. J.; Lee, Bruce; Bass, Lowell
1995-01-01
Graphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. Considerable effort has been expended on determining the optimal braidability--conductivity region. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior mechanical properties. Final batches of preforms, including a finned, near net shape tube, are being fabricated and will be infiltrated before summer.
A review on utilization of textile composites in transportation towards sustainability
NASA Astrophysics Data System (ADS)
Aly, Nermin M.
2017-10-01
Transportation industry is rapidly developing owing to its size and importance which affects on various aspects of life. It includes all the transport means that facilitate mobility of people or goods either by air, land or sea like aircrafts, automotives, ships, trains, etc. The utilization of textiles in this industry is increasing as a result of moving towards achieving sustainability and enhancing performance, comfort and safety. Through substituting heavier materials with textiles of high performance specifications and textile reinforced composites to reduce weight, fuel consumption and CO2 emissions. Composite materials can fulfil the demands for sustainability in the transportation sector through using renewable, recycled and lightweight materials, considering the requirements of each category of transport vehicles. Textiles used in reinforcing composites are diverse including fibers, yarns or fabric preforms such as woven, nonwoven, knitted, braided which varies from 2D to complex 3D structures. This paper presents a brief review on the utilization of textiles in reinforcing composites for various transportation applications to achieve sustainability. Also, discussing the influence of textiles structural parameters like fiber material properties, fabric production technique and construction on their mechanical behaviour. Focusing on researches findings in this area and highlighting some prospects for further developments domestically.
Resin transfer molding of textile composites
NASA Technical Reports Server (NTRS)
Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William
1993-01-01
The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.
TEXCAD: Textile Composite Analysis for Design. Version 1.0: User's manual
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
The Textile Composite Analysis for Design (TEXCAD) code provides the materials/design engineer with a user-friendly desktop computer (IBM PC compatible or Apple Macintosh) tool for the analysis of a wide variety of fabric reinforced woven and braided composites. It can be used to calculate overall thermal and mechanical properties along with engineering estimates of damage progression and strength. TEXCAD also calculates laminate properties for stacked, oriented fabric constructions. It discretely models the yarn centerline paths within the textile repeating unit cell (RUC) by assuming sinusoidal undulations at yarn cross-over points and uses a yarn discretization scheme (which subdivides each yarn not smaller, piecewise straight yarn slices) together with a 3-D stress averaging procedure to compute overall stiffness properties. In the calculations for strength, it uses a curved beam-on-elastic foundation model for yarn undulating regions together with an incremental approach in which stiffness properties for the failed yarn slices are reduced based on the predicted yarn slice failure mode. Nonlinear shear effects and nonlinear geometric effects can be simulated. Input to TEXCAD consists of: (1) materials parameters like impregnated yarn and resin properties such moduli, Poisson's ratios, coefficients of thermal expansion, nonlinear parameters, axial failure strains and in-plane failure stresses; and (2) fabric parameters like yarn sizes, braid angle, yarn packing density, filament diameter and overall fiber volume fraction. Output consists of overall thermoelastic constants, yarn slice strains/stresses, yarn slice failure history, in-plane stress-strain response and ultimate failure strength. Strength can be computed under the combined action of thermal and mechanical loading (tension, compression and shear).
An Analysis of Nondestructive Evaluation Techniques for Polymer Matrix Composite Sandwich Materials
NASA Technical Reports Server (NTRS)
Cosgriff, Laura M.; Roberts, Gary D.; Binienda, Wieslaw K.; Zheng, Diahua; Averbeck, Timothy; Roth, Donald J.; Jeanneau, Philippe
2006-01-01
Structural sandwich materials composed of triaxially braided polymer matrix composite material face sheets sandwiching a foam core are being utilized for applications including aerospace components and recreational equipment. Since full scale components are being made from these sandwich materials, it is necessary to develop proper inspection practices for their manufacture and in-field use. Specifically, nondestructive evaluation (NDE) techniques need to be investigated for analysis of components made from these materials. Hockey blades made from sandwich materials and a flat sandwich sample were examined with multiple NDE techniques including thermographic, radiographic, and shearographic methods to investigate damage induced in the blades and flat panel components. Hockey blades used during actual play and a flat polymer matrix composite sandwich sample with damage inserted into the foam core were investigated with each technique. NDE images from the samples were presented and discussed. Structural elements within each blade were observed with radiographic imaging. Damaged regions and some structural elements of the hockey blades were identified with thermographic imaging. Structural elements, damaged regions, and other material variations were detected in the hockey blades with shearography. Each technique s advantages and disadvantages were considered in making recommendations for inspection of components made from these types of materials.
NASA Astrophysics Data System (ADS)
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
Topological model of composite fermions in the cyclotron band generator picture: New insights
NASA Astrophysics Data System (ADS)
Staśkiewicz, Beata
2018-03-01
A combinatorial group theory in the braid groups is correlated with the unusual "anyon" statistic of particles in 2D Hall system in the fractional quantum regime well. On this background has been derived cyclotron band generator as a modification and generalization band generator, first established to solve the word and conjugacy problems in the braid group terms. Topological commensurability condition has been embraced by canonical factors - like, based on the concept of parallel descending cycles. Owing to this we can mathematically capture the general hierarchy of correlated states in the lowest Landau level, describing the fractional quantum Hall effect hierarchy, in terms of cyclotron band generators, especially for those being beyond conventional composite fermions model. It has been also shown that cyclotron braid subgroups, developed for interpretation of Laughlin correlations, are a special case of the right-angled Artin groups.
Development of generalized 3-D braiding machines for composite preforms
NASA Technical Reports Server (NTRS)
Huey, Cecil O., Jr.; Farley, Gary L.
1992-01-01
The development of prototype braiding machines for the production of generalized braid patterns is described. Mechanical operating principles and control strategies are presented for two prototype machines which have been fabricated and evaluated. Both machines represent advances over current fabrication techniques for composite materials by enabling nearly ideal control of fiber orientations within preform structures. They permit optimum design of parts that might be subjected to complex loads or that have complex forms. Further, they overcome both the lack of general control of produced fiber architectures and the complexity of other weaving processes that have been proposed for the same purpose. One prototype, the Farley braider, consists of an array of turntables that can be made to oscillate in 90 degree steps. Yarn ends are transported about the surface formed by the turntables by motorized tractors which are controlled through an optical link with the turntables and powered through electrical contact with the turntables. The necessary relative motions are produced by a series of linear tractor moves combined with a series of turntable rotations. As the tractors move about, they weave the yarn ends into the desired pattern. The second device, the shuttle plate braider, consists of a braiding surface formed by an array of stationary square sections, each separated from its neighbors by a gap. A plate beneath this surface is caused to reciprocate in two perpendicular directions, first in one direction and then in the other. This movement is made possibly by openings in the plate that clear short columns supporting the surface segments. Yarn ends are moved about the surface and interwoven by shuttles which engage the reciprocating plate as needed to yield the desired movements. Power and control signals are transmitted to the shuttles through electrical contact with the braiding surface. The shuttle plate is a passively driven prime mover that supplies the power to move all shuttles and the shuttles are simple devices that employ only a solenoid to engage the shuttle plate on command. Each shuttle is assigned a unique identity and is controlled independently. When compared to each other, the Farley braider is felt to have the advantage of speed and the shuttle plate braider, the advantage of simplicity.
LaHaye, Paul G.; Rahman, Faress H.; Lebeau, Thomas P. E.; Severin, Barbara K.
1998-01-01
A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.
LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.
1998-06-16
A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.
Effects of thermal and moisture cycling on the internal structure of stitched RTM laminates
NASA Technical Reports Server (NTRS)
Walker, Jeff; Roundy, Lance; Goering, Jon
1993-01-01
Conventional aerospace composites are strong and stiff in the directions parallel to the carbon fibers, but they are prone to delaminations and damage in the through-the-thickness directions. Recent research has shown that substantial improvements in damage tolerance are obtained from textile composites with Z-direction reinforcement provided by stitching, weaving, or braiding. Because of the mismatch in thermal and moisture expansion properties of the various material components, there is a potential for microcracks to develop in the resin matrix. These cracks can form to relieve the mechanical stresses that are generated during curing or in-service temperature cycles.
Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.
Effects of braiding on tensile properties of four-strand human hamstring tendon grafts.
Millett, Peter J; Miller, Bruce S; Close, Matthew; Sterett, William I; Walsh, William; Hawkins, Richard J
2003-01-01
Anterior cruciate ligament reconstruction is commonly performed with autogenous hamstring tendon grafts. To ascertain the effects of braiding on ultimate tensile strength and stiffness of hamstring tendon graft. Controlled laboratory study. Sixteen fresh-frozen semitendinosus and gracilis tendons were harvested from eight matched (right and left) human cadaveric specimens. Both sets of hamstring tendons from each matched pair were doubled, creating a four-strand graft. Grafts were then randomized so that one graft from each matched pair was braided and the other remained unbraided. The diameter of each graft construct was recorded. Grafts were tested to failure on a materials testing machine. There were no significant differences in cross-sectional area before or after braiding. Fifteen of 16 tendons failed midsubstance; 1 failed at the lower clamp. Braiding reduced the initial tensile strength and stiffness of human hamstring tendon grafts in this study by 35.0% and 45.8%, respectively. Braiding may place the collagen fibers in a suboptimal orientation for loading that results in a weaker graft. We do not recommend the use of braiding if the strongest, stiffest initial graft is desired.
NASA Astrophysics Data System (ADS)
Ataş, Akın; Gautam, Mayank; Soutis, Constantinos; Potluri, Prasad
2017-04-01
Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.
Reference Manual on Interference Seals and Connectors for Undersea Electrical Applications
1976-07-01
processes. It has a standard line of metal shell connectors, the ER and EB series, which are available with braided and laced harnass work and breakouts, and...Assemblies (RM) 4-10 4.3.2 Molded Plastic Assemblies (PM) 4-11 4.3.3 Metal Shell Assemblies (MS) 4-12 4.3.4 Pressure-balanced Oil-filled Assemblies...connectors according to material composition. The classes of connectors include: Rubber Molded (RM), Plastic Molded (PM), Metal Shell (MS), Pressure-Balanced
Numerical Simulations of As-Extruded Mg Matrix Composites Interpenetrated by Metal Reinforcement
NASA Astrophysics Data System (ADS)
Y Wang, H.; Wang, S. R.; Yang, X. F.; Li, P.
2017-12-01
The interpenetrating magnesium composites reinforced by three-dimensional braided stainless steel wire reinforcement were fabricated and investigated. The extrusion processes of the composites in different conditions were carried out and simulated by finite element method using the DEFORM-3D software. The results show that the matrix and reinforcement of the composites form a good interfacial bonding and the grains were refined by extrusion and the influence of reinforcement, which are in accordance with the enhanced strength and degraded plasticity. The combined quality between the matrix and reinforcement can be strengthened in extrusion chamber where occurred large strain and suffered intense stress, and the effective stress of the material increases continuously with the increase in extrusion ratio and the decrease in extrusion speed until it reaches a stable value.
Feasibility of a Braided Composite for Orthopedic Bone Cast
Evans, Katherine R; Carey, Jason P
2013-01-01
A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized. PMID:23459455
Feasibility of a braided composite for orthopedic bone cast.
Evans, Katherine R; Carey, Jason P
2013-01-01
A tubular braided composite bone cast for improving the efficiency and quality of bone fracture treatment is investigated. Finite element analysis was used to evaluate stress concentrations in fracture sites supported with plate and tubular casts. The stress in a plated bone is 768 % of that in a whole bone at the same location, while it is only 47 % in a bone with a tubular cast. Three unbroken synthetic humeri were mechanically tested using an in-vitro long bone testing procedure developed in-house to find their stiffness at 20° and 60° abduction; these were found to be 116.8 ± 1.5 N/mm and 20.63 ± 0.02 N/mm, respectively. A 2 cm gap osteotomy was cut through the diaphysis in each bone. The bones were casted with a Kevlar/Cold cure composite, with calculated braid angles and thicknesses that Closely matched bone propoerties. The stiffness tests were repeated, and the results were within 10 % of the unbroken bone. This novel method of bone casting is promising if other clinical challenges can be minimized.
NASA Technical Reports Server (NTRS)
Dow, Marvin B.; Dexter, H. Benson
1997-01-01
Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.
Finite-time braiding exponents
NASA Astrophysics Data System (ADS)
Budišić, Marko; Thiffeault, Jean-Luc
2015-08-01
Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.
Finite-time braiding exponents.
Budišić, Marko; Thiffeault, Jean-Luc
2015-08-01
Topological entropy of a dynamical system is an upper bound for the sum of positive Lyapunov exponents; in practice, it is strongly indicative of the presence of mixing in a subset of the domain. Topological entropy can be computed by partition methods, by estimating the maximal growth rate of material lines or other material elements, or by counting the unstable periodic orbits of the flow. All these methods require detailed knowledge of the velocity field that is not always available, for example, when ocean flows are measured using a small number of floating sensors. We propose an alternative calculation, applicable to two-dimensional flows, that uses only a sparse set of flow trajectories as its input. To represent the sparse set of trajectories, we use braids, algebraic objects that record how trajectories exchange positions with respect to a projection axis. Material curves advected by the flow are represented as simplified loop coordinates. The exponential rate at which a braid stretches loops over a finite time interval is the Finite-Time Braiding Exponent (FTBE). We study FTBEs through numerical simulations of the Aref Blinking Vortex flow, as a representative of a general class of flows having a single invariant component with positive topological entropy. The FTBEs approach the value of the topological entropy from below as the length and number of trajectories is increased; we conjecture that this result holds for a general class of ergodic, mixing systems. Furthermore, FTBEs are computed robustly with respect to the numerical time step, details of braid representation, and choice of initial conditions. We find that, in the class of systems we describe, trajectories can be re-used to form different braids, which greatly reduces the amount of data needed to assess the complexity of the flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
PNNL has developed a recirculating flume system for exposing braided adsorbent material to natural seawater under realistic temperature and flow-rate exposure conditions. The flumes are constructed of transparent acrylic material; they allow external light to pass into the flumes and permit photosynthetic growth of naturally present marine organisms (biofouling). Because the system consists of two flumes, replicate experiments can be conducted in which one of the flumes can be manipulated relative to the other. For example, one flume can be darkened to eliminate light exposure by placing a black tarp over the flume such that dark/light experiments can be conducted.more » Alternatively, two different braided adsorbents can be exposed simultaneously with no potential cross contamination issues. This report describes the first use of the PNNL flume system to study the impact of biofouling on adsorbent capacity. Experiments were conducted with the ORNL AI8 braided adsorbent material in light-exposed and darkened flumes for a 42-day exposure experiment. The major objective of this effort is to develop a system for the exposure of braided adsorbent material to unfiltered seawater, and to demonstrate the system by evaluating the performance of adsorption material when it is exposed to natural marine biofouling as it would be when the technology is used in the marine environment. Exposures of amidoxime-based polymeric braid adsorbents prepared by Oak Ridge Natural Laboratory (ORNL) were exposed to ambient seawater at 20°C in a flume system. Adsorption kinetics and adsorption capacity were assessed using time series determinations of uranium adsorption and one-site ligand saturation modeling. Biofouling in sunlight surface seawater has the potential to significantly add substantial biogenic mass to adsorption material when it is exposed for periods greater than 21 days. The observed biomass increase in the light flume was approximately 80% of the adsorbent mass after 42 days. The amount of biomass increase retained by the adsorbent in the dark flume was only a quarter of that observed in the light-exposed flume. Biofouling in sunlit surface seawater has the potential to reduce uranium adsorption capacity by ~30% after 42 days of exposure. Minimal or no adsorption loss due to biofouling occurred in the dark flume exposure. Attempts to assess time series measurements of uranium adsorption capacity using “snips” off a master braid are fraught with problems due to the inability to easily determine the mass of the adsorbent material when the biofouling is present. The ability to determine the adsorption of biogenically important trace elements (e.g. Fe, Mn, Zn, Cu, and Sr) on biofouled adsorbents is also problematic.« less
2008-01-01
phenomena. The work of Bergeron et al. [7] was subsequently extended by Braid [8] to incorporate different charge sizes, soil types and improved...place, a series of water hoses is placed in pit bottom to allow the introduction of water into the pit from the bottom. Next, approximately 14.2m3 of... Braid , 17th International MABS Symposium, Las Vegas, USA, June 2002. [8]. M. P. Braid , Defence R&D Canada, Suffield Special Publication, DRES SSSP
NASA Technical Reports Server (NTRS)
Scardino, Frank L.
1992-01-01
In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.
Braid Entropy of Two-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael
2015-12-01
The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data.
Braid Entropy of Two-Dimensional Turbulence
Francois, Nicolas; Xia, Hua; Punzmann, Horst; Faber, Benjamin; Shats, Michael
2015-01-01
The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the dissipation and material transport in many industrial and natural processes. However, collecting quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult to determine because such description ultimately relies on often inaccessible multi-particle information. Here we report laboratory measurements in two-dimensional turbulence that offer an alternative topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian trajectories through a global measure of their entanglement. The topological length of material fluid lines can be derived from these braids. This length is found to grow exponentially with time, giving access to the braid topological entropy . The entropy increases as the square root of the turbulent kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the probability distribution of is positively skewed and shows strong exponential tails. Our results suggest that may serve as a measure of the irreversibility of turbulence based on minimal principles and sparse Lagrangian data. PMID:26689261
Development of hybrid braided composite rods for reinforcement and health monitoring of structures.
Rana, Sohel; Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A Gomes
2014-01-01
In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible.
Development of Hybrid Braided Composite Rods for Reinforcement and Health Monitoring of Structures
Zdraveva, Emilija; Pereira, Cristiana; Fangueiro, Raul; Correia, A. Gomes
2014-01-01
In the present study, core-reinforced braided composite rods (BCRs) were developed and characterized for strain sensing capability. A mixture of carbon and glass fibre was used in the core, which was surrounded by a braided cover of polyester fibres. Three compositions of core with different carbon fibre/glass fibre weight ratios (23/77, 47/53, and 100/0) were studied to find out the optimum composition for both strain sensitivity and mechanical performance. The influence of carbon fibre positioning in BCR cross-section on the strain sensing behaviour was also investigated. Strain sensing property of BCRs was characterized by measuring the change in electrical resistance with flexural strain. It was observed that BCRs exhibited increase (positive response) or decrease (negative response) in electrical resistance depending on carbon fibre positioning. The BCR with lowest amount of carbon fibre was found to give the best strain sensitivity as well as the highest tensile strength and breaking extension. The developed BCRs showed reversible strain sensing behaviour under cyclic flexural loading with a maximum gauge factor of 23.4 at very low strain level (0.55%). Concrete beams reinforced with the optimum BCR (23/77) also exhibited strain sensing under cyclic flexural strain, although the piezoresistive behaviour in this case was irreversible. PMID:24574867
Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.
Karjalainen, T; Göransson, H; Viinikainen, A; Jämsä, T; Ryhänen, J
2010-07-01
Nickel-titanium shape memory alloy (NiTi) is a new suture material that is easy to handle, is strong, and biocompatible. The purpose of this study was to evaluate the material properties and biomechanical behaviour of 150 microm and 200 microm NiTi wires in flexor tendon repair. Braided polyester (4-0 Ethibond) was used as control. Fifty fresh-frozen porcine flexor tendons were repaired using the Pennington modification of the Kessler repair or a double Kessler technique. NiTi wires were stiffer and reached higher tensile strength compared to braided polyester suture. Repairs with 200 microm NiTi wire had a higher yield force, ultimate force and better resistance to gapping than 4-0 braided polyester repairs. Repairs made with 200 microm NiTi wire achieved higher stiffness and ultimate force than repairs made with 150 microm NiTi wire.
PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.
Mo, X; Weber, H-J; Ramakrishna, S
2006-08-01
The objective of this paper was to fabricate a biodegradable tubular scaffold for small diameter (d<6 mm) blood vessel tissue engineering. The tube scaffold needed a porous wall for cell attachment, proliferation and tissue regeneration with its degradation. A novel method given in this paper was to coat a porous layer of poly (epsilon-caprolactone) (PCL) on the outside of a poly (glycolic-co-lactic acid) (PGLA with GA:LA=90:10) fiber braided tube to give a PCL-PGLA composite. The PGLA tube was fabricated using a braiding machine by inserting a Teflon tube with the desired diameter in center of the 20 spindles, which are the carriers of PGLA fibers. Changing the diameter of the Teflon tube can vary the inner diameter of a braided PGLA tube. Thermally induced phase separation method was used for PCL solution coating on the surface of the PGLA braided tube. Controlling the polymer concentration, non-solvent addition and quenching temperature generated the pore structures, with pore sizes ranging from 10-30 microm. The fibroblast cells were seeded on the tubular scaffold and cultured in vitro for the biocompatibility investigation. Histology results showed that the fibroblast cells proliferated on the interconnected pore of the PCL porous layer in 1 week.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary d.; Goldberg, Robert K.
2008-01-01
In previous work, the ballistic impact resistance of triaxial braided carbon/epoxy composites made with large flat tows (12k and 24k) was examined by impacting 2 X2 X0.125" composite panels with gelatin projectiles. Several high strength, intermediate modulus carbon fibers were used in combination with both untoughened and toughened matrix materials. A wide range of penetration thresholds were measured for the various fiber/matrix combinations. However, there was no clear relationship between the penetration threshold and the properties of the constituents. During some of these experiments high speed cameras were used to view the failure process, and full-field strain measurements were made to determine the strain at the onset of failure. However, these experiments provided only limited insight into the microscopic failure processes responsible for the wide range of impact resistance observed. In order to investigate potential microscopic failure processes in more detail, quasi-static tests were performed in tension, compression, and shear. Full-field strain measurement techniques were used to identify local regions of high strain resulting from microscopic failures. Microscopic failure events near the specimen surface, such as splitting of fiber bundles in surface plies, were easily identified. Subsurface damage, such as fiber fracture or fiber bundle splitting, could be identified by its effect on in-plane surface strains. Subsurface delamination could be detected as an out-of-plane deflection at the surface. Using this data, failure criteria could be established at the fiber tow level for use in analysis. An analytical formulation was developed to allow the microscopic failure criteria to be used in place of macroscopic properties as input to simulations performed using the commercial explicit finite element code, LS-DYNA. The test methods developed to investigate microscopic failure will be presented along with methods for determining local failure criteria that can be used in analysis. Results of simulations performed using LS-DYNA will be presented to illustrate the capabilities and limitations for simulating failure during quasi-static deformation and during ballistic impact of large unit cell size triaxial braid composites.
Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine
NASA Technical Reports Server (NTRS)
Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
2000-01-01
Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.
Characterization of Composite Fan Case Resins
NASA Technical Reports Server (NTRS)
Dvoracek, Charlene M.
2004-01-01
The majority of commercial turbine engines that power today s aircraft use a large fan driven by the engine core to generate thrust which dramatically increases the engine s efficiency. However, if one of these fan blades fails during flight, it becomes high energy shrapnel, potentially impacting the engine or puncturing the aircraft itself and thus risking the lives of passengers. To solve this problem, the fan case must be capable of containing a fan blade should it break off during flight. Currently, all commercial fan cases are made of either just a thick metal barrier or a thinner metal wall surrounded by Kevlar-an ultra strong fiber that elastically catches the blade. My summer 2004 project was to characterize the resins for a composite fan case that will be lighter and more efficient than the current metal. The composite fan case is created by braiding carbon fibers and injecting a polymer resin into the braid. The resin holds the fibers together, so at first using the strongest polymer appears to logically lead to the strongest fan case. Unfortunately, the stronger polymers are too viscous when melted. This makes the manufacturing process more difficult because the polymer does not flow as freely through the braid, and the final product is less dense. With all of this in mind, it is important to remember that the strength of the polymer is still imperative; the case must still contain blades with high impact energy. The research identified which polymer had the right balance of properties, including ease of fabrication, toughness, and ability to transfer the load to the carbon fibers. Resin deformation was studied to better understand the composite response during high speed impact. My role in this research was the testing of polymers using dynamic mechanical analysis and tensile, compression, and torsion testing. Dynamic mechanical analysis examines the response of materials under cyclic loading. Two techniques were used for dynamic mechanical analysis. The ARES Instrument analyzed the material through torsion. The second machine, TA Instruments apparatus, applied a bending force to the specimen. These experiments were used to explore the effects of temperature and strain rate on the stiffness and strength of the resins. The two different types of loading allowed us to verify our results. An axial-torsional load frame, manufactured by MTS Systems, Inc., was used to conduct the tensile, compression, and torsional testing. These tests were used to determine the stress-strain curves for the resins. The elastic and plastic deformation data was provided to another team member for characterization of high fidelity material property predictions. This information was useful in having a better understanding of the polymers so that the fan cases could be as sturdy as possible. Deformation studies are the foundation for the computational modeling that provides the structural design of a composite engine case as well as detailed analysis of the blade impact event.
New tension band material for fixation of transverse olecranon fractures: a biomechanical study.
Lalonde, James Allen; Rabalais, R David; Mansour, Alfred; Burger, Evalina L; Riemer, Barry L; Lu, Yun; Baratta, Richard V
2005-10-01
This study tested the use of braided polyethylene cable as an option for repairing transverse olecranon fractures. Six cadaveric elbows underwent a transverse olecranon osteotomy followed by fixation with tension band constructs using 18-gauge wire and Secure-Strand (U.S. Surgical, North Haven, Conn). Distraction forces up to 450 N were applied to the triceps tendon while measuring fracture displacement with an extensometer. The average maximal fracture gap with the standard AO tension band technique using stainless steel wire was 0.66 +/- 0.43 mm, as opposed to 0.68 +/- 0.45 mm with braided polyethylene cable. A paired t test indicated no significant difference between the two materials. These results support the feasibility of braided polyethylene cable as an alternative to the standard steel-wire tension band.
RTM370 Polyimide Braided Composites: Characterization and Impact Testing
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Revilock, Duane M.; Ruggeri, Charles R.; Criss, Jim M., Jr.; Mintz, Eric A.
2013-01-01
RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature.
Three-dimensional analysis of anisotropic spatially reinforced structures
NASA Technical Reports Server (NTRS)
Bogdanovich, Alexander E.
1993-01-01
The material-adaptive three-dimensional analysis of inhomogeneous structures based on the meso-volume concept and application of deficient spline functions for displacement approximations is proposed. The general methodology is demonstrated on the example of a brick-type mosaic parallelepiped arbitrarily composed of anisotropic meso-volumes. A partition of each meso-volume into sub-elements, application of deficient spline functions for a local approximation of displacements and, finally, the use of the variational principle allows one to obtain displacements, strains, and stresses at anypoint within the structural part. All of the necessary external and internal boundary conditions (including the conditions of continuity of transverse stresses at interfaces between adjacent meso-volumes) can be satisfied with requisite accuracy by increasing the density of the sub-element mesh. The application of the methodology to textile composite materials is described. Several numerical examples for woven and braided rectangular composite plates and stiffened panels under transverse bending are considered. Some typical effects of stress concentrations due to the material inhomogeneities are demonstrated.
Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Dexter, Benson H.
1996-01-01
A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.
Progressive Failure And Life Prediction of Ceramic and Textile Composites
NASA Technical Reports Server (NTRS)
Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.
1998-01-01
An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.
Experimental Investigation of Textile Composite Materials Using Moire Interferometry
NASA Technical Reports Server (NTRS)
Ifju, Peter G.
1995-01-01
The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less speculation and more documentation.
Improved Subcell Model for the Prediction of Braided Composite Response
NASA Technical Reports Server (NTRS)
Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.
2013-01-01
In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.
Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon.
Kujala, Sauli; Pajala, Ari; Kallioinen, Matti; Pramila, Antti; Tuukkanen, Juha; Ryhänen, Jorma
2004-01-01
Nitinol (NiTi) is a promising new tendon suture material with good strength, easy handling and good super-elastic properties. NiTi sutures were implanted for biocompatibility testing into the right medial gastrocnemius tendon in 15 rabbits for 2, 6 and 12 weeks. Additional sutures were implanted in subcutaneous tissue for strength measurements in order to determine the effect of implantation on strength properties of NiTi suture material. Braided polyester sutures (Ethibond) of approximately the same diameter were used as control. Encapsulating membrane formation around the sutures was minimal in the case of both materials. The breaking load of NiTi was significantly greater compared to braided polyester. Implantation did not affect the strength properties of either material.
Quantification of processing artifacts in textile composites
NASA Technical Reports Server (NTRS)
Pastore, Christopher M.
1993-01-01
One of the greatest difficulties in developing detailed models of the mechanical response of textile reinforced composites is an accurate model of the reinforcing elements. In the case of elastic property prediction, the variation of fiber position may not have a critical role in performance. However, when considering highly localized stress events, such as those associated with cracks and holes, the exact position of the reinforcement probably dominates the failure mode. Models were developed for idealized reinforcements which provide an insight into the local behavior. However, even casual observations of micrographical images reveals that the actual material deviates strongly from the idealized models. Some of the deviations and causes are presented for triaxially braided and three dimensionally woven textile composites. The necessary modeling steps to accommodate these variations are presented with some examples. Some of the ramifications of not accounting for these discrepencies are also addressed.
NASA Astrophysics Data System (ADS)
Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei
2017-12-01
Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.
Ballistic Impact of Braided Composites with a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw K.; Xie, Ming; Braley, Mike
2002-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Failure modes were identified for aluminum plates and for composites plates and half-rings made from triaxial carbon fiber braid having a 0/+/- 60deg architecture. For aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate. For composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/-60deg fiber directions until triangular flaps opened to form a hole. For composite half-rings fabricated with 0deg fibers aligned circumferentially, fiber tensile failure also occurred in the back ply. Cracks first propagated from this site perpendicular the 0deg fibers. The cracks then turned to follow the +/-60deg fibers and 0deg fibers until rectangular flaps opened to form a hole. Damage in the composites was localized near the impact site, while cracks in the aluminum extended to the boundaries.
Recent progress in NASA Langley textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.
NASA Technical Reports Server (NTRS)
Jackson, Wade C.; Portanova, Marc A.
1995-01-01
This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage initiates was measured and the delamination size as a function of force was determined. The force to initiate large damage was significantly lower in braids and weaves. The delamination diameter - impact forace relationship was quanitfied using a damage resistance parameter, Q(*), which related delamination diameter to imapct force over a range of delamination sizes. Using this Q(*) parameter to rate the materials, the stitched uniweaves, toughened epoxy tapes, and through-the-thickness orthogonal interlock weave were the most damage resistant.
Mini-RPV Launch System Conceptual Study
1978-12-01
are discussed later. Although shock cord has not found extensive use in aerospace in recent years, the technology of elastomers and braids has advanced...considerably beyond the off-the-shelf material (MIL-C-5651B) on which this study is based. Special elastomers , such as silicone rubber, and braid ...STUDIES .... .......... 36 7.1 Elastic, Concept 1-1 ... ............ 36 7.1.1 Introduction ...... ....... ... 36 7.1.2 Elastomeric (Shock Cord), Concept I
NASA Astrophysics Data System (ADS)
Eriksson, Patrick G.; Reczko, Boris F. F.; Jaco Boshoff, A.; Schreiber, Ute M.; Van der Neut, Markus; Snyman, Carel P.
1995-06-01
Three architectural elements are identified in the Lower Proterozoic Magaliesberg Formation (Pretoria Group, Transvaal Supergroup) of the Kaapvaal craton, South Africa: (1) medium- to coarse-grained sandstone sheets; (2) fine- to medium-grained sandstone sheets; and (3) mudrock elements. Both sandstone sheet elements are characterised by horizontal lamination and planar cross-bedding, with lesser trough cross-bedding, channel-fills and wave ripples, as well as minor desiccated mudrock partings, double-crested and flat-topped ripples. Due to the local unimodal palaeocurrent patterns in the medium- to coarse-grained sandstone sheets, they are interpreted as ephemeral braid-delta deposits, which were subjected to minor marine reworking. The predominantly bimodal to polymodal palaeocurrent trends in the fine- to medium-grained sandstone sheets are inferred to reflect high-energy macrotidal processes and more complete reworking of braid-delta sands. The suspension deposits of mudrocks point to either braid-delta channel abandonment, or uppermost tidal flat sedimentation. The depositional model comprises ephemeral braid-delta systems which debouched into a high-energy peritidal environment, around the margins of a shallow epeiric sea on the Kaapvaal craton. Braid-delta and tidal channel dynamics are inferred to have been similar. Fine material in the Magaliesberg Formation peritidal complexes indicates that extensive aeolian removal of clay does not seem applicable to this example of the early Proterozoic.
High temperature dynamic engine seal technology development
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.
