[Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].
Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian
2015-06-01
To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.
Brain acetycholinesterase activity in botulism-intoxicated mallards
Rocke, T.E.; Samuel, M.D.
1991-01-01
Brain acetylcholinesterase (AChE) activity in captive-reared mallards (Anas platyrhynchos) that died of botulism was compared with euthanized controls. AChE levels for both groups were within the range reported for normal mallards, and there was no significant difference in mean AChE activity between birds that ingested botulism toxin and died and those that did not.
Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A
2013-02-01
This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.
2012-01-01
monoisonitrosoacetone (MINA) crossed BBB, provided some degree of CNS AChE reactivation, enhanced survival, and mitigated the seizure activity following nerve agent...tissues (brain regions, diaphragm, heart, skeletal muscle) were collected. AChE activity was measured using the Ellman assay. In GB exposure, pro...therapy. Protecting and/or restoring AChE activity in the brain is a major goal in the treatment of nerve agent intoxication. Our long-term goal is to
Pro-2-PAM Therapy for Central and Peripheral Cholinesterases
DeMar, James C.; Clarkson, Edward D.; Ratcliffe, Ruthie H.; Campbell, Amy J.; Thangavelu, Sonia G.; Herdman, Christine A.; Leader, Haim; Schulz, Susan M.; Marek, Elizabeth; Medynets, Marie A.; Ku, Theresa C.; Evans, Sarah A.; Khan, Farhat A.; Owens, Roberta R.; Nambiar, Madhusoodana P.; Gordon, Richard K.
2010-01-01
Novel therapeutics to overcome the toxic effects of organophosphorus (OP) chemical agents are needed due to the documented use of OPs in warfare (e.g. 1980–1988 Iran/Iraq war) and terrorism (e.g. 1995 Tokyo subway attacks). Standard OP exposure therapy in the United States consists of atropine sulfate (to block muscarinic receptors), the acetylcholinesterase (AChE) reactivator (oxime) pralidoxime chloride (2-PAM), and a benzodiazepine anticonvulsant to ameliorate seizures. A major disadvantage is that quaternary nitrogen charged oximes, including 2-PAM, do not cross the blood brain barrier (BBB) to treat brain AChE. Therefore, we have synthesized and evaluated pro-2-PAM (a lipid permeable 2-PAM derivative) that can enter the brain and reactivate CNS AChE, preventing seizures in guinea pigs after exposure to OPs. The protective effects of the pro-2-PAM after OP exposure were shown using a) surgically-implanted radiotelemetry probes for electroencephalogram (EEG) b) neurohistopathology of brain, c) cholinesterase activities in the PNS and CNS, and d) survivability. The PNS oxime 2-PAM was ineffective at reducing seizures/status epilepticus (SE) in diisopropyl-fluorophosphate (DFP)-exposed animals. In contrast, pro-2-PAM significantly suppressed and then eliminated seizure activity. In OP-exposed guinea pigs, there was a significant reduction in neurological damage with pro-2-PAM, but not 2-PAM. Distinct regional areas of the brains showed significantly higher AChE activity 1.5 h after OP exposure in pro-2-PAM treated animals compared to the 2-PAM treated ones. However, blood and diaphragm showed similar AChE activities in animals treated with either oxime, as both 2-PAM and pro 2-PAM are PNS active oximes. In conclusion, pro-2-PAM can cross the BBB, is rapidly metabolized inside the brain to 2-PAM, and protects against OP-induced SE through restoration of brain AChE activity. Pro-2-PAM represents the first non-invasive means of administering a CNS therapeutic for the deleterious effects of OP poisoning by reactivating CNS AChE. PMID:20156430
Study of acetylcholinesterase activity and apoptosis in SH-SY5Y cells and mice exposed to ethanol.
Sun, Wenjun; Chen, Liangjing; Zheng, Wei; Wei, Xiaoan; Wu, Wenqi; Duysen, Ellen G; Jiang, Wei
2017-06-01
Ethanol is one of the most commonly abused psychotropic substances with deleterious effects on the central nervous system. Ethanol exposure during development results in the loss of neurons in brain regions and when exposed to ethanol cultured cells undergo apoptosis. To date no information is available on whether abnormally high AChE activity is characteristic of apoptosis in animals exposed to ethanol. The aims of the present study were to determine whether induction of AChE activity is associated with ethanol-induced apoptosis and to explore the mechanism of enhanced AChE activity induced by ethanol. For this purpose, in vitro and in vivo experiments were performed. AChE activity was quantified by spectrophotometry and apoptosis by flow cytometer in SH-SY5Y cells exposed to ethanol. The results showed that cells treated with 500mM ethanol for 24h had a 9-fold increase in apoptotic cells and a 6-fold increase in AChE activity compared with controls. Mice exposed acutely to 200μl of 20% ethanol daily on days 1-4 had elevated AChE activity in plasma on days 3-7. On day 4, plasma AChE activity was 2.4-fold higher than pretreatment activity. More apoptotic cells were found in the brains of treated mice compared to controls. Cells in brain sections that were positive in the TUNEL assay stained for AChE activity. In conclusion, AChE activity and apoptosis were induced in SH-SY5Y cells and mice treated with ethanol, which may indicate that increased AChE may related to apoptosis induced by ethanol. Unusually high AChE activity may be an effect marker of exposure to ethanol. The relationship between AChE and apoptosis might represent a novel mechanism of ethanol-associated neuronal injury. Copyright © 2017 Elsevier B.V. All rights reserved.
2013-01-01
matic brain injury (TBI). Centrally acting acetylcholinesterase (AChE) inhibitors are also being considered as potential therapeutic candidates...repeated blast exposures [12]. AChE inhibitors are possible therapeutic candidates against Alzheimer’s disease and TBI [13–15]. In this study, we...esterase inhibitor , as described earlier [12,17–19]. Brain AChE activity was expressed as milliunits/mg protein. 2.3. Microarray analysis Various
Exposure to insecticides of brushland wildlife within the Lower Rio Grande Valley, Texas, USA
Custer, T.W.; Mitchell, C.A.
1987-01-01
Brushland wildlife within the Lower Rio Grande Valley of south Texas were studied following applications of eleven insecticides to nearby sugarcane or cotton fields. During the study no wildlife were found dead. Mean brain acetylcholinesterase (AChE) activity of great-tailed grackles (Quiscalus mexicanus) and mourning doves (Zenaida macroura) was significantly lower than controls following application of some organophosphorous insecticides. Brain AChE activity varied significantly among chemicals, days after exposure and application rates. Mean brain AChE activity of white-winged doves (Zenaida asiatica) and three small mammal species was not significantly different than their respective controls following application of insecticides. Mean brain AChE activity of grackles was inhibited significantly more than white-winged doves after application of Bolstar, EPN-methyl parathion, and Azodrin and significantly more than that of mourning doves after applications of Bolstar and EPN-methyl parathion. Our data indicate that there were no adverse effects on most brushland wildlife. Exposure was probably dependent upon use of the agricultural fields as feeding or resting sites and only grackles and mourning doves were regularly present in the fields.
Exposure to insecticides of brushland wildlife within the lower Rio Grande valley Texas USA
Custer, T.W.; Mitchell, C.A.
1987-01-01
Brushland wildlife within the Lower Rio Grande Valley of south Texas were studied following applications of eleven insecticides to nearby sugarcane or cotton fields. During the study no wildlife were found dead. Mean brain acetycholinesterase (AChE) activity of great-tailed grackles (Quiscalus mexicanus) and mourning doves (Zenaida microura) was significantly lower than controls following application of some organophosphorus insecticides. Brain AChE activity varied significantly among chemicals, days after exposure and lactin rates. Mean brain AChE activity of white-winged doves (Zenaida asiatica) and three small mammals species was not significantly different than their respective control following application of the insecticides. Mean brain AChE activity of grackles was inhibited significantly more than white-winged doves after application of Bolstar, EPN-methyl parathion, and Azodrin and significantly more than that of mourning doves after applications of Bolstar and EPN-methyl parathion. Our data indicate that there were no adverse effects on most brushland wildlife. Exposure was probably dependent upon use of the agricultural fields as feeding or resting site and only grackles and mourning doves were regularly present in the fields.
Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann
2012-01-01
Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221
NASA Astrophysics Data System (ADS)
Adejumo, D. O.; Egbunike, G. N.
1988-06-01
The effects of direct exposure of boars to thermal stress for 1 h daily for 5 days and to acute water deprivation for 24 or 48 h were studied on the acetylcholinesterase (AChE) activity of porcine brain and hypophysial regions. Mean ambient temperatures, respiratory rates and rectal temperatures in the open were significantly higher than inside the pen. Heat stress induced a rise in AChE activities in the pons, cerebellum, amygdala, hippocampus, hypothalamus, mid-brain and medulla oblongata. However, no significant changes were observed in the cerebral cortex, adenohypophysis and neurohypophysis. Water deprivation significantly ( P<0.05) depressed AChE activity to varying extents depending on the duration of water restriction. Thus AChE activity in the amygdala was depressed by water deprivation for 24 h but partially restored at 48 h. The pons and medulla oblongata were comparable to the amygdala in this respect. The adenohypophysis and neurohypophysis were relatively unaffected.
Albendín, G; Arellano, J M; Mánuel-Vez, M P; Sarasquete, C; Arufe, M I
2017-04-01
The characterization of cholinesterase activity in brain and muscle of gilthead seabream was carried out using four specific substrates and three selective inhibitors. In addition, K m and V max were calculated from the Michaelis-Menten equation for ASCh and BSCh substrates. Finally, the in vitro sensitivity of brain and muscle cholinesterases to three organophosphates (OPs) was also investigated by estimating inhibition kinetics. The results indicate that AChE is the enzyme present in the brain, whereas in muscle, a typical AChE form is present along with an atypical form of BChE. Very low ChE activity was found in plasma with all substrates used. The inhibitory potency of the studied OPs on brain and muscle AChEs based on bimolecular inhibition constants (k i ) was: omethoate < dichlorvos < azinphosmethyl-oxon. Furthermore, muscle BChE was found to be several orders of magnitude (from 2 to 4) more sensitive than brain and muscle AChE inhibition by dichlorvos and omethoate.
Rai, D K; Sharma, R K; Rai, P K; Watal, G; Sharma, B
2011-02-12
The present study was designed to investigate the ameliorating effect of aqueous extract of C. dactylon on carbofuran induced oxidative stress (OS) and alterations in the activity of acetylcholinesterase (AChE) in the brain of rats. Vitamin C was used as a positive control. Wistar rats were administered with single sub-acute oral dose (1.6 mgkg-1 b.wt.) of carbofuran for 24 h. The OS parameters such as lipid peroxidation (LPO) and the activities of antioxidant enzymes including super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), and that of AChE were studied in brain. Carbofuran treatment significantly increased the activities of SOD and CAT by 75 and 60%, respectively. It also induced the level of LPO by 113%. In contrast, the activities of GST and AChE were recorded to be diminished by 25 and 33%, respectively. Pretreatment of the rats with aqueous extract of C. dactylon (oral; 500mgkg-1) restored SOD activity completely but CAT activity only partially (7%). Carbofuran induced LPO was moderated by 95% in the brain of C. dactylon treated rats. The observed changes in OS parameters in C. dactylon treated group were comparable to that observed in vitamin C (200 mg-kg-1 b. wt.) treated group. Surprisingly, C. dactylon treatment significantly recovered the activity of AChE to a similar level as observed in the brain of control group. In contrast vitamin C treatment did not cause significant change in the activity of AChE in carbofuran treated group. There were no noticeable changes in the aforementioned study parameters in the brain of rats receiving C. dactylon and vitamin C, only. The results suggest that the study is extremely important in the context of development of new anticholinestesterase and antioxidant antidotes against carbofuran from C. dactylon.
Petrov, Konstantin A; Yagodina, Lilia O; Valeeva, Guzel R; Lannik, Natalya I; Nikitashina, Alexandra D; Rizvanov, Albert A; Zobov, Vladimir V; Bukharaeva, Ellya A; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František
2011-01-01
BACKGROUND AND PURPOSE The rat respiratory muscle diaphragm has markedly lower sensitivity than the locomotor muscle extensor digitorum longus (EDL) to the new acetylcholinesterase (AChE) inhibitors, alkylammonium derivatives of 6-methyluracil (ADEMS). This study evaluated several possible reasons for differing sensitivity between the diaphragm and limb muscles and between the muscles and the brain. EXPERIMENTAL APPROACH Increased amplitude and prolonged decay time of miniature endplate currents were used to assess anti-cholinesterase activity in muscles. In hippocampal slices, induction of synchronous network activity was used to follow cholinesterase inhibition. The inhibitor sensitivities of purified AChE from the EDL and brain were also estimated. KEY RESULTS The intermuscular difference in sensitivity to ADEMS is partly explained caused by a higher level of mRNA and activity of 1,3-bis[5(diethyl-o-nitrobenzylammonium)pentyl]-6-methyluracildibromide (C-547)-resistant BuChE in the diaphragm. Moreover, diaphragm AChE was more than 20 times less sensitive to C-547 than that from the EDL. Sensitivity of the EDL to C-547 dramatically decreased after treadmill exercises that increased the amount of PRiMA AChE(G4), but not ColQ AChE(A12) molecular forms. The A12 form present in muscles appeared more sensitive to C-547. The main form of AChE in brain, PRiMA AChE(G4), was apparently less sensitive because brain cholinesterase activity was almost three orders of magnitude more resistant to C-547 than that of the EDL. CONCLUSIONS AND IMPLICATIONS Our findings suggest that ADEMS compounds could be used for the selective inhibition of AChEs and as potential therapeutic tools. PMID:21232040
NASA Astrophysics Data System (ADS)
Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan
2016-05-01
The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06658a
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Mourouzis, Iordanis; Varonos, Dennis; Cokkinos, Dennis; Tsakiris, Stylianos
2005-06-01
It is a common knowledge that metabolic reactions increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how the metabolic reactions could affect the total antioxidant status (TAS), protein concentration (PC) and the activities of acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+ -ATPase in the brain of hyper- and hypothyroid adult male rats. Hyperthyroidism was induced in rats by subcutaneous administration of thyroxine (25 microg/l00 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. TAS, PC, and enzyme activities were evaluated spectrophotometrically in the homogenated brain of each animal. TAS, PC, and Mg2+ -ATPase activity were found unaffected in hyperthyroidism, while AChE and Na+,K+ -ATPase activities were reduced by 25% (p < 0.01). In contrast, TAS, (Na+,K+)-ATPase and Mg2+-ATPase activities were found to be increased (approx. 23-30%, p < 0.001) in the hypothyroid brain, while AChE activity and PC were shown to be inhibited (approx. 23-30%, p < 0.001). These changes on brain enzyme activities may reflect the different metabolic effects of hyper- and hypothyroidism. Such changes of the enzyme activities may differentially modulate the brain intracellular Mg2+, neural excitability, as well as the uptake and release of biogenic amines.
Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism.
Kaur, Ravneet; Singh, Varinder; Shri, Richa
2017-08-01
Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms. Copyright © 2017. Published by Elsevier Masson SAS.
Dail, Mary Beth; Meek, Edward Caldwell; Chambers, Howard Wayne; Chambers, Janice Elaine
2018-05-03
Novel-substituted phenoxyalkyl pyridinium oxime acetylcholinesterase (AChE) reactivators (US patent 9,227,937) that showed convincing evidence of penetration into the brains of intact rats were developed by our laboratories. The oximes separated into three groups based on their levels of brain AChE reactivation following exposure of rats to the sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP). P-glycoprotein (P-gp) is a major blood-brain barrier (BBB) transporter and requires ATP for efflux. To determine if P-gp affinity screening could be used to reduce animal use, we measured in vitro oxime-stimulated ATPase activity to see if the in vivo reactivation efficacies related to the oximes' functions as P-gp substrates. High efficacy oximes were expected to be poor P-gp substrates, thus remaining in the brain longer. The high efficacy oximes (24-35% brain AChE reactivation) were worse P-gp substrates than the low efficacy oximes (0-7% brain AChE reactivation). However, the oxime group with medium in vivo reactivation of 10-17% were even worse P-gp substrates than the high efficacy group so their reactivation ability was not reflected by P-gp export. The results suggest that in vitro P-gp ATPase activity can remove the low efficacy oximes from in vivo testing, but is not sufficient to differentiate between the top two tiers.
Atanasov, Vasil N; Petrova, Iskra; Dishovsky, Christophor
2013-03-25
Organophosphorus compounds (OPC) were developed as warfare nerve agents. They are also widely used as pesticides. The drug therapy of intoxication with OPC includes mainly combination of cholinesterase (ChE) reactivators and cholinolytics. There is no single ChE reactivator having an ability to reactivate sufficiently the inhibited enzyme due to the high variability of chemical structure of the inhibitors. The difficulties in reactivation of ChE activity and slight antidote effect regarding intoxication with some OPC are some of the reasons for continuous efforts to obtain new reactivators of ChE. The aim of the present study was to evaluate the efficacy of some ChE reactivators against OPC intoxication (tabun, paraoxon and dichlorvos) in in vitro experiments and to compare their activity to that known for some currently used oximes (obidoxime, HI-6, 2-PAM). Experiments were carried out using rat brain acetylcholinesterase (AChE). Reactivators showed different activity in the reactivation of rat brain AChE after dichlorvos, paraoxon and tabun inhibition. AChE was easier reactivated after paraoxon treatment. The best effect showed BT-07-4M, obidoxime, TMB-4 and BT-08 from the group of symmetric oximes, and Toxidin, BT-05 and BT-03 from asymmetric compounds. The reactivation of brain AChE inhibited with tabun demonstrated better activity of new compound BT-07-4M, TMB-4 and obidoxime from symmetric oximes, and BT-05 and BT-03 possessing asymmetric structure. All compounds showed low activity toward inhibition of AChE caused by dichlorvos. Comparison of two main structure types (symmetric/asymmetric) showed that the symmetric compounds reactivated better AChE, inhibited with this OPC, than asymmetric ones. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Anticholinesterase Effect on Motor Kinematic Measures and Brain Activation in Parkinson’s Disease
Mentis, Marc J.; Delalot, Dominique; Naqvi, Hassan; Gordon, Mark F.; Gudesblatt, Mark; Edwards, Christine; Donatelli, Luke; Dhawan, Vijay; Eidelberg, David
2015-01-01
Anticholinesterase (AChE) drugs are being prescribed off label for nonmotor symptoms in Parkinson’s disease (PD). Theoretically, these drugs can impair motor function. A small literature suggests AChE therapy has little effect on clinical motor evaluation; however, no study has made objective motor kinematic measures or evaluated brain function. We hypothesized that even if clinical examination was normal in PD patients on dopamine therapy, (1) sensitive kinematic measures would be abnormal during AChE therapy or (2) normal kinematic measures would be maintained by compensatory brain activation. We carried out a randomized, double-blind, placebo-controlled trial of 8 weeks donepezil (10 mg/day) in 17 PD subjects. Subjects carried out a computerized motor task during a positron emission tomography (PET) scan before starting the drug and again after 8 weeks of donepezil or placebo. Kinematic measures of motor function and PET scans were analyzed to compare the effects of donepezil and placebo. Neither placebo nor donepezil altered motor kinematic measures. Furthermore, movement integrity while on donepezil was maintained without compensatory brain activity. Donepezil 10 mg/day can be given for nonmotor symptoms in PD without adverse motor effects or compensatory brain activity. PMID:16228997
Karasova, Jana Zdarova; Hroch, Milos; Musilek, Kamil; Kuca, Kamil
2016-02-01
Inhibitors of acetylcholinesterase (AChE) may be used in the treatment of various cholinergic deficits, among them being myasthenia gravis (MG). This paper describes the first in vivo data for promising small quaternary inhibitors (K298 and K524): acute toxicity study, cholinesterase inhibition, absorption, and blood-brain barrier penetration. The newly prepared AChE inhibitors (bis-quinolinium and quinolinium compounds) possess a positive charge in the molecule which ensures that anti-AChE action is restricted to peripheral effect. HPLC-MS was used for determination of real plasma and brain concentration in the pharmacokinetic part of the study, and standard non-compartmental analysis was performed. The maximum plasma concentrations were attained at 30 min (K298; 928.76 ± 115.20 ng/ml) and 39 min (K524; 812.40 ± 54.96 ng/ml) after i.m. Both compounds are in fact able to target the central nervous system. It seems that the difference in the CNS distribution profile depends on an active efflux system. The K524 brain concentration was actively decreased to below an effective level; in contrast, K298 progressively accumulated in brain tissue. Peripheral AChE inhibitors are still first-line treatment in the mild forms of MG. Commonly prescribed carbamates have many severe side effects related to AChE carbamylation. The search for new treatment strategies is still important. Unlike carbamates, these new compounds target AChE via apparent π-π or π-cationic interaction aside at the AChE catalytic site.
Brain region-specific effects of immobilization stress on cholinesterases in mice.
Valuskova, Paulina; Farar, Vladimir; Janisova, Katerina; Ondicova, Katarina; Mravec, Boris; Kvetnansky, Richard; Myslivecek, Jaromir
2017-01-01
Brain acetylcholinesterase (AChE) variant AChE R expression increases with acute stress, and this persists for an extended period, although the timing, strain and laterality differences, have not been explored previously. Acute stress transiently increases acetylcholine release, which in turn may increase activity of cholinesterases. Also the AChE gene contains a glucocorticoid response element (GRE), and stress-inducible AChE transcription and activity changes are linked to increased glucocorticoid levels. Corticotropin-releasing hormone knockout (CRH-KO) mice have basal glucocorticoid levels similar to wild type (WT) mice, but much lower levels during stress. Hence we hypothesized that CRH is important for the cholinesterase stress responses, including butyrylcholinesterase (BChE). We used immobilization stress, acute (30 or 120 min) and repeated (120 min daily × 7) in 48 male mice (24 WT and 24 CRH-KO) and determined AChE R , AChE and BChE mRNA expression and AChE and BChE activities in left and right brain areas (as cholinergic signaling shows laterality). Immobilization decreased BChE mRNA expression (right amygdala, to 0.5, 0.3 and 0.4, × control respectively) and AChE R mRNA expression (to 0.5, 0.4 and 0.4, × control respectively). AChE mRNA expression increased (1.3, 1.4 and 1.8-fold, respectively) in the left striatum (Str). The AChE activity increased in left Str (after 30 min, 1.2-fold), decreased in right parietal cortex with repeated stress (to 0.5 × control). BChE activity decreased after 30 min in the right CA3 region (to 0.4 × control) but increased (3.8-fold) after 120 min in the left CA3 region. The pattern of changes in CRH-KO differed from that in WT mice.
Dal Forno, Gonzalo Ogliari; Kist, Luiza Wilges; de Azevedo, Mariana Barbieri; Fritsch, Rachel Seemann; Pereira, Talita Carneiro Brandão; Britto, Roberta Socoowski; Guterres, Sílvia Stanisçuaski; Külkamp-Guerreiro, Irene Clemes; Bonan, Carla Denise; Monserrat, José María; Bogo, Maurício Reis
2013-01-01
Even though technologies involving nano/microparticles have great potential, it is crucial to determine possible toxicity of these technological products before extensive use. Fullerenes C60 are nanomaterials with unique physicochemical and biological properties that are important for the development of many technological applications. The aim of this study was to evaluate the consequences of nonphotoexcited fullerene C60 exposure in brain acetylcholinesterase expression and activity, antioxidant responses, and oxidative damage using adult zebrafish as an animal model. None of the doses tested (7.5, 15, and 30 mg/kg) altered AChE activity, antioxidant responses, and oxidative damage when zebrafish were exposed to nonphotoexcited C60 nano/microparticles during 6 and 12 hours. However, adult zebrafish exposed to the 30 mg/kg dose for 24 hours have shown enhanced AChE activity and augmented lipid peroxidation (TBARS assays) in brain. In addition, the up-regulation of brain AChE activity was neither related to the transcriptional control (RT-qPCR analysis) nor to the direct action of nonphotoexcited C60 nano/microparticles on the protein (in vitro results) but probably involved a posttranscriptional or posttranslational modulation of this enzymatic activity. Taken together these findings provided further evidence of toxic effects on brain after C60 exposure. PMID:23865059
Rattner, B.A.
1982-01-01
Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.
López-Granero, Caridad; Cardona, Diana; Giménez, Estela; Lozano, Rafael; Barril, José; Aschner, Michael; Sánchez-Santed, Fernando; Cañadas, Fernando
2014-01-01
Organophosphates (OPs) affect behavior by inhibiting acetylcholinesterase (AChE). While the cognitive short-term effects may be directly attributed to this inhibition, the mechanisms that underlie OP's long-term cognitive effects remain controversial and poorly understood. Accordingly, two experiments were designed to assess the effects of OPs on cognition, and to ascertain whether both the short- and long-term effects of are AChE-dependent. A single subcutaneous dose of 250 mg/kg chlorpyrifos (CPF), 1.5mg/kg diisopropylphosphorofluoridate (DFP) or 15 mg/kg parathion (PTN) was administered to male Wistar rats. Spatial learning was evaluated 72 h or 23 weeks after exposure, and impulsive choice was tested at 10 and 30 weeks following OPs administration (experiment 1 and 2, respectively). Brain soluble and membrane-bound AChE activity, synaptic AChE-S mRNA, read-through AChE-R mRNA and brain acylpeptide hydrolase (APH) activity (as alternative non-cholinergic target) were analyzed upon completion of the behavioral testing (17 and 37 weeks after OPs exposure). Both short- and long-term CPF treatment caused statistically significant effects on spatial learning, while PTN treatment led only to statistically significant short-term effects. Neither CPF, DFP nor PTN affected the long-term impulsivity response. Long-term exposure to CPF and DFP significantly decreased AChE-S and AChE-R mRNA, while in the PTN treated group only AChE-S mRNA levels were decreased. However, after long-term OP exposure, soluble and membrane-bound AChE activity was indistinguishable from controls. Finally, no changes were noted in brain APH activity in response to OP treatment. Taken together, this study demonstrates long-term effects of OPs on AChE-S and AChE-R mRNA in the absence of changes in AChE soluble and membrane-bound activity. Thus, changes in AChE mRNA expression imply non-catalytic properties of the AChE enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of acetylcholinesterase in an animal model of maple syrup urine disease.
Scaini, Giselli; de Rochi, Natália; Jeremias, Isabela C; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L
2012-04-01
Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos
2007-08-01
The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.
Shin, Chang Yell; Kim, Hae-Sun; Cha, Kwang-Ho; Won, Dong Han; Lee, Ji-Yun; Jang, Sun Woo; Sohn, Uy Dong
2018-05-01
A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.
Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.
Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A
2016-12-01
To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Effect of chlorpyrifos and enrofloxacin on selected enzymes in rats.
Barski, D; Spodniewska, A
2018-03-01
This study examined the effect of chlorpyrifos and/or enrofloxacin on the activity of acetylcholinesterase (AChE) in the blood and brain, and the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum. The experiment was conducted on Wistar strain rats. Chlorpyrifos was administered with a stomach tube at a dose of 0.04 LD50 for 28 days and enrofloxacin at a dose of 5 mg/kg bw for 5 consecutive days. The experiment found that enrofloxacin changed the activity of the enzymes under study only to a small extent. At the dose applied in the experiment, chlorpyrifos decreased the activity of AChE significantly, both in blood and in the brain, and increased the activity of ALT and AST in rat serum. The administration of chlorpyrifos in combination with enrofloxacin changed the activity of the enzymes under study only slightly. A weaker, but longer, inhibition of AChE activity in both blood and the brain was observed in this group compared to the animals exposed only to chlorpyrifos. However, although enrofloxacin, like chlorpyrifos, increases the activity of ALT and AST in serum, their combined administration did not increase the hepatotoxic effect. Copyright© by the Polish Academy of Sciences.
2006-05-01
JH, Jr., Romano JA, King JM (1990) Age-related differences in soman toxicity and in blood and brain regional cholinesterase activity . Brain Res.Bull...of OP AChE inhibitors when given in anticipation of exposure to toxic nerve agents. The mechanism of this protection seems to be the pre- occupation of...has indicated effects on blood AChE activity during and shortly after treatment and delayed effects, 2 to 16 weeks post-treatment, on exploratory
Abdel-Salam, Omar M E; Youness, Eman R; Khadrawy, Yasser A; Sleem, Amany A
2016-11-01
To investigate the effect of Cannabis sativa resin and/or tramadol, two commonly drugs of abuse on acetylcholinesterase and butyrylcholinesterase activities as a possible cholinergic biomarkers of neurotoxicity induced by these agents. Rats were treated with cannabis resin (5, 10 or 20 mg/kg) (equivalent to the active constituent Δ 9 -tetrahydrocannabinol), tramadol (5, 10 and 20 mg/kg) or tramadol (10 mg/kg) combined with cannabis resin (5, 10 and 20 mg/kg) subcutaneously daily for 6 weeks. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in brain and serum. We also measured the activity of paraoxonase-1 (PON1) in serum of rats treated with these agents. (i) AChE activity in brain increased after 10-20 mg/kg cannabis resin (by 16.3-36.5%). AChE activity in brain did not change after treatment with 5-20 mg/kg tramadol. The administration of both cannabis resin (5, 10 or 20 mg/kg) and tramadol (10 mg/kg) resulted in decreased brain AChE activity by 14.1%, 12.9% and 13.6%, respectively; (ii) BChE activity in serum was markedly and dose-dependently inhibited by cannabis resin (by 60.9-76.9%). BChE activity also decreased by 17.6-36.5% by 10-20 mg/kg tramadol and by 57.2-63.9% by the cannabis resin/tramadol combined treatment; (iii) Cannabis resin at doses of 20 mg/kg increased serum PON1 activity by 25.7%. In contrast, tramadol given at 5, 10 and 20 mg/kg resulted in a dose-dependent decrease in serum PON1 activity by 19%, 36.7%, and 46.1%, respectively. Meanwhile, treatment with cannabis resin plus tramadol resulted in 40.2%, 35.8%, 30.7% inhibition of PON1 activity compared to the saline group. These data suggest that cannabis resin exerts different effects on AChE and BChE activities which could contribute to the memory problems and the decline in cognitive function in chronic users. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-05-01
We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.
[Effects of cornel iridoid glycoside on activity of cholinesterases in vitro].
Chu, Si-Juan; Zhang, Lan; Liu, Gang; Zhou, Wen-Xia; Li, Lin
2013-05-01
The purpose of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on the activity of cholinesterases in vitro, and to investigate the mechanism of CIG's treating Alzheimer's disease (AD). The sources of cholinesterases were prepared from human blood cells, rat brain homogenate and human blood plasma, respectively. The biochemical methods were used to detect the activity of acetylcholine esterase (AChE) and butyryl cholinesterase (BuChE) to investigate the influence of CIG on cholinesterases. The results showed that CIG inhibited the activity of AChE of human blood cells and rat brain homogenate, with the 50% inhibition rate (IC50) of 1.6 g . L-1 and 3.3 g . L-1, respectively; and the inhibition of AChE of CIG is reversible. CIG also inhibited the activity of BuChE of human blood plasma, with the IC50 of 2.9 g . L-1. In conclusion, CIG can inhibit the activity of AChE and BuChE in vitro, which may be one of the mechanisms of CIG to treat AD.
Role of Nicotinic and Muscarinic Receptors on Synaptic Plasticity and Neurological Diseases.
Fuenzalida, Marco; Pérez, Miguel Ángel; Arias, Hugo R
2016-01-01
The cholinergic activity in the brain is fundamental for cognitive functions. The modulatory activity of the neurotransmitter acetylcholine (ACh) is mediated by activating a variety of nicotinic acetylcholine receptors (nAChR) and muscarinic acetylcholine receptors (mAChR). Accumulating evidence indicates that both nAChR and mAChRs can modulate the release of several other neurotransmitters, modify the threshold of long-term plasticity, finally improving learning and memory processes. Importantly, the expression, distribution, and/or function of these systems are altered in several neurological diseases. The aim of this review is to discuss our current knowledge on cholinergic receptors and their regulating synaptic functions and neuronal network activities as well as their use as targets for the development of new and clinically useful cholinergic ligands. These new therapies involve the development of novel and more selective cholinergic agonists and allosteric modulators as well as selective cholinesterase inhibitors, which may improve cognitive and behavioral symptoms, and also provide neuroprotection in several brain diseases. The review will focus on two nAChR receptor subtypes found in the mammalian brain and the most commonly targeted in drug discovery programs for neuropsychiatric disorder, the ligands of α4β2 nAChR and α7 nAChRs.
Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio
2003-09-01
A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.
Shao, Xusheng; Xia, Shanshan; Durkin, Kathleen A.; Casida, John E.
2013-01-01
The nicotinic acetylcholine (ACh) receptor (nAChR) is the principal insecticide target. Nearly half of the insecticides by number and world market value are neonicotinoids acting as nAChR agonists or organophosphorus (OP) and methylcarbamate (MC) acetylcholinesterase (AChE) inhibitors. There was no previous evidence for in vivo interactions of the nAChR agonists and AChE inhibitors. The nitromethyleneimidazole (NMI) analog of imidacloprid, a highly potent neonicotinoid, was used here as a radioligand, uniquely allowing for direct measurements of house fly (Musca domestica) head nAChR in vivo interactions with various nicotinic agents. Nine neonicotinoids inhibited house fly brain nAChR [3H]NMI binding in vivo, corresponding to their in vitro potency and the poisoning signs or toxicity they produced in intrathoracically treated house flies. Interestingly, nine topically applied OP or MC insecticides or analogs also gave similar results relative to in vivo nAChR binding inhibition and toxicity, but now also correlating with in vivo brain AChE inhibition, indicating that ACh is the ultimate OP- or MC-induced nAChR active agent. These findings on [3H]NMI binding in house fly brain membranes validate the nAChR in vivo target for the neonicotinoids, OPs and MCs. As an exception, the remarkably potent OP neonicotinoid synergist, O-propyl O-(2-propynyl) phenylphosphonate, inhibited nAChR in vivo without the corresponding AChE inhibition, possibly via a reactive ketene metabolite reacting with a critical nucleophile in the cytochrome P450 active site and the nAChR NMI binding site. PMID:24108354
Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed
2017-05-01
The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rattner, B.A.; Michael, S.D.
1985-01-01
Oral intubation of 50 and 100 mg/kg acephate inhibited brain acetylcholinesterase (AChE) activity by 45% and 56%, and reduced basal luteinizing hormone (LH) concentration by 29% and 25% after 4 h in white-footed mice (Peromyscus leucopus noveboracensis). Dietary exposure to 25, 100, and 400 ppm acephate for 5 days substantially inhibited brain AChE activity, but did not affect plasma LH concentration. These preliminary findings suggest that acute exposure to organophosphorus insecticides may affect LH secretion and possibly reproductive function.
Black Soybean Extract Protects Against TMT-Induced Cognitive Defects in Mice
Jeong, Ji Hee; Jo, Yu Na; Kim, Hyeon Ju; Jin, Dong Eun; Kim, Dae-Ok
2014-01-01
Abstract To find a neuroactive compound with a potent inhibitory effect on acetylcholinesterase (AChE) and in vivo anti-amnesic activity from natural resources, we evaluated anthocyanins and nonanthocyanins from black soybean extract. Nonanthocyanins from black soybean extract were the most potent and dose-dependent AChE inhibitors. Intracellular reactive oxygen species accumulation resulting from H2O2 treatment was significantly decreased compared with cells treated with H2O2 only. Nonanthocyanins were also neuroprotective against H2O2 treated neurotoxicity by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Finally, nonanthocyanins from black soybean in the preadministration group attenuated trimethyltin (TMT)-induced memory injury in both in vivo tests. AChE, prepared from mice brain tissues, was inhibited by nonanthocyanins from black soybean in a dose-dependent manner. Malondialdehyde generation in the brain homogenates of mice treated with nonanthocyanins from black soybean was decreased. We concluded that nonanthocyanins from black soybean had an efficacious in vitro AChE inhibitory activity, and protected against H2O2-induced neurotoxicity. In addition, our findings suggest that nonanthocyanins from black soybean may improve the TMT-induced learning and memory deficit because of AChE inhibition of mice brain tissue. Consequently, these results demonstrate that the nonanthocyanins from black soybean could possess a wide range of beneficial activities for neurodegenerative disorders. PMID:24456358
Jett, David A.; Hill, E.F.; Fernando, J.C.; Eldefrawi, M.E.; Eldefrawi, A.T.
1993-01-01
The effect of ad libitum dietary exposure (as occurs in the field) to parathion for 14 d was investigated on the muscarinic acetylcholine receptor (mAChR) in brains and submaxillary glands of adults of a field species, the white-footed mouse Peromyscus leucopus. Immunoprecipitation using subtype selective antibodies revealed that the relative ratios of the m1-m5 mAChR subtypes in Peromyscus brain were similar to those in rat brain. There was little variability in acetylcholinesterase (AChE) activity in control mice brains but large variability in 39 exposed mice, resulting from differences in food ingestion and parathion metabolism. Accordingly, data on radioligand binding to mAChRs in each mouse brain were correlated with brain AChE activity in the same mouse, and AChE inhibition served as a biomarker of exposure reflecting in situ paraoxon concentrations. Exposure to parathion for 14 d reduced maximal binding (Bmax) of [3H]quinuclidinyl benzilate ([3H]QNB), [3H]-N-methylscopolamine ([3H]NMS), and [3H]-4-diphenylacetoxy-N-methylpiperidine methiodide ([3H]-4-DAMP) by up to approximately 58% without affecting receptor affinities for these ligands. Maximal reduction in Bmax of [3H]QNB and [3H]-4-DAMP binding occurred in mice with highest AChE inhibition, while equivalent maximal reduction in Bmax of [3H]NMS occurred in mice with only approximately 10% AChE inhibition, without further change at higher parathion doses. This is believed to be due to the hydrophilicity of [3H]NMS, which limits its accessibility to internalized desensitized receptors. In submaxillary glands (mAChRs are predominantly m3 subtype), there were significant dose-dependent reductions in [3H]QNB binding and m3 mRNA levels in exposed mice, revealed by Northern blot analyses. The reduction in m3 receptors is suggested to result mostly from reduced synthesis at the transcription level, rather than from translational or posttranslational events. The data suggest that down-regulation of mAChRs occurs after dietary exposure for 14 d to sublethal concentrations of parathion in a field rodent species, and that significant though incomplete recovery in AChE and mAChRs occurs in 7 d following termination of exposure.
Ghasemi, Simagol; Moradzadeh, Malihe; Hosseini, Mahmoud; Beheshti, Farimah; Sadeghnia, Hamid Reza
2018-05-10
This study was conducted to investigate protective effects of Urtica dioica extract on acetylcholinesterase (AChE) activity and the oxidative damage of brain tissues in scopolamine-induced memory impairment model. The rats were treated with (1) saline (control), (2) scopolamine, and (3-5) the plant extract (20, 50, or 100 mg/kg) before scopolamine. The traveled distance and the latency to find the platform in Morris water maze (MWM) by scopolamine-treated group were longer while the time spent in target quadrant was shorter than those of the control. Scopolamine decreased the latency to enter the dark in passive avoidance test. Besides, it also increased AChE activity and malondialdehyde (MDA) concentration in the hippocampal and cortical tissues while decreased thiols content and superoxide dismutase (SOD) and catalase (CAT) activities in the brain (p < 0.01-p <0.001). Treatment by the extract reversed all the effects of scopolamine (p < 0.05-p <0.001). According to the results of present study, the beneficial effects of U. dioica on memory can be attributed to its protective effects on oxidative damage of brain tissue and AChE activity.
Soni, Kapil; Parle, Milind
2017-05-01
The present study was designed to explore the beneficial effects of successive 10 days administration of Trachyspermum ammi seed's powder (TASP) along with diet (at the dose of 0.5%, 1.0% and 2.0% w/w) on learning and memory of mice. A total of 306 mice divided in 51 equal groups were employed in the study. Passive avoidance paradigm (PAP) and Object recognition Task (ORT) were employed as exteroceptive models. The brain acetylcholinesterase activity (AChE), serum cholesterol, brain monoaldehyde (MDA), brain reduced glutathione (GSH) and brain nitrite were estimated and Alprazolam, Scopolamine and Electroshock induced amnesia was employed to describe the actions. Treatment of TASP significantly increased step down latency of PAA and significantly increased discrimination index of ORT in groups with or without amnesia when compared to respective control groups. Furthermore, TASP administration resulted in significant fall in brain AChE activity, brain MDA level and brain nitrite level with simultaneous rise in brain GSH level, thereby decreased oxidative damage. A significant decrease in serum cholesterol was also observed. Ajowan supplementation may prove a remedy for the management of cognitive disorders owing to have pro-cholinergic, antioxidant and hypo-lipidemic activities.
[Effect of compound gardenia oil and jujube seed oil on learning and memory in ovariectomized rats].
Chen, Ya-Hui; Lan, Zhong-Ping; Fu, Zhao-Ying; Li, Bao-Li; Zhang, Zheng-Xiang
2013-09-01
To observe the effect of compound of gardenia oil and jujube seed oil learning and memory in ovariectomized rats and its mechanism. Animals were randomly divided into six groups: sham group, model group, estrogen group, low dose group, middle dose group and high dose group. The ovariectomized rat models were established by resection of the lateral ovaries. The effect of compound of gardenia oil and jujube seed oil on learning and memory in ovariectomized rats was observed by means of Morris water maze. Acetylcholinesterase (AchE) and nitric oxide synthase (NOS) activities in rat brain were determined. The compound of gardenia oil and jujube seed oil could shorten the incubation period of appearance in castration rats and increase the number passing through Yuan Ping table in ovariectomized rats. As the training time extended, the incubation period of appearance was gradually shortened. The compound of gardenia oil and jujube seed oil could increase NOS activity, and decrease AChE activity in brain of ovariectomized rats. The compound of jujube seed oil and gardenia oil could promote the learning and memory in ovariectomized rats. This effect may be related with the increase in activities of NOS, AchE in rat brain.
Bosco de Salles, João; Matos Lopes, Renato; de Salles, Cristiane M. C.; Cassano, Vicente P. F.; de Oliveira, Manildo Marcião; Cunha Bastos, Vera L. F.; Bastos, Jayme Cunha
2015-01-01
Three species of freshwater Brazilian fishes (pacu, Piaractus mesopotamicus; piavussu, Leporinus macrocephalus, and curimbatá, Prochilodus lineatus) were exposed to an acute dose of 5 ppm methyl parathion organophosphate pesticide. Three to five individuals per species were exposed, one at a time, to 40 liters tap water spiked with Folidol 600. Pesticide concentrations and cholinesterase (ChE) activities were evaluated in serum, liver, brain, heart, and muscle. The bioconcentration of methyl parathion was similar for all studied fishes. Brain tissue showed the highest pesticide concentration, reaching 80 ppm after exposure for 30 min to methyl parathion. Three to 5 hours of 5 ppm methyl parathion exposure provoked the death of all P. lineatus at 92% brain AChE inhibition, whereas fish from the other two species survived for up to 78 hours with less than 80% brain AChE inhibition. Our results indicate that acute toxic effects of methyl parathion to fish are correlated with brain AChE sensitivity to methyl paraoxon. PMID:26339593
Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E
2010-10-01
The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted. 2010 Elsevier GmbH. All rights reserved.
Miller, Julie V; LeBouf, Ryan F; Kelly, Kimberly A; Michalovicz, Lindsay T; Ranpara, Anand; Locker, Alicia R; Miller, Diane B; O'Callaghan, James P
2018-05-28
Many veterans of the 1991 Persian Gulf War (GW) returned with a chronic multisymptom illness that has been termed Gulf War Illness (GWI). Previous GWI studies have suggested that exposure to acetylcholinesterase inhibitors (AChEIs) in theater, such as sarin and/or pesticides, may have contributed to the symptomatology of GWI. Additionally, concomitant high physiological stress experienced during the war may have contributed to the initiation of the GWI phenotype. While inhibition of AChE leading to accumulation of acetylcholine (ACh) will activate the cholinergic anti-inflammatory pathway, the signature symptomatology of GWI has been shown to be associated with neuroinflammation. To investigate the relationship between ACh and neuroinflammation in discrete brain regions, we used our previously established mouse model of GWI, which combines an exposure to a high physiological stress mimic, corticosterone (CORT), with GW-relevant AChEIs. The AChEIs used in this study were diisopropyl fluorophosphate (DFP), chlorpyrifos oxon (CPO), and physostigmine (PHY). After AChEI exposure, ACh concentrations for cortex (CTX), hippocampus (HIP), and striatum (STR) were determined using hydrophilic interaction liquid chromatography (HILIC) with ultra-performance liquid chromatography (UPLC)-tandem-mass spectrometry (MS/MS). CORT pretreatment ameliorated the DFP-induced ACh increase in HIP and STR, but not CTX. CORT pretreatment did not significantly alter ACh levels for CPO and PHY. Further analysis of STR neuroinflammatory biomarkers revealed an exacerbated CORT+AChEI response, which does not correspond to measured brain ACh. By utilizing this new analytical method for discrete brain region analysis of ACh, this work suggests the exacerbated neuroinflammatory effects in our mouse model of GWI are not driven by the accumulation of brain region-specific ACh.
Bianchini, A.E.; Garlet, Q.I.; da Cunha, J.A.; Bandeira, G.; Brusque, I.C.M.; Salbego, J.; Heinzmann, B.M.; Baldisserotto, B.
2017-01-01
This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50–100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish. PMID:29069225
Bianchini, A E; Garlet, Q I; da Cunha, J A; Bandeira, G; Brusque, I C M; Salbego, J; Heinzmann, B M; Baldisserotto, B
2017-10-19
This study evaluated the anesthetic potential of thymol and carvacrol, and their influence on acetylcholinesterase (AChE) activity in the muscle and brain of silver catfish (Rhamdia quelen). The AChE activity of S-(+)-linalool was also evaluated. We subsequently assessed the effects of thymol and S-(+)-linalool on the GABAergic system. Fish were exposed to thymol and carvacrol (25, 50, 75, and 100 mg/L) to evaluate time for anesthesia and recovery. Both compounds induced sedation at 25 mg/L and anesthesia with 50-100 mg/L. However, fish exposed to carvacrol presented strong muscle contractions and mortality. AChE activity was increased in the brain of fish at 50 mg/L carvacrol and 100 mg/L thymol, and decreased in the muscle at 100 mg/L carvacrol. S-(+)-linalool did not alter AChE activity. Anesthesia with thymol was reversed by exposure to picrotoxin (GABAA antagonist), similar to the positive control propofol, but was not reversed by flumazenil (antagonist of benzodiazepine binding site), as observed for the positive control diazepam. Picrotoxin did not reverse the effect of S-(+)-linalool. Thymol exposure at 50 mg/L is more suitable than carvacrol for anesthesia in silver catfish, because this concentration did not cause any mortality or interference with AChE activity. Thymol interacted with GABAA receptors, but not with the GABAA/benzodiazepine site. In contrast, S-(+)-linalool did not act in GABAA receptors in silver catfish.
Shrivastava, Sushant K; Srivastava, Pavan; Upendra, T V R; Tripathi, Prabhash Nath; Sinha, Saurabh K
2017-02-15
Series of some 3,5-dimethoxy-N-methylenebenzenamine and 4-(methyleneamino)benzoic acid derivatives comprising of N-methylenebenzenamine nucleus were designed, synthesized, characterized, and assessed for their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) inhibitory, and antioxidant activity thereby improving learning and memory in rats. The IC 50 values of all the compound along with standard were determined on AChE and BChE enzyme. The free radical scavenging activity was also assessed by in vitro DPPH (2,2-diphenyl-1-picryl-hydrazyl) and hydrogen peroxide radical scavenging assay. The selective inhibitions of all compounds were observed against AChE in comparison with standard donepezil. The enzyme kinetic study of the most active compound 4 indicated uncompetitive AChE inhibition. The docking studies of compound 4 exhibited the worthy interaction on active-site gorge residues Phe330 and Trp279 responsible for its high affinity towards AChE, whereas lacking of the BChE inhibition was observed due to a wider gorge binding site and absence of important aromatic amino acids interactions. The ex vivo study confirmed AChE inhibition abilities of compound 4 at brain site. Further, a considerable decrease in escape latency period of the compound was observed in comparison with standard donepezil through in vivo Spatial Reference Memory (SRM) and Spatial Working Memory (SWM) models which showed the cognition-enhancing potential of compound 4. The in vivo reduced glutathione (GSH) estimation on rat brain tissue homogenate was also performed to evaluate free radical scavenging activity substantiated the antioxidant activity in learning and memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
In vitro and ex vivo anticholinesterase activities of Erythrina velutina leaf extracts.
Santos, Wanderson Praxedes; da Silva Carvalho, Ana Carla; dos Santos Estevam, Charles; Santana, Antônio Euzébio Goulart; Marçal, Rosilene Moretti
2012-07-01
Erythrina velutina (EV) Willd (Fabaceae-Faboideae) is a medicinal tree that is commonly used in Brazil for the treatment of several central nervous system disorders. The anticholinesterase activity of EV is described in this work. Concentration-response curves (0-1.6 mg/mL) for EV leaf aqueous extract (AE) and alkaloid-rich extracts (AKEs) were performed in vitro. Cholinesterase inhibition was examined in mouse brains, as the cholinesterase source, and in pure acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE). Mice were treated with AE or AKE (100, 200, and 400 mg/kg, p.o.) and their brains were used for the measurement of cholinesterase activity (CA) ex vivo. CA was inhibited by AE (IC(50) = 0.57 [0.43-0.75] mg/mL) and AKE (IC(50) = 0.52 [0.39-0.70] mg/mL) in brain homogenates in a concentration-dependent manner. The ex vivo experiments indicated that AE (400 mg/kg, p < 0.05, 32.2 ± 3.9% of inhibition) and AKE (all doses: p < 0.05-p < 0.001, 29.6 ± 3.2% as the maximum inhibition) significantly inhibited CA in the central nervous system after oral administration. AE and AKE inhibited AChE and BuChE activities in a concentration-dependent manner (AE: IC(50AChE) = 0.56 [0.38-0.81] mg/mL, IC(50BuChE) = 2.95 [1.51-5.76] mg/mL, AKE: IC(50AChE) = 0.87 [0.60-12.5] mg/mL, IC(50BuChE) = 2.67 [0.87-8.11] mg/mL). These data indicated that AE and AKE crossed the blood-brain barrier to inhibit CA in the brain. AE and AKE also exhibited a dual inhibitory action on acetyl- and BuChE.
NASA Astrophysics Data System (ADS)
Hasegawa, T.; Suzuki, M.; Murayama, H.; Irie, T.; Fukushi, K.; Wada, Y.
1999-08-01
This study assessed the influence of radioactivity out of the field of view (out-of-FOV) on the measurement of brain acetylcholinesterase (AChE) activity with the tracer [/sup 11/C]N-methyl-4-piperidyl-acetate by positron emission tomography in three-dimensional mode. Dynamic scans on a volunteer showed that the out-of-FOV radioactivity in the chest was much higher than that of the brain immediately after tracer injection. A representative phantom measurement was performed to quantitate the systematic errors due to the out-of-FOV radioactivity. Resultant errors in the AChE activity (k3 parameter) as calculated by compartment model analysis were found to be less than one percent in all of the brain regions studied.
Stitcher, D L; Harris, L W; Heyl, W C; Alter, S C
1978-01-01
Soman reduced blood and brain cholinesterase (ChE) activity to less than 15% and increased cerebral acetylcholine (ACh) levels to 137.4% of control. When pyridostigmine (P) was used as a prophylactic adjunct, it reduced blood ChE activity to 31.6% of control, failed to significantly alter brain ChE activity, and protected more than 70% of the blood (but not brain enzyme) from phosphonylation by soman. Benactyzine (B) was more effective than atropine (A) in reducing cerebral ACh concentrations, while a combination of the two was more effective than either alone. A prophylaxis of P + A + B was effective in controlling ACh levels in rats poisoned with one LD50 dose of Soman. Since P did not diminish the effects of the cholinolytics on cerebral ACh, this (together with the enzyme data) suggests that the two cholinolytics alone provided the central protection.
Lopes, Fernanda Moreira; Caldas, Sergiane Souza; Primel, Ednei Gilberto; da Rosa, Carlos Eduardo
2017-04-01
It has been demonstrated that glyphosate-based herbicides are toxic to animals. In the present study, reactive oxygen species (ROS) generation, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO), as well as the activity and expression of the acetylcholinesterase (AChE) enzyme, were evaluated in Danio rerio males exposed to 5 or 10 mg/L of glyphosate for 24 and 96 h. An increase in ACAP in gills after 24 h was observed in the animals exposed to 5 mg/L of glyphosate. A decrease in LPO was observed in brain tissue of animals exposed to 10 mg/L after 24 h, while an increase was observed in muscle after 96 h. No significant alterations were observed in ROS generation. AChE activity was not altered in muscles or brains of animals exposed to either glyphosate concentration for 24 or 96 h. However, gene expression of this enzyme in the brain was reduced after 24 h and was enhanced in both brain and muscle tissues after 96 h. Thus, contrary to previous findings that had attributed the imbalance in the oxidative state of animals exposed to glyphosate-based herbicides to surfactants and other inert compounds, the present study demonstrated that glyphosate per se promotes this same effect in zebrafish males. Although glyphosate concentrations did not alter AChE activity, this study demonstrated for the first time that this molecule affects ache expression in male zebrafish D. rerio.
Ashokkumar, Natarajan; Pari, Leelavinothan; Ramkumar, Kunga Mohan
2006-09-01
The effect of hyperglycaemia due to experimental diabetes in male Wistar rats causes a decrease in the level of acetylcholinesterase (AChE) with significant increase in lipid peroxidative markers: thiobarbituric acid-reactive substances (TBARS) and hydroperoxides in brains of experimental animals. The decreased activity of both salt soluble and detergent soluble acetylcholinesterase observed in diabetes may be attributed to lack of insulin which causes specific alterations in the level of neurotransmitter, thus causing brain dysfunction. Administration of non-sulfonylurea drug N-benzoyl-D-phenylalanine (NBDP) could protect against direct action of lipid peroxidation on brain AChE and in this way it might be useful in the prevention of cholinergic neural dysfunction, which is one of the major complications in diabetes.
Bueters, Tjerk J H; Groen, Bas; Danhof, Meindert; IJzerman, Ad P; Van Helden, Herman P M
2002-11-01
The objective of the present study was to investigate whether reduction of central acetylcholine (ACh) accumulation by adenosine receptor agonists could serve as a generic treatment against organophosphate (OP) poisoning. The OPs studied were tabun ( O-ethyl- N-dimethylphosphoramidocyanidate), sarin (isopropylmethylphosphonofluoridate), VX ( O-ethyl- S-2-diisopropylaminoethylmethylphosphonothiolate) and parathion ( O, O-diethyl- O-(4-nitrophenyl)phosphorothioate). The efficacy of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) against an OP intoxication was examined on the basis of the occurrence of clinical symptoms that are directly associated with such intoxication. CPA (1-2 mg/kg) effectively attenuated the cholinergic symptoms and prevented mortality in lethally tabun- or sarin-intoxicated rats. In contrast, CPA (2 mg/kg) proved to be ineffective against VX or parathion intoxication. Intracerebral microdialysis studies revealed that survival of sarin-poisoned and CPA-treated animals coincided with a minor elevation of extracellular ACh concentrations in the brain relative to the baseline value, whereas an 11-fold increase in transmitter levels was observed in animals not treated with CPA. In VX-intoxicated rats, however, the ACh amounts increased 18-fold, irrespective of treatment with CPA. The striatal acetylcholinesterase (AChE) activity following a lethal sarin intoxication was completely abolished in the vehicle-treated animals, whereas 10% and 60% AChE activity remained in animals treated with 2 mg/kg CPA 1 min after or 2 min prior to the poisoning, respectively. In VX-intoxicated animals the AChE activity in the brain was strongly reduced (striatum 10%, hippocampus 1%) regardless of the CPA treatment. These results demonstrate that CPA is highly effective against tabun or sarin poisoning, but fails to protect against VX or parathion. Survival and attenuation of clinical signs in tabun- or sarin-poisoned animals are associated with a reduction of ACh accumulation and with protection of AChE activity in the brain.
Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos
2007-03-01
Thyroid hormones (THs) are recognized as key metabolic hormones, and the metabolic rate increases in hyperthyroidism, while it decreases in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na(+), K(+))- and Mg(2+)-ATPase in the hypothalamus and the cerebellum of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, while hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. Neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE (-23%, p < 0.001) and the Na(+), K(+)-ATPase activities (-26%, p < 0.001). Moreover, hypothyroidism had a similar effect on the examined enzyme activities: AChE (-17%, p < 0.001) and Na(+), K(+)-ATPase (-27%, p < 0.001). Mg(2+)-ATPase activity was found unaltered in both the hyper- and the hypothyroid brain regions. neither hyper-, nor hypothyroidism had any effect on the examined hypothalamic enzyme activities. In the cerebellum, hyperthyroidism provoked a significant decrease in both the AChE and the Na(+), K(+)-ATPase activities. The decreased (by the THs) Na(+), K(+)-ATPase activities may increase the synaptic acetylcholine release, and thus, could result in a decrease in the cerebellar AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems.
Oboh, G.; Bakare, O.O.; Ademosun, A.O.; Akinyemi, A.J.; Olasehinde, T.A.
2015-01-01
This study sought to investigate the effects of two tomato varieties [Lycopersicon esculentum Mill. var. esculentum (ESC) and Lycopersicon esculentum Mill. var. cerasiforme (CER)] on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. Phenolics content, carotenoids characterisation, inhibition of Fe2+ and quinolinic acid-induced malondialdehyde (MDA) production in rats brain homogenate and NO* scavenging abilities were also assesed in addition to the AChE and BChE inhibition assays. There was no significant difference in the AChE inhibitory ability of the samples, while CER had significantly higher BChE inhibitory activity. Furthermore, the tomatoes inhibited Fe2+ and quinolinic acid-induced MDA production and further exhibited antioxidant activities through their NO* scavenging abilities. There was no significant difference in the phenolic content of the samples, while significantly high amounts of lycopene were detected in the tomatoes. The cholinesterase-inhibition and antioxidant properties of the “tomatoes” could make them good dietary means for the management of neurodegenerative disorders.
da Silva, Aleksandro Schafer; Santurio, Janio M; Roza, Lenilson F; Bottari, Nathieli B; Galli, Gabriela M; Morsch, Vera M; Schetinger, Maria Rosa C; Baldissera, Matheus D; Stefani, Lenita M; Radavelli, Willian M; Tomasi, Thainã; Boiago, Marcel M
2017-06-01
The aim of this study was to evaluate the effects of aflatoxins on cholinesterases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and adenosine deaminase (ADA) activities in quails. For this, twenty male quails were randomly distributed into two groups (n = 10 each): the group A was composed by quails that received feed without aflatoxin (the control group); while the group B was composed by quails that received feed contaminated with 200 ppm/kg of feed of aflatoxin. On day 20, the animals were euthanized to measure the activities of AChE (total blood and brain), BChE (serum) and ADA (serum, liver, and brain), as well as for histopathological analyses (liver and intestine). AChE, BChE, and ADA levels increased in animals intoxicated by aflatoxin compared to the control group. The presence of aflatoxin lead to severe hydropic degeneration of hepatocytes and small focus of hepatocyte necrosis. In conclusion, aflatoxins poisoning increased AChE, BChE, and ADA activities, suggesting the involvement of these enzymes during this type of intoxication, in addition to the fact that they are well known molecules that participate in physiological and pathological events as inflammatory mediators. In summary, increased AChE, BChE and ADA activities contribute directly to the inflammatory process and tissue damage, and they might be involved in disease development. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Experimental study on protective effects of HupA in the treatment of isocarbophos poisoning].
Liu, Li; Xie, Guang-yun; Wang, Jian; Sun, Jin-xiu
2006-06-01
To investigate the therapeutic and prophylactic efficiency of HupA in mice with acute isocarbophos poisoning, and the protective effects of the HupA on AChE inhibited by isocarbophos. Mice were randomizedly divided into the non-treatment group, the atropine control group, the HupA treatment group and the atropine and HupA combined treatment group. Toxic signs and survival rates were observed and compared among these groups. The AChE activity was monitored in the whole blood, the red cells and brain tissue exposed to isocarbophos in the either treated with HupA or non-treated groups. In HupA treatment group compared with the non-treatment group, toxic signs were significantly decreased and the survival rate was increased. The therapeutic efficiency in the atropine and HupA combined treatment group was better than other groups. After isocarbophos was administered, the AChE activity in the HupA treatment group and the non-treatment group was decreased. However, the AChE activity in the whole blood (1.096 +/- 0.111), (1.262 +/- 0.146), (1.181 +/- 0.353) U/ml, the red cells (0.798 +/- 0.063), (1.000 +/- 0.176), (0.837 +/- 0.331) and the brain tissue (13.739 +/- 2.970), (18.507 +/- 3.466), (10.764 +/- 2.212) U/g in HupA treatment group 0.5, 1 and 2 hours after isocarbophos was administered was significantly higher than those in the non-treatment group (P < 0.05 or P < 0.01). HupA has therapeutic effect on mice with acute isocarbophos poisoning. The protective effect of HupA on blood and brain AChE inhibited by isocarbophos may be one of the mechanisms of the therapeutic effect of HupA in acute Isocarbophos poisoning.
Khoshnoud, Mohammad Javad; Siavashpour, Asma; Bakhshizadeh, Mojgan; Rashedinia, Marzieh
2018-02-01
Sodium benzoate (SB) is a widely used preservative and antimicrobial substance in many foods and soft drinks. However, this compound is generally recognized as safe food additives, but evidence has suggested that a high intake of SB may link to attention deficit-hyperactivity disorder in children. Present study investigate the effects of oral administration of different concentrations of SB (0.56, 1.125, and 2.25 mg/mL) for 4 weeks, on the learning and memory performance tests, and also the levels of malondialdehyde (MDA), reduced glutathione (GSH), and acetylcholinesterase activity (AChE) in the mouse brain. The results showed that SB significantly impaired memory and motor coordination. Moreover, SB decreased reduced GSH and increased the MDA level in the brain significantly (P < 0.001). However, nonsignificant alteration was observed in the AChE activity. These findings suggest that short-term consumption of SB can impair memory performance and increased brain oxidative stress in mice. © 2017 Wiley Periodicals, Inc.
Boosting Endogenous Resistance of Brain to Ischemia
Sun, Fen; Johnson, Stephen R.; Jin, Kunlin; Uteshev, Victor V.
2016-01-01
Most survivors of ischemic stroke remain physically disabled and require prolonged rehabilitation. However, some stroke victims achieve a full neurological recovery suggesting that human brain can defend itself against ischemic injury, but the protective mechanisms are unknown. This study used selective pharmacological agents and a rat model of cerebral ischemic stroke to detect endogenous brain protective mechanisms that require activation of α7 nicotinic acetylcholine receptors (nAChRs). This endogenous protection was found to be: 1) limited to less severe injuries; 2) significantly augmented by intranasal administration of a positive allosteric modulator of α7 nAChRs, significantly reducing brain injury and neurological deficits after more severe ischemic injuries; and 3) reduced by inhibition of calcium/calmodulin-dependent kinase-II. The physiological role of α7 nAChRs remains largely unknown. The therapeutic activation of α7 nAChRs after cerebral ischemia may serve as an important physiological responsibility of these ubiquitous receptors and holds a significant translational potential. PMID:26910820
Perić-Mataruga, Vesna; Petković, Branka; Ilijin, Larisa; Mrdaković, Marija; Dronjak Čučaković, Slađana; Todorović, Dajana; Vlahović, Milena
2017-10-01
Insects brain as a part of nervous system is the first-line of fast stress response that integrate stress signals to regulate all aspects of insect physiology and behaviour. The cadmium (Cd) bioaccumulation factor (BF), activity of the neurotoxicity biomarker acetylcholinesterase (AChE), dopamine content, expression and amount of Hsp70 in the brain and locomotor activity were evaluated in the 4th instar of Lymantria dispar L. caterpillars fed a Cd supplemented diet and reared in an optimal temperature regime (23 °C) and/or exposed to high temperature (28 °C). The insects originated from two forests, one close to "Nikola Tesla" thermoelectric power plant, Obrenovac (polluted population), and the other Kosmaj mountain (less-polluted population, far from any industrial region). The Cd BF was higher in the less-polluted than in the polluted population especially at the high ambient temperature. AChE activity and dopamine content were changed in the brains of L. dispar from both populations in the same manner. Hsp70 concentration in caterpillar brains showed opposite trends, a decrease in the less-polluted and an increase in the polluted population. Locomotor activity was modified in both Lymantria dispar populations, but the pattern of changes depended on the stressors and their combined effect. ACh activity and dopamine content are sensitive parameters to Cd exposure, regardless of pollutant experience, and might be promising biomarkers in monitoring forest ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Engle, Staci E; Shih, Pei-Yu; McIntosh, J Michael; Drenan, Ryan M
2013-09-01
Tobacco addiction is a serious threat to public health in the United States and abroad, and development of new therapeutic approaches is a major priority. Nicotine activates and/or desensitizes nicotinic acetylcholine receptors (nAChRs) throughout the brain. nAChRs in ventral tegmental area (VTA) dopamine (DA) neurons are crucial for the rewarding and reinforcing properties of nicotine in rodents, suggesting that they may be key mediators of nicotine's action in humans. However, it is unknown which nAChR subtypes are sufficient to activate these neurons. To test the hypothesis that nAChRs containing α6 subunits are sufficient to activate VTA DA neurons, we studied mice expressing hypersensitive, gain-of-function α6 nAChRs (α6L9'S mice). In voltage-clamp recordings in brain slices from adult mice, 100 nM nicotine was sufficient to elicit inward currents in VTA DA neurons via α6β2* nAChRs. In addition, we found that low concentrations of nicotine could act selectively through α6β2* nAChRs to enhance the function of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) receptors on the surface of these cells. In contrast, α6β2* activation did not enhance N-methyl-D-aspartic acid receptor function. Finally, AMPA receptor (AMPAR) function was not similarly enhanced in brain slices from α6L9'S mice lacking α4 nAChR subunits, suggesting that α4α6β2* nAChRs are important for enhancing AMPAR function in VTA DA neurons. Together, these data suggest that activation of α4α6β2* nAChRs in VTA DA neurons is sufficient to support the initiation of cellular changes that play a role in addiction to nicotine. α4α6β2* nAChRs may be a promising target for future smoking cessation pharmacotherapy.
Kim, Dong Hyun; Choe, Yearn Seong; Choi, Joon Young; Lee, Kyung-Han; Kim, Byung-Tae
2011-05-01
Acetylcholinesterase (AChE) has been an important cholinergic factor for the diagnosis of Alzheimer's disease (AD), because of reduced AChE activity in the postmortem brains of AD patients. We previously developed 5,7-dihydro-3-(2-(1-(2-[(18)F]fluorobenzyl)-4-piperidinyl)ethyl)-6H-pyrrolo(3,2,f)-1,2-benzisoxazol-6-one (2-[(18)F]fluoro-CP-118,954) for in vivo studies of AChE in mice. In the present study, we automated the synthesis of 2-[(18)F]fluoro-CP-118,954 for the routine use and evaluated the radioligand by microPET and ex vivo Cerenkov luminescence imaging of mouse AChE. 4-[(18)F]Fluoro-donepezil, another AChE inhibitor, was used for comparison. Automated syntheses of 2-[(18)F]fluoro-CP-118,954 and 4-[(18)F]fluoro-donepezil resulted in high radiochemical yields (25-33% and 30-40%) and high specific activity (27.1-35.4 and 29.7-37.3 GBq/μmol). Brain microPET images of two ICR mice injected with 2-[(18)F]fluoro-CP-118,954 demonstrated high uptake in the striatum (ROI analysis: 5.1 %ID/g for the first 30 min and 4.1 %ID/g for another 30 min), and a blocking study with injection of CP-118,954 into one of the mice at 30 min after radioligand injection led to complete blocking of radioligand uptake in the striatum (ROI analysis: 1.9 %ID/g), whereas (18)F-labeled donepezil did not show specific uptake in the striatum. In another set of experiments, the brain tissues (striatum, parietal cortex, frontal cortex and cerebellum) were excised after brain microPET/CT imaging of mouse injected with 2-[(18)F]fluoro-CP-118,954, and a high striatal uptake was also detected in ex vivo optical and microPET images (ROI analysis: 1.4 %ID/g) and in γ-counting data (2.1 %ID/g at 50 min post-injection) of the brain tissues. Taken together, these results demonstrated that 2-[(18)F]fluoro-CP-118,954 specifically binds to AChE in mouse brains. Copyright © 2011 Elsevier Inc. All rights reserved.
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula
2016-10-01
Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.
Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit
2015-01-01
Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg(-1)BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.
Richendrfer, Holly; Creton, Robbert
2015-01-01
Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. PMID:25983063
Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor
2018-01-05
In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.
Oboh, Ganiyu; Ogunsuyi, Opeyemi Babatunde; Olonisola, Oluwaseyi Emmanuel
2017-04-01
Caffeine is adjudged world's most consumed pharmacologically active food component. With reports of the potential cognitive enhancing properties of caffeine, we sought to investigate if caffeine can influence the anticholinesterase and antioxidant properties of donepezil-a selective acetylcholinesterase (AChE) inhibitor used in the management of Alzheimer's disease (AD). In vitro, we investigated the effect of donepezil (DON), caffeine (CAF) and their various combinations on the activity of AChE in rat brain homogenate, as well as determined their antioxidant properties. In vivo, two rat groups were administered single oral dose of DON (5 mg/kg) and CAF (5 mg/kg) separately, while three groups, each received 5 mg/kg DON plus either 5, 50 or 100 mg/kg CAF for three hours, after which the rats were sacrificed and brain isolated. Results show that CAF concentration dependently and synergistically increased the anticholinesterase properties of DON in vitro. Also, CAF produced a significant influence on investigated in vitro antioxidant properties of DON. Furthermore, rats administered 5 mg/kg CAF and DON produced no significant difference in AChE activity compared to rats administered DON alone. However, co-administration of either 50 or 100 mg/kg CAF with DON lead to higher AChE activity compared to both control and DON groups. In addition, DON, CAF and their various combinations augmented brain antioxidant status in treated rats. We conclude that while low caffeine consumption may improve the antioxidant properties of donepezil without having a significant influence on its anticholinesterase effect, moderate-high caffeine consumption could also improve the antioxidant properties of donepezil but reduce its anticholinesterase effect; nevertheless, a comprehensive clinical trial is essential to fully explore these possibilities in human AD condition.
Brain cholinergic involvement during the rapid development of tolerance to morphine
NASA Technical Reports Server (NTRS)
Wahba, Z. Z.; Oriaku, E. T.; Soliman, S. F. A.
1987-01-01
The effect of repeated administration of morphine on the activities of the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), in specific brain regions were studied in rats treated with 10 mg/kg morphine for one or two days. Repeated administration of morphine was associated with a decline in the degree of analgesia produced and with a significant increase of AChE activity of the medulla oblongata. A single injection of morphine resulted in a significant decline in ChAT activity in the hypothalamus, cerebellum, and medulla oblongata regions. After two consecutive injections, no decline in ChAT was observed in these regions, while in the cerebral cortex the second administration elicited a significant decline. The results suggest that the development of tolerance to morphine may be mediated through changes in ChAT activity and lend support to the involvement of the central cholinergic system in narcotic tolerance.
Herholz, K; Bauer, B; Wienhard, K; Kracht, L; Mielke, R; Lenz, M O; Strotmann, T; Heiss, W D
2000-01-01
Memory and attention are cognitive functions that depend heavily on the cholinergic system. Local activity of acetylcholine esterase (AChE) is an indicator of its integrity. Using a recently developed tracer for positron emission tomography (PET), C-11-labeled N-methyl-4-piperidyl-acetate (C11-MP4A), we measured regional AChE activity in 4 non-demented subjects, 4 patients with dementia of Alzheimer type (DAT) and 1 patient with senile dementia of Lewy body type (SDLT), and compared the findings with measurements of blood flow (CBF) and glucose metabolism (CMRGlc). Initial tracer extraction was closely related to CBF. AChE activity was reduced significantly in all brain regions in demented subjects, whereas reduction of CMRGlc and CBF was more limited to temporo-parietal association areas. AChE activity in SDLT was in the lower range of values in DAT. Our results indicate that, compared to non-demented controls, there is a global reduction of cortical AChE activity in dementia. Dementia, cholinergic system, acetylcholine esterase, positron emission tomography, cerebral blood flow, cerebral glucose metabolism.
Piner, Petek; Üner, Nevin
2014-11-01
The objective of this research was to investigate the neurotoxic effects of pyrethroid pesticide lambda-cyhalothrin by the modulation of cytochrome P450 with piperonyl butoxide in the brain of juvenile Oreochromis niloticus. The fish were exposed to 0.48 μg L(-1) (1/6 of the 96-h LC50 ) lambda-cyhalothrin and 10 μg L(-1) piperonyl butoxide for 96 h and 15 days. tGSH, GSSG, TBARS contents, GPx, GR, GST, and AChE enzymes activities were determined by spectrophotometrical methods and Hsp70 content was analyzed by ELISA technique. Lambda-cyhalothrin had no significant effect on the components of GSH redox system, lipid peroxidation and Hsp70 levels but inhibited AChE activity. In the presence of piperonyl butoxide, lambda-cyhalothrin caused increases in tGSH, GSSG, TBARS and Hsp70 contents, GST activity, and decrease in AChE activity. Present results showed that in the presence of piperonyl butoxide, lambda-cyhalothrin caused neurotoxic effects by increasing oxidative stress. Adaptation to its oxidative stress effects may be supplied by GSH-related antioxidant system. Piperonyl butoxide revealed neurotoxic effect of lambda-cyhalothrin. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.
Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen
2016-01-01
Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569
Świergosz-Kowalewska, Renata; Molenda, Patrycja; Halota, Anna
2014-08-01
One of the most important issues in ecotoxicology is better understanding the effects of interactions between chemical pollutants and physical environmental factors on animals. To fill this knowledge gap, changes in the activity of acetylcholinesterase (AChE) in the brain samples of bank voles Myodes (Clethrionomys) glareolus due to temperature effects, and two chemical stressors were studied in a full factorial laboratory experiment (27 treatments). The experiment was divided into three phases: acclimatisation (3 days), intoxication (42 days) and elimination (21 days). During the intoxication phase, animals were orally exposed to different concentrations of either nickel (0, 300 or 800 mg Ni/kg food), chlorpyrifos (CPF) (0, 50 or 350 mg CPF/kg food) or a mixture of both chemicals. During the acclimatisation and elimination phases, the bank voles were given uncontaminated food. The experiment was conducted at three different temperatures (10, 20 or 30 °C), and a 12 h:12 h light:dark regime. The animals were sacrificed at 0, 5, 10, 20, 42, 49 and 63 days after the beginning of the intoxication, and brain samples were obtained for chemical analysis. The nickel accumulation in the brain depended on the level of nickel exposure and on interactions between the temperature and other factors. Nickel exhibited no effect on AChE activity. In contrast, AChE was drastically inhibited by chlorpyrifos and low temperature, but interactions between all factors significantly influenced the enzyme activity during the elimination phase of the experiment. High mortality was observed in the groups exposed to high concentrations of nickel and chlorpyrifos. Copyright © 2014 Elsevier Inc. All rights reserved.
Samanta, Palas; Pal, Sandipan; Mukherjee, Aloke Kumar; Ghosh, Apurba Ratan
2014-09-01
Effects of glyphosate based herbicide, Excel Mera 71 at a dose of 17.20mg/l on enzyme activities of acetylcholinesterase (AChE), lipid peroxidation (LPO), catalase (CAT), glutathione-S-transferase (GST) and protein content were measured in different tissues of two Indian air-breathing teleosts, Anabas testudineus (Bloch) and Heteropneustes fossilis (Bloch) during an exposure period of 30 days under laboratory condition. AChE activity was significantly increased in all the investigated tissues of both fish species and maximum elevation was observed in brain of H. fossilis, while spinal cord of A. testudineus showed minimum increment. Fishes showed significant increase LPO levels in all the tissues; highest was observed in gill of A. testudineus but lowest LPO level was observed in muscle of H. fossilis. CAT was also enhanced in both the fishes, while GST activity in liver diminished substantially and minimum was observed in liver of A. testudineus. Total protein content showed decreased value in all the tissues, maximum reduction was observed in liver and minimum in brain of A. testudineus and H. fossilis respectively. The results indicated that Excel Mera 71 caused serious alterations in the enzyme activities resulting into severe deterioration of fish health; so, AChE, LPO, CAT and GST can be used as suitable indicators of herbicidal toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.
Richendrfer, Holly; Creton, Robbert
2015-07-01
Organophosphates, a type of neurotoxicant pesticide, are used globally for the treatment of pests on croplands and are therefore found in a large number of conventional foods. These pesticides are harmful and potentially deadly if ingested or inhaled in large quantities by causing a significant reduction in acetylcholinesterase (AChE) activity in the central and peripheral nervous system. However, much less is known about the effects of exposure to small quantities of the pesticides on neural systems and behavior during development. In the current study we used zebrafish larvae in order to determine the effects of two of the most widely used organophosphates, chlorpyrifos and malathion, on zebrafish behavior and AChE activity. Embryos and larvae were exposed to the organophosphates during different time points in development and then tested at 5 days post-fertilization for behavioral, neurodevelopmental and AChE abnormalities. The results of the study indicate that chlorpyrifos and malathion cause opposing behaviors in the larvae such as swim speed (hypoactivity vs. hyperactivity) and rest. Additionally, the pesticides affect only certain behaviors, such as thigmotaxis, during specific time points in development that are unrelated to changes in AChE activity. Larvae treated with malathion but not chlorpyrifos also had significantly smaller forebrain and hindbrain regions compared to controls by 5 days post-fertilization. We conclude that exposure to very low concentrations of organophosphate pesticides during development cause abnormalities in behavior and brain size. Copyright © 2015 Elsevier Inc. All rights reserved.
Tertiary Oximes on Brain Acetylcholinesterase and Central Excitatory Effects of Nerve Agents
2012-01-01
5 test doses of the oxime. Animals were euthanized 45 min after oxime treatment when blood and target tissues were collected. AChE activity was...the ability of MINA and DHAP to block or terminate nerve agent-induced electroencephalographic (EEG) seizure activity was evaluated. Animals...instrumented to record brain EEG activity were challenged with a seizure-inducing dose (2.0 x LD50) of GB, GF, or VX, and oxime was administered one min
Prosopis cineraria: a potential nootropic agent.
Bithu, Bhawani Singh; Reddy, N Ranga; Prasad, Satyendra K; Sairam, Krishnamurthy; Hemalatha, S
2012-10-01
Prosopis cineraria (L.) Druce (Leguminosae), a plant of the Thar Desert of India and Pakistan is used traditionally by local people for the treatment of memory disorders and to arrest wandering of the mind. The study includes scientific validation of P. cineraria for nootropic activity. To elucidate the possible mechanism, the anticholinesterase activity was also investigated in different parts of the brain. Methanol extract of P. cineraria stem bark (200, 400 and 600 mg/kg body weight p.o.) was administered once in a day for 7 days to rats and these rats were then subjected to Morris water-maze (MWM) test for spatial reference memory (SRM) and spatial working memory (SWM) versions of memory testing. The inhibitory effect of the extract on acetylcholinesterase (AChE) in discrete rat brain regions (prefrontal cortex [PFC], hippocampus [HIP] and amygdala [AMY]) was also investigated using acetyl thiocholine iodide and dithiobisnitrobenzoic acid reagent. The oral administrations of methanol extract of P. cineraria in all doses tested, significantly (p < 0.05) improved both spatial reference and working memories in the MWM test in terms of decrease in escape latency during SRM and increase in time spent in the target quadrant during SWM probe trial. A ceiling effect was observed at 400 mg/kg. Pre-treatment for 7 days significantly inhibited the activity of AChE in the HIP, PFC and AMY. The extract exerted significant nootropic activity in the MWM test which may be attributed to the inhibition of brain AChE.
Abdel Moneim, Ahmed E
2012-09-01
Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Bin; Duysen, Ellen G.; Poluektova, Larisa Y.
2006-07-15
Organophosphorus esters (OP) are highly toxic chemicals used as pesticides and nerve agents. Their acute toxicity is attributed to inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) in nerve synapses. Our goal was to find a new therapeutic for protection against OP toxicity. We used a gene therapy vector, adeno-associated virus serotype 2 (AAV-2), to deliver murine AChE to AChE-/- mice that have no endogenous AChE activity. The vector encoded the most abundant form of AChE: exons 2, 3, 4, and 6. Two-day old animals, with an immature immune system, were injected. AChE delivered intravenously was expressed up to 5 months inmore » plasma, liver, heart, and lung, at 5-15% of the level in untreated wild-type mice. A few mice formed antibodies, but antibodies did not block AChE activity. The plasma AChE was a mixture of dimers and tetramers. AChE delivered intramuscularly had 40-fold higher activity levels than in wild-type muscle. None of the AChE was collagen-tailed. No retrograde transport through the motor neurons to the central nervous system was detected. AChE delivered intrastriatally assembled into tetramers. In brain, the AAV-2 vector transduced neurons, but not astrocytes and microglia. Vector-treated AChE-/- mice lived longer than saline-treated controls. AChE-/- mice were protected from diisopropylfluorophosphate-induced respiratory failure when the vector was delivered intravenously, but not intrastriatally. Since vector-treated animals had no AChE activity in diaphragm muscle, protection from respiratory failure came from AChE in other tissues. We conclude that AChE scavenged OP and in this way protected the activity of butyrylcholinesterase (BChE, EC 3.1.1.8) in motor endplates.« less
Methylmercury-cholinesterase interactions in rats.
Hastings, F L; Lucier, G W; Klein, R
1975-01-01
The interaction of methylmercury hydroxide (MMH) and cholinesterases was studied in male and female rats. MMH administered subcutaneously in doses of 10 mg/kg for 2 days reduced the level of plasma cholinesterase (ButChE) by 68% in females and 47% in males while brain acetylcholinesterase (AChE) was unaffected. Normal females had higher but more variable ButChE levels than normal males. In a time-course experiment, a single dose of MMH (10 mg/kg) reduced ButChE levels when mercury levels reached 22 mug/ml in the blood. A 10% reduction in brain AChE was observed at 72 hours; however, mercury reached a concentration of only 2.0 mug/g in brain tissue. The determination of the Michaelis constant Km and maximum velocity value Vmax for butyrylcholine and ButChE in control and MMH-treated (1 mg/kg) animals indicated that MMH reduced Vmax only. Since no loss in ButChE activity occurred when MMH and control plasma were incubated in vitro, MMH is not a direct inhibitor of ButChE. Because only the inactive monomeric form of ButChE contains free sulfhydryl groups, it is postulated that MMH combines covalently with the sulfur, preventing formation of active enzyme. By analogy, it is believed this is also the case with AChE. PMID:1227853
Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.
Hamed, Sherifa A
2017-04-01
Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.
Ribeiro, Vera Lucia Sardá; Vanzella, Cláudia; Moysés, Felipe dos Santos; Santos, Jaqueline Campiol Dos; Martins, João Ricardo Souza; von Poser, Gilsane Lino; Siqueira, Ionara Rodrigues
2012-10-26
Acetylcholinesterase (AChE), an enzyme that hydrolyses acetylcholine (ACh) at cholinergic synapses, is a target for pesticides and its inhibition by organophosphates leads to paralysis and death of arthropods. It has been demonstrated that the n-hexane extract of Calea serrata had acaricidal activity against larvae of Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus. The aim of the present study was to understand the mechanism of the acaricidal action of C. serrata n-hexane extract are specifically to investigate the in vitro anticholinesterase activity on larvae of R. microplus and in brain structures of male Wistar rats. The n-hexane extract significantly inhibited in vitro acetylcholinesterase activity in R. microplus larvae and rat brain structures. The results confirm that inhibition of acetylcholinesterase is a possible mechanism of action of hexane extract at C. serrata. Copyright © 2012 Elsevier B.V. All rights reserved.
Hemanth Kumar, Boyina; Arun Reddy, Ravula; Mahesh Kumar, Jerald; Dinesh Kumar, B; Diwan, Prakash V
2017-01-01
This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.
Lim, M M; Hammock, E A D; Young, L J
2004-02-01
Receptor autoradiography using selective radiolabeled ligands allows visualization of brain receptor distribution and density on film. The resolution of specific brain regions on the film often can be difficult to discern owing to the general spread of the radioactive label and the lack of neuroanatomical landmarks on film. Receptor binding is a chemically harsh protocol that can render the tissue virtually unstainable by Nissl and other conventional stains used to delineate neuroanatomical boundaries of brain regions. We describe a method for acetylcholinesterase (AChE) staining of slides previously processed for receptor binding. AChE staining is a useful tool for delineating major brain nuclei and tracts. AChE staining on sections that have been processed for receptor autoradiography provides a direct comparison of brain regions for more precise neuroanatomical description. We report a detailed thiocholine protocol that is a modification of the Koelle-Friedenwald method to amplify the AChE signal in brain sections previously processed for autoradiography. We also describe several temporal and experimental factors that can affect the density and clarity of the AChE signal when using this protocol.
Soybean supplementation helps reverse age- and scopolamine-induced memory deficits in mice.
Bansal, Nitin; Parle, Milind
2010-12-01
Phytoestrogens are nonsteroidal plant compounds that are able to exert estrogenic effects. Soybean is a rich source of phytoestrogens, especially isoflavones. Soy isoflavones are utilized for estrogen replacement therapy. Estrogen is reported to influence several areas of brain that are involved in cognition and behavior. Therefore, the present study was undertaken to examine whether dietary supplementation with soybean improves the cognitive function of mice. Soybean was administered in three different concentrations (2%, 5% and 10% [wt/wt]) in the normal diet to young and mature mice for 60 successive days. The passive avoidance paradigm and the elevated plus maze served as the exteroceptive behavioral models, whereas scopolamine (1.4 mg/kg, i.p.) served as the interoceptive behavioral model. The brain acetylcholinesterase activity (AChE) activity, brain thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH), and total blood cholesterol levels were also measured in the present study. The administration of soybean for 60 consecutive days protected (P < .05) the animals from developing memory impairment. Soybean administration also resulted in diminished brain AChE activity, decrease in brain TBARS, and increase in GSH levels, thereby indicating facilitated cholinergic transmission, reduced free radical generation, and enhanced scavenging of free radicals. Thus, soybean appears to be a useful remedy for improving memory and for the management of cognitive deficits owing to its pro-estrogenic, antioxidant, procholinergic, and/or neuroprotective properties.
Wijeyaratne, W M D N; Pathiratne, Asoka
2006-10-01
The present study was aimed at applying condition factor (CF), brain acetylcholinesterase (AChE) and gill histology as biomarkers for detecting possible exposure/effect induced by pesticides in fish residing rice field associated waterbodies in Sri Lanka. Biomarkers of an indigenous fish, Rasbora caverii collected from five sampling sites including canals near rice fields, a river and a reservoir (the reference site) were evaluated at four sampling stages covering pesticide application periods during rice cultivation season in 2004. Results indicated that CF of the fish did not show significant alterations regardless of the sampling sites or sampling stages. Site specific differences in AChE activities of the fish were not evident either prior to application of pesticides or at 7 days after Paraquat application to the rice fields. Two days after the application of a mixture of Fenthion and Phenthoate to the rice fields, AChE activity of the fish collected from canals near rice fields was significantly depressed (65-75%) compared to the fish in the reference site. The activities remain depressed to 50-56% even at 65 days after the insecticides application. Laboratory studies showed that prior exposure of R. caverii to Paraquat (2 microg l(-1), 7 days) enhanced the extent of inhibition of brain AChE activity induced by Fenthion (3 microg l(-1)) or a mixture of Fenthion (3 microg l(-1)) and Phenthoate (5 microg l(-1)). Gills of fish collected from canals near rice fields exhibited abnormal multiple divisions at the tips of some secondary lamellae in addition to hyperplasia, hypertrophy and club shaped deformities. Results indicate that application of pesticides in rice culture could manifest a threat to native fish populations residing rice field associated waterbodies. The response of brain AChE and histological changes in the gills of R. caverii allowed differentiating sampling sites after insecticide applications to the rice fields. Hence, R. caverii may be considered as a surrogate species in ecotoxicological risk evaluation of agrochemicals in the region.
Ziani, Paola R; Müller, Talise E; Stefanello, Flavia V; Fontana, Barbara D; Duarte, Tâmie; Canzian, Julia; Rosemberg, Denis B
2018-07-01
Nicotine is an alkaloid with positive effects on learning and memory processes. Exposure to conspecific alarm substance (CAS) elicits fear responses in zebrafish, but the effects of nicotine on aversive behaviors and associative learning in this species remain unclear. Here, we evaluated whether nicotine enhances contextual fear responses in zebrafish and investigated a putative involvement of brain acetylcholinesterase (AChE) in associative learning. Fish were exposed to 1 mg/L nicotine for 3 min and then kept in non-chlorinated water for 20 min. Later, animals were transferred to experimental tanks in the absence or presence of 3.5 mL/L CAS for 5 min (training session). After 24 h, fish were tested in tanks with similar or altered context in the absence of CAS (post-training session) and brain AChE activity was further assessed. At training, CAS increased freezing, erratic movements, and decreased the time spent in top area, while nicotine abolished the effects of CAS on erratic movements. Nicotine/CAS group tested in a similar context showed exacerbated freezing and reduced transitions to top area. Moreover, a decrease in distance traveled was observed in control, nicotine, and nicotine/CAS groups at post-training. Nicotine also stimulated brain AChE activity in CAS-exposed animals reintroduced in tanks with similar context. Although freezing bouts and time spent in top could serve as behavioral endpoints that reflect CAS-induced sensitization, the effects of nicotine occurred in a context-dependent manner. Collectively, our data suggest an involvement of cholinergic signaling in aversive learning, reinforcing the growing utility of zebrafish models to explore the neurobehavioral effects of nicotine in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Chun-Yan; Zheng, Wei; Wang, Tao; Xie, Jing-Wei; Wang, Si-Ling; Zhao, Bao-Lu; Teng, Wei-Ping; Wang, Zhan-You
2011-04-01
Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1 double-transgenic mice for 4 months. We observed an increase in ADAM10 and a decrease in BACE1 and APP695 protein levels and, subsequently, a reduction in Aβ levels and Aβ burden were present in HupA-treated mouse brain, suggesting that HupA enhances the nonamyloidogenic APP cleavage pathway. Importantly, our results further showed that HupA inhibited GSK3α/β activity, and enhanced the β-catenin level in the transgenic mouse brain and in SH-SY5Y cells overexpressing Swedish mutation APP, suggesting that the neuroprotective effect of HupA is not related simply to its AChE inhibition and antioxidation, but also involves other mechanisms, including targeting of the Wnt/β-catenin signaling pathway in AD brain.
Wang, Chun-Yan; Zheng, Wei; Wang, Tao; Xie, Jing-Wei; Wang, Si-Ling; Zhao, Bao-Lu; Teng, Wei-Ping; Wang, Zhan-You
2011-01-01
Huperzine A (HupA) is a reversible and selective inhibitor of acetylcholinesterase (AChE), and it has multiple targets when used for Alzheimer's disease (AD) therapy. In this study, we searched for new mechanisms by which HupA could activate Wnt signaling and reduce amyloidosis in AD brain. A nasal gel containing HupA was prepared. No obvious toxicity of intranasal administration of HupA was found in mice. HupA was administered intranasally to β-amyloid (Aβ) precursor protein and presenilin-1 double-transgenic mice for 4 months. We observed an increase in ADAM10 and a decrease in BACE1 and APP695 protein levels and, subsequently, a reduction in Aβ levels and Aβ burden were present in HupA-treated mouse brain, suggesting that HupA enhances the nonamyloidogenic APP cleavage pathway. Importantly, our results further showed that HupA inhibited GSK3α/β activity, and enhanced the β-catenin level in the transgenic mouse brain and in SH-SY5Y cells overexpressing Swedish mutation APP, suggesting that the neuroprotective effect of HupA is not related simply to its AChE inhibition and antioxidation, but also involves other mechanisms, including targeting of the Wnt/β-catenin signaling pathway in AD brain. PMID:21289607
Obajuluwa, Adejoke Olukayode; Akinyemi, Ayodele Jacob; Afolabi, Olakunle Bamikole; Adekoya, Khalid; Sanya, Joseph Olurotimi; Ishola, Azeez Olakunle
2017-01-01
Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs) and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF) exposure on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure), group 2-4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage.
Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal
2013-03-01
The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.
Can Salivary Acetylcholinesterase be a Diagnostic Biomarker for Alzheimer?