1992-01-01
Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.
An investigation to determine the producibility of a 3-D braider and bias direction weaving loom
NASA Technical Reports Server (NTRS)
Huey, Cecil O., Jr.
1991-01-01
The development of prototype machines for the production of generalized braid patterns is described. Mechanical operating principles and control strategies are presented for two prototype machines which were fabricated and evaluated. Both machines represent advances over current techniques for forming composite material preforms by enabling near ideal control of fiber orientation. Furthermore, they overcome both the lack of general control of produced fiber architectures and the complexity of other weaving processes that were produced for the same purpose. One prototype, the modified Farley braider, consists of an array of turntables which can be rotated 90 degrees and returned; hence, they can form tracks in the x and y axis. Yarn ends are transported about the surface formed by the turntables using motorized tractors. These tractors are controlled using an optical link with a control circuit and host computer. The tractors are powered through electrical contact with the turntables. The necessary relative motions are produced by a series of linear tractor moves combined with a sequence of turntable rotations. The movement of the tractors about the surface causes the yarns to produce the desired braiding pattern. The second device, the shuttle plate braider, consists of a braiding surface formed by an array of square elements, each separated from its neighbor by a gap. Beneath this surface lies a shuttle plate, which reciprocates first in one axis and then in the other. As this movement takes place, yarn carrying shuttles engage and disengage the plate by means of solenoid activated pins. By selective engagement and disengagement, the shuttles can move the yarn ends in any desired pattern, forming the desired braid. Control power, and control signals, are transmitted from the electronic interface circuit and host computer, via the braiding surface through electrical contact with the shuttles. Motive power is proved to the shuttles by motion of the shuttle plate, which is passively driven using pneumatic rams. Each shuttle is a simple device that uses only a solenoid to engage the plate and is a simple device that uses only a solenoid to engage the plate and is independently controllable. When compared with each other, the modified Farley braider has the advantage of speed, and the shuttle plate braider the advantage of mechanical control and simplicity.
GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules.
Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego
2011-01-01
Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop ("braid") topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described.
Compression response of tri-axially braided textile composites
NASA Astrophysics Data System (ADS)
Song, Shunjun
2007-12-01
This thesis is concerned with characterizing the compression stiffness and compression strength of 2D tri-axially braided textile composites (2DTBC). Two types of 2DTBC are considered differing only on the resin type, while the textile fiber architecture is kept the same with bias tows at 45 degrees to the axial tows. Experimental, analytical and computational methods are described based on the results generated in this study. Since these composites are manufactured using resin transfer molding, the intended and as manufactured composite samples differ in their microstructure due to consolidation and thermal history effects in the manufacturing cycle. These imperfections are measured and the effect of these imperfections on the compression stiffness and strength are characterized. Since the matrix is a polymer material, the nonuniform thermal history undergone by the polymer at manufacturing (within the composite and in the presence of fibers) renders its properties to be non-homogenous. The effects of these non-homogeneities are captured through the definition of an equivalent in-situ matrix material. A method to characterize the mechanical properties of the in-situ matrix is also described. Fiber tow buckling, fiber tow kinking and matrix microcracking are all observed in the experiments. These failure mechanisms are captured through a computational model that uses the finite element (FE) technique to discretize the structure. The FE equations are solved using the commercial software ABAQUS version 6.5. The fiber tows are modeled as transversely isotropic elastic-plastic solids and the matrix is modeled as an isotropic elastic-plastic solid with and without microcracking damage. Because the 2DTBC is periodic, the question of how many repeat units are necessary to model the compression stiffness and strength are examined. Based on the computational results, the correct representative unit cell for this class of materials is identified. The computational models and results presented in the thesis provide a means to assess the compressive strength of 2DTBC and its dependence on various microstructural parameters. The essential features (for example, fiber kinking) of 2DTBC under compressive loading are captured accurately and the results are validated by the compression experiments. Due to the requirement of large computational resources for the unit cell studies, simplified models that use less computer resources but sacrifice some accuracy are presented for use in engineering design. A combination of the simplified models is shown to provide a good prediction of the salient features (peak strength and plateau strength) of these materials under compression loading. The incorporation of matrix strain rate effects, a study of the effect of the bias tow angle and the inclusion of viscoelastic/viscoplastic behavior for the study of fatigue are suggested as extensions to this work.
Ballistic Impact of Braided Composites With a Soft Projectile
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Pereira, J. Michael; Revilock, Duane M., Jr.; Binienda, Wieslaw; Xie, Ming; Braley, Mike
2004-01-01
Impact tests using a soft gelatin projectile were performed to identify failure modes that occur at high strain energy density during impact loading. Use of a soft projectile allows a large amount of kinetic energy to be transferred into strain energy in the target before penetration occurs. Failure modes were identified for flat aluminum plates and for flat composite plates made from a triaxial braid having a quasi-isotropic fiber architecture with fibers in the 0 and +/- 60 deg. directions. For the aluminum plates, a large hole formed as a result of crack propagation from the initiation site at the center of the plate to the fixed boundaries. For the composite plates, fiber tensile failure occurred in the back ply at the center of the plate. Cracks then propagated from this site along the +/- 60 deg. fiber directions until triangular flaps opened to allow the projectile to pass through the plate. The damage size was only slightly larger than the initial impact area. It was difficult to avoid slipping of the fixed edges of the plates during impact, and slipping was shown to have a large effect on the penetration threshold. Failure modes were also identified for composite half-rings fabricated with the 0 deg. fibers aligned circumferentially. Slipping of the edges was not a problem in the half-ring tests. For the composite half-rings, fiber tensile failure also occurred in the back ply. However, cracks initially propagated from this site in a direction transverse to the 0 deg. fibers. The cracks then turned to follow the +/- 60 deg. fibers for a short distance before turning again to follow 0 deg. fibers until two approximately rectangular flaps opened to allow the projectile to pass through the plate. The damage size in the composite half-rings was also only slightly larger than the initial impact area. Cracks did not propagate to the boundaries, and no delamination was observed. The damage tolerance demonstrated by the quasi-isotropic triaxial braid composites indicate that composites of this type can reasonably be considered as a lightweight alternative to metals for fan cases in commercial jet engines.
Processing, properties and applications of composites using powder-coated epoxy towpreg technology
NASA Technical Reports Server (NTRS)
Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.
1993-01-01
Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.
Impact Study of Synthetic and Alternative Fuel Usage in Army Aircraft Propulsion Systems.
1981-07-01
oil were Included for comparison. The elastomers tested represented all of the non- metallic materials found in aircraft fuel systems. The study on...a Buna N liner (adjacent to the fuel)surrounded by a wire braid and a special butyl-rubber outer hose . These hoses comformed to the following...or Stratoflex Incorporated. The hose usually has a nylon or wire braid on the outside conforming to MIL-C-83291 or MIL-C-83797. Two hose designs are
NASA Technical Reports Server (NTRS)
Gillham, J. K.
1974-01-01
The results are discussed of the on-line interface of the Torsional Braid Analysis experiment to an Hierarchical Computer System for data acquisition, data reduction and control of experimental variables. Some experimental results are demonstrated and the data reduction procedures are outlined. Several modes of presentation of the final computer-reduced data are discussed in an attempt to elucidate possible interrelations between the thermal variation of the rigidity and loss parameters.
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
A polymer driveshaft for use in orbital and rotational atherectomy
NASA Astrophysics Data System (ADS)
Grothe, Preston Lee
Driveshafts used in atherectomy medical devices are often comprised of coiled or braided metal wires. These constructions are designed to tolerate delivery through tortuous vessels and can endure high speed rotation used during activation of the atherectomy treatment. This research investigated polymer driveshaft designs, which were comprised of polymer inner and outer layers, and coiled or braided stainless steel wires. The polymer driveshaft materials included polyimide, nylon 12, and polytetrafluoroethylene (PTFE). Mechanical testing of polymer driveshafts was conducted to determine material response in bending, tension, compression, and torsion. The polymer driveshaft test results were then compared with current coiled metal wire driveshaft constructions. The investigation identified polymer driveshaft options that could feasibly work in an atherectomy application.
Ballistic and Cyclic Rig Testing of Braided Composite Fan Case Structures
NASA Technical Reports Server (NTRS)
Watson, William R.; Roberts, Gary D.; Pereira, J. Michael; Braley, Michael S.
2015-01-01
FAA fan blade-out certification testing on turbofan engines occurs very late in an engine's development program and is very costly. It is of utmost importance to approach the FAA Certification engine test with a high degree of confidence that the containment structure will not only contain the high-energy debris, but that it will also withstand the cyclic loads that occur with engine spooldown and continued rotation as the non-running engine maintains a low rotor RPM due to forced airflow as the engine-out aircraft returns to an airport. Accurate rig testing is needed for predicting and understanding material behavior of the fan case structure during all phases of this fan blade-out event.
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1990-01-01
A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.
2007-08-01
Diameter ........................................................... 13 Figure 14: Braid Angle...must be resisted, and Beta which is the bias angle of the braid . This equation is specific to a fabric that is braided and not woven. Figure 14...shows what the bias angle in a braided fabric. Figure 14: Braid Angle Because braided fabrics are stronger than woven for air beams, braided
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1991-01-01
Progress was made on the preparation of carbon fiber composites using advanced polymer resins. Processes reported include powder towpreg process, weaving towpreg made from dry powder prepreg, composite from powder coated towpreg, and toughening of polyimide resin (PMR) composites by semi-interpenetrating networks. Several important areas of polymer infiltration into fiber bundles will be researched. Preparation to towpreg for textile preform weaving and braiding and for automated tow placement is a major goal, as are the continued development of prepregging technology and the various aspects of composite part fabrication.
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
46 CFR 182.720 - Nonmetallic piping materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... braid; (iv) Flexible hose used for alcohol-gasoline blend fuels must meet the permeability requirements...) and (d) of this section. (b) Flexible nonmetallic materials (hose) may be used in vital and non-vital... gasoline or diesel fuel systems. Flexible nonmetallic materials (hose) may be used where permitted by...
Low-Cost Production of Composite Bushings for Jet Engine Applications
NASA Technical Reports Server (NTRS)
Gray, Robert A.
1998-01-01
The objectives of this research program were to reduce the manufacturing costs of variable stator vane bushings by 1) eliminating the expensive carbon fiber braiding operation, 2) replacing the batch mode impregnation, B-stage, and cutting operations with a continuous process, and 3) reducing the molding cycle and machining operations with injection molding to achieve near-net shapes. Braided bushings were successfully fabricated with both AMB-17XLD and AMB-TPD resin systems. The composite bushings achieved high glass transition temperature after post-cure (+300 C) and comparable weight loss to the PNM-15 bushings. ANM-17XLD bushings made with "batch-mode" molding compound (at 0.5 in. fiber length) achieved a +300 lb-force flange break strength which was superior to the continuous braided-fiber reinforced bushing. The non-MDA resin technology developed in this contract appears attractive for bushing applications that do not exceed a 300 C use temperature. Two thermoplastic polyimide resins were synthesized in order to generate injection molding compound powders. Excellent processing results were obtained at injection temperatures in excess of 300 C. Micro-tensile specimens were produced from each resin type and the Tg measurements (by TMA) for these samples were equivalent to AURUM(R). Thermal Gravimetric Analysis (TGA) conducted at 10 C/min showed that the non-MDA AMB-type polyimide thermoplastics had comparable weight loss to PMR-15 up to 500 C.
Zhu, Zhihong; Tong, Hua; Ren, Yaoyao; Hu, Jiming
2006-01-01
The ultrastructure of clam (Meretrix lusoria) was investigated by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction analyzer (XRD) combining with in situ texture decalcified technique and the micro-hardness of clam was determined, in order to understand the spatial relationship between the mineral phase and organic matrix and further explain the correlation between the property and structure. The results showed that hierarchical fabrication is the major structure character of this mollusc shell. There is specific braided structure forming from domains composed of needle-like structure made up of the single crystal of aragonite. High magnification TEM image of clam indicates the intracrystal region of the aragonite single crystal is made up of subgrain phase and some amorphous substance. There are various crystal grain growth preferential orientations in the different growth direction of the shell. An amount of organic microtubule distribute evenly in the base of calcium carbonate as reinforcement phase. The mechanical property of this natural biological composite is better than other aragonite layer of mollusc shells and pearls according to the data of micro-hardness testing. The braided structure and organic microtubule reinforcement phase are responsible for its high mechanical performance. The stereo hierarchical fabrication of clam was elucidated for the first time.
Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi
2015-01-01
A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front" character.
Liu, Ziliang; Shen, Fang; Zhu, Xiaomin; Li, Fengjie; Tan, Mengqi
2015-01-01
A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km). The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a “small plain, big front” character. PMID:26075611
NASA Astrophysics Data System (ADS)
Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.
2012-12-01
Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.
Crimped braided sleeves for soft, actuating arm in robotic abdominal surgery.
Elsayed, Yahya; Lekakou, Constantina; Ranzani, Tommaso; Cianchetti, Matteo; Morino, Mario; Arezzo, Alberto; Menciassi, Arianna; Geng, Tao; Saaj, Chakravarthini M
2015-01-01
This paper investigates different types of crimped, braided sleeve used for a soft arm for robotic abdominal surgery, with the sleeve required to contain balloon expansion in the pneumatically actuating arm while it follows the required bending, elongation and diameter reduction of the arm. Three types of crimped, braided sleeves from PET (BraidPET) or nylon (BraidGreyNylon and BraidNylon, with different monofilament diameters) were fabricated and tested including geometrical and microstructural characterisation of the crimp and braid, mechanical tests and medical scratching tests for organ damage of domestic pigs. BraidPET caused some organ damage, sliding under normal force of 2-5 N; this was attributed to the high roughness of the braid pattern, the higher friction coefficient of polyethylene terephthalate (PET) compared to nylon, and the high frequency of the crimp peaks for this sleeve. No organ damage was observed for the BraidNylon, attributed to both the lower roughness of the braid pattern and the low friction coefficient of nylon. BraidNylon also required the lowest tensile force during its elongation to similar maximum strain as that of BraidPET, translating to low power requirements. BraidNylon is recommended for the crimped sleeve of the arm designed for robotic abdominal surgery.
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-08-12
Catheter visualization and tracking remains a challenge in interventional MR.Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2 degrees C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.
Kocaturk, Ozgur; Saikus, Christina E; Guttman, Michael A; Faranesh, Anthony Z; Ratnayaka, Kanishka; Ozturk, Cengizhan; McVeigh, Elliot R; Lederman, Robert J
2009-01-01
Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm) in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability) and antenna (signal attenuation) properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures. PMID:19674464
The effect of moisture on the dynamic thermomechanical properties of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Sykes, G. F.; Burks, H. D.; Nelson, J. B.
1977-01-01
A study has been made of the effect of moisture absorption on the dynamic thermomechanical properties of a graphite/epoxy composite recently considered for building primary aircraft structures. Torsional braid analysis (TBA) and thermomechanical analysis (TMA) techniques were used to measure changes in the glass transition temperature (Tg) and the initial softening temperature (heat distortion temperature, HDT) of T-300/5209 graphite/epoxy composites exposed to room temperature water soak.
High temperature braided rope seals for static sealing applications
NASA Technical Reports Server (NTRS)
Adams, Michael L.; Olsen, Andrew; Darolia, Ram; Steinetz, Bruce M.; Bartolotta, Paul A.
1996-01-01
Achieving efficiency and performance goals of advanced aircraft and industrial systems are leading designers to implement high temperature materials such as ceramics and intermetallics. Generally these advanced materials are applied selectively in the highest temperature sections of the engine system including the combustor and high pressure turbine, amongst others. Thermal strains that result in attaching the low expansion-rate components to high expansion rate superalloy structures can cause significant life reduction in the components. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Designers require high temperature, low-leakage, compliant seals to mitigate thermal stresses and control parasitic and cooling airflow between structures. NASA is developing high temperature braided rope seals in a variety of configurations to help solve these problems. This paper will describe the types of seals being developed, describe unique test techniques used to assess seal performance, and present leakage flow data under representative pressure, temperature and scrubbing conditions. Feasibility of the braided rope seals for both an industrial tube seal and a turbine vane seal application is also demonstrated.
Ceramic Fiber Structures for Cryogenic Load-Bearing Applications
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eckel, Andrew J.
2009-01-01
This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.
Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.
Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S
2017-05-01
Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Yun, Hee Mann; DiCarlo, James A.
2007-01-01
The tensile mechanical properties of ceramic matrix composites (CMC) in directions off the primary axes of the reinforcing fibers are important for architectural design of CMC components that are subjected to multi-axial stress states. In this study, 2D-woven melt-infiltrated (MI) SiC/SiC composite panels with balanced fiber content in the 0 degree and 90 degree directions were tensile loaded in-plane in the 0 degree direction and at 45 degree to this direction. In addition, a 2D triaxially-braided MI composite panel with balanced fiber content in the plus or minus 67 degree bias directions and reduced fiber content in the axial direction was tensile loaded perpendicular to the axial direction tows (i.e., 23 degrees from the bias fibers). Stress-strain behavior, acoustic emission, and optical microscopy were used to quantify stress-dependent matrix cracking and ultimate strength in the panels. It was observed that both off-axis loaded panels displayed higher composite onset stresses for through-thickness matrix cracking than the 2D-woven 0/90 panels loaded in the primary 0 degree direction. These improvements for off-axis cracking strength can in part be attributed to higher effective fiber fractions in the loading direction, which in turn reduces internal stresses on critical matrix flaws for a given composite stress. Also for the 0/90 panel loaded in the 45 degree direction, an improved distribution of matrix flaws existed due to the absence of fiber tows perpendicular to the loading direction. In addition, for the +67/0/-67 braided panel, the axial tows perpendicular to the loading direction were not only low in volume fraction, but were also were well separated from one another. Both off-axis oriented panels also showed relatively good ultimate tensile strength when compared to other off-axis oriented composites in the literature, both on an absolute strength basis as well as when normalized by the average fiber strength within the composites. Initial implications are discussed for constituent and architecture design to improve the directional cracking of SiC/SiC CMC components with MI matrices.
Lee, Dominic J O'
2015-04-15
Dual mechanical braiding experiments provide a useful tool with which to investigate the nature of interactions between rod-like molecules, for instance actin and DNA. In conditions close to molecular condensation, one would expect an appearance of a local minimum in the interaction potential between the two molecules. We investigate this situation, introducing an attractive component into the interaction potential, using a model developed for describing such experiments. We consider both attractive interactions that do not depend on molecular structure and those which depend on a DNA-like helix structure. In braiding experiments, an attractive term may lead to certain effects. A local minimum may cause molecules to collapse from a loosely braided configuration into a tight one, occurring at a critical value of the moment applied about the axis of the braid. For a fixed number of braid pitches, this may lead to coexistence between the two braiding states, tight and loose. Coexistence implies certain proportions of the braid are in each state, their relative size depending on the number of braid pitches. This manifests itself as a linear dependence in numerically calculated quantities as functions of the number of braid pitches. Also, in the collapsed state, the braid radius stays roughly constant. Furthermore, if the attractive interaction is helix dependent, the left-right handed braid symmetry is broken. For a DNA like charge distribution, using the Kornyshev-Leikin interaction model, our results suggest that significant braid collapse and coexistence only occurs for left handed braids. Regardless of the interaction model, the study highlights the possible qualitative physics of braid collapse and coexistence; and the role helix specific forces might play, if important. The model could be used to connect other microscopic theories of interaction with braiding experiments.
Densification control and analysis of outer shell of new high-temperature vacuum insulated composite
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Zhaofeng; Jiang, Yun; Yu, Shengjie; Xu, Tengzhou; Li, Binbin; Chen, Zhou
2017-11-01
A novel high temperature vacuum insulated composite with low thermal conductivity composed of SiC foam core material and sealing outer shell is discussed, which will have a great potential to be used as thermal protection system material. In this composite, the outer shell is the key to maintain its internal vacuum, which is consisted of 2.5D C/C and SiC coating. So the densification processes of outer shell, including 2.5D braiding process, chemical vapor infiltration (CVI) pyrolytic carbon (PyC) process, polymer infiltration and pyrolysis (PIP) glassy carbon (GC) process and chemical vapor deposition (CVD) SiC process, are focused in this paper. The measuring result of the gas transmission quantity of outer shell is only 0.14 cm3/m2 · d · Pa after 5 times CVD processes, which is two order of magnitude lower than that sample deposited one time. After 10 times thermal shock cycles, the gas transmission quantity increases to 1.2 cm3/m2 · d · Pa. The effective thermal conductivity of high temperature vacuum insulated composite ranged from 0.19 W m-1 K-1 to 0.747 W m-1 K-1 within the temperature from 20 °C to 900 °C. Even after 10 thermal shock cycles, the variation of the effective thermal conductivity is still consistent with that without treatments.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1997-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Method and apparatus for three dimensional braiding
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1995-01-01
A machine for three-dimensional braiding of fibers is provided in which carrier members travel on a curved, segmented and movable braiding surface. The carrier members are capable of independent, self-propelled motion along the braiding surface. Carrier member position on the braiding surface is controlled and monitored by computer. Also disclosed is a yarn take-up device capable of maintaining tension in the braiding fiber.
Design and characterization of a hyperelastic tubular soft composite.
Shaheen, Robert; Doumit, Marc; Helal, Alexander
2017-11-01
Research in the field of human mobility assistive devices, aiming to reduce the metabolic cost of daily activities, is seeing the benefits of the exclusive use of passive actuators to store and release energy during the gait cycle. Current devices commonly employ either mechanical springs or Pneumatic Artificial Muscles as the primary method of passive actuation. The Pneumatic Artificial Muscle has proven to be a superior actuation choice for these devices, when compared to its alternatives. However, challenges regarding muscle pressure loss and limited elongation potential have been identified. This paper presents a hyperelastic tubular Soft Composite that replicates the distinctive mechanical behaviour of the Pneumatic Artificial Muscle without the need for internal pressurization. The proposed Soft Composite solution is achieved by impregnating a prefabricated polyethylene terephthalate braided sleeve, held at a high initial fibre angle, with a silicone prepolymer. A comprehensive experimental evaluation is achieved on numerous prototypes for a variety of customizable design parameters including: the initial fibre angle, the silicone stiffness, and the braided sleeve style. This research has successfully developed, tested, and validated a novel Soft Composite that can achieve the desired nonlinear stiffness and elongation potential for optimal use as passive actuation in human mobility assistive devices. Copyright © 2017 Elsevier Ltd. All rights reserved.
SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Mitchell A.; Asgari-Targhi, Mahboubeh, E-mail: m.berger@exeter.ac.u, E-mail: m.asgari@ucl.ac.u
2009-11-01
The Parker model for heating of the solar corona involves reconnection of braided magnetic flux elements. Much of this braiding is thought to occur at as yet unresolved scales, for example, braiding of threads within an extreme-ultraviolet or X-ray loop. However, some braiding may be still visible at scales accessible to TRACE or Hinode. We suggest that attempts to estimate the amount of braiding at these scales must take into account the degree of coherence of the braid structure. In this paper, we examine the effect of reconnection on the structure of a braided magnetic field. We demonstrate that simplemore » models of braided magnetic fields which balance the input of topological structure with reconnection evolve to a self-organized critical state. An initially random braid can become highly ordered, with coherence lengths obeying power-law distributions. The energy released during reconnection also obeys a power law. Our model gives more frequent (but smaller) energy releases nearer to the ends of a coronal loop.« less
Advanced Technology Composite Fuselage: Program Overview
NASA Technical Reports Server (NTRS)
Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.;
1997-01-01
The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.
Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H.; Adams, Michael L.
2006-01-01
This viewgraph presentation describes the effects of compression, staging and braid angle on braided rope seals. The contents include: 1) Test Fixture Schematics; 2) Comparison of Hybrid Seal Braid Architecture; 3) Residual Interference After Compression Cycling; 4) Effect of Compression, Braid, and Staging on Seal Flow; 5) Effect of Staging on Seal Pressure Drop; 6) Three Stag Seal Durability; 7) P&W Turbine Vane Seal Requirements; and 8) Next Generation Fighter F-22 P&W F119 Engines.
Graphite fiber textile preform/copper matrix composites
NASA Technical Reports Server (NTRS)
Filatovs, G. J.
1993-01-01
This project has the objective of exploring the use of graphite fiber textile preform/copper matrix composites in spacecraft heat transmitting and radiating components. The preforms are to be fabricated by braiding of tows and when infiltrated with copper will result in a 3-D reinforced, near net shape composite with improved specific properties such as lower density and higher stiffness. It is anticipated that the use of textile technology will result in a more robust preform and consequently better final composite; it is hard to anticipate what performance tradeoffs will result, and these will be explored through testing and characterization.
Fatigue properties of superelastic Ti-Ni filaments and braided cables for bone fixation.
Baril, Y; Brailovski, V
2010-02-01
This work is focused on the fatigue properties of the braided hollow tubular cables for bone fixation made of superelastic Ti-Ni filaments. To evaluate the fatigue life of the cable and the impact of braiding on fatigue life, a comparative study was conducted on both the braided cable and the single filament. The results of strain-controlled fatigue testing under variable mean and alternating strain conditions demonstrated that: (a) even though alternating strain is the most influent parameter, mean strain also has a significant impact on the fatigue life of both the filament and the braid; an improvement in the braided cable's fatigue life is observed under mean strains corresponding to the middle of the superelastic loop plateau; and (b) run-out (10(5) cycles) is reached at 1% of alternating strain for the filament, and at 0.3% for the braided cable. It was proved that the negative impact of braiding on fatigue life is caused: (a) by friction-induced damage of the braided filaments during cable manufacturing and (b) by locally occurring bending in the vicinity of the filaments' crossing, combined with the interfilament fretting during repetitive stretching of the braided cable.
Numerical investigations of the mechanical properties of braided vascular stents.
Fu, Wenyu; Xia, Qixiao; Yan, Ruobing; Qiao, Aike
2018-01-01
Braided stents, such as Pipeline Embolization Device (PED; ev3 Neurovascular, Irvine, CA, USA), are commonly used to treat cerebral aneurysms. However, little information is available on the compression and bending characteristics of such stents. This paper investigates how geometrical parameters of braided stents influence their radial compression and bending characteristics. Six groups of braided stent models with different braiding angles, numbers of wires and wire diameters are constructed. Parametric analyses of these models are conducted using Abaqus/Explicit software. The numerical results of a finite element analysis are validated by comparison with data of theoretical analysis. The results show that the radial stiffness is not uniform along the longitudinal direction of the stent. When the braiding angle increases from 30° to 75°, the minimum radial deformation decreases from 0.85 mm to 0.0325 mm (at a pressure of 500 Pa, for 24 braided wires). When the wire diameter increases from 0.026 mm to 0.052 mm, the minimum radial deformation decreases from 0.65 mm to 0.055 mm (at a pressure of 500 Pa and a braiding angle of 60°, for 24 braided wires). Frictions don't affect stent diameter and its axial length when braided stent is crimping, but the friction must be considered when it is related to the radial pressure required for compression the braided stent. Compared with commonly used intracranial stents, a braided stent with geometrical parameters close to PED stent has a smaller radial stiffness but a considerably greater longitudinal flexibility. The results of this analysis of braided stents can help in the design and selection of flow diverter stents for clinical treatment of cerebral aneurysms.
An Incentivized Capstone Design Team Applying the System Engineering Process
2015-01-02
3-foot Braided Carbon Fiber Tube, 2” dia. – 2 § Aluminum Hinge – 1 § 3/8” Push Button Pin – 2 § Shaft Collar – 4 § Protective Rubber Strip... braiding machine is used to weave this protective sleeve. 31 Figure 16 – Sample of Open Structure The braiding machine is used...is then placed on the braiding machine. The yarns are then braided over a metal, waxed pipe called a mandrel (Figure 18). The same basic braid that
Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Adams, Michael L.
1997-01-01
Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less than the single stage seal flows for the same seal crush. Furthermore, test results of single stage seals indicate that for both all-ceramic and hybrid seals, a specific seal crush condition exists at which minimum flows are achieved (i.e. increasing seal crush beyond a certain point does not result in better flow performance). Flow results are presented for a range of pressures and temperatures from ambient to 1300 F, before and after scrubbing. Compression tests results show that for both all-ceramic and hybrid seals, seal preload and stiffness increase with seal crush, but residual seal interference remains constant.
Braiding errors in interacting Majorana quantum wires
NASA Astrophysics Data System (ADS)
Sekania, Michael; Plugge, Stephan; Greiter, Martin; Thomale, Ronny; Schmitteckert, Peter
2017-09-01
Avenues of Majorana bound states (MBSs) have become one of the primary directions towards a possible realization of topological quantum computation. For a Y junction of Kitaev quantum wires, we numerically investigate the braiding of MBSs while considering the full quasiparticle background. The two central sources of braiding errors are found to be the fidelity loss due to the incomplete adiabaticity of the braiding operation as well as the finite hybridization of the MBSs. The explicit extraction of the braiding phase from the full many-particle states allows us to analyze the breakdown of the independent-particle picture of Majorana braiding. Furthermore, we find nearest-neighbor interactions to significantly affect the braiding performance for better or worse, depending on the sign and magnitude of the coupling.
GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules
Sarrion-Perdigones, Alejandro; Falconi, Erica Elvira; Zandalinas, Sara I.; Juárez, Paloma; Fernández-del-Carmen, Asun; Granell, Antonio; Orzaez, Diego
2011-01-01
Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (“braid”) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. PMID:21750718
Alluvial lithofacies recognition in a humid-tropical setting
NASA Astrophysics Data System (ADS)
Darby, Dennis A.; Whittecar, G. Richard; Barringer, Richard A.; Garrett, Jim R.
1990-05-01
Cobble gravel deposits in the Antigua Formation accumulated on a large alluvial fan or braid-plain west of the Cordillera Occidental in southwest Colombia. This formation was probably deposited during the Pleistocene in a very wet tropical climate (> 500 cm/yr rainfall). Fining-upwards sequences of clast-supported, imbricated boulders and cobbles dominate with maximum clast sizes between 30 and 300 cm. The sand matrix in the Antigua gravels and the minor (⩽ 10%) sand facies are weathered to clay at depths of up to 20 m. The sand facies contains abundant drift logs and leaf mats. Except for the absence of debris flows and the very coarse nature of the gravel, the Antigua gravels have lithofacies similar to the glacial outwash braid-plain in the proximal area of the Scott type model. Gravels and sands of the younger Panambi Formation were deposited by a braided stream that was smaller, confined by valley walls, and flowing at a lower gradient than the river that deposited the Antigua gravels. We recognize no sedimentologic characteristics of these deposits as diagnostic of a humid-tropical environment except for textural and compositional changes in matrix sediments caused by deep and rapid chemical weathering.
Shielded cables with optimal braided shields
NASA Astrophysics Data System (ADS)
Homann, E.
1991-01-01
Extensive tests were done in order to determine what factors govern the design of braids with good shielding effectiveness. The results are purely empirical and relate to the geometrical relationships between the braid parameters. The influence of various parameters on the shape of the transfer impedance versus frequency curve were investigated step by step. It was found that the optical coverage had been overestimated in the past. Good shielding effectiveness results not from high optical coverage as such, but from the proper type of coverage, which is a function of the braid angle and the element width. These dependences were measured for the ordinary range of braid angles (20 to 40 degrees). They apply to all plaiting machines and all gages of braid wire. The design rules are largely the same for bright, tinned, silver-plated and even lacquered copper wires. A new type of braid, which has marked advantages over the conventional design, was proposed. With the 'mixed-element' technique, an optimal braid design can be specified on any plaiting machine, for any possible cable diameter, and for any desired angle. This is not possible for the conventional type of braid.
Observable Signatures of Energy Release in Braided Coronal Loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontin, D. I.; Janvier, M.; Tiwari, S. K.
We examine the turbulent relaxation of solar coronal loops containing non-trivial field line braiding. Such field line tangling in the corona has long been postulated in the context of coronal heating models. We focus on the observational signatures of energy release in such braided magnetic structures using MHD simulations and forward modeling tools. The aim is to answer the following question: if energy release occurs in a coronal loop containing braided magnetic flux, should we expect a clearly observable signature in emissions? We demonstrate that the presence of braided magnetic field lines does not guarantee a braided appearance to themore » observed intensities. Observed intensities may—but need not necessarily—reveal the underlying braided nature of the magnetic field, depending on the degree and pattern of the field line tangling within the loop. However, in all cases considered, the evolution of the braided loop is accompanied by localized heating regions as the loop relaxes. Factors that may influence the observational signatures are discussed. Recent high-resolution observations from Hi-C have claimed the first direct evidence of braided magnetic fields in the corona. Here we show that both the Hi-C data and some of our simulations give the appearance of braiding at a range of scales.« less
33 CFR 127.1102 - Transfer hoses and loading arms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... transferred, in both the liquid and vapor state (if wire braid is used for reinforcement, the wire must be of corrosion-resistant material, such as stainless steel); (2) Be constructed to withstand the temperature and...