Bakhtiari, Sedigheh; Moghadam, Nahid Beladi; Ehsani, Marjan; Mortazavi, Hamed; Sabour, Siamak; Bakhshi, Mahin
2017-01-01
The loss of brain cholinergic activity is a key phenomenon in the biochemistry of Alzheimer's Disease (AD). Due to the specific biosynthesis of Acetylcholinesterase (AChE) of cholinergic neurons, the enzyme has been proposed as a potential biochemical marker of cholinergic activity. AChE is expressed not only in the Central Nervous System (CNS), Peripheral Nervous System (PNS) and muscles, but also on the surface of blood cells and saliva. This study aimed to measure salivary AChE activity in AD and to determine the feasibility of creating a simple laboratory test for diagnosing such patients. In this cross-sectional study, the recorded data were obtained from 15 Alzheimer's patients on memantine therapy and 15 healthy subjects. Unstimulated whole saliva samples were collected from the participants and salivary levels of AChE activity were determined by using the Ellman colorimetric method. The Mann Whitney U test was used to compare the average (median) of AChE activity between AD and controls. In order to adjust for possible confounding factors, partial correlation coefficient and multivariate linear regressions were used. Although the average of AChE activity in the saliva of people with AD was lower compared to the control group, we found no statistically significant differences using Mann Whitney U test (138 in control group vs. 175 in Alzheimer's patients, p value=0.25). Additionally, no significant differences were observed in the activity of this enzyme in both sexes or with increased age or duration of the disease. After adjusting for age and gender, there was no association between AChE activity and AD (regression coefficient β=0.08; p value= 0.67). Saliva AChE activity was not significantly associated with AD. This study might help in introduce a new diagnostic aid for AD or monitor patients with AD.
Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.
Lombardo, Sylvia; Maskos, Uwe
2015-09-01
Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xenobiotic Kinetics and Toxicity among Fish and Mammals
1992-02-29
infusion studies similar to those described in the previous progress report for rat have been initiated. Due to its limited water solubility and lesser...potency in fish than rat, a solubilizing agent is needed and we have determined that 5% polysorbate 80 in water can be administered to fish without...affecting acetylcholinesterase (ACHE) activity. We have infused three fish and measured AChE activity in brain, heart, and jaw muscle after the fish
Molecular Targets for Organophosphates in the Central Nervous System
2006-04-01
above and cholinesterase activity was measured in the supernatants after 0, 15, 30 and 60 min= exposure to PB (100 nM). Drugs and biological...a quaternary carbamate that does not cross the blood brain barrier (BBB) appreciably and inhibits reversibly AChE and BuChE with similar potencies... activity could be maintained by ACh released from cholinergic neurons in our culture. In the continuous presence of atropine, exposure of the neurons to
Martini, Franciele; Bruning, César Augusto; Soares, Suelen Mendonca; Nogueira, Cristina Wayne; Zeni, Gilson
2015-01-01
Ebselen is a synthetic organoselenium compound that has been considered a potential pharmacological agent with low toxicity, showing antioxidant, anti-inflammatory and neuroprotective effects. It is bioavailable, blood-brain barrier permeant and safe based on cellular toxicity and Phase I-III clinical trials. There is evidence that ebselen inhibits acetylcholinesterase (AChE) activity, an enzyme that plays a key role in the cholinergic system by hydrolyzing acetylcholine (ACh), in vitro and ex vivo. This system has a well-known relationship with cognitive process, and AChE inhibitors, such as donepezil and galantamine, have been used to treat cognitive deficits, mainly in the Alzheimer's Disease (AD). However, these drugs have poor bioavailability and a number of side effects, including gastrointestinal upsets and hepatotoxicity. In this way, this study aimed to evaluate the effect of ebselen on cerebral AChE activity in vitro and to determine the kinetic profile and the reversibility of inhibition by dialysis. Ebselen inhibited the cerebral AChE activity with an IC50 of 29 µM, similar to IC50 found with pure AChE from electric eel, demonstrating a mixed and reversible inhibition of AChE, since it increased Km and decreased Vmax. The AChE activity was recovered within 60 min of dialysis. Therefore, the use of ebselen as a therapeutic agent for treatment of AD should be considered, although memory behavior tasks are needed to support such hypothesis.
Clinical importance of the anterior choroidal artery: a review of the literature.
Yu, Jing; Xu, Ning; Zhao, Ying; Yu, Jinlu
2018-01-01
The anterior choroidal artery (AChA) is a critical artery in brain physiology and function. The AChA is involved in many diseases, including aneurysm, brain infarct, Moyamoya disease (MMD), brain tumor, arteriovenous malformation (AVM), etc. The AChA is vulnerable to damage during the treatment of these diseases and is thus a very important vessel. However, a comprehensive systematic review of the importance of the AChA is currently lacking. In this study, we used the PUBMED database to perform a literature review of the AChA to increase our understanding of its role in neurophysiology. Although the AChA is a small thin artery, it supplies an extremely important region of the brain. The AChA consists of cisternal and plexal segments, and the point of entry into the choroidal plexus is known as the plexal point. During treatment for aneurysms, tumors, AVM or AVF, the AChA cisternal segments should be preserved as a pathway to prevent the infarction of the AChA target region in the brain. In MMD, a dilated AChA provides collateral flow for posterior circulation. In brain infarcts, rapid treatment is necessary to prevent brain damage. In Parkinson disease (PD), the role of the AChA is unclear. In trauma, the AChA can tear and result in intracranial hematoma. In addition, both chronic and non-chronic branch vessel occlusions in the AChA are clinically silent and should not deter aneurysm treatment with flow diversion. Based on the data available, the AChA is a highly essential vessel.
Effect of vitamin D3 on behavioural and biochemical parameters in diabetes type 1-induced rats.
Calgaroto, Nicéia Spanholi; Thomé, Gustavo Roberto; da Costa, Pauline; Baldissareli, Jucimara; Hussein, Fátima Abdala; Schmatz, Roberta; Rubin, Maribel A; Signor, Cristiane; Ribeiro, Daniela Aymone; Carvalho, Fabiano Barbosa; de Oliveira, Lizielle Souza; Pereira, Luciane Belmonte; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina
2014-08-01
Diabetes is associated with long-term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3 ) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)-induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na(+) K(+) -adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ-ALA-D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ-induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3 , control/Metf + VD3 , diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3 . Thirty days after treatment, animals were submitted to contextual fear-conditioning and open-field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ-ALA-D and Na(+) K(+) -ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na(+) K(+) -ATPase was reverted when compared with non-treated rats, but the increase in δ-ALA-D activity was not. VD3 prevented diabetes-induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na(+) K(+) -ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.
Rajesh, Ramanna V; Layer, Paul G; Boopathy, Rathanam
2009-01-01
Investigation of the non-classical functions of cholinesterases (ChEs) has been the subject of interest in the past three decades. One of which is aryl acylamidase (AAA) activity associated with ChEs, but characterized in in vitro, as an enzyme, splitting the artificial substrate o-nitroacetanilide with unknown physiological function. In the present study, we have compared levels of AAA activity of AChE from different sources like goat brain, electric eel organ and from venoms of different snakes. Remarkably cobra venom showed the highest AAA activity and also high AAA/AChE ratio. Both serotonergenic and cholinergic inhibitors inhibited the cobra venom AAA activity in a concentration dependent manner, which also underlines the association of AAA with AChE of cobra venom. The study becomes interesting because of i) the cobra venom AChE exists in monomeric globular forms; ii) in Alzheimer's disease too the most abundant forms of cholinesterases are monomeric globular forms, thought to be involved in the pathogenesis of Alzheimer's disease; iii) the effect of Alzheimer's disease drugs on the AAA activity of cobra venom, indicated that AAA activity of cobra venom was more sensitive than AChE and iv) Huperzine and Tacrine showed more pronounced effect on AAA. Thus, this study elucidates the high AAA associated with cobra venom AChE may serve as one of the prominent activity to test the pharmacological effect of AD drugs, as other sources were found to have lower activity.
Moreira, Eduardo Luiz Gasnhar; de Oliveira, Jade; Nunes, Jean Costa; Santos, Danúbia Bonfanti; Nunes, Fernanda Costa; Vieira, Daniella Serafim Couto; Ribeiro-do-Valle, Rosa Maria; Pamplona, Fabrício Alano; de Bem, Andreza Fabro; Farina, Marcelo; Walz, Roger; Prediger, Rui Daniel
2012-01-01
There is increasing evidence that hypercholesterolemia during midlife may represent a predictor of subsequent mild cognitive impairments and dementia decades later. However, the exact mechanism underlying this phenomenon remains unknown since plasmatic cholesterol is not able to cross the blood-brain barrier. In the present study, we evaluated the hypothesis that cognitive impairments triggered by hypercholesterolemia during aging may be related to brain oxidative stress and altered brain acetylcholinesterase (AChE) activity. We also performed a neuropathological investigation in order to analyze whether the cognitive impairments may be associated with stroke-related features. To address these questions we used three- and fourteen-month-old low-density lipoprotein receptor-deficient mice (LDLr-/-). The current findings provide new evidence that aged LDLr-/- mice, exposed to over three-fold cholesterol levels from early life, show working, spatial reference, and procedural memory impairments, without alterations in motor function. Antioxidant imbalance and oxidative damage were evidenced by a marked increase in lipid peroxidation (thiobarbituric acid reactive substances levels) and glutathione metabolism (increase in glutathione levels, glutathione reductase, and glutathione peroxidase activities) together with a significant increase in the AChE activity in the prefrontal cortex of aged hypercholesterolemic LDLr-/- mice. Notably, hypercholesterolemia was not related to brain infarcts and neurodegeneration in mice, independent of their age. These observations provide new evidence that hypercholesterolemia during aging triggers cognitive impairments on different types of learning and memory, accompanied by antioxidant imbalance, oxidative damage, and alterations of cholinergic signaling in brain areas associated with learning and memory processes, particularly in the prefrontal cortex.
Araújo, Marlyete Chagas de; Assis, Caio Rodrigo Dias; Silva, Luciano Clemente; Machado, Dijanah Cota; Silva, Kaline Catiely Campos; Lima, Ana Vitória Araújo; Carvalho, Luiz Bezerra; Bezerra, Ranilson de Souza; Oliveira, Maria Betânia Melo de
2016-08-01
This contribution aimed to characterize physicochemical and kinetic parameters of the brain cholinesterases (ChEs) from Parachromis managuensis and investigate the in vitro effects of pesticides and metal ions on its activity intending to propose as biomarker. This species is suitable for this investigation because (1) it was recently introduced in Brazil becoming invasive (no restrictions on capture) and (2) occupies the top of the food chain (being subject to bioaccumulation). The enzyme extract was exposed to 10 metal ions (Al(3+), Ba(2+), Cd(2+), Cu(2+), Hg(2+), Mg(2+), Mn(2+), Pb(2+), Fe(2+) and Zn(2+)) and ChEs selective inhibitors (BW284c51, Iso-OMPA, neostigmine and serine). The extract was also incubated with organophosphate (dichlorvos) and carbamate pesticides (carbaryl and carbofuran). Inhibition parameters (IC20, IC50 and ki) were determined. Selective inhibitors and kinetic parameters confirmed acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) -like as responsible for the ChE activities, most AChE. The IC50 values for pesticides were: 1.68μM (dichlorvos); 4.35μM (carbaryl) and 0.28μM (carbofuran). Most of the analyzed ions did not show significant effect at 1mM (p=0.05), whereas the following ions inhibited the enzyme activity in the order: Hg(2+)>Cu(2+)>Cd(2+)>Zn(2+). Mercury ion strongly inhibited the enzyme activity (IC20=0.7μM). The results about allow to conclude that P. managuensis brain AChE is a potential biomarker for heavy metals and pesticides under study, mainly for the carbamate carbofuran once it was capable to detect 6-fold lower levels than the limit concentration internationally recommended. Copyright © 2016 Elsevier B.V. All rights reserved.
Sharma, Shelly; Singh, Partap Bir; Chadha, Pooja; Saini, Harvinder Singh
2017-01-01
The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains. The study indicated that even the lowermost concentrations of CPF, 19 and 76 mg/kg of soil found in the Amritsar and Bathinda regions respectively can significantly inhibit the AChE activity in rat brain within 24 h of its treatment. This represents the antagonistic effect of CPF on AChE which is a prime neurotransmitter present in all living beings including humans. In light of this, an attempt was made to remediate the polluted soil, a major reservoir of CPF, using Pseudomonas sp. (ChlD), an indigenous bacterial isolate. The culture efficiently degraded 10 to 100 mg/kg chlorpyrifos supplemented in the soil and utilized it as sole source of carbon and energy for its growth. Thus, this study provides a detailed insight regarding the level of CPF pollution in Punjab, its detrimental effects on mammals and bio-based solution to remediate the sites polluted with CPF.
Oriel, Sarit; Kofman, Ora
2015-01-01
Following reports of emotional psychopathology in children and adults exposed to organophosphates, the effects of postnatal chlorpyrifos (CPF) on fear-conditioning and depression-like behaviors were tested in adult mice. Concomitant changes in expression of mRNA for synaptic and soluble splice variants of acetylcholinesterase (AChE) were examined in mouse pups and adults of the Balb/C and C57Bl/6 (B6) strains, which differ in their behavioral and hormonal stress response. Mice were injected subcutaneously with 1 mg/kg CPF on postnatal days 4–10 and tested as adults for conditioned fear, sucrose preference, and forced swim. Acetylcholinesterase activity was assessed in the brains of pups on the first and last day of treatment. Expression of soluble and synaptic AChE mRNA was assessed in brains of treated pups and fear-conditioned adults using real-time PCR. Adult Balb/C mice exposed postnatally to CPF showed exacerbated fear-conditioning and impaired active avoidance. Adult B6 mice exposed postnatally to CPF showed a more specific fear response to tones and less freezing in the inter-tone intervals, in contrast to the vehicle-pretreated mice. Chlorpyrifos also attenuated sweet preference and enhanced climbing in the forced swim test. Chlorpyrifos-treated mice had increased expression of both synaptic and readthrough AChE transcripts in the hippocampus of Balb/C mice and decreased expression in the amygdala following fear-conditioning. In conclusion, postnatal CPF had long-term effects on fear and depression, as well as on expression of AChE mRNA. These changes may be related to alteration in the interaction between hippocampus and amygdala in regulating negative emotions. PMID:25972795
Schmidel, Ademir J; Assmann, Karla L; Werlang, Chariane C; Bertoncello, Kanandra T; Francescon, Francini; Rambo, Cassiano L; Beltrame, Gabriela M; Calegari, Daiane; Batista, Cibele B; Blaser, Rachel E; Roman Júnior, Walter A; Conterato, Greicy M M; Piato, Angelo L; Zanatta, Leila; Magro, Jacir Dal; Rosemberg, Denis B
2014-01-01
Animal behaviour is the interaction between environment and an individual organism, which also can be influenced by its neighbours. Variations in environmental conditions, as those caused by contaminants, may lead to neurochemical impairments altering the pattern of the behavioural repertoire of the species. Atrazine (ATZ) is an herbicide widely used in agriculture that is frequently detected in surface water, affecting non-target species. The zebrafish is a valuable model organism to assess behavioural and neurochemical effects of different contaminants since it presents a robust behavioural repertoire and also all major neurotransmitter systems described for mammalian species. The goal of this study was to evaluate the effects of subchronic ATZ exposure in defensive behaviours of zebrafish (shoaling, thigmotaxis, and depth preference) using the split depth tank. Furthermore, to investigate a putative role of cholinergic signalling on ATZ-mediated effects, we tested whether this herbicide alters acetylcholinesterase (AChE) activity in brain and muscle preparations. Fish were exposed to ATZ for 14days and the following groups were tested: control (0.2% acetone) and ATZ (10 and 1000μg/L). The behaviour of four animals in the same tank was recorded for 6min and biological samples were prepared. Our results showed that 1000μg/L ATZ significantly increased the inter-fish distance, as well as the nearest and farthest neighbour distances. This group also presented an increase in the shoal area with decreased social interaction. No significant differences were detected for the number of animals in the shallow area, latency to enter the shallow and time spent in shallow and deep areas of the apparatus, but the ATZ 1000 group spent significantly more time near the walls. Although ATZ did not affect muscular AChE, it significantly reduced AChE activity in brain. Exposure to 10μg/L ATZ did not affect behaviour or AChE activity. These data suggest that ATZ impairs defensive behaviours of zebrafish, which could be related to its action on brain cholinergic neurotransmission. Moreover, the use of the split depth tank could be an alternative strategy to assess group behaviour and depth preference after exposure to chemical compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Baldissera, Matheus D; Souza, Carine F; Zeppenfeld, Carla Cristina; Descovi, Sharine N; Moreira, Karen Luise S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; da Silva, Aleksandro S; Baldisserotto, Bernardo
2018-06-01
It is known that the cytotoxic effects of aflatoxin B 1 (AFB 1 ) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB 1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB 1 -contaminated diet (1177 ppb kg feed -1 ) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB 1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB 1 , while activity of the sodium-potassium pump (Na + , K + -ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB 1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na + , K + -ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB 1 intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreira, Estefania G.; Department of Physiological Sciences, State University of Londrina, Londrina, PR; Yu Xiaozhong
2010-06-15
Considering the wide variety of effects that have been reported to occur in the developmental neurotoxicity of chlorpyrifos (CP) and the lack of consensus on their dependence of brain acetylcholinesterase (AChE) activity inhibition, we applied microarray technology to explore dose-dependent alterations in transcriptional response in the fetal and maternal C57BL/6 mouse brain after daily gestational exposure (days 6 to 17) to CP (2, 4, 10, 12 or 15 mg/kg, sc). We identified significantly altered genes across doses and assessed for overrepresentation of Gene Ontology (GO) biological processes and KEGG pathways. We further clustered genes based on their expression profiles acrossmore » doses and repeated the GO/pathways analysis for each cluster. The dose-effect relationship of CP on gene expression, both at the gene and pathway levels was non-monotonic and not necessarily related to brain AChE inhibition. The largest impact was observed in the 10 mg/kg dose group which was also the LOAEL for brain AChE inhibition. In the maternal brain, lower doses (4 mg/kg) influenced GO categories and pathways such as cell adhesion, behavior, lipid metabolism, long-term potentiation, nervous system development, neurogenesis, synaptic transmission. In the fetal brain, lower doses (2 and/or 4 mg/kg) significantly altered cell division, translation, transmission of nerve impulse, chromatin modification, long-term potentiation. In addition, some genes involved in nervous system development and signaling were shown to be specifically influenced by these lower CP doses. Our approach was sensitive and reflected the diversity of responses known to be disrupted by CP and highlighted possible additional consequences of CP neurotoxicity, such as disturbance of the ubiquitin proteasome system.« less
Different glycosylation in acetylcholinesterases from mammalian brain and erythrocytes.
Liao, J; Heider, H; Sun, M C; Brodbeck, U
1992-04-01
Acetylcholinesterases (EC 3.1.1.7, AChE) have varying amounts of carbohydrates attached to the core protein. Sequence analysis of the known primary structures gives evidence for several asparagine-linked carbohydrates. From the differences in molecular mass determined on sodium dodecyl sulfate-polyacrylamide gel before and after deglycosylation with N-glycosidase F (EC 3.2.2.18), it is seen that dimeric AChE from red cell membranes is more heavily glycosylated than the tetrameric brain enzyme. Furthermore, dimeric and tetrameric forms of bovine AChE are more heavily glycosylated than the corresponding human enzymes. Monoclonal antibodies 2E6, 1H11, and 2G8 raised against detergent-soluble AChE from electric organs of Torpedo nacline timilei as well as Elec-39 raised against AChE from Electrophorus electricus cross-reacted with AChE from bovine and human brain but not with AChE from erythrocytes. Treatment of the enzyme with N-glycosidase F abolished binding of monoclonal antibodies, suggesting that the epitope, or part of it, consists of N-linked carbohydrates. Analysis of N-acetylglucosamine sugars revealed the presence of N-acetylglucosamine in all forms of cholinesterases investigated, giving evidence for N-linked glycosylation. On the other hand, N-acetylgalactosamine was not found in AChE from human and bovine brain or in butyrylcholinesterase (EC 3.1.1.8) from human serum, indicating that these forms of cholinesterase did not contain O-linked carbohydrates. Despite the notion that within one species, the different forms of AChE arise from one gene by different splicing, our present results show that dimeric erythrocyte and tetrameric brain AChE must undergo different postsynthetic modifications leading to differences in their glycosylation patterns.
Boyle, N A; Talesa, V; Giovannini, E; Rosi, G; Norton, S J
1997-09-12
Fourteen alkyl and aryl thiocarbonate derivatives of choline were synthesized and studied as potential inhibitors of acetylcholinesterase (AChE). Twelve of the compounds inhibited AChEs derived from calf forebrain, human red blood cells, and octopus brain ranging from low to moderately high inhibition potency. The concentration of each inhibitory compound giving 50% inhibition of enzyme activity (IC50 values, which ranged from 1 x 10(-2) to 8 x 10(-7) M) was determined and is reported; inhibitor constants (Ki values) for the most inhibitory compounds, (1-pentylthiocarbonyl)choline chloride and (1-heptylthiocarbonyl)choline chloride, were calculated from kinetic data and are also reported. The inhibitors are competitive with substrate, and they are not hydrolyzed by the AChE activities. Certain of these new compounds may provide direction for the development of new drugs that have anticholinesterase activity and may be used for the treatment of Alzheimer's disease.
Guo, Li-li; Guan, Zhi-zhong; Wang, Yong-lin
2011-01-01
Aim: To examine the protective effects of scutellarin (Scu) on rats with learning and memory deficit induced by β-amyloid peptide (Aβ). Methods: Fifty male Wistar rats were randomly divided into 5 groups: control, sham operation, Aβ, Aβ+Scu, and Aβ+piracetam groups. Aβ25–35 was injected into the lateral ventricle (10 μg each side). Scu (10 mg/2 mL) or piracetam (10 mg/2 mL was intragastrically administered per day for 20 consecutive days following Aβ treatment. Learning and memory was assessed with Morris water maze test. The protein and mRNA levels of nicotinic acetylcholine receptor (nAChR) α4, α7, and β2 subunits in the brain were examined using Western blotting and real-time PCR, respectively. The activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain and plasma were measured using Ellman's colorimetric method. Results: In Aβ group, the escape latency period and first platform cross was significantly increased, and the total number of platform crossings was significantly decreased, as compared with the control and the sham operation groups. Both Scu and piracetam treatment significantly reduced the escape latency period and time to cross platform, and increased the number of platform crosses, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. In Aβ group, the protein levels of nAChR α4 and α7 subunits in the cerebral cortex were significantly decreased by 42%–47% and 58%–61%, respectively, as compared to the control and the sham operation groups. Scu treatment caused upregulation of α4 and α7 subunit proteins by around 24% and 30%, respectively, as compared to Aβ group, but there were no significant differences between Aβ+Scu and Aβ+piracetam groups. The protein level of nAChR β2 subunit had no significant difference among different groups. The mRNA levels of nAChR α4, α7, and β2 subunits were not significantly changed. In Aβ group, the activities of AChE and BuChE in the brain were significantly increased, but were significantly decreased in the plasma, as compared to the control and the sham operation groups. Scu or piracetam treatment restored the activities in brain and plasma nearly to the levels in the control group. Conclusion: The results suggest that Scu may rescue some of the deleterious effects of Aβ, possibly by stimulating nAChR protein translation and regulating cholinesterase activity. PMID:21986571
McHardy, Stanton F; Wang, Hua-Yu Leo; McCowen, Shelby V; Valdez, Matthew C
2017-04-01
Acetylcholinesterase (AChE) is the major enzyme that hydrolyzes acetylcholine, a key neurotransmitter for synaptic transmission, into acetic acid and choline. Mild inhibition of AChE has been shown to have therapeutic relevance in Alzheimer's disease (AD), myasthenia gravis, and glaucoma among others. In contrast, strong inhibition of AChE can lead to cholinergic poisoning. To combat this, AChE reactivators have to be developed to remove the offending AChE inhibitor, restoring acetylcholine levels to normal. Areas covered: This article covers recent advances in the development of acetylcholinesterase modulators, including both inhibitors of acetylcholinesterase for the efforts in development of new chemical entities for treatment of AD, as well as re-activators for resurrection of organophosphate bound acetylcholinesterase. Expert opinion: Over the past three years, research efforts have continued to identify novel small molecules as AChE inhibitors for both CNS and peripheral diseases. The more recent patent activity has focused on three AChE ligand design areas: derivatives of known AChE ligands, natural product based scaffolds and multifunctional ligands, all of which have produced some unique chemical matter with AChE inhibition activities in the mid picomolar to low micromolar ranges. New AChE inhibitors with polypharmacology or dual inhibitory activity have also emerged as highlighted by new AChE inhibitors with dual activity at L-type calcium channels, GSK-3, BACE1 and H3, although most only show low micromolar activity, thus further research is warranted. New small molecule reactivators of organophosphate-inhibited AChE have also been disclosed, which focused on the design of neutral ligands with improved pharmaceutical properties and blood-brain barrier (BBB) penetration. Gratifyingly, some research in this area is moving away from the traditional quaternary pyridinium oximes AChE reactivators, while still employing the necessary reactivation group (oximes). However, selectivity over inhibition of native AChE enzyme, effectiveness of reactivation, broad-spectrum reactivation against multiple organophosphates and reactivation of aged-enzyme continue to be hurdles for this area of research.
Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation
Berríos, Verónica O.; Boukli, Nawal M.; Rodriguez, Jose W.; Negraes, Priscilla D.; Schwindt, Telma T.; Trujillo, Cleber A.; Oliveira, Sophia L. B.; Cubano, Luis A.; Ferchmin, P. A.; Eterovic, Vesna A.; Ulrich, Henning; Martins, Antonio H.
2015-01-01
Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyri-dostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 μM pyri-dostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected. PMID:25758980
Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation.
Berríos, Verónica O; Boukli, Nawal M; Rodriguez, Jose W; Negraes, Priscilla D; Schwindt, Telma T; Trujillo, Cleber A; Oliveira, Sophia L B; Cubano, Luis A; Ferchmin, P A; Eterović, Vesna A; Ulrich, Henning; Martins, Antonio H
2015-10-01
Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyridostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 µM pyridostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected.
Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua
2018-03-01
Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Gallegos, Cristina Eugenia; Baier, Carlos Javier; Bartos, Mariana; Bras, Cristina; Domínguez, Sergio; Mónaco, Nina; Gumilar, Fernanda; Giménez, María Sofía; Minetti, Alejandra
2018-04-02
Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.
Kikuchi, Tatsuya; Okamura, Toshimitsu; Arai, Takuya; Obata, Takayuki; Fukushi, Kiyoshi; Irie, Toshiaki; Shiraishi, Tetsuya
2010-01-01
Background and purpose: Cholinesterase inhibitors have been widely used for the treatment of patients with dementia. Monitoring of the cholinesterase activity in the blood is used as an indicator of the effect of the cholinesterase inhibitors in the brain. The selective measurement of cholinesterase with low tissue dilution is preferred for accurate monitoring; however, the methods have not been established. Here, we investigated the effect of tissue dilution on the action of cholinesterase inhibitors using a novel radiometric method with selective substrates, N-[14C]methylpiperidin-4-yl acetate ([14C]MP4A) and (R)-N-[14C]methylpiperidin-3-yl butyrate ([14C]MP3B_R), for AChE and butyrylcholinesterase (BChE) respectively. Experimental approach: We investigated the kinetics of hydrolysis of [14C]-MP4A and [14C]-MP3B_R by cholinesterases, and evaluated the selectivity of [14C]MP4A and [14C]MP3B_R for human AChE and BChE, respectively, compared with traditional substrates. Then, IC50 values of cholinesterase inhibitors in minimally diluted and highly diluted tissues were measured with [14C]MP4A and [14C]MP3B_R. Key results: AChE and BChE activities were selectively measured as the first-order hydrolysis rates of [14C]-MP4A and [14C]MP3B_R respectively. The AChE selectivity of [14C]MP4A was an order of magnitude higher than traditional substrates used for the AChE assay. The IC50 values of specific AChE and BChE inhibitors, donepezil and ethopropazine, in 1.2-fold diluted human whole blood were much higher than those in 120-fold diluted blood. In addition, the IC50 values of donepezil in monkey brain were dramatically decreased as the tissue was diluted. Conclusions and implications: This method would effectively monitor the activity of cholinesterase inhibitors used for therapeutics, pesticides and chemical warfare agents. PMID:20401964
Alpan, Ayşe Selcen; Sarıkaya, Görkem; Çoban, Güneş; Parlar, Sülünay; Armagan, Güliz; Alptüzün, Vildan
2017-07-01
A series of Mannich bases of benzimidazole derivatives having a phenolic group were designed to assess their anticholinesterase and antioxidant activities. The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities were evaluated in vitro by using Ellman's method. According to the activity results, all of the compounds exhibited moderate to good AChE inhibitory activity (except for 2a), with IC 50 values ranging from 0.93 to 10.85 μM, and generally displayed moderate BuChE inhibitory activity. Also, most of the compounds were selective against BuChE. Compound 4b was the most active molecule on the AChE enzyme and also selective. In addition, we investigated the antioxidant effects of the synthesized compounds against FeCl 2 /ascorbic acid-induced oxidative stress in the rat brain in vitro, and the activity results showed that most of the compounds are effective as radical scavengers. Molecular docking studies and molecular dynamics simulations were also carried out. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eggers Pedersen, Kathrine; Basu, Niladri; Letcher, Robert; Greaves, Alana K; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne
2015-04-01
Perfluoroalkyl substances (PFASs) is a growing class of contaminants in the Arctic environment, and include the established perfluorinated sulfonates (PFSAs; especially perfluorooctane sulfonate (PFOS)) and carboxylic acids (PFCAs). PFSAs and PFCAs of varying chain length have been reported to bioaccumulate in lipid rich tissues of the brain among other tissues such as liver, and can reach high concentrations in top predators including the polar bear. PFCA and PFSA bioaccummulation in the brain has the potential to pose neurotoxic effects and therefore we conducted a study to investigate if variations in neurochemical transmitter systems i.e. the cholinergic, glutaminergic, dopaminergic and GABAergic, could be related to brain-specific bioaccumulation of PFASs in East Greenland polar bears. Nine brain regions from nine polar bears were analyzed for enzyme activity (monoamine oxidase (MAO), acetylcholinesterase (AChE) and glutamine synthetase (GS)) and receptor density (dopamine-2 (D2), muscarinic cholinergic (mAChR) and gamma-butyric acid type A (GABA-A)) along with PFSA and PFCA concentrations. Average brain ∑PFSA concentration was 25ng/g ww where PFOS accounted for 91%. Average ∑PFCA concentration was 88ng/g ww where PFUnDA, PFDoDA and PFTrDA combined accounted for 79%. The highest concentrations of PFASs were measured in brain stem, cerebellum and hippocampus. Correlative analyses were performed both across and within brain regions. Significant positive correlations were found between PFASs and MAO activity in occipital lobe (e.g. ∑PFCA; rp=0.83, p=0.041, n=6) and across brain regions (e.g. ∑PFCA; rp=0.47, p=0.001, ∑PFSA; rp=0.44, p>0.001; n=50). GABA-A receptor density was positively correlated with two PFASs across brain regions (PFOS; rp=0.33, p=0.02 and PFDoDA; rp=0.34, p=0.014; n=52). Significant negative correlations were found between mAChR density and PFASs in cerebellum (e.g. ∑PFCA; rp=-0.95, p=0.013, n=5) and across brain regions (e.g. ∑PFCA; rp=-0.40, p=0.003, ∑PFSA; rp=-0.37, p=0.007; n=52). AChE activity and D2 density were negatively correlated with single PFCAs in several brain regions, whereas GS activity was positively correlated with PFASs primarily in occipital lobe. Results from the present study support the hypothesis that PFAS concentrations in polar bears from East Greenland have exceeded the threshold limits for neurochemical alterations. It is not known whether the observed alterations in neurochemical signaling are currently having negative effects on neurochemistry in East Greenland polar bears. However given the importance of these systems in cognitive processes and motor function, the present results indicate an urgent need for a better understanding of neurochemical effects of PFAS exposure to wildlife. Copyright © 2015 Elsevier Inc. All rights reserved.
Aeinehband, Shahin; Behbahani, Homira; Grandien, Alf; Nilsson, Bo; Ekdahl, Kristina N.; Lindblom, Rickard P. F.; Piehl, Fredrik; Darreh-Shori, Taher
2013-01-01
Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular. PMID:23840379
Carcoba, Luis M; Santiago, Miguel; Moss, Donald E; Cabeza, Rafael
2008-02-01
There is increasing evidence that acetylcholinesterase (AChE) may have various specific developmental roles in brain development. Nevertheless, specific effects of AChE inhibition during early brain development have not been adequately described. Therefore, methanesulfonyl fluoride (MSF), an irreversible AChE inhibitor that shows high selectivity for the CNS was used to produce AChE inhibition in utero to study subsequent adult behaviors, sleep, and cholinergic markers. Rats exposed to MSF in utero showed a deficit in spatial learning tasks using appetitive motivation but, surprisingly, they performed equally well or better than controls when aversive motivation was used. One hypothesis was that MSF treatment in utero affected the response to stress. Tests of anxiety however showed no differences in basal levels of anxiety. Studies of sleep behavior, however, indicated a higher level of REM sleep which is only seen during the light phase of male rats exposed to MSF in utero as compared to controls. No differences in cholinergic markers in the brains of adults were found except that females exposed to MSF in utero had a higher level of ChAT activity in the synaptosomal fraction of the hippocampus. Even so, whether cholinergic alterations accompany the in utero MSF exposure remains to be determined. The failure to find widespread changes in cholinergic markers in the adult brains suggests changes in behaviors should be further investigated by testing the participation of postsynaptic mechanisms, measuring of cholinergic markers during earlier development periods and the possible participation of other neurotransmitter systems to clearly reveal the role of the cholinergic system following in utero MSF exposure.
Carcoba, Luis M .; Santiago, Miguel; Moss, Donald E.; Cabeza, Rafael
2008-01-01
There is increasing evidence that acetylcholinesterase (AChE) may have various specific developmental roles in brain development. Nevertheless, specific effects of AChE inhibition during early brain development have not been adequately described. Therefore, methanesulfonyl fluoride (MSF), an irreversible AChE inhibitor that shows high selectivity for the CNS was used to produce AChE inhibition in utero to study subsequent adult behaviors, sleep, and cholinergic markers. Rats exposed to MSF in utero showed a deficit in spatial learning tasks using appetitive motivation but, surprisingly, they performed equally well or better than controls when aversive motivation was used. One hypothesis was that MSF treatment in utero affected the response to stress. Tests of anxiety however showed no differences in basal levels of anxiety. Studies of sleep behavior, however, indicated a higher level of REM sleep which is only seen during the light phase of male rats exposed to MSF in utero as compared to controls. No differences in cholinergic markers in the brains of adults were found except that females exposed to MSF in utero had a higher level of ChAT activity in the synaptosomal fraction of the hippocampus. Even so, whether cholinergic alterations accompany the in utero MSF exposure remains to be determined. The failure to find widespread changes in cholinergic markers in the adult brains suggests changes in behaviors should be further investigated by testing the participation of postsynaptic mechanisms, measuring of cholinergic markers during earlier development periods and the possible participation of other neurotransmitter systems to clearly reveal the role of the cholinergic system following in utero MSF exposure. PMID:17920111
Kimura-Kuroda, Junko; Komuta, Yukari; Kuroda, Yoichiro; Hayashi, Masaharu; Kawano, Hitoshi
2012-01-01
Background Acetamiprid (ACE) and imidacloprid (IMI) belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs). Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development. Methodology/Principal Findings Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment—including proliferation, migration, differentiation, and morphological and functional maturation—can be observed in vitro. Using these cultures, an excitatory Ca2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine. Conclusions/Significance This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the neonicotinoids may adversely affect human health, especially the developing brain. PMID:22393406
Jin, Jiali; Kurobe, Tomofumi; Ramírez-Duarte, Wilson F; Bolotaolo, Melissa B; Lam, Chelsea H; Pandey, Pramod K; Hung, Tien-Chieh; Stillway, Marie E; Zweig, Leanna; Caudill, Jeffrey; Lin, Li; Teh, Swee J
2018-04-01
Concerns regarding non-target toxicity of new herbicides used to control invasive aquatic weeds in the San Francisco Estuary led us to compare sub-lethal toxicity of four herbicides (penoxsulam, imazamox, fluridone, and glyphosate) on an endangered fish species Delta Smelt (Hypomesus transpacificus). We measured 17β-estradiol (E2) and glutathione (GSH) concentrations in liver, and acetylcholinesterase (AChE) activity in brain of female and male fish after 6 h of exposure to each of the four herbicides. Our results indicate that fluridone and glyphosate disrupted the E2 concentration and decreased glutathione concentration in liver, whereas penoxsulam, imazamox, and fluridone inhibited brain AChE activity. E2 concentrations were significantly increased in female and male fish exposed to 0.21 μM of fluridone and in male fish exposed to 0.46, 4.2, and 5300 μM of glyphosate. GSH concentrations decreased in males exposed to fluridone at 2.8 μM and higher, and glyphosate at 4.2 μM. AChE activity was significantly inhibited in both sexes exposed to penoxsulam, imazamox, and fluridone, and more pronounced inhibition was observed in females. The present study demonstrates the potential detrimental effects of these commonly used herbicides on Delta Smelt. Copyright © 2018 Elsevier B.V. All rights reserved.
Wheelock, Craig E.; Eder, Kai J.; Werner, Inge; Huang, Huazhang; Jones, Paul D.; Brammell, Benjamin F.; Elskus, Adria A.; Hammock, Bruce D.
2006-01-01
Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 μg/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 μg/l), but not a low dose (1.2 μg/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ∼30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was undetectable. Together these data suggest that (1) carboxylesterase activity inhibition may be a more sensitive biomarker for OP exposure than AChE activity, (2) neither AChE nor carboxylesterase activity are biomarkers for pyrethroid exposure, (3) CYP1A protein is not a sensitive marker for these agrochemicals and (4) slow hydrolysis rates may be partly responsible for acute pyrethroid toxicity in fish. PMID:16011852
Wheelock, C.E.; Eder, K.J.; Werner, I.; Huang, H.; Jones, P.D.; Brammell, B.F.; Elskus, A.A.; Hammock, B.D.
2005-01-01
Acetylcholinesterase (AChE) activity has traditionally been monitored as a biomarker of organophosphate (OP) and/or carbamate exposure. However, AChE activity may not be the most sensitive endpoint for these agrochemicals, because OPs can cause adverse physiological effects at concentrations that do not affect AChE activity. Carboxylesterases are a related family of enzymes that have higher affinity than AChE for some OPs and carbamates and may be more sensitive indicators of environmental exposure to these pesticides. In this study, carboxylesterase and AChE activity, cytochrome P4501A (CYP1A) protein levels, and mortality were measured in individual juvenile Chinook salmon (Oncorhynchus tshawytscha) following exposure to an OP (chlorpyrifos) and a pyrethroid (esfenvalerate). As expected, high doses of chlorpyrifos and esfenvalerate were acutely toxic, with nominal concentrations (100 and 1 ??g/l, respectively) causing 100% mortality within 96 h. Exposure to chlorpyrifos at a high dose (7.3 ??g/l), but not a low dose (1.2 ??g/l), significantly inhibited AChE activity in both brain and muscle tissue (85% and 92% inhibition, respectively), while esfenvalerate exposure had no effect. In contrast, liver carboxylesterase activity was significantly inhibited at both the low and high chlorpyrifos dose exposure (56% and 79% inhibition, respectively), while esfenvalerate exposure still had little effect. The inhibition of carboxylesterase activity at levels of chlorpyrifos that did not affect AChE activity suggests that some salmon carboxylesterase isozymes may be more sensitive than AChE to inhibition by OPs. CYP1A protein levels were ???30% suppressed by chlorpyrifos exposure at the high dose, but esfenvalerate had no effect. Three teleost species, Chinook salmon, medaka (Oryzias latipes) and Sacramento splittail (Pogonichthys macrolepidotus), were examined for their ability to hydrolyze a series of pyrethroid surrogate substrates and in all cases hydrolysis activity was undetectable. Together these data suggest that (1) carboxylesterase activity inhibition may be a more sensitive biomarker for OP exposure than AChE activity, (2) neither AChE nor carboxylesterase activity are biomarkers for pyrethroid exposure, (3) CYP1A protein is not a sensitive marker for these agrochemicals and (4) slow hydrolysis rates may be partly responsible for acute pyrethroid toxicity in fish. ?? 2005 Elsevier B.V. All rights reserved.
Wu, Wei-Li; Adams, Catherine E.; Stevens, Karen E.; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H.
2015-01-01
Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal spleen-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. PMID:25683697
In vitro effects of acetylcholinesterase reactivators on monoamine oxidase activity.
Fišar, Zdeněk; Hroudová, Jana; Korábečný, Jan; Musílek, Kamil; Kuča, Kamil
2011-03-05
Administration of acetylcholinesterase (AChE) reactivators (oximes) is usually used in order to counteract the poisoning effects of nerve agents. The possibility was suggested that oximes may show some therapeutic and/or adverse effects through their action in central nervous system. There are no sufficient data about interaction of oximes with monoaminergic neurotransmitter's systems in the brain. Oxime-type AChE reactivators pralidoxime, obidoxime, trimedoxime, methoxime and HI-6 were tested for their potential to affect the activity of monoamine oxidase of type A (MAO-A) and type B (MAO-B) in crude mitochondrial fraction of pig brains. The compounds were found to inhibit fully MAO-A with half maximal inhibitory concentration (IC(50)) of 0.375 mmol/l (pralidoxime), 1.53 mmol/l (HI-6), 2.31 mmol/l (methoxime), 2.42 mmol/l (obidoxime) and 4.98 mmol/l (trimedoxime). Activity of MAO-B was fully inhibited by HI-6 and pralidoxime only with IC(50) 4.81 mmol/l and 11.01 mmol/l, respectively. Methoxime, obidoxime and trimedoxime displayed non-monotonic concentration dependent effect on MAO-B activity. Because oximes concentrations effective for MAO inhibition could not be achieved in vivo at the cerebral level, we suppose that oximes investigated do not interfere with brain MAO at therapeutically relevant concentrations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Abdel Moneim, Ahmed E
2014-01-01
The primary aimed of this study was to investigate the potential protective effects of methanolic extract of citrus peel (MECP) on acute cyanide (KCN) poisoning-induced seizures and oxidative stress in rats. The intraperitoneal LD50 value of KCN (6.3 mg/Kg bwt), based on 24 hrs mortality, was significantly increased by 9, 52 or 113% by oral administration of MECP (500 mg/Kg bwt) pre-administered for 1, 2 and 3 days, respectively, in rats in a time-dependent manner. Intraperitoneal injection of the sublethal dose of KCN (3 mg/Kg bwt) into rats increased, 24 hrs later, lipid peroxidation (LPO), nitric oxide (NO), glutamate levels and acetylcholinesterase (AChE) activity in hippocampus, striatum and cerebral cortex. KCN also decreased brain glutathione (GSH) level and superoxide dismutase (SOD) and catalase (CAT) activities in these animals. Pre-treatment of rats with MECP inhibited KCN-induced increases in LPO, NO, and glutamate levels and AChE activity as well as decreases in brain GSH level and SOD and CAT activities. In addition, KCN significantly decreased norepinephrine, dopamine and serotonin levels in different brain regions which were resolved by MECP. From the present results, it can be concluded that the neuroprotective effects of MECP against KCN-induced seizures and oxidative stress may be due to the inhibition of oxidative stress overproduction and maintenance of antioxidant defense mechanisms.
NASA Astrophysics Data System (ADS)
Zhang, Rong; Zhang, Jian; Gao, Qian; Guo, Nichun
2018-01-01
Chlorpyrifos is a neurotoxic agent and also causes oxidative stress in the body. EGCG is a typical strong antioxidant and has been reported to be neuroprotective. Our study investigated the mortality, the activity of acetylcholinesterase (AChE) in the brain and glutathione (GSH) in the liver of the adult Zebrafish in present of Chlorpyrifos and EGCG independent and combination. The results indicated that after the addition of EGCG, the mortality of zebrafish induced by Chlorpyrifos was reduced and the activity of AChE and glutathione (GSH) inhibited by Chlorpyrifos in zebrafish was significantly increased, which demonstrated that EGCG inhibited the toxicity Chlorpyrifos to zebrafish. The inhibition was dependent on the concentration of EGCG and Chlorpyrifos, which was not shown a gradual change trend but a complex situation.
Mohamed, Nadia R; Abdelhalim, Mervat M; Khadrawy, Yasser A; Elmegeed, Gamal A; Abdel-Salam, Omar M E
2012-11-01
Oxidative stress and inflammation have been implicated in several neurodegenerative and developmental brain disorders. The present work was devoted to the design and synthesis of novel steroid derivatives bearing promising heterocyclic moiety that would act to reduce neuro-inflammation and oxidative stress in brain. The novel heterocyclic steroids were synthesized and their chemical structures were confirmed by studying their analytical and spectral data. The tested compounds were assayed in the model of neuro-inflammation produced in rats by cerebral lipopolysaccharide injection. The intracerebral administration of bacterial endotoxin resulted in cerebral inflammatory state evidenced by increased malondialdehyde (MDA), decreased reduced glutathione (GSH) level, increased nitric oxide as well as increased acetylcholinesterase (AChE) activity in the brain. Compounds 6, 10, 8b and 13a markedly increased reduced glutathione. Malondialadehyde and nitric oxide levels were reduced to normal values after treatment with all tested compounds. AChE activity was normalized by compound 8b and reduced to below normal values by compounds 10 and 14a. These results are exciting in that these agents might be useful candidates in treatment of cerebral inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.
Brunzell, Darlene H; McIntosh, J Michael
2012-01-01
Individuals diagnosed with schizophrenia have an exceptionally high risk for tobacco dependence. Postmortem studies show that these individuals have significant reductions in α7 nicotinic acetylcholine receptors (nAChRs) in several brain areas. Decreased α7-mediated function might not only be linked to schizophrenia but also to increased tobacco consumption. The purpose of this study was to determine whether pharmacological blockade of α7 nAChRs would increase motivation of rats to intravenously self-administer nicotine (NIC) during a progressive ratio schedule of reinforcement (PR). Before PR, rats received local infusions of 0, 10, or 20 pmol of a selective α7 nAChR antagonist, α-conotoxin ArIB [V11L,V16D] (ArIB) into the nucleus accumbens (NAc) shell or the anterior cingulate cortex, brain areas that contribute to motivation for drug reward. We additionally sought to determine whether local infusion of 0, 10, or 40 nmol of a selective α7 nAChR agonist, PNU 282987, into these brain areas would decrease motivation for NIC use. Infusion of ArIB into the NAc shell and anterior cingulate cortex resulted in a significant increase in active lever pressing, breakpoints, and NIC intake, suggesting that a decrease in α7 nAChR function increases motivation to work for NIC. In contrast, PNU 282987 infusion resulted in reductions in these measures when administered into the NAc shell, but had no effect after administration into the anterior cingulate cortex. These data identify reduction of α7 nAChR function as a potential mechanism for elevated tobacco use in schizophrenia and also identify activation of α7 nAChRs as a potential strategy for tobacco cessation therapy. PMID:22169946
Abdel-Salam, Omar M E; Khadrawy, Yasser A; Salem, Neveen A; Sleem, Amany A
2011-06-01
We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.
Tung, Bui Thanh; Hai, Nguyen Thanh; Thu, Dang Kim
2017-02-23
Huperzia squarrosa (Forst.) Trevis is used in traditional medicine for improving memory deficits. Alkaloids, triterpenoids, flavonoids are main bioactive compounds of Huperzia squarrosa (Forst.) Trevis. This study aimed to investigate the antioxidant, AChE inhibitory activities in vitro of differents fraction of Huperzia squarrosa (Forst.) Trevis extract and neuroprotective effects of EtOAc fraction on scopolamine-induced cognitive impairment in mice. Antioxidant activity was measured by DPPH assay. AChE inhibitory effect in vitro and detail kinetic inhibition mechanism was evaluated by Ellman's assay. For in vivo assay, mice were administrated orally EtOAc fraction (150 and 300mg/kg) for fourteen days, and injected scopolamine at a dose of 1mg/kg intraperitoneally for four days to induce memory injured. The memory behaviors were evaluated using the Morris water maze. ACh levels were measured in brain tissue. Superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, malondialdehyde and protein thiol groups were also evaluated in the brains. Our data also demonstrated that EtOAc fraction had the strongest antioxidant with an IC 50 value of 9.35±1.68µg/mL and AChE inhibitory activity with an IC 50 value of 23.44±3.14μg/mL in a concentration-dependent manner. Kinetic inhibition analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 34.75±1.42µg/mL. Scopolamine significantly increased the escape latency time, reduced the crossings number, and swimming time in the target quadrant, while EtOAc fraction reversed these scopolamine-induced effects. EtOAc fraction significantly increased levels of acetylcholine in the brain. EtOAc fraction also significantly decreased oxidative stress in mice. Our data suggest that EtOAc fraction of Huperzia squarrosa extract exhibited a strong neuroprotective effect on cognitive impairment, and may be a potential candidate for the treatment of Alzheimer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Morganstern, Irene; Lukatskaya, Olga; Moon, Sang-Ho; Guo, Wei-Ran; Shaji, Jane; Karatayev, Olga; Leibowitz, Sarah F.
2014-01-01
Rationale While clinical studies show maternal consumption of palatable fat-rich diets during pregnancy to negatively impact the children’s behaviors and increase their vulnerability to drug abuse, the precise behavioral and neurochemical mechanisms mediating these phenomena have yet to be examined. Objective The study examined in rats whether gestational exposure to a high-fat diet (HFD) can increase the offspring’s propensity to use nicotine and whether disturbances in central nicotinic cholinergic signaling accompany this behavioral effect. Methods Rat offspring exposed perinatally to a HFD or Chow diet were characterized in terms of their nicotine self-administration behavior in a series of operant response experiments and the activity of acetylcholinesterase (AChE) and density of nicotinic ACh receptors (nAChRs) in different brain areas. Result Perinatal HFD compared to Chow exposure increased nicotine-self administration behavior during fixed-ratio and dose-response testing and caused an increase in breakpoint using progressive ratio testing, while nicotine-seeking in response to nicotine prime-induced reinstatement was reduced. This behavioral change induced by the HFD was associated with a significant reduction in activity of AChE in the midbrain, hypothalamus and striatum and increased density of β2-nAChRs in the ventral tegmental area and substantia nigra and of α7-nAChRs in the lateral and ventromedial hypothalamus. Conclusions Perinatal exposure to a HFD increases the vulnerability of the offspring to excessive nicotine use by enhancing its reward potential, and these behavioral changes are accompanied by a stimulation of nicotinic cholinergic signaling in mesostriatal and hypothalamic brain areas important for reinforcement and consummatory behavior. PMID:23836027
Dobbs, Lauren K; Cunningham, Christopher L
2014-05-15
Methamphetamine (METH) indirectly stimulates the laterodorsal tegmental nucleus (LDT) acetylcholine (ACh) neurons to increase ACh within the ventral tegmental area (VTA). LDT ACh inhibition attenuates METH and saline locomotor activity. The aim of these experiments was to determine whether LDT ACh contributes to METH conditioned place preference (CPP). C57BL/6J mice received a bilateral electrolytic or sham lesion of the LDT. After recovery, mice received alternating pairings of METH (0.5 mg/kg) and saline with distinct tactile floor cues over 8 days. During preference tests, mice were given access to both floor types and time spent on each was recorded. Mice were tested again after exposure to both extinction and reconditioning trials. Brains were then processed for choline acetyltransferase immunohistochemistry to label LDT ACh neurons. Lesioned mice had significantly fewer LDT ACh neurons and showed increased saline and METH locomotor activity during the first conditioning trial compared to sham mice. Locomotor activity (saline and METH) was negatively correlated with the number of LDT ACh neurons. Lesioned and sham mice showed similar METH CPP following conditioning, extinction and reconditioning trials. LDT ACh neurons are not necessary for METH reward as indexed by CPP, but may be important for basal and METH-induced locomotor activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Anticholinesterase activities of cold and hot aqueous extracts of F. racemosa stem bark.
Ahmed, Faiyaz; Urooj, Asna
2010-04-01
The present study evaluated the anticholinesterase activity of cold and hot aqueous extracts of Ficus racemosa stem bark against rat brain acetylcholinesterase in vitro. Both the cold aqueous extract (FRC) and the hot aqueous extract (FRH) exhibited a dose dependent inhibition of rat brain acetylcholinesterase. FRH showed significantly higher (P = 0.001) cholinesterase inhibitory activity compared to FRC; however, both the extracts did not show 50% inhibition of AChE at the doses tested (200-1000 mug ml(-1)). The IC(50) values of 1813 and 1331 mug ml(-1) were deduced for FRC and FRH, respectively (calculated by extrapolation using Boltzmann's dose response analysis).
Franson, J. Christian; Spann, James W.; Heinz, Gary; Bunck, Christine M.; Lamont, Thair
1983-01-01
Forty-four pairs of game-farm mallards (Anas platyrhynchos) were fed ABATE® 4E (temephos) to yield 0, 1, or 10 ppm ABATE® beginning before the initiation of lay, and terminating when ducklings were 21 days of age. The mean interval between eggs laid was greater for hens fed 10 ppm ABATE® than for controls. Clutch size, fertility, hatchability, nest attentiveness of incubating hens, and avoidance behavior of ducklings were not significantly affected by ABATE® ingestion. The percentage survival of ducklings to 21 days of age was significantly lower in both treated groups than in controls, but brain acetylcholinesterase (AChE) activity was not inhibited in young which died before termination of the study. In 21-day-old ducklings, aspartate aminotransferase (AST) activity increased and plasma nonspecific cholinesterase (ChE) activity was inhibited by about 20% in both treatment groups, but there were no significant differences in brain AChE or plasma alanine aminotransferase (ALT) activities, or plasma uric acid concentration. Clinical chemistry values of adults were not affected. No ABATE®, ABATE® sulfoxide, or ABATE® sulfone residues were found in eggs or tissue samples.
6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease.
Zueva, I V; Semenov, V E; Mukhamedyarov, M A; Lushchekina, S V; Kharlamova, A D; Petukhova, E O; Mikhailov, A S; Podyachev, S N; Saifina, L F; Petrov, K A; Minnekhanova, O A; Zobov, V V; Nikolsky, E E; Masson, P; Reznik, V S
2015-01-01
Alzheimer's disease (AD) is the major age-related progressive neurodegenerative disorder. The brain of AD patients suffers from loss of cholinergic neurons and decreased number of synapses [1]. AD is caused by an imbalance between Aβ production and clearance, resulting in increased amount of Aβ in various forms [2]. Reduction of Aβ production and increasing clearance of Aβ pathogenic forms are key targets in the development of potential therapeutic agents for AD treatment. Unfortunately, only nosotropic approaches for treatment of AD are currently effective in humans. These approaches mainly focus on the inhibition of brain acetyl-cholinesterase (AChE) to increase lifetime of cerebral acetylcholine [3]. It is important to emphasize that AChE itself promotes the formation of Aβ fibrils in vitro and Aβ plaques in the cerebral cortex of transgenic mouse models of AD [4]. This property of AChE results from interaction between Aβ and the peripheral anionic site of the enzyme (PAS) [5]. Dual binding site inhibitors of both catalytic active site (CAS) and PAS can simultaneously improve cognition and slow down the rate of Aβ-induced neural degeneration. Unfortunately, the assortment of AChE PAS ligands is still extremely limited. To study putative advantages of AChE non-charged PAS inhibitors based on 6-methyluracil derivatives for the treatment of Alzheimer's disease. In vitro studies. Concentration of drug producing 50% of AChE/BuChE activity inhibition (IC50) was measured using the method of Ellman et al. [6]. Toxicological experiments were performed using IP injection of the different compounds in mice. LD50, dose (in mg/kg) causing lethal effects in 50% of animals was taken as a criterion of toxicity [7]. The ability of compound to block in vitro AChE-induced Aβ1-40 aggregation was studied using a thioflavin T (ThT) fluorescent probe [8].In vivo biological assays. For in vivo blood-brain barrier permeation assay brains were removed 30 min after IP injection of LD50 dose of tested compound injection. The inhibitory potency was measured using the method of Ellman.Scopolamine and transgenic models of AD were used to evaluate the influence of compound 35 on spatial memory performance.Water solution of scopolamine was injected to mice (ip) 20 minutes before starting memory test during 14 days [9]. Mice were assigned to 7 groups, including 4 groups receiving injection (ip) of compound in different dosages, donepezil-treated mice (donepezil is conventionally used to treat Alzheimer's disease), positive and negative control groups. Double transgenic (APP/PS1) mice expressing a chimeric mouse/human amyloid precursor protein and a mutant of human presenilin-1 [10] were assigned to 4 groups, including transgenic animals injected (ip) with compound 35 or donepezil solution, positive (transgenes injected with water) and negative (wild-type mice) controls.To evaluate spatial memory performance, mice were trained on a reward alternation task using a conventional T-maze [11]. The criterion for a mouse having learned the rewarded alternation task was 3 consecutive days of at least 5 correct responses out of the 6 free trials.For β-amyloid peptide load was evaluated quantitatively as a number and summary area of Thioflavine S fluorescent spots in cerebral cortex and hippocampal images using Image J program. Statistical analyses were performed using the Mann-Whitney test. We evaluated the acute toxicity of the most active compounds. The most potent AChE inhibitor compound 35 (IC50 (AChE) = 5 ± 0.5 nM) exhibited the lowest LD50 values (51 mg/kg) and inhibited brain AChE by more than 71 ± 1%. Compound 35 at 10 nM, exhibited a significant (35 ± 9%) inhibitory activity toward human AChE-induced Aβ aggregation.Scopolamine injection induced significant decrease in correct choice percentage in T-maze, as well as decrease in percentage of mice reaching criterion for learning the task by day 14. This memory deficit was relieved to some extent either by compound 35 (5 mg/kg) or donepezil (reference compound) treatment (0.75 mg/kg). Interestingly, higher doses of compound 35 (10 and 15 mg/kg) produced less therapeutic effect on spatial memory deficit.Group of APP/PS1 mice showed 3 times lower percentage of reaching behavioral criterion and lower percentage of correct choice in T-maze alternation task comparing to WT mice, whereas compound 35 (5 mg/kg) or Donepezil treatment effectively improved these parameters in APP/PS1 mice.Compound 35 treatment (5 mg/kg) during 14 days significantly reduced percentage of summary area and number of β-amyloid peptide (βAP) deposits visualized in sections of cerebral cortex, dentate gyrus, and hippocampal CA3 area in APP/PS1 mice. The most prominent reduction of βAP load by compound 35 treatment was found in CA3 area and cerebral cortex. Meanwhile, Donepezil treatment (1 mg/kg) during 14 days significantly reduced βAP load in cerebral cortex but not in dentate gyrus and CA3 area. Experiments showed that the most potent AChE inhibitor compound 35 (6-methyluracil derivative) permeated the blood-brain barrier, improved working memory in the APP/PS1 transgenic mice and significantly reduced the number and area of Aβ plaques in the brain. Thus, compound 35 is a promising candidate as a bi-functional inhibitor of AChE for treatment of AD.
Immediate and Delayed Drug Therapy Effects on Low Dose Sarin Exposed Mice Myocardial Performance
2011-03-01
to phosphorylate the serine hydroxyl residue in the active pocket of AChE, forming either a phosphoric or phosphonic acid ester which is extremely...London 2006). Brain natriuretic peptide exerts its 15 natriuretic, diuretic, and vasorelaxant effects through activation of its common receptor...exposed to asymptomatic levels would show no issues during normal activities , such garrison or non-field operations. However, this would quickly change
Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.
Golime, RamaRao; Palit, Meehir; Acharya, J; Dubey, D K
2018-05-01
Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100β, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 μg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-β and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.
Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; Samadi, Abdelouahid; Bartolini, Manuela; Andrisano, Vincenza; Huertas, Oscar; Barril, Xavier; Luque, F Javier; Rodríguez-Franco, María I; López, Beatriz; López, Manuela G; García, Antonio G; Carreiras, María do Carmo; Villarroya, Mercedes
2009-05-14
Tacripyrines (1-14) have been designed by combining an AChE inhibitor (tacrine) with a calcium antagonist such as nimodipine and are targeted to develop a multitarget therapeutic strategy to confront AD. Tacripyrines are selective and potent AChE inhibitors in the nanomolar range. The mixed type inhibition of hAChE activity of compound 11 (IC(50) 105 +/- 15 nM) is associated to a 30.7 +/- 8.6% inhibition of the proaggregating action of AChE on the Abeta and a moderate inhibition of Abeta self-aggregation (34.9 +/- 5.4%). Molecular modeling indicates that binding of compound 11 to the AChE PAS mainly involves the (R)-11 enantiomer, which also agrees with the noncompetitive inhibition mechanism exhibited by p-methoxytacripyrine 11. Tacripyrines are neuroprotective agents, show moderate Ca(2+) channel blocking effect, and cross the blood-brain barrier, emerging as lead candidates for treating AD.
Natural AChE Inhibitors from Plants and their Contribution to Alzheimer’s Disease Therapy
Murray, Ana Paula; Faraoni, María Belén; Castro, María Julia; Alza, Natalia Paola; Cavallaro, Valeria
2013-01-01
As acetylcholinesterase (AChE) inhibitors are an important therapeutic strategy in Alzheimer’s disease, efforts are being made in search of new molecules with anti-AChE activity. The fact that naturally-occurring compounds from plants are considered to be a potential source of new inhibitors has led to the discovery of an important number of secondary metabolites and plant extracts with the ability of inhibiting the enzyme AChE, which, according to the cholinergic hypothesis, increases the levels of the neurotransmitter acetylcholine in the brain, thus improving cholinergic functions in patients with Alzheimer’s disease and alleviating the symptoms of this neurological disorder. This review summarizes a total of 128 studies which correspond to the most relevant research work published during 2006-2012 (1st semester) on plant-derived compounds, plant extracts and essential oils found to elicit AChE inhibition. PMID:24381530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertrand, N.; Beley, A.
The synthesis rate of brain acetylcholine (ACh) was estimated in mice following i.v. administration of ({sup 3}H)choline (Ch). The measurements were performed 1 min after the tracer injection, using the ({sup 3}H)ACh/({sup 3}H)Ch specific radioactivity ratio as an index of ACh synthesis rate. Endogenous and labeled Ch and ACh were quantified using HPLC methodology. Oxotremorine and physostigmine (0.5 mg/kg, i.p.) increased the steady state concentration of brain ACh by + 130% and 84%, respectively and of Ch by + 60% (oxotremorine); they decreased ACh synthesis by 62 and 55%, respectively. By contrast, scopolamine (0.7 mg/kg, i.p.) decreased the cerebral contentmore » of Ch by - 26% and of ACh by - 23% without enhancing the synthesis of ACh. The results show the utility of HPLC methodology in the investigation of ACh turnover.« less
Wang, Yanhua; Chen, Chen; Zhao, Xueping; Wang, Qiang; Qian, Yongzhong
2015-07-01
Mixtures of organophosphate (OP) and carbamate (CB) pesticides are commonly detected in freshwater ecosystems. These pesticides inhibit the activity of acetylcholinesterase (AChE) and have potential to interfere with behaviors that may be essential for the survival of species. Although the effects of individual anticholinesterase insecticides on aquatic species have been studied for decades, the neurotoxicity of mixtures is still poorly understood. In the present study, brain AChE inhibition in carp (Cyprinus carpio) exposed to a series of concentrations of the organophosphates (malathion and triazophos) as well as the carbamates (fenobucarb and carbosulfan) was measured. In equitoxic mixtures, the observed AChE activity inhibition of the malathion plus triazophos, and triazophos plus carbosulfan mixtures, was synergism. In equivalent concentration mixtures, the combination of malathion plus fenobucarb mixture conformed to synergism, while the observed AChE activity inhibition of the remaining pairings was less than additive. Single pesticide risk assessments are likely to underestimate the impacts of these insecticides on carps in aquatic environment where mixtures occur. Moreover, mixtures of pesticides that have been commonly reported in aquatic ecosystems may pose a more important challenge than previously anticipated. Copyright © 2014 Elsevier Inc. All rights reserved.
Rewarding brain stimulation reverses the disruptive effect of amygdala damage on emotional learning.
Kádár, Elisabet; Ramoneda, Marc; Aldavert-Vera, Laura; Huguet, Gemma; Morgado-Bernal, Ignacio; Segura-Torres, Pilar
2014-11-01
Intracranial self-stimulation (SS) in the lateral hypothalamus, a rewarding deep-brain stimulation, is able to improve acquisition and retention of implicit and explicit memory tasks in rats. SS treatment is also able to reverse cognitive deficits associated with aging or with experimental brain injuries and evaluated in a two-way active avoidance (2wAA) task. The main objective of the present study was to explore the potential of the SS treatment to reverse the complete learning and memory impairment caused by bilateral lesion in the lateral amygdala (LA). The effects of post-training SS, administered after each acquisition session, were evaluated on distributed 2wAA acquisition and 10-day retention in rats with electrolytic bilateral LA lesions. SS effect in acetylcholinestaresase (AchE) activity was evaluated by immunohistochemistry in LA-preserved and Central nuclei (Ce) of the amygdala of LA-damaged rats. Results showed that LA lesion over 40% completely impeded 2wAA acquisition and retention. Post-training SS in the LA-lesioned rats improved conditioning and retention compared with both the lesioned but non-SS treated and the non-lesioned control rats. SS treatment also seemed to induce a decrease in AchE activity in the LA-preserved area of the lesioned rats, but no effects were observed in the Ce. This empirical evidence supports the idea that self-administered rewarding stimulation is able to completely counteract the 2wAA acquisition and retention deficits induced by LA lesion. Cholinergic mechanisms in preserved LA and the contribution of other brain memory-related areas activated by SS could mediate the compensatory effect observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Heng-Wen; He, Xuan-Hui; Yuan, Rong; Wei, Ben-Jun; Chen, Zhong; Dong, Jun-Xing; Wang, Jie
2016-04-01
Acetylcholinesterase Inhibitor (AchEI) is the most extensive in all anti-dementia drugs. The extracts and isolated compounds from the Valeriana genus have shown anti-dementia bioactivity. Four new sesquiterpenoids (1-4) and a new monoterpenoid (5) were isolated from the root of Valeriana officinalis var. latiofolia. The acetylcholinesterase (AchE) inhibitory activity of isolates was evaluated by modified Ellman method in vitro. Learning and memory ability of compound 4 on mice was evaluated by the Morris water maze. The contents of acetylcholine (Ach), acetylcholine transferase (ChAT) and AchE in mice brains were determined by colorimetry. The results showed IC50 of compound 4 was 0.161 μM in vitro. Compared with the normal group, the learning and memory ability of mice and the contents of Ach and ChAT decreased in model group mice (P<0.01), while the AchE increased (P<0.01). Compared with the model group, Ach and ChAT in the positive control group, the high-dose group and the medium-dose group increased (P<0.01), while the AchE decreased (P<0.01). Compound 4 can improve the learning and memory abilities of APPswe/PSΔE9 double-transgenic mice, and the mechanism may be related to the regulation of the relative enzyme in the cholinergic system. Copyright © 2016 Elsevier B.V. All rights reserved.
Renick, Violet Compton; Weinersmith, Kelly; Vidal-Dorsch, Doris E; Anderson, Todd W
2016-01-01
In coastal waters, pesticides and parasites are widespread stressors that may separately and interactively affect the physiology, behavior, and survival of resident organisms. We investigated the effects of the organophosphate pesticide chlorpyrifos and the trematode parasite Euhaplorchis californiensis on three important traits of California killifish (Fundulus parvipinnis): neurotransmitter activity, release of the stress hormone cortisol, and behavior. Killifish were collected from a population without E. californiensis, and then half of the fish were experimentally infected. Following a 30 day period for parasite maturation, infected and uninfected groups were exposed to four concentrations of chlorpyrifos (solvent control, 1-3ppb) prior to behavior trials to quantify activity, feeding behavior, and anti-predator responses. Water-borne cortisol release rates were measured non-invasively from each fish prior to infection, one-month post-infection, and following pesticide exposure. Killifish exposed to 3ppb chlorpyrifos exhibited a 74.6±6.8% and 60.5±8.3% reduction in brain and muscle acetylcholinesterase (AChE) activity relative to controls. The rate of cortisol release was suppressed by each chlorpyrifos level relative to controls. Killifish exposed to the medium (2ppb) and high (3ppb) pesticide concentrations exhibited reduced activity and a decrease in mean swimming speed following a simulated predator attack. Muscle AChE was positively related to swimming activity while brain AChE was positively related to foraging behavior. No effects of the parasite were observed, possibly because of low metacercariae densities achieved through controlled infections. We found that sublethal pesticide exposure has the potential to modify several organismal endpoints with consequences for reduced fitness, including neurological, endocrine, and behavioral responses in an ecologically abundant fish. Copyright © 2015 Elsevier B.V. All rights reserved.
Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna
2016-09-01
Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rubio, Julio; Dang, Haixia; Gong, Mengjuan; Liu, Xinmin; Chen, Shi-Lin; Gonzales, Gustavo F
2007-10-01
Lepidium meyenii Walp. (Brassicaceae), known as Maca, is a Peruvian hypocotyl growing exclusively between 4,000 and 4,500 m altitude in the central Peruvian Andes, particularly in Junin plateau. Previously, Black variety of Maca showed to be more beneficial than other varieties of Maca on learning and memory in ovariectomized mice on the water finding test. The present study aimed to test two different doses of aqueous (0.50 and 2.00 g/kg) and hydroalcoholic (0.25 and 1.00 g/kg) extracts of Black Maca administered for 35 days on memory impairment induced by scopolamine (1mg/kg body weight i.p.) in male mice. Memory and learning were evaluated using the water Morris maze and the step-down avoidance test. Brain acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities in brain were also determined. Both extracts of Black Maca significantly ameliorated the scopolamine-induced memory impairment as measured in both the water Morris maze and the step-down avoidance tests. Black Maca extracts inhibited AChE activity, whereas MAO activity was not affected. These results indicate that Black Maca improves scopolamine-induced memory deficits.
Hanna, Laila S; Medhat, Amina M; Abdel-Menem, Hanan A
2003-04-01
In Egypt, infection with Schistosoma mansoni (S.m.) and residues of pesticides have been considered as major environmental pollutants that adversely affect health. Effects of diazinon (DZN) and/or praziquantel (PZQ) on the levels of plasma triiodothyronine (T3), thyroxine (T4), activities of brain acetylcholinesterase (AchE) and liver alanine aminotransferase (ALT) in addition to blood reduced glutathione (GSH) in healthy and S.m. infected mice were investigated after 9 and 17 weeks of either infection or intoxication with DZN. Triiodothyronine showed significant differences among the different treatments. The group of mice treated with PZQ showed the highest levels of T3 at both time intervals. Thyroxine level showed significant differences between the two time intervals. The lowest levels of T4 were observed in the infected-PZQ group at week 17. The maximum inhibition of brain AchE activity was noticed in DZN-PZQ treated group after 9 and 17 weeks. The different treatments significantly reduced the activities of liver ALT. The highest decrease was recorded in the infected-DZN-PZQ group at week 9. All treatments significantly lowered the levels of blood GSH after 9 weeks.
Dioxin induces expression of hsa-miR-146b-5p in human neuroblastoma cells.
Xu, Tuan; Xie, Heidi Q; Li, Yunping; Xia, Yingjie; Sha, Rui; Wang, Lingyun; Chen, Yangsheng; Xu, Li; Zhao, Bin
2018-01-01
Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect. Copyright © 2017. Published by Elsevier B.V.
Miller, Steven L.; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H.; Prager, Eric M.; Almeida-Suhett, Camila P.; Apland, James P.; Braga, Maria F.M.
2015-01-01
Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62 μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS) at 2 mg/kg, administered 20 min after soman exposure (1.2XLD50), terminated seizures. ATS at 0.5 mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1 h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90 days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1 h post-exposure, prevents brain pathology and behavioral deficits. PMID:25689173
Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu
2015-04-01
Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish. Copyright © 2013 Wiley Periodicals, Inc.
Jennings, Katie A.; Platt, Nicola J.; Cragg, Stephanie J.
2015-01-01
Dopamine function is disturbed in Parkinson's disease (PD), but whether and how release of dopamine from surviving neurons is altered has long been debated. Nicotinic acetylcholine receptors (nAChRs) on dopamine axons powerfully govern dopamine release and could be critical contributing factors. We revisited whether fundamental properties of dopamine transmission are changed in a parkinsonian brain and tested the potentially profound masking effects of nAChRs. Using real-time detection of dopamine in mouse striatum after a partial 6-hydroxydopamine lesion and under nAChR inhibition, we reveal that dopamine signals show diminished sensitivity to presynaptic activity. This effect manifested as diminished contrast between DA release evoked by the lowest versus highest frequencies. This reduced activity-dependence was underpinned by loss of short-term facilitation of dopamine release, consistent with an increase in release probability (Pr). With nAChRs active, the reduced activity-dependence of dopamine release after a parkinsonian lesion was masked. Consequently, moment-by-moment variation in activity of nAChRs may lead to dynamic co-variation in dopamine signal impairments in PD. PMID:26117304
Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Zhao, Ling; Liu, Mengyu
Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increasedmore » glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo and in vitro. • Hydrogen molecules have direct effect on the modulation of AChE activity in vitro.« less
Fifty-ninth Christmas Bird Count. 176. Ocean City, Md
Rattner, B.A.; Michael, S.D.
1983-01-01
Some organophosphorus insecticides have been reported to interfere with reproduction and even cause the decline of small mammal populations. The effects of such anticholinesterases on plasma LH concentrations were examined in male mice (Peromyscus leucopus noveboracensis) intubated with water (OW) or acephate (50 and 100 mg/kg) and sacrificed after 4 h. Brain acetylcholinesterase (AChE) activity was inhibited by 45 and 56%, and basal LH levels were reduced by 29 and 25% in mice receiving the 2 doses of acephate. Responsiveness to LHRH did not appear to be affected 4 h after intubation with 100 mg/kg acephate, as 5 ug/kg LHRH ip evoked a comparable rise in plasma LH after 30 min (2.4 and 3.6 fold) in OW-control and treated mice. Subchronic dietary exposure to 0, 25, 100, and 400 ppm acephate for 5 days resulted in a dose-dependent decline in brain AChE activity (23, 42, and 57%), but did not affect LH concentration or the weights of testes and seminal vesicles. These findings suggest that acute exposure to organophosphorus insecticides may impair reproductive function by altering LH secretion.
Dumont, M; Lalonde, R; Ghersi-Egea, J-F; Fukuchi, K; Strazielle, C
2006-09-01
In addition to Abeta plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by increased brain levels of APP C-terminal fragments. In the present investigation, the cholinergic innervation in forebrain regions of transgenic mice (Tg13592) expressing the human betaAPP C99 fragment was compared to that of non-transgenic controls by measuring the activity of the non-specific catabolic enzyme, acetylcholinesterase (AChE). The AchE activity of Tg13592 mice was altered in several regions implicated in the functional loop of regulation between septum and hippocampus, vulnerable in Alzheimer pathology and critically involved in cognitive functions. In particular, AChE activity was upregulated in three basal forebrain regions containing cholinergic cell bodies, prelimbic cortex, anterior subiculum, and paraventricular thalamus, but downregulated in lateral septum and reticular thalamus. The increased activity in medial septum and anterior subiculum was linearly correlated with poor performances in a spatial learning task, possibly due to cell stress mechanisms. Because of some similarities in terms of neurochemistry and behavior, this mouse model may be of use for studying prodromal AD.
Dingledine, Raymond; Kelly, J. S.
1977-01-01
1. In cats anaesthetized with halothane and nitrous oxide, the responses to iontophoretically applied acetylcholine (ACh) and to high-frequency stimulation of the mid-brain reticular formation (MRF) were tested on spontaneously active neurones in the nucleus reticularis thalami and underlying ventrobasal complex. 2. The initial response to MRF stimulation of 90% of the ACh-inhibited neurones found in the region of the dorsolateral nucleus reticularis was an inhibition. Conversely, the initial response of 82% of the ACh-excited neurones in the ventrobasal complex was an excitation. Neurones in the rostral pole of the nucleus reticularis were inhibited by both ACh and RMF stimulation. 3. The mean latency (and s.e. of mean) for the MRF-evoked inhibition was 13·7 ± 3·2 ms (n = 42) and that for the MRF-evoked excitation, 44.1 ± 4.2 ms (n = 35). 4. The ACh-evoked inhibitions were blocked by iontophoretic atropine, in doses that did not block amino acid-evoked inhibition. In twenty-four ACh-inhibited neurones the effect of iontophoretic atropine was tested on MRF-evoked inhibition. In all twenty-four neurones atropine had no effect on the early phase of MRF-evoked inhibition but weakly antagonized the late phase of inhibition in nine of fourteen neurones. 5. Interspike-interval histograms showed that the firing pattern of neurones in the nucleus reticularis was characterized by periods of prolonged, high-frequency bursting. Both the ACh-evoked inhibitions and the late phase of MRF-evoked inhibitions were accompanied by an increased burst activity. In contrast, iontophoretic atropine tended to suppress burst activity. 6. The possibility is discussed that electrical stimulation of the MRF activates an inhibitory cholinergic projection to the nucleus reticularis. Since neurones of the nucleus reticularis have been shown to inhibit thalamic relay cells, activation of this inhibitory pathway may play a role in MRF-evoked facilitation of thalamo-cortical relay transmission and the associated electrocortical desynchronization. PMID:915830
Curcumin attenuates collagen-induced inflammatory response through the "gut-brain axis".
Dou, Yannong; Luo, Jinque; Wu, Xin; Wei, Zhifeng; Tong, Bei; Yu, Juntao; Wang, Ting; Zhang, Xinyu; Yang, Yan; Yuan, Xusheng; Zhao, Peng; Xia, Yufeng; Hu, Huijuan; Dai, Yue
2018-01-06
Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.
Krey, Anke; Kwan, Michael; Chan, Hing Man
2014-11-01
Mercury (Hg) has been detected in polar bear brain tissue, but its biological effects are not well known. Relationships between Hg concentrations and neurochemical enzyme activities and receptor binding were assessed in the cerebellum, frontal lobes, and occipital lobes of 24 polar bears collected from Nunavik (Northern Quebec), Canada. The concentration-response relationship was further studied with in vitro experiments using pooled brain homogenate of 12 randomly chosen bears. In environmentally exposed brain samples, there was no correlative relationship between Hg concentration and cholinesterase (ChE) activity or muscarinic acetylcholine receptor (mAChR) binding in any of the 3 brain regions. Monoamine oxidase (MAO) activity in the occipital lobe showed a negative correlative relationship with total Hg concentration. In vitro experiments, however, demonstrated that Hg (mercuric chloride and methylmercury chloride) can inhibit ChE and MAO activities and muscarinic mAChR binding. These results show that Hg can alter neurobiochemical parameters but the current environmental Hg exposure level does have an effect on the neurochemistry of polar bears from northern Canada. © 2014 SETAC.
(-)-Phenserine inhibits neuronal apoptosis following ischemia/reperfusion injury.
Chang, Cheng-Fu; Lai, Jing-Huei; Wu, John Chung-Che; Greig, Nigel H; Becker, Robert E; Luo, Yu; Chen, Yen-Hua; Kang, Shuo-Jhen; Chiang, Yung-Hsiao; Chen, Kai-Yun
2017-12-15
Stroke commonly leads to adult disability and death worldwide. Its major symptoms are spastic hemiplegia and discordant motion, consequent to neuronal cell death induced by brain vessel occlusion. Acetylcholinesterase (AChE) is upregulated and allied with inflammation and apoptosis after stroke. Recent studies suggest that AChE inhibition ameliorates ischemia-reperfusion injury and has neuroprotective properties. (-)-Phenserine, a reversible AChE inhibitor, has a broad range of actions independent of its AChE properties, including neuroprotective ones. However, its protective effects and detailed mechanism of action in the rat middle cerebral artery occlusion model (MCAO) remain to be elucidated. This study investigated the therapeutic effects of (-)-phenserine for stroke in the rat focal cerebral ischemia model and oxygen-glucose deprivation/reperfusion (OGD/RP) damage model in SH-SY5Y neuronal cultures. (-)-Phenserine mitigated OGD/PR-induced SH-SY5Y cell death, providing an inverted U-shaped dose-response relationship between concentration and survival. In MCAO challenged rats, (-)-phenserine reduced infarction volume, cell death and improved body asymmetry, a behavioral measure of stoke impact. In both cellular and animal studies, (-)-phenserine elevated brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) levels, and decreased activated-caspase 3, amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP) expression, potentially mediated through the ERK-1/2 signaling pathway. These actions mitigated neuronal apoptosis in the stroke penumbra, and decreased matrix metallopeptidase-9 (MMP-9) expression. In synopsis, (-)-phenserine significantly reduced neuronal damage induced by ischemia/reperfusion injury in a rat model of MCAO and cellular model of OGD/RP, demonstrating that its anti-apoptotic/neuroprotective/neurotrophic cholinergic and non-cholinergic properties warrant further evaluation in conditions of brain injury. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Steven L., E-mail: stevenmiller17@gmail.com; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814; Aroniadou-Anderjaska, Vassiliki, E-mail: vanderjaska@usuhs.edu
Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD{sub 50} of 62 μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS)more » at 2 mg/kg, administered 20 min after soman exposure (1.2 × LD{sub 50}), terminated seizures. ATS at 0.5 mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1 h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90 days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1 h post-exposure, prevents brain pathology and behavioral deficits. - Highlights: • The LD{sub 50} of soman was determined in postnatal-day-21 rats. • Rats with no seizures after 1.2XLD{sub 50} soman had less reduction of AChE in the amygdala. • Atropine sulfate (ATS) at 2 mg/kg, given at 20 min after soman, blocked seizures. • With ATS at 0.5 mg/kg, LY293558 or UBP302 at 1 h after exposure terminated seizures. • LY293558 prevented brain pathology and behavioral deficits.« less
A workflow to investigate exposure and pharmacokinetic ...
Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption, distribution, metabolism, excretion (ADME) properties of chemicals. We developed a conceptual workflow to consider exposure and ADME properties in relationship to an MIE and demonstrated the utility of this workflow using a previously established AOP, acetylcholinesterase (AChE) inhibition. Thirty active chemicals found to inhibit AChE in the ToxCastTM assay were examined with respect to their exposure and absorption potentials, and their ability to cross the blood-brain barrier. Structural similarities of active compounds were compared against structures of inactive compounds to detect possible non-active parents that might have active metabolites. Fifty-two of the 1,029 inactive compounds exhibited a similarity threshold above 75% with their nearest active neighbors. Excluding compounds that may not be absorbed, 22 could be potentially toxic following metabolism. The incorporation of exposure and ADME properties into the conceptual workflow resulted in prioritization of 20 out of 30 active compounds identified in an AChE inhibition assay for further analysis, along with identification of several inactive parent compounds of active metabolites. This qualitative approach can minimize co
Wang, Peipei; Sun, Hongxiang; Liu, Dianyu; Jiao, Zezhao; Yue, Su; He, Xiuquan; Xia, Wen; Ji, Jianbo; Xiang, Lan
2017-05-05
Portulaca oleracea L. is a potherb and also a widely used traditional Chinese medicine. In accordance with its nickname "longevity vegetable", pharmacological study demonstrated that this plant possessed antioxidant, anti-aging, and cognition-improvement function. Active principles pertaining to these functions of P. oleracea need to be elucidated. The present study evaluated the effect of a phenolic extract (PAAs) from P. oleracea which contained specific antioxidant indoline amides on cognitive impairment in senescent mice. PAAs was prepared through AB-8 macroporous resin column chromatography. Total phenol content was determined using colorimetric method, and contents of indoline amides were determined using HPLC-UV method. Senescent Kunming mice with cognitive dysfunction were established by intraperitoneal injection of D-galactose (D-gal, 1250mg/kg/day) and NaNO 2 (90mg/kg/day) for 8 weeks, L-PAAs (360mg/kg/day), H-PAAs (720mg/kg/day), and nootropic drug piracetam (PA, 400mg/kg/day) as the positive control were orally administered. Spatial learning and memory abilities were evaluated by Morris water maze experiment. Activities of AChE, SOD, CAT, and levels of GSH and MDA in the brain or plasma were measured. Hippocampal morphology was observed by HE staining. Chronic treatment of large dose of D-gal/NaNO 2 significantly reduced lifespan, elevated AChE activity, decreased CAT activity, compensatorily up-regulated SOD activity and GSH level, increased MDA level, induced neuronal damage in hippocampal CA1, CA3 and CA4 regions, and impaired cognitive function. Similar to PA, PAAs prolonged the lifespan and improved spatial memory ability. Moreover, PAAs improved learning ability. H-PAAs significantly reversed compensatory increase in SOD activity to the normal level, elevated serum CAT activity, and reduced MDA levels in brain and plasma, more potent than L-PAAs. Besides these, PAAs evidently inhibited hippocampal neuronal damage. However, it had no effect on brain AChE activity. PAAs as the bioactive principles of P. oleracea attenuated oxidative stress, improved survival rate, and enhanced cognitive function in D-gal/NaNO 2 -induced senile mice, similar to piracetam. This phenolic extract provides a promising candidate for prevention of aging and aging-related cognitive dysfunction in clinic. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Deer Bone Extract Prevents Against Scopolamine-Induced Memory Impairment in Mice
Du, Chun Nan; Min, A Young; Kim, Hyun Jeong; Shin, Suk Kyung; Yu, Ha Ni; Sohn, Eun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun
2015-01-01
Abstract Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aβ1–42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine. PMID:25546299
Fawcett, William P; Aracava, Yasco; Adler, Michael; Pereira, Edna F R; Albuquerque, Edson X
2009-02-01
This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.
Evaluation of antioxidant and anti-inflammatory efficacy of caffeine in rat model of neurotoxicity.
Hosny, Eman N; Sawie, Hussein G; Elhadidy, Mohamed E; Khadrawy, Yasser A
2018-03-07
The present study aims to investigate the neuroprotective effect of caffeine against aluminum chloride (AlCl 3 )-induced neurotoxicity in rats. Twenty-one male albino rats were divided into 3 groups: control, AlCl 3 -intoxicated group that received daily oral administration of AlCl 3 (100 mg/kg for 30 days) and protected group injected daily with caffeine (20 mg/kg intraperitoneally) one hour before oral administration of AlCl 3 for 30 days. Levels of lipid peroxidation, reduced glutathione, and nitric oxide and the activities of acetylcholinesterase (AchE) and Na + /K + -ATPase were measured spectrophotometrically. Tumor necrosis factor-α (TNF-α) was evaluated by ELISA kit. The data revealed evidence of oxidative and nitrosative stress in the cerebral cortex, hippocampus, and striatum of AlCl 3 -intoxicated rats. This was indicated from the increased levels of lipid peroxidation and nitric oxide together with the decreased level of reduced glutathione. Moreover, the daily AlCl 3 administration increased AchE and Na + /K + -ATPase activities and the level of TNF-α in the selected brain regions. Protection with caffeine ameliorated the oxidative stress induced by AlCl 3 in the cerebral cortex, hippocampus, and striatum. In addition, caffeine restored the elevated level of TNF-α in the hippocampus and striatum. This was accompanied by an improvement in the activities of AchE and Na + /K + -ATPase in the studied brain regions. The present findings clearly indicate that caffeine provides a significant neuroprotection against AlCl 3 -induced neurotoxicity mediated by its antioxidant, anti-inflammatory, and anticholinesterase properties.
Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators
Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.
2007-01-01
Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817
Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A
2012-04-01
The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure.
Osten, Jaime Rendón-von; Soares, Amadeu M V M; Guilhermino, Lucia
2005-02-01
Rice is the main crop in the subbasin of the fluvial lagoon system of Palizada River (FLSPR) in the state of Campeche, Mexico. The pesticides used to control pests of this crop mainly are carbofuran, chlorpyrifos, and glyphosate. Black-bellied whistling duck (Dendrocygna autumnalis) is an ecologically and economically important species in the area. This duck is consumed by local inhabitants throughout the year, despite its potential exposure to pesticides. Due to its feeding habits, abundance, and nutritional value, D. autumnalis is a good indicator of environmental contamination and a potential route of human exposure to organophosphate and carbamate pesticides. In this study, the brain cholinesterase (ChE) in the frontal cerebral cortex of autochthonous ducks was characterized. In addition, the potential of the three locally used pesticides and mixtures to inhibit ChE activity was investigated and the exposure of the wild duck population during intensive pesticide applications in rice fields was evaluated. We found that acetylcholinesterase (AChE) seems to be the predominant ChE form in the biological fraction analyzed. Carbofuran was the most potent ChE inhibitor of D. autumnalis brain ChE activity from the three pesticides analyzed. Cholinesterase inhibition after exposure to pesticide mixtures predominantly was due to carbofuran. A decrease (p < 0.05) in AChE activity (>30%) was apparent in wild ducks compared to reference ducks, with recovery of ChE inhibition in wild ducks occurring months later when no pesticides were applied in the field. Dendrocygna autumnalis brain ChE is a suitable parameter for inclusion in biomonitoring programs for both environmental protection and human safety.
Husain, I; Akhtar, M; Abdin, M Zainul; Islamuddin, M; Shaharyar, M; Najmi, A K
2018-04-01
Amyloid beta (Aβ) peptide aggregation and cholinergic neurodegeneration are involved in the development of cognitive impairment. Therefore, in this article, we examined rosuvastatin (RSV), an oral hypolipidemic drug, to determine its potential as a dual inhibitor of acetylcholinesterase (AChE) and Aβ peptide aggregation for the treatment of cognitive impairment. Molecular docking study was done to examine the affinity of RSV with Aβ 1-42 and AChE in silico. We also employed neurobehavioral activity tests, biochemical estimation, and histopathology to study the anti-Aβ 1-42 aggregation capability of RSV in vivo. Molecular docking study provided evidence that RSV has the best binding conformer at its receptor site or active site of an enzyme. The cognitive impairment in female Wistar rats was induced by high-salt and cholesterol diet (HSCD) ad libitum for 8 weeks. RSV ameliorated serum cholesterol level, AChE activity, and Aβ 1-42 peptide aggregations in HSCD induced cognitive impairment. In addition, RSV-treated rats showed greater scores in the open field (locomotor activity) test. Moreover, the histopathological studies in the hippocampus and cortex of rat brain also supported that RSV markedly reduced the cognitive impairment and preserved the normal histoarchitectural pattern of the hippocampus and cortex. Taken together, these data indicate that RSV may act as a dual inhibitor of AChE and Aβ 1-42 peptide aggregation, therefore suggesting a therapeutic strategy for cognitive impairment treatment.
Sukhorukov, Alexey Yu; Nirvanappa, Anilkumar C; Swamy, Jagadish; Ioffe, Sema L; Nanjunda Swamy, Shivananju; Basappa; Rangappa, Kanchugarakoppal S
2014-08-01
Thirteen 2-oxazine-based small molecules were synthesized targeting 5-lipoxygenase (LOX), and acetylcholinesterase (AChE). The test revealed that the newly synthesized compounds had potent inhibition towards both 5-LOX and AChE in lower micro molar concentration. Among the tested compounds, the most active compound, 2-[(2-acetyl-6,6-dimethyl-4-phenyl-5,6-dihydro-2H-1,2-oxazin-3-yl)methyl]-1H-isoindole-1,3(2H)-dione (2a) showed inhibitory activity towards 5-LOX and AChE with an IC50 values of 1.88, and 2.5 μM, respectively. Further, the in silico molecular docking studies revealed that the compound 2a bound to the catalytic domain of AChE strongly with a highest CDOCKER score of -1.18 kcal/mol when compared to other compounds of the same series. Additionally, 2a showed a good lipophilicity (logP=2.66), suggesting a potential ability to penetrate the blood-brain-barrier. These initial pharmacological data revealed that the compound 2a could serve as a drug-seed in developing anti-Alzheimer's agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chi, Feng; Wang, Lin; Zheng, Xueye; Jong, Ambrose; Huang, Sheng-He
2011-08-01
We investigate how the α7 nicotinic acetylcholine receptor (α7 nAChR), an essential regulator of inflammation, contributes to the α7 agonist nicotine-enhanced Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMECs) through lipid rafts/caveolae-mediated signaling. α7 nAChR-mediated signaling and bacterial invasion were defined by lipid raft fractionation, immunofluorescence microscopy and siRNA knockdown. Nicotine-enhanced bacterial invasion was dose-dependently inhibited by two raft-disrupting agents, nystatin and filipin. Significant accumulation of the lipid raft marker GM3 was observed in HBMEC induced by E. coli K1 and nicotine. The recruitment of α7 nAChR and related signaling molecules, including vimentin, and Erk1/2, to caveolin-1 enriched lipid rafts was increased upon treatment with E44 or E44 plus nicotine. Erk1/2 activation (phosphorylation), which is required for α7 nAChR-mediated signaling and E44 invasion, was associated with lipid rafts and nicotine-enhanced bacterial infection. Furthermore, E44 invasion, E44/nicotine-induced activation of Erk1/2 and clustering of α7 nAChR and caveolin-1 was specifically blocked by both siRNAs. α7 nAChR-mediated signaling through lipid rafts/caveolae is required for nicotine-enhanced E. coli K1 invasion of HBMEC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Haruo; Suzuki, Tadahiko; Sakamoto, Maki
Activity of acetylcholinesterase (AChE) and specific binding of [{sup 3}H]quinuclidinyl benzilate (QNB), [{sup 3}H]pirenzepine (PZP) and [{sup 3}H]AF-DX 384 to muscarinic acetylcholine receptor (mAChR) preparations in the striatum, hippocampus and cortex of rats were determined 1, 6 and 11 days after the last treatment with an organophosphate DDVP, a carbamate propoxur or a muscarinic agonist oxotremorine as a reference for 7 and 14 days. AChE activity was markedly decreased in the three regions 1 day after the treatment with DDVP for 7 and 14 days with a gradual recovery 6 to 11 days, and much less decreased 1, 6 andmore » 11 days after the treatment with propoxur for 7 days but not for 14 days in the hippocampus and cortex. The binding of [{sup 3}H]-QNB, PZP and AF-DX 384 in the three regions was generally decreased by the treatment with DDVP for 7 and 14 days. Such down-regulations were generally restored 6 or 11 days after the treatment for 7 but not for 14 days. The down-regulation or up-regulation as measured by [{sup 3}H]-QNB, PZP and AF-DX 384 was observed 1, 6 or 11 days after treatment with propoxur for 7 days and/or 14 days. Repeated treatment with oxotremorine produced similar effects except AChE activity to DDVP. These results suggest that repeated inhibition of AChE activity may usually cause down-regulation of mAChRs with some exception in the hippocampus when a reversible antiChE propoxur is injected.« less
Fadl, N N; Ahmed, H H; Booles, H F; Sayed, A H
2013-07-01
Serrapeptase (SP) and nattokinase (NK) are proteolytic enzymes belonging to serine proteases. In this study, we hypothesized that SP and NK could modulate certain factors that are associated with Alzheimer's disease (AD) pathophysiology in the experimental model. Oral administration of aluminium chloride (AlCl3) in a dose of 17 mg/kg body weight (bw) daily for 45 days induced AD-like pathology in male rats with a significant increase in brain acetylcholinesterase (AchE) activity, transforming growth factor β (TGF-β), Fas and interleukin-6 (IL-6) levels. Meanwhile, AlCl3 supplementation produced significant decrease in brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) when compared with control values. Also, AlCl3 administration caused significant decline in the expression levels of disintegrin and metalloproteinase domain 9 (ADAM9) and a disintegrin and metalloproteinase domain 10 (ADAM10) genes in the brain. Histological investigation of brain tissue of rat model of AD showed neuronal degeneration in the hippocampus and focal hyalinosis with cellular as well as a cellular amyloid plaques formation. Oral administration of SP or NK in a rat model of AD daily for 45 days resulted in a significant decrease in brain AchE activity, TGF-β, Fas and IL-6 levels. Also, the treatment with these enzymes produced significant increase in BDNF and IGF-1 levels when compared with the untreated AD-induced rats. Moreover, both SP and NK could markedly increase the expression levels of ADAM9 and ADAM10 genes in the brain tissue of the treated rats. These findings were well confirmed by the histological examination of the brain tissue of the treated rats. The present results support our hypothesis that the oral administration of proteolytitc enzymes, SP and/or NK, would have an effective role in modulating certain factors characterizing AD. Thus, these enzymes may have a therapeutic application in the treatment of AD.