33 CFR 127.1102 - Transfer hoses and loading arms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transferred, in both the liquid and vapor state (if wire braid is used for reinforcement, the wire must be of corrosion-resistant material, such as stainless steel); (2) Be constructed to withstand the temperature and...
Berry phase effect on Majorana braiding
NASA Astrophysics Data System (ADS)
He, Yingping; Wang, Baozong; Liu, Xiong-Jun
Majorana zero modes are predicted to exhibit Non-Abelian braiding, which can be applied to fault-tolerant quantum computation. An essential signature of the non-Abelian braiding is that after a full braiding each of the two Majorana modes under braiding gets a minus sign, namely, a π Berry phase. In this work we find a novel effect in Majorana braiding that during the adiabatic transport a Majorana mode may or may not acquire a staggered minus sign under each step that the Majorana is transported, corresponding to two different types of parameter manipulation. This additional minus sign is shown to be a consequence of translational Berry phase effect, which can qualitatively affect the braiding of Majorana modes. Furthermore, we also study the effect of vortices on the Majorana braiding, with the similar additional Berry phase effect being obtained. Our work may provide new understanding of the non-Abelian statistics of Majorana modes and help improve the experiment setup for quantum computation. MOST, NSFC, Thousand-Young-Talent Program of China.
Designing ecological flows to gravely braided rivers in alpine environments
NASA Astrophysics Data System (ADS)
Egozi, R.; Ashmore, P.
2009-04-01
Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.
Code of Federal Regulations, 2014 CFR
2014-01-01
... materials other than those materials (such as ABS (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445...
Code of Federal Regulations, 2012 CFR
2012-01-01
... materials other than those materials (such as ABS (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445...
Code of Federal Regulations, 2011 CFR
2011-01-01
... materials other than those materials (such as ABS (acrylonitrile butadiene styrene), nylon, and high-impact polystyrene) that are injection-molded and possess high-impact characteristics. (B) The cord: Is of high tensile strength, synthetic fibers that are braided or woven, having a breaking strength in excess of 445...
Hydrological regime as key to the morpho-texture and activity of braided streams
NASA Astrophysics Data System (ADS)
Storz-Peretz, Y.; Laronne, J. B.
2012-04-01
Braided streams are a common fluvial pattern in different climates. However, studies of gravel braided streams have mainly been conducted in humid braided systems or in flume simulations thereof, leaving arid braided streams scarcely investigated. Dryland rivers have bare catchments, rapid flow recession and unarmoured channel beds which are responsible for very high bedload discharges, thereby increasing the likelihood for braiding. Our main objective is to characterize the morpho-texture of the main morphological elements - mid-channel bars, chutes and anabranches (braid-cells) in the dryland braided system and compare them to their humid counterparts. Selected areas of the dryland braided Wadis Ze'elim, Rahaf and Roded in the SE hyper-arid Israel were measured, as were La-Bleone river in the French pre-alps along with the Saisera and Cimoliana rivers in NE Italy representing humid braided systems. Terrestrial Laser Scanning (TLS) of morphological units produced point clouds from which high resolution accurate Digital Elevation Models (DEMs) were extracted. Active braid cells in humid environments were also surveyed by electronic theodolite. Roughness and upper tail Grain Size Distribution (GSD) quantiles were derived from the scanned point clouds or from Wolman sampling. Results indicate that dryland anabranches tend to be finer-grained and less armoured than the bars, contrary to the humid braided systems, where the main or larger anabranches are coarser-grained and more armoured than the bars. Chutes are commonly similar or coarser-grained than the bars they dissect, in accordance with their steeper gradients due to the considerable relief of the bar-anabranch. The morpho-texture displayed in the steep braided Saisera River, located in the Italian Dolomites having the highest annual precipitation, has similarity to that of the dryland braided channels. In drylands coarse gravel is deposited mainly as bars due to the high flux of bedload, whereas the rapid flow recession is responsible for deposition of finer sediment with minimal winnowing in the branch channels. Therefore, channels are finer-grained than the bars. This process is associated with the mid-channel deposition of central bars. However, the steeper chutes and coarser anabranches are associated with erosive braiding processes, such as chute cutoffs and multiple bar dissection, allowing winnowing to occur also during rapid recession. Hence coarser-grained anabranches in drylands are essentially chutes. Lengthy flow recession in humid braided channels allows winnowing of fines, thereby generating armored channels, the finer sedimentary particles often deposited downstream as unit bars. Therefore, channels are coarser-grained than the bars they surround. Even though the steep Saisera is in a humid region, its hydrological regime is ephemeral with rapid and short recessions, responsible for a morpho-texture similar to that of dryland braided streams. Hence, the hydrologic regimen is a key to understanding the morpho-textural character of braided channels and for the higher activity of the ephemeral unarmoured channels in sub-barful events compared to their humid counterparts.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2015-01-01
Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material model. The presented paper will present in detail the development of the orthotropic plasticity model and the procedures used to obtain the required material parameters. Methods in which a combination of actual testing and selective numerical testing can be combined to yield the appropriate input data for the model will be described. A specific laminated polymer matrix composite will be examined to demonstrate the application of the model.
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1994-01-01
During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg - role of surface coating in braiding; prepregger hot sled operation in making tape from powder coated tow; ribbonizing powder-impregnated towpreg; textile composites from powder-coated towpreg - role of bulk factor in consolidation; powder curtain prepreg process improvements in doctoring of powder; and hot/cold shoe for ATP open-section part warpage control.
Finite element analysis of the stiffness of fabric reinforced composites
NASA Technical Reports Server (NTRS)
Foye, R. L.
1992-01-01
The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.
Material and fabrication strategies for artificial muscles (Conference Presentation)
NASA Astrophysics Data System (ADS)
Spinks, Geoffrey M.
2017-04-01
Soft robotic and wearable robotic devices seek to exploit polymer based artificial muscles and sensor materials to generate biomimetic movements and forces. A challenge is to integrate the active materials into a complex, three-dimensional device with integrated electronics, power supplies and support structures. Both 3D printing and textiles technologies offer attractive fabrication strategies, but require suitable functional materials. 3D printing of actuating hydrogels has been developed to produce simple devices, such as a prototype valve. Tough hydrogels based on interpenetrating networks of ionicially crosslinked alginate and covalently crosslinked polyacrylamide and poly(N-isopropylacrylamide) have been developed in a form suitable for extrusion printing with UV curing. Combined with UV-curable and extrudable rigid acrylated urethanes, the tough hydrogels can be 3D printed into composite materials or complex shapes with multiple different materials. An actuating valve was printed that operated thermally to open or close the flow path using 6 parallel hydrogel actuators. Textile processing methods such as knitting and weaving can be used to generate assemblies of actuating fibres. Low cost and high performance coiled fibres made from oriented polymers have been used for developing actuating textiles. Similarly, braiding methods have been developed to fabricate new forms of McKibben muscles that operate without any external apparatus, such as pumps, compressors or piping.
Kevlar Cable Development Program.
1978-01-01
1 *II. BRAID DEVELOPMENTS ........................................................... 1 A...57 B. Braided Rope ................................................................. 57 IX. HIGH STRENGTH ROPE...Electromechanical Kevlar 29 Cable- Braid vs. Serves........................... 72 C. Fairings
Localization of Unitary Braid Group Representations
NASA Astrophysics Data System (ADS)
Rowell, Eric C.; Wang, Zhenghan
2012-05-01
Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary R-matrices, namely unitary solutions to the Yang-Baxter equation, afford explicitly local unitary representations of braid groups. Inspired by topological quantum computation, we study whether or not it is possible to reassemble the irreducible summands appearing in the unitary braid group representations from a unitary braided fusion category with possibly different positive multiplicities to get representations that are uniformly equivalent to the ones from a unitary R-matrix. Such an equivalence will be called a localization of the unitary braid group representations. We show that the q = e π i/6 specialization of the unitary Jones representation of the braid groups can be localized by a unitary 9 × 9 R-matrix. Actually this Jones representation is the first one in a family of theories ( SO( N), 2) for an odd prime N > 1, which are conjectured to be localizable. We formulate several general conjectures and discuss possible connections to physics and computer science.
Kim, Taegyo; Branner, Almut; Gulati, Tanuj
2013-01-01
Objective To test a novel braided multi-electrode probe design with compliance exceeding that of a 50-micron microwire, thus reducing micromotion and macromotion induced tissue stress. Approach We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50μm Nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results Mechanical bending tests on braids comprising 9.6μm or 12.7μm Nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50μm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals’ spinal cords throughout cord motions. Significance Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress. PMID:23723128
NASA Astrophysics Data System (ADS)
Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.
2013-08-01
Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.
NASA Astrophysics Data System (ADS)
Glazoff, Michael V.; Hiromoto, Robert; Tokuhiro, Akira
2014-08-01
In the after-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Among the methods explored currently to improve zircaloys’ thermal stability in off-normal conditions, using a protective coat of the SiC filaments is considered because silicon carbide is well known for its remarkable chemical inertness at high temperatures. A typical SiC fiber contains ∼50,000 individual filaments of 5-10 μm in diameter. In this paper, an effort was made to develop and apply mathematical morphology to the process of automatic defect identification in Zircaloy-4 rods braided with the protective layer of the silicon carbide filament. However, the issues of the braiding quality have to be addressed to ensure its full protective potential. We present the original mathematical morphology algorithms that allow solving this problem of quality assurance successfully. In nuclear industry, such algorithms are used for the first time, and could be easily generalized to the case of automated continuous monitoring for defect identification in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael V Glazoff; Robert Hiromoto; Akira Tokuhiro
In the after-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Among the methods explored currently to improve zircaloys’ thermal stability in off-normal conditions, using a protective coat of the SiC filaments is considered because silicon carbide is well known for its remarkable chemical inertness at high temperatures. A typical SiC fiber contains ~50,000 individual filaments of 5 – 10 µm in diameter. In this paper, an effort was made to develop and apply mathematical morphology to the process of automatic defect identification in Zircaloy-4 rods braided with the protectivemore » layer of the silicon carbide filament. However, the issues of the braiding quality have to be addressed to ensure its full protective potential. We present the original mathematical morphology algorithms that allow solving this problem of quality assurance successfully. In nuclear industry, such algorithms are used for the first time, and could be easily generalized to the case of automated continuous monitoring for defect identification in the future.« less
Standard Methods for Bolt-Bearing Testing of Textile Composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
The response of three 2-D braided materials to bolt bearing loading was evaluated using data generated by Boeing Defense and Space Group in Philadelphia, PA. Three test methods, stabilized single shear, unstabilized single shear, and double shear, were compared. In general, these textile composites were found to be sensitive to bolt bearing test methods. The stabilized single shear method yielded higher strengths than the unstabilized single shear method in all cases. The double shear test method always produced the highest strengths but these results may be somewhat misleading. It is therefore recommended that standard material comparisons be made using the stabilized single shear test method. The effects of two geometric parameters, W/D and e/D, were also studied. An evaluation of the effect of the specimen width (W) to hole diameter (D) ratio concluded that bolt bearing responses were consistent with open hole tension results. A W/D ratio of 6 or greater should be maintained. The proximity of the hole to the specimen edge significantly affected strength. In all cases, strength was improved by increasing the ratio of the distance from the hole center to the specimen edge (e) to the hole diameter (D) above 2. An e/D ratio of 3 or greater is recommended.
NASA Astrophysics Data System (ADS)
Lippitz, Nicolas; Erdeniz, Dinc; Sharp, Keith W.; Dunand, David C.
2018-03-01
Braided tubes of Ni-based superalloys are fabricated via three-dimensional (3-D) braiding of ductile Ni-20Cr (wt pct) wires followed by post-textile gas-phase alloying with Al and Ti to create, after homogenization and aging, γ/ γ' strengthened lightweight, porous structures. Tensile tests reveal an increase in strength by 100 MPa compared to as-braided Ni-20Cr (wt pct). An interrupted tensile test, combined with X-ray tomographic scans between each step, sheds light on the failure behavior of the braided superalloy tubes.
Hybrid Composite Cryogenic Tank Structure
NASA Technical Reports Server (NTRS)
DeLay, Thomas
2011-01-01
A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic temperatures, and will not crack or produce leaks. The outer layer serves as more of a high-performance structural unit for the inner layer, and can handle external environments.
Qualification of Bonding Process of Temperature Sensors to Extreme Temperature Deep Space Missions
NASA Technical Reports Server (NTRS)
Ramesham, Rajeshuni; Kitiyakara, Amarit; Redick, Richard; Sunada, Eric T.
2011-01-01
A process has been explored based on the state-of-the-art technology to bond the platinum resistance thermometer (PRT) on to potential aerospace material such as a flat aluminum surface and a flexible copper tube to simulate coaxial cable for the flight applications. Primarily, PRTs were inserted into a metal plated copper braid to avoid stresses on the sensor while attaching the sensor with braid to the base material for long duration deep space missions. Appropriate pretreatment has been implemented in this study to enhance the adhesion of the PRTs to the base material. NuSil product has been chosen in this research to attach PRT to the base materials. The resistance (approx.1.1 k(Omega)) of PRTs has been electrically monitored continuously during the qualification thermal cycling testing from -150 C to +120 C and -100 C to -35 C. The test hardware has been thermal cycled three times the mission life per JPL design principles for JUNO project. No PRT failures were observed during and after the PRT thermal cycling qualification test for extreme temperature environments. However, there were some failures associated with staking of the PRT pig tails as a result of thermal cycling qualification test.
Capacitor discharge process for welding braided cable
Wilson, Rick D.
1995-01-01
A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)
1996-01-01
A resilient braided rope seal for use in high temperature applications. The resilient braided rope seal includes a center core of fibers, a resilient 5 member overbraided by at least one layer of braided sheath fibers tightly packed together. The resilient member adds significant stiffness to the seal while maintaining resiliency. Furthermore, the seal permanent set and hysteresis are greatly reduced. Finally, improved load capabilities are provided.
30 CFR 75.1107-13 - Approval of other fire suppression devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...
30 CFR 75.1107-13 - Approval of other fire suppression devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...
30 CFR 75.1107-13 - Approval of other fire suppression devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...
30 CFR 75.1107-13 - Approval of other fire suppression devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... machine. Fabric braid hose shall have at least two braids, and wire braid hose shall have at least a single braid. (7) In addition to the hose located at the hydrant (which is intended to be connected to... Code No. 22 “Water Tanks for Private Fire Protection” (NFPA No. 22-1971). (c) The cover of hose of fire...
Advanced composite fuselage technology
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.
1993-01-01
Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development.
Measures, R.; Hicks, D. M.; Brasington, J.
2016-01-01
Abstract Numerical morphological modeling of braided rivers, using a physics‐based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth‐averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high‐flow event. Evaluation of model performance primarily focused upon using high‐resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach‐scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers. PMID:27708477
Williams, R D; Measures, R; Hicks, D M; Brasington, J
2016-08-01
Numerical morphological modeling of braided rivers, using a physics-based approach, is increasingly used as a technique to explore controls on river pattern and, from an applied perspective, to simulate the impact of channel modifications. This paper assesses a depth-averaged nonuniform sediment model (Delft3D) to predict the morphodynamics of a 2.5 km long reach of the braided Rees River, New Zealand, during a single high-flow event. Evaluation of model performance primarily focused upon using high-resolution Digital Elevation Models (DEMs) of Difference, derived from a fusion of terrestrial laser scanning and optical empirical bathymetric mapping, to compare observed and predicted patterns of erosion and deposition and reach-scale sediment budgets. For the calibrated model, this was supplemented with planform metrics (e.g., braiding intensity). Extensive sensitivity analysis of model functions and parameters was executed, including consideration of numerical scheme for bed load component calculations, hydraulics, bed composition, bed load transport and bed slope effects, bank erosion, and frequency of calculations. Total predicted volumes of erosion and deposition corresponded well to those observed. The difference between predicted and observed volumes of erosion was less than the factor of two that characterizes the accuracy of the Gaeuman et al. bed load transport formula. Grain size distributions were best represented using two φ intervals. For unsteady flows, results were sensitive to the morphological time scale factor. The approach of comparing observed and predicted morphological sediment budgets shows the value of using natural experiment data sets for model testing. Sensitivity results are transferable to guide Delft3D applications to other rivers.
Resin transfer molding of textile preforms for aircraft structural applications
NASA Technical Reports Server (NTRS)
Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.
1992-01-01
The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.
Powder-Coated Towpreg: Avenues to Near Net Shape Fabrication of High Performance Composites
NASA Technical Reports Server (NTRS)
Johnston, N. J.; Cano, R. J.; Marchello, J. M.; Sandusky, D. A.
1995-01-01
Near net shape parts were fabricated from powder-coated preforms. Key issues including powder loss during weaving and tow/tow friction during braiding were addressed, respectively, by fusing the powder to the fiber prior to weaving and applying a water-based gel to the towpreg prior to braiding. A 4:1 debulking of a complex 3-D woven powder-coated preform was achieved in a single step utilizing expansion rubber molding. Also, a process was developed for using powder-coated towpreg to fabricate consolidated ribbon having good dimensional integrity and low voids. Such ribbon will be required for in situ fabrication of structural components via heated head advanced tow placement. To implement process control and ensure high quality ribbon, the ribbonizer heat transfer and pulling force were modeled from fundamental principles. Most of the new ribbons were fabricated from dry polyarylene ether and polymide powders.
Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.
Lee, Dominic J
2014-06-01
In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.
Benefits Analysis of Past Projects. Volume 2. Individual Project Assessments.
1984-11-01
209 S- ..-...-......... a nineteenth century one which had been developed for .he braiding of fire hoses . Project Results The program revealed...was found for protecting the drilling and position sensing optics from expelled metal particles. Process and work-material variables were optimized...HPT vane material. Hastelloy X is a nickel-chromium superalloy used in high temperature sheet metal applications, such as combustion liners and
NASA Astrophysics Data System (ADS)
Kasprak, A.; Brasington, J.; Hafen, K.; Wheaton, J. M.
2015-12-01
Numerical models that predict channel evolution through time are an essential tool for investigating processes that occur over timescales which render field observation intractable. However, available morphodynamic models generally take one of two approaches to the complex problem of computing morphodynamics, resulting in oversimplification of the relevant physics (e.g. cellular models) or faithful, yet computationally intensive, representations of the hydraulic and sediment transport processes at play. The practical implication of these approaches is that river scientists must often choose between unrealistic results, in the case of the former, or computational demands that render modeling realistic spatiotemporal scales of channel evolution impossible. Here we present a new modeling framework that operates at the timescale of individual competent flows (e.g. floods), and uses a highly-simplified sediment transport routine that moves volumes of material according to morphologically-derived characteristic transport distances, or path lengths. Using this framework, we have constructed an open-source morphodynamic model, termed MoRPHED, which is here applied, and its validity investigated, at timescales ranging from a single event to a decade on two braided rivers in the UK and New Zealand. We do not purport that MoRPHED is the best, nor even an adequate, tool for modeling braided river dynamics at this range of timescales. Rather, our goal in this research is to explore the utility, feasibility, and sensitivity of an event-scale, path-length-based modeling framework for predicting braided river dynamics. To that end, we further explore (a) which processes are naturally emergent and which must be explicitly parameterized in the model, (b) the sensitivity of the model to the choice of particle travel distance, and (c) whether an event-scale model timestep is adequate for producing braided channel dynamics. The results of this research may inform techniques for future morphodynamic modeling that seeks to maximize computational resources while modeling fluvial dynamics at the timescales of change.
Baums, M H; Buchhorn, G H; Spahn, G; Poppendieck, B; Schultz, W; Klinger, H-M
2008-11-01
The aim of the study was to evaluate the time zero mechanical properties of single- versus double-row configuration for rotator cuff repair in an animal model with consideration of the stitch technique and suture material. Thirty-two fresh-frozen sheep shoulders were randomly assigned to four repair groups: suture anchor single-row repair coupled with (1) braided, nonabsorbable polyester suture sized USP No. 2 (SRAE) or (2) braided polyblend polyethylene suture sized No. 2 (SRAH). The double-row repair was coupled with (3) USP No. 2 (DRAE) or (4) braided polyblend polyethylene suture No. 2 (DRAH). Arthroscopic Mason-Allen stitches were used (single-row) and combined with medial horizontal mattress stitches (double-row). Shoulders were cyclically loaded from 10 to 180 N. Displacement to gap formation of 5- and 10-mm at the repair site, cycles to failure, and the mode of failure were determined. The ultimate tensile strength was verified in specimens that resisted to 3,000 cycles. DRAE and DRAH had a lower frequency of 5- (P = 0.135) and 10-mm gap formation (P = 0.135). All DRAE and DRAH resisted 3,000 cycles while only three SRAE and one SRAH resisted 3,000 cycles (P < 0.001). The ultimate tensile strength in double-row specimens was significantly higher than in others (P < 0.001). There was no significant variation in using different suture material (P > 0.05). Double-row suture anchor repair with arthroscopic Mason-Allen/medial mattress stitches provides initial strength superior to single-row repair with arthroscopic Mason-Allen stitches under isometric cyclic loading as well as under ultimate loading conditions. Our results support the concept of double-row fixation with arthroscopic Mason-Allen/medial mattress stitches in rotator cuff tears with improvement of initial fixation strength and ultimate tensile load. Use of new polyblend polyethylene suture material seems not to increase the initial biomechanical aspects of the repair construct.
Failure analysis of braided U-shaped metal bellows flexible hoses
NASA Astrophysics Data System (ADS)
Pierce, Stephen O.
Most of the research performed extensively reviews the effects of non-reinforced metal bellows and their pressurized characteristics. However, the majority of flex hoses are manufactured with reinforcement by the means of interweaved wire braids. For this research, the outer braid reinforced metal bellows flex hoses will be examined for their failure at differing lengths. The relationship with the bellows expansion joints is such that as the length of the flex hoses increases, the pressure at which squirm occurs decreases. As such, for the testing being performed, the same approach to failure is expected. As the length of the flex hose increases, it is predicted that the hose will fail at a decreasing pressure. Since the braid is the only thing that prevents the squirm from occurring, more of the load will be displaced from the bellows and into the braid. This will ultimately cause failure of the braid to occur at a lower pressure as the length of the hoses increase due to more of the load being transmitted from the bellows and into the braid.
Braid My Hair - Randy Owen sings out for sick children
... Bar Home Current Issue Past Issues Braid My Hair - Randy Owen sings out for sick children Past ... debut performance of his latest song, "Braid My Hair," was the highlight during this year's Songwriter's Dinner ...
Metal clad aramid fibers for aerospace wire and cable
NASA Technical Reports Server (NTRS)
Tokarsky, Edward W.; Dunham, Michael G.; Hunt, James E.; Santoleri, E. David; Allen, David B.
1995-01-01
High strength light weight metal clad aramid fibers can provide significant weight savings when used to replace conventional metal wire in aerospace cable. An overview of metal clad aramid fiber materials and information on performance and use in braided electrical shielding and signal conductors is provided.
Rocket Motor Joint Construction Including Thermal Barrier
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Dunlap, Patrick H., Jr. (Inventor)
2002-01-01
A thermal barrier for extremely high temperature applications consists of a carbon fiber core and one or more layers of braided carbon fibers surrounding the core. The thermal barrier is preferably a large diameter ring, having a relatively small cross-section. The thermal barrier is particularly suited for use as part of a joint structure in solid rocket motor casings to protect low temperature elements such as the primary and secondary elastomeric O-ring seals therein from high temperature gases of the rocket motor. The thermal barrier exhibits adequate porosity to allow pressure to reach the radially outward disposed O-ring seals allowing them to seat and perform the primary sealing function. The thermal barrier is disposed in a cavity or groove in the casing joint, between the hot propulsion gases interior of the rocket motor and primary and secondary O-ring seals. The characteristics of the thermal barrier may be enhanced in different applications by the inclusion of certain compounds in the casing joint, by the inclusion of RTV sealant or similar materials at the site of the thermal barrier, and/or by the incorporation of a metal core or plurality of metal braids within the carbon braid in the thermal barrier structure.
Development of Improved LOX-Compatible Laminated Gasket Composite
1966-08-01
Braided Teflon 2. Bleached fluorocarbon felt 3. Teflon and asbestos fibers 4. Teflon and ceramic fibers 5. Teflon and glass fibers 6. Viton A and asbestos 7...fluorinated ethylene- propylene (Teflon FEP), polychlorotrifluoroethylene films (Aclar - Kel F), and fluorocarbon elastomers (Viton A - Fluorel, etc...2nd 10th CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE FILLED FLUOROCARBON GLASS FILLED TEFLON FLUOROCARBON LAMINATE ELASTOMER Figure 21
The significance of sediment transport in arroyo development
Meyer, David F.
1989-01-01
Arroyo widening dominates postincisional arroyo development, and the manner of widening is dependent on the grain size of bed material transported by the channel. When bed material is predominantly gravel, subaqueous bars that alternate from one side of the channel to the other form during high flows in initially narrow, often straight, arroyos. These alternate bars grow and become coarse-grained point bars. Moderate and low flows cannot rework these coarse bars, and the channel meanders around them. Arroyo walls opposite the bars are undercut and eroded. With progressive arroyo widening by erosion of cut banks, high-flow channel width increases, and depth decreases, reducing channel competence. Gravel is deposited in midchannel bars, point bars are reworked, and the channel becomes braided. As braiding becomes dominant, both arroyo walls are eroded. This conceptual model of coarse-grained arroyo development is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the San Simon, San Pedro, and Santa Cruz Rivers in southeast Arizona. When bed material is predominantly sand, the channel pattern within initial arroyos is typically braided, and both arroyo walls are actively eroded. Alternate bars may form within single-thread, high-flow channels, but they are reworked during recessional flows, and the .low-flow channel is again braided. With progressive arroyo widening, fine sand, silt, and clay carried in suspension are deposited across a flood plain within the wide arroyo, causing the channel to meander. This fine-grained arroyo development model is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the Rio Puerco, New Mexico. Experimental investigations using physical models in which incised channels were monitored through time indicate that the rate of arroyo widening is dependent on the amount of bedload transported through a reach. This is documented by the relations between the rate of arroyo erosion and the observed sediment transport, the channel slope, the channel width and the channel width-to-depth ratio. When a small amount of bed material is being transported, arroyos do not widen whether they are narrow (arroyo width-to-depth ratios between 1.5 and 3.1), intermediate (between 2.5 and 4.8), or wide (greater than 4.9). Arroyo widening resumes when a larger supply of bed material is introduced. Arroyo widening decreases through time because with progressive increases of arroyo width, the frequency with which unstable channels within the arroyo impinge upon arroyo walls decreases. Arroyos become wider in a downstream direction in response to the cumulative effect of upstream sediment production.
Swearingen, Matthew C; DiBartola, Alex C; Dusane, Devendra; Granger, Jeffrey; Stoodley, Paul
2016-10-01
Bacterial biofilms are the main etiological agent of periprosthetic joint infections (PJI); however, it is unclear if biofilms colonize one or multiple components. Because biofilms can colonize a variety of surfaces, we hypothesized that biofilms would be present on all components. 16S ribosomal RNA (rRNA) gene sequencing analysis was used to identify bacteria recovered from individual components and non-absorbable suture material recovered from three PJI total knee revision cases. Bray-Curtis non-metric multidimensional scaling analysis revealed no significant differences in similarity when factoring component, material type, or suture versus non-suture material, but did reveal significant differences in organism profile between patients (P < 0.001) and negative controls (P < 0.001). Confocal microscopy and a novel agar encasement culturing method also confirmed biofilm growth on a subset of components. While 16S sequencing suggested that the microbiology was more complex than revealed by culture contaminating, bacterial DNA generates a risk of false positives. This report highlights that biofilm bacteria may colonize all infected prosthetic components including braided suture material, and provides further evidence that clinical culture can fail to sufficiently identify the full pathogen profile in PJI cases. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Vectran Fiber Time-Dependent Behavior and Additional Static Loading Properties
NASA Technical Reports Server (NTRS)
Fette, Russell B.; Sovinski, Marjorie F.
2004-01-01
Vectran HS appears from literature and testing to date to be an ideal upgrade from Kevlar braided cords for many long-term, static-loading applications such as tie-downs on solar arrays. Vectran is a liquid crystalline polymer and exhibits excellent tensile properties. The material has been touted as a zero creep product. Testing discussed in this report does not support this statement, though the creep is on the order of four times slower than with similar Kevlar 49 products. Previous work with Kevlar and new analysis of Vectran testing has led to a simple predictive model for Vectran at ambient conditions. The mean coefficient of thermal expansion (negative in this case) is similar to Kevlar 49, but is not linear. A positive transition in the curve occurs near 100 C. Out-gassing tests show that the material performs well within parameters for most space flight applications. Vectran also offers increased abrasion resistance, minimal moisture regain, and similar UV degradation. The effects of material construction appear to have a dramatic effect in stress relaxation for braided Vectran. To achieve the improved relaxation rate, upgrades must also examine alternate construction or preconditioning methods. This report recommends Vectran HS as a greatly improved replacement material for applications where time-dependent relaxation is a major factor.
Tornado-like Evolution of a Kink-unstable Solar Prominence
NASA Astrophysics Data System (ADS)
Wang, Wensi; Liu, Rui; Wang, Yuming
2017-01-01
We report on the tornado-like evolution of a quiescent prominence on 2014 November 1. The eastern section of the prominence first rose slowly, transforming into an arch-shaped structure as high as ˜150 Mm above the limb; the arch then writhed moderately in a left-handed sense, while the original dark prominence material emitted in the Fe ix 171 Å passband, and a braided structure appeared at the eastern edge of the warped arch. The unraveling of the braided structure was associated with a transient brightening in the EUV and apparently contributed to the formation of a curtain-like structure (CLS). The CLS consisted of myriad thread-like loops rotating counterclockwise about the vertical if viewed from above. Heated prominence material was observed to slide along these loops and land outside the filament channel. The tornado eventually disintegrated and the remaining material flew along a left-handed helical path constituting approximately a full turn, as corroborated through stereoscopic reconstruction, into the cavity of the stable, western section of the prominence. We suggest that the tornado-like evolution of the prominence was governed by the helical kink instability, and that the CLS formed through magnetic reconnections between the prominence field and the overlying coronal field.
Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering
Rothrauff, Benjamin B.; Lauro, Brian B.; Yang, Guang; Debski, Richard E.; Musahl, Volker
2017-01-01
Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs–stacked or braided–were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering. PMID:28071988
NASA Astrophysics Data System (ADS)
Yu, Li-Wei; Ge, Mo-Lin
2017-03-01
The relationships between quantum entangled states and braid matrices have been well studied in recent years. However, most of the results are based on qubits. In this paper, we investigate the applications of 2-qutrit entanglement in the braiding associated with Z3 parafermion. The 2-qutrit entangled state | Ψ (θ) >, generated by the action of the localized unitary solution R ˘ (θ) of YBE on 2-qutrit natural basis, achieves its maximal ℓ1-norm and maximal von Neumann entropy simultaneously at θ = π / 3. Meanwhile, at θ = π / 3, the solutions of YBE reduces braid matrices, which implies the role of ℓ1-norm and entropy plays in determining real physical quantities. On the other hand, we give a new realization of 4-anyon topological basis by qutrit entangled states, then the 9 × 9 localized braid representation in 4-qutrit tensor product space (C3) ⊗ 4 is reduced to Jones representation of braiding in the 4-anyon topological basis. Hence, we conclude that the entangled states are powerful tools in analysing the characteristics of braiding and R ˘ -matrix.
First principles cable braid electromagnetic penetration model
Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; ...
2016-01-01
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less
Braided artificial muscles: modeling and experimental validation
NASA Astrophysics Data System (ADS)
Dragan, Liliana; Cioban, Horia
2009-01-01
The paper presents a few graphical modalities for constructing the double helical braid, which is the basis for the braided artificial pneumatic muscles, by using specialized software applications. This represents the first stage in achieving the method of finite element analysis of this type of linear pneumatic actuator.
Advanced textile materials and biopolymers in wound management.
Petrulyte, Salvinija
2008-02-01
New generation medical textiles are an important growing field with great expansion in wound management products. Virtually new products are coming but also well known materials with significantly improved properties using advanced technologies and new methods are in the centre of research which are highly technical, technological, functional, and effective oriented. The key qualities of fibres and dressings as wound care products include that they are bacteriostatic, anti-viral, fungistatic, non-toxic, high absorbent, non-allergic, breathable, haemostatic, biocompatible, and manipulatable to incorporate medications, also provide reasonable mechanical properties. Many advantages over traditional materials have products modified or blended with also based on alginate, chitin/chitosan, collagen, branan ferulate, carbon fibres. Textile structures used for modern wound dressings are of large variety: sliver, yarn, woven, non-woven, knitted, crochet, braided, embroidered, composite materials. Wound care also applies to materials like hydrogels, matrix (tissue engineering), films, hydrocolloids, foams. Specialized additives with special functions can be introduced in advanced wound dressings with the aim to absorb odours, provide strong antibacterial properties, smooth pain and relieve irritation. Because of unique properties as high surface area to volume ratio, film thinness, nano scale fibre diameter, porosity, light weight, nanofibres are used in wound care. The aim of this study is to outline and review the latest developments and advance in medical textiles and biopolymers for wound management providing the overview with generalized scope about novelties in products and properties.
The BRAID: Experiments in Stitching Together Disciplines at a Big Ten University
ERIC Educational Resources Information Center
Luckie, Douglas B.; Bellon, Richard; Sweeder, Ryan D.
2012-01-01
Since 2005 we have pursued a formal research program called the BRAID (Bringing Relationships Alive through Interdisciplinary Discourse), which is designed to develop and test strategies for training first- and second-year undergraduate science students to bridge scientific disciplines. The BRAID's ongoing multiyear investigation points to…
NASA Technical Reports Server (NTRS)
Gaspar, Kenneth C.
1987-01-01
New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.
Local unitary representation of braids and N-qubit entanglements
NASA Astrophysics Data System (ADS)
Yu, Li-Wei
2018-03-01
In this paper, by utilizing the idea of stabilizer codes, we give some relationships between one local unitary representation of braid group in N-qubit tensor space and the corresponding entanglement properties of the N-qubit pure state |Ψ >, where the N-qubit state |Ψ > is obtained by applying the braiding operation on the natural basis. Specifically, we show that the separability of |Ψ > =B|0> ^{⊗ N} is closely related to the diagrammatic version of the braid operator B. This may provide us more insights about the topological entanglement and quantum entanglement.
Braids and phase gates through high-frequency virtual tunneling of Majorana zero modes
NASA Astrophysics Data System (ADS)
Gorantla, Pranay; Sensarma, Rajdeep
2018-05-01
Braiding of non-Abelian Majorana anyons is a first step towards using them in quantum computing. We propose a protocol for braiding Majorana zero modes formed at the edges of nanowires with strong spin-orbit coupling and proximity-induced superconductivity. Our protocol uses high-frequency virtual tunneling between the ends of the nanowires in a trijunction, which leads to an effective low-frequency coarse-grained dynamics for the system, to perform the braid. The braiding operation is immune to amplitude noise in the drives and depends only on relative phase between the drives, which can be controlled by the usual phase-locking techniques. We also show how a phase gate, which is necessary for universal quantum computation, can be implemented with our protocol.
Topological chaos, braiding and bifurcation of almost-cyclic sets.
Grover, Piyush; Ross, Shane D; Stremler, Mark A; Kumar, Pankaj
2012-12-01
In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.
Theory of equilibria of elastic braids with applications to DNA supercoiling
NASA Astrophysics Data System (ADS)
van der Heijden, Gert; Starostin, Eugene
2014-03-01
Motivated by supercoiling of DNA and other filamentous structures, we formulate a new theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is solved for. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Both open braid and closed braid solutions (links and knots) are computed and current applications to DNA supercoiling are discussed. Research supported by EPSRC and HFSP.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2013-10-01 2013-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2010-10-01 2010-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...
Code of Federal Regulations, 2012 CFR
2012-10-01
... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube, plies of braided cotton reinforcement and an outer rubber cover, or of equivalent material, and must be...
Code of Federal Regulations, 2014 CFR
2014-10-01
... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube, plies of braided cotton reinforcement and an outer rubber cover, or of equivalent material, and must be...
Code of Federal Regulations, 2013 CFR
2013-10-01
... or equivalent of not over 11/2 inch diameter or garden hose of not less than 5/8 inch nominal inside diameter. If garden hose is used, it must be of a good commercial grade constructed of an inner rubber tube, plies of braided cotton reinforcement and an outer rubber cover, or of equivalent material, and must be...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2012-10-01 2012-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2011-10-01 2011-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Cargo hose. (a) Cargo hose fabricated of seamless steel pipe with swivel joints, wire braided armored rubber or other hose material acceptable to the Commandant, shall be fitted to the liquid or vapor lines... 46 Shipping 4 2014-10-01 2014-10-01 false Cargo hose. 98.25-80 Section 98.25-80 Shipping COAST...
Tensile test and interface retention forces between wires and composites in lingual fixed retainers.
Paolone, Maria Giacinta; Kaitsas, Roberto; Obach, Patricia; Kaitsas, Vasilios; Benedicenti, Stefano; Sorrenti, Eugenio; Barberi, Fabrizio
2015-06-01
In daily orthodontic clinical practice retention is very important, and lingual retainers are part of this challenge. The failure of lingual retainers may be due to many factors. The aim of this study was to assess the retention forces and mechanical behavior of different types of wires matched with different kinds of composites in lingual retainers. A tensile test was performed on cylindrical composite test specimens bonded to orthodontic wires. The specimens were constructed using four different wires: a straight wire (Remanium .016×.022″ Dentaurum), two round twisted wires (Penta One .0215″ Masel, Gold Penta Twisted .0215″ Gold N'braces) and a rectangular braided wire (D-Rect .016×.022″ Ormco); and three composites: two micro-hybrids (Micro-Hybrid Enamel Plus HFO Micerium, and Micro-Hybrid SDR U Dentsply) and a micro-nano-filled composite (Micro-Nano-Filled Transbond LR 3M). The test was performed at a speed of 10mm/min on an Inström device. The wire was fixed with a clamp. The results showed that the bonding between wires and composites in lingual fixed retainers seemed to be lowest for rectangular smooth wires and increased in round twisted and rectangular twisted wires where the bonding was so strong that the maximum tension/bond strength was greater than the ultimate tensile strength of the wire. The highest values were in rectangular twisted wires. Concerning the composites, hybrid composites had the lowest interface bonding values and broke very quickly, while the nano- and micro-composites tolerated stronger forces and displayed higher bonding values. The best results were observed with the golden twisted wire and reached 21.46 MPa with the Transbond composite. With the rectangular braided wire the retention forces were so high that the Enamel Plus composite fractured when the load exceeded 154.6 N/MPa. When the same wire was combined with the Transbond LR either the wire or the composite broke when the force exceeded 240 N. The results of this study show that, when selecting a lingual retainer in daily clinical practice, not only must the patient's compliance and dependability be considered but also the mechanical properties and composition of different combinations of composites and wires. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.
TRIGGER MECHANISM OF SOLAR SUBFLARES IN A BRAIDED CORONAL MAGNETIC STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.
Fine-scale braiding of coronal magnetic loops by continuous footpoint motions may power coronal heating via nanoflares, which are spontaneous fine-scale bursts of internal reconnection. An initial nanoflare may trigger an avalanche of reconnection of the braids, making a microflare or larger subflare. In contrast to this internal triggering of subflares, we observe external triggering of subflares in a braided coronal magnetic field observed by the High-resolution Coronal Imager (Hi-C). We track the development of these subflares using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and registered magnetograms of SDO/HMI, over four hours centered on the Hi-Cmore » observing time. These data show numerous recurring small-scale brightenings in transition-region emission happening on polarity inversion lines where flux cancellation is occurring. We present in detail an example of an apparent burst of reconnection of two loops in the transition region under the braided coronal field which is appropriate for releasing a short reconnected loop downward and a longer reconnected loop upward. The short loop presumably submerges into the photosphere, participating in observed flux cancellation. A subflare in the overlying braided magnetic field is apparently triggered by the disturbance of the braided field by the reconnection-released upward loop. At least 10 subflares observed in this braided structure appear to be triggered this way. How common this external trigger mechanism for coronal subflares is in other active regions, and how important it is for coronal heating in general, remain to be seen.« less
New scheme for braiding Majorana fermions.
Wu, Long-Hua; Liang, Qi-Feng; Hu, Xiao
2014-12-01
Non-Abelian statistics can be achieved by exchanging two vortices in topological superconductors with each grabbing a Majorana fermion (MF) as zero-energy quasi-particle at the cores. However, in experiments it is difficult to manipulate vortices. In the present work, we propose a way to braid MFs without moving vortices. The only operation required in the present scheme is to turn on and off local gate voltages, which liberates a MF from its original host vortex and transports it along the prepared track. We solve the time-dependent Bogoliubov-de Gennes equation numerically, and confirm that the MFs are protected provided the switching of gate voltages for exchanging MFs are adiabatic, which takes only several nano seconds given reasonable material parameters. By monitoring the time evolution of MF wave-functions, we show that non-Abelian statistics is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattari, Sulimon, E-mail: ssattari2@ucmerced.edu; Chen, Qianting, E-mail: qchen2@ucmerced.edu; Mitchell, Kevin A., E-mail: kmitchell@ucmerced.edu
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding ofmore » ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.« less
Hinse, Stéphanie; Ménard, Jérémie; Rouleau, Dominique M; Canet, Fanny; Beauchamp, Marc
2016-11-01
Important rotator cuff repair failure rates have prompted this study of the techniques and materials used in order to optimize clinical results. Is the reconstruction of the rotator cuff biomechanically stronger when using: 1) transosseous with 2 mm braided tape suture (TOT), 2) transosseous with multi-strand No. 2 sutures (TOS), or 3) double row suture bridge with suture anchors loaded with No. 2 braided sutures (DRSB)? Twenty-four cadaveric pig shoulders were randomized in the three repair constructs. The infraspinatus muscle was detached to mimic a complete laceration, repaired with one of the three repair groups and tested with a traction machine. Cameras recorded tendon displacement during trials. The ultimate strength (US), failure mode, and tendon displacement, qualified by the bare footprint area (BFA), during cycling phases were compared. The US for DRSB was 175 ± 82 Newton (N), 91 ± 51 N for TOS, and 147 ± 63 N for TOT. The BFA after 200 cycles was 81 ± 34% for TOS, 57 ± 41% for TOT, and 26 ± 27% for DRSB repairs. No significant difference was observed between the DRSB and TOT results for US or BFA percentage of loss during all the cycling phases. TOS proved to be weaker than TOT and DRSB. All the ruptures occurred in the tendon, which seems to be the weakness of rotator cuff repairs. The use of braided tape suture with a transosseous technique seems to be a cost effective, equivalent alternative implant compared to anchor fixation. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
NASA Technical Reports Server (NTRS)
Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob
1997-01-01
The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.
NASA Astrophysics Data System (ADS)
Curran, J. H.; McTeague, M. L.
2010-12-01
Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on other features. River-long erosion rates were twice as great for 1949-62 than for 1962-2006, despite a flood with a less than 0.002 percent exceedance probability in 1971 and slightly higher average peak flood magnitudes in the latter period. Of the 20 areas with erosion greater than 70 m from 1949-2006, only 9 were eroded in both periods and only one had detectable erosion in the sub-period from 2004 to 2006. This disconnect of erosion with flooding and the variable timing of historical erosion suggests that erosion was sporadic and more related to the presence of the river against the bank and bank erodibility than to more readily monitored variables. Clearwater side channels were frequently reworked in the braid plain but the cumulative length of channels appeared to be stable within the historical time period. This dynamic nature implies that the aquatic ecosystems have evolved within a high disturbance regime.
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)
2000-01-01
A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.
Complete braided adsorbent for marine testing to demonstrate 3g-U/kg-adsorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janke, Chris; Yatsandra, Oyola; Mayes, Richard
ORNL has manufactured four braided adsorbents that successfully demonstrated uranium adsorption capacities ranging from 3.0-3.6 g-U/kg-adsorbent in marine testing at PNNL. Four new braided and leno woven fabric adsorbents have also been prepared by ORNL and are currently undergoing marine testing at PNNL.
Epitaxy of advanced nanowire quantum devices
NASA Astrophysics Data System (ADS)
Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.
2017-08-01
Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Ciancone, Michael L.; Paulsen, Phillip E.; Brady, Joyce A.
1988-01-01
The extent of degradation of fiberglass-epoxy composite masts of the Space Station solar array panel, when these are exposed to atomic oxygen environment of the low-earth orbit, was investigated in ground testing of fiberglass-epoxy composites in an RF plasma asher. In addition, several methods of protecting the composite structures were evaluated, including an aluminum braid covering, an In-Sn eutectic, and a silicone based paint. It was found that, during exposure, the epoxy at the surface of the composite was oxidized, exposing individual glass fibers which could easily be removed. The results of mass measurements and SEM examination carried out after thermal cycling and flexing of exposed composite samples indicated that coatings such as In-Sn eutectic may provide adequate protection by containing the glass fibers, even though mass loss still occurs.
Antibacterial Surgical Silk Sutures Using a High-Performance Slow-Release Carrier Coating System.
Chen, Xiaojie; Hou, Dandan; Wang, Lu; Zhang, Qian; Zou, Jiahan; Sun, Gang
2015-10-14
Sutures are a vital part for surgical operation, and suture-associated surgical site infections are an important issue of postoperative care. Antibacterial sutures have been proved to reduce challenging complications caused by bacterial infections. In recent decades, triclosan-free sutures have been on their way to commercialization. Alternative antibacterial substances are becoming relevant to processing surgical suture materials. Most of the antibacterial substances are loaded directly on sutures by dipping or coating methods. The aim of this study was to optimize novel antibacterial braided silk sutures based on levofloxacin hydrochloride and poly(ε-caprolactone) by two different processing sequences, to achieve suture materials with slow-release antibacterial efficacy and ideal physical and handling properties. Silk strands were processed into sutures on a circular braiding machine, and antibacterial treatment was introduced alternatively before or after braiding by two-dipping-two-rolling method (M1 group and M2 group). The antibacterial activity and durability against Staphylococcus aureus and Escherichia coli were tested. Drug release profiles were measured in phosphate buffer with different pH values, and release kinetics model was built to analyze the sustained drug release mechanism between the interface of biomaterials and the in vitro aqueous environment. Knot-pull tensile strength, thread-to-thread friction, and bending stiffness were determined to evaluate physical and handling properties of sutures. All coated sutures showed continuous antibacterial efficacy and slow drug release features for more than 5 days. Besides, treated sutures fulfilled U.S. Pharmacopoeia required knot-pull tensile strength. The thread-to-thread friction and bending stiffness for the M1 group changed slightly when compared with those of uncoated ones. However, physical and handling characteristics of the M2 group tend to approach those of monofilament ones. The novel suture showed acceptable in vitro cytotoxicity according to ISO 10993-5. Generally speaking, all coated sutures show potential in acting as antibacterial suture materials, and M1 group is proved to have a higher prospect for clinical applications.
Guastaferro, Kate; Miller, Katy; Shanley Chatham, Jenelle R.; Whitaker, Daniel J.; McGilly, Kate; Lutzker, John R.
2017-01-01
An effective approach in early intervention for children and families, including child maltreatment prevention, is home-based services. Though several evidence-based programs exist, they are often grouped together, despite having different foci. This paper describes an ongoing cluster randomized trial systematically braiding two evidence-based home-based models, SafeCare® and Parents as Teachers (PAT)®, to better meet the needs of families at-risk. We describe the methodology for braiding model implementation and curriculum, specifically focusing on how structured qualitative feedback from pilot families and providers was used to create the braided curriculum and implementation. Systematic braiding of two models at the implementation and curriculum levels is a mechanism that has the potential to meet the more comprehensive needs of families at-risk for maltreatment. PMID:27870760
Nakamachi, Eiji; Uchida, Takahiro; Kuramae, Hiroyuki; Morita, Yusuke
2014-08-01
In this study, we developed a multi-scale finite element (FE) analysis code to obtain the stress and strain that occurred in the smooth muscle cell (SMC) at micro-scale, which was seeded in the real fabricated braid fibril artificial blood vessel. This FE code can predict the dynamic response of stress under the blood pressure loading. We try to establish a computer-aided engineering (CAE)-driven scaffold design technique for the blood vessel regeneration. Until now, there occurred the great progresses for the endothelial cell activation and intima layer regeneration in the blood vessel regeneration study. However, there remains the difficulty of the SMC activation and media layer regeneration. Therefore, many researchers are now studying to elucidate the fundamental mechanism of SMC activation and media layer regeneration by using the biomechanical technique. As the numerical tool, we used the dynamic-explicit FE code PAM-CRASH, ESI Ltd. For the material models, the nonlinear viscoelastic constitutive law was adapted for the human blood vessel, SMC and the extra-cellular matrix, and the elastic law for the polyglycolic acid (PGA) fiber. Through macro-FE and micro-FE analyses of fabricated braid fibril tubes by using PGA fiber under the combined conditions of the orientation angle and the pitch of fiber, we searched an appropriate structure for the stress stimulation for SMC functionalization. Objectives of this study are indicated as follows: 1. to analyze the stress and strain of the human blood vessel and SMC, and 2. to calculate stress and strain of the real fabricated braid fibril artificial blood vessel and SMC to search an appropriate PGA fiber structure under combined conditions of PGA fiber numbers, 12 and 24, and the helical orientation angles of fiber, 15, 30, 45, 60, and 75 degrees. Finally, we found a braid fibril tube, which has an angle of 15 degree and 12 PGA fibers, as a most appropriate artificial blood vessel for SMC functionalization. Copyright © 2014 John Wiley & Sons, Ltd.
2010-05-01
textiles include “soft” body armor; spall liners for combat vehicles; flame protection garments; and protective braided sleeves for hoses and cable...summarizes the results of an Interim Base Case analysis of those materials as well. Chapter Four offers IDA’s initial ideas regarding opportunities that...process in the requirements analysis process by which the department determines the NDS goals, or stockpile requirements, it will recommend to the
Large scale structures in the kinetic gravity braiding model that can be unbraided
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Rampei; Yamamoto, Kazuhiro, E-mail: rampei@theo.phys.sci.hiroshima-u.ac.jp, E-mail: kazuhiro@hiroshima-u.ac.jp
2011-04-01
We study cosmological consequences of a kinetic gravity braiding model, which is proposed as an alternative to the dark energy model. The kinetic braiding model we study is characterized by a parameter n, which corresponds to the original galileon cosmological model for n = 1. We find that the background expansion of the universe of the kinetic braiding model is the same as the Dvali-Turner's model, which reduces to that of the standard cold dark matter model with a cosmological constant (ΛCDM model) for n equal to infinity. We also find that the evolution of the linear cosmological perturbation inmore » the kinetic braiding model reduces to that of the ΛCDM model for n = ∞. Then, we focus our study on the growth history of the linear density perturbation as well as the spherical collapse in the nonlinear regime of the density perturbations, which might be important in order to distinguish between the kinetic braiding model and the ΛCDM model when n is finite. The theoretical prediction for the large scale structure is confronted with the multipole power spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We also discuss future prospects of constraining the kinetic braiding model using a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the cluster redshift distribution in the South Pole Telescope survey.« less
Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood
ERIC Educational Resources Information Center
Arnott, Luke
2012-01-01
"Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…
High-Pressure Lightweight Thrusters
NASA Technical Reports Server (NTRS)
Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander
2013-01-01
Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening interface realizes pseudo-plastic behavior with significant increase in the tensile strength. The investigation of high-temperature strength of C/Cs under high-rate heating (critical for thrust chambers) shows that tensile and compression strength increases from 70 MPa at room temperature to 110 MPa at 1,773 K, and up to 125 MPa at 2,473 K. Despite these unique properties, the use of C/Cs is limited by its high oxidation rate at elevated temperatures. Lining carbon/carbon chambers with a thin layer of iridium or iridium and rhenium is an innovative way to use proven refractory metals and provide the oxidation barrier necessary to enable the use of carbon/ carbon composites. Due to the lower density of C/Cs as compared to SiC/SiC composites, an iridium liner can be added to the C/C structure and still be below the overall thruster weight. Weight calculations show that C/C, C/C with 50 microns of Ir, and C/C with 100 microns of Ir are of less weight than alternative materials for the same construction.
TORNADO-LIKE EVOLUTION OF A KINK-UNSTABLE SOLAR PROMINENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wensi; Liu, Rui; Wang, Yuming, E-mail: rliu@ustc.edu.cn
We report on the tornado-like evolution of a quiescent prominence on 2014 November 1. The eastern section of the prominence first rose slowly, transforming into an arch-shaped structure as high as ∼150 Mm above the limb; the arch then writhed moderately in a left-handed sense, while the original dark prominence material emitted in the Fe ix 171 Å passband, and a braided structure appeared at the eastern edge of the warped arch. The unraveling of the braided structure was associated with a transient brightening in the EUV and apparently contributed to the formation of a curtain-like structure (CLS). The CLSmore » consisted of myriad thread-like loops rotating counterclockwise about the vertical if viewed from above. Heated prominence material was observed to slide along these loops and land outside the filament channel. The tornado eventually disintegrated and the remaining material flew along a left-handed helical path constituting approximately a full turn, as corroborated through stereoscopic reconstruction, into the cavity of the stable, western section of the prominence. We suggest that the tornado-like evolution of the prominence was governed by the helical kink instability, and that the CLS formed through magnetic reconnections between the prominence field and the overlying coronal field.« less
Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories
NASA Astrophysics Data System (ADS)
Giorgetti, Luca; Rehren, Karl-Henning
2018-01-01
We want to establish the "braided action" (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the "duality pairing" between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.
3D braid scaffolds for regeneration of articular cartilage.
Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol
2014-06-01
Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Ethnopharmacological relevance: Hierochloë odorata (L.) P. Beauv. (Poaceae), commonly known as sweetgrass, has documented use as an insect repellent by the Flatheads of Montana and Blackfoot of Alberta. Both the Flatheads of Montana and Blackfoot of Alberta would use braided plant material in a sac...
Gentle arrester for moving bodies
NASA Technical Reports Server (NTRS)
Hull, R. A.
1981-01-01
Wire cable absorbs energy at constant rate with reduced shock and rebounding. Cable typically elongates to 90 percent of its potential, but is surrounded by braided sheath to absorb remaining energy should it break prematurely. Applications of arrester include passenger restraint in air and land vehicles, parachute risers, and ground snatch by aircraft. Possible cable material is type 302 stainless steel.
Influence of thermofixation on artificial ACL ligament dimensional and mechanical properties
NASA Astrophysics Data System (ADS)
Ben Abdessalem, S.; Jedda, H.; Skhiri, S.; Karray, S.; Dahmen, J.; Boughamoura, H.
2005-11-01
The anterior cruciate ligament (ACL) is the major articular ligamentous structure of the knee, it functions as a joint stabilizer. When ruptured, the natural ACL ligament can be replaced by a textile synthetic ligament such as a braid, knitted cord, or woven cord. Theses structures are composed of biocompatible materials such as polyester or Gore-Tex filaments. The success of an ACL replacement is widely linked to its mechanical and dimensional properties such as tensile strength, dimensional stability and resistance to abrasion. We introduced an additional treatment in the manufacturing of textile ACL ligaments based on the thermofixation of the textile structure by using textile industry stabilization techniques. Boiling water, saturated vapor and dry heat have been tested to stabilize a braided ligament made of Dacron polyester. The application of these three techniques led to shrinkage and an increase of breaking strength of the textile structure.
Acoustic emission monitoring of CFRP cables for cable-stayed bridges
NASA Astrophysics Data System (ADS)
Rizzo, Piervincenzo; Lanza di Scalea, Francesco
2001-08-01
The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.
Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing
NASA Astrophysics Data System (ADS)
Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland
2018-05-01
Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.
Production of continuous piezoelectric ceramic fibers for smart materials and active control devices
NASA Astrophysics Data System (ADS)
French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad
1997-05-01
Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.
On a high-potential variable flexural stiffness device
NASA Astrophysics Data System (ADS)
Henke, Markus; Gerlach, Gerald
2013-05-01
There are great efforts in developing effective composite structures for lightweight constructions for nearly every field of engineering. This concerns for example aeronautics and spacecrafts, but also automotive industry and energy harvesting applications. Modern concepts of lightweight components try to make use of structures with properties which can be adjusted in a controllable was. However, classic composite materials can only slightly adapt to varying environmental conditions because most materials, like carbon or glass-fiber composites show properties which are time-constant and not changeable. This contribution describes the development, the potential and the limitations of novel smart, self-controlling structures which can change their mechanical properties - e.g. their flexural stiffness - by more then one order of magnitude. These structures use a multi-layer approach with a 10-layer stack of 0.75 mm thick polycarbonate. The set-up is analytically described and its mechanical behavior is predicted by finite element analysis done with ABAQUS. The layers are braided together by an array of shape memory alloy (SMA) wires, which can be activated independently. Depending on the temperature applied by the electrical current flowing through the wires and the corresponding contraction the wires can tightly clamp the layers so that they cannot slide against each other due to friction forces. In this case the multilayer acts as rigid beam with high stiffness. If the friction-induced shear stress is smaller than a certain threshold, then the layers can slide over each other and the multilayer becomes compliant under bending load. The friction forces between the layers and, hence, the stiffness of the beam is controlled by the electrical current through the wires. The more separate parts of SMA wires the structure has the larger is the number of steps of stiffness changes of the flexural beam.
NASA Astrophysics Data System (ADS)
Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan
2014-05-01
Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom did not change significantly. This is due primarily to the stable vegetation cover conditions between the mid of 1980s and 2000 (average NDVI of 0.34 with std. deviation of 0.07). Vegetation cover and area of upper catchments are important controlling factors of the morphologic characteristics of braided rivers in drylands. Thus, measures geared towards reducing the impacts of braided rivers on agricultural systems and there by the livelihood of the society in plains need to focus on rehabilitation activities (soil and water conservation) in upper catchments.
NASA Astrophysics Data System (ADS)
Ye, Fei; Marchetti, P. A.; Su, Z. B.; Yu, L.
2017-09-01
The relation between braid and exclusion statistics is examined in one-dimensional systems, within the framework of Chern-Simons statistical transmutation in gauge invariant form with an appropriate dimensional reduction. If the matter action is anomalous, as for chiral fermions, a relation between braid and exclusion statistics can be established explicitly for both mutual and nonmutual cases. However, if it is not anomalous, the exclusion statistics of emergent low energy excitations is not necessarily connected to the braid statistics of the physical charged fields of the system. Finally, we also discuss the bosonization of one-dimensional anyonic systems through T-duality. Dedicated to the memory of Mario Tonin.
Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases
Charvin, G.; Bensimon, D.; Croquette, V.
2003-01-01
Type-II topoisomerases are responsible for untangling DNA during replication by removing supercoiled and interlinked DNA structures. Using a single-molecule micromanipulation setup, we follow the real-time decatenation of two mechanically braided DNA molecules by Drosophila melanogaster topoisomerase (Topo) II and Escherichia coli Topo IV. Although Topo II relaxes left-handed (L) and right-handed (R-) braids similarly at a rate of ≈2.9 s–1, Topo IV has a marked preference for L-braids, which it relaxes completely and processively at a rate of ≈2.4 s–1. However, Topo IV can unlink R-braids at about half that rate when they supercoil to form L-plectonemes. These results imply that the preferred substrate for unlinking by Topo IV has the symmetry of an L-crossing and shed new light on the decatenation of daughter strands during DNA replication, which are usually assumed to be linked in an R-braid. PMID:12902541
Sediment heterogeneity and mobility in the morphodynamic modelling of gravel-bed braided rivers
NASA Astrophysics Data System (ADS)
Singh, Umesh; Crosato, Alessandra; Giri, Sanjay; Hicks, Murray
2017-06-01
The effects of sediment heterogeneity and sediment mobility on the morphology of braided rivers are still poorly studied, especially when the partial sediment mobility occurs. Nevertheless, increasing the bed sediment heterogeneity by coarse sediment supply is becoming a common practice in river restoration projects and habitat improvement all over the world. This research provides a step forward in the identification of the effects of sediment sorting on the evolution of sediment bars and braiding geometry of gravel-bed rivers. A two-dimensional morphodynamic model was used to simulate the long-term developments of a hypothetical braided system with discharge regime and morphodynamic parameters derived from the Waimakariri River, New Zealand. Several scenarios, differing in bed sediment heterogeneity and sediment mobility, were considered. The results agree with the tendencies already identified in linear analyses and experimental studies, showing that a larger sediment heterogeneity increases the braiding indes and reduces the bars length and height. The analyses allowed identifying the applicability limits of uniform sediment and variable discharge modelling approaches.
Anyonic braiding in optical lattices
Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.
2007-01-01
Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038
2008-01-01
pit floor is built using a commercial swimming pool liner. Once the pit liners are in place, a series of water hoses is placed in pit bottom to...Belvoir RDEC, 1993. [9]. D. Bergeron, S. Hlady and M. P. Braid , 17th International MABS Symposium, 2002. [10]. M. Grujicic, B. Pandurangan and B
Equilibrium theory for braided elastic filaments
NASA Astrophysics Data System (ADS)
van der Heijden, Gert
Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.
NASA Astrophysics Data System (ADS)
Li, Zhi Wei; Yu, Guo An; Brierley, Gary; Wang, Zhao Yin
2016-07-01
The influence of vegetation upon bedload transport and channel morphodynamics is examined along a channel stability gradient ranging from meandering to anabranching to anabranching-braided to fully braided planform conditions along trunk and tributary reaches of the Upper Yellow River in western China. Although the regional geology and climate are relatively consistent across the study area, there is a distinct gradient in the presence and abundance of riparian vegetation for these reaches atop the Qinghai-Tibet Plateau (elevations in the study area range from 2800 to 3400 m a.s.l.). To date, the influence of vegetative impacts upon channel planform and bedload transport capacity of alluvial reaches of the Upper Yellow River remains unclear because of a lack of hydrological and field data. In this region, the types and pattern of riparian vegetation vary with planform type as follows: trees exert the strongest influence in the anabranching reach, the meandering reach flows through meadow vegetation, the anabranching-braided reach has a grass, herb, and sparse shrub cover, and the braided reach has no riparian vegetation. A non-linear relation between vegetative cover on the valley floor and bedload transport capacity is evident, wherein bedload transport capacity is the highest for the anabranching reach, roughly followed by the anabranching-braided, braided, and meandering reaches. The relationship between the bedload transport capacity of a reach and sediment supply from upstream exerts a significant influence upon channel stability. Bedload transport capacity during the flood season (June-September) in the braided reach is much less than the rate of sediment supply, inducing bed aggradation and dynamic channel adjustments. Rates of channel adjustment are less pronounced for the anabranching-braided and anabranching reaches, while the meandering reach is relatively stable (i.e., this is a passive meandering reach).
Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite
Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; ...
2014-11-26
In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi 2Sr 2CaCu 2O x round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO 2 insulation coating and the Rutherford cablemore » insulated with a braided ceramic sleeve.« less
Crash-Energy Absorbing Composite Structure and Method of Fabrication
NASA Technical Reports Server (NTRS)
Kellas, Sotiris (Inventor); Carden, Huey D. (Inventor)
1996-01-01
A stand-alone, crash-energy absorbing structure and fabrication method are provided. A plurality of adjoining rigid cells are each constructed of resin-cured fiber reinforcement and are arranged in a geometric configuration. The fiber reinforcement can be in the form of a fabric or braided fibers wrapped about a core that is either left in place or removed from the ultimate cured structure. The geometric configuration of cells is held together with more fiber reinforcement (in the form of fabric or braided fibers) in order to integrate the cells in the geometric configuration. The additional fiber reinforcement is resin-cured to the cells. Curing of the cells and ultimate structure can occur in a single step. In applications where post-crash integrity is necessary, ductile fibers can be used to integrate the cells in the geometric configuration. The novelty of the present invention is that simple fabrication techniques are used to create structures that can be formed in a variety of net stable shapes without additional reinforcement and can withstand combined loading while crushing in a desired direction.
NASA Astrophysics Data System (ADS)
Yang, Zhuoqing; Wang, Hong; Zhang, Zhenjie; Ding, Guifu; Zhao, Xiaolin
A novel ordered-reinforced microscale polymer matrix composite based on electrophoresis and surface micromachining technologies has been proposed in the present work. The braid angle, volume content and width of the reinforcement in the composite has been designed and simulated by ANSYS finite element software. Based on the simulation and optimization, the Ni fibers reinforced polymer matrix composite sample (3 mm length × 0.6 mm width × 0.04 mm thickness) was successfully fabricated utilizing the surface micromachining process. The fabricated samples were characterized by microtensile test on the dynamic mechanical analysis (DMA) equipment. It is indicated that the tested tensile strength and Young's modulus are 285 MPa and 6.8 GPa, respectively. In addition, the fracture section of the composite sample has been observed by scanning electron microscope (SEM) and the corresponding fracture process was also explained and analyzed in detail. The new presented composite is promising for hot embossing mold in microfluidic chip and several transducers used in accurately controlled biomedical systems.