Hassanein, Hamdy M A
2002-01-01
The alterations of the AChE activity in the brains of two fresh water fishes; Oreochromis niloticus and Gambusia affinis were measured after exposure to acute, sub-acute and chronic concentrations from the widely used herbicide; oxyfluorfen. Bioassays were conducted under controlled laboratory conditions. The used concentrations were acute: LC50 for 6 days, sub-acute 1/3 LC50 for 15 days and chronic 1/10 LC50 for 30 days. The obtained results showed marked inhibitory effects of the herbicide on the activity of AChE in both fishes. However, these effects were more pronounced in O. niloticus where the decline in the enzyme activity ranged from 19.7 to 81.28% while in case of G. affinis it ranged from 5.7 to 36.7%. These findings demonstrate that G. affinis is most tolerant to oxyfluorfen toxicity compared with O. niloticus.
Watabe, Tadashi; Naka, Sadahiro; Ikeda, Hayato; Horitsugi, Genki; Kanai, Yasukazu; Isohashi, Kayako; Ishibashi, Mana; Kato, Hiroki; Shimosegawa, Eku; Watabe, Hiroshi; Hatazawa, Jun
2014-01-01
Acetylcholinesterase (AChE) inhibitors have been used for patients with Alzheimer's disease. However, its pharmacokinetics in non-target organs other than the brain has not been clarified yet. The purpose of this study was to evaluate the relationship between the whole-body distribution of intravenously administered (11)C-Donepezil (DNP) and the AChE activity in the normal rat, with special focus on the adrenal glands. The distribution of (11)C-DNP was investigated by PET/CT in 6 normal male Wistar rats (8 weeks old, body weight = 220 ± 8.9 g). A 30-min dynamic scan was started simultaneously with an intravenous bolus injection of (11)C-DNP (45.0 ± 10.7 MBq). The whole-body distribution of the (11)C-DNP PET was evaluated based on the Vt (total distribution volume) by Logan-plot analysis. A fluorometric assay was performed to quantify the AChE activity in homogenized tissue solutions of the major organs. The PET analysis using Vt showed that the adrenal glands had the 2nd highest level of (11)C-DNP in the body (following the liver) (13.33 ± 1.08 and 19.43 ± 1.29 ml/cm(3), respectively), indicating that the distribution of (11)C-DNP was the highest in the adrenal glands, except for that in the excretory organs. The AChE activity was the third highest in the adrenal glands (following the small intestine and the stomach) (24.9 ± 1.6, 83.1 ± 3.0, and 38.5 ± 8.1 mU/mg, respectively), indicating high activity of AChE in the adrenal glands. We demonstrated the whole-body distribution of (11)C-DNP by PET and the AChE activity in the major organs by fluorometric assay in the normal rat. High accumulation of (11)C-DNP was observed in the adrenal glands, which suggested the risk of enhanced cholinergic synaptic transmission by the use of AChE inhibitors.
A Workflow to Investigate Exposure and Pharmacokinetic ...
Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties of chemicals.Objectives: We developed a conceptual workflow to examine exposure and ADME properties in relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, acetylcholinesterase (AChE) inhibition.Methods: Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier (BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals to detect possible parent compounds that might have active metabolites.Results: Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of metabolic activation.Conclusions: The incorporation of exposure and ADME properties into the conceptual workflow e
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaiswal, R.; Huang, T.; Obih, P.
1995-12-31
The objectives of this study are to investigate the sensitivity of different classes of esterases in various aquatic species to environmental contaminants and the possible use of these enzymes as biomarkers for monitoring the effects of pollutants. Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and the non-specific carboxylesterases (CaE) were analyzed in three fish species, Ictiobus bubalus (small mouth buffalo), Ictiobus cyprinellus (big mouth buffalo) and Lepisosteus oculatus (spotted gar) and the green tree frog, Hyla cinerea. These samples were collected from the Devil`s Swamp Site (DSS), an industrial site known to be highly contaminated at the Mississippi River Basin, and Lake Tunica,more » a nonindustrial site. ACHE and BuChE activities in the subcellular fractions of liver and brain were significantly lower in fishes and frogs obtained from DSS when compared to the same species obtained from Tunica swamp site. The greatest decrease was observed with ACHE activity in the liver and brain of Ictiobus bubalus from DSS. CaE activity analyzed with p-nitrophenyl acetate was found to be significantly lower in the liver of all three fish species collected from DSS when compared to the same fish species obtained from the Tunica swamp site.« less
Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami
2016-03-01
Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.
Acetylcholinesterases of blood-feeding flies and ticks.
Temeyer, Kevin B; Tuckow, Alexander P; Brake, Danett K; Li, Andrew Y; Pérez de León, Adalberto A
2013-03-25
Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to elucidate structure-activity relationships for AChE that are important for advances in targeted pest control, as well as potential applications for medicine and biosecurity. Published by Elsevier Ireland Ltd.
Tang, Jing-shu; Xie, Bing-xue; Bian, Xi-ling; Xue, Yu; Wei, Ning-ning; Zhou, Jing-heng; Hao, Yu-chen; Li, Gang; Zhang, Liang-ren; Wang, Ke-wei
2015-07-01
Alpha7-nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 μmol/L. Br-IQ17B is selective over other subtypes such as α4β2 and α3β4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [(3)H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits.
Tang, Jing-shu; Xie, Bing-xue; Bian, Xi-ling; Xue, Yu; Wei, Ning-ning; Zhou, Jing-heng; Hao, Yu-chen; Li, Gang; Zhang, Liang-ren; Wang, Ke-wei
2015-01-01
Aim: Alpha7-nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated Ca2+-permeable ion channel implicated in cognition and neuropsychiatric disorders. Activation of α7 nAChR improves learning, memory, and sensory gating in animal models. To identify novel α7 nAChR agonists, we synthesized a series of small molecules and characterized a representative compound, Br-IQ17B, N-[(3R)-1-azabicyclo[2,2,2]oct-3-yl]-5-bromoindolizine-2-carboxamide, which specifically activates α7 nAChR. Methods: Two-electrode voltage clamp (TEVC) recordings were primarily used for screening in Xenopus oocytes expressing human α7 nAChR. Assays, including radioisotope ligand binding, Western blots, whole-cell recordings of hippocampal culture neurons, and spontaneous IPSC recordings of brain slices, were also utilized to evaluate and confirm the specific activation of α7 nAChR by Br-IQ17B. Results: Br-IQ17B potently activates α7 nAChR with an EC50 of 1.8±0.2 μmol/L. Br-IQ17B is selective over other subtypes such as α4β2 and α3β4, but it blocks 5-HT3A receptors. Br-IQ17B displaced binding of the α7 blocker [3H]-MLA to hippocampal crude membranes with a Ki of 14.9±3.2 nmol/L. In hippocampal neurons, Br-IQ17B evoked α7-like currents that were inhibited by MLA and enhanced in the presence of the α7 PAM PNU-120596. In brain slice recordings, Br-IQ17B enhanced GABAergic synaptic transmission in CA1 neurons. Mechanistically, Br-IQ17B increased ERK1/2 phosphorylation that was MLA-sensitive. Conclusion: We identified the novel, potent, and selective α7 agonist Br-IQ17B, which enhances synaptic transmission. Br-IQ17B may be a helpful tool to understand new aspects of α7 nAChR function, and it also has potential for being developed as therapy for schizophrenia and cognitive deficits. PMID:25948478
Zahniser, N R; Chou, D; Hanin, I
1977-03-01
Acute administration of deanol-p-acetamidobenzoate (Deaner; deanol) has been reported to elevate brain choline (CH) and acetylcholine (ACh) levels. We have developed a specific and sensitive gas chromatographic assay to measure deanol levels in tissue and have applied this assay to our studies of the effect of acute deanol administration on deanol, ACh and Ch levels in rodent brains. Details of the method are described in this text. This procedure is quantitative and yields reproducible results over a wide range of deanol concentrations (0.30-200 nmol). Seven endogenous and pharmacological parameters have been studied using this procedure. In control rodent brain, liver, heart, lung and plasma, we detected no free endogenous deanol (less than 1 nmol/g). After deanol administration, we were able to detect deanol in tissue and have attempted to determine a relationship between these levels and values of ACh in the same tissue. Regardless of deanol pretreatment time (1-30 minutes) or doses (33.3-3000 mg/kg i.p.) used, we detected no increase in mouse whole brain ACh levels. Likewise, there was no detectable elevation in ACh levels in rat whole brain, cortex, striatum or hippocampus after a 15-minute pretreatment with 550 mg/kg of deanol (i.p.). The only elevation in ACh levels which we detected occurred selectively in the striatum of mice pretreated with a massive dose (900 mg/kg i.p.) of deanol for 30 minutes. This selective increase in striatal ACh levels oculd not, however, be related to levels of deanol in the striatum because there was no greater accumulation of deanol in the striatum than in other brain areas tested or in whole brain. These data do not confirm the results of other investigators who reported elevations in whole brain or striatal ACh levels after acute administration of lower doses of deanol. The data emphasize the need for further investigation into the mode of action of deanol and question its suggested role as an immediate precursor of ACh synthesis in the central nervous system.
Li, Zhi-Hua; Li, Ping; Shi, Ze-Chao
2016-03-01
Tributyltin (TBT), as antifouling paints, is widely present in aquatic environment, but little is known regarding the toxicity of TBT on fish brain. In this study, the effects of exposure to TBT on the antioxidant defense system, Na(+) -K(+) -ATPase activity, neurological enzymes activity and Hsp 70 protein level in brain of juvenile common carp (Cyprinus carpio) were studied. Fish were exposed to sublethal concentrations of TBT (5, 10 and 20 μg/L) for 7 days. Based on the results, with increasing concentrations of TBT, oxidative stress was apparent as reflected by the significant higher levels of oxidative indices, as well as the significant inhibition of all antioxidant enzymes activities. Besides, the activities of Acetylcholinesterase (AChE), Monoamine oxidases (MAO) and Na(+) -K(+) -ATPase were significantly inhibited after exposure to TBT with higher concentrations. In addition, the levels of Hsp 70 protein were evaluated under TBT stress with dose-depended manner. These results suggest that selected physiological responses in fish brain could be used as potential biomarkers for monitoring residual organotin compounds present in aquatic environment. © 2014 Wiley Periodicals, Inc.
Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats.
Rodrigues, K J A; Santana, M B; Do Nascimento, J L M; Picanço-Diniz, D L W; Maués, L A L; Santos, S N; Ferreira, V M M; Alfonso, M; Durán, R; Faro, L R F
2010-01-01
Thiamethoxam is a neonicotinoid insecticide, a group of pesticides that acts selectively on insect nicotinic acetylcholine receptors (nAChRs), with only a little action on mammalian nAChRs. Nevertheless, the selectivity of neonicotinoids for the insect nAChRs may change when these substances are metabolized. Therefore, we aimed to determine the potential effects of thiamethoxam on mammalian brain, testing the performance in the open field and elevated plus-maze of rats exposed to this insecticide and, in order to establish the neurochemical endpoints, we measured the acetylcholinesterase activity in different brain regions (hippocampus, striatum and cortex) and the high-affinity choline uptake (HACU) in synaptosomes from rat hippocampus. Treated animals received thiamethoxam (25, 50 or 100mg/kg) for 7 consecutive days. The results showed that treatment with thiamethoxam induced an increase in the anxiety behavior at two doses (50 or 100mg/kg). Moreover, there was a significant decrease in both HACU and acetylcholinesterase activity. Our hypothesis is that thiamethoxam (or its metabolites) could be acting on the central rats nAChRs. This would produce an alteration on the cholinergic transmission, modulating the anxiety behavior, acetylcholinesterase levels and HACU.
Ozkan, Umit; Osun, Arif; Basarslan, Kagan; Senol, Serkan; Kaplan, Ibrahim; Alp, Harun
2014-01-01
Chlorpyriphos is one of the most widely used organophosphate (OP) insecticide in agriculture with potential toxicity. Current post-exposure treatments consist of anti-cholinergic drugs and oxime compounds. We studied the effects of intralipid and caffeic acid phenethyl ester (CAPE) on chlorpyriphos toxicity to compose an alternative or supportive treatment for OP poisoning. Methods: Forty-nine rats were randomly divided into seven groups. Chlorpyriphos was administered for toxicity. Intralipid (IL) and CAPE administered immediately after chlorpyriphos. Serum acetylcholinesterase (AChE) level, total oxidant status (TOS), total antioxidant response (TAR), and histologic examination of cerebellum and brain tissue with Hematoxylin-Eosin and immunohistochemical dyes were examined. Results: Serum enzym levels showed that chlorpyriphos and CAPE inhibited AChE while IL alone had no effect, chlorpyriphos and CAPE intensifies the inhibition effect. Significant difference at AChE levels between the chlorpyriphos+IL and chlorpyriphos+CAPE verified that IL has a protective effect on AChE inhibition. TAR levels were significantly increased in all groups except chlorpyriphos group, TOS levels revealed that CAPE and IL decrease the amount of oxidative stress. Histologic examination revealed that neuronal degeneration was slightly decreased at chlorpyriphos+IL group, but CAPE had a significant effect on protection of neuronal degeneration. Conclusion: The results of this study gave us three key points. 1) AChE activity is important for diagnosis of OP intoxication but it has no value for determining the neuro-degeneration. 2) CAPE inhibits AChE activity and may increase the muscarinic-nicotinic hyperactivation. Therefore it should not be used for treatment of OP intoxication. 3) IL decreases the severity of neurodegeneration and symptoms of OP intoxication and it can be used as a supportive agent. PMID:24955152
(-)-Phenserine Attenuates Soman-Induced Neuropathology
Chen, Jun; Pan, Hongna; Chen, Cynthia; Wu, Wei; Iskandar, Kevin; He, Jeffrey; Piermartiri, Tetsade; Jacobowitz, David M.; Yu, Qian-Sheng; McDonough, John H.; Greig, Nigel H.; Marini, Ann M.
2014-01-01
Organophosphorus (OP) nerve agents are deadly chemical weapons that pose an alarming threat to military and civilian populations. The irreversible inhibition of the critical cholinergic degradative enzyme acetylcholinesterase (AChE) by OP nerve agents leads to cholinergic crisis. Resulting excessive synaptic acetylcholine levels leads to status epilepticus that, in turn, results in brain damage. Current countermeasures are only modestly effective in protecting against OP-induced brain damage, supporting interest for evaluation of new ones. (-)-Phenserine is a reversible AChE inhibitor possessing neuroprotective and amyloid precursor protein lowering actions that reached Phase III clinical trials for Alzheimer's Disease where it exhibited a wide safety margin. This compound preferentially enters the CNS and has potential to impede soman binding to the active site of AChE to, thereby, serve in a protective capacity. Herein, we demonstrate that (-)-phenserine protects neurons against soman-induced neuronal cell death in rats when administered either as a pretreatment or post-treatment paradigm, improves motoric movement in soman-exposed animals and reduces mortality when given as a pretreatment. Gene expression analysis, undertaken to elucidate mechanism, showed that (-)-phenserine pretreatment increased select neuroprotective genes and reversed a Homer1expression elevation induced by soman exposure. These studies suggest that (-)-phenserine warrants further evaluation as an OP nerve agent protective strategy. PMID:24955574
Abdullah, Laila; Evans, James E; Montague, Hannah; Reed, Jon M; Moser, Ann; Crynen, Gogce; Gonzalez, Ariel; Zakirova, Zuchra; Ross, Ivan; Mullan, Chris; Mullan, Michael; Ait-Ghezala, Ghania; Crawford, Fiona
2013-01-01
For two decades, 25% of the veterans who served in the 1991 Gulf War (GW) have been living with Gulf War Illness (GWI), a chronic multisymptom illness. Evidence suggests that brain structures involved in cognitive function may be affected in GWI. Gulf War agents such as the acetylcholinesterase (AChE) inhibitor pyridostigmine bromide (PB) and the pesticide permethrin (PER) are considered key etiogenic factors in GWI. We therefore developed a mouse model of GW agent exposure by co-administering PB and PER and showed that this model exhibits cognitive impairment and anxiety, and increased astrogliosis at chronic post-exposure time-points. Since GW agents inhibit AChE, we hypothesized that PB+PER exposure will modulate phosphatidylcholine (PC) and sphingomyelin (SM), which are reservoirs of phosphocholine required for endogenous ACh synthesis. Lipidomic analyses showed that PC and SM were elevated in the brains of exposed compared to control mice. Brain ether PC (ePC) species were increased but lyso-platelet activating factors (lyso-PAF) that are products of ePC were decreased in exposed animals compared to controls. Catalase expression (a marker for peroxisomes) was increased in GW agent exposed mice compared to controls. Ether PC and lyso-PAF modulation was also evident in the plasma of GW agent exposed mice compared to controls. These studies suggest peroxisomal and lysosomal dysfunction in the brain at a chronic post-exposure timepoint following GW agent exposure. Our studies provide a new direction for GWI research, which will be useful for developing suitable therapies for treating GWI. © 2013 Elsevier Inc. All rights reserved.
Apium graveolens extract influences mood and cognition in healthy mice.
Boonruamkaew, Phetcharat; Sukketsiri, Wanida; Panichayupakaranant, Pharkphoom; Kaewnam, Wijittra; Tanasawet, Supita; Tipmanee, Varomyalin; Hutamekalin, Pilaiwanwadee; Chonpathompikunlert, Pennapa
2017-07-01
Apium graveolens is a food flavoring which possesses various health promoting effects. This study investigates the effect of a sub-acute administration of A. graveolens on cognition and anti-depression behaviors via antioxidant and related neurotransmitter systems in mice brains. Cognition and depression was assessed by various models of behavior. The antioxidant system of glutathione peroxidase (GPx), % inhibition of superoxide anion (O 2 - ), and lipid peroxidation were studied. In addition, neurochemical parameters including acetylcholinesterase (AChE) and monoamine oxidase-type A (MAO-A) were also evaluated. Nine groups of male mice were fed for 30 days with different substances-a control, vehicle, A. graveolens extract (65-500 mg/kg), and reference drugs (donepezil and fluoxetine). The results indicated that the effect of the intake of A. graveolens extract (125-500 mg/kg) was similar to the reference drugs, as it improved both spatial and non-spatial memories. Moreover, there was a decrease in immobility time in both the forced swimming and tail suspension tests. In addition, the A. graveolens extract reduced lipid peroxidation of the brain and increased GPx activity and the % inhibition of O 2 - , whereas the activities of AChE and MAO-A were decreased. Thus, our data have shown that the consumption of A. graveolens extract improved cognitive function and anti-depression activities as well as modulating the endogenous antioxidant and neurotransmitter systems in the brain, resulting in increased neuronal density. This result indicated an important role for A. graveolens extract in preventing age-associated decline in cognitive function associated with depression.
Co, Aila L.; Hay, Ariel M.; MacDonald, James W.; Bammler, Theo K.; Farin, Federico M.; Costa, Lucio G.; Furlong, Clement E.
2014-01-01
Chlorpyrifos oxon (CPO), the toxic metabolite of the organophosphorus (OP) insecticide chlorpyrifos, causes developmental neurotoxicity in humans and rodents. CPO is hydrolyzed by paraoxonase-1 (PON1), with protection determined by PON1 levels and the human Q192R polymorphism. To examine how the Q192R polymorphism influences fetal toxicity associated with gestational CPO exposure, we measured enzyme inhibition and fetal-brain gene expression in wild-type (PON1+/+), PON1-knockout (PON1−/−), and tgHuPON1R192 and tgHuPON1Q192 transgenic mice. Pregnant mice exposed dermally to 0, 0.50, 0.75, or 0.85 mg/kg/d CPO from gestational day (GD) 6 through 17 were sacrificed on GD18. Biomarkers of CPO exposure inhibited in maternal tissues included brain acetylcholinesterase (AChE), red blood cell acylpeptide hydrolase (APH), and plasma butyrylcholinesterase (BChE) and carboxylesterase (CES). Fetal plasma BChE was inhibited in PON1−/− and tgHuPON1Q192, but not PON1+/+ or tgHuPON1R192 mice. Fetal brain AChE and plasma CES were inhibited in PON1−/− mice, but not in other genotypes. Weighted gene co-expression network analysis identified five gene modules based on clustering of the correlations among their fetal-brain expression values, allowing for correlation of module membership with the phenotypic data on enzyme inhibition. One module that correlated highly with maternal brain AChE activity had a large representation of homeobox genes. Gene set enrichment analysis revealed multiple gene sets affected by gestational CPO exposure in tgHuPON1Q192 but not tgHuPON1R192 mice, including gene sets involved in protein export, lipid metabolism, and neurotransmission. These data indicate that maternal PON1 status modulates the effects of repeated gestational CPO exposure on fetal-brain gene expression and on inhibition of both maternal and fetal biomarker enzymes. PMID:25070982
Akomolafe, S F; Akinyemi, A J; Ogunsuyi, O B; Oyeleye, S I; Oboh, G; Adeoyo, O O; Allismith, Y R
2017-09-01
Caffeine and caffeic acid are two bioactive compounds that are present in plant foods and are major constituent of coffee, cocoa, tea, cola drinks and chocolate. Although not structurally related, caffeine and caffeic acid has been reported to elicit neuroprotective properties. However, their different proportional distribution in food sources and possible effect of such interactions are not often taken into consideration. Therefore, in this study, we investigated the effect of caffeine, caffeic acid and their various combinations on activities of some enzymes [acetylcholinesterase (AChE), monoamine oxidase (MAO) ecto-nucleoside triphosphate diphosphohydrolase (E-NTPase), ecto-5 1 -nucleotidase (E-NTDase) and Na + /K + ATPase relevant to neurodegeneration in vitro in rat brain. The stock concentration of caffeine and caffiec acid and their various proportional combinations were prepared and their interactions with the activities of these enzymes were assessed (in vitro) in different brain structures. The Fe 2+ and Cu 2+ chelating abilities of the samples were also investigated. The results revealed that caffeine, caffeic acid and their various combinations exhibited inhibitory effect on activities of AChE, MAO, E-NTPase and E-NTDase, but stimulatory effect on Na + /K + ATPase activity. The combinations also exhibited Fe 2+ and Cu 2+ chelating abilities. Considering the various combinations, a higher caffeine to caffeic acid ratio produced significantly highest enzyme modulatory effects; these were significantly lower to the effect of caffeine alone but significantly higher than the effect of caffeic acid alone. These findings may provide new insight into the effect of proportional combination of these bioactive compounds as obtained in many foods especially with respect to their neuroprotective effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Zugno, Alexandra I; Oliveira, Mariana B; Mastella, Gustavo A; Heylmann, Alexandra S A; Canever, Lara; Pacheco, Felipe D; Damazio, Louyse S; Citadin, Sullivan A; de Lucca, Luiz Antonio; Simões, Lutiana Roque; Malgarin, Fernanda; Budni, Josiane; Barichello, Tatiana; Schuck, Patricia F; Quevedo, João
2017-04-03
Cigarette smoking during the prenatal period has been investigated as a causative factor of obstetric abnormalities, which lead to cognitive and behavioural changes associated with schizophrenia. The aim of this study was to investigate behaviour and AChE activity in brain structures in adult rats exposed to cigarette smoke during the prenatal period. Pregnant rats were divided into non-PCSE (non-prenatal cigarette smoke exposure) and PCSE (prenatal cigarette smoke exposure) groups. On post-natal day 60, the rats received saline or ketamine for 7days and were subjected to behavioural tasks. In the locomotor activity task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited increased locomotor activity compared with the saline group. In the social interaction task, the non-PCSE+ketamine and PCSE+ketamine groups exhibited an increased latency compared with the control groups. However, the PCSE+ketamine group exhibited a decreased latency compared with the non-PCSE+ketamine group, which indicates that the cigarette exposure appeared to decrease, the social deficits generated by ketamine. In the inhibitory avoidance task, the non-PCSE+ketamine, PCSE, and PCSE+ketamine groups exhibited impairments in working memory, short-term memory, and long-term memory. In the pre-pulse inhibition (PPI) test, cigarette smoke associated with ketamine resulted in impaired PPI in 3 pre-pulse (PP) intensity groups compared with the control groups. In the biochemical analysis, the AChE activity in brain structures increased in the ketamine groups; however, the PCSE+ketamine group exhibited an exacerbated effect in all brain structures. The present study indicates that exposure to cigarette smoke during the prenatal period may affect behaviour and cerebral cholinergic structures during adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.
Fadaeinasab, Mehran; Basiri, Alireza; Kia, Yalda; Karimian, Hamed; Ali, Hapipah Mohd; Murugaiyah, Vikneswaran
2015-01-01
Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations. © 2015 S. Karger AG, Basel.
Wu, Wei-Li; Adams, Catherine E; Stevens, Karen E; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H
2015-05-01
Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal-placental-fetal axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (Il6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of Il6 in Chrna7 mutant mice. We found that the basal level of Il6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7(+/-) offspring. The Chrna7(+/-) offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. Copyright © 2015 Elsevier Inc. All rights reserved.
Alkondon, Manickavasagom; Albuquerque, Edson X.; Pereira, Edna F.R.
2013-01-01
The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2 μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100 nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24 h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20–100 ms) inter-event intervals. Donepezil’s effects were suppressed significantly in presence of 10 μM mecamylamine or 10 nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman. PMID:23511125
Chen, Juan; Long, Yuan; Han, Min; Wang, Ting; Chen, Qiang; Wang, Rui
2008-09-01
The water-soluble derivative of propolis (WSDP) was prepared from fresh Chinese propolis. Its major constituents were identified by high performance liquid chromatography (HPLC) analysis. It has been reported that propolis possessed a broad spectrum of biological activities but including few studies on learning and memory by now. Thus, this study was aimed to investigate the effect of WSDP on scopolamine-induced learning and memory impairment in mice. WSDP (50 mg/kg, 100 mg/kg) was given by intragastric administration (i.g.) 40 min prior to the intraperitoneal (i.p.) injection of scopolamine (1 mg/kg). The effect on amnesia was investigated with both hidden-platform acquisition training and probe trial testing in Morris water maze test. The results from 100 mg/kg WSDP group showed significant mitigation scopolamine-induced amnesia in mice. Furthermore, WSDP's effect on the acetylcholinesterase (AChE) activity in the cerebral cortex and hippocampus was also assayed. As a result, WSDP (100 mg/kg) significantly inhibited AChE activity in the hippocampus of scopolamine-treated mice. These results indicated that WSDP may mitigate amnesia in vivo through inhibition of AChE activity in the hippocampus, which suggested propolis may have potential as a pharmaceutical of brain protection with elderly population for preventing Alzheimer's disease (AD) and other neurodegenerative diseases.
Slotkin, Theodore A; Seidler, Frederic J
2015-01-01
This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability. Copyright © 2014 Elsevier Inc. All rights reserved.
Slotkin, Theodore A.; Seidler, Frederic J.
2014-01-01
This study examines whether prenatal nicotine exposure sensitizes the developing brain to subsequent developmental neurotoxicity evoked by chlorpyrifos, a commonly-used insecticide. We gave nicotine to pregnant rats throughout gestation at a dose (3 mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1–4, at a dose (1 mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of nicotine and chlorpyrifos given individually. By itself nicotine elicited overall upregulation of the ACh markers, albeit with selective differences by sex, region and age. Likewise, chlorpyrifos alone had highly sex-selective effects. Importantly, all the effects showed temporal progression between adolescence and adulthood, pointing to ongoing synaptic changes rather than just persistence after an initial injury. Prenatal nicotine administration altered the responses to chlorpyrifos in a consistent pattern for all three markers, lowering values relative to those of the individual treatments or to those expected from simple additive effects of nicotine and chlorpyrifos. The combination produced global interference with emergence of the ACh phenotype, an effect not seen with nicotine or chlorpyrifos alone. Given that human exposures to nicotine and chlorpyrifos are widespread, our results point to the creation of a subpopulation with heightened vulnerability. PMID:25510202
Miller, Steven L; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H; Prager, Eric M; Almeida-Suhett, Camila P; Apland, James P; Braga, Maria F M
2015-04-15
Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS) at 2mg/kg, administered 20 min after soman exposure (1.2×LD50), terminated seizures. ATS at 0.5mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1h post-exposure, prevents brain pathology and behavioral deficits. Published by Elsevier Inc.
Septohippocampal Acetylcholine: Involved in but not Necessary for Learning and Memory?
Parent, Marise B.; Baxter, Mark G.
2006-01-01
The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective ablation of cholinergic septohippocampal projections is largely without effect on hippocampal-dependent learning and memory processes. We consider the evidence underlying each of these statements, and the contradictions they pose for understanding the functional role of hippocampal ACh in memory. We suggest that although hippocampal ACh is involved in memory in the intact brain, it is not necessary for many aspects of hippocampal memory function. PMID:14747512
Insecticides biomarker responses on a freshwater fish Corydoras paleatus (Pisces: Callichthyidae).
Guiloski, Izonete Cristina; Rossi, Stéfani Cibele; da Silva, Cesar Aparecido; de Assis, Helena Cristina Silva
2013-01-01
This study was undertaken to investigate the effects of sublethal concentration of three different classes of insecticides (carbamate, organophosphate, and pyrethroid compounds) on the freshwater fish Corydoras paleatus. For this purpose, fish were exposed for 96 hours to commercial pesticides. Different biomarkers were analyzed as levels of lipid peroxidation (LPO), piscine micronucleus test, and enzymatic activities of catalase (CAT), glutathione S-transferase (GST), and acetylcholinesterase (AChE). The brain AChE was inhibited with carbaryl and methyl parathion, but no inhibition was observed with deltamethrin. The insecticides did not cause oxidative stress or genotoxic effects at the tested concentrations. Further studies are needed to elucidate the biotransformation of Corydoras paleatus insecticides and a possible resistance mechanism.
Han, Zhenying; Li, Li; Wang, Liang; Degos, Vincent; Maze, Mervyn; Su, Hua
2014-11-01
Bone fracture at the acute stage of stroke exacerbates stroke injury by increasing neuroinflammation. We hypothesize that activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) attenuates neuroinflammation and oxidative stress, and reduces brain injury in mice with bone fracture and stroke. Permanent middle cerebral artery occlusion (pMCAO) was performed in C57BL/6J mice followed by tibia fracture 1 day later. Mice were treated with 0.8 mg/kg PHA 568487 (PHA, α-7 nAchR-specific agonist), 6 mg/kg methyllycaconitine (α-7 nAchR antagonist), or saline 1 and 2 days after pMCAO. Behavior was tested 3 days after pMCAO. Neuronal injury, CD68(+) , M1 (pro-inflammatory) and M2 (anti-inflammatory) microglia/macrophages, phosphorylated p65 component of nuclear factor kappa b in microglia/macrophages, oxidative and anti-oxidant gene expression were quantified. Compared to saline-treated mice, PHA-treated mice performed better in behavioral tests, had fewer apoptotic neurons (NeuN(+) TUNEL(+) ), fewer CD68(+) and M1 macrophages, and more M2 macrophages. PHA increased anti-oxidant gene expression and decreased oxidative stress and phosphorylation of nuclear factor kappa b p65. Methyllycaconitine had the opposite effects. Our data indicate that α-7 nAchR agonist treatment reduces neuroinflammation and oxidative stress, which are associated with reduced brain injury in mice with ischemic stroke plus tibia fracture. Bone fracture at the acute stage of stroke exacerbates neuroinflammation, oxidative stress, and brain injury, and our study has shown that the α-7 nAchR agonist, PHA (PHA 568487), attenuates neuroinflammation, oxidative stress, and brain injury in mice with stroke and bone fracture. Hence, PHA could provide an opportunity to develop a new strategy to reduce brain injury in patients suffering from stroke and bone fracture. © 2014 International Society for Neurochemistry.
Gomez-Ramos, P; Mufson, E J; Moran, M A
1992-01-13
Acetylcholinesterase (AChE) histochemistry was used to evaluate the accumulation of this enzyme in senile plaques, neurofibrillary tangles and neuropil threads using light and electron microscopy in Alzheimer's disease as well as non-demented aged brains. Under the electron microscope, a crystalline-like AChE precipitate was localized over paired helical filaments and straight filaments in both neurofibrillary tangles and neuropil threads. AChE reaction product also decorated the amyloid fibrils in diffuse plaques as well as the halo and the heavy accumulation of amyloid which forms the core of classical plaques. In both diffuse plaques and the halo of classical plaques, we found AChE-positive structures resembling cell processes, which in some cases appeared to contain amyloid fibrils. The possible origin and significance of AChE localized over paired helical filaments, straight filaments and amyloid is discussed.
Sang, Zhipei; Wang, Keren; Wang, Huifang; Yu, Lintao; Wang, Huijuan; Ma, Qianwen; Ye, Mengyao; Han, Xue; Liu, Wenmin
2017-11-15
A series of novel phthalimide-alkylamine derivatives were synthesized and evaluated as multi-functions inhibitors for the treatment of Alzheimer's disease (AD). The results showed that compound TM-9 could be regarded as a balanced multi-targets active molecule. It exhibited potent and balanced inhibitory activities against ChE and MAO-B (huAChE, huBuChE, and huMAO-B with IC 50 values of 1.2μM, 3.8μM and 2.6 μM, respectively) with low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-9 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Interestingly, compound TM-9 abided by Lipinski's rule of five. Furthermore, our investigation proved that TM-9 indicated weak cytotoxicity, and it could cross the blood-brain barrier (BBB) in vitro. The results suggest that compound TM-9, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain
2014-10-01
between blood cholinesterase activity and neurobehavioral deficits (Rohlman et al., 2011). Finally, one additional argument against the premise that AChE...baseline scan (repeated exposure CPF group only). 2.4 Cholinesterase activity Cholinesterase activity was assessed in brain using the method of...Moser VC.2006. Behavioral toxicity of cholinesterase inhibitors. In: Gupta, RC., editor. Toxicology of Organophosphate and Carbamate Compounds
AzoCholine Enables Optical Control of Alpha 7 Nicotinic Acetylcholine Receptors in Neural Networks.
Damijonaitis, Arunas; Broichhagen, Johannes; Urushima, Tatsuya; Hüll, Katharina; Nagpal, Jatin; Laprell, Laura; Schönberger, Matthias; Woodmansee, David H; Rafiq, Amir; Sumser, Martin P; Kummer, Wolfgang; Gottschalk, Alexander; Trauner, Dirk
2015-05-20
Nicotinic acetylcholine receptors (nAChRs) are essential for cellular communication in higher organisms. Even though a vast pharmacological toolset to study cholinergic systems has been developed, control of endogenous neuronal nAChRs with high spatiotemporal precision has been lacking. To address this issue, we have generated photoswitchable nAChR agonists and re-evaluated the known photochromic ligand, BisQ. Using electrophysiology, we found that one of our new compounds, AzoCholine, is an excellent photoswitchable agonist for neuronal α7 nAChRs, whereas BisQ was confirmed to be an agonist for the muscle-type nAChR. AzoCholine could be used to modulate cholinergic activity in a brain slice and in dorsal root ganglion neurons. In addition, we demonstrate light-dependent perturbation of behavior in the nematode, Caenorhabditis elegans.
Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.
2012-01-01
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217
Sang, Zhipei; Pan, Wanli; Wang, Keren; Ma, Qinge; Yu, Lintao; Liu, Wenmin
2017-06-15
A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives have been designed using a conjunctive approach that combines the JMC49 and donepezil. The most promising compound TM-33 showed potent and balance inhibitory activities toward ChE and MAO (eeAChE, eqBuChE, hMAO-A and hMAO-B with IC 50 values of 0.56μM, 2.3μM, 0.3μM and 1.4μM, respectively) but low selectivity. Both kinetic analysis of AChE inhibition and molecular modeling study suggested that TM-33 binds simultaneously to the catalytic active site and peripheral anionic site of AChE. Furthermore, our investigation proved that TM-33 could cross the blood-brain barrier (BBB) in vitro, and abided by Lipinski's rule of five. The results suggest that compound TM-33, an interesting multi-targeted active molecule, offers an attractive starting point for further lead optimization in the drug-discovery process against Alzheimer's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of In Vivo Nicotine Exposure on Chlorpyrifos Pharmacokinetics and Pharmacodynamics in Rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sookwang; Poet, Torka S.; Smith, Jordan N.
Routine use of tobacco products may modify physiological and metabolic functions, including drug metabolizing enzymes, which may impact the pharmacokinetics of environmental contaminants. Chlorpyrifos is an organophosphorus (OP) insecticide that is bioactivated to chlorpyrifos-oxon, and manifests its neurotoxicity by inhibiting acetylcholinesterase (AChE). The objective of this study was to evaluate the impact of repeated nicotine exposure on the pharmacokinetics of chlorpyrifos (CPF) and its major metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urine and also to determine the impact on cholinesterase (ChE) activity in plasma and brain. Animals were exposed to 7-daily doses of either 1 mg nicotine/kg or saline (sc),more » and to either a single oral dose of 35 mg CPF/kg or a repeated dose of 5 mg CPF/kg/day for 7 days. Groups of rats were then sacrificed at multiple time-points after receiving the last dose of CPF. Repeated nicotine and CPF exposures resulted in enhanced metabolism of CPF to TCPy, as evidenced by increases in the measured TCPy concentration and AUC in blood. However, there was no significant difference in the amount of TCPy (free or total) excreted in the urine. The extent of brain acetylcholinesterase (AChE) inhibition was reduced due to nicotine co-exposure consistent with an increase in CYP450-mediated dearylation (detoxification) versus desulfuration. It was of interest to note that the impact of nicotine co-exposure was experimentally observed only after repeated CPF doses. Physiologically based pharmacokinetic model simulations of CPF-oxon concentrations in blood and brain were predicted to be lower in nicotine treated groups, which were simulated by increasing the dearylation Vmax based upon previously conducted in vitro metabolism studies. These results were consistent with the experimental data. The current study demonstrated that repeated nicotine exposure could alter CPF metabolism in vivo, further modulating brain AChE inhibition.« less
Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.
2006-01-01
In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981
Pretto, Alexandra; Loro, Vania Lucia; Silva, Vera M Machado; Salbego, Joseânia; de Menezes, Charlene Cavalheiro; Souza, Carine de Freitas; Gioda, Carolina Rosa; Baldisserotto, Bernardo
2014-04-01
The effects of Cu exposure on catalase (CAT) and acetylcholinesterase (AChE) activity, formation of thiobarbituric acid-reactive species (TBARS) and metabolic parameters were evaluated in silver catfish (Rhamdia quelen). The fish were exposed for 45 days to 0, 16 and 29 μg/L Cu. The fish that were exposed to Cu exhibited lower TBARS levels in the muscle and higher TBARS levels in the liver. They also showed lower CAT activity in the liver and lower AChE activity in the brain and muscle. Higher glucose and lactate and lower protein plasma levels were observed in the fish exposed to Cu. The changes in the hepatic metabolic parameters were Cu concentration dependent. In the muscle, lower glycogen and higher lactate levels were observed in the fish exposed to Cu. Alterations in the metabolic parameters showed a preference for the anaerobic pathway of energy production and liver protein catabolism to supply the energy demand.
Effect of in vivo nicotine exposure on chlorpyrifos pharmacokinetics and pharmacodynamics in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soo Kwang; Poet, Torka S.; Smith, Jordan N.
Chlorpyrifos (CPF) is one of the most studied and widely used broad spectrum organophosphorus (OP) insecticides. The neurotoxicity of CPF results from inhibition of cholinesterase (ChE) by its metabolite, chlorpyrifos-oxon (CPF-oxon), which subsequently leads to cholinergic hyperstimulation. The routine consumption of alcoholic beverages and tobacco products will modify a number of metabolic and physiological processes which may impact the metabolism and pharmacokinetics of other xenobiotics including pesticides. The objective of this study was to evaluate the influence of repeated ethanol and nicotine co-exposure on in vivo CPF pharmacokinetics and pharmacodynamics. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy) in blood and urinemore » along with changes in plasma and brain AChE activities were measured in male Sprague-Dawley (S-D) rats. Animals were repeatedly treated with either saline or ethanol (1 g/kg/day, po) and nicotine (1 mg/kg/day, sc) in addition to CPF (1 or 5 mg/kg/day, po) for 7 days. Rats were sacrificed at times from 1 to 24 hr post-last dosing of CPF. There were apparent differences in blood TCPy pharmacokinetics following ethanol and nicotine pretreatments in both CPF dose groups, which showed higher TCPy peak concentrations and increased blood TCPy AUC in ethanol and nicotine groups over CPF-only (~1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain acetylcholinesterase (AChE) activities from both ethanol and nicotine-treated groups showed substantially less inhibition following repeated 5 mg CPF/kg dosing compared to CPF-only controls (96 ± 13 and 66 ± 7% of naïve at 4 hr post-last CPF dosing, respectively). Inhibition of brain AChE activities was minimal in both 1 mg CPF/kg/day dosing groups, but a similar trend indicating less inhibition following ethanol/nicotine pretreatment was apparent. No differences were observed in plasma ChE activities due to the combined alcohol and nicotine treatments. In vitro, CPF metabolism was not affected by repeated treatments with ethanol or both ethanol and nicotine. When compared with a previous study of nicotine and CPF exposure, there were no apparent additional exacerbating effects due to ethanol co-exposure.« less
Gene Editing Vectors for Studying Nicotinic Acetylcholine Receptors in Cholinergic Transmission.
Peng, Can; Yan, Yijin; Kim, Veronica J; Engle, Staci E; Berry, Jennifer N; McIntosh, J Michael; Neve, Rachael L; Drenan, Ryan M
2018-05-19
Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. Production of loss-of-function insertions or deletions (indels) by these "all-in-one" HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT) positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cholinergic Modulation of Frontoparietal Cortical Network Dynamics Supporting Supramodal Attention.
Ljubojevic, Vladimir; Luu, Paul; Gill, Patrick Robert; Beckett, Lee-Anne; Takehara-Nishiuchi, Kaori; De Rosa, Eve
2018-04-18
A critical function of attention is to support a state of readiness to enhance stimulus detection, independent of stimulus modality. The nucleus basalis magnocellularis (NBM) is the major source of the neurochemical acetylcholine (ACh) for frontoparietal cortical networks thought to support attention. We examined a potential supramodal role of ACh in a frontoparietal cortical attentional network supporting target detection. We recorded local field potentials (LFPs) in the prelimbic frontal cortex (PFC) and the posterior parietal cortex (PPC) to assess whether ACh contributed to a state of readiness to alert rats to an impending presentation of visual or olfactory targets in one of five locations. Twenty male Long-Evans rats underwent training and then lesions of the NBM using the selective cholinergic immunotoxin 192 IgG-saporin (0.3 μg/μl; ACh-NBM-lesion) to reduce cholinergic afferentation of the cortical mantle. Postsurgery, ACh-NBM-lesioned rats had less correct responses and more omissions than sham-lesioned rats, which changed parametrically as we increased the attentional demands of the task with decreased target duration. This parametric deficit was found equally for both sensory targets. Accurate detection of visual and olfactory targets was associated specifically with increased LFP coherence, in the beta range, between the PFC and PPC, and with increased beta power in the PPC before the target's appearance in sham-lesioned rats. Readiness-associated changes in brain activity and visual and olfactory target detection were attenuated in the ACh-NBM-lesioned group. Accordingly, ACh may support supramodal attention via modulating activity in a frontoparietal cortical network, orchestrating a state of readiness to enhance target detection. SIGNIFICANCE STATEMENT We examined whether the neurochemical acetylcholine (ACh) contributes to a state of readiness for target detection, by engaging frontoparietal cortical attentional networks independent of modality. We show that ACh supported alerting attention to an impending presentation of either visual or olfactory targets. Using local field potentials, enhanced stimulus detection was associated with an anticipatory increase in power in the beta oscillation range before the target's appearance within the posterior parietal cortex (PPC) as well as increased synchrony, also in beta, between the prefrontal cortex and PPC. These readiness-associated changes in brain activity and behavior were attenuated in rats with reduced cortical ACh. Thus, ACh may act, in a supramodal manner, to prepare frontoparietal cortical attentional networks for target detection. Copyright © 2018 the authors 0270-6474/18/383988-18$15.00/0.
Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Abdalla, Fátima Husein; Cardoso, Andréia Machado; Martins, Caroline Curry; Dias, Glaecir R Mundstock; Calgaroto, Nicéia Spanholi; Pelinson, Luana Paula; Reichert, Karine Paula; Loro, Vania Lucia; Morsch, Vera Maria Melchiors; Schetinger, Maria Rosa Chitolina
2017-01-01
Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimberg, Y.
1995-09-01
C57/B1 mice were exposed during pregnancy (gestation days 0--19) to a 20 kHz magnetic field (MF). The asymmetric sawtooth-waveform magnetic field in the exposed racks had a flux density of 15 {micro}T (peak to peak). After 19 days, the exposure was terminated, and the mice were housed individually under normal laboratory conditions. On postnatal day (PD) 1, PD21, and PD308, various neurochemical markers in the brains of the offspring were investigated and the brains weighed. No significant difference was found in the whole brain weight at PD1 or PD21 between exposed offspring and control animals. However, on PD308, a significantmore » decrease in weight of the whole brain was detected in exposed animals. No significant differences were found in the weight of cortex, hippocampus, septum, or cerebellum on nay of the sampling occasions, nor were any significant differences detected in protein-, DNA-level, nerve growth factor (NGF), acetylcholine esterase- (AChE), or 2{prime},3{prime}-cyclic nucleotide 3{prime}-phosphodiesterase- (CNP; marker for oligodendrocytes) activities on PD21 in cerebellum. Cortex showed a more complex pattern of response to MF: MF treatment resulted in a decrease in DNA level and increases in the activities of CNP, AChE, and NGF protein. On PD308, the amount of DNA was significantly reduced in MF-treated cerebellum and CNP activity was still enhanced in MF-treated cortex compared to controls. Most of the effect of MF treatment during the embryonic period were similar to those induced by ionizing radiation but much weaker. However, the duration of the exposure required to elucidate the response of different markers to MF seems to be greater and effects appear later during development compared to responses to ionizing radiation.« less
Choline metabolism as a basis for the selective vulnerability of cholinergic neurons
NASA Technical Reports Server (NTRS)
Wurtman, R. J.
1992-01-01
The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.
Qiu, Xuchun; Nomichi, Sayaka; Chen, Kun; Honda, Masato; Kang, Ik Joon; Shimasaki, Yohei; Oshima, Yuji
2017-11-01
Although most exposures to chlorpyrifos (CPF) in natural flowing waters are brief and episodic, there have been a few reports of the persistence of abnormal fish behaviors caused by such acute exposure. The present study focused on the behavioral and biochemical responses of Japanese medaka (Oryzias latipes) to acute, sublethal exposure to CPF, as well as the persistence of the effects during a 3-week recovery test in CPF-free water. The medaka became hyperactive and exhibited an elevated anxiety state after a 4-day exposure to 0.024mg/L of CPF, but they recovered from these abnormal behavioral responses within 7days of recovery treatment. In contrast, persistent impacts on some startle responses to a sudden stimulation (induced by a ball drop) were observed in medaka exposed to CPF. The reaction latency did not change immediately after the 4-day exposure, but was significantly prolonged by as much as 21days after the termination of exposure. The post-stimulus swimming distance within 5s significantly decreased on the day immediately after the 4-day exposure, but it significantly increased after 7days of recovery treatment. The activity of acetylcholinesterase (AChE) in the brains of medaka was significantly inhibited on the day immediately after the 4-day exposure, but it returned to 80% and 110% of that in control fish on days 7 and 21 of the recovery period, respectively. However, AChE activities in the eyes of exposed medaka were persistently inhibited and declined to 33%, 71%, and 72% of that in control fish on days 0 (immediately after the 4-day exposure), 7, and 21 of recovery, respectively. Correlation analysis suggested that the changes of AChE activities in the brains of medaka may underlie some of the observed acute behavioral changes, and the changes of AChE activities in the eyes may contribute to the persistence of the abnormalities in the reaction latency of the startle response. Our findings suggest that medaka need a long time to recover from acute, sublethal exposure to CPF, and the persistence of the behavioral abnormalities might affect their fitness in natural habitats. Copyright © 2017 Elsevier B.V. All rights reserved.
Fadaeinasab, Mehran; Hadi, A Hamid A; Kia, Yalda; Basiri, Alireza; Murugaiyah, Vikneswaran
2013-03-25
Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael
2014-03-19
Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.
Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah
2017-09-18
The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-01-01
Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer’s disease. PMID:27133261
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-05-01
Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.
Ha, Jeong Su; Jin, Dong Eun; Park, Seon Kyeong; Park, Chang Hyeon; Seung, Tae Wan; Bae, Dong-Won; Kim, Dae-Ok; Heo, Ho Jin
2015-01-01
The antiamnesic effects of ethyl acetate fraction from Actinidia arguta (EFAA) on trimethyltin- (TMT-) induced memory impairment were investigated to find the possibility of functional food substances. EFAA showed a potent AChE inhibitory effect (IC50 = 53 μg/mL) and efficient neuroprotection against H2O2-induced oxidative stress. The administration of EFAA significantly decreased TMT-induced cognitive deficit in Y-maze, passive avoidance, and Morris water maze (MWM) tests. After the behavioral tests, the antioxidant activities were confirmed using mice brain tissues. EFAA not only showed the inhibition of AChE activity and the decline of malondialdehyde (MDA) level as a sign of lipid peroxidation but also presented the increase of the superoxide dismutase (SOD) level and the decrease of the oxidized glutathione (GSSG)/total glutathione (GSH + GSSG) ratio. Finally, the phenolics in EFAA were identified using liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry, and four main phenolics, such as quinic acid, chlorogenic acid, caffeoyl hexose, and quercetin-3-glucoside, were identified. These results suggest that EFAA containing physiological phenolics might enhance drug-induced amnesia through AChE inhibition and neuroprotection. PMID:26576196
Ha, Jeong Su; Jin, Dong Eun; Park, Seon Kyeong; Park, Chang Hyeon; Seung, Tae Wan; Bae, Dong-Won; Kim, Dae-Ok; Heo, Ho Jin
2015-01-01
The antiamnesic effects of ethyl acetate fraction from Actinidia arguta (EFAA) on trimethyltin- (TMT-) induced memory impairment were investigated to find the possibility of functional food substances. EFAA showed a potent AChE inhibitory effect (IC50 = 53 μg/mL) and efficient neuroprotection against H2O2-induced oxidative stress. The administration of EFAA significantly decreased TMT-induced cognitive deficit in Y-maze, passive avoidance, and Morris water maze (MWM) tests. After the behavioral tests, the antioxidant activities were confirmed using mice brain tissues. EFAA not only showed the inhibition of AChE activity and the decline of malondialdehyde (MDA) level as a sign of lipid peroxidation but also presented the increase of the superoxide dismutase (SOD) level and the decrease of the oxidized glutathione (GSSG)/total glutathione (GSH + GSSG) ratio. Finally, the phenolics in EFAA were identified using liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry, and four main phenolics, such as quinic acid, chlorogenic acid, caffeoyl hexose, and quercetin-3-glucoside, were identified. These results suggest that EFAA containing physiological phenolics might enhance drug-induced amnesia through AChE inhibition and neuroprotection.
Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer's disease-induced rats.
Ahmed, Hanaa H; Salem, Ahmed M; Sabry, Gilane M; Husein, Ahmed A; Kotob, Soheir E
2013-05-01
This study aimed to investigate the role of Salvia triloba L. and Piper nigrum extracts in ameliorating neuroinflammatory insults characteristic of Alzheimer's disease (AD) in an experimentally induced rat model. Adult male Sprague-Dawley rats were classified into Group 1 (n=10): normal healthy animals serving as the negative control group; Group 2 (n=60): the AD-induced group. After AD induction, animals in the AD-induced group were divided randomly and equally into 6 subgroups. The first subgroup served as AD control; the second one, which served as positive control, was treated orally with the conventional therapy for AD (rivastigmine) at a dose of 0.3 mg/kg body weight (b.w.) daily for 3 months. The third and fourth subgroups were, respectively, treated orally with the S. triloba extract at a dose of 750 and 375 mg/kg b.w. daily for 3 months. The fifth and sixth subgroups were, respectively, treated orally with the P. nigrum extract at a dose of 187.5 and 93.75 mg/kg b.w. daily for 3 months. Levels of brain acetylcholine (Ach), serum and brain acetylcholinesterase (AchE) activity, C-reactive protein (CRP), total nuclear factor kappa-B (NF-κB), and monocyte chemoattractant protein-1 (MCP-1) were estimated. The results showed that administration of AlCl3 resulted in a significant elevation in the levels of AchE activity, CRP, NF-κB, and MCP-1 accompanied with a significant depletion in the Ach level. Treatment of AD rats with each of the selected medicinal plant extracts caused marked improvement in the measured biochemical parameters. In conclusion, S. triloba and P. nigrum methanolic extracts have potent anti-inflammatory effects against neuroinflammation characterizing AD.
Declining ring-necked pheasants in the Klamath Basin, California: I. Insecticide exposure
Grove, Robert A.; Buhler, D.R.; Henny, Charles J.; Drew, A.D.
1998-01-01
A study of organophosphorus (OP) insecticide exposure was conducted on a declining population of ring-necked pheasants (Phasianus colchicus) associated with agricultural lands at Tule Lake National Wildlife Refuge (TLNWR) during the summers of 1990a??92. Findings at TLNWR were compared with a nearby pheasant population at Lower Klamath National Wildlife Refuge (LKNWR) not subjected to intensive farming or OP insecticide applications. Direct toxicity of anticholinesterase (antiChE) compounds (in this case methamidophos) killed 2 young pheasants (91 and 92% brain acetylcholinesterase [AChE] inhibition), but no deaths of adult radio-equipped hens were ascribed to direct insecticide intoxication. However, within 20 days postspray of OP insecticides, 68% (28 of 41) of the adult pheasants collected at TLNWR were exposed to antiChE insecticides, and exhibited brain AChE inhibition of 19a??62%, with 15% (6 of 41) showing >55% brain AChE inhibition. The lack of radio-equipped hens dying was unexpected because >50% brain AChE inhibition has been frequently used as a diagnostic tool for evaluating cause of death from antiChE insecticides. No young were radio-equipped, so the extent of the effects of insecticide exposure on the survivorship of young was unknown. It is concluded that insecticide exposure was not the major factor impacting the pheasant population (see Grove et al., in press), although some young were acutely intoxicated. However, the loss of insects killed by insecticide use may have contributed to food shortages of young pheasants, indirectly influencing survival.
Perinatal exposure to methadone affects central cholinergic activity in the weanling rat.
Robinson, S E; Mo, Q; Maher, J R; Wallace, M J; Kunko, P M
1996-06-01
Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. Perinatal methadone exposure disrupted cholinergic activity on postnatal day 21 as measured by the turnover rate of acetylcholine (TRACh) in both female and male rats, although there were some sexually-dimorphic responses. The most profoundly affected brain region was the striatum, where prenatal exposure to methadone increased ACh turnover, whether or not the rats continued to be exposed to methadone postnatally. It appears unlikely that neonatal withdrawal contributes to brain regional changes in ACh turnover, as continued postnatal exposure to methadone did not prevent the prenatal methadone induced changes.
Qiao, Yan; Han, Keli; Zhan, Chang-Guo
2014-01-01
As the most active metabolite of heroin, 6-monoacetylmorphine (6-MAM) can penetrate into the brain for the rapid onset of heroin effects. The primary enzymes responsible for the metabolism of 6-MAM to the less potent morphine in humans are acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The detailed reaction pathways for AChE- and BChE-catalyzed hydrolysis of 6-MAM to morphine have been explored, for the first time, in the present study by performing first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the two enzymatic reaction processes follow the similar catalytic reaction mechanism, and the whole catalytic reaction pathway for each enzyme consists of four reaction steps. According to the calculated results, the second reaction step associated with the transition state TS2a/TS2b should be rate-determining for the AChE/BChE-catalyzed hydrolysis, and the free energy barrier calculated for the AChE-catalyzed hydrolysis (18.3 kcal/mol) is 2.5 kcal/mol lower than that for the BChE-catalyzed hydrolysis (20.8 kcal/mol). The free energy barriers calculated for the AChE- and BChE-catalyzed reactions are in good agreement with the experimentally derived activation free energies (17.5 and 20.7 kcal/mol for the AChE- and BChE-catalyzed reactions, respectively). Further structural analysis reveals that the aromatic residues Phe295 and Phe297 in the acyl pocket of AChE (corresponding to Leu286 and Val288 in BChE) contribute to the lower energy of TS2a relative to TS2b. The obtained structural and mechanistic insights could be valuable for use in future rational design of a novel therapeutic treatment of heroin abuse. PMID:24595354
Nirogi, Ramakrishna; Kandikere, Vishwottam; Bhyrapuneni, Gopinadh; Saralaya, Ramanatha; Muddana, Nageswararao; Komarneni, Prashanth
2012-07-01
Reduction of cerebral cortical and hippocampal α7 neuronal nicotinic acetylcholine receptor (nAChR) density was observed in the Alzheimer's disease (AD) and other neurodegenerative diseases. Mapping the subtypes of nAChRs with selective ligand by viable, quick and consistent method in preclinical drug discovery may lead to rapid development of more effective therapeutic agents. The objective of this study was to evaluate the use of methyllycaconitine (MLA) in non-radiolabeled form for mapping α7 nAChRs in rat brain. MLA pharmacokinetic and brain penetration properties were assessed in male Wistar rats. The tracer properties of MLA were evaluated in rat brain by dose and time dependent differential regional distribution studies. Target specificity was validated after blocking with potent α7 nAChR agonists ABBF, PNU282987 and nicotine. High performance liquid chromatography combined with triple quad mass spectral detector (LC-MS/MS) was used to measure the plasma and brain tissue concentrations of MLA. MLA has shown rapid brain uptake followed by a 3-5 fold higher specific binding in regions containing the α7 nAChRs (hypothalamus - 1.60 ng/g), when compared to non-specific regions (striatum - 0.53 ng/g, hippocampus - 0.46 ng/g, midbrain - 0.37 ng/g, frontal cortex - 0.35 ng/g and cerebellum - 0.30 ng/g). Pretreatment with potent α7 nAChR agonists significantly blocked the MLA uptake in hypothalamus. The non-radiolabeled MLA binding to brain region was comparable with the α7 mRNA localization and receptor distribution reported for [(3)H] MLA in rat brain. The rat pharmacokinetic, brain penetration and differential brain regional distribution features favor that MLA is suitable to use in preclinical stage for mapping α7 nAChRs. Hence, this approach can be employed as an essential tool for quicker development of novel selective ligand to map variation in the α7 receptor densities, as well as to evaluate potential new chemical entities targeting neurodegenerative diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Muscarinic receptors in amygdala control trace fear conditioning.
Baysinger, Amber N; Kent, Brianne A; Brown, Thomas H
2012-01-01
Intelligent behavior requires transient memory, which entails the ability to retain information over short time periods. A newly-emerging hypothesis posits that endogenous persistent firing (EPF) is the neurophysiological foundation for aspects or types of transient memory. EPF is enabled by the activation of muscarinic acetylcholine receptors (mAChRs) and is triggered by suprathreshold stimulation. EPF occurs in several brain regions, including the lateral amygdala (LA). The present study examined the role of amygdalar mAChRs in trace fear conditioning, a paradigm that requires transient memory. If mAChR-dependent EPF selectively supports transient memory, then blocking amygdalar mAChRs should impair trace conditioning, while sparing delay and context conditioning, which presumably do not rely upon transient memory. To test the EPF hypothesis, LA was bilaterally infused, prior to trace or delay conditioning, with either a mAChR antagonist (scopolamine) or saline. Computerized video analysis quantified the amount of freezing elicited by the cue and by the training context. Scopolamine infusion profoundly reduced freezing in the trace conditioning group but had no significant effect on delay or context conditioning. This pattern of results was uniquely anticipated by the EPF hypothesis. The present findings are discussed in terms of a systems-level theory of how EPF in LA and several other brain regions might help support trace fear conditioning.
Menthol Enhances the Desensitization of Human α3β4 Nicotinic Acetylcholine Receptors
Ton, Hoai T.; Smart, Amanda E.; Aguilar, Brittany L.; Olson, Thao T.
2015-01-01
The α3β4 nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the peripheral and central nervous systems, including in airway sensory nerves. The nAChR subtype transduces the irritant effects of nicotine in tobacco smoke and, in certain brain areas, may be involved in nicotine addiction and/or withdrawal. Menthol, a widely used additive in cigarettes, is a potential analgesic and/or counterirritant at sensory nerves and may also influence nicotine’s actions in the brain. We examined menthol’s effects on recombinant human α3β4 nAChRs and native nAChRs in mouse sensory neurons. Menthol markedly decreased nAChR activity as assessed by Ca2+ imaging, 86Rb+ efflux, and voltage-clamp measurements. Coapplication of menthol with acetylcholine or nicotine increased desensitization, demonstrated by an increase in the rate and magnitude of the current decay and a reduction of the current integral. These effects increased with agonist concentration. Pretreatment with menthol followed by its washout did not affect agonist-induced desensitization, suggesting that menthol must be present during the application of agonist to augment desensitization. Notably, menthol acted in a voltage-independent manner and reduced the mean open time of single channels without affecting their conductance, arguing against a simple channel-blocking effect. Further, menthol slowed or prevented the recovery of nAChRs from desensitization, indicating that it probably stabilizes a desensitized state. Moreover, menthol at concentrations up to 1 mM did not compete for the orthosteric nAChR binding site labeled by [3H]epibatidine. Taken together, these data indicate that menthol promotes desensitization of α3β4 nAChRs by an allosteric action. PMID:25964258
2011-01-01
Background TC-2559 is a selective α4β2 subtype of nicotinic acetylcholine receptor (nAChR) partial agonist and α4β2 nAChR activation has been related to antinociception. The aim of this study is to investigate the analgesic effect of TC-2559 and its underlying spinal mechanisms. Results 1) In vivo bioavailability study: TC-2559 (3 mg/kg) had high absorption rate in rats with maximal total brain concentration reached over 4.6 μM within first 15 min after administration and eliminated rapidly with brain half life of about 20 min after injection. 2) In vivo behavioral experiments: TC-2559 exerts dose dependent antinociceptive effects in both formalin test in mice and chronic constriction injury (CCI) model in rats by activation of α4β2 nAChRs; 3) Whole-cell patch-clamp studies in the superficial dorsal horn neurons of the spinal cord slices: perfusion of TC-2559 (2 μM) significantly increased the frequency, but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). The enhancement of sIPSCs was blocked by pre-application of DHβE (2 μM), a selective α4β2 nicotinic receptor antagonist. Neither the frequency nor the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) of spinal dorsal horn neurons were affected by TC-2559. Conclusions Enhancement of inhibitory synaptic transmission in the spinal dorsal horn via activation of α4β2 nAChRs may be one of the mechanisms of the antinociceptive effects of TC-2559 on pathological pain models. It provides further evidence to support the notion that selective α4β2 subtype nAChR agonist may be developed as new analgesic drug for the treatment of neuropathic pain. PMID:21816108
Unconventional ligands and modulators of nicotinic receptors.
Pereira, Edna F R; Hilmas, Corey; Santos, Mariton D; Alkondon, Manickavasagom; Maelicke, Alfred; Albuquerque, Edson X
2002-12-01
Evidence gathered from epidemiologic and behavioral studies have indicated that neuronal nicotinic receptors (nAChRs) are intimately involved in the pathogenesis of a number of neurologic disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In the mammalian brain, neuronal nAChRs, in addition to mediating fast synaptic transmission, modulate fast synaptic transmission mediated by the major excitatory and inhibitory neurotransmitters glutamate and GABA, respectively. Of major interest, however, is the fact that the activity of the different subtypes of neuronal nAChR is also subject to modulation by substances of endogenous origin such as choline, the tryptophan metabolite kynurenic acid, neurosteroids, and beta-amyloid peptides and by exogenous substances, including the so-called nicotinic allosteric potentiating ligands, of which galantamine is the prototype, and psychotomimetic drugs such as phencyclidine and ketamine. The present article reviews and discusses the effects of unconventional ligands on nAChR activity and briefly describes the potential benefits of using some of these compounds in the treatment of neuropathologic conditions in which nAChR function/expression is known to be altered. Copyright 2002 Wiley Periodicals, Inc.
Acetyl-L-carnitine improves aged brain function.
Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu
2010-07-01
The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.
Masson, Patrick; Nachon, Florian
2017-08-01
Organophosphorus agents (OPs) irreversibly inhibit acetylcholinesterase (AChE) causing a major cholinergic syndrome. The medical counter-measures of OP poisoning have not evolved for the last 30 years with carbamates for pretreatment, pyridinium oximes-based AChE reactivators, antimuscarinic drugs and neuroprotective benzodiazepines for post-exposure treatment. These drugs ensure protection of peripheral nervous system and mitigate acute effects of OP lethal doses. However, they have significant limitations. Pyridostigmine and oximes do not protect/reactivate central AChE. Oximes poorly reactivate AChE inhibited by phosphoramidates. In addition, current neuroprotectants do not protect the central nervous system shortly after the onset of seizures when brain damage becomes irreversible. New therapeutic approaches for pre- and post-exposure treatments involve detoxification of OP molecules before they reach their molecular targets by administrating catalytic bioscavengers, among them phosphotriesterases are the most promising. Novel generation of broad spectrum reactivators are designed for crossing the blood-brain barrier and reactivate central AChE. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.
Harris, L W; Stitcher, D L; Hey, W C
1982-05-31
The effects of hemicholinium-3 (HC-3) or 4-(l-naphthylvinyl)pyridine (4-NVP) alone and together with cholinolytics and/or cholinesterase inhibitors on brain acetylcholine (ACh) levels and survival were studied. Intracerebroventricular (ICVT) injection of 10 micrograms HC-3 280 min before euthanasia by microwave irradiation reduced rat cerebral ACh levels from 28.4 to 5.4 nmoles ACh/g wet tissue. In rats pretreated with HC-3 alone or with other pretreatment drugs prior to giving up to 2.7 LD50 of soman, iv, cerebral ACh levels increased very little, but in animals not receiving HC-3, brain ACh levels increased to 67.1 nmoles. Treatment of unpoisoned rats with 4-NVP resulted in a significant (26%) reduction in ACh. The inclusion of atropine with 4-NVP caused sign-free doses of physostigmine to produce toxic signs in rabbits and did not enhance the efficacy of carbamate pretreatment against soman. Pretreatment of rabbits with pyridostigmine and atropine methyl nitrate (AMN) failed to provide any protection against soman, but when HC-3, ICVT, was included with those drugs, the protective ratio (PR), against soman was increased excess ACh is a primary lesion in organophosphorus anticholinesterase intoxication and that the central nervous system is quite sensitive to excesses of ACh.
Alkondon, Manickavasagom; Pereira, Edna F. R.; Eisenberg, Howard M.; Kajii, Yasushi; Schwarcz, Robert
2011-01-01
In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of l-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2–7 h) of rat hippocampal slices with kynurenine (200 μM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(−)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 μM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-d-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 μM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA. PMID:21270133
Barboza, Luís Gabriel Antão; Vieira, Luís Russo; Branco, Vasco; Figueiredo, Neusa; Carvalho, Felix; Carvalho, Cristina; Guilhermino, Lúcia
2018-02-01
Microplastics pollution is a global paradigm that raises concern in relation to environmental and human health. This study investigated toxic effects of microplastics and mercury in the European seabass (Dicentrarchus labrax), a marine fish widely used as food for humans. A short-term (96 h) laboratory bioassay was done by exposing juvenile fish to microplastics (0.26 and 0.69 mg/L), mercury (0.010 and 0.016 mg/L) and binary mixtures of the two substances using the same concentrations, through test media. Microplastics alone and mercury alone caused neurotoxicity through acetylcholinesterase (AChE) inhibition, increased lipid oxidation (LPO) in brain and muscle, and changed the activities of the energy-related enzymes lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH). All the mixtures caused significant inhibition of brain AChE activity (64-76%), and significant increase of LPO levels in brain (2.9-3.4 fold) and muscle (2.2-2.9 fold) but not in a concentration-dependent manner; mixtures containing low and high concentrations of microplastics caused different effects on IDH and LDH activity. Mercury was found to accumulate in the brain and muscle, with bioaccumulation factors of 4-7 and 25-40, respectively. Moreover, in the analysis of mercury concentrations in both tissues, a significant interaction between mercury and microplastics was found. The decay of mercury in the water increased with microplastics concentration, and was higher in the presence of fish than in their absence. Overall, these results indicate that: microplastics influence the bioaccumulation of mercury by D. labrax juveniles; microplastics, mercury and their mixtures (ppb range concentrations) cause neurotoxicity, oxidative stress and damage, and changes in the activities of energy-related enzymes in juveniles of this species; mixtures with the lowest and highest concentrations of their components induced different effects on some biomarkers. These findings and other published in the literature raise concern regarding high level predators and humans consuming fish being exposed to microplastics and heavy metals, and highlight the need of more research on the topic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Lewis, Alan S; Pittenger, Steven T; Mineur, Yann S; Stout, Dawson; Smith, Philip H; Picciotto, Marina R
2018-05-01
Humans with 15q13.3 microdeletion syndrome (15q13.3DS) are typically hemizygous for CHRNA7, the gene coding for the α7 nicotinic acetylcholine receptor (nAChR), and manifest a variable neuropsychiatric phenotype that frequently includes persistent aggression. In mice, nAChR activation by nicotine is anti-aggressive, or 'serenic,' an effect which requires α7 nAChRs and is recapitulated by GTS-21, an α7 nAChR partial agonist. Pharmacotherapies potentiating α7 nAChR signaling have also been shown to reduce aggression in human 15q13.3DS. These findings identify the α7 nAChR as an important regulator of aggressive behavior, but the underlying neurobiological substrates remain to be determined. We therefore investigated the brain regions and potential neural circuits in which α7 nAChRs regulate aggressive behavior in male mice. As in 15q13.3DS, mice heterozygous for Chrna7 were significantly more aggressive compared to wild-type controls in the resident-intruder test. We subsequently examined the hippocampus, where α7 nAChRs are highly expressed, particularly in GABAergic interneurons. Resident-intruder interactions strongly activated granule cells in the dentate gyrus (DG). In contrast, GTS-21, which reduces aggression in mice, reduced DG granule cell activity during resident-intruder interactions. Short hairpin RNA knockdown of Chrna7 in the DG enhanced baseline aggression and eliminated the serenic effects of both nicotine and GTS-21 on attack latency. These data further implicate α7 nAChRs in regulation of aggression, and demonstrate that hippocampal α7 nAChR signaling is necessary and sufficient to limit aggression. These findings suggest that nAChR-mediated regulation of hippocampal excitatory-inhibitory balance could be a promising therapeutic intervention for aggression arising in certain forms of neuropsychiatric disease.
Pathak, Arup Kumar; Bandyopadhyay, Tusar
2017-02-15
Despite the fact that fluorination makes a drug more lipophilic, the molecular level understanding of protein-fluorinated drug interactions is very poor. Due to their enhanced ability to penetrate the blood brain barrier, they are suitable for reactivation of organophosphorus inactivated acetylcholinesterase (AChE) in the central nervous system. We systematically studied the unbinding of fluorinated obidoxime (FOBI) and non-fluorinated obidoxime (OBI) from the active site gorge of the serine hydrolase AChE in mean field polarizable water by employing all atom molecular dynamics simulations. It is observed that the unbinding process is strongly influenced by cation-π, hydrogen bond (HB) and water bridge interactions. The FOBI drug interacts more strongly with the protein residues than OBI and this is also verified from quantum mechanical calculations. Distinct unbinding pathways for FOBI and OBI are observed as evident from the 1D and 2D potential of mean force of the unbinding profiles. The present study suggests that the FOBI drug is held more firmly in the gorge of AChE in comparison to OBI and may lead to higher reactivation efficiency of the inactivated enzyme.
Jadavji, Nafisa M; Bahous, Renata H; Deng, Liyuan; Malysheva, Olga; Grand'maison, Marilyn; Bedell, Barry J; Caudill, Marie A; Rozen, Rima
2014-07-15
Hyperhomocysteinaemia can contribute to cognitive impairment and brain atrophy. MTRR (methionine synthase reductase) activates methionine synthase, which catalyses homocysteine remethylation to methionine. Severe MTRR deficiency results in homocystinuria with cognitive and motor impairments. An MTRR polymorphism may influence homocysteine levels and reproductive outcomes. The goal of the present study was to determine whether mild hyperhomocysteinaemia affects neurological function in a mouse model with Mtrr deficiency. Mtrr+/+, Mtrr+/gt and Mtrrgt/gt mice (3 months old) were assessed for short-term memory, brain volumes and hippocampal morphology. We also measured DNA methylation, apoptosis, neurogenesis, choline metabolites and expression of ChAT (choline acetyltransferase) and AChE (acetylcholinesterase) in the hippocampus. Mtrrgt/gt mice exhibited short-term memory impairment on two tasks. They had global DNA hypomethylation and decreased choline, betaine and acetylcholine levels. Expression of ChAT and AChE was increased and decreased respectively. At 3 weeks of age, they showed increased neurogenesis. In the cerebellum, mutant mice had DNA hypomethylation, decreased choline and increased expression of ChAT. Our work demonstrates that mild hyperhomocysteinaemia is associated with memory impairment. We propose a mechanism whereby a deficiency in methionine synthesis leads to hypomethylation and compensatory disturbances in choline metabolism in the hippocampus. This disturbance affects the levels of acetylcholine, a critical neurotransmitter in learning and memory.
The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.
Decker, M W; Meyer, M D; Sullivan, J P
2001-10-01
Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.
Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats
Yadav, Preeti; Jadhav, Sunil E.; Kumar, Vinesh; Kaul, Kirtee K.; Pant, Satish C.; Flora, Swaran J.S.
2012-01-01
The effect of 2- pyridine aldoxime methyl chloride (2-PAMCl) and atropine with or without curcumin was investigated in dichlorvos (2,2-dichlorovinyl dimethyl phosphate; DDVP) induced toxicity in rats. Rats were exposed to DDVP (2 mg/kg sub-cutaneously) once daily for the period of 21 days. Post DDVP exposure, rats were further treated with 2-PAMCl (50 mg/kg intramuscular, once daily) + atropine (10 mg/kg, i.m. once daily) with or without curcumin (200 mg/kg; oral; once daily) for further 21 days. We observed a significant increase in lipid peroxidation (LPO), reactive oxygen species (ROS), oxidized glutathione (GSSG), while there was a significant decrease in antioxidant enzymes, brain acetylcholinesterase (AChE) and 5-hydroxy tryptamine (5-HT) activity on DDVP exposure of rats. These alterations were restored significantly by co-administration of 2-PAMCl + atropine in DDVP exposed rats. Curcumin when co-supplemented with 2-PAMCl + atropine also significantly protected serum aspartate aminotransferase (AST) and restored brain AChE activity and 5-HT level in animals sub-chronically exposed to DDVP. Histopathological observations along with biochemical changes in rat blood and tissues revealed significant protection offered by 2-PAMCl + atropine against DDVP. The results indicate that DDVP-induced toxicity can be significantly protected by co-administration of 2-PAMCl + atropine individually, however, curcumin co-supplementation with 2-PAMCl + atropine provides more pronounced protection, concerning particularly neurological disorders. PMID:22783142
Impact of gasoline inhalation on some neurobehavioural characteristics of male rats.
Kinawy, Amal A
2009-11-24
This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats.
NASA Astrophysics Data System (ADS)
Xu, Shihong; Kim, Byeongju; Song, Hyun Seok; Jin, Hye Jun; Park, Eun Jin; Lee, Sang Hun; Lee, Byung Yang; Park, Tai Hyun; Hong, Seunghun
2015-03-01
Acetylcholine (ACh) is a neurotransmitter in a human central nervous system and is related to various neural functions such as memory, learning and muscle contractions. Dysfunctional ACh regulations in a brain can induce several neuropsychiatric diseases such as Alzheimer's disease, Parkinson's disease and myasthenia gravis. In researching such diseases, it is important to measure the concentration of ACh in the extracellular fluid of the brain. Herein, we developed a highly sensitive and selective ACh sensor based on single-walled carbon nanotube-field effect transistors (swCNT-FETs). In our work, M1 mAChR protein, an ACh receptor, was expressed in E.coli and coated on swCNT-FETs with lipid membranes. Here, the binding of ACh onto the receptors could be detected by monitoring the change of electrical currents in the underlying swCNT-FETs, allowing the real-time detection of ACh at a 100 pM concentration. Furthermore, our sensor could selectively detect ACh from other neurotransmitters. This is the first report of the real-time sensing of ACh utilizing specific binding between the ACh and M1 mAChR, and it may lead to breakthroughs in various biomedical applications such as drug screening and disease diagnosis.
Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model.
Yang, Honggai; Qu, Zhuo; Zhang, Jingze; Huo, Liqin; Gao, Jing; Gao, Wenyuan
2016-11-01
Ferulic acid (FA) acts as a powerful antioxidant against various age-related diseases. To investigate the effect and underlying mechanism of FA against d-galactose(d-gal)-induced memory deficit, mice were injected with d-gal to induce memory impairment and simultaneously treated with FA and donepezil. The behavioral results revealed that chronic FA treatment reversed d-gal-induced memory impairment. Further, FA treatment inhibited d-gal-induced AChE activity and oxidative stress via increase of superoxide dismutase activity and reduced glutathione content, as well as decrease of malondialdehyde and nitric oxide levels. We also observed that FA significantly inhibits inflammation in the brain through reduction of NF-κB and IL-1β by enzyme-linked immunosorbent assay. Additionally, FA treatment significantly reduces the caspase-3 level in the hippocampus of d-gal-treated mice. Hematoxylin and eosin and Nissl staining showed that FA prevents neurodegeneration induced by d-gal. These findings showed that FA inhibits d-gal-induced AChE activity, oxidative stress, neuroinflammation and neurodegeneration, and consequently ameliorates memory impairment.
Beyond the Channel: Metabotropic Signaling by Nicotinic Receptors.
Kabbani, Nadine; Nichols, Robert A
2018-04-01
The α7 nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel (LGIC) that plays an important role in cellular calcium signaling and contributes to several neurological diseases. Agonist binding to the α7 nAChR induces fast channel activation followed by inactivation and prolonged desensitization while triggering long-lasting calcium signaling. These activities foster neurotransmitter release, synaptic plasticity, and somatodendritic regulation in the brain. We discuss here the ability of α7 nAChRs to operate in ionotropic (α7 i ) and metabotropic (α7 m ) modes, leading to calcium-induced calcium release (CICR) and G protein-associated inositol trisphosphate (IP 3 )-induced calcium release (IICR), respectively. Metabotropic activity extends the spatial and temporal aspects of calcium signaling by the α7 channel beyond its ionotropic limits, persisting into the desensitized state. Delineation of the ionotropic and metabotropic properties of the α7 nAChR will provide definitive indicators of moment-to-moment receptor functional status that will, in turn, spearhead new drug development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aqueous Extract of Black Maca (Lepidium meyenii) on Memory Impairment Induced by Ovariectomy in Mice
Rubio, Julio; Qiong, Wang; Liu, Xinmin; Jiang, Zhen; Dang, Haixia; Chen, Shi-Lin; Gonzales, Gustavo F.
2011-01-01
The present study aims to test two different doses of aqueous extract of black maca on learning and memory in ovariectomized (OVX) mice and their relation with malonalehyde (MDA), acetylcholinesterase (Ache) and monoamine oxidase (MAO) brain levels. Female mice were divided into five groups: (i) naive (control), (ii) sham, (iii) OVX mice and OVX mice treated with (iv) 0.50 g kg−1 and (v) 2.00 g kg−1 black maca. Mice were orally treated with distilled water or black maca during 35 days starting 7 days after surgery. Memory and learning were assessed using the water Morris maze (from day 23–27) and the step-down avoidance test (days 34 and 35). At the end of each treatment, mice were sacrificed by decapitation and brains were dissected out for MDA, Ache and MAO determinations. Black maca (0.5 and 2.0 g/kg) increased step-down latency when compared to OVX control mice. Black maca decreased MDA and Ache levels in OVX mice; whereas, no differences were observed in MAO levels. Finally, black maca improved experimental memory impairment induced by ovariectomy, due in part, by its antioxidant and Ache inhibitory activities. PMID:18955369
Rubio, Julio; Qiong, Wang; Liu, Xinmin; Jiang, Zhen; Dang, Haixia; Chen, Shi-Lin; Gonzales, Gustavo F
2011-01-01
The present study aims to test two different doses of aqueous extract of black maca on learning and memory in ovariectomized (OVX) mice and their relation with malonalehyde (MDA), acetylcholinesterase (Ache) and monoamine oxidase (MAO) brain levels. Female mice were divided into five groups: (i) naive (control), (ii) sham, (iii) OVX mice and OVX mice treated with (iv) 0.50 g kg(-1) and (v) 2.00 g kg(-1) black maca. Mice were orally treated with distilled water or black maca during 35 days starting 7 days after surgery. Memory and learning were assessed using the water Morris maze (from day 23-27) and the step-down avoidance test (days 34 and 35). At the end of each treatment, mice were sacrificed by decapitation and brains were dissected out for MDA, Ache and MAO determinations. Black maca (0.5 and 2.0 g/kg) increased step-down latency when compared to OVX control mice. Black maca decreased MDA and Ache levels in OVX mice; whereas, no differences were observed in MAO levels. Finally, black maca improved experimental memory impairment induced by ovariectomy, due in part, by its antioxidant and Ache inhibitory activities.
Tottori, Katsura; Nakai, Masami; Uwahodo, Yasufumi; Miwa, Takashi; Yamada, Sakiko; Oshiro, Yasuo; Kikuchi, Tetsuro; Altar, C Anthony
2002-04-01
Sigma and 5-HT(1A) receptor stimulation can increase acetylcholine (ACh) release in the brain. Because ACh release facilitates learning and memory, we evaluated the degree to which OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethane sulfonate), a novel sigma and 5-HT(1A) receptor agonist, can augment ACh release and improve learning impairments in rats due to cholinergic- or age-related deficits. Single oral administration of OPC-14523 improved scopolamine-induced learning impairments in the passive-avoidance task and memory impairment in the Morris water maze. The chronic oral administration of OPC-14523 attenuated age-associated impairments of learning acquisition in the water maze and in the conditioned active-avoidance response test. OPC-14523 did not alter basal locomotion or inhibit acetylcholinesterase (AChE) activity at concentrations up to 100 microM and, unlike AChE inhibitors, did not cause peripheral cholinomimetic responses. ACh release in the dorsal hippocampus of freely moving rats increased after oral delivery of OPC-14523 and after local delivery of OPC-14523 into the hippocampus. The increases in hippocampal ACh release were blocked by the sigma receptor antagonist NE-100 (N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine). Thus, OPC-14523 improves scopolamine-induced and age-associated learning and memory impairments by enhancing ACh release, due to a stimulation of sigma and probably 5-HT(1A) receptors. Combined sigma/5-HT(1A) receptor agonism may be a novel approach to ameliorate cognitive disorders associated with age-associated cholinergic deficits.
Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ(25-35) induced amnesia in mice.
Hanish Singh, J C; Alagarsamy, V; Diwan, Prakash V; Sathesh Kumar, S; Nisha, J C; Narsimha Reddy, Y
2011-10-31
The rhizomes of Alpinia galanga (L.) Willd (Zingiberaceae), a ginger substitute for flavouring food was traditionally used as nervine tonic and stimulant. This investigation is designed to screen cognitive improvement of Alpinia galanga (AG) fractions in Alzheimer's type of amnesia in mice induced by Aβ((25-35)). Alzheimer's disease induced mice treated with fractions (n-hexane, chloroform and ethyl acetate) of AG in 200 and 400mg/kg. Neurotoxicity was induced by intracerebroventricular injection of Aβ((25-35)) on the 14th day of 21 days drug treatment. Open field and water maze were carried to determine habituation memory and hippocampal memory. Na(+)/K(+)-ATPase, acetylcholinesterase (AChE) and antioxidant enzymes (SOD, GPx, catalase and vitamin C) were determined in brain tissue homogenate to estimate the brain biochemical changes and its anti-amnesic potential with intensity of oxidative stress signaling. Further bioactive (chloroform) fraction was eluted through column chromatography to identify the lead molecules. Increased habituation memory and decreased escape latency in behavioral parameter are the indicative of the cognitive enhancement after treatment with Alpinia galanga fractions. Increment in Na(+)/K(+)-ATPase and antioxidant activity depicts brain membrane integrity improvement and free radical scavenging property. AChE level was decreased to improve the cognition by enhancing cholinergic transmission. Anti-amnesic effect was exerted by various fractions of Alpinia galanga. Among all fractions, preeminent neuroprotection was exerted by chloroform fraction, which has compound, 1'δ-1'-acetoxyeugenol acetate and it may be a potential therapeutic agent for Alzheimer's type of amnesia. These results further motivate us to explore the activity of lead compound's anti-amnesic effect on transgenic mice model of AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Deibel, S H; Weishaupt, N; Regis, A M; Hong, N S; Keeley, R J; Balog, R J; Bye, C M; Himmler, S M; Whitehead, S N; McDonald, R J
2016-09-01
Alzheimer's disease (AD) is a disease of complex etiology, involving multiple risk factors. When these risk factors are presented concomitantly, cognition and brain pathology are more severely compromised than if those risk factors were presented in isolation. Reduced cholinergic tone and elevated amyloid-beta (Aβ) load are pathological hallmarks of AD. The present study sought to investigate brain pathology and alterations in learning and memory when these two factors were presented together in rats. Rats received either sham surgeries, cholinergic depletions of the medial septum, intracerebroventricular Aβ25-35 injections, or both cholinergic depletion and Aβ25-35 injections (Aβ+ACh group). The Aβ+ACh rats were unimpaired in a striatal dependent visual discrimination task, but had impaired acquisition in the standard version of the Morris water task. However, these rats displayed normal Morris water task retention and no impairment in acquisition of a novel platform location during a single massed training session. Aβ+ACh rats did not have exacerbated brain pathology as indicated by activated astroglia, activated microglia, or accumulation of Aβ. These data suggest that cholinergic depletions and Aβ injections elicit subtle cognitive deficits when behavioural testing is conducted shortly after the presentation of these factors. These factors might have altered hippocampal synaptic plasticity and thus resemble early AD pathology. Copyright © 2016 Elsevier B.V. All rights reserved.
Duysen, Ellen G; Stribley, Judith A; Fry, Debra L; Hinrichs, Steven H; Lockridge, Oksana
2002-07-30
Acetylcholinesterase (AChE, EC3.1.1.7) functions in nerve impulse transmission, and possibly as a cell adhesion factor during neurite outgrowth. These functions predicted that a mouse with zero AChE activity would be unable to live. It was a surprise to find that AChE -/- mice were born alive and survived an average of 14 days. The emaciated appearance of AChE -/- mice suggested an inability to obtain sufficient nutrition and experiments were undertaken to increase caloric intake. Pregnant and lactating dams (+/-) were fed 11% high fat chow supplemented with liquid Ensure. AChE -/- pups were weaned early, on day 15, and fed liquid Ensure. Although nullizygous animals showed slow but steady weight gain with survival over 1 year (average 100 days), they remained small at all ages compared to littermates. They demonstrated delays in temperature regulation (day 22 vs. 15), eye opening (day 13 vs. 12), righting reflex (day 18 vs. 12), descent of testes (week 7-8 vs. 4), and estrous (week 15-16 vs. 6-7). Significant physical findings in adult AChE -/- mice included body tremors, abnormal gait and posture, absent grip strength, inability to eat solid food, pinpoint pupils, decreased pain response, vocalization, and early death caused by seizures or gastrointestinal tract ileus. Behavioral deficits included urination and defecation in the nest, lack of aggression, reduced pain perception, and sexual dysfunction. These findings support the classical role for AChE in nerve impulse conduction and further suggest that AChE is essential for timely physical development and higher brain function. Copyright 2002 Elsevier Science B.V.
Innocent, Neal; Livingstone, Phil D.; Hone, Arik; Kimura, Atsuko; Young, Tracey; Whiteaker, Paul; McIntosh, J. Michael; Wonnacott, Susan
2008-01-01
A recently developed α-conotoxin, α-CtxArIB[V11L,V16D] is a potent and selective competitive antagonist at rat recombinant α7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. α7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues where they are implicated in a variety of functions. Here we evaluate this toxin at rat and human native nAChRs. Functional α7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 in rat PC12 cells and human SHSY5Y cells loaded with calcium indicators. α-CtxArIB[V11L,V16D] specifically inhibited α7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli (5-iodo-A-85380, nicotine or KCl) that did not activate α7 nAChRs were unaffected. Human α7 nAChRs were also sensitive to α-CtxArIB[V11L,V16D]: ACh-evoked currents in X. laevis oocytes expressing human α7 nAChRs were inhibited by α-CtxArIB[V11L,V16D] (IC50 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the timecourse of recovery from blockade of rat α7 nAChRs in PC12 cells. α-CtxArIB[V11L,V16D] inhibited human native α7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 plus PNU-120596. Rat brain α7 nAChRs contribute to dopamine release from striatal minces: α-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that α-CtxArIB[V11L,V16D] selectively inhibits human and rat native α7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating α7 nAChR functions. PMID:18664588
Fluoxetine induces vasodilatation of cerebral arterioles by co-modulating NO/muscarinic signalling
Ofek, Keren; Schoknecht, Karl; Melamed-Book, Naomi; Heinemann, Uwe; Friedman, Alon; Soreq, Hermona
2012-01-01
Ischaemic stroke patients treated with Selective Serotonin Reuptake Inhibitors (SSRI) show improved motor, cognitive and executive functions, but the underlying mechanism(s) are incompletely understood. Here, we report that cerebral arterioles in the rat brain superfused with therapeutically effective doses of the SSRI fluoxetine showed consistent, dose-dependent vasodilatation (by 1.2 to 1.6-fold), suppressible by muscarinic and nitric oxide synthase (NOS) antagonists [atropine, NG-nitro-l-arginine methyl ester (l-NAME)] but resistant to nicotinic and serotoninergic antagonists (mecamylamine, methylsergide). Fluoxetine administered 10–30 min. following experimental vascular photo-thrombosis increased arterial diameter (1.3–1.6), inducing partial, but lasting reperfusion of the ischaemic brain. In brain endothelial b.End.3 cells, fluoxetine induced rapid muscarinic receptor-dependent increases in intracellular [Ca2+] and promoted albumin- and eNOS-dependent nitric oxide (NO) production and HSP90 interaction. In vitro, fluoxetine suppressed recombinant human acetylcholinesterase (rhAChE) activity only in the presence of albumin. That fluoxetine induces vasodilatation of cerebral arterioles suggests co-promotion of endothelial muscarinic and nitric oxide signalling, facilitated by albumin-dependent inhibition of serum AChE. PMID:22697296
Ma, Jie-Qiong; Luo, Rong-Zhen; Jiang, Hai-Xia; Liu, Chan-Min
2016-01-01
Quercitrin is one of the primary flavonoid compounds present in vegetables and fruits. The aim of the present study was to evaluate the effects of quercitrin against carbon tetrachloride (CCl4) induced brain injury and further to elucidate its probable mechanisms. ICR mice received CCl4 intraperitoneally with or without quercitrin co-administration for 4 weeks. Our data showed that quercitrin significantly suppressed the elevation of reactive oxygen species (ROS) production and malondialdehyde (MDA) content, reduced tissue plasminogen activator (t-PA) activity, enhanced the antioxidant enzyme activities and abrogated cytochrome P450 2E1 (CYP2E1) induction in mouse brains. Quercitrin also prevented CCl4 induced cerebral function disorders associated with its ability to inhibit the activities of monoamine oxidase (MAO), acetylcholine esterase (AChE) and the N-methyl-d-aspartate receptor 2B subunit (NR2B). In addition, western blot analysis showed that quercitrin suppressed the release of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6). Taken together, our findings suggested that quercitrin may be a potential candidate to be developed as a neuroprotective agent.
Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors
Zaghloul, Nahla; Addorisio, Meghan E.; Silverman, Harold A.; Patel, Hardik L.; Valdés-Ferrer, Sergio I.; Ayasolla, Kamesh R.; Lehner, Kurt R.; Olofsson, Peder S.; Nasim, Mansoor; Metz, Christine N.; Wang, Ping; Ahmed, Mohamed; Chavan, Sangeeta S.; Diamond, Betty; Tracey, Kevin J.; Pavlov, Valentin A.
2017-01-01
Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP)-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL)-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT)-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex) and increased Il1b and Il6 gene expression (in the cortex), and Il1b gene expression (in the hippocampus) were observed in mouse sepsis survivors. Furthermore, microglial activation was linked to decreased cortical ChAT protein expression and increased AChE activity. These results reinforce the notion of persistent inflammation-immunosuppression and catabolic syndrome in sepsis survivors and characterize a previously unrecognized relationship between forebrain cholinergic dysfunction and neuroinflammation in sepsis survivors. This insight is of interest for new therapeutic approaches that focus on brain cholinergic signaling for patients with chronic sepsis illness, a problem with no specific treatment. PMID:29326685
Saeed, Aamer; Mahesar, Parvez Ali; Zaib, Sumera; Khan, Muhammad Siraj; Matin, Abdul; Shahid, Mohammad; Iqbal, Jamshed
2014-05-06
The present study reports the synthesis of cinnamide derivatives and their biological activity as inhibitors of both cholinesterases and anticancer agents. Controlled inhibition of brain acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) may slow neurodegeneration in Alzheimer's diseases (AD). The anticholinesterase activity of phenylcinnamide derivatives was determined against Electric Eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE) and some of the compounds appeared as moderately potent inhibitors of EeAChE and hBChE. The compound 3-(2-(Benzyloxy)phenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3i) showed maximum activity against EeAChE with an IC50 0.29 ± 0.21 μM whereas 3-(2-chloro-6-nitrophenyl)-N-(3,4,5-trimethoxyphenyl)acrylamide (3k) was proved to be the most potent inhibitor of hBChE having IC50 1.18 ± 1.31 μM. To better understand the enzyme-inhibitor interaction of the most active compounds toward cholinesterases, molecular modelling studies were carried out on high-resolution crystallographic structures. The anticancer effects of synthesized compounds were also evaluated against cancer cell line (lung carcinoma). The compounds may be useful leads for the design of a new class of anticancer drugs for the treatment of cancer and cholinesterase inhibitors for Alzheimer's disease (AD). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Competing targets of microRNA-608 affect anxiety and hypertension
Hanin, Geula; Shenhar-Tsarfaty, Shani; Yayon, Nadav; Hoe, Yau Yin; Bennett, Estelle R.; Sklan, Ella H.; Rao, Dabeeru. C.; Rankinen, Tuomo; Bouchard, Claude; Geifman-Shochat, Susana; Shifman, Sagiv; Greenberg, David S.; Soreq, Hermona
2014-01-01
MicroRNAs (miRNAs) can repress multiple targets, but how a single de-balanced interaction affects others remained unclear. We found that changing a single miRNA–target interaction can simultaneously affect multiple other miRNA–target interactions and modify physiological phenotype. We show that miR-608 targets acetylcholinesterase (AChE) and demonstrate weakened miR-608 interaction with the rs17228616 AChE allele having a single-nucleotide polymorphism (SNP) in the 3′-untranslated region (3′UTR). In cultured cells, this weakened interaction potentiated miR-608-mediated suppression of other targets, including CDC42 and interleukin-6 (IL6). Postmortem human cortices homozygote for the minor rs17228616 allele showed AChE elevation and CDC42/IL6 decreases compared with major allele homozygotes. Additionally, minor allele heterozygote and homozygote subjects showed reduced cortisol and elevated blood pressure, predicting risk of anxiety and hypertension. Parallel suppression of the conserved brain CDC42 activity by intracerebroventricular ML141 injection caused acute anxiety in mice. We demonstrate that SNPs in miRNA-binding regions could cause expanded downstream effects changing important biological pathways. PMID:24722204
Pacheco, Simone Muniz; Soares, Mayara Sandrielly Pereira; Gutierres, Jessié Martins; Gerzson, Mariana Freire Barbieri; Carvalho, Fabiano Barbosa; Azambuja, Juliana Hofstatter; Schetinger, Maria Rosa Chitolina; Stefanello, Francieli Moro; Spanevello, Roselia Maria
2018-06-01
Anthocyanins (ANT) are polyphenolic flavonoids with antioxidant and neuroprotective properties. This study evaluated the effect of ANT treatment on cognitive performance and neurochemical parameters in an experimental model of sporadic dementia of Alzheimer's type (SDAT). Adult male rats were divided into four groups: control (1 ml/kg saline, once daily, by gavage), ANT (200 mg/kg, once daily, by gavage), streptozotocin (STZ, 3 mg/kg) and STZ plus ANT. STZ was administered via bilateral intracerebroventricular (ICV) injection (5 μl). ANT were administered after ICV injection for 25 days. Cognitive deficits (short-term memory and spatial memory), oxidative stress parameters, and acetylcholinesterase (AChE) and Na + -K + -ATPase activity in the cerebral cortex and hippocampus were evaluated. ANT treatment protected against the worsening of memory in STZ-induced SDAT. STZ promoted an increase in AChE and Na + -K + -ATPase total and isoform activity in both structures; ANT restored this change. STZ administration induced an increase in lipid peroxidation and decrease in the level of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the cerebral cortex; ANT significantly attenuated these effects. In the hippocampus, an increase in reactive oxygen species (ROS), nitrite and lipid peroxidation levels, and SOD activity and a decrease in CAT and GPx activity were seen after STZ injection. ANT protected against the changes in ROS and antioxidant enzyme levels. In conclusion, the present study showed that treatment with ANT attenuated memory deficits, protected against oxidative damage in the brain, and restored AChE and ion pump activity in an STZ-induced SDAT in rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Acetylcholinesterase-Aβ Complexes Are More Toxic than Aβ Fibrils in Rat Hippocampus
Reyes, Ariel E.; Chacón, Marcelo A.; Dinamarca, Margarita C.; Cerpa, Waldo; Morgan, Carlos; Inestrosa, Nibaldo C.
2004-01-01
Neuropathological changes generated by human amyloid-β peptide (Aβ) fibrils and Aβ-acetylcholinesterase (Aβ-AChE) complexes were compared in rat hippocampus in vivo. Results showed that Aβ-AChE complexes trigger a more dramatic response in situ than Aβ fibrils alone as characterized by the following features observed 8 weeks after treatment: 1) amyloid deposits were larger than those produced in the absence of AChE. In fact, AChE strongly stimulates rat Aβ aggregation in vitro as shown by turbidity measurements, Congo Red binding, as well as electron microscopy, suggesting that Aβ-AChE deposits observed in vivo probably recruited endogenous Aβ peptide; 2) the appearance of laminin expressing neurons surrounding Aβ-AChE deposits (such deposits are resistant to disaggregation by laminin in vitro); 3) an extensive astrocytosis revealed by both glial fibrillary acidic protein immunoreactivity and number counting of reactive hypertrophic astrocytes; and 4) a stronger neuronal cell loss in comparison with Aβ-injected animals. We conclude that the hippocampal injection of Aβ-AChE complexes results in the appearance of some features reminiscent of Alzheimer-like lesions in rat brain. Our studies are consistent with the notion that Aβ-AChE complexes are more toxic than Aβ fibrils and that AChE triggered some of the neurodegenerative changes observed in Alzheimer’s disease brains. PMID:15161650
O'Donnell, John C; McDonough, John H; Shih, Tsung-Ming
2011-12-01
Organophosphorus nerve agents such as sarin (GB) and VX irreversibly inhibit acetylcholinesterase, causing a buildup of acetylcholine (ACh) in synapses and neuromuscular junctions, which leads to excess bronchial secretions, convulsions, seizures, coma, and death. Understanding the unique toxic characteristics of different nerve agents is vital in the effort to develop broad spectrum medical countermeasures. To this end, we employed a repeated measure multivariate design with striatal microdialysis collection and high-performance liquid chromatography analysis to measure changes in concentrations of several neurotransmitters (ACh, glutamate, aspartate, GABA) in the same samples during acute exposure to GB or VX in freely moving guinea pigs. Concurrent with microdialysis collection, we used cortical electrodes to monitor brain seizure activity. This robust double multivariate design provides greater fidelity when comparing data while also reducing the required number of subjects. No correlation between nerve agents' propensity for causing seizure and seizure-related lethality was observed. The GB seizure group experienced more rapid and severe cholinergic toxicity and lethality than that of the VX seizure group. Seizures generated from GB and VX exposure resulted in further elevation of ACh level and then a gradual return to baseline. Glutamate levels increased in the GB, but not in the VX, seizure group. There were no consistent changes in either aspartate or GABA as a result of either nerve agent. These observations reinforce findings with other nerve agents that seizure activity per se contributes to the elevated levels of brain ACh observed after nerve agent exposure.
Kaizer, Rosilene Rodrigues; Spanevello, Rosélia Maria; Costa, Eduarda; Morsch, Vera Maria; Schetinger, Maria Rosa Chitolina
2018-02-01
High fat diets are associated with the promotion of neurological diseases, such as Alzheimer disease (AD). This study aim investigate the high fat diets role to promotion of AD using as biochemistry parameter of status of central nervous system through the NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in brain of young rats. The intake of high fat diets promotes an inhibition of purinergic and cholinergic functions, mainly in the long-term exposure to saturated and saturated/unsaturated diets. The AChE activity was decreased to supernatant and synaptosomes tissues preparations obtained from cerebral cortex in average of 20%, to both groups exposed to saturated and saturated/unsaturated diets, when compared to the control group. Very similar results were found in hippocampus and cerebellum brain areas. At same time, the adenine nucleotides hydrolysis in synaptosomes of cerebral cortex were decreased to ATP, ADP and AMP after the long-term exposure to high fat diets, as saturated and saturated/unsaturated. The inhibition of ATP hydrolysis was of 26% and 39% to saturated and saturated/unsaturated diets, respectively. ADP hydrolysis was decreased in 20% to saturated diet, and AMP hydrolysis was decreased in 25% and 33% to saturated and saturated/unsaturated diets, respectively, all in comparison to the control. Thus, we can suggest that the effects of high diets on the purinergic and cholinergic nervous system may contribute to accelerate the progressive memory loss, to decline in language and other cognitive disruptions, such as AD patients presents. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Slotkin, Theodore A.; Card, Jennifer; Infante, Alice; Seidler, Frederic J.
2013-01-01
Glucocorticoids are routinely given in preterm labor and are also elevated by maternal stress; organophosphate exposures are virtually ubiquitous, so coexposures to these two agents are pervasive. We administered dexamethasone to pregnant rats on gestational days 17–19 at a standard therapeutic dose (0.2 mg/kg); offspring were then given chlorpyrifos on postnatal days 1–4, at a dose (1 mg/kg) that produces barely-detectable (<10%) inhibition of brain cholinesterase activity. We evaluated indices for acetylcholine (ACh) synaptic function throughout adolescence, young adulthood and later adulthood, in brain regions possessing the majority of ACh projections and cell bodies; we measured nicotinic ACh receptor binding, hemicholinium-3 binding to the presynaptic choline transporter and choline acetyltransferase activity, all known targets for the adverse developmental effects of dexamethasone and chlorpyrifos given individually. Dexamethasone did not enhance the systemic toxicity of chlorpyrifos, as evidenced by weight gain and measurements of cholinesterase inhibition during chlorpyrifos treatment. Nevertheless, it enhanced the loss of presynaptic ACh function selectively in females, who ordinarily show sparing of organophosphate developmental neurotoxicity relative to males. Females receiving the combined treatment showed decrements in choline transporter binding and choline acetyltransferase activity that were unique (not found with either treatment alone), as well as additive decrements in nicotinic receptor binding. On the other hand, males given dexamethasone showed no augmentation of the effects of chlorpyrifos. Our findings indicate that prior dexamethasone exposure could create a subpopulation that is especially vulnerable to the adverse effects of organophosphates or other developmental neurotoxicants. PMID:23416428
Henderson, Brandon J.; Wall, Teagan R.; Henley, Beverley M.; Kim, Charlene H.; Nichols, Weston A.; Moaddel, Ruin; Xiao, Cheng
2016-01-01
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. SIGNIFICANCE STATEMENT Menthol, the most popular flavorant for tobacco products, has been considered simply a benign flavor additive. However, as we show here, menthol alone exerts several neurobiological changes. We are among the first to show that menthol, by itself, increases the number of nicotinic acetylcholine receptors (nAChRs) in the mouse brain. It does so at a dose that matches nicotine in its ability to increase nAChR number. At this same dose, menthol also alters midbrain dopamine neuron function and prevents nicotine reward-related behavior. Together, our data show that menthol is more than an “inert” flavor additive and is able to change the function of midbrain dopamine neurons that are part of the mesolimbic reward pathway. PMID:26961950
Bonifacio, Alejo Fabian; Ballesteros, María Laura; Bonansea, Rocío Inés; Filippi, Iohanna; Amé, María Valeria; Hued, Andrea Cecilia
2017-12-01
The increase of cultivated areas together with the intensive use of pesticides have greatly contributed to impair the quality of aquatic systems along different areas of South America. The main goal of the present study was to assess the effects of a commercial formulation of chlorpyrifos at environmentally relevant concentrations on two native fish species, Cheirodon interruptus and Cnesterodon decemmaculatus. Adult individuals were exposed during 48 h to the following concentrations: 0.084 nl/l (Ci-Cf 1) and 0.84 nl/l (Ci-CF 2) in C. interruptus (Ci) of Clorfox (CF), and 0.84 nl/l (Cd-CF 1) and 8.4 nl/l (Cd-CF 2) in C. decemmaculatus (Cd). Fish behavior was evaluated through locomotor activity and space usage variables. The activity of acetylcholinesterase (AChE) in brain and muscle, catalase (CAT) and glutathione-S-transferase (GST) in brain, liver, muscle and gills, and aspartate amino-transferase (AST), alanine amino-transferase (ALT), AST/ALT ratio and alkaline phosphatase (ALP) in liver, were measured. Both locomotor activity and space usage varied between the two species studied and between CF treatments. The enzyme activities showed significant variations in CAT for C. interruptus and in CAT, GST, AChE, AST, and AST/ALT for C. decemmaculatus under the exposure conditions. Given that both species responded to CF and the concentrations we tested are environmentally relevant, the presence of this pesticide in freshwater systems could impose a risk for populations of both native fish studied at field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Site-directed decapsulation of bolaamphiphilic vesicles with enzymatic cleavable surface groups.
Popov, Mary; Grinberg, Sarina; Linder, Charles; Waner, Tal; Levi-Hevroni, Bosmat; Deckelbaum, Richard J; Heldman, Eliahu
2012-06-10
Stable nano-sized vesicles with a monolayer encapsulating membrane were prepared from novel bolaamphiphiles with choline ester head groups. The head groups were covalently bound to the alkyl chain of the bolaamphiphiles either via the nitrogen atom of the choline moiety, or via the choline ester's methyl group. Both types of bolaamphiphiles competed with acetylthiocholine for binding to acetylcholine esterase (AChE), yet, only the choline ester head groups bound to the alkyl chain via the nitrogen atom of the choline moiety were hydrolyzed by the enzyme. Likewise, only vesicles composed of bolaamphiphiles with head groups that were hydrolyzed by AChE released their encapsulated material upon exposure to the enzyme. Injection of carboxyfluorescein (CF)-loaded vesicles with cleavable choline ester head groups into mice resulted in the accumulation of CF in tissues that express high AChE activity, including the brain. By comparison, when vesicles with choline ester head groups that are not hydrolyzed by AChE were injected into mice, there was no accumulation of CF in tissues that highly express the enzyme. These results imply that bolaamphiphilic vesicles with surface groups that are substrates to enzymes which are highly expressed in target organs may potentially be used as a drug delivery system with controlled site-directed drug release. Copyright © 2011 Elsevier B.V. All rights reserved.
Biochemical Responses in Freshwater Fish Exposed to Insecticide Propoxur.
Gonçalves, Carjone Rosa; Marins, Aline Teixeira; do Amaral, Aline Monique Blank; Leitemperger, Jossiele; Severo, Eduardo Stringini; Moraes, Bibiana Silveira; Zanella, Renato; Loro, Vania Lucia
2018-04-01
Although designed to control pests selectively, there is some evidence that environmental contamination by pesticides increases risks for humans and wildlife. In the present study, we evaluated biomarkers of oxidative stress in Astyanax jacuhiensis exposed to (5, 15 and 30 µg L -1 ) of carbamate Propoxur (PPX) for 96 h. Glutathione S-transferase (GST) in liver and gills showed reduced activity in all PPX concentrations tested. Acetylcholinesterase (AChE) activities reduced in brain and muscle at concentrations 15 and 30 µg L -1 of PPX. Lipid peroxidation (LPO) and hydrogen peroxide (HP) had no significant differences. In the brain, protein carbonyl (PC) increased in all groups treated with PPX. Although PPX is a selective pesticide, it causes oxidative damage and enzyme alteration in fish. This study pointed out some biomarkers that could be used to assess effects of environmentally relevant concentrations of pesticides, and infer about studies using fish as bioindicator.
Pandareesh, M D; Anand, T; Khanum, Farhath
2016-05-01
Cognition-enhancing activity of Bacopa monniera extract (BME) was evaluated against scopolamine-induced amnesic rats by novel object recognition test (NOR), elevated plus maze (EPM) and Morris water maze (MWM) tests. Scopolamine (2 mg/kg body wt, i.p.) was used to induce amnesia in rats. Piracetam (200 mg/kg body wt, i.p.) was used as positive control. BME at three different dosages (i.e., 10, 20 and 40 mg/kg body wt.) improved the impairment induced by scopolamine by increasing the discrimination index of NOR and by decreasing the transfer latency of EPM and escape latency of MWM tests. Our results further elucidate that BME administration has normalized the neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptamine, dopamine, 3,4 dihydroxyphenylacetic acid, norepinephrine) levels that were altered by scopolamine administration in hippocampus of rat brain. BME administration also ameliorated scopolamine effect by down-regulating AChE and up-regulating BDNF, muscarinic M1 receptor and CREB expression in brain hippocampus confirms the potent neuroprotective role and these results are in corroboration with the earlier in vitro studies. BME administration showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant and lipid peroxidation. These results indicate that, cognition-enhancing and neuromodulatory propensity of BME is through modulating the expression of AChE, BDNF, MUS-1, CREB and also by altering the levels of neurotransmitters in hippocampus of rat brain.
Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim
2018-05-01
Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.
Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N
2015-12-01
Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.
Wattanathorn, Jintanaporn; Kirisattayakul, Woranan; Suriharn, Bhalang; Lertrat, Kamol
2018-05-30
Due to requirement of novel memory enhancer for menopausal women, this study aimed to determine safety and effect of the functional drink containing the extracts of purple corn cob and pandan leaves (PCP) on memory and brain changes in experimental menopause induced by bilateral ovariectomy (OVX). Acute toxicity of PCP was carried out in female Wistar rats. The results showed that LD50 was more than 2000 mg/kg BW. To determine the cognitive enhancing effect of PCP, OVX rats were orally treated with PCP at the doses of 20, 40, and 80 mg/kg BW for 28 days. The spatial memory was assessed every 7 days throughout the study period. At the end of the study, oxidative stress status, acetylcholinesterase (AChE) activity, monoamine oxidase (MAO) activity, neuronal density, and extracellular signal regulated protein kinase 1 and 2 (ERK1/2) signaling in hippocampus were measured. The improved spatial memory, ERK1/2 expression, and neuron density in dentate gyrus of hippocampus were observed in PCP-treated rats. In addition, a reduction of AChE activity was also observed. Unfortunately, no improved oxidative stress status was observed. Taken altogether, PCP exerts the memory-enhancing effect partly through the suppression of AChE and the increase in ERK signaling in the hippocampus.
Park, Seon Kyeong; Jin, Dong Eun; Park, Chang Hyeon; Seung, Tae Wan; Guo, Tian Jiao; Song, Jong Wook; Kim, Jong Hwan; Kim, Dae Ok; Heo, Ho Jin
2015-09-01
The anti-amnesic effects of onion (Allium cepa L.) flesh (OF) 1 and peel (OP) 2 on trimethyltin (TMT) 3 -induced learning and memory dysfunction were investigated to confirm learning and memory function. The inhibitory effect against cellular acetylcholinesterase (AChE) 4 showed that the EtOAc fraction of OP (EOP 5 , IC 50 value=37.11μg/mL) was higher than the EtOAc fraction of OF (EOF 6 , IC 50 value=433.34μg/mL). The cognitive effects in ICR mice were also evaluated using Y-maze, passive avoidance, and Morris water maze tests. After the behavioral tests, AChE activity (control=100%, TMT=128%, EOF 20=108%, EOP 10=104%, and EOP 20=98%), superoxide dismutase (SOD) 7 activity, oxidized glutathione (GSSG) 8 /total glutathione (GSH) 9 and malondialdehyde (MDA) 10 production were examined. These results indicate that both EOF and EOP improved learning and memory function. The main compounds of the EOF and EOP were analyzed by Q-TOF UPLC/MS, and the results were as follows: The EOF (quercetin and quercetin-4'-glucoside) and the EOP (quercetin-4'-glucoside and isorhamnetin-4'-glucoside). Consequently, our results suggest that both EOF and EOP could be efficacious in improving cognitive function through AChE inhibition and antioxidant activity in mice brains. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin
Kumar, Suresh
2015-01-01
Objectives: The brain of mammals contains two major form of cholinesterase enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder such as Alzheimer's disease (AD), senile dementia, ataxia, and myasthenia gravis. The present study was undertaken to explore the anticholinesterase inhibition property of allicin. Materials and Methods: An assessment of cholinesterase inhibition was carried out by Ellman's assay. Results: The present study demonstrates allicin, a major ingredient of crushed garlic (Allium sativum L.) inhibited both AChE and BuChE enzymes in a concentration-dependent manner. For allicin, the IC50 concentration was 0.01 mg/mL (61.62 μM) for AChE and 0.05 ± 0.018 mg/mL (308.12 μM) for BuChE enzymes. Conclusions: Allicin shows a potential to ameliorate the decline of cognitive function and memory loss associated with AD by inhibiting cholinesterase enzymes and upregulate the levels of acetylcholine (ACh) in the brain. It can be used as a new lead to target AChE and BuChE to upregulate the level of ACh which will be useful in alleviating the symptoms associated with AD. PMID:26288480
Lo, Rabindranath; Ganguly, Bishwajit
2014-07-29
Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction parameters (rupture force profiles, hydrogen bonds, hydrophobic interactions), geometry and the orientation of the drug candidates, the hydroxylamine is suggested to orchestrate the reactivation process better than TMB4. Furthermore, the calculated log P values show the effective penetration of the neutral drug candidate through the blood-brain barrier. The toxicity measurements and the IC50 values (a measure of the intrinsic affinity toward AChE) suggest that the pyridinylhydroxylamine compound could have similar toxic behavior compared to the prototype oxime antidotes used for reactivation purposes. The newly designed pyridinylhydroxylamine drug candidate can be an effective antidote both kinetically and structurally to reactivate the tabun-inhibited enzyme.
Bivalent ligands derived from Huperzine A as acetylcholinesterase inhibitors.
Haviv, H; Wong, D M; Silman, I; Sussman, J L
2007-01-01
The naturally occurring alkaloid Huperzine A (HupA) is an acetylcholinesterase (AChE) inhibitor that has been used for centuries as a Chinese folk medicine in the context of its source plant Huperzia Serrata. The potency and relative safety of HupA rendered it a promising drug for the ameliorative treatment of Alzheimer's disease (AD) vis-à-vis the "cholinergic hypothesis" that attributes the cognitive decrements associated with AD to acetylcholine deficiency in the brain. However, recent evidence supports a neuroprotective role for HupA, suggesting that it could act as more than a mere palliative. Biochemical and crystallographic studies of AChE revealed two potential binding sites in the active-site gorge of AChE, one of which, the "peripheral anionic site" at the mouth of the gorge, was implicated in promoting aggregation of the beta amyloid (Abeta) peptide responsible for the neurodegenerative process in AD. This feature of AChE facilitated the development of dual-site binding HupA-based bivalent ligands, in hopes of concomitantly increasing AChE inhibition potency by utilizing the "chelate effect", and protecting neurons from Abeta toxicity. Crystal structures of AChE allowed detailed modeling and docking studies that were instrumental in enhancing the understanding of underlying principles of bivalent inhibitor-enzyme dynamics. This monograph reviews two categories of HupA-based bivalent ligands, in which HupA and HupA fragments serve as building blocks, with a focus on the recently solved crystallographic structures of Torpedo californica AChE in complex with such bifunctional agents. The advantages and drawbacks of such structured-based drug design, as well as species differences, are highlighted and discussed.
Regulation of GABAergic Inputs to CA1 Pyramidal Neurons by Nicotinic Receptors and Kynurenic Acid
Banerjee, Jyotirmoy; Alkondon, Manickavasagom; Pereira, Edna F. R.
2012-01-01
Impaired α7 nicotinic acetylcholine receptor (nAChR) function and GABAergic transmission in the hippocampus and elevated brain levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the kynurenine pathway, are key features of schizophrenia. KYNA acts as a noncompetitive antagonist with respect to agonists at both α7 nAChRs and N-methyl-d-aspartate receptors. Here, we tested the hypothesis that in hippocampal slices tonically active α7 nAChRs control GABAergic transmission to CA1 pyramidal neurons and are sensitive to inhibition by rising levels of KYNA. The α7 nAChR-selective antagonist α-bungarotoxin (α-BGT; 100 nM) and methyllycaconitine (MLA; 10 nM), an antagonist at α7 and other nAChRs, reduced by 51.3 ± 1.3 and 65.2 ± 1.5%, respectively, the frequency of GABAergic postsynaptic currents (PSCs) recorded from CA1 pyramidal neurons. MLA had no effect on miniature GABAergic PSCs. Thus, GABAergic synaptic activity in CA1 pyramidal neurons is maintained, in part, by tonically active α7 nAChRs located on the preterminal region of axons and/or the somatodendritic region of interneurons that synapse onto the neurons under study. l-Kynurenine (20 or 200 μM) or KYNA (20–200 μM) suppressed concentration-dependently the frequency of GABAergic PSCs; the inhibitory effect of 20 μM l-kynurenine had an onset time of approximately 35 min and could not be detected in the presence of 100 nM α-BGT. These results suggest that KYNA levels generated from 20 μM kynurenine inhibit tonically active α7 nAChR-dependent GABAergic transmission to the pyramidal neurons. Disruption of nAChR-dependent GABAergic transmission by mildly elevated levels of KYNA can be an important determinant of the cognitive deficits presented by patients with schizophrenia. PMID:22344459
Impact of gasoline inhalation on some neurobehavioural characteristics of male rats
2009-01-01
Background This paper examines closely and compares the potential hazards of inhalation of two types of gasoline (car fuel). The first type is the commonly use leaded gasoline and the second is the unleaded type enriched with oxygenate additives as lead substituent in order to raise the octane number. The impacts of gasoline exposure on Na+, K+-ATPase, superoxide dismutase (SOD), acetylcholinesterase (AChE), total protein, reduced glutathione (GSH), and lipid peroxidation (TBARS) in the cerebral cortex, and monoamine neurotransmitters dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in the cerebral cortex, hippocampus, cerebellum and hypothalamus were evaluated. The effect of gasoline exposure on the aggressive behaviour tests was also studied. Results The present results revealed that gasoline inhalation induced significant fluctuations in the levels of the monoamine neurotransmitters in the studied brain regions. This was concomitant with a decrease in Na+, K+-ATPase activity and total protein content. Moreover, the group exposed to the unleaded gasoline exhibited an increase in lipid peroxidation and a decrease in AChE and superoxide dismutase activities. These physiological impairments were accompanied with a higher tendency towards aggressive behaviour as a consequence to gasoline inhalation. Conclusion It is concluded from the present work that chronic exposure to either the leaded or the unleaded gasoline vapours impaired the levels of monoamine neurotransmitters and other biochemical parameters in different brain areas and modulated several behavioural aspects related to aggression in rats. PMID:19930677
Oboh, Ganiyu; Odubanjo, Veronica O; Bello, Fatai; Ademosun, Ayokunle O; Oyeleye, Sunday I; Nwanna, Emem E; Ademiluyi, Adedayo O
2016-03-01
Avocado pear (Persea americana Mill.) leaves and seeds are used in traditional medicine for the treatment/management of Alzheimer disease (AD); however, information on the mechanism of actions is limited. This study sought to investigate the effect of P. americana leaf and seed aqueous extracts on some enzymes linked with AD (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE] activities) and their antioxidant potentials in vitro. The inhibitory effects of extracts on AChE and BChE activities and antioxidant potentials (inhibition of Fe2+- and sodium nitroprusside-induced thiobarbiturate reactive species [TBARS] production in rat brain homogenates, radicals [1,1-diphenyl-2-picrylhydrazyl, hydroxyl, and nitric oxide] scavenging and iron [Fe] chelation abilities) were investigated. Phenolic content and phytochemical screening were carried out. Alkaloid profile was also determined using gas chromatography coupled with flame ionization detector (GC-FID). The extracts inhibited AChE and BChE activities and prooxidant-induced TBARS production in a dose-dependent manner, with the seed extract having the highest inhibitory effect and the leaf extract exhibiting higher phenolic content and radical scavenging abilities, but lower Fe chelation ability compared with that of the seed. The phytochemical screening revealed the presence of saponins, alkaloids, and terpenoids in both extracts, whereas the total alkaloid profile was higher in the seed extract than in the leaf extract, as revealed by GC-FID. The anti-cholinesterase and antioxidant activities of avocado leaf and seed could be linked to their phytoconstituents and might be the possible mechanisms underlying their use as a cheap and natural treatment/management of AD. However, these extracts should be further investigated in vivo.
Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
Cacabelos, Ramón
2007-01-01
Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive (EM)(*1/*1, *1/*10) (57.47%) and intermediate metabolizers (IM)(*1/*3, *1/*5, *1/*6, *7/*10) (25.29%), and the worst responders are the poor (PM) (*4/*4)(9.20%) and ultra-rapid metabolizers (UM) (*1×N/*1) (8.04%). Pharmacogenetic and pharmacogenomic factors may account for 75%–85% of the therapeutic response in AD patients treated with donepezil and other AChEIs metabolized via enzymes of the CYP family. The implementation of pharmacogenetic protocols can optimize AD therapeutics. PMID:19300564
Xu, Yi-Xiang; Wang, Huan; Li, Xiao-Kang; Dong, Sheng-Nan; Liu, Wen-Wen; Gong, Qi; Wang, Tian-Duan-Yi; Tang, Yun; Zhu, Jin; Li, Jian; Zhang, Hai-Yan; Mao, Fei
2018-01-01
A series of novel propargylamine-modified pyrimidinylthiourea derivatives (1-3) were designed and synthesized as multifunctional agents for Alzheimer's disease (AD) therapy, and their potential was evaluated through various biological experiments. Among these derivatives, compound 1b displayed good selective inhibitory activity against AChE (vs BuChE, IC 50 = 0.324 μM, SI > 123) and MAO-B (vs MAO-A, IC 50 = 1.427 μM, SI > 35). Molecular docking study showed that the pyrimidinylthiourea moiety of 1b could bind to the catalytic active site (CAS) of AChE, and the propargylamine moiety interacted directly with the flavin adenine dinucleotide (FAD) of MAO-B. Moreover, 1b demonstrated mild antioxidant ability, good copper chelating property, effective inhibitory activity against Cu 2+ -induced Aβ 1-42 aggregation, moderate neuroprotection, low cytotoxicity, and appropriate blood-brain barrier (BBB) permeability in vitro and was capable of ameliorating scopolamine-induced cognitive impairment in mice. These results indicated that 1b has the potential to be a multifunctional candidate for the treatment of Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Xiao, Ganyuan; Li, Yan; Qiang, Xiaoming; Xu, Rui; Zheng, Yunxiaozhu; Cao, Zhongcheng; Luo, Li; Yang, Xia; Sang, Zhipei; Su, Fu; Deng, Yong
2017-02-01
A series of 4'-aminochalcone-revastigmine hybrids were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease. The results showed that most of these compounds exhibited good multifunctional activities. In particular, compound 6c displayed the best inhibitory potency on acetylcholinesterase (IC 50 =4.91μM), and significant antioxidative activity with a value 2.83-fold of Trolox. The kinetic analysis of AChE inhibition revealed that 6c showed mixed-type inhibition, binding simultaneously to the catalytic active site and peripheral anionic site of AChE. In addition, 6c inhibited self-induced Aβ 1-42 aggregation and Cu 2+ -induced Aβ 1-42 aggregation by 89.5% and 79.7% at 25μM respectively, as well as acted as a selective monoamine oxidase B inhibitor (IC 50 =0.29μM) and a selective biometal chelator. Furthermore, 6c could cross the blood-brain barrier in vitro. Based on these results, Compound 6c could be considered as a very promising lead compound for Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Abdel-Daim, Mohamed; El-Bialy, Badr E; Rahman, Haidy G Abdel; Radi, Abeer M; Hefny, Hany A; Hassan, Ahmed M
2016-02-01
Spirulina platensis (SP); a microalga with high antioxidant and anti-inflammatory activities, acts as a food supplement in human and as many animal species. Deltamethrin (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects and widely used for veterinary and agricultural purposes. Exposure to DLM leads to hepatotoxic, nephrotoxic and neurotoxic side effects for human and many species, including birds and fish. The present study was undertaken to examine the potential hepatoprotective, nephroprotective, neuroprotective and antioxidant effects of SP against sub-acute DLM toxicity in male mice. DLM intoxicated animals revealed a significant increase in serum hepatic and renal injury biomarkers as well as TNF-α level and AChE activity. Moreover, liver, kidney and brain lipid peroxidation and oxidative stress markers were altered due to DLM toxicity. Spirulina normalized the altered serum levels of AST, ALT, APL, LDH, γ-GT, cholesterol, uric acid, urea, creatinine AChE and TNF-α. Furthermore, it reduced DLM-induced tissue lipid peroxidation, nitric oxide and oxidative stress in a dose-dependent manner. Collectively, that Spirulina supplementation could overcome DLM-induced hepatotoxicty, nephrotoxicity and neurotoxicity by abolishing oxidative tissue injuries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Mu, Wei-Na; Li, Zhi-Hua; Zhong, Li-Qiao; Wu, Yan-Hua
2016-09-01
Tributyltin (TBT) and cadmium (Cd) are two common pollutants in aquatic environments. This study was designed to examine the physiological responses of juvenile Grass Carp Ctenopharyngodon idella to TBT, Cd, and their combination. Fish were apportioned into a control group, a TBT group (7.5 μg/L), a Cd group (2.97 mg/L), and a TBT-Cd group (7.5 μg/L TBT, 2.97 mg/L Cd(2+)) for 7 d. The following activities were measured: Na(+),K(+)-ATPase in gill tissues; nitric oxide synthase (NOS), acetylcholinesterase (AChE), and monoamine oxidase (MAO) in brain tissues; and lipid peroxidation (LPO), malondialdehyde (MDA), total antioxidative capacity (T-AOC), and glutathione (GSH) in liver tissues. Cadmium-induced stress was suggested by alterations in antioxidant responses (MDA, LPO, and T-AOC) and neurological parameters (AChE, MAO, and NOS). Cadmium also induced Na(+),K(+)-ATPase and GSH activity. Compared with the responses among the Cd group, the combination of TBT and Cd not only decreased the level of GSH and Na(+),K(+)-ATPase but also increased the levels of MDA, LPO, AChE, MAO, and NOS. These results suggest that a combination of TBT and Cd could reduce the adverse effects of Cd on Grass Carp. However, the exact mechanisms for the combined effects TBT and Cd on these biomarkers require further investigation. Received September 28, 2015; accepted April 17, 2016.
Utsuki, Tadanobu; Uchimura, Nao; Irikura, Mitsuru; Moriuchi, Hiroshi; Holloway, Harold W; Yu, Qian-Sheng; Spangler, Edward L; Mamczarz, Jacek; Ingram, Donald K; Irie, Tetsumi; Greig, Nigel H
2007-04-01
Phenserine (PS) was designed as a selective acetylcholinesterase (AChE) inhibitor, with a tartrate form (PST) for oral administration in mild to moderate Alzheimer's disease (AD). Recent phase 3 trials of PST in Europe indicate that any clinically relevant activity of PST may be limited by its duration of action. Like many oral drugs, bioavailability and plasma concentrations of PST are regulated by hepatic and gastrointestinal first-pass effects. To minimize the kinetic limitations of first-pass metabolism, transdermal formulations of PS and PST (ointment/patch) were developed and characterized in vitro and in vivo. Initial in vitro kinetic characterization of PS or PST formulations used a diffusion cell chamber and skin samples isolated from hairless mice. Liquid paraffin and fatty alcohol/propylene glycol (FAPG) were found to be suitable vehicles for ointment formulation. Addition of a penetration enhancer, 1-[2-(decylthio)ethyl]-azacyclopentane-2-one (HPE-101), improved stratum corneum permeability. Application of the optimal formulation of PS/HPE-101/FAPG to the shaved back of rats resulted in significantly lowered plasma and brain AChE activities and improved cognitive performance in animals with scopolamine-induced cognitive impairment. These results suggest that the transdermal application of AChE inhibitors may represent an effective therapeutic strategy for AD. Particular benefits over oral therapies might include avoiding first-pass metabolic effects and improved dosing compliance.
Kunisawa, Naofumi; Iha, Higor A; Shimizu, Saki; Tokudome, Kentaro; Mukai, Takahiro; Kinboshi, Masato; Serikawa, Tadao; Ohno, Yukihiro
2016-11-01
Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of movement disorders (e.g., tremor) and epilepsy. Here, we performed behavioral and immunohistochemical studies using mice and rats to elucidate the mechanisms underlying nicotine-induced tremor. Treatments of animals with nicotine (0.5-2mg/kg, i.p.) elicited kinetic tremor, which was completely suppressed by the nACh receptor antagonist mecamylamine (MEC). The specific α7 nACh receptor antagonist methyllycaconitine (MLA) also inhibited nicotine-induced tremor, whereas the α4β2 nACh antagonist dihydro-β-erythroidine (DHβE) or the peripheral α3β4 nACh antagonist hexamethonium showed no effects. Mapping analysis of Fos protein expression, a biological marker of neural excitation, revealed that a tremorgenic dose (1mg/kg) of nicotine region-specifically elevated Fos expression in the piriform cortex (PirC), medial habenula, solitary nucleus and inferior olive (IO) among 44 brain regions examined. In addition, similarly to the tremor responses, nicotine-induced Fos expression in the PirC and IO was selectively antagonized by MLA, but not by DHβE. Furthermore, an electrical lesioning of the IO, but not the PirC, significantly suppressed the induction of nicotine tremor. The present results suggest that nicotine elicits kinetic tremor in rodents by activating the IO neurons via α7 nACh receptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhou, Miao-Miao; Xue, Yong; Sun, Shu-Hong; Wen, Min; Li, Zhao-Jie; Xu, Jie; Wang, Jing-Feng; Yanagita, Teruyoshi; Wang, Yu-Ming; Xue, Chang-Hu
2016-08-24
Phosphatidylcholine (PC), the major source of dietary choline, has been demonstrated to improve the capability of learning and memory in rodent and the amelioration of long-chain n-3 polyunsaturated fatty acids (PUFA) on anti-aging and anti-oxidation is widely known as well. In this study, three kinds of PC were chose to demonstrate the role of different fatty acids composition on glycerol backbone in improving the brain function of mice induced by scopolamine which was used to impair cholinergic system and cause oxidative stress. Male BALB/c mice were randomly divided into 5 groups: model (M) group, control (Con) group, egg yolk lecithin (EL) group, squid PC (SQ-PC) group and sea cucumber PC (SC-PC) group. The intraperitoneal injection of scopolamine hydrobromide (5 mg/kg) was carried out on the 8(th) of group feeding and sustained daily until the end of test. Morris water maze test was used to evaluate the improvement of cognitive decline and the activity of acetylcholinesterase (AchE), superoxide dismutase (SOD) and monoamine oxidase (MAO) and malondialdehyde (MDA) content in brain were measured to assess the physiological changes. In behavior test, the latency of PC groups was significantly reduced, while number of crossing the platform and time in target quadrant were increased in comparison with M group and the improvements of SQ-PC and SC-PC were better than that of EL (P < 0.05). Similar trend was observed in physiological changes. The AchE activity was effectively decreased and the SOD activity increased in hippocampus, cortex and white matter when comparing PC groups with M group. SQ-PC, SC-PC and EL respectively showed 22.82, 28.80 and 11.81 % decrease in MDA level in brain compared with M group. The MAO activity in white matter of SQ-PC, SC-PC and EL group separately depressed 33.05, 33.64 and 19.73 % in comparison with M group. No significance between SQ-PC and SC-PC was found in these indicators except the SOD activity in hippocampus and white matter. SQ-PC group had a higher SOD activity in hippocampus (103.68U/mg · prot.) and lower in white matter (120.57 U/mg · prot.) than SC-PC group (95.53 U/mg · prot. in hippocampus, 134.49 U/mg · prot. in white matter). PC rich in n-3 PUFA acted more ameliorative effects than that barely contained on the indicators above. Different fatty acids composition of PC all could diminish the cognitive decline and biological damage and protect the brain. EPA and DHA partly enhaced to the advantageous effects.
Higashino, Kosuke; Ago, Yukio; Umeki, Takahiro; Hasebe, Shigeru; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio
2016-02-01
The acetylcholinesterase inhibitors donepezil, galantamine, and rivastigmine are used for the treatment of Alzheimer's disease. We previously demonstrated that donepezil and galantamine differentially affect isolation rearing-induced prepulse inhibition (PPI) deficits and that this might be due to differential effects on brain muscarinic acetylcholine (mACh) receptor function in mice. We examined the effects of rivastigmine on isolation rearing-induced PPI deficits, brain ACh levels, and mACh receptor function in mice. Acoustic startle responses were measured in a startle chamber. Microdialysis was performed, and the levels of dopamine and ACh in the prefrontal cortex were measured. Rivastigmine (0.3 mg/kg) improved PPI deficits, and this improvement was antagonized by the mACh receptor antagonist telenzepine but not by the nicotinic ACh receptor antagonist mecamylamine. Rivastigmine increased extracellular ACh levels by approximately 2-3-fold, less than the increase produced by galantamine. Rivastigmine enhanced the effect of the mACh receptor agonist N-desmethylclozapine on prefrontal dopamine release, a marker of mACh receptor function, and this increase was blocked by telenzepine. In contrast, galantamine did not affect N-desmethylclozapine-induced dopamine release. Furthermore, rivastigmine did not affect cortical dopamine release induced by the serotonin1A receptor agonist osemozotan, suggesting that the effect of rivastigmine has specificity for mACh receptors. Taken together with our previous finding that marked increases in ACh levels are required for the PPI deficit improvement induced by galantamine, our present results suggest that rivastigmine improves isolation rearing-induced PPI deficits by increasing ACh levels and by concomitantly enhancing mACh receptor function.
Venturini, Francine P; Moraes, Fernanda D; Cortella, Lucas R X; Rossi, Priscila A; Cruz, Claudinei; Moraes, Gilberto
2015-02-01
Fish parasites are among the crucial limiting factors in aquaculture. The organophosphorous pesticide trichlorfon is widely used as an insecticide and against fish parasites worldwide. In this study, the effects of environmental trichlorfon on biochemical and physiological parameters were investigated in Piaractus mesopotamicus (pacu), a widely farmed fish in South America, through sublethal exposure (8 µg L(-1), 10 % of the LC50; 96 h) and recovery. The activity of brain acetylcholinesterase (AChE) was reduced after exposure (15.5 %) and remained decreased during the recovery (21.5 %). In white muscle, AChE activity decreased 31 % only after recovery. Alkaline phosphatase (ALP) and acid phosphatase (ACP) activities of the liver, muscle and plasma were steady during exposure. However, after the recovery period, ALP activity was increased in the liver and muscle and decreased in plasma, while ACP was increased in the liver and decreased in muscle. Intermediary metabolism was also affected by trichlorfon, depicting increase of energetic demand (hypoglycemia, neoglucogenesis and lipid catabolism), which remained even after recovery. These results indicate that P. mesopotamicus is adversely affected by sublethal concentrations of trichlorfon and are useful for assessing the impact as well as the pros and cons of its use in controlling fish parasites in aquaculture.
AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)
Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...
Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders
Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.
2015-01-01
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674
Nicotinic ACh receptors as therapeutic targets in CNS disorders.
Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L
2015-02-01
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.
Ademosun, Ayokunle Olubode; Oboh, Ganiyu
2014-05-01
Aqueous extracts from citrus peels are used in many rural communities in Nigeria in treating various degenerative conditions, although the scientific basis for its use has not been well established. This study sought to investigate the anticholinesterase and antioxidant properties of aqueous extracts from some citrus peels [orange (Citrus sinensis), grapefruit (Citrus paradisii), and shaddock (Citrus maxima)]. The effects of the extracts on acetylcholinesterase (AChE) activity, as well as Fe2+-induced malondialdehyde (MDA) production in vitro, were investigated. The total phenolic, flavonoid content, and antioxidant activities as typified by 1,1-diphenyl-2 picrylhydrazyl (DPPH) free radical scavenging ability and hydroxyl (OH) radicals scavenging abilities were also investigated. The results revealed that orange peels had the highest total phenol content followed by grapefruit peels, whereas shaddock peels had the least. The extracts inhibited AChE activity in a dose-dependent manner, although there is no significant difference (p>0.05) in their inhibitory abilities of the peels. The extracts exhibited antioxidant activities as typified by their radical (DPPH· and OH·) scavenging abilities as well as the inhibition of Fe2+-induced lipid peroxidation in rat's brain in vitro. The anticholinesterase activity and inhibition of MDA production by the aqueous extracts of the peels, as well as other antioxidant activities, could make the peels a good dietary means for the management of oxidative-mediated neurodegenerative disorders.