Collagenous microstructure of the glenoid labrum and biceps anchor
Hill, A M; Hoerning, E J; Brook, K; Smith, C D; Moss, J; Ryder, T; Wallace, A L; Bull, A M J
2008-01-01
The glenoid labrum is a significant passive stabilizer of the shoulder joint. However, its microstructural form remains largely unappreciated, particularly in the context of its variety of functions. The focus of labral microscopy has often been histology and, as such, there is very little appreciation of collagen composition and arrangement of the labrum, and hence the micromechanics of the structure. On transmission electron microscopy, significant differences in diameter, area and perimeter were noted in the two gross histological groups of collagen fibril visualized; this suggests a heterogeneous collagenous composition with potentially distinct mechanical function. Scanning electron microscopy demonstrated three distinct zones of interest: a superficial mesh, a dense circumferential braided core potentially able to accommodate hoop stresses, and a loosely packed peri-core zone. Confocal microscopy revealed an articular surface fine fibrillar mesh potentially able to reduce surface friction, bundles of circumferential encapsulated fibres in the bulk of the tissue, and bone anchoring fibres at the osseous interface. Varying microstructure throughout the depth of the labrum suggests a role in accommodating different types of loading. An understanding of the labral microstructure can lead to development of hypotheses based upon an appreciation of this component of material property. This may aid an educated approach to surgical timing and repair. PMID:18429974
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Halbach, Van V.; Cooke, Daniel L.; Dowd, Christopher F.; Higashida, Randall T.; Saloner, David A.; Wilson, Mark W.; Saeed, Maythem; Hetts, Steven W.
2013-01-01
Background The use of ethylene-vinyl alcohol copolymer for liquid embolization of cranial vascular lesions has resulted in microcatheter fragments entrapped in patients following endovascular procedures. Undergoing subsequent diagnostic MRI examinations poses a safety concern due to the possibility of radiofrequency heating of the metallic braid incorporated into the microcatheter. Heating of nitinol, tungsten, and polyetheretherketone (PEEK) braided microcatheters was assessed and compared using a phantom model. Methods Microcatheters coupled with fluoroptic temperature probes were embedded in a polyacrylamide gel within a head and torso phantom. Experiments were performed at 1.5 T and 3 T, analyzing the effects of different catheter immersion lengths, specific absorption rate (SAR) levels, short clinical scans, long clinical scans, and microcatheter fragment lengths. Results The maximal increase in temperature for the nitinol braided microcatheter during a 15 min scan was 3.06°C using the T1 fast spin echo sequence at 1.5 T and 0.45°C using the balanced steady state free precession sequence at 3 T. The same scans for fragment lengths of 9, 18, 36, and 72 cm produced maximal temperature rises of 0.68, 0.80, 1.70, and 1.07°C at 1.5 T, respectively. The temperature changes at 3 T for these fragment lengths were 0.66, 0.83, 1.07, and 0.72°C, respectively. The tungsten and PEEK braided microcatheters did not demonstrate heating. Conclusions Substantial heating of nitinol braided microcatheters occurred and was a function of SAR level and geometric considerations. SAR and time limitations on MR scanning are proposed for patients with this microcatheter entrapped in their vasculature. In contrast, tungsten and PEEK braided microcatheters showed potential safe use in MRI. PMID:23685793
Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents
NASA Astrophysics Data System (ADS)
Limaye, A. B. S.; Jean-Louis, G.; Paola, C.
2015-12-01
Turbidity currents are the principal agents that transfer clastic sediment from continental margins to the deep ocean. The extensive sedimentary deposits that result can record influences from fluvial transport, ocean currents, and seafloor bathymetry; decoding these controls is key to understanding long-term continental denudation and the formation of hydrocarbon reservoirs. Experimental turbidity currents often use pre-formed, single-thread channels, but more recent experiments and seafloor observations suggest that braided channels also develop in submarine environments. Yet controls on the formation of submarine braided channels and relationships between these channels and stratigraphic evolution remain largely untested. We have conducted a series of experiments to determine the conditions conducive to forming braided submarine channels, and to relate channel geometry and kinematics to deposit architecture. Dissolved salt supplies the excess density of the experimental turbidity currents, which transport plastic, sand-sized sediment as bedload across a test section two meters long and one meter wide. Our experiments indicate that braided channels can form as constructional features without prior erosion for a range of input water and sediment fluxes. Channel migration, avulsion, and aggradation construct sedimentary deposits with bars at a variety of scales. Bar geometry and channel kinematics are qualitatively similar under subaerial and subaqueous experiments with other parameters fixed. We will present quantitative analyses of the relationships between channel geometry and mobility and deposit architecture, at scales from individual bars to the entire deposit, and compare these results to control experiments with subaerial braiding. These experimental results suggest parallels between subaerial and subaqueous braiding, and help to constrain forward models for stratigraphic evolution and inverse methods for estimating flow conditions from turbidites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashkeev, Sergey N.; Glazoff, Michael V.; Tokuhiro, Akira
2014-01-01
Stability of materials under extreme conditions is an important issue for safety of nuclear reactors. Presently, silicon carbide (SiC) is being studied as a cladding material candidate for fuel rods in boiling-water and pressurized water-cooled reactors (BWRs and PWRs) that would substitute or modify traditional zircaloy materials. The rate of corrosion of the SiC ceramics in hot vapor environment (up to 2200 degrees C) simulating emergency conditions of light water reactor (LWR) depends on many environmental factors such as pressure, temperature, viscosity, and surface quality. Using the paralinear oxidation theory developed for ceramics in the combustion reactor environment, we estimatedmore » the corrosion rate of SiC ceramics under the conditions representing a significant power excursion in a LWR. It was established that a significant time – at least 100 h – is required for a typical SiC braiding to significantly degrade even in the most aggressive vapor environment (with temperatures up to 2200 °C) which is possible in a LWR at emergency condition. This provides evidence in favor of using the SiC coatings/braidings for additional protection of nuclear reactor rods against off-normal material degradation during power excursions or LOCA incidents. Additionally, we discuss possibilities of using other silica based ceramics in order to find materials with even higher corrosion resistance than SiC. In particular, we found that zircon (ZrSiO4) is also a very promising material for nuclear applications. Thermodynamic and first-principles atomic-scale calculations provide evidence of zircon thermodynamic stability in aggressive environments at least up to 1535 degrees C.« less
NASA Astrophysics Data System (ADS)
Cheng, Meng; Tantivasadakarn, Nathanan; Wang, Chenjie
2018-01-01
We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of fermionic particles, which correspond to 3D "intrinsic" FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is Z2×Z4. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
Using active colloids as machines to weave and braid on the micrometer scale
NASA Astrophysics Data System (ADS)
Goodrich, Carl P.; Brenner, Michael P.
2017-01-01
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the 2D motion of active colloids so that their path has a nontrivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semiflexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that nonequilibrium assembly pathways can be designed using active particles.
Using active colloids as machines to weave and braid on the micrometer scale
Goodrich, Carl P.; Brenner, Michael P.
2017-01-01
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the 2D motion of active colloids so that their path has a nontrivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semiflexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that nonequilibrium assembly pathways can be designed using active particles. PMID:28034922
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry K.; Langston, William L.; Basilio, Lorena I.
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplifiedmore » infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less
Investigation of Electrostatic Charge in Hose Lines
2006-10-01
of the system. A INSULATORINSULATOR Ir1 Q Q dH vH A INSULATORINSULATOR Ir2 Q dm dl 2 vm LmLH S1 S2 S3EXTERNAL WIRE BRAID ON HOSE vl 2vm dm Lm dl...sizes of fuel hoses , including hoses with and without integrally bonded grounding wire braid ; (4) Different lengths of hose test sections; (5...Different earth grounding contact conditions along the hose test section, such as: (i) Complete insulation from the ground; (ii) Wire braid conductor along
2011-06-01
From above the cut-out, connect the braided plastic hose from the pressure relief valves near the generators to the plastic T-coupling. The... braided plastic hose that emerges from the rear of the QuadCon is connected to the water reservoir below the cut-out. Add approximately 60 liters of...above the generators. Open both valves on either side of the connection. Connect the steel- braided flexible hose from the evaporator suction line
Shuttle plate braiding machine
NASA Technical Reports Server (NTRS)
Huey, Jr., Cecil O. (Inventor)
1994-01-01
A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.
Prediction of flow-induced failures of braided flexible hoses and bellows
NASA Technical Reports Server (NTRS)
Sack, L. E.; Nelson, R. L.; Mason, D. R.; Cooper, R. A.
1972-01-01
Analytical techniques were developed to evaluate braided hoses and bellows for possibility of flow induced resonance. These techniques determine likelihood of high cycle fatigue failure when such resonance exists.
In vitro structural properties of braided tendon grafts.
Nicklin, S; Waller, C; Walker, P; Chung, W K; Walsh, W R
2000-01-01
In an effort to increase strength in hamstring tendon grafts for anterior cruciate ligament reconstruction, braiding or weaving of the tendons has been suggested. The purpose of this study was to examine the biomechanical properties of two braiding techniques compared with a four-stranded tendon graft using a sheep model. Digital extensor tendons from 5 adult sheep were harvested in 28 matched pairs and randomly allocated to French plait or four-stranded weave. The grafts were tested in a hydraulic testing machine with the tendons secured in brass grips frozen with liquid carbon dioxide. The tendons were preconditioned to a distraction of 1 mm for 10 cycles followed by testing to failure at 50 mm/sec, with a data acquisition rate of 1,000 Hz. The stiffness, ultimate load to failure, and the mode of failure were recorded. All braided samples failed at the midsubstance, while the four-stranded controls failed at the grip interface. There was a significant reduction in strength and stiffness of the braided samples compared with the controls. This study demonstrated that braiding decreases the strength and stiffness of a four-stranded tendon graft by up to 54% and 85%, respectively. This finding is supported by the work of Hearle et al. (1969), who demonstrated that the decrease in strength of fiber bundles is equal to the square of the cosine of the twist angle. The twist angle in our samples was approximately 45 degrees, which equates to a decrease in strength of 50%.
Chong, Alexander Cm; Prohaska, Daniel J; Bye, Brian P
2017-05-01
With arthroscopic techniques being used, the importance of knot tying has been examined. Previous literature has examined the use of reversing half-hitches on alternating posts (RHAPs) on knot security. Separately, there has been research regarding different suture materials commonly used in the operating room. The specific aim of this study was to validate the effect of different stacked half-hitch configuration and different braided suture materials on arthroscopic knot integrity. Three different suture materials tied with five different RHAPs in arthroscopic knots were compared. A single load-to-failure test was performed and the mean ultimate clinical failure load was obtained. Significant knot holding strength improvement was found when one half-hitch was reversed as compared to baseline knot. When two of the half-hitches were reversed, there was a greater improvement with all knots having a mean ultimate clinical failure load greater than 150 newtons (N). Comparison of the suture materials demonstrated a higher mean ultimate clinical failure load when Force Fiber ® was used and at least one half-hitch was reversed. Knots tied with either Force Fiber ® or Orthocord ® showed 0% chance of knot slippage while knots tied with FiberWire ® or braided fishing line had about 10 and 30% knot slippage chances, respectively. A significant effect was observed in regards to both stacked half-hitch configuration and suture materials used on knot loop and knot security. Caution should be used with tying three RHAPs in arthroscopic surgery, particularly with a standard knot pusher and arthroscopic cannulas. The findings of this study indicated the importance of three RHAPs in performing arthroscopic knot tying and provided evidence regarding discrepancies of maximum clinical failure loads observed between orthopaedic surgeons, thereby leading to better surgical outcomes in the future.
Dynamic, High-Temperature, Flexible Seal
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Sirocky, Paul J.
1989-01-01
New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.
2007-06-01
threads connected to a steel braided hose with ¼” pipe ends. The steel braided hose is then connected to a ¼” 107 three-way union, which is...which can be switched back and forth, are connected to the nitrogen and vacuum source. The nitrogen source is connected through a steel braided hose ...from hot piping during hot runs. This is where most of the cryogenic piping and valves are mounted. The piping near the pump and the flex hose at
Development of braided rope seals for hypersonic engine applications. Part 2: Flow modeling
NASA Technical Reports Server (NTRS)
Mutharasan, Rajakkannu; Steinetz, Bruce M.; Tao, Xiaoming; Ko, Frank
1991-01-01
Two models based on the Kozeny-Carmen equation were developed to analyze the fluid flow through a new class of braided rope seals under development for advanced hypersonic engines. A hybrid seal geometry consisting of a braided sleeve and a substantial amount of longitudinal fibers with high packing density was selected for development based on its low leakage rates. The models developed allow prediction of the gas leakage rate as a function of fiber diameter, fiber packing density, gas properties, and pressure drop across the seal.
Design and analysis of a torsion braid pendulum displacement transducer
NASA Technical Reports Server (NTRS)
Rind, E.; Bryant, E. L.
1981-01-01
The dynamic properties at various temperatures of braids impregnated with polymer can be measured by using the braid as the suspension of a torsion pendulum. This report describes the electronic and mechanical design of a torsional braid pendulum displacement transducer which is an advance in the state of the art. The transducer uses a unique optical design consisting of refracting quartz windows used in conjunction with a differential photocell to produce a null signal. The release mechanism for initiating free torsional oscillation of the pendulum has also been improved. Analysis of the precision and accuracy of the transducer indicated that the maximum relative error in measuring torsional amplitude was approximately 0. A serious problem inherent in all instruments which use a torsional suspension was analyzed: misalignment of the physical and torsional axes of the torsional member which results in modulation of the amplitude of the free oscillation.
A braided monoidal category for free super-bosons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkel, Ingo, E-mail: ingo.runkel@uni-hamburg.de
The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations ofmore » the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.« less
FLOWS AND WAVES IN BRAIDED SOLAR CORONAL MAGNETIC STRUCTURES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pant, V.; Datta, A.; Banerjee, D., E-mail: vaibhav@iiap.res.in
We study the high frequency dynamics in the braided magnetic structure of an active region (AR 11520) moss as observed by the High-Resolution Coronal Imager (Hi-C). We detect quasi-periodic flows and waves in these structures. We search for high frequency dynamics while looking at power maps of the observed region. We find that shorter periodicities (30–60 s) are associated with small spatial scales which can be resolved by Hi-C only. We detect quasi-periodic flows with a wide range of velocities, from 13–185 km s{sup −1}, associated with braided regions. This can be interpreted as plasma outflows from reconnection sites. Wemore » also find short period and large amplitude transverse oscillations associated with the braided magnetic region. Such oscillations could be triggered by reconnection or such oscillations may trigger reconnection.« less
Kotsar, Andres; Isotalo, Taina; Juuti, Hanne; Mikkonen, Joonas; Leppiniemi, Jenni; Hänninen, Venla; Kellomäki, Minna; Talja, Martti; Tammela, Teuvo L J
2009-03-01
To evaluate, in a pilot study, the efficacy and safety of combining a braided poly(lactic-co-glycolic acid) (PLGA, a copolymer of l-lactide and glycolide) urethral stent and dutasteride in the treatment of acute urinary retention (AUR) due to benign prostatic enlargement (BPE). Ten men with AUR due to BPE were treated as outpatients. A biodegradable braided PLGA urethral stent was inserted into the prostatic urethra, using a specially designed insertion device under visual control. Dutasteride treatment was started and the patients were followed up for 3 months after insertion of the stents. In all patients the stents were placed successfully with the new insertion device. All men were able to void after inserting the stent. At 1 month five patients voided freely with a low residual urine volume (<150 mL), two voided but had a high residual urine volume and a suprapubic catheter was placed, and three needed a suprapubic or an indwelling catheter before 1 month, due to AUR or comorbidities. At 3 months five patients were voiding with no problems. We have developed a new and effective insertion device for biodegradable braided prostatic stents. The new braided-pattern stent overcomes the earlier problems of migration and sudden breakage into large particles associated with biodegradable spiral stents. However, the mechanical properties of the new stent need to be improved and tested in a longer follow-up. We consider that this new biodegradable braided-pattern urethral stent could provide a new option in the future treatment of AUR.
Biomechanical comparison of fixation methods in transverse patella fractures.
Scilaris, T A; Grantham, J L; Prayson, M J; Marshall, M P; Hamilton, J J; Williams, J L
1998-01-01
To compare monofilament wire versus braided cable for stabilizing transverse patella fractures using the modified AO tension band technique. A randomized blocked (paired) study comparing two fixation methods. Statistical analysis was performed using a nested repeated measures analysis, followed by Bonferroni post hoc testing. Seven paired embalmed knees (mean age 71.8 years, SD 14.6 years) were dissected, and transverse fractures were simulated. The knees were reduced and randomly fixed by either two parallel 0.062-inch Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel monofilament wire tension loop or two Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel braided cable tension loop. Knees were tested by applying a cyclic load through the suprapatellar tendon between twenty and 300 newtons for thirty cycles. The maximum fracture displacement increased with each cycle of loading for both the braided cable and monofilament wire tension loop configurations (p = 0.0001). The average peak displacement at the thirtieth cycle was 2.25 millimeters for monofilament wire and 0.73 millimeters for the cable. When comparing both methods for all cycles, the braided cable allowed less fracture displacement than did the monofilament wire (p = 0.002), and the rate of increase per cycle of maximum fracture displacement was less for the cable than for the wire (p = 0.0001). In transverse, noncomminuted patella fractures, fixation with two Kirschner wires and a 1.0-millimeter braided cable tension loop was superior to the monofilament wire tension loop. Most importantly, the braided cable afforded more predictable results during cyclic loading.
Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Micham, Logan; Copa, Christine C.; Criss, James M., Jr.; Mintz, Eric A.
2011-01-01
Several epoxy matrix composite panels were fabricated by resin transfer molding (RTM) E862/W resin onto a triaxially braided carbon fiber pre-form. Nanoparticles including carbon nanofiber, synthetic clay, and functionalized graphite were dispersed in the E862 matrix, and the extent of particle filtration during processing was characterized. Nanoparticle dispersion in the resin flashing on both the inlet and outlet edges of the panel was compared by TEM. Variation in physical properties such as Tg and moisture absorption throughout the panel were also characterized. All nanoparticle filled panels showed a decrease in Tg along the resin flow path across the panel, indicating nanoparticle filtration, however there was little change in moisture absorption. This works illustrates the need to obtain good nano-particle dispersion in the matrix resin to prevent particle agglomeration and hence particle filtration in the resultant polymer matrix composites (PMC).
Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Fox, D. S.
2003-01-01
SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru-thickness thermal conductivity, and burner-rig durability under a high thermal gradient.
Material Properties Analysis of Structural Members in Pumpkin Balloons
NASA Technical Reports Server (NTRS)
Sterling, W. J.
2003-01-01
The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the braiding process and material ageing.
GENOA-PFA: Progressive Fracture in Composites Simulated Computationally
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.
2000-01-01
GENOA-PFA is a commercial version of the Composite Durability Structural Analysis (CODSTRAN) computer program that simulates the progression of damage ultimately leading to fracture in polymer-matrix-composite (PMC) material structures under various loading and environmental conditions. GENOA-PFA offers several capabilities not available in other programs developed for this purpose, making it preferable for use in analyzing the durability and damage tolerance of complex PMC structures in which the fiber reinforcements occur in two- and three-dimensional weaves and braids. GENOA-PFA implements a progressive-fracture methodology based on the idea that a structure fails when flaws that may initially be small (even microscopic) grow and/or coalesce to a critical dimension where the structure no longer has an adequate safety margin to avoid catastrophic global fracture. Damage is considered to progress through five stages: (1) initiation, (2) growth, (3) accumulation (coalescence of propagating flaws), (4) stable propagation (up to the critical dimension), and (5) unstable or very rapid propagation (beyond the critical dimension) to catastrophic failure. The computational simulation of progressive failure involves formal procedures for identifying the five different stages of damage and for relating the amount of damage at each stage to the overall behavior of the deteriorating structure. In GENOA-PFA, mathematical modeling of the composite physical behavior involves an integration of simulations at multiple, hierarchical scales ranging from the macroscopic (lamina, laminate, and structure) to the microscopic (fiber, matrix, and fiber/matrix interface), as shown in the figure. The code includes algorithms to simulate the progression of damage from various source defects, including (1) through-the-thickness cracks and (2) voids with edge, pocket, internal, or mixed-mode delaminations.
New Turaev braided group categories and weak (co)quasi-Turaev group coalgebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaohui, E-mail: zxhhhhh@gmail.com; Wang, Shuanhong, E-mail: shuanhwang2002@yahoo.com
In order to construct a class of new braided crossed G-categories with nontrivial associativity and unit constraints, we study the G-graded monoidal category over a family of algebras (H{sub α}){sub α∈G} and introduce the notion of a weak (co)quasi-Turaev G-(co)algebra. Then we prove that the category of (co)representations of (co)quasitriangular weak (co)quasi-Turaev π-(co)algebras is exactly a braided crossed G-category. In fact, this (co)quasitriangular structure provides a solution to a generalized quantum Yang-Baxter type equation.
Review of the origin of the Braid Scarp near the Pebble prospect, southwestern Alaska
Haeussler, Peter J.; Waythomas, Christopher F.
2011-01-01
A linear geomorphic scarp, referred to as the 'Braid Scarp,' lies about 5 kilometers north of Iliamna Lake, Alaska, and has been identified as a possible seismically active fault. We examined the geomorphology of the area and an 8.5-meter-long excavation across the scarp. We conclude that the scarp was formed by incision of a glacial outwash braid plain into a slightly older outwash plain as ice stagnated in the region during deglaciation 11-15 thousand years ago. We found no evidence for active faulting along the scarp.
Contraction Sensing with Smart Braid McKibben Muscles
Felt, Wyatt; Chin, Khai Yi; Remy, C. David
2016-01-01
The inherent compliance of soft fluidic actuators makes them attractive for use in wearable devices and soft robotics. Their flexible nature permits them to be used without traditional rotational or prismatic joints. Without these joints, however, measuring the motion of the actuators is challenging. Actuator-level sensors could improve the performance of continuum robots and robots with compliant or multi-degree-of-freedom joints. We make the reinforcing braid of a pneumatic artificial muscle (PAM or McKibben muscle) “smart” by weaving it from conductive, insulated wires. These wires form a solenoid-like circuit with an inductance that more than doubles over the PAM contraction. The reinforcing and sensing fibers can be used to measure the contraction of a PAM actuator with a simple, linear function of the measured inductance. Whereas other proposed self-sensing techniques rely on the addition of special elastomers or transducers, the technique presented in this work can be implemented without modifications of this kind. We present and experimentally validate two models for Smart Braid sensors based on the long solenoid approximation and the Neumann formula, respectively. We test a McKibben muscle made from a Smart Braid in quasistatic conditions with various end-loads and in dynamic conditions. We also test the performance of the Smart Braid sensor alongside steel. PMID:28503062
Design of barrier coatings on kink-resistant peripheral nerve conduits
Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim
2016-01-01
Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288
NASA Technical Reports Server (NTRS)
Marchello, Joseph M.
1993-01-01
During the past three months, significant progress has been made on the preparation of carbon fiber composites using advanced polymer resins. The results are set forth in recent reports and publications, and will be presented at forthcoming national and international meetings. Current and ongoing research activities reported herein include: textile composites from powder-coated towpreg; role of surface coating in braiding; prepregger hot sled operation; ribbonizing powder-impregenated towpreg; textile composites from powder-coated towpreg; role of bulk factor powder curtain prepreg process advanced tow placement (ATP) open-section part warpage control. During the coming months research will be directed toward further development of the new powder curtain prepregging method and on ways to customize dry powder towpreg for textile and robotic applications in aircraft part fabrication. Studies of multi-tow powder prepregging and ribbon preparation will be conducted in conjunction with continued development of prepregging technology and the various aspects of composite part fabrication using customized towpreg. Also, during the period ahead work will continue on the analysis of the performance of the new solution prepregger.
Cho, Su-hee; Jo, Won-il; Jo, Ye-eun; Yang, Ku Hyun; Park, Jung Cheol
2017-01-01
Purpose To better understand the performance of four commercially available neurovascular stents in intracranial aneurysm embolization, the stents were compared in terms of their basic morphological and mechanical properties. Materials and Methods Four different types of stents that are currently being used for cerebral aneurysm embolization were prepared (two stents per type). Two were laser-cut stents (Neuroform and Enterprise) and two were braided from a single nitinol wire (LEO and LVIS stents). All were subjected to quantitative measurements of stent size, pore density, metal coverage, the force needed to load, push, and deploy the stent, radial force on deployment, surface roughness, and corrosion resistance. Results Compared to their nominal diameters, all stents had greater diameters after deployment. The length generally decreased after deployment. This was particularly marked in the braided stents. The braided stents also had higher pore densities than the laser-cut stents. Metal coverage was highest in the LEO stent (14%) and lowest in the Enterprise stent (5%). The LIVS stent had the highest microcatheter loading force (81.5 gf). The LEO stent had the highest passage force (55.0 gf) and deployment force (78.9 gf). The LVIS and LEO stents had the highest perpendicular (37.1 gf) and circumferential (178.4 gf) radial forces, respectively. The Enterprise stent had the roughest stent wire, followed by the LVIS, LEO, and Neuroform stents. Conclusion The four neurovascular stent types differed in terms of morphological and physical characteristics. An understanding of this diversity may help to decide which stent is most suitable for specific clinical situations. PMID:28316867
Software for Computing, Archiving, and Querying Semisimple Braided Monoidal Category Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
This software package collects various open source and freely available codes and algorithms to compute and archive the categorical data for certain semisimple braided monoidal categories. In particular, it computes the data for of group theoretical categories for academic research.
Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thalmann, J. K.; Tiwari, S. K.; Wiegelmann, T., E-mail: julia.thalmann@uni-graz.at
2014-01-01
The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated withmore » a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.« less
Active colloids as assembly machines
NASA Astrophysics Data System (ADS)
Goodrich, Carl; Brenner, Michael
Controlling motion at the microscopic scale is a fundamental goal in the development of biologically-inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds. The out-of-equilibrium assembly that we propose involves precisely controlling the two-dimensional motion of active colloids so that their path has a non-trivial topology. We demonstrate with proof-of-principle Brownian dynamics simulations that, when the colloids are attached to long semi-flexible filaments, this motion causes the filaments to braid. The ability of the active particles to provide sufficient force necessary to bend the filaments into a braid depends on a number of factors, including the self-propulsion mechanism, the properties of the filament, and the maximum curvature in the braid. Our work demonstrates that non-equilibrium assembly pathways can be designed using active particles.
Development of braided fiber seals for engine applications
NASA Technical Reports Server (NTRS)
Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Du, Guang-Wu; Steinetz, Bruce M.
1993-01-01
A new type of braided fiber seal was developed for high temperature engine applications. Development work performed includes seal design, fabrication, leakage flow testing, and flow resistance modeling. This new type of seal utilizes the high flow resistance of tightly packed fibers and the conformability of textile structures. The seal contains a core part with aligned fibers, and a sheath with braided fiber layers. Seal samples are made by using the conventional braiding process. Leakage flow measurements are then performed. Mass flow rate versus the simulated engine pressure and preload pressure is recorded. The flow resistance of the seal is analyzed using the Ergun equation for flow through porous media, including both laminar and turbulent effects. The two constants in the Ergun equation are evaluated for the seal structures. Leakage flow of the seal under the test condition is found to be in the transition flow region. The analysis is used to predict the leakage flow performance of the seal with the determined design parameters.
Analysis of Aircraft Fuels and Related Materials
1979-03-01
the fluid. Similarly, a specimen of a metal - reinforced braided fuel hose was cut into two pieces of nominally 50 mm length, with each being weighed...fuel hose was there significant weight gain. That particular specimen, due to its fabrication in layers of elast)mer, cord and metal reinforcing, gave...FUELS The combustion products of certain JP-9 fuels were reported to cause pitting and erosion of MAR M509 metal , an alloy of chro- $ mium and cobalt
MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I.
2009-05-10
The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field towardmore » an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.« less
Adhesive evaluation of LARC-TPI and a water-soluble version of LARC-TPI
NASA Technical Reports Server (NTRS)
Progar, D. J.
1985-01-01
The results of a study to evaluate two Langley Research Center thermoplastic polimide (TPI) materials, identified as TPI/MTC for the material from Mitsui Toatsu Chemicals Inc. and TPI/H2O for the material from United Technologies Research Center, as high temperature thermoplastic adhesives and primers for bonding titanium (6AL-4V) adherends are discussed. A limited characterization of the materials was performed using a Diffuse Reflectance-Fourier Transform Infrared Spectroscopy (DR-FTIR) technique. Thermomechanical Analysis (TMA) and torsional braid techniques were used to determine glass transition temperature. The adhesive's strength, as determined by simple lap shear tests, as used to evaluate the effects of long term thermal exposure (up to 1000 hrs) at 204 deg C and a 72-hour water-boil.
Cultural Narratives: Developing a Three-Dimensional Learning Community through Braided Understanding
ERIC Educational Resources Information Center
Heck, Marsha L.
2004-01-01
Paula Underwood's "Learning Stories" braid together body, mind, and spirit to enable understanding that does not easily unravel. They tell of relationships among individual and community learning that parallel other ancient and contemporary ideas about learning in caring communities. Underwood's tradition considers learning sacred; everyone's…
Advances in 3-dimensional braiding
NASA Technical Reports Server (NTRS)
Thaxton, Cirrelia; Reid, Rona; El-Shiekh, Aly
1992-01-01
This paper encompasses an overview of the history of 3-D braiding and an in-depth survey of the most recent, technological advances in machine design and implementation. Its purpose is to review the major efforts of university and industry research and development into the successful machining of this textile process.
Systems of Generators for the Normalizers of Certain Elements of the Braid Group
NASA Astrophysics Data System (ADS)
Gurzo, G. G.
1985-06-01
Systems of generators of normalizers are determined for certain elements of the braid group {\\mathfrak{B}}_{n+1}. These systems of generators consist of fewer than 2n explicitly written words in the positive alphabet of {\\mathfrak{B}}_{n+1}. Bibliography: 10 titles.
Development and application of nonflammable, high-temperature beta fibers
NASA Technical Reports Server (NTRS)
Dawn, Frederic S.
1989-01-01
Recent advances in fiber technology have contributed to the success of the U.S. space program. The inorganic fiber Beta, developed as a result of efforts begun in the early 1960's and heightened following the January 27, 1967 Apollo fire is unique among inorganic and organic fibers. It has been developed into woven, nonwoven, knitted, braided, coated and printed structures. All of these were used extensively for the Apollo, Skylab, Apollo-Soyuz test project, space shuttle, Spacelab, and satellite programs. In addition to being used successfully in the space program, Beta fibers are being used commercially as firesafe fabrics in homes, hospitals, institutions, public buildings, aircraft, and public transportation, wherever total nonflammability is required. One of the most unique applications of the Beta composite structure is the roofing material for the 80,000-seat Detroit Lion's Silverdome and 5 square miles of the Jeddah International Airport in Saudi Arabia. This fiber has been successfully incorporated into 165 major public construction projects around the globe. The United States alone has used more than 12 million square yards of the material. Beta fiber has been used successfully to date and has a promising future with unlimited potential for both space and commercial application. Efforts are currently underway to improve Beta fiber to meet the requirements of extended service life for the Space Station Freedom, lunar outpost, and Mars exploration missions.
Causes of Cracking of Ignition Cable
NASA Technical Reports Server (NTRS)
Silsbee, F B
1921-01-01
The experiments described here show that the cracking at sharp bends, observed in the insulation of internal combustion engine high tension ignition wires after service, is due to a chemical attack upon the rubber by the ozone produced by the electric discharge that takes place at the surface of the cable. This cracking does not occur if the insulating material is not under tension, or if the cable is surrounded by some medium other than air. But it does occur even if the insulation is not subjected to electric stress, provided that the atmosphere near the cable contains ozone. The extent of this cracking varies greatly with the insulating material used. The cracking can be materially reduced by using braided cable and by avoiding sharp bends.
River channel patterns: Braided, meandering, and straight
Leopold, Luna Bergere; Wolman, M. Gordon
1957-01-01
Channel pattern is used to describe the plan view of a reach of river as seen from an airplane, and includes meandering, braiding, or relatively straight channels.Natural channels characteristically exhibit alternating pools or deep reaches and riffles or shallow reaches, regardless of the type of pattern. The length of the pool or distance between riffles in a straight channel equals the straight line distance between successive points of inflection in the wave pattern of a meandering river of the same width. The points of inflection are also shallow points and correspond to riffles in the straight channel. This distance, which is half the wavelength of the meander, varies approximately as a linear function of channel width. In the data we analysed the meander wavelength, or twice the distance between successive riffles, is from 7 to 12 times the channel width. It is concluded that the mechanics which may lead to meandering operate in straight channels.River braiding is characterized by channel division around alluvial islands. The growth of an island begins as the deposition of a central bar which results from sorting and deposition of the coarser fractions of the load which locally cannot be transported. The bar grows downstream and in height by continued deposition on its surface, forcing the water into the flanking channels, which, to carry the flow, deepen and cut laterally into the original banks. Such deepening locally lowers the water surface and the central bar emerges as an island which becomes stabilized by vegetation. Braiding was observed in a small river in a laboratory. Measurements of the adjustments of velocity, depth, width, and slope associated with island development lead to the conclusion that braiding is one of the many patterns which can maintain quasi-equilibrium among discharge, load, and transporting ability. Braiding does not necessarily indicate an excess of total load.Channel cross section and pattern are ultimately controlled by the discharge and load provided by the drainage basin. It is important, therefore, to develop a picture of how the several variables involved in channel shape interact to result in observed channel characteristics. Such a rationale is summarized as follows:Channel width appears to be primarily a function of near-bankfull discharge, in conjunction with the inherent resistance of bed and bank to scour. Excessive width increases the shear on the bed at the expense of that on the bank and the reverse is true for very narrow widths. Because at high stages width adjustment can take place rapidly and with the evacuation or deposition of relatively small volumes of debris, achievement of a ,relatively stable width at high flow is a primary adjustment to which the further interadjustments between depth, velocity, slope, and roughness tend to accommodate.Channel roughness, to the extent that it is determined by particle size, is an independent factor related to the drainage basin rather than to the channel. Roughness in streams carrying fine material, however, is also a function of the dunes or other characteristics of bed configuration. Where roughness is independently determined as well as discharge and load, these studies indicate that a particular slope is associated with the roughness. At the width determined by the discharge, velocity and depth must be adjusted to satisfy quasi-equilibrium in accord with the particular slope. But if roughness also is variable, depending on the transitory configuration of the bed, then a number of combinations of velocity, depth, and slope will satisfy equilibrium.An increase in load at constant discharge, width, and caliber of load tends to be associated with an increasing slope if the roughness (dune or bed configuration) changes with the load. In the laboratory river an increase of load at constant discharge, width, and caliber resulted in progressive aggradation of long reaches of channel at constant slope.The adjustments of several variables tending toward the establishment of quasi-equilibrium in river channels lead to the different channel patterns observed in nature. For example, the data indicate that at a given discharge, meanders occur at smaller values of slope than do’ braids. Further, at the same slope braided channels are associated with higher bankfull discharges than are meanders. An additional example is provided by the division of discharge around islands in braided rivers which produces numerous small channels. The changes in slope, roughness, and channel shape which accompany this division are in accord with quasi-equilibrium adjustments observed in the comparison of large and small rivers.
"On hypnotism" (1860) De l'hypnotisme.
Robertson, Donald
2009-04-01
James Braid's last essay on hypnotism, the culmination of his work, summarized in a French translation for the Academy of Sciences, is published in English with comments. According to Braid, hypnotism is a psychological ("subjective") approach, fundamentally opposed to the paranormal claims and magnetic ("objective") theories of mesmerism. Hypnotism operates primarily by means of dominant ideas that the attention of the subject is fixated upon. The reversibility of hypnotic amnesia is taken as evidence of "double consciousness." However, over 90% of Braid's subjects did not exhibit this state of dissociation or any sleep-like responses but merely a sense of "reverie." Good subjects are as suggestible in the "waking" state as others are in hypnotism.
(Re)braiding to Tell: Using "Trenzas" as a Metaphorical-Analytical Tool in Qualitative Research
ERIC Educational Resources Information Center
Quiñones, Sandra
2016-01-01
Metaphors can be used in qualitative research to illuminate the meanings of participant experiences and examine phenomena from insightful and creative perspectives. The purpose of this paper is to illustrate how I utilized "trenzas" (braids) as a metaphorical and analytical tool for understanding the experiences and perspectives of…
Single Common Powertrain Lubricant (SCPL) Development. Part 2
2014-04-01
stand and connected via steel braided Teflon hose to the engines oil filter outlet port. A remote liquid-liquid heat exchanger was then added in...series with the stainless braided Teflon oil lines (after the oil filter), and its return was plumbed back to the engine via the engine’s front lower
Handbook of Oceanographic Winch, Wire, and Cable Technology.
1982-10-18
Strength Members (Figure 2-3), involve a center arrangement of electrical conductors Tone, coax, tristed, pair, triad, etc.) with the braided metal or...8217. .. . . . .-.. . . . . .. - . . . C. Robert Shaw, Chief Engineer Union Metal Manufacturing...2-4 1.1 COINCIDENCE............................ 2-4 *1 .2 CEN4TER STRENGTH MEMBER.................. 2-4 *1.3 BRAIDED OUTER STRENGTH MIBER
Evolution method and ``differential hierarchy'' of colored knot polynomials
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.; Morozov, And.
2013-10-01
We consider braids with repeating patterns inside arbitrary knots which provides a multi-parametric family of knots, depending on the "evolution" parameter, which controls the number of repetitions. The dependence of knot (super)polynomials on such evolution parameters is very easy to find. We apply this evolution method to study of the families of knots and links which include the cases with just two parallel and anti-parallel strands in the braid, like the ordinary twist and 2-strand torus knots/links and counter-oriented 2-strand links. When the answers were available before, they are immediately reproduced, and an essentially new example is added of the "double braid", which is a combination of parallel and anti-parallel 2-strand braids. This study helps us to reveal with the full clarity and partly investigate a mysterious hierarchical structure of the colored HOMFLY polynomials, at least, in (anti)symmetric representations, which extends the original observation for the figure-eight knot to many (presumably all) knots. We demonstrate that this structure is typically respected by the t-deformation to the superpolynomials.
First Principles Model of Electric Cable Braid Penetration with Dielectrics
Campione, Salvatore; Warne, Larry Kevin; Langston, William L.; ...
2018-01-01
In this study, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e. the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius tomore » half spacing ratio of 0.5-0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.« less
Generalization of Filament Braiding Model for Amyloid Fibril Assembly
NASA Astrophysics Data System (ADS)
Pope, Maighdlin; Ionescu-Zanetti, Cristian; Khurana, Ritu; Carter, Sue
2001-03-01
Research into the formation of amyloid fibrils is motivated by their association with several prominent diseases, among these Alzheimer's Disease, Parkinson's Disease and amyloidosis. Previous work in monitering the aggregation of immunoglobulin light chains to form amyloid fibrils suggests a braided structure where filaments and protofibrils wind together to form Type I and Type II fibrils. Non-contact atomic force microscopy is used to image and explore the kinetics of several other amyloid fibril forming proteins in an effort to generalize the filament braiding model. Included in this study are insulin and the B1 domain of G. Both of these have been shown to form fibrils in vitro. Alpha-synuclein is also included in this study. It is involved in the formation of Lewy bodies in Parkinson's Disease. The fourth protein used in this comparitive study is human amylin that is the cause of a systemic amyloidosis. Results from these four proteins and their associated fibrils are compared to the Ig light chain fibril structure in an effort to show the universality of the filament braiding model.
From Constraints to Resolution Rules Part II : chains, braids, confluence and T&E
NASA Astrophysics Data System (ADS)
Berthier, Denis
In this Part II, we apply the general theory developed in Part I to a detailed analysis of the Constraint Satisfaction Problem (CSP). We show how specific types of resolution rules can be defined. In particular, we introduce the general notions of a chain and a braid. As in Part I, these notions are illustrated in detail with the Sudoku example - a problem known to be NP-complete and which is therefore typical of a broad class of hard problems. For Sudoku, we also show how far one can go in "approximating" a CSP with a resolution theory and we give an empirical statistical analysis of how the various puzzles, corresponding to different sets of entries, can be classified along a natural scale of complexity. For any CSP, we also prove the confluence property of some Resolution Theories based on braids and we show how it can be used to define different resolution strategies. Finally, we prove that, in any CSP, braids have the same solving capacity as Trial-and-Error (T&E) with no guessing and we comment this result in the Sudoku case.
Optimization of lattice surgery is NP-hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-09-01
The traditional method for computation in either the surface code or in the Raussendorf model is the creation of holes or "defects" within the encoded lattice of qubits that are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work, we focus on the lattice surgery representation, which realizes transversal logic operations without destroying the intrinsic 2D nearest-neighbor properties of the braid-based surface code and achieves universality without defects and braid-based logic. For both techniques there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult and the classical complexity associated with this problem has yet to be determined. In the context of lattice-surgery-based logic, we can introduce an optimality condition, which corresponds to a circuit with the lowest resource requirements in terms of physical qubits and computational time, and prove that the complexity of optimizing a quantum circuit in the lattice surgery model is NP-hard.
Optimization of topological quantum algorithms using Lattice Surgery is hard
NASA Astrophysics Data System (ADS)
Herr, Daniel; Nori, Franco; Devitt, Simon
The traditional method for computation in the surface code or the Raussendorf model is the creation of holes or ''defects'' within the encoded lattice of qubits which are manipulated via topological braiding to enact logic gates. However, this is not the only way to achieve universal, fault-tolerant computation. In this work we turn attention to the Lattice Surgery representation, which realizes encoded logic operations without destroying the intrinsic 2D nearest-neighbor interactions sufficient for braided based logic and achieves universality without using defects for encoding information. In both braided and lattice surgery logic there are open questions regarding the compilation and resource optimization of quantum circuits. Optimization in braid-based logic is proving to be difficult to define and the classical complexity associated with this problem has yet to be determined. In the context of lattice surgery based logic, we can introduce an optimality condition, which corresponds to a circuit with lowest amount of physical qubit requirements, and prove that the complexity of optimizing the geometric (lattice surgery) representation of a quantum circuit is NP-hard.
First Principles Model of Electric Cable Braid Penetration with Dielectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Warne, Larry Kevin; Langston, William L.
In this study, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e. the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius tomore » half spacing ratio of 0.5-0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.« less
Unit cell geometry of multiaxial preforms for structural composites
NASA Technical Reports Server (NTRS)
Ko, Frank; Lei, Charles; Rahman, Anisur; Du, G. W.; Cai, Yun-Jia
1993-01-01
The objective of this study is to investigate the yarn geometry of multiaxial preforms. The importance of multiaxial preforms for structural composites is well recognized by the industry but, to exploit their full potential, engineering design rules must be established. This study is a step in that direction. In this work the preform geometry for knitted and braided preforms was studied by making a range of well designed samples and studying them by photo microscopy. The structural geometry of the preforms is related to the processing parameters. Based on solid modeling and B-spline methodology a software package is developed. This computer code enables real time structural representations of complex fiber architecture based on the rule of preform manufacturing. The code has the capability of zooming and section plotting. These capabilities provide a powerful means to study the effect of processing variables on the preform geometry. the code also can be extended to an auto mesh generator for downstream structural analysis using finite element method. This report is organized into six sections. In the first section the scope and background of this work is elaborated. In section two the unit cell geometries of braided and multi-axial warp knitted preforms is discussed. The theoretical frame work of yarn path modeling and solid modeling is presented in section three. The thin section microscopy carried out to observe the structural geometry of the preforms is the subject in section four. The structural geometry is related to the processing parameters in section five. Section six documents the implementation of the modeling techniques into the computer code MP-CAD. A user manual for the software is also presented here. The source codes and published papers are listed in the Appendices.
Theory of equilibria of elastic 2-braids with interstrand interaction
NASA Astrophysics Data System (ADS)
Starostin, E. L.; van der Heijden, G. H. M.
2014-03-01
Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.
NASA Astrophysics Data System (ADS)
Stecca, Guglielmo; Zolezzi, Guido; Surian, Nicola; Hicks, Murray
2017-04-01
Observations of morphological change in braided rivers, comprising narrowing of the total and active braidplain, degradation (at least in some reaches), increase in vegetation cover, and reduction of braiding complexity towards a transitional style, have been increasingly reported worldwide in the last decades. Most of the available literature concerns rivers in Europe, with particular reference to the Alpine and pre-Alpine region (e.g., Italy, France, Austria, Switzerland). This abundance reflects the magnitude of changes in Europe, where most of braided reaches have been heavily impacted. However, contributions from other regions of Europe (e.g., the Polish Carpathians, Spain, Scotland, Corsica) and of the Earth (e.g., the South Island of New Zealand) document similar stories. These morphodynamic changes have been related to the alteration of the fundamental physical processes in braided rivers driven by the flow and sediment supply regimes, due to anthropogenic changes in constraints and controls. Multiple and context-specific sources of impact on these controls have been identified, including damming, landuse change, gravel mining, torrent control works, channelisation, introduction of alien vegetation. Here, we focus on a comparative analysis of the relatively recent (multi-decadal) evolution of braided rivers located in different geographic regions on the Earth, with particular reference to the Waitaki (New Zealand), Piave (Italy) and Dunajec (Poland) rivers. These rivers display similar morphological trajectories, which nonetheless result from very different paths of causation, i.e., from different management causes and different alteration of physical processes. We focus on the role of different physical and human geographic contexts as drivers of the river evolution, highlighting the relations between the observed trajectories and the local conditions and characteristics. We discuss the relative role of dam construction and operation in contributing to the observed trajectories, and the prediction of future evolutionary trajectories through numerical morphodynamic modelling.
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Wen, Xiao-Gang
2015-01-01
String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.
NASA Technical Reports Server (NTRS)
Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.
1993-01-01
Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.
Zhao, Fan; Xue, Wen; Wang, Fujun; Liu, Laijun; Shi, Haoqin; Wang, Lu
2018-08-01
Stents are vital devices to treat vascular stenosis in pediatric patients with congenital heart disease. Bioresorbable stents (BRSs) have been applied to reduce challenging complications caused by permanent metal stents. However, it remains almost a total lack of BRSs with satisfactory compression performance specifically for children with congenital heart disease, leading to importantly suboptimal effects. In this work, composite bioresorbable prototype stents with superior compression resistance were designed by braiding and annealing technology, incorporating poly (p-dioxanone) (PPDO) monofilaments and polycaprolactone (PCL) multifilament. Stent prototype compression properties were investigated. The results revealed that novel composite prototype stents showed superior compression force compared to the control ones, as well as recovery ability. Furthermore, deformation mechanisms were analyzed by computational simulation, which revealed bonded interlacing points among yarns play an important role. This research presents important clinical implications in bioresorbable stent manufacture and provides further study with an innovative stent design. Copyright © 2018 Elsevier Ltd. All rights reserved.
Spatio-temporal scaling of channels in braided streams.
A.G. Hunt; G.E. Grant; V.K. Gupta
2006-01-01
The spatio-temporal scaling relationship for individual channels in braided streams is shown to be identical to the spatio-temporal scaling associated with constant Froude number, e.g., Fr = l. A means to derive this relationship is developed from a new theory of sediment transport. The mechanism by which the Fr = l condition apparently governs the scaling seems to...
An application of sedimentation simulation in Tahe oilfield
NASA Astrophysics Data System (ADS)
Tingting, He; Lei, Zhao; Xin, Tan; Dongxu, He
2017-12-01
The braided river delta develops in Triassic low oil formation in the block 9 of Tahe oilfield, but its sedimentation evolution process is unclear. By using sedimentation simulation technology, sedimentation process and distribution of braided river delta are studied based on the geological parameters including sequence stratigraphic division, initial sedimentation environment, relative lake level change and accommodation change, source supply and sedimentary transport pattern. The simulation result shows that the error rate between strata thickness of simulation and actual strata thickness is small, and the single well analysis result of simulation is highly consistent with the actual analysis, which can prove that the model is reliable. The study area belongs to braided river delta retrogradation evolution process, which provides favorable basis for fine reservoir description and prediction.
Relative Yetter-Drinfeld modules and comodules over braided groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haixing, E-mail: zhuhaixing@163.com, E-mail: haxing.zhu@njfu.edu.cn
Let H{sub 1} be a quantum group and f : H{sub 1}⟶H{sub 2} a Hopf algebra homomorphism. Assume that B is some braided group obtained by Majid’s transmutation process. We first show that there is a tensor equivalence between the category of comodules over the braided group B and that of relative Yetter-Drinfeld modules. Next, we prove that the Drinfeld centers of the two categories mentioned above are equivalent to the category of modules over some quantum double, namely, the category of ordinary Yetter-Drinfeld modules over some Radford’s biproduct Hopf algebra. Importantly, the above results not only hold for amore » finite dimensional quantum group but also for an infinite dimensional one.« less
Yetter-Drinfeld modules for Hom-bialgebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhlouf, Abdenacer, E-mail: Abdenacer.Makhlouf@uha.fr; Panaite, Florin, E-mail: Florin.Panaite@imar.ro
The aim of this paper is to define and study Yetter-Drinfeld modules over Hom-bialgebras, a generalized version of bialgebras obtained by modifying the algebra and coalgebra structures by a homomorphism. Yetter-Drinfeld modules over a Hom-bialgebra with bijective structure map provide solutions of the Hom-Yang-Baxter equation. The category H/HYD of Yetter-Drinfeld modules with bijective structure maps over a Hom-bialgebra H with bijective structure map can be organized, in two different ways, as a quasi-braided pre-tensor category. If H is quasitriangular (respectively, coquasitriangular) the first (respectively, second) quasi-braided pre-tensor category H/HYD contains, as a quasi-braided pre-tensor subcategory, the category of modules (respectively,more » comodules) with bijective structure maps over H.« less
Wireless majorana fermions: from magnetic tunability to braiding (Conference Presentation)
NASA Astrophysics Data System (ADS)
Fatin, Geoffrey L.; Matos-Abiague, Alex; Scharf, Benedikt; Zutic, Igor
2016-10-01
In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles with non-Abelian statistics and particle-antiparticle symmetry. While realizing the non-Abelian braiding statistics under exchange would provide both an ultimate proof for MBS existence and the key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. Frequently examined 1D superconductor/semiconductor wires provide a prototypical example of how to produce MBSs, however braiding statistics are ill-defined in 1D and complex wire networks must be used. By placing an array of magnetic tunnel junctions (MTJs) above a 2D electron gas formed in a semiconductor quantum well grown on the surface of an s-wave superconductor, we have predicted the existence of highly tunable zero-energy MBSs and have proposed a novel scheme by which MBSs could be exchanged [1]. This scheme may then be used to demonstrate the states' non-Abelian statistics through braiding. The underlying magnetic textures produced by MTJ array provides a pseudo-helical texture which allows for highly-controllable topological phase transitions. By defining a local condition for topological nontriviality which takes into account the local rotation of magnetic texture, effective wire geometries support MBS formation and permit their controlled movement in 2D by altering the shape and orientation of such wires. This scheme then overcomes the requirement for a network of physical wires in order to exchange MBSs, allowing easier manipulation of such states. [1] G. L. Fatin, A. Matos-Abiague, B. Scharf, and I. Zutic, arXiv:1510.08182, preprint.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Structural testing and analysis of a braided, inflatable fabric torus structure
NASA Astrophysics Data System (ADS)
Young, Andrew C.; Davids, William G.; Whitney, Daniel J.; Clapp, Joshua D.; Goupee, Andrew J.
2017-10-01
Inflatable structural members have military, disaster relief, aerospace and other important applications as they possess low mass, can be stored in a relatively small volume and have significant load-carrying capacity once pressurized. Of particular interest to the present research is the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) structure under development by NASA. In order to make predictions about the structural response of the HIAD system, it is necessary to understand the response of individual inflatable tori composing the HIAD structure. These inflatable members present unique challenges to structural testing and modeling due to their internal inflation pressure and relative compliance. Structural testing was performed on a braided, inflatable, toroidal structural member with axial reinforcing cords. The internal inflation pressure, magnitude of enforced displacement and loading methodology were varied. In-plane and out-of-plane experimental results were compared to model predictions using a three dimensional, corotational, flexibility-based fiber-beam finite element model including geometric and material nonlinearities, as well as the effects of inflation pressure. It was found that in order to approximate the load-deformation response observed in experimentation it is necessary to carefully control the test and model boundary conditions and loading scheme.
Braid group representation on quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com; Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
On some 3-point functions in the W 4 CFT and related braiding matrix
NASA Astrophysics Data System (ADS)
Furlan, P.; Petkova, V. B.
2015-12-01
We construct a class of 3-point constants in the sl(4) Toda conformal theory W 4, extending the examples in Fateev and Litvinov [1]. Their knowledge allows to determine the braiding/fusing matrix transforming 4-point conformal blocks of one fundamental, labelled by the 6-dimensional sl(4) representation, and three partially degenerate vertex operators. It is a 3 × 3 submatrix of the generic 6 × 6 fusing matrix consistent with the fusion rules for the particular class of representations. We check a braiding relation which has wider applications to conformal models with sl(4) symmetry. The 3-point constants in dual regions of central charge are compared in preparation for a BPS like relation in the widehat{sl}(4) WZW model.
Hein, C.J.; FitzGerald, D.M.; Barnhardt, W.A.
2007-01-01
Recent multi-beam, backscatter, and bottom sediment data demonstrate that a large sand sheet was formed in the inner shelf by the reworking of the Merrimack River lowstand delta and braid plain (12 kya) during the Holocene transgression. Seismic data reveal the presence of widespread channel cut-and-fill structures landward of the delta suggesting that much of the sand sheet consists of braided stream deposits. These features map into several sets of cut-and-fill structures, indicating the avulsion of the primary river channels, which creates the lobes of the paleo-delta. Truncations of these, cut-and-fill structures suggest that the braid plain deposits were probably reworked during the Holocene transgression and may have contributed sand to developing barriers that presently border the Merrimack Embayment.
NASA Technical Reports Server (NTRS)
Komar, P. D.
1984-01-01
Sand bars and islands within braided rivers have characteristic rhomboid or diamond shapes, often becoming very complex in form as the density of islands increases. Similar forms are observed in the martian outflow channels where the islands occur in groups. This contrasts with the more isolated martian islands which have airfoil shapes, as do isolated streamlined islands in rivers and in the Channeled Scabland. These observations indicate that the bar and island forms are controlled by the density of the islands, with increasing island interaction and flow modification as the density increases. As a continuation of previous flume experiments on the shapes of isolated islands, a new series of experiments investigate the modifications produced by a progressive increase in island density, finally leading to a true braided system.
Note on online books and articles about the history of dissociation.
Alvarado, Carlos S
2008-01-01
Students of the history of dissociation will be interested in the materials on the subject available in the digital document database Google Book Search. This includes a variety of books and journals covering automatic writing, hypnosis, mediumship, multiple personality, trance, somnambulism, and other topics. Among the authors represented in the database are: Eugène Azam, Alfred Binet, James Braid, Jean-Martin Charcot, Pierre Janet, Frederic W.H. Myers, Morton Prince, and Boris Sidis, among others. The database includes examples of case reports, conceptual discussions, and psychiatric and psychological textbook literature.
Synthesis of InSb Nanowire Architectures - Building Blocks for Majorana Devices
NASA Astrophysics Data System (ADS)
Car, Diana
Breakthroughs in material development are playing a major role in the emerging field of topological quantum computation with Majorana Zero Modes (MZMs). Due to the strong spin-orbit interaction and large Landé g-factor InSb nanowires are one of the most promising one dimensional material systems in which to detect MZMs. The next generation of Majorana experiments should move beyond zero-mode detection and demonstrate the non-Abelian nature of MZMs by braiding. To achieve this goal advanced material platforms are needed: low-disorder, single-crystalline, planar networks of nanowires with high spin-orbit energy. In this talk I will discuss the formation and electronic properties of InSb nanowire networks. The bottom-up synthesis method we have developed is generic and can be employed to synthesize interconnected nanowire architectures of group III-V, II-VI and IV materials as long as they grow along a <111>direction.
Perception, Action, and Experience: Unraveling the Golden Braid
ERIC Educational Resources Information Center
Clark, Andy
2009-01-01
Much of our human mental life looks to involve a seamless unfolding of perception, action and experience: a golden braid in which each element twines intimately with the rest. We see the very world we act in and we act in the world we see. But more than this, visual experience presents us with the world in a way apt for the control and fine…
NASA Astrophysics Data System (ADS)
Curran, Janet H.; Loso, Michael G.; Williams, Haley B.
2017-09-01
Flow spilling out of an active braid plain often signals the onset of channel migration or avulsion to previously occupied areas. In a recently deglaciated environment, distinguishing between shifts in active braid plain location, considered reversible by fluvial processes at short timescales, and more permanent glacier-conditioned changes in stream position can be critical to understanding flood hazards. Between 2009 and 2014, increased spilling from the Exit Creek braid plain in Kenai Fjords National Park, Alaska, repeatedly overtopped the only access road to the popular Exit Glacier visitor facilities and trails. To understand the likely cause of road flooding, we consider recent processes and the interplay between glacier and fluvial system dynamics since the maximum advance of the Little Ice Age, around 1815. Patterns of temperature and precipitation, the variables that drive high streamflow via snowmelt, glacier meltwater runoff, and rainfall, could not fully explain the timing of road floods. Comparison of high-resolution topographic data between 2008 and 2012 showed a strong pattern of braid plain aggradation along 3 km of glacier foreland, not unexpected at the base of mountainous glaciers and likely an impetus for channel migration. Historically, a dynamic zone follows the retreating glacier in which channel positions shift rapidly in response to changes in the glacier margin and fresh morainal deposits. This period of paraglacial adjustment lasts one to several decades at Exit Glacier. Subsequently, as moraine breaches consolidate and lock the channel into position, and as the stream regains the lower-elevation valley center, upper-elevation surfaces are abandoned as terraces inaccessible by fluvial processes for timescales of decades to centuries. Where not constrained by these terraces and moraines, the channel is free to migrate, which in this aggradational setting generates an alluvial fan at the breach of the final prominent moraine. The position of this fan is glacially conditioned but the process of migration of the braided channels across it is not. This broad perspective on channel controls identifies incipient avulsion into the roadside forest as part of a long-term fan-building process independent from changes in streamflow or sediment load.
Comparison of three different orthodontic wires for bonded lingual retainer fabrication
Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan
2012-01-01
Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930
Cheung, Nicholas K; Chiu, Albert Hy; Cheung, Andrew; Wenderoth, Jason D
2018-06-01
Stent assisted coil embolization (SACE) of bifurcation aneurysms is challenging. Heterogeneous results have been achieved to date, but largely for laser cut stents. While braided stents offer multiple technical advantages, their long term efficacy has yet to be validated. To report the first long term 18 month results for the durability of bifurcation aneurysms treated with braided stents. Over a 4 year period, 59 consecutive patients with 60 bifurcation aneurysms underwent elective braided SACE across three Australian neurovascular centers. 17 of these aneurysms underwent T- or Y-shaped stent constructs. All patients had immediate, 6 month and 18 month clinical and radiological follow-up. Radiological assessment was made on modified Raymond-Roy occlusion scores while clinical assessment was based on the modified Rankin Scale. Subgroup analysis of 17 aneurysms treated with multi-stent constructs was conducted. 6 month follow-up data were available for 59 aneurysms and 18 month follow-up data for 58 aneurysms. Satisfactory aneurysm occlusion was achieved in 97% at inception and at 6 months, and 98% at 18 months. Good neurological outcomes were achieved in 95% at 18 months. Similar satisfactory results were achieved with the multi-stent construct cohort. Intraprocedural thromboembolic events were recorded in 5% and delayed events in 2%. Technical complications were found in 5%. All complication rate was 13%. Braided SACE was safe, efficacious, and durable at the long term 18 month follow-up, including for multi-stent constructs. Preliminary results indicate favorable clinical and radiological outcomes compared with laser cut stents. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Twisted versus braided magnetic flux ropes in coronal geometry. II. Comparative behaviour
NASA Astrophysics Data System (ADS)
Prior, C.; Yeates, A. R.
2016-06-01
Aims: Sigmoidal structures in the solar corona are commonly associated with magnetic flux ropes whose magnetic field lines are twisted about a mutual axis. Their dynamical evolution is well studied, with sufficient twisting leading to large-scale rotation (writhing) and vertical expansion, possibly leading to ejection. Here, we investigate the behaviour of flux ropes whose field lines have more complex entangled/braided configurations. Our hypothesis is that this internal structure will inhibit the large-scale morphological changes. Additionally, we investigate the influence of the background field within which the rope is embedded. Methods: A technique for generating tubular magnetic fields with arbitrary axial geometry and internal structure, introduced in part I of this study, provides the initial conditions for resistive-MHD simulations. The tubular fields are embedded in a linear force-free background, and we consider various internal structures for the tubular field, including both twisted and braided topologies. These embedded flux ropes are then evolved using a 3D MHD code. Results: Firstly, in a background where twisted flux ropes evolve through the expected non-linear writhing and vertical expansion, we find that flux ropes with sufficiently braided/entangled interiors show no such large-scale changes. Secondly, embedding a twisted flux rope in a background field with a sigmoidal inversion line leads to eventual reversal of the large-scale rotation. Thirdly, in some cases a braided flux rope splits due to reconnection into two twisted flux ropes of opposing chirality - a phenomenon previously observed in cylindrical configurations. Conclusions: Sufficiently complex entanglement of the magnetic field lines within a flux rope can suppress large-scale morphological changes of its axis, with magnetic energy reduced instead through reconnection and expansion. The structure of the background magnetic field can significantly affect the changing morphology of a flux rope.
NASA Astrophysics Data System (ADS)
Sarki Yandoka, Babangida M.; Abubakar, M. B.; Abdullah, Wan Hasiah; Amir Hassan, M. H.; Adamu, Bappah U.; Jitong, John S.; Aliyu, Abdulkarim H.; Adegoke, Adebanji Kayode
2014-08-01
The Benue Trough of Nigeria is a major rift basin formed from the tension generated by the separation of African and South American plates in the Early Cretaceous. It is geographically sub-divided into Southern, Central and Northern Benue portions. The Northern Benue Trough comprises two sub-basins; the N-S trending Gongola Sub-basin and the E-W trending Yola Sub-basin. The Bima Formation is the oldest lithogenetic unit occupying the base of the Cretaceous successions in the Northern Benue Trough. It is differentiated into three members; the Lower Bima (B1), the Middle Bima (B2) and the Upper Bima (B3). Facies and their stratigraphical distribution analyses were conducted on the Lower Bima Member exposed mainly at the core of the NE-SW axially trending Lamurde Anticline in the Yola Sub-basin, with an objective to interpret the paleodepositional environments, and to reconstruct the depositional model and the stratigraphical architecture. Ten (10) lithofacies were identified on the basis of lithology, grain size, sedimentary structures and paleocurrent analysis. The facies constitute three (3) major facies associations; the gravelly dominated, the sandy dominated and the fine grain dominated. These facies and facies associations were interpreted and three facies successions were recognized; the alluvial-proximal braided river, the braided river and the lacustrine-marginal lacustrine. The stratigraphic architecture indicates a rifted (?pull-apart) origin as the facies distribution shows a progradational succession from a shallow lacustrine/marginal lacustrine (at the axial part of the basin) to alluvial fan (sediment gravity flow)-proximal braided river (gravel bed braided river) and braided river (channel and overbank) depositional systems. The facies stacking patterns depict sedimentation mainly controlled by allogenic factors of climate and tectonism.
Factorization of differential expansion for non-rectangular representations
NASA Astrophysics Data System (ADS)
Morozov, A.
2018-04-01
Factorization of the differential expansion (DE) coefficients for colored HOMFLY-PT polynomials of antiparallel double braids, originally discovered for rectangular representations R, in the case of rectangular representations R, is extended to the first non-rectangular representations R = [2, 1] and R = [3, 1]. This increases chances that such factorization will take place for generic R, thus fixing the shape of the DE. We illustrate the power of the method by conjecturing the DE-induced expression for double-braid polynomials for all R = [r, 1]. In variance with the rectangular case, the knowledge for double braids is not fully sufficient to deduce the exclusive Racah matrix S¯ — the entries in the sectors with nontrivial multiplicities sum up and remain unseparated. Still, a considerable piece of the matrix is extracted directly and its other elements can be found by solving the unitarity constraints.
NASA Astrophysics Data System (ADS)
Georgiev, Lachezar S.
2006-12-01
We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .
NASA Astrophysics Data System (ADS)
Censier, Claude; Lang, Jacques
1999-08-01
The depositional environment, provenance and processes of emplacement of the detrital material of the Mesozoic Carnot Formation are defined, by bedding and sedimentological analysis of its main facies, and are reconstructed within the palaeogeographic framework of Central Africa. The clastic material was laid down between probably the Albian and the end of the Cretaceous, in a NNW-oriented braided stream fluvial system that drained into the Doba Trough (Chad) and probably also into the Touboro Basin (Cameroon). The material was derived from weathering of the underlying Devonian-Carboniferous Mambéré Glacial Formation and of the Precambrian schist-quartzite complex located to the south of the Carnot Formation. These results provide useful indications as to the provenance of diamonds mined in the southwest Central African Republic.
A strong and flexible electronic vessel for real-time monitoring of temperature, motions and flow.
Zhang, Wei; Hou, Chengyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi
2017-11-23
Flexible and multifunctional sensors that continuously detect physical information are urgently required to fabricate wearable materials for health monitoring. This study describes the fabrication and performance of a strong and flexible vessel-like sensor. This electronic vessel consists of a self-supported braided cotton hose substrate, single-walled carbon nanotubes (SWCNTs)/ZnO@polyvinylidene fluoride (PVDF) function arrays and a flexible PVDF function fibrous membrane, and it possesses high mechanical property and accurate physical sensing. The rationally designed tubular structure facilities the detection of the applied temperature and strain and the frequency, pressure, and temperature of pulsed fluids. Therefore, the flexible electronic vessel holds promising potential for applications in wearable or implantable materials for the monitoring of health.
Sock Shaped Internal Strength Member for Towed Arrays
hose -shaped sheath. The member has a plurality of longitudinally extending high strength cords formed of braids or strands of high tensile strength...interfering with the sensors’ acoustic sensing capabilities. The hose -shaped sheath contains the tubular-shaped strength member in a non-compressive...relationship to reduce the problems normally associated with flow noise. The cords are braided together in an eye-splice where they are wrapped about
Mount St. Helens Ecosystem Restoration General Reevaluation Study Reconnaissance Report
2007-07-01
consist of several smaller channels ( braided ). 1 Hoffstadt Creek Currently maintaining stable connection to North Fork Toutle. Second confluence forms...during high runoff conditions, good holding pools at or just below several of the release sites are limited, and the release hoses need improvements to...Adult coho and steelhead release just above the SRS into the braided sections of the North Fork Toutle River passed upstream into tributaries, with
NASA Technical Reports Server (NTRS)
Scala, E.; Bentley, D. P.; Marshall, L. S.
1986-01-01
The development of a 20-km electromechanical tether for the tethered satellite system (TSS) is described. The basic design requirements for electromagnetic cables and for conductors in cables subject to stresses and cyclic loading are discussed. The tether fabricatioon procedures involve: (1) conductor twisting around the core, (2) insulation extrusion, (3) strength member braiding, and (4) protective jacket braiding.
Podolak, Charles J.
2013-01-01
An ensemble of rule-based models was constructed to assess possible future braided river planform configurations for the Toklat River in Denali National Park and Preserve, Alaska. This approach combined an analysis of large-scale influences on stability with several reduced-complexity models to produce the predictions at a practical level for managers concerned about the persistence of bank erosion while acknowledging the great uncertainty in any landscape prediction. First, a model of confluence angles reproduced observed angles of a major confluence, but showed limited susceptibility to a major rearrangement of the channel planform downstream. Second, a probabilistic map of channel locations was created with a two-parameter channel avulsion model. The predicted channel belt location was concentrated in the same area as the current channel belt. Finally, a suite of valley-scale channel and braid plain characteristics were extracted from a light detection and ranging (LiDAR)-derived surface. The characteristics demonstrated large-scale stabilizing topographic influences on channel planform. The combination of independent analyses increased confidence in the conclusion that the Toklat River braided planform is a dynamically stable system due to large and persistent valley-scale influences, and that a range of avulsive perturbations are likely to result in a relatively unchanged planform configuration in the short term.
Imperfect dark energy from kinetic gravity braiding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy
2010-10-01
We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding,more » the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.« less
Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case
Campione, Salvatore; Warne, Larry K.; Langston, William L.; ...
2017-07-11
In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less
Multipole-Based Cable Braid Electromagnetic Penetration Model: Electric Penetration Case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Warne, Larry K.; Langston, William L.
In this paper, we investigate the electric penetration case of the first principles multipole-based cable braid electromagnetic penetration model reported in the Progress in Electromagnetics Research B 66, 63–89 (2016). We first analyze the case of a 1-D array of wires: this is a problem which is interesting on its own, and we report its modeling based on a multipole-conformal mapping expansion and extension by means of Laplace solutions in bipolar coordinates. We then compare the elastance (inverse of capacitance) results from our first principles cable braid electromagnetic penetration model to that obtained using the multipole-conformal mapping bipolar solution. Thesemore » results are found in a good agreement up to a radius to half spacing ratio of 0.6, demonstrating a robustness needed for many commercial cables. We then analyze realistic cable implementations without dielectrics and compare the results from our first principles braid electromagnetic penetration model to the semiempirical results reported by Kley in the IEEE Transactions on Electromagnetic Compatibility 35, 1–9 (1993). Finally, although we find results on the same order of magnitude of Kley's results, the full dependence on the actual cable geometry is accounted for only in our proposed multipole model which, in addition, enables us to treat perturbations from those commercial cables measured.« less
Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa
NASA Astrophysics Data System (ADS)
Vos, Richard G.; Tankard, Anthony J.
1981-07-01
Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.
[Fiber-reinforced composite in fixed prosthodontics].
Pilo, R; Abu Rass, Z; Shmidt, A
2010-07-01
Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.
NASA Astrophysics Data System (ADS)
Williams, Richard; Measures, Richard; Hicks, Murray; Brasington, James
2017-04-01
Advances in geomatics technologies have transformed the monitoring of reach-scale (100-101 km) river morphodynamics. Hyperscale Digital Elevation Models (DEMs) can now be acquired at temporal intervals that are commensurate with the frequencies of high-flow events that force morphological change. The low vertical errors associated with such DEMs enable DEMs of Difference (DoDs) to be generated to quantify patterns of erosion and deposition, and derive sediment budgets using the morphological approach. In parallel with reach-scale observational advances, high-resolution, two-dimensional, physics-based numerical morphodynamic models are now computationally feasible for unsteady, reach-scale simulations. In light of this observational and predictive progress, there is a need to identify appropriate metrics that can be extracted from DEMs and DoDs to assess model performance. Nowhere is this more pertinent than in braided river environments, where numerous mobile channels that intertwine around mid-channel bars result in complex patterns of erosion and deposition, thus making model assessment particularly challenging. This paper identifies and evaluates a range of morphological and morphological-change metrics that can be used to assess predictions of braided river morphodynamics at the timescale of single storm events. A depth-averaged, mixed-grainsize Delft3D morphodynamic model was used to simulate morphological change during four discrete high-flow events, ranging from 91 to 403 m3s-1, along a 2.5 x 0.7 km reach of the braided, gravel-bed Rees River, New Zealand. Pre- and post-event topographic surveys, using a fusion of Terrestrial Laser Scanning and optical-empirical bathymetric mapping, were used to produce 0.5 m resolution DEMs and DoDs. The pre- and post-event DEMs for a moderate (227m3s-1) high-flow event were used to calibrate the model. DEMs and DoDs from the other three high-flow events were used for model assessment using two approaches. First, "morphological" metrics were applied to compare observed and predicted post-event DEMs. These metrics include measures of confluence and bifurcation node density, bar shape, braiding intensity, and topographic comparisons using a form of the Brier Skill Score and cumulative frequency distributions of rugosity. Second, "morphological change" metrics were used to compare observed and predicted morphological change. These metrics included the extent of the morphologically active area, pairwise comparisons of morphological change (using kappa and fuzzy kappa statistics), and comparisons between vertical morphological change magnitude and elevation distribution. Results indicate that those metrics that assess characteristic features of braiding, rather than making direct comparisons, are most useful for assessing reach-scale braided river morphodynamic models. Together, the metrics indicate that there was a general affinity between observed and predicted braided river morphodynamics, both during small and large magnitude high-flow events. These results thus demonstrate how high-resolution, reach-scale, natural experiment datasets can be used to assess the efficacy of morphological models in predicting realistic patterns of erosion and deposition. This lays the foundation for the development and assessment of decadal scale morphodynamic models and their use in adaptive river basin management.
Extrusion of metal oxide superconducting wire, tube or ribbon
Dusek, Joseph T.
1993-10-05
A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.
Extrusion of metal oxide superconducting wire, tube or ribbon
Dusek, Joseph T.
1993-01-01
A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.
1984-04-03
constitute the very essence of our revolutionary road and persuade us to reaffirm the total convergence between the interests of the workers, the enterprise...capital, except for Beirut in its days of glory. In this long square, everybody walks with utter reassurance. In the last 2 months of the spring, jasmine ...vendors flow into the streets with their bunches that are combed and braided the way a mother combs and braids her only daughter’s hair. Jasmine
Intramuscular Contact Lead Filled With Conductive Solution
NASA Technical Reports Server (NTRS)
Bamford, Robert M.; Hendrickson, James A.
1991-01-01
Proposed sheath for braided-wire intramuscular conductor preserves electrical continuity even if wire breaks. Plastic sheath surrounds conductive solution in which braided wire immersed. At end of cable, wire and sheath crimped together and press-fit in porous titanium electrode. Implanted surgically with aid of device resembling catheter. Used to deliver electrical stimuli to muscles in biomedical research on human and animal physiology, development of prostheses, regeneration of nerves and muscles, and artificial implants.
Engineering Design Handbook. Electromagnetic Compatibility
1977-03-01
sliding action between turns. For more effective shielding, it may be covered with one or more layers of woven metal braid . The hose must be used in...shield. Details on this structure are given in Military Standards MS 51010 and 51011. In addition, flexible metal hoses of both braided and solid...signal cables. Flexible conduits for high- and low-voltage shield- ing usually consist of flexible metal hoses over which are wound one or more
Large-Scale Coherent Flow Structures in a Natural Braided Reach Section of a Gravel-Bed River
2011-06-01
FLOW STRUCTURES IN A NATURAL BRAIDED REACH SECTION OF A GRAVEL- BED RIVER by William F. Ashley June 2011 Thesis Advisor: Jamie MacMahan...William F. Ashley Approved by: Jamie MacMahan Thesis Advisor Edward Thornton Second Reader Jeffrey D. Paduan Chairman...and gratitude to Professor Jamie MacMahan for his guidance and patience. I feel fortunate to have been your student. I thank Professor Ed
Thermal conductance characterization of a pressed copper rope strap between 0.13 K and 10 K
Dhuley, R. C.; Ruschman, M.; Link, J. T.; ...
2017-07-05
Mechanically pressing the ends of a copper braid in solid copper is an effective way of constructing solderless conductive straps for cryogenic applications. In this paper we present thermal conductance data of such a copper strap measured using the two-heater one-thermometer method. The measurements span a wide temperature range of 0.13–10 K applicable to a variety of cryogenic systems employing liquid helium, pulse tube coolers, adiabatic demagnetization refrigerators, and others. Above ≈1.5 K, the braid thermal conductivity dominates the strap conductance resulting in a near-linear dependence with temperature. The variation with temperature below ≈1.5 K is near-quadratic indicating dominance ofmore » the pressed contact conductance at the strap ends. In conclusion, electron-beam welding the braid to the strap ends is shown to be a promising solution for improving sub-Kelvin thermal conductance of the strap.« less
Thermal conductance characterization of a pressed copper rope strap between 0.13 K and 10 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhuley, R. C.; Ruschman, M.; Link, J. T.
Mechanically pressing the ends of a copper braid in solid copper is an effective way of constructing solderless conductive straps for cryogenic applications. In this paper we present thermal conductance data of such a copper strap measured using the two-heater one-thermometer method. The measurements span a wide temperature range of 0.13–10 K applicable to a variety of cryogenic systems employing liquid helium, pulse tube coolers, adiabatic demagnetization refrigerators, and others. Above ≈1.5 K, the braid thermal conductivity dominates the strap conductance resulting in a near-linear dependence with temperature. The variation with temperature below ≈1.5 K is near-quadratic indicating dominance ofmore » the pressed contact conductance at the strap ends. In conclusion, electron-beam welding the braid to the strap ends is shown to be a promising solution for improving sub-Kelvin thermal conductance of the strap.« less
Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system
Kretschmer, Carola; Gruetzner, Ramona; Löfke, Christian; Dagdas, Yasin; Bürstenbinder, Katharina; Marillonnet, Sylvestre
2018-01-01
Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies. PMID:29847550
NASA Astrophysics Data System (ADS)
Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus
2006-08-01
Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric-palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.
Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
2015-06-01
Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.
NASA Astrophysics Data System (ADS)
Amireh, Belal S.
2018-04-01
Detrital framework modes of the NE Gondwanan uppermost Ediacaran-Lower Cretaceous siliciclastic sequence of Jordan are determined employing the routine polarized light microscope. The lower part of this sequence constitutes a segment of the vast lower Paleozoic siliciclastic sheet flanking the northern Gondwana margin that was deposited over a regional unconformity truncating the outskirts of the East African orogen in the aftermath of the Neoproterozoic amalgamation of Gondwana. The research aims to evaluate the factors governing the detrital light mineral composition of this sandstone. The provenance terranes of the Arabian craton controlled by plate tectonics appear to be the primary factor in most of the formations, which could be either directly inferred employing Dickinson's compositional triangles or implied utilizing the petrographic data achieved and the available tectonic and geological data. The Arabian-Nubian Shield constitutes invariably the craton interior or the transitional provenance terrane within the NE Gondwana continental block that consistently supplied sandy detritus through northward-flowing braided rivers to all the lower Paleozoic formations. On the other hand, the Lower Cretaceous Series received siliciclastic debris, through braided-meandering rivers having same northward dispersal direction, additionally from the lower Paleozoic and lower-middle Mesozoic platform strata in the Arabian Craton. The formations making about 50% of the siliciclastic sequence represent a success for Dickinson's plate tectonics-provenance approach in attributing the detrital framework components primarily to the plate tectonic setting of the provenance terranes. However, even under this success, the varying effects of the other secondary sedimentological and paleoclimatological factors are important and could be crucial. The inapplicability of this approach to infer the appropriate provenance terranes of the remaining formations could be ascribed either to the special influence of local intracratonic syn-rift rhyolitic extrusions, where their plate tectonic setting is not represented by the standard plate tectonics-provenance diagrams, or to the rather unusual effect of the Late Ordovician glacial event.
Laminar Instability and Transition on the X-51A
2009-08-01
AIM15 controller. Surface thermocouples are affixed to the contraction by hose clamps and are used by the controllers to determine when each heater...installed in the model. One 20- gauge, braided , high-voltage wire is soldered to the inner electrode. This wire then passes through the model, angle...and another 20-gauge, braided , high-voltage wire leading from the sting to the ground of the glow electronics. From the back of the sting to the glow
NASA Astrophysics Data System (ADS)
Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Meunier, P.; Malverti, L.; Ye, B.
2014-02-01
In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.
A robustness test of the braided device foreshortening algorithm
NASA Astrophysics Data System (ADS)
Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio
2017-11-01
Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...
2016-02-07
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Entangling qubits by Heisenberg spin exchange and anyon braiding
NASA Astrophysics Data System (ADS)
Zeuch, Daniel
As the discovery of quantum mechanics signified a revolution in the world of physics more than one century ago, the notion of a quantum computer in 1981 marked the beginning of a drastic change of our understanding of information and computability. In a quantum computer, information is stored using quantum bits, or qubits, which are described by a quantum-mechanical superposition of the quantum states 0 and 1. Computation then proceeds by acting with unitary operations on these qubits. These operations are referred to as quantum logic gates, in analogy to classical computation where bits are acted on by classical logic gates. In order to perform universal quantum computation it is, in principle, sufficient to carry out single-qubit gates and two-qubit gates, where the former act on individual qubits and the latter, acting on two qubits, are used to entangle qubits with each other. The present thesis is divided into two main parts. In the first, we are concerned with spin-based quantum computation. In a spin-based quantum computer, qubits are encoded into the Hilbert space spanned by spin-1/2 particles, such as electron spins trapped in semiconductor quantum dots. For a suitable qubit encoding, turning on-and-off, or "pulsing,'' the isotropic Heisenberg exchange Hamiltonian JSi · Sj allows for universal quantum computation and it is this scheme, known as exchange-only quantum computation, which we focus on. In the second part of this thesis, we consider a topological quantum computer in which qubits are encoded using so-called Fibonacci anyons, exotic quasiparticle excitations that obey non-Abelian statistics, and which may emerge in certain two-dimensional topological systems such as fractional quantum-Hall states. Quantum gates can then be carried out by moving these particles around one another, a process that can be viewed as braiding their 2+1 dimensional worldlines. The subject of the present thesis is the development and theoretical understanding of procedures used for entangling qubits. We begin by presenting analytical constructions of pulse sequences which can be used to carry out two-qubit gates that are locally equivalent to a controlled-PHASE gate. The corresponding phase can be arbitrarily chosen, and for one particular choice this gate is equivalent to controlled-NOT. While the constructions of these sequences are relatively lengthy and cumbersome, we further provide a straightforward and intuitive derivation of the shortest known two-qubit pulse sequence for carrying out a controlled-NOT gate. This derivation is carried out completely analytically through a novel "elevation'' of a simple three-spin pulse sequence to a more complicated five-spin pulse sequence. In the case of topological quantum computation with Fibonacci anyons, we present a new method for constructing entangling two-qubit braids. Our construction is based on an iterative procedure, established by Reichardt, which can be used to systematically generate braids whose corresponding operations quickly converge towards an operation that has a diagonal matrix representation in a particular natural basis. After describing this iteration procedure we show how the resulting braids can be used in two explicit constructions for two-qubit braids. Compared to two-qubit braids that can be found using other methods, the braids generated here are among the most efficient and can be obtained straightforwardly without computational overhead.
Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.
Caruso, Brian S; Edmondson, Laura; Pithie, Callum
2013-07-01
In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive vegetation cover has implications for braided rivers impacted by hydroelectric power production, where increases in invasive vegetation cover are typically greater than in unimpacted rivers.
Modelling of vegetation-driven morphodynamics in braided rivers.
NASA Astrophysics Data System (ADS)
Stecca, Guglielmo; Fedrizzi, Davide; Hicks, Murray; Measures, Richard; Zolezzi, Guido; Bertoldi, Walter; Tal, Michal
2017-04-01
River planform results from the complex interaction between flow, sediment transport and vegetation, and can evolve following a change in these controls. The braided planform of New Zealand's Lower Waitaki River, for instance, is endangered by the action of artificially-introduced alien vegetation, which spread across the braidplain following the reduction in magnitude of floods by hydropower dam construction. This vegetation, by encouraging flow concentration into the main channel, would likely promote a shift towards a single-thread morphology if it was not artificially removed within a central fairway. The purpose of this work is to study the evolution of braided rivers such as the Waitaki under different management scenarios through two-dimensional numerical modelling. The construction of a suitable model represents a task in itself, since a modelling framework coupling all the relevant processes is not yet readily available. Our starting point is the physics-based GIAMT2D numerical model, which solves two-dimensional flow and bedload transport in wet/dry domains, and recently modified by the inclusion of a rule-based bank erosion model. We have further developed this model by adding a vegetation module, which accounts in a simplified manner for time-evolving biomass density, adjusting local flow roughness, critical shear stress for sediment transport, and bank erodibility accordingly. Our goal is to use the model to study decadal-scale evolution of a reach on the Waitaki River and predict planform characteristics under different vegetation management scenarios. Here we present the results of a preliminary application of the model to reproduce the morphodynamic evolution of a braided channel in a set of flume experiments that used alfalfa as vegetation. The experiments began with a braided morphology that spontaneoulsy formed at constant flow over a bed of bare uniform sand. The planform transitioned towards single-thread when this discharge was repeatedly cycled with periods of low flow and vegetation growth.
NASA Astrophysics Data System (ADS)
Khalifa, M. A.; Catuneanu, O.
2008-05-01
The Lower Cenomanian Bahariya Formation in the Bahariya Oasis, Western Desert, Egypt, was deposited under two coeval environmental conditions. A fully fluvial system occurs in the southern portion of the Bahariya Oasis, including depositional products of meandering and braided streams, and a coeval fluvio-marine setting is dominant to the north. These deposits are organized into four unconformity-bounded depositional sequences, whose architecture is shaped by a complex system of incised valleys. The fluvial portion of the lower two depositional sequences is dominated by low-energy, meandering systems with a tabular geometry, dominated by overbank facies. The fluvial deposits of the upper two sequences represent the product of sedimentation within braided streams, and consist mainly of amalgamated channel-fills. The braided fluvial systems form the fill of incised valleys whose orientation follows a southeast-northwest trending direction, and which truncate the underlying sequences. Four sedimentary facies have been identified within the braided-channel systems, namely thin-laminated sandstones (Sh), cross-bedded sandstones (Sp, St), massive ferruginous sandstones (Sm) and variegated mudstones (Fm). The exposed off-channel overbank facies of the meandering systems include floodplain (Fm) and crevasse splay (Sl) facies. The fluvio-marine depositional systems consist of interbedded floodplain, coastal and shallow-marine deposits. The floodplain facies include fine-grained sandstones (Sf), laminated siltstones (Stf) and mudstones (Mf) that show fining-upward cycles. The coastal to shallow-marine facies consist primarily of mudstones (Mc) and glauconitic sandstones (Gc) organized vertically in coarsening-upward prograding cyclothems topped by thin crusts of ferricrete (Fc). The four depositional sequences are present across the Bahariya Oasis, albeit with varying degrees of preservation related to post-depositional erosion associated with the formation of sequence boundaries. These unconformities may be overlain by braided-stream channel sandstones at the base of incised valleys, or marked by ferricrete paleosols (lithofacies Fc) in the interfluve areas.
Ivasauskas, Tomas J.; Bettoli, P.W.; Holt, T.
2012-01-01
We examined the effects of suture material (braided silk versus Monocryl) and relative ultrasonic transmitter size on healing, growth, mortality, and tag retention in rainbow trout Oncorhynchus mykiss. In experiment 1, 40 fish (205-281mmtotal length [TL], 106-264 g) were implanted with Sonotronics IBT-96-2 (23??7 mm; weight in air, 4.4 g; weight in water, 2.4 g) or IBT 96-2E (30 ?? 7 mm; weight in air, 4.9 g; weight in water, 2.4 g) ultrasonic telemetry tags. In experiment 2, 20 larger fish (342-405 mm TL; 520-844 g) were implanted with Sonotronics IBT-96-5 ultrasonic tags (36 ?? 11 mm; weight in air, 9.1 g; weight in water, 4.1 g). The tag burdens for all implanted fish ranged from 1.1% to 3.4%, and fish in both studies were held at 10-15??C. At the conclusion of both experiments (65 d after surgery), no mortalities were observed in any of the 60 tagged fish, most incisions were completely healed, and all fish in both experiments grew in length, although tagged fish grew more slowly than control fish in experiment 1. In both experiments, fish sutured with silk expelled tags more frequently than those sutured with Monocryl. Expulsion was observed in 45-50% of the fish sutured with silk and 0-25% of the fish sutured withMonocryl. Tag expulsion was not observed until 25-35 d after surgery. Fish sutured with silk exhibited a more severe inflammatory response 3 weeks after surgery than those sutured with Monocryl. In experiment 1, the rate of expulsion was linked to the severity of inflammation. Although braided silk sutures were applied faster than Moncryl sutures in both experiments, knots tied with either material were equally reliable and fish sutured with Monocryl experienced less inflammation and lower rates of tag expulsion. American Fisheries Society 2012.
Flexible collapse-resistant and length-stable vaccum hose
Kashy, David H.
2003-08-19
A hose for containing a vacuum, which hose has an impermeable flexible tube capable of holding a vacuum and a braided or interwoven flexible interior wall, said wall providing support to said interior wall of said impermeable flexible tube. Optionally, an exterior braided or woven wall may be provided to the hose for protection or to allow the hose to be used as a pressure hose. The hose may delimit a vacuum space through which may travel a thermal transfer line containing, for example, cryogenic fluid.
2010-04-01
Water Kit (dry system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user...diaphragm system) installed as standard Abyss second stage with integrated 30-inch braided intermediate pressure hose as standard No user adjustments...1st Stage Regulator with Abyss 2nd Stage and Integrated Intermediate Pressure Hose ..………………………….. A-2 A3 Modified Mares Proton Ice Extreme V32
Novel Concepts for Conformal Load-Bearing Antenna Structure
2008-02-01
through the entire cross-section of a conductor as visualised in the classical “water- through-a-garden- hose ” explanation of DC current flow. Rather, RF...these fabrics were 6k T650 carbon fibre tows braided into unidirectional fabrics. The 6k tows in these fabrics were oriented in the 0° direction and...90]s lay-up 0.050 DSF0302 Standard aerospace prepreg tape [±45]s lay-up 0.061 DSF0601 Braided standard carbon fibres/Standard resin 6k T650
2007-03-01
use. At the end of these lines, two high temperature hoses provide flexibility for connection. 57 Figure 28: Heater emergency shutoff...stainless steel braided , Teflon tubing. This enables the probe to be easily positioned as required. The oil temperature is measured by a K-type...used to cool emissions probe. The sample gases exit the probe into a 1/4” piece of braided , flexible Teflon tubing to provide for probe
Axisymmetric Wave Transfer Functions of Flexible Tubes
NASA Astrophysics Data System (ADS)
Pinnington, R. J.
1997-07-01
The input and transfer impedances of fluid-filled pipes are calculated by using a wave approach. The pipe walls can have orthotropic elastic properties associated with braided rubber hose. The input and transfer impedances of a water-filled plain rubber hose are plotted for zero pressurization and positive and negative pressure. It is found that the pressure for this case does not greatly affect the stiffness. Input and transfer impedances are also plotted for a braided rubber hose which demonstrates the significant pressure stiffening effects found in practice.
Impulse Loading Resulting fromShallow Buried Explosives in Water-Saturated Sand
2007-01-01
speed photographs of the associated soil cratering and ejecting phenomena. The work of Bergeron et al. [6] was subsequently extended by Braid [7] to...place, a series of water hoses is placed in pit bottom to allow the introduction of water into the pit from the bottom. Next, approximately 14.2 m3...blast. Final report for contract no. DAAK70-92-C-0058, US Army Belvoir RDEC, Ft. Belvoir, VA, 1993. 6 Bergeron, D. Hlady, S., and Braid , M. P
Biomimetic tissue-engineered anterior cruciate ligament replacement
Cooper, James A.; Sahota, Janmeet S.; Gorum, W. Jay; Carter, Janell; Doty, Stephen B.; Laurencin, Cato T.
2007-01-01
There are >200,000 anterior cruciate ligament (ACL) ruptures each year in the United States, and, due to the poor healing properties of the ACL, surgical reconstruction with autograft or allograft tissue is the current treatment of these injuries. To regenerate the ACL, the ideal matrix should be biodegradable, porous, and exhibit sufficient mechanical strength to allow formation of neoligament tissue. Researchers have developed ACL scaffolds with collagen fibers, silk, biodegradable polymers, and composites with limited success. Our group has developed a biomimetic ligament replacement by using 3D braiding technology. In this preliminary in vivo rabbit model study for ACL reconstruction, the histological and mechanical evaluation demonstrated excellent healing and regeneration with our cell-seeded, tissue-engineered ligament replacement. PMID:17360607
NASA Technical Reports Server (NTRS)
2002-01-01
On October 13, 2000, the Expedition 3 crew of the International Space Station, high over Tibet, took this interesting photo of the Brahmaputra River. This mighty Asian river carves a narrow west-east valley between the Tibetan Plateau to the north and the Himalaya Mountains to the south, as it rushes eastward for more than 1500 km in southwestern China. This 15-km stretch is situated about 35 km south of the ancient Tibetan capital of Lhasa where the river flow becomes intricately braided as it works and reworks its way through extensive deposits of erosional material. This pattern is indicative of a combination heavy sediment discharge from tributaries and reduction of the river's flow from either a change in gradient or perhaps even climate conditions over the watershed. The light color of the deposits and the milky color of the water is attributed to presence of glacial 'flour,' the fine material created by erosion from glaciers. Besides erosion by water and ice, this scene also depicts features created by wind. Note the delicate field of dunes on the alluvial fan toward the right edge of the image. The riverbed here is at an elevation of over 3,500 m, and with the long west-east extent of this barren valley, strong, persistent westerly winds also move and shape these deposits. Photos such as this one bring immediate visual understanding and appreciation of natural processes in some of the most remote locations on Earth. Image ISS003-E-6632, was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
Baums, M H; Buchhorn, G H; Gilbert, F; Spahn, G; Schultz, W; Klinger, H-M
2010-09-01
This experimental study aimed to compare the load-to-failure rate and stiffness of single- versus double-row suture techniques for repairing rotator cuff lesions using two different suture materials. Additionally, the mode of failure of each repair was evaluated. In 32 sheep shoulders, a standardized tear of the infraspinatus tendon was created. Then, n = 8 specimen were randomized to four repair methods: (1) Double-row Anchor Ethibond coupled with polyester sutures, USP No. 2; (2) Double-Row Anchor HiFi with polyblend polyethylene sutures, USP No. 2; (3) Single-Row Anchor Ethibond coupled with braided polyester sutures, USP No. 2; and (4) Single-Row Anchor HiFi with braided polyblend polyethylene sutures, USP No. 2. Arthroscopic Mason-Allen stitches were placed (single-row) and combined with medial horizontal mattress stitches (double-row). All specimens were loaded to failure at a constant displacement rate on a material testing machine. Group 4 showed lowest load-to-failure result with 155.7 +/- 31.1 N compared to group 1 (293.4 +/- 16.1 N) and group 2 (397.7 +/- 7.4 N) (P < 0.001). Stiffness was highest in group 2 (162 +/- 7.3 N/mm) and lowest in group 4 (84.4 +/- 19.9 mm) (P < 0.001). In group 4, the main cause of failure was due to the suture cutting through the tendon (n = 6), a failure case observed in only n = 1 specimen in group 2 (P < 0.001). A double-row technique combined with arthroscopic Mason-Allen/horizontal mattress stitches provides high initial failure strength and may minimize the risk of the polyethylene sutures cutting through the tendon in rotator cuff repair when a single load force is used.
Fabric geometry distortion during composites processing
NASA Technical Reports Server (NTRS)
Chen, Julie
1994-01-01
Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However, even at 200 psi the period and amplitude of the tow undulation remained constant, suggesting that for this relatively fine fabric, distortions from compaction were not a problem. Because of the interest in using larger tows (to reduce cost) and more complex structures, tests were also run on 2D triaxial glass braid (113 yd/lb at 0, 225 yd/lb at +/- 45). Forming pressures of 20, 50, 200, and 500 psi were used, and short block compression tests were run. The 500 psi specimen had a 10 percent decrease in modulus and an almost 50 percent decrease in strength (vs. 20 psi). Because the total fiber wgt/panel was kept constant, the thickness varied from 0.32 to 0.22 in (49-70 percent vf). Yet, the strength value is clearly below what would be expected, even with the decrease in thickness. Photomicrographs of these samples will be taken to determine if more fabric distortion exists in the 500 psi specimens. Finally, because the ultimate goal is to be able to predict and control distortion in a variety of textile structures, a model compaction test was developed to directly measure the deformation of the tows during compaction. Layers of dry glass fabric were placed in a mold with a clear plexiglass window. The yarn amplitude and period was then calculated using image analysis of the videotaped deformation. Preliminary tests demonstrated the feasibility of this technique for simple fabrics with large tows.
Topological and statistical properties of nonlinear force-free fields
NASA Astrophysics Data System (ADS)
Mangalam, A.; Prasad, A.
2018-01-01
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.
NASA Astrophysics Data System (ADS)
Xia, Junqiang; Zhang, Xiaolei; Wang, Zenghui; Li, Jie; Zhou, Meirong
2018-06-01
Hyperconcentrated sediment-laden floods often occur in a braided reach of the Lower Yellow River, usually leading to significant channel evolution. A one-dimensional (1D) morphodynamic model using a dynamically coupled solution approach is developed to simulate hyperconcentrated flood and channel evolution in the braided reach with an extremely irregular cross-sectional geometry. In the model, the improved equations for hydrodynamics account for the effects of sediment concentration and bed evolution, which are coupled with the equations of non-equilibrium sediment transport and bed evolution. The model was validated using measurements from the 1977 and 2004 hyperconcentrated floods. Furthermore, the effects were investigated of different cross-sectional spacings and allocation modes of channel deformation area on the model results. It was found that a suitable cross-sectional distance of less than 3 km should be adopted when simulating hyperconcentrated floods, and the results using the uniform allocation mode can agree better with measurements than other two allocation modes.
The case of the shrinking channels; the North Platte and Platte rivers in Nebraska
Williams, Garnett P.
1978-01-01
Since the latter part of the 19th century, channels of North Platte and Platte Rivers in western and central Nebraska have changed considerably. In the 365-km reach from Minatare to Overton, the channel by 2969 ws only about 0.1-0.2 as wide in 1865. The 1969 channel for this reach was less braided and slightly more sinuous than the 1938 channel. (No data are available for braiding and sinuosity prior to 1938.) From Overton to lGrand Island the 1969 channel was about o.6-0.7 as wide as in 1865, and various changes in braiding and sinuosity took place between 1938 and 1969. The decreases in channel width are related to decreases in water discharge. Such flow reductions have resulted primarily from regulating effects of major upstream dams and greater use of the river water. Much of the former river channel is now overgrown with vegetation. (Woodard-USGS)
The use of alloy 117 as a liquid metal current collector
NASA Astrophysics Data System (ADS)
Maribo, David; Sondergaard, Neal
1987-09-01
Low melting point, bismuth based alloys are potential replacements for NaK78 as liquid metal slip ring material because of their lower reactivity and potentially greater hydrodynamic stability. This paper describes experiments with one such alloy in a model of a 300 kW superconducting homopolar motor using close clearance braid type collectors. Slip ring tip velocities varied from 5 to 20 m/s and currents ranging from 500 to 2000 A. Viscous power losses tend to follow a simple turbulent mode. In all, the data supports the use of low melting point alloys as an alternative to Na78.
Unraveling the strands of Saturn's F ring
Murray, C.D.; Gordon, M.K.; Giuliatti, Winter S.M.
1997-01-01
Several high-resolution Voyager 2 images of Saturn's F ring show that it is composed of at least four separate, non-intersecting strands extending ~45?? in longitude. Voyager 1 images show that the two brightest strands appear to intersect, giving rise to a "braided" morphology. From a study of all available Voyager images the detectable radial structure is cataloged and reviewed. Previous indications that there is fine material interior to the orbit of the F ring are confirmed. Evidence is presented that a model of four strands with comparable eccentricities and nearly aligned perichrones is consistent with all the Voyager observations. The observed perichrone offset of the two brightest strands suggests a minimum radial separation of ~20 km, which implies intersection of these strands when their finite radial widths are taken into account. The longitude range of such an intersection includes that observed in the Voyager 1 "braid" images. The proximity of these two strands at some longitudes may account for the apparent differences in the ring between the Voyager encounters, as well as provide a source for the short-lived features detected in the Hubble Space Telescope images of the F ring. There is no evidence that the locations of the individual strands are determined by resonant perturbations with known satellites. It is proposed that the radial structure is formed by the localized action of small satellites orbiting within the strand region. ?? 1997 Academic Press.
Manufacture and quality control of interconnecting wire hardnesses, Volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.
Formation of Martian araneiforms by gas-driven erosion of granular material
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. de Villiers; A. Nermoen; B. Jamtveit
Sublimation at the lower surface of a seasonal sheet of translucent CO2 ice at high southern latitudes during the Martian spring, and rapid outflow of the CO2 gas generated in this manner through holes in the ice, has been proposed as the origin of dendritic 100 m-1 km scale branched channels known as spiders or araneiforms and dark dust fans deposited on top of the ice. We show that patterns very similar to araneiforms are formed in a Hele-Shaw cell filled with an unconsolidated granular material by slowly deforming the upper wall upward and allowing it to return rapidly tomore » its original position to drive air and entrained particles through a small hole in the upper wall. Straight, braided and quasiperiodic oscillating channels, unlike meandering channels on Earth were also formed.« less
Majorana Braiding with Thermal Noise.
Pedrocchi, Fabio L; DiVincenzo, David P
2015-09-18
We investigate the self-correcting properties of a network of Majorana wires, in the form of a trijunction, in contact with a parity-preserving thermal environment. As opposed to the case where Majorana bound states are immobile, braiding Majorana bound states within a trijunction introduces dangerous error processes that we identify. Such errors prevent the lifetime of the memory from increasing with the size of the system. We confirm our predictions with Monte Carlo simulations. Our findings put a restriction on the degree of self-correction of this specific quantum computing architecture.
NASA Technical Reports Server (NTRS)
Carney, Kelly; Pereira, Michael; Kohlman, Lee; Goldberg, Robert; Envia, Edmane; Lawrence, Charles; Roberts, Gary; Emmerling, William
2013-01-01
The Federal Aviation Administration (FAA) has been engaged in discussions with airframe and engine manufacturers concerning regulations that would apply to new technology fuel efficient "openrotor" engines. Existing regulations for the engines and airframe did not envision features of these engines that include eliminating the fan blade containment systems and including two rows of counter-rotating blades. Damage to the airframe from a failed blade could potentially be catastrophic. Therefore the feasibility of using aircraft fuselage shielding was investigated. In order to establish the feasibility of this shielding, a study was conducted to provide an estimate for the fuselage shielding weight required to provide protection from an open-rotor blade loss. This estimate was generated using a two-step procedure. First, a trajectory analysis was performed to determine the blade orientation and velocity at the point of impact with the fuselage. The trajectory analysis also showed that a blade dispersion angle of 3deg bounded the probable dispersion pattern and so was used for the weight estimate. Next, a finite element impact analysis was performed to determine the required shielding thickness to prevent fuselage penetration. The impact analysis was conducted using an FAA-provided composite blade geometry. The fuselage geometry was based on a medium-sized passenger composite airframe. In the analysis, both the blade and fuselage were assumed to be constructed from a T700S/PR520 triaxially-braided composite architecture. Sufficient test data on T700S/PR520 is available to enable reliable analysis, and also demonstrate its good impact resistance properties. This system was also used in modeling the surrogate blade. The estimated additional weight required for fuselage shielding for a wing- mounted counterrotating open-rotor blade is 236 lb per aircraft. This estimate is based on the shielding material serving the dual use of shielding and fuselage structure. If the shielding material is not used for dual purpose, and is only used for shielding, then the additional weight per aircraft is estimated to be 428 lb. This weight estimate is based upon a number of assumptions that would need to be revised when applying this concept to an actual airplane design. For example, the weight savings that will result when there is no fan blade containment system, manufacturing limitations which may increase the weight where variable thicknesses was assumed, engine placement on the wing versus aft fuselage, etc.
Channel Patterns as the Result of Self-Organization Within the Flow-Sediment-Vegetation System
NASA Astrophysics Data System (ADS)
Tal, M.; Paola, C.
2003-12-01
The familiar patterns of braided and meandering rivers can be thought of as the result of self-organization within a "three-phase" system comprising fluid, sediment, and vegetation. Interactions between these three components are also largely responsible for the organization of river systems into separate and distinguishable channels and floodplains. Key elements of the self organization include the space and time characteristics of seed dispersal and plant growth as well as the statistics of occupation, abandonment, and reworking of the bed by the flow. Seeds are transported and dispersed readily by wind and water and opportunistically colonize areas of the channel that are abandoned or exposed at low flows. Vegetation increases bank stability through root reinforcement of the sediment and increases the threshold shear stress needed for erosion. In addition, vegetation offers resistance to the flow by increasing the drag and reducing the velocity, thus decreasing the stream power available for erosion and transport. Vegetation that is not removed while young will become stronger and increasingly resistant to erosion and removal by the flow. Thus a key organizing parameter in the flow-sediment-vegetation system is the time scale for establishment of the vegetation relative to a characteristic channel or bed mobility time. Experiments at the St. Anthony Falls Laboratory demonstrate how repeated cycling of vegetation seeding and water discharge changes an unvegetated braided channel morphology: the flow is gradually corralled into a single sinuous channel that largely tracks the thread of maximum velocity in the original braided network. The experiments are carried out in a large unconsolidated sand bed flume in which alfalfa sprouts are used to simulate riparian vegetation and offer the only form of cohesion in the system. An initial braided pattern is allowed to evolve freely in conjunction with alternating high and low discharges and repeated seedings. As the vegetation density and age increase with time, smaller and weaker channels are choked off leaving a single relatively narrow channel with a sinuous thalweg. This channel develops its own internal bar forms with smaller length scales than the original braid bars.
Properties of Nonabelian Quantum Hall States
NASA Astrophysics Data System (ADS)
Simon, Steven H.
2004-03-01
The quantum statistics of particles refers to the behavior of a multiparticle wavefunction under adiabatic interchange of two identical particles. While a three dimensional world affords the possibilities of Bosons or Fermions, the two dimensional world has more exotic possibilities such as Fractional and Nonabelian statistics (J. Frölich, in ``Nonperturbative Quantum Field Theory", ed, G. t'Hooft. 1988). The latter is perhaps the most interesting where the wavefunction obeys a ``nonabelian'' representation of the braid group - meaning that braiding A around B then B around C is not the same as braiding B around C then A around B. This property enables one to think about using these exotic systems for robust topological quantum computation (M. Freedman, A. Kitaev, et al, Bull Am Math Soc 40, 31 (2003)). Surprisingly, it is thought that quasiparticles excitations with such nonabelian statistics may actually exist in certain quantum Hall states that have already been observed. The most likely such candidate is the quantum Hall ν=5/2 state(R. L. Willett et al, Phys. Rev. Lett. 59, 1776-1779 (1987)), thought to be a so-called Moore-Read Pfaffian state(G. Moore and N. Read, Nucl Phys. B360 362 (1991)), which can be thought of as a p-wave paired superconducting state of composite fermions(M. Greiter, X. G. Wen, and F. Wilczek, PRL 66, 3205 (1991)). Using this superconducting analogy, we use a Chern-Simons field theory approach to make a number of predictions as to what experimental signatures one should expect for this state if it really is this Moore-Read state(K. Foster, N. Bonesteel, and S. H. Simon, PRL 91 046804 (2003)). We will then discuss how the nonabelian statistics can be explored in detail using a quantum monte-carlo approach (Y. Tserkovnyak and S. H. Simon, PRL 90 106802 (2003)), (I. Finkler, Y. Tserkovnyak, and S. H. Simon, work in progress.) that allows one to explicitly drag one particle around another and observe the change in the wavefunctions. Unfortunately, it turns out that the Moore-Read state is not suited for topological quantum computationfootnote[3]M. Freedman, A. Kitaev, et al, Bull Am Math Soc 40, 31 (2003). so we will turn our attention to more the so-called parafermionic states(E. Rezayi and N. Read, Phys. Rev. B 59, 8084-8092 (1999).) which may also exist in nature.
NASA Astrophysics Data System (ADS)
Redolfi, M.; Tubino, M.; Bertoldi, W.; Brasington, J.
2016-08-01
Understanding the role of external controls on the morphology of braided rivers is currently limited by the dearth of robust metrics to quantify and distinguish the diversity of channel form. Most existing measures are strongly dependent on river stage and unable to account for the three-dimensional complexity that is apparent in digital terrain models of braided rivers. In this paper, we introduce a simple, stage-independent morphological indicator that enables the analysis of reach-scale regime morphology as a function of slope, discharge, sediment size, and degree of confinement. The index is derived from the bed elevation frequency distribution and characterizes a statistical width-depth curve averaged longitudinally over multiple channel widths. In this way, we define a "synthetic channel" described by a simple parameter that embeds information about the river morphological complexity. Under the assumption of uniform flow, this approach can be extended to provide estimates of the reach-averaged shear stress distribution, bed load flux, and at-a-station-variability of wetted width. We test this approach using data from a wide range of labile channels including 58 flume experiments and three gravel bed braided rivers. Results demonstrate a strong relationship between the unit discharge and the shape of the elevation distribution, which varies between a U shape for typical single-thread confined channels and a Y shape for multithread reaches. Finally, we discuss the use of the metric as a diagnostic index of river condition that may be used to support inferences about the river morphological trajectory.
Evaluation of anti-migration properties of biliary covered self-expandable metal stents.
Minaga, Kosuke; Kitano, Masayuki; Imai, Hajime; Harwani, Yogesh; Yamao, Kentaro; Kamata, Ken; Miyata, Takeshi; Omoto, Shunsuke; Kadosaka, Kumpei; Sakurai, Toshiharu; Nishida, Naoshi; Kudo, Masatoshi
2016-08-14
To assess anti-migration potential of six biliary covered self-expandable metal stents (C-SEMSs) by using a newly designed phantom model. In the phantom model, the stent was placed in differently sized holes in a silicone wall and retracted with a retraction robot. Resistance force to migration (RFM) was measured by a force gauge on the stent end. Radial force (RF) was measured with a RF measurement machine. Measured flare structure variables were the outer diameter, height, and taper angle of the flare (ODF, HF, and TAF, respectively). Correlations between RFM and RF or flare variables were analyzed using a linear correlated model. Out of the six stents, five stents were braided, the other was laser-cut. The RF and RFM of each stent were expressed as the average of five replicate measurements. For all six stents, RFM and RF decreased as the hole diameter increased. For all six stents, RFM and RF correlated strongly when the stent had not fully expanded. This correlation was not observed in the five braided stents excluding the laser cut stent. For all six stents, there was a strong correlation between RFM and TAF when the stent fully expanded. For the five braided stents, RFM after full stent expansion correlated strongly with all three stent flare structure variables (ODF, HF, and TAF). The laser-cut C-SEMS had higher RFMs than the braided C-SEMSs regardless of expansion state. RF was an important anti-migration property when the C-SEMS did not fully expand. Once fully expanded, stent flare structure variables plays an important role in anti-migration.
Hybrid braided 3-D scaffold for bioartificial liver assist devices.
Hoque, M E; Mao, H Q; Ramakrishna, S
2007-01-01
Three-dimensional ex vivo hepatocyte culture is a tissue-engineering approach to improve the treatment of liver disease. The extracorporeal bioartificial liver (BAL) assists devices that are used in patients until they either recover or receive a liver transplant. The 3-D scaffold plays a key role in the design of bioreactor that is the most important component of the BAL. Presently available 3-D scaffolds used in BAL have shown good performance. However, existing scaffolds are considered to be less than ideal in terms of high-density cultures of hepatocytes maintaining long-term metabolic functions. This study aims to develop a 3-D hybrid scaffold for a BAL support system that would facilitate high-density hepatocyte anchorage with long-term metabolic functions. The scaffolds were fabricated by interlacing polyethylene terephthalate (PET) fibers onto the polysulfone hollow fibers utilizing a modern microbraiding technique. Scaffolds with various pore sizes and porosities were developed by varying braiding angle which was controlled by the gear ratio of the microbraiding machine. The morphological characteristics (pore size and porosity) of the scaffolds were found to be regulated by the gear ratio. Smaller braiding angle yields larger pore and higher porosity. On the other hand, a larger braiding angle causes smaller pore and lower porosity. In hepatocyte culture it was investigated how the morphological characteristics (pore size and porosity) of scaffolds influenced the cell anchorage and metabolic functions. Scaffolds with larger pores and higher porosity resulted in more cell anchorage and higher cellular functions, like albumin and urea secretion, compared to that of smaller pores and lower porosity.
Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.
2017-01-01
On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.
False color image of Safsaf Oasis in southern Egypt
NASA Technical Reports Server (NTRS)
1994-01-01
This is a false color image of the uninhabited Safsaf Oasis in southern Egypt near the Egypt/Sudan border. It was produced from data obtained from the L-band and C-band radars that are part of the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar onboard the Shuttle Endeavour on April 9, 1994. The image is centered at 22 degrees North latitude, 29 degrees East longitude. It shows detailed structures of bedrock, and the dark blue sinuous lines are braided channels that occupy part of an old broad river valley. Virtually everything visible on this radar composite image cannot be seen either when standing on the ground or when viewing photographs or satellite images such as Landsat. The Jet Propulsion Laboratory alternative photo number is P-43920.
Hyperplane arrangements, interval orders, and trees.
Stanley, R P
1996-01-01
A hyperplane arrangement is a finite set of hyperplanes in a real affine space. An especially important arrangement is the braid arrangement, which is the set of all hyperplanes xi - xj = 1, 1 = i < j = n, in Rn. Some combinatorial properties of certain deformations of the braid arrangement are surveyed. In particular, there are unexpected connections with the theory of interval orders and with the enumeration of trees. For instance, the number of labeled interval orders that can be obtained from n intervals I1,..., In of generic lengths is counted. There is also discussed an arrangement due to N. Linial whose number of regions is the number of alternating (or intransitive) trees, as defined by Gelfand, Graev, and Postnikov [Gelfand, I. M., Graev, M. I., and Postnikov, A. (1995), preprint]. Finally, a refinement is given, related to counting labeled trees by number of inversions, of a result of Shi [Shi, J.-Y. (1986), Lecture Notes in Mathematics, no. 1179, Springer-Verlag] that a certain deformation of the braid arrangement has (n + 1)n-1 regions. PMID:11607643
Hi-C Observations of an Active Region Corona, and Investigation of the Underlying Magnetic Structure
NASA Technical Reports Server (NTRS)
Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.; Moore, Ronald L.
2014-01-01
Hi-C: first observational evidence of field line braiding in the AR corona; NLFFF extrapolations support. Flux emergence and/or cancellation in the coronal braided region generate large stresses and tension in the coronal field loops which is released as heat in the corona. The field in these sub-regions are highly sheared and have apparent high speed plasma flows, therefore, the contribution from shearing flows to power the coronal and transition region heating can not be ruled out! The spatial resolution of Hi-C is five times better than AIA. The cadence of Hi-C is 2.5 - 6 times better than AIA. The 193 Å was selected because of the strong emission line of Fe XII (peak formation temperature of 1.5 MK). Hi-C collected data for 345 s @ 5.4 s cadence. The Hi-C target region was NOAA AR 11520; 11 July 2012, 18:51-18:57 UT. NLFFF extrapolation confirms the braided structure, and free magnetic energy estimates in the given volume.
Mapping the Braiding Properties of Non-Abelian FQHE Liquids.
NASA Astrophysics Data System (ADS)
Prodan, Emil; Haldane, F. D. M.
2007-03-01
Non-Abelian FQHE (NAFQHE) states have elementary excitations that cannot be individually locally-created. When widely separated, they give rise to topological (quasi-)degeneracy of the quantum states; braiding of such non-Abelian quasiparticles (NAQP's) implements unitary transformations among the degenerate states that may be useful for ``topological quantum computing'' (TQC). We have developed a new technique for explicit computation of NAQP braiding in models exhibiting ideal NAFQHE behavior (where the topological degeneracy is exact), in particular the Moore-Read ν = 5/2 state. For systems of small numbers of NAQP's on a sphere, we have computed the non-Abelian Berry curvature and Hilbert space metric, as one NAQP is moved relative to a fixed configuration of the others, showing how the topological properties develop as the system size (NAQP separation) increases. We also studied the effect of perturbations (Coulomb interaction and substrate potentials) that lift the exact degeneracy, and become the dominant corrections when NAQP's are brought together so that quantum measurements can be made; these effects are likely to be crucial in determining whether TQC is viable in NAFQHE systems.
NASA Technical Reports Server (NTRS)
Smith, Russ; Hagen, Richard
2015-01-01
In support of the Deep Space Habitat project a number of composite rack prototypes were developed, designed, fabricated and tested to various extents ( with the International Standard Payload Rack configuration, or crew quarters, as a baseline). This paper focuses specifically on a composite rack prototype with a direct tie in to Space Station hardware. The outlined prototype is an all composite construction, excluding metallic fasteners, washers, and their associated inserts. The rack utilizes braided carbon composite tubing for the frame with the sidewalls, backwall and flooring sections utilizing aircraft grade composite honeycomb sandwich panels. Novel additively manufactured thermoplastic joints and tube inserts were also developed in support of this effort. Joint and tube insert screening tests were conducted at a preliminary level. The screening tests allowed for modification, and enhancement, of the fabrication and design approaches, which will be outlined. The initial joint tests did not include mechanical fasteners. Adhesives were utilized at the joint to composite tube interfaces, along with mechanical fasteners during final fabrication (thus creating a stronger joint than the adhesive only variant). In general the prototype was focused on a potential in-space assembly approach, or kit-of-parts construction concept, which would not necessarily require the inclusion of an adhesive in the joint regions. However, given the tie in to legacy Station hardware (and potential flight loads with imbedded hardware mass loadings), the rack was built as stiff and strong as possible. Preliminary torque down tests were also conducted to determine the feasibility of mounting the composite honeycomb panels to the composite tubing sections via the additively manufactured tube inserts. Additional fastener torque down tests were also conducted with inserts (helicoils) imbedded within the joints. Lessons learned are also included and discussed.
A Constitutive Model for Creep Lifetime of PBO Braided Cord
NASA Technical Reports Server (NTRS)
Sterling, W. J.
2007-01-01
A constitutive model to describe the creep lifetime of PBO braided cord has been developed and fit to laboratory data. The model follows an approach proposed for p-aramid cord in similar applications, and has a Boltzman-type representation that arises from consideration of the failure phenomenon mechanism. The data were obtained using a hydraulic-type universal testing machine, and were analyzed according to Weibull statistics using commercially-available software. The application of concern to the author is NASA's Ultra- Long Duration Balloon and other gossamer spacecraft, but the motivations for the related p-aramid works suggest broader interest.
Teleportation-based quantum information processing with Majorana zero modes
Vijay, Sagar; Fu, Liang
2016-12-29
In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.
NASA Astrophysics Data System (ADS)
Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen
2010-12-01
We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement.
Teleportation-based quantum information processing with Majorana zero modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijay, Sagar; Fu, Liang
In this work, we present a measurement-based scheme for performing braiding operations on Majorana zero modes in mesoscopic superconductor islands and for detecting their non-Abelian statistics without moving or hybridizing them. In our scheme for “braiding without braiding”, the topological qubit encoded in any pair of well-separated Majorana zero modes is read out from the transmission phase shift in electron teleportation through the island in the Coulomb-blockade regime. Finally, we propose experimental setups to measure the teleportation phase shift via conductance in an electron interferometer or persistent current in a closed loop.
2014-11-01
had the braided shapes that they did. We expected a little bit of waviness in the pipe, just anticipating, but it was much more dramatic than that...It was almost like tree limbs with a lot of branches, some of which then clogged, and new branches would then form. You get a very braided type of...in the Reid-Bedford sand. Do you think that this was because the ¼-in. hose wasn’t enough to sustain the head? If so, did that contribute to it
Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects
2014-11-20
automobile, rail, and air traffic, and wind background noise. 4.1.1 Targets Six braided nylon cords with diameters 3.2, 4.8, 6.4, 9.5 12.9 and 15.9mm (1/8, 3...fibers, (center) six braided nylon cords of increasing diameter (left) folded aluminum retroreflector. 0 ·5 ·5 ·10 ·10 ·15 $ 53’ ., ·15 ’-’ :s...impedance tube, here show in a vertical orientation has a speaker hosed at the top, two microphones flush mounted the the inner wall of the tube, and a
1986-06-01
Introduction I Project Location 1 Project History 3 Environment 3 The Relict Braided Surface 3 The Old Meander Belt 5 Soils and Biotic Communities 6 Macrobiotic...Project Area and the Sunk Lands (after Saucier 1970 and USGS Evadale Quad) 4 The Old Meander Belt The Old Meander Belt was incised into the Relict Braided...that the silting of the Old Meander Belt by the Mississippi River started in the Late Archaic period (ca. 3000 - 500 BC). It appears likely that this
Status report, June 1988 - April 1992
NASA Technical Reports Server (NTRS)
1992-01-01
The Mars Mission Research Center (MMRC) is one of nine University Space Engineering Research Centers established in June 1988 by NASA's Office of Aeronautics and Space Technology to broaden the nation's engineering capability to meet the critical needs fo the civilian space program. It includes North Carolina State University (NCSU) at Raleigh and on North Carolina A&T State University at Greensboro. The goal of the Center is to focus on research and educational technologies necessary for planetary exploration, especially transportation to and from our moon and Mars. The research combines mission analysis and design, hypersonic aerodynamics, structures and controls, composite materials, and fabrications. Covered here are activities of the Center from June to April 1992. The Center supports 26 graduate students, 29 undergraduates, 27 faculty and 6 staff. An additional 88 undergraduates worked on four special projects. Three facilities at A&T were renovated and a new 7,000 square foot facility was occupied at NCSU in October 1991. Five laboratories have been developed for composite processing and fabrication facility (A&T), materials testing (A&T), weaving (NCSU), braiding (NCSU), and structures (NCSU). During the past two years, the Center added a new dimension to its program - special projects which involve analysis, design, construction, and testing. The first two projects were full-scale research models of a Mars aerobrake and the HL-20 Personnel Launch System. Both projects received considerable new coverage and appeared in national publications. Additional projects include a model of a Mars Exclusion Vehicle, an Orbiter Ejector, and a Remotely Operated Vehicle. The Orbiter Ejector is scheduled to fly on Shuttle Flight STS-47 in October 1992. Special projects have increased undergraduate student participation and provided a mechanism for more interaction between the universities, NASA centers, and industries. The faculty developed 26 new courses related to the activities of the Center. They conducted four workshops on interplanetary spacecraft, lunar/Mars aerobrakes, spacecraft controls, and aerodynamic heating. The Outreach Program developed into a significant component of the Center. Faculty and students have conducted 12 tours of facilities and given 67 lectures to schools (grade k-12) and civic organizations.
An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.
2014-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
Evaluation of anti-migration properties of biliary covered self-expandable metal stents
Minaga, Kosuke; Kitano, Masayuki; Imai, Hajime; Harwani, Yogesh; Yamao, Kentaro; Kamata, Ken; Miyata, Takeshi; Omoto, Shunsuke; Kadosaka, Kumpei; Sakurai, Toshiharu; Nishida, Naoshi; Kudo, Masatoshi
2016-01-01
AIM: To assess anti-migration potential of six biliary covered self-expandable metal stents (C-SEMSs) by using a newly designed phantom model. METHODS: In the phantom model, the stent was placed in differently sized holes in a silicone wall and retracted with a retraction robot. Resistance force to migration (RFM) was measured by a force gauge on the stent end. Radial force (RF) was measured with a RF measurement machine. Measured flare structure variables were the outer diameter, height, and taper angle of the flare (ODF, HF, and TAF, respectively). Correlations between RFM and RF or flare variables were analyzed using a linear correlated model. RESULTS: Out of the six stents, five stents were braided, the other was laser-cut. The RF and RFM of each stent were expressed as the average of five replicate measurements. For all six stents, RFM and RF decreased as the hole diameter increased. For all six stents, RFM and RF correlated strongly when the stent had not fully expanded. This correlation was not observed in the five braided stents excluding the laser cut stent. For all six stents, there was a strong correlation between RFM and TAF when the stent fully expanded. For the five braided stents, RFM after full stent expansion correlated strongly with all three stent flare structure variables (ODF, HF, and TAF). The laser-cut C-SEMS had higher RFMs than the braided C-SEMSs regardless of expansion state. CONCLUSION: RF was an important anti-migration property when the C-SEMS did not fully expand. Once fully expanded, stent flare structure variables plays an important role in anti-migration. PMID:27570427
Hernanz-Koers, Miguel; Gandía, Mónica; Garrigues, Sandra; Manzanares, Paloma; Yenush, Lynne; Orzaez, Diego; Marcos, Jose F
2018-07-01
Current challenges in the study and biotechnological exploitation of filamentous fungi are the optimization of DNA cloning and fungal genetic transformation beyond model fungi, the open exchange of ready-to-use and standardized genetic elements among the research community, and the availability of universal synthetic biology tools and rules. The GoldenBraid (GB) cloning framework is a Golden Gate-based DNA cloning system developed for plant synthetic biology through Agrobacterium tumefaciens-mediated genetic transformation (ATMT). In this study, we develop reagents for the adaptation of GB version 3.0 from plants to filamentous fungi through: (i) the expansion of the GB toolbox with the domestication of fungal-specific genetic elements; (ii) the design of fungal-specific GB structures; and (iii) the ATMT and gene disruption of the plant pathogen Penicillium digitatum as a proof of concept. Genetic elements domesticated into the GB entry vector pUPD2 include promoters, positive and negative selection markers and terminators. Interestingly, some GB elements can be directly exchanged between plants and fungi, as demonstrated with the marker hph for Hyg R or the fluorescent protein reporter YFP. The iterative modular assembly of elements generates an endless number of diverse transcriptional units and other higher order combinations in the pDGB3α/pDGB3Ω destination vectors. Furthermore, the original plant GB syntax was adapted here to incorporate specific GB structures for gene disruption through homologous recombination and dual selection. We therefore have successfully adapted the GB technology for the ATMT of fungi. We propose the name of FungalBraid (FB) for this new branch of the GB technology that provides open, exchangeable and collaborative resources to the fungal research community. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Castillo, Federico
The driving question of this thesis is very concrete: Are all matroid polytopes Ehrhart positive? That is, do all matroid polytopes have positive coefficients in their Ehrhart polynomial? When studying the set of all matroid polytopes it turns out to be natural to consider a larger family, that of generalized permutohedra. This larger family correspond to polytopes whose normal fans coarsen the braid fan. It turns out that for any fan, we can construct a polyhedral cone that parametrizes all polytopes whose normal fans coarsen the given fan. In the case of the braid fan this is the submodular cone. In light of this, one can hope that there is some approach that allows us to answer questions (such as Ehrhart positivity) about all polytopes in the parameter space simultaneously. That is the direction we take here. In the last 20 years, Danilov, McMullen, Morelli, Thomas-Pommersheim, Berline-Vergne, and others, have develop special local formulas to count the number of integer points of a polytope that depend on the normal fan of the polytope. We use this idea, in particular Berline-Vergne construction, to try to solve our main question. Along the way, we treat a number of related problems. We redo the construction of the submodular cone as a parameter space. Our construction is more robust and adaptable to other simplicial fans different from the braid fan. We study some properties of this local formulas developed, of which very little is known in terms of actual computational values. Finally, we exploit the symmetry of the braid arrangement to give some partial results on the positivity, and, more importantly, certain uniqueness result in the constructions involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.
2010-05-01
This study assessed performance of seven suture types in subyearling Chinook salmon Oncorhynchus tshawytscha implanted with acoustic microtransmitters. Nonabsorbable (Ethilon) and absorbable (Monocryl) monofilament and nonabsorbable (Nurolon, silk) and absorbable (Vicryl, Vicryl Plus, Vicryl Rapide) braided sutures were used to close incisions in Chinook salmon. Monocryl exhibited greater suture retention than all other suture types 7 d after surgery. Both monofilament suture types were retained better than all braided suture types at 14 d. Incision openness and tag retention did not differ among suture types. Wound inflammation was similar for Ethilon, Monocryl, and Nurolon at 7 d. Wound ulceration wasmore » lower for Ethilon, Monocryl, and Nurolon than for all other suture types at 14 d post-surgery. Fish held in 12°C water had more desirable post-surgery healing characteristics (i.e., higher suture and tag retention and lower incision openness, wound inflammation, and ulceration) at 7 and 14 d after surgery than those held in 17°C water. The effect of surgeon was a significant predictor for all response variables at 7 d. This result emphasizes the importance of including surgeon as a variable in telemetry study analyses when multiple surgeons are used. Monocryl performed better with regard to post-surgery healing characteristics in the study fish. The overall results support the conclusion that Monocryl is the best suture material to close incisions created during surgical implantation of acoustic microtransmitters in subyearling Chinook salmon.« less
NASA Astrophysics Data System (ADS)
Vázquez-Tarrío, Daniel; Borgniet, Laurent; Liébault, Frédéric; Recking, Alain
2017-05-01
This paper explores the potential of unmanned aerial system (UAS) optical aerial imagery to characterize grain roughness and size distribution in a braided, gravel-bed river (Vénéon River, French Alps). With this aim in view, a Wolman field campaign (19 samples) and five UAS surveys were conducted over the Vénéon braided channel during summer 2015. The UAS consisted of a small quadcopter carrying a GoPro camera. Structure-from-Motion (SfM) photogrammetry was used to extract dense and accurate three-dimensional point clouds. Roughness descriptors (roughness heights, standard deviation of elevation) were computed from the SfM point clouds and were correlated with the median grain size of the Wolman samples. A strong relationship was found between UAS-SfM-derived grain roughness and Wolman grain size. The procedure employed has potential for the rapid and continuous characterization of grain size distribution in exposed bars of gravel-bed rivers. The workflow described in this paper has been successfully used to produce spatially continuous grain size information on exposed gravel bars and to explore textural changes following flow events.