Umukoro, Solomon; Kalejaye, Hassanat Adeola; Ben-Azu, Benneth; Ajayi, Abayomi M
2018-06-12
The effects of naringenin; a dietary flavonoid, with potent anti-oxidant and anti-inflammatory activities on social defeat stress (SDS)-induced neurobehavioral and biochemical changes were evaluated in mice using resident-intruder paradigm. The intruder male mice were distributed into 6 groups (n = 6). Mice in group 1 (control) received vehicle (3% DMSO, i.p), group 2 (SDS-control) were also given vehicle, groups 3-5 received naringenin (10, 25 and 50 mg/kg, i.p.) while group 6 had ginseng (50 mg/kg, i.p) daily for 14 days. However, 30 min after treatment on day 7, mice in groups 2-6 were exposed to SDS for a period of 10 min confrontation with aggressive counterparts for 7 consecutive days. Neurobehavioral phenotypes: spontaneous motor activity (SMA), memory, anxiety and depression were then evaluated on day 14. Malondialdehyde (MDA), glutathione (GSH), catalase and superoxide dismutase (SOD) were then estimated in the brain tissues. Acetylcholinesterase (AChE) activity and the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) were also determined. SDS-induced neurobehavioral deficits were significantly (p < 0.05) attenuated by naringenin. The increased brain level of MDA (13.00 ± 0.63 μmol/g tissue) relative to vehicle-control (6.50 ± 0.43 μmol/g tissue) was significantly (p < 0.05) reduced to 5.50 ± 0.22 μmol/g tissue by naringenin (50 mg/kg). Mice exposed to SDS had decreased brain GSH level (5.17 ± 0.40 μmol/g tissue) relative to control (11.67 ± 0.84 μmol/g tissue). However, naringenin (50 mg/kg) significantly (p < 0.05) elevated GSH content (13.33 ± 0.88 μmol/g tissue) in the brains of SDS-mice. Moreover, 50 mg/Kg of naringenin (38.13 ± 2.38 ρg/mL) attenuated (p < 0.05) increased TNF-α level when compared with SDS (49.69 ± 2.81 ρg/mL). SDS-induced increase in brain level of IL-1β (236.5 ± 6.92 ρg/mL) was significantly (p < 0.05) reduced by naringenin (219.90 ± 15.25 ρg/mL). Naringenin also elevated antioxidant enzymes and decreased AChE activity in the brains of mice exposed to SDS (p < 0.05). These findings suggest that naringenin attenuates SDS-induced neurobehavioral deficits through inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The aim of the present work was to assess the effects of agricultural pesticides on honey bee (Apis mellifera L.) survival and physiological stress. Integrated use of acetylcholinesterase (AChE) and antioxidant enzymes (catalase and glutathione S-transferase) was tested on honey bee brains for detec...
Webber, H.M.; Haines, T.A.
2003-01-01
Mercury contamination of fish is widespread in North America and has resulted in the establishment of fish consumption advisories to protect human health, However, the effects of mercury exposure to fish have seldom been investigated. We examined the effects of dietary mercury exposure at environmental levels in a common forage species, golden shiner (Notemigonus crysoleucas). Fish were fed either an unaltered diet (12 ng/g wet wt methylmercury [MeHg] as Hg), a low-Hg diet (455 ng/g Hg), or a high-Hg diet (959 ng/g Hg). After 90 d mean fish whole-body total Hg concentrations were 41, 230, and 518 ng/g wet wt, respectively, which were within the range of concentrations found in this species in northern U.S. lakes. There were no mortalities or differences in growth rate among groups. Groups of fish from each treatment were exposed to a model avian predator and their behavioral response videotaped for analysis. Brain acetylcholinesterase (AChE) activity was determined in fish after behavioral testing. Fish fed the high-Hg diet had significantly greater shoal vertical dispersal following predator exposure, took longer to return to pre-exposure activity level, and had greater shoal area after return to pre-exposure activity than did the other treatments, all of which would increase vulnerability of the fish to predation. There were no differences in brain AChE among treatments. We conclude that mercury exposure at levels currently occurring in northern United States lakes alters fish predator-avoidance behavior in a manner that may increase vulnerability to predation. This finding has significant implications for food chain transfer of Hg and Hg exposure of fish predators.
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila.
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I; Angel, Cristian; Campusano, Jorge M
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila.
Krivoshein, Arcadius V
2016-03-16
Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.
Acetylcholinesterase inhibition and locomotor function after motor-sensory cortex impact injury.
Holschneider, Daniel P; Guo, Yumei; Roch, Margareth; Norman, Keith M; Scremin, Oscar U
2011-09-01
Traumatic brain injury (TBI) induces transient or persistent dysfunction of gait and balance. Enhancement of cholinergic transmission has been reported to accelerate recovery of cognitive function after TBI, but the effects of this intervention on locomotor activity remain largely unexplored. The hypothesis that enhancement of cholinergic function by inhibition of acetylcholinesterase (AChE) improves locomotion following TBI was tested in Sprague-Dawley male rats after a unilateral controlled cortical impact (CCI) injury of the motor-sensory cortex. Locomotion was tested by time to fall on the constant speed and accelerating Rotarod, placement errors and time to cross while walking through a horizontal ladder, activity monitoring in the home cages, and rearing behavior. Assessments were performed the 1st and 2nd day and the 1st, 2nd, and 3rd week after TBI. The AChE inhibitor physostigmine hemisulfate (PHY) was administered continuously via osmotic minipumps implanted subcutaneously at the rates of 1.6-12.8 μmol/kg/day. All measures of locomotion were impaired by TBI and recovered to initial levels between 1 and 3 weeks post-TBI, with the exception of the maximum speed achievable on the accelerating Rotarod, as well as rearing in the open field. PHY improved performance in the accelerating Rotarod at 1.6 and 3.2 μmol/kg/day (AChE activity 95 and 78% of control, respectively), however, higher doses induced progressive deterioration. No effect or worsening of outcomes was observed at all PHY doses for home cage activity, rearing, and horizontal ladder walking. Potential benefits of cholinesterase inhibition on locomotor function have to be weighed against the evidence of the narrow range of useful doses.
Bembenek, Scott D; Keith, John M; Letavic, Michael A; Apodaca, Richard; Barbier, Ann J; Dvorak, Lisa; Aluisio, Leah; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I
2008-03-15
Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.
Exposure to Acetylcholinesterase Inhibitors Alters the Physiology and Motor Function of Honeybees
Williamson, Sally M.; Moffat, Christopher; Gomersall, Martha A. E.; Saranzewa, Nastja; Connolly, Christopher N.; Wright, Geraldine A.
2013-01-01
Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival. PMID:23386834
Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees.
Williamson, Sally M; Moffat, Christopher; Gomersall, Martha A E; Saranzewa, Nastja; Connolly, Christopher N; Wright, Geraldine A
2013-01-01
Cholinergic signaling is fundamental to neuromuscular function in most organisms. Sub-lethal doses of neurotoxic pesticides that target cholinergic signaling can alter the behavior of insects in subtle ways; their influence on non-target organisms may not be readily apparent in simple mortality studies. Beneficial arthropods such as honeybees perform sophisticated behavioral sequences during foraging that, if influenced by pesticides, could impair foraging success and reduce colony health. Here, we investigate the behavioral effects on honeybees of exposure to a selection of pesticides that target cholinergic signaling by inhibiting acetylcholinesterase (AChE). To examine how continued exposure to AChE inhibitors affected motor function, we fed adult foraging worker honeybees sub-lethal concentrations of these compounds in sucrose solution for 24 h. Using an assay for locomotion in bees, we scored walking, stopped, grooming, and upside down behavior continuously for 15 min. At a 10 nM concentration, all the AChE inhibitors caused similar effects on behavior, notably increased grooming activity and changes in the frequency of bouts of behavior such as head grooming. Coumaphos caused dose-dependent effects on locomotion as well as grooming behavior, and a 1 μM concentration of coumaphos induced symptoms of malaise such as abdomen grooming and defecation. Biochemical assays confirmed that the four compounds we assayed (coumaphos, aldicarb, chlorpyrifos, and donepezil) or their metabolites acted as AChE inhibitors in bees. Furthermore, we show that transcript expression levels of two honeybee AChE inhibitors were selectively upregulated in the brain and in gut tissues in response to AChE inhibitor exposure. The results of our study imply that the effects of pesticides that rely on this mode of action have subtle yet profound effects on physiological effects on behavior that could lead to reduced survival.
Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.
2011-01-01
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610
Williams, Dustin K; Wang, Jingyi; Papke, Roger L
2011-10-15
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.
Elhusseiny, A; Cohen, Z; Olivier, A; Stanimirović, D B; Hamel, E
1999-07-01
Acetylcholine is an important regulator of local cerebral blood flow. There is, however, limited information available on the possible sites of action of this neurotransmitter on brain intraparenchymal microvessels. In this study, a combination of molecular and functional approaches was used to identify which of the five muscarinic acetylcholine receptors (mAChR) are present in human brain microvessels and their intimately associated astroglial cells. Microvessel and capillary fractions isolated from human cerebral cortex were found by reverse transcriptase-polymerase chain reaction to express m2, m3, and, occasionally, m1 and m5 receptor subtypes. To localize these receptors to a specific cellular compartment of the vessel wall, cultures of human brain microvascular endothelial and smooth muscle cells were used, together with cultured human brain astrocytes. Endothelial cells invariably expressed m2 and m5 receptors, and occasionally the m1 receptor; smooth muscle cells exhibited messages for all except the m4 mAChR subtypes, whereas messages for all five muscarinic receptors were identified in astrocytes. In all three cell types studied, acetylcholine induced a pirenzepine-sensitive increase (62% to 176%, P<0.05 to 0.01) in inositol trisphosphate, suggesting functional coupling of m1, m3, or m5 mAChR to a phospholipase C signaling cascade. Similarly, coupling of m2 or m4 mAChR to adenylate cyclase inhibition in endothelial cells and astrocytes, but not in smooth muscle cells, was demonstrated by the ability of carbachol to significantly reduce (44% to 50%, P<0.05 to 0.01) the forskolin-stimulated increase in cAMP levels. This effect was reversed by the mAChR antagonist AFDX 384. The results indicate that microvessels are able to respond to neurally released acetylcholine and that mAChR, distributed in different vascular and astroglial compartments, could regulate cortical perfusion and, possibly, blood-brain barrier permeability, functions that could become jeopardized in neurodegenerative disorders such as Alzheimer's disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekundy, Andrzej; Kaminski, Rafal M.; Zielinska, Elzbieta
2007-03-15
Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects ofmore » both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.« less
Lecomte, Marie-José; Bertolus, Chloé; Ramanantsoa, Nélina; Saurini, Françoise; Callebert, Jacques; Sénamaud-Beaufort, Catherine; Ringot, Maud; Bourgeois, Thomas; Matrot, Boris; Collet, Corinne; Nardelli, Jeannette; Mallet, Jacques; Vodjdani, Guilan; Gallego, Jorge; Launay, Jean-Marie; Berrard, Sylvie
2018-04-01
Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.
Kim, Jun-Hwan; Kang, Ju-Chan
2016-03-01
Juvenile Sebastes schlegelii were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) concentration (0, 30, 60, 120 and 200mg/kg). The superoxide dismutase (SOD) activity, glutathione S-transferase (GST) activity, and glutathione (GSH) level of liver and gill were evaluated after 4 weeks exposure. The SOD and GST activity of liver and gill was significantly increased in the concentration of 240mg/kg after 2 weeks and over 120mg/kg after 4 weeks, whereas a considerable decrease in the concentration of 240mg/kg after 2 weeks and over 120mg/kg after 4 weeks was observed in the GSH levels of liver and gill. In neurotoxicity, AChE activity was significatly inhibited in brain in the concentration of 240mg/kg after 2 weeks and over 60mg/kg after 4 weeks and muscle in the concentration of 240mg/kg after 2 weeks and over 120mg/kg after 4 weeks. Metallothionein (MT) gene in liver was considerably increased over 120mg/kg after 2 weeks and at 30, 120, and 240mg/kg after 4 weeks by dietary chromium exposure. The results indicate that dietary Cr exposure over 120mg/kg can induce substantial alterations in antioxidant responses, AChE activity and MT gene expression. Copyright © 2015 Elsevier Inc. All rights reserved.
Olabiyi, Ayodeji A; Carvalho, Fabiano B; Bottari, Nathieli B; Lopes, Thauan F; da Costa, Pauline; Stefanelo, Naiara; Morsch, Vera M; Akindahunsi, Afolabi A; Oboh, Ganiyu; Schetinger, Maria Rosa
2018-07-01
Tiger nut tubers have been reportedly used for the treatment of erectile dysfunction (ED) in folk medicine without scientific basis. Hence, this study evaluated the effect of tiger nut on erectile dysfunction by assessing biochemical parameters relevant to ED in male rats by nitric oxide synthase (NOS) inhibitor, Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) treatment. Rats were divided into five groups (n = 10) each: Control group; l-NAME plus basal diet; l-NAME plus Sildenafil citrate; diet supplemented processed tiger nut (20%) plus l-NAME;diet supplemented raw tiger nut (20%) plus l-NAME. l-NAME pre-treatment (40 mg/kg/day) lasted for 14 days. Arginase, acetycholinesterase (AChE) and adenosine deaminase (ADA) activities as well as nitric oxide levels (NO) in serum, brain and penile tissue were measured. l-NAME increased the activity of arginase, AChE and ADA and reduced NO levels. However, dietary supplementation with tiger nut caused a reduction on the activities of the above enzymes and up regulated nitric oxide levels when compared to the control group. The effect of tiger nut supplemented diet may be said to prevent alterations of the activities of the enzymes relevant in erectile function. Quercetin was revealed to be the most active component of tiger nut tuber by HPLC finger printing. Copyright © 2018. Published by Elsevier Ltd.
Kaur, Indresh; Kumar, Amit; Jaggi, Amteshwar S; Singh, Nirmal
2017-08-01
The present study has been designed to investigate the possible role of histaminergic pathway in neuroprotective mechanism of ischemic postconditioning (iPoCo). Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce I/R-induced cerebral injury in National Institutes of Health mice mice. iPoCo involving three episodes of carotid artery occlusion and reperfusion of 10 sec each was instituted immediately after BCAO just before prolonged reperfusion. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using Morris water maze test. Rotarod test, inclined beam-walking test, and neurological severity score (NSS) were performed to assess motor incoordination and sensorimotor abilities. Brain acetylcholine esterase (AChE) activity, brain myeloperoxidase (MPO) activity, brain thiobarbituric acid-reactive species (TBARS), and glutathione level (GSH) were also estimated. BCAO produced a significant rise in cerebral infarct size and NSS along with impairment of memory and motor coordination and biochemical alteration (↑AChE, ↑MPO ↓GSH, and ↑TBARS). iPoCo attenuated the deleterious effect of BCAO on infarct size, memory, NSS, motor coordination, and biochemical markers. Pretreatment of carnosine (a histamine [HA] precursor) potentiated the neuroprotective effects of iPoCo, whereas pretreatment of ketotifen (HA H1 receptor blocker and mast cell stabilizer) abolished the protective effects of iPoCo as well as that of carnosine on iPoCo. It may be concluded that neuroprotective effect of iPoCo probably involves activation of histaminergic pathways. © 2017 Société Française de Pharmacologie et de Thérapeutique.
Oliveira, Vagne Melo; Assis, Caio Rodrigo Dias; Costa, Helane Maria Silva; Silva, Raquel Pereira Freitas; Santos, Juliana Ferreira; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza
2017-01-01
Aluminium is a major pollutant due to its constant disposal in aquatic environments through anthropogenic activities. The physiological effects of this metal in fish are still scarce in the literature. This study investigated the in vivo and in vitro effects of aluminium sulfate on the activity of enzymes from Nile tilapia (Oreochromis niloticus): brain acetylcholinesterase (AChE), muscle cholinesterases (AChE-like and BChE-like activities), pepsin, trypsin, chymotrypsin and amylase. Fish were in vivo exposed during 14days when the following experimental groups were assayed: control group (CG), exposure to Al 2 (SO 4 ) 3 at 1μg·mL -1 (G1) and 3μg·mL -1 (G3) (concentrations compatible with the use of aluminium sulfate as coagulant in water treatment). In vitro exposure was performed using animals of CG treatment. Both in vivo and in vitro exposure increased cholinesterase activity in relation to controls. The highest cholinesterase activity was observed for muscle BChE-like enzyme in G3. In contrast, the digestive enzymes showed decreased activity in both in vivo and in vitro exposures. The highest inhibitory effect was observed for pepsin activity. The inhibition of serine proteases was also quantitatively analyzed in zymograms using pixel optical densitometry as area under the peaks (AUP) and integrated density (ID). These results suggest that the inhibition of digestive enzymes in combination with activation of cholinesterases in O. niloticus is a set of biochemical effects that evidence the presence of aluminium in the aquatic environment. Moreover, these enzymatic alterations may support further studies on physiological changes in this species with implications for its neurological and digestive metabolisms. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resende, R.R.; Alves, A.S.; Britto, L.R.G
2008-04-15
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) via calcium influx through nAChR channels whereasmore » intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G{alpha}{sub q/11}-coupled M{sub 1}, M{sub 3} and M{sub 5} receptors and intracellular calcium stores, whereas G{alpha}{sub i/o}-protein coupled M{sub 2} receptor activity mediated neuronal differentiation.« less
Shih, Tsung-Ming; Scremin, Oscar U; Roch, Margareth; Huynh, Ly; Sun, Wei; Jenden, Donald J
2006-11-01
Male Sprague-Dawley rats were treated for 3 weeks with (1) regular tap drinking water plus subcutaneous (s.c.) saline (0.5 ml/kg) injections three times/week, (2) pyridostigmine bromide (PB) in drinking water (80 mg/L) plus s.c. saline injections three times/week, (3) regular tap drinking water plus s.c. sarin (0.5 x LD(50)) injections three times/week, or (4) PB in drinking water plus s.c. sarin injections three times/week. Repeated doses of sarin, in the presence or absence of PB, were devoid of acute toxicity during the three-week treatment period. Two, 4, and 16 weeks post-treatment, animals were given an intravenous pulse injection of choline labeled with 4 deuterium atoms (D4Ch) followed, after 1 min, by microwave fixation of the brain in vivo. Tissue levels of endogenous acetylcholine (D0ACh), endogenous choline (D0Ch), D4Ch, and ACh synthesized from D4Ch (D4ACh) were measured by gas-chromatography mass-spectrometry in hippocampus, infundibulum, mesencephalon, neocortex, piriform cortex, and striatum. Ch uptake from blood and ACh turnover were estimated from D4Ch and D4ACh concentrations in brain tissue, respectively. Statistically significant differences among brain regions were found for D0Ch, D4Ch, D0ACh and D4ACh at 2, 4 and 16 weeks post-treatment. However, differences in the values of these parameters between control and drug treatments were found only for D0ACh and D0Ch at 2 and 4 weeks, but not at 16 weeks post-treatment. In conclusion, the results from these experiments do not support a delayed or persistent alteration in cholinergic function after exposure to low doses of PB and/or sarin.
Ali Reza, A S M; Hossain, Mohammad Shahadat; Akhter, Sharmin; Rahman, Md Rezanur; Nasrin, Mst Samima; Uddin, Md Josim; Sadik, Golam; Khurshid Alam, A H M
2018-04-05
Alzheimer's disease (AD), one of the major causes of dementia, is an overwhelming neurodegenerative disease that particularly affects the brain, leading to memory loss and impairment of language and judgment capacity. The aim of the present study was to investigate the antioxidant and anticholinesterase properties of the leaves of Elatostema papillosum (EPL) and correlate with their phytochemical profiles, which are relevant to the treatment of AD. The dried coarse powder of EPL was extracted with 80% methanol (EPL-M80) by cold extraction method. The resultant EPL-M80 was assessed for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity by the Ellman method. The antioxidant activity was determined by DPPH (1, 1-diphenyl-2-picrylhydrazyl) and hydroxyl radical scavenging assays. Quantitative phytochemical (phenolic and flavonoid contents) analysis of endogenous substances in EPL-M80 was performed by standard spectrophotometric methods. EPL-M80 significantly (p < 0.05) inhibited AChE and BChE activity with IC 50 of 165.40 ± 4.01 and 213.81 ± 3.57 μg/mL, respectively in a dose-dependent manner. Additionally, EPL-M80 exhibited strong radical scavenging activity against DPPH (IC 50 = 32.35 ± 0.68 μg/mL) and hydroxyl radical (IC 50 = 19.67 ± 1.42 μg/mL) when compared to that of standards. EPL-M80 was found to be rich in phenolic (23.74 mg gallic acid equivalent/g of dry extract) and flavonoid (31.18 mg quercetin equivalent/g of dry extract) content. Furthermore, a positive correlation (p < 0.001) was observed between the total phenolics and antioxidant as well as the anticholinesterase potential. The marked inhibition of AChE and BChE, and potent antioxidant activity of the leaves of Elatostema papillosum highlight its potential to provide an effective treatment for AD.
Stimulation by atropine of acetylcholine release and synthesis in cortical slices from rat brain
Molenaar, P. C.; Polak, R. L.
1970-01-01
1. Cortical slices from rat brain were incubated in media containing the irreversible cholinesterase inhibitor soman and a high KCl concentration, and the release and synthesis of acetylcholine (ACh) were determined. 2. Atropine enhanced the release and synthesis of ACh. 3. Tetrodotoxin, a substance which blocks nervous conduction, did not influence the release and synthesis of ACh, in the absence or in the presence of atropine. Therefore the nerve endings are probably the site at which atropine acts when stimulating the release and synthesis of ACh. 4. Pretreatment of the slices with botulinum type A toxin partially blocked the release and synthesis of ACh and reduced the extra amounts of ACh released and synthesized under the influence of atropine. 5. Lowering the calcium or raising the magnesium concentration in the incubation medium reduced the release and synthesis of ACh and their enhancement by atropine. 6. Physostigmine decreased the total extractable ACh content of the slices during incubation in a 25 mM KCl containing medium. This decrease was nearly prevented when the release and synthesis of ACh were inhibited by omission of the calcium ions from the medium, but was enhanced by atropine. 7. The observations made with pretreatment by botulinum type A toxin, with changes in the calcium and magnesium concentration as well as with physostigmine, all support the theory that it is primarily the release of ACh which is enhanced by atropine and that its stimulating action on the synthesis results from the increased release. PMID:5497792
Liu, Wei; Zhu, Yudan; Wang, Yongli; Qi, Shenglan; Wang, Yuwen; Ma, Chao; Li, Shuping; Jiang, Bo; Cheng, Xuemei; Wang, Zhengtao; Xuan, Zhenyu; Wang, Changhong
2017-05-23
Aerial parts of Peganum harmala Linn (APP) is used as traditional medical herb for treatment of forgetfulness in Uighur medicine in China. But, the active ingredients and underlying mechanisms are unclear. The present study was undertaken to investigate the improvement effects of extract and alkaloid fraction from APP on scopolamine-induced cognitive dysfunction and to elucidate their underlying mechanisms of action, and to support its folk use with scientific evidence, and lay a foundation for its further researches. The acetylcholinesterase (AChE) inhibitory activities of extract (EXT), alkaloid fraction (ALK) and flavonoid fraction (FLA) from APP were evaluated in normal male C57BL/6 mice. The anti-amnesic effects of EXT and ALK from APP were measured in scopolamine-induced memory deficits mice by the Morris water maze (MWM) tasks. The levels of biomarkers, enzyme activity and protein expression of cholinergic system were determined in brain tissues. The AChE activity was significantly decreased and the content of neurotransmitter acetylcholine (ACh) was significantly increased in normal mice cortex and hippocampus by treatment with donepezil at dosage of 8mg/kg, EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), and the AChE activity and the content of ACh were not significantly changed in cortex and hippocampus after treatment with FLA at dosages of 10, 30, 90mg/kg (P>0.05). In the MWM task, scopolamine-induced a decrease in both the swimming time within the target zone and the number of crossings where the platform had been placed were significantly reversed by treatment with EXT at dosages of 550, 1650mg/kg and ALK at dosages of 30, 90mg/kg (P<0.05). Moreover, the activity and protein expression of AChE was significantly decreased and the content of neurotransmitter ACh was significantly increased in cerebral cortex of scopolamine-induced mice by treatment with EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), compared with scopolamine-treated group. EXT and ALK from APP exert beneficial effect on learning and memory processes in mice with scopolamine-induced memory impairment. APP is an effective traditional folk medicine and the ALK fraction is proved to be the main effective components for the treatment of forgetfulness. The ALK may be valuable source for lead compounds discovery and drug development for treatment of memory impairment such as in Alzheimer's disease. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Qu, Zhuo; Yang, Honggai; Zhang, Jingze; Huo, Liqin; Chen, Hong; Li, Yuming; Liu, Changxiao; Gao, Wenyuan
2016-09-01
Cerebralcare granule(®) (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against D-galactose (gal)-induced memory impairment and to explore the mechanism of its action. D-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by D-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of D-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of D-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of D-gal produced memory deficit, meanwhile CG can protect neuron from D-gal insults and improve memory ability.
Leticia, Alpuche-Gual; Gerardo, Gold-Bouchot
2008-11-01
White grunt (Haemulon plumieri) has been proposed by the Mesoamerican Barrier Reef System (MBRS) Synoptic Monitoring Program as a bioindicator species. It is in this sense that the present study has a main goal to evaluate this organism's suitability as an indicator species. Individuals were captured during three seasons at the port of Sisal, Yucatan, Mexico which is located in an area that is considered to be weakly impacted by human activities such as agriculture or industry. Both cholinesterase (ChE) and carboxylesterase (CbE) activities were measured in brain, muscle, liver and eye of sampled individuals. Results indicated that ChE and CbE activities were greatest in the brain (256.3 ± 43) and in the liver (191 ± 21), respectively. Furthermore, ChEs detected in brain, liver and muscle were characterized, and results suggested that the acetylcholinesterase (AChE) type was more abundant relative to pseudocholinesterase (BChE) which was rare. In addition, K(m) and V(max) and IC(50) values were calculated from the Michaelis-Menten equation. Finally, an additional experiment in vitro showed a significant decrease in both ChE and CbE activities when different tissues were exposed to model xenobiotics, such as benzo[a]pyrene and Chlorpyrifos. In conclusion, findings from this study confirm the potential suitability of H. plumieri as an organic pollution bioindicator species, and thus of practical use for environmental biomonitoring purposes.
Whiteaker, Paul; Wilking, Jennifer A; Brown, Robert WB; Brennan, Robert J; Collins, Allan C; Lindstrom, Jon M; Boulter, Jim
2009-01-01
Aim: α2 nAChR subunit mRNA expression in mice is most intense in the olfactory bulbs and interpeduncular nucleus. We aimed to investigate the properties of α2* nAChRs in these mouse brain regions. Methods: α2 nAChR subunit-null mutant mice were engineered. Pharmacological and immunoprecipitation studies were used to determine the composition of α2 subunit-containing (α2*) nAChRs in these two regions. Results: [125I]Epibatidine (200 pmol/L) autoradiography and saturation binding demonstrated that α2 deletion reduces nAChR expression in both olfactory bulbs and interpeduncular nucleus (by 4.8±1.7 and 92±26 fmol̇mg-1 protein, respectively). Pharmacological characterization using the β2-selective drug A85380 to inhibit [125I]epibatidine binding proved inconclusive, so immunoprecipitation methods were used to further characterize α2* nAChRs. Protocols were established to immunoprecipitate β2 and β4 nAChRs. Immunoprecipitation specificity was ascertained using tissue from β2- and β4-null mutant mice, and efficacy was good (>90% of β2* and >80% of β4* nAChRs were routinely recovered). Conclusion: Immunoprecipitation experiments indicated that interpeduncular nucleus α2* nAChRs predominantly contain β2 subunits, while those in olfactory bulbs contain mainly β4 subunits. In addition, the immunoprecipitation evidence indicated that both nuclei, but especially the interpeduncular nucleus, express nAChR complexes containing both β2 and β4 subunits. PMID:19498420
Koromilas, Christos; Liapi, Charis; Zarros, Apostolos; Stolakis, Vasileios; Tsagianni, Anastasia; Skandali, Nikolina; Al-Humadi, Hussam; Tsakiris, Stylianos
2014-06-01
Hypothyroidism is known to exert significant structural and functional changes to the developing central nervous system, and can lead to the establishment of serious mental retardation and neurological problems. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil-induced experimental hypothyroidism on crucial brain enzyme activities of Wistar rat offspring, at two time-points of their lives: at birth (day-1) and at 21 days of age (end of lactation). Under all studied experimental conditions, offspring brain acetylcholinesterase (AChE) activity was found to be significantly decreased due to maternal hypothyroidism, in contrast to the two studied adenosinetriphosphatase (Na(+),K(+)-ATPase and Mg(2+)-ATPase) activities that were only found to be significantly altered right after birth (increased and decreased, respectively, following an exposure to gestational maternal hypothyroidism) and were restored to control levels by the end of lactation. As our findings regarding the pattern of effects that maternal hypothyroidism has on the above-mentioned crucial offspring brain enzyme activities are compared to those reported in the literature, several differences are revealed that could be attributed to both the mode of the experimental simulation approach followed as well as to the time-frames examined. These findings could provide the basis for a debate on the need of a more consistent experimental approach to hypothyroidism during neurodevelopment as well as for a further evaluation of the herein presented and discussed neurochemical (and, ultimately, neurodevelopmental) effects of experimentally-induced maternal hypothyroidism, in a brain region-specific manner. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Microwave-assisted synthesis of novel purine nucleosides as selective cholinesterase inhibitors.
Schwarz, S; Csuk, R; Rauter, A P
2014-04-21
Alzheimer's disease (AD), the most common form of senile dementia, is characterized by high butyrylcholinesterase (BChE) levels in the brain in later AD stages, for which no treatment is available. Pursuing our studies on selective BChE inhibitors, that may contribute to understand the role of this enzyme in disease progression, we present now microwave-assisted synthesis and anticholinesterase activity of a new nucleoside series embodying 6-chloropurine or 2-acetamido-6-chloropurine linked to D-glucosyl, D-galactosyl and D-mannosyl residues. It was designed to assess the contribution of sugar stereochemistry, purine structure and linkage to the sugar for cholinesterase inhibition efficiency and selectivity. Compounds were subjected to Ellman's assay and their inhibition constants determined. The α-anomers were the most active compounds, while selectivity for BChE or acetylcholinesterase (AChE) inhibition could be tuned by the purine base, by the glycosyl moiety and by N(7)-ligation. Some of the nucleosides were far more potent than the drug galantamine, and the most promising competitive and selective BChE inhibitor, the N(7)-linked 2-acetamido-α-D-mannosylpurine, showed a Ki of 50 nM and a selectivity factor of 340 fold for BChE over AChE.
Protective effect of rutin on cognitive impairment caused by phenytoin
Dubey, Shagun; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen
2015-01-01
Objective: To study the effect of the co-administration of phenytoin (PHT) and rutin in comparison with PHT and piracetam (PIM) on seizure control, cognitive, and motor functions in mice. Materials and Methods: Increasing current electroshock seizure (ICES) test was used to evaluate the effect of the co-administration of PHT and PIM on convulsions. Cognitive functions in mice were assessed by a spontaneous alternation in behavior on a plus maze while motor functions were screened using rolling roller apparatus and by counting the number of arms entries on a plus maze. Brain acetyl-cholinesterase (AChE) activity was also estimated. Statistical Analysis: The expression of data was done as mean ± standard error of the mean. The normally distributed data were subjected to one-way ANOVA followed by Dunnett's test. P < 0.05 was considered significant. Results: The study showed that rutin when co-administered with PHT, significantly reversed PHT-induced reduction in spontaneous alternation without altering the efficacy of PHT against ICES, in both acute and chronic studies. Further, it also reversed PHT-induced increase in AChE activity. Conclusion: Rutin alleviated the PHT-induced cognitive impairment without compromising its antiepileptic efficacy. PMID:26729954
Prickaerts, Jos; van Goethem, Nick P; Chesworth, Richard; Shapiro, Gideon; Boess, Frank G; Methfessel, Christoph; Reneerkens, Olga A H; Flood, Dorothy G; Hilt, Dana; Gawryl, Maria; Bertrand, Sonia; Bertrand, Daniel; König, Gerhard
2012-02-01
EVP-6124, (R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide, is a novel partial agonist of α7 neuronal nicotinic acetylcholine receptors (nAChRs) that was evaluated here in vitro and in vivo. In binding and functional experiments, EVP-6124 showed selectivity for α7 nAChRs and did not activate or inhibit heteromeric α4β2 nAChRs. EVP-6124 had good brain penetration and an adequate exposure time. EVP-6124 (0.3 mg/kg, p.o.) significantly restored memory function in scopolamine-treated rats (0.1 mg/kg, i.p.) in an object recognition task (ORT). Although donepezil at 0.1 mg/kg, p.o. or EVP-6124 at 0.03 mg/kg, p.o. did not improve memory in this task, co-administration of these sub-efficacious doses fully restored memory. In a natural forgetting test, an ORT with a 24 h retention time, EVP-6124 improved memory at 0.3 mg/kg, p.o. This improvement was blocked by the selective α7 nAChR antagonist methyllycaconitine (0.3 mg/kg, i.p. or 10 μg, i.c.v.). In co-application experiments of EVP-6124 with acetylcholine, sustained exposure to EVP-6124 in functional investigations in oocytes caused desensitization at concentrations greater than 3 nM, while lower concentrations (0.3-1 nM) caused an increase in the acetylcholine-evoked response. These actions were interpreted as representing a co-agonist activity of EVP-6124 with acetylcholine on α7 nAChRs. The concentrations of EVP-6124 that resulted in physiological potentiation were consistent with the free drug concentrations in brain that improved memory performance in the ORT. These data suggest that the selective partial agonist EVP-6124 improves memory performance by potentiating the acetylcholine response of α7 nAChRs and support new therapeutic strategies for the treatment of cognitive impairment. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.
Di Pietro, Ornella; Pérez-Areales, F Javier; Juárez-Jiménez, Jordi; Espargaró, Alba; Clos, M Victòria; Pérez, Belén; Lavilla, Rodolfo; Sabaté, Raimon; Luque, F Javier; Muñoz-Torrero, Diego
2014-09-12
Optimization of an essentially inactive 3,4-dihydro-2H-pyrano[3,2-c]quinoline carboxylic ester derivative as acetylcholinesterase (AChE) peripheral anionic site (PAS)-binding motif by double O → NH bioisosteric replacement, combined with molecular hybridization with the AChE catalytic anionic site (CAS) inhibitor 6-chlorotacrine and molecular dynamics-driven optimization of the length of the linker has resulted in the development of the trimethylene-linked 1,2,3,4-tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrid 5a as a picomolar inhibitor of human AChE (hAChE). The tetra-, penta-, and octamethylene-linked homologues 5b-d have been also synthesized for comparison purposes, and found to retain the nanomolar hAChE inhibitory potency of the parent 6-chlorotacrine. Further biological profiling of hybrids 5a-d has shown that they are also potent inhibitors of human butyrylcholinesterase and moderately potent Aβ42 and tau anti-aggregating agents, with IC50 values in the submicromolar and low micromolar range, respectively. Also, in vitro studies using an artificial membrane model have predicted a good brain permeability for hybrids 5a-d, and hence, their ability to reach their targets in the central nervous system. The multitarget profile of the novel hybrids makes them promising leads for developing anti-Alzheimer drug candidates with more balanced biological activities. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Sultana, Nargis; Sarfraz, Muhammad; Tanoli, Saba Tahir; Akram, Muhammad Safwan; Sadiq, Abdul; Rashid, Umer; Tariq, Muhammad Ilyas
2017-06-01
Pursuing the strategy of developing potent AChE inhibitors, we attempted to carry out the N 1 -substitution of 2,3-dihydroquinazolin-4(1H)-one core. A set of 32 N-alkylated/benzylated quinazoline derivatives were synthesized, characterized and evaluated for their inhibition against cholinesterases. N-alkylation of the series of the compounds reported previously (N-unsubstituted) resulted in improved activity. All the compounds showed inhibition of both enzymes in the micromolar to submicromolar range. Structure activity relationship (SAR) of the 32 derivatives showed that N-benzylated compounds possess good activity than N-alkylated compounds. N-benzylated compounds 2ad and 2af were found very active with their IC 50 values toward AChE in submicromolar range (0.8µM and 0.6µM respectively). Binding modes of the synthesized compounds were explored by using GOLD (Genetic Optimization for Ligand Docking) suit v5.4.1. Computational predictions of ADMET studies reveal that all the compounds have good pharmacokinetic properties with no AMES toxicity and carcinogenicity. Moreover, all the compounds are predicted to be absorbed in human intestine and also have the ability to cross blood brain barrier. Overall, the synthesized compounds have established a structural foundation for the design of new inhibitors of cholinesterase. Copyright © 2017 Elsevier Inc. All rights reserved.
Canzian, Julia; Fontana, Barbara D; Quadros, Vanessa A; Rosemberg, Denis B
2017-03-01
The zebrafish (Danio rerio) is an emergent model organism for assessing fear and anxiety-like phenotypes. The short fin wild type (WT), and leopard (leo) are two zebrafish populations that present several behavioral differences, in which leo displays pronounced defensive responses. Mounting evidence suggests a modulatory role for cholinergic and purinergic signaling in fear and anxiety, but the involvement of these neurotransmitter systems in the behavioral profile of zebrafish is obscure. Here we tested whether the acute exposure to conspecific alarm substance (AS), an experimental protocol that induces fear, alters shoaling behavior, diving response, acetylcholinesterase (AChE) activity, and nucleotide hydrolysis in brain tissue of WT and leo. When four fish were concomitantly exposed to AS extracted from a donor fish of similar phenotype, both populations presented a significant increase of erratic movements without changes in freezing bouts. An increased shoal cohesion and a decreased vertical distribution were observed only in WT exposed to AS. The respective population also revealed a significant increase in AChE and ecto-5'-nucleotidase activities after the exposure period. The comparison of basal endpoints between populations showed that leo displays a higher social cohesion, few vertical transitions and enhanced AChE and ecto-5'-nucleotidase activities. In conclusion, we suggest that the effects of AS on defensive behaviors depend on the population, indicating the existence of distinct neurochemical mechanisms involved. Furthermore, this report shows the first evidence of a potential role of cholinergic and purinergic systems in fear- and anxiety-like responses of zebrafish populations. Copyright © 2016 Elsevier B.V. All rights reserved.
Justin Thenmozhi, Arokiasamy; Dhivyabharathi, Mathiyazahan; William Raja, Tharsius Raja; Manivasagam, Thamilarasan; Essa, Musthafa Mohamed
2016-07-01
Emblica officinalis is mentioned as a maharasayana in many Ayurvedic texts and promotes intelligence, memory, freedom from disease, longevity, and strength of the senses. The present study has been designed to explore the memory-enhancing effect of the tannoid principles of E. officinalis (EoT) at the biochemical, anatomical, behavioral, and molecular levels against aluminum chloride (AlCl3) induced Alzheimer's disease (AD) in rats. Aluminum is reported to have an important role in the etiology, pathogenesis, and development of AD. Male Wistar rats were divided into control, AlCl3 treated, AlCl3 and EoT (50, 100, and 200 mg/kg bw) co-treated, and EoT (200 mg/kg bw) alone treated groups. In control and experimental rats, behavior tests including water maze and open field test, estimation of aluminum, assay of acetylcholinesterase (AChE) activity, and expression of amyloidogenic proteins were performed. Intraperitonial injection of AlCl3 (100 mg/kg bw) for 60 days significantly elevated the concentration of aluminum (Al), activity of AChE and protein expressions of amyloid precursor protein, A-beta1-42, beta-, and gamma-secretases as compared to control group in hippocampus and cortex. Co-administration of EoT orally to AlCl3 rats for 60 days significantly revert back the Al concentration, AChE activity, and A-beta synthesis-related molecules in the studied brain regions. The spatial learning, memory, and locomotor impairments observed in AlCl3 treated rats were significantly attenuated by EoT. Therefore, EoT may be a promising therapy in ameliorating neurotoxicity of aluminum, however further studies are warranted to elucidate the exact mechanism of action of EoT.
Flesher, M. Melissa; Butt, Allen E.; Kinney-Hurd, Brandee L.
2011-01-01
Pavlovian trace conditioning critically depends on the medial prefrontal cortex (mPFC) and hippocampus (HPC), whereas delay conditioning does not depend on these brain structures. Given that the cholinergic basal forebrain system modulates activity in both the mPFC and HPC, it was reasoned that the level of acetylcholine (ACh) release in these regions would show distinct profiles during testing in trace and delay conditioning paradigms. To test this assumption, microdialysis probes were implanted unilaterally into the mPFC and HPC of rats that were pre-trained in appetitive trace and delay conditioning paradigms using different conditional stimuli in the two tasks. On the day of microdialysis testing, dialysate samples were collected during a quiet baseline interval before trials were initiated, and again during performance in separate blocks of trace and delay conditioning trials in each animal. ACh levels were quantified using high performance liquid chromatography and electrochemical detection techniques. Consistent with our hypothesis, results showed that ACh release in the mPFC was greater during trace conditioning than during delay conditioning. The level of ACh released during trace conditioning in the HPC was also greater than the levels observed during delay conditioning. While ACh efflux in both the mPFC and HPC selectively increased during trace conditioning, ACh levels in the mPFC during trace conditioning testing showed the greatest increases observed. These results demonstrate a dissociation in cholinergic activation of the mPFC and HPC during performance in trace but not delay appetitive conditioning, where this cholinergic activity may contribute to attentional mechanisms, adaptive response timing, or memory consolidation necessary for successful trace conditioning. PMID:21514394
Abou-Donia, Mohamed B; Dechkovskaia, Anjelika M; Goldstein, Larry B; Abdel-Rahman, Ali; Bullman, Sarah L; Khan, Wasiuddin A
2004-02-01
Military personnel deployed in the Persian Gulf War (PGW) were exposed to a combination of chemicals, including pyridostigmine bromide (PB), DEET, and permethrin. We investigated the dose-response effects of these chemicals, alone or in combination, on the sensorimotor performance and cholinergic system of male Sprague-Dawley rats. Animals were treated with a daily dermal dose of DEET and/or permethrin for 60 days and/or PB (gavage) during the last 15 days. Neurobehavioral performance was assessed on day 60 following the beginning of the treatment with DEET and permethrin. The rats were sacrificed 24 h after the last treatment for biochemical evaluations. PB alone, or in combination with DEET, or DEET and permethrin resulted in deficits in beam-walk score and longer beam-walk times compared to controls. PB alone, or in combination with DEET, permethrin, or DEET and permethrin caused impairment in incline plane performance and forepaw grip strength. PB alone at all doses slightly inhibited plasma butyrylcholinesterase activity, whereas combination of PB with DEET or permethrin increased its activity. Brainstem acetylcholinesterase (AChE) activity significantly increased following treatment with combinations of either DEET or permethrin at all doses, whereas the cerebellum showed a significant increase in AChE activity following treatment with a combination of PB/DEET/permethrin. Co-exposure to PB, DEET, and permethrin resulted in significant inhibition in AChE in midbrain. PB alone or in combination with DEET and permethrin at all doses increased ligand binding for m2 muscarinic acetylcholine receptor in the cortex. In addition, PB and DEET together or a combination of PB, DEET, and permethrin significantly increased ligand binding for nicotinic acetylcholine receptor. These results suggest that exposure to various doses of PB, alone and in combination with DEET and permethrin, leads to sensorimotor deficits and differential alterations of the cholinergic system in the CNS.
Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila
Silva, Bryon; Molina-Fernández, Claudia; Ugalde, María Beatriz; Tognarelli, Eduardo I.; Angel, Cristian; Campusano, Jorge M.
2015-01-01
The most studied form of associative learning in Drosophila consists in pairing an odorant, the conditioned stimulus (CS), with an unconditioned stimulus (US). The timely arrival of the CS and US information to a specific Drosophila brain association region, the mushroom bodies (MB), can induce new olfactory memories. Thus, the MB is considered a coincidence detector. It has been shown that olfactory information is conveyed to the MB through cholinergic inputs that activate acetylcholine (ACh) receptors, while the US is encoded by biogenic amine (BA) systems. In recent years, we have advanced our understanding on the specific neural BA pathways and receptors involved in olfactory learning and memory. However, little information exists on the contribution of cholinergic receptors to this process. Here we evaluate for the first time the proposition that, as in mammals, muscarinic ACh receptors (mAChRs) contribute to memory formation in Drosophila. Our results show that pharmacological and genetic blockade of mAChRs in MB disrupts olfactory aversive memory in larvae. This effect is not explained by an alteration in the ability of animals to respond to odorants or to execute motor programs. These results show that mAChRs in MB contribute to generating olfactory memories in Drosophila. PMID:26380118
Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J
2014-05-01
Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking. © 2014 International Society for Neurochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Iwa; Eriksson, Per; Fredriksson, Anders
In recent times, an increased occurrence of neurodevelopmental disorders, such as neurodevelopmental delays and cognitive abnormalities has been recognized. Exposure to pesticides has been suspected to be a possible cause of these disorders, as these compounds target the nervous system of pests. Due to the similarities of brain development and composition, these pesticides may also be neurotoxic to humans. We studied two different pesticides, chlorpyrifos and carbaryl, which specifically inhibit acetylcholinesterase (AChE) in the nervous system. The aim of the study was to investigate if the pesticides can induce neurotoxic effects, when exposure occurs during a period of rapid brainmore » growth and maturation. The results from the present study show that both compounds can affect protein levels in the developing brain and induce persistent adult behavior and cognitive impairments, in mice neonatally exposed to a single oral dose of chlorpyrifos (0.1, 1.0 or 5 mg/kg body weight) or carbaryl (0.5, 5.0 or 20.0 mg/kg body weight) on postnatal day 10. The results also indicate that the developmental neurotoxic effects induced are not related to the classical mechanism of acute cholinergic hyperstimulation, as the AChE inhibition level (8–12%) remained below the threshold for causing systemic toxicity. The neurotoxic effects are more likely caused by a disturbed neurodevelopment, as similar behavioral neurotoxic effects have been reported in studies with pesticides such as organochlorines, organophosphates, pyrethroids and POPs, when exposed during a critical window of neonatal brain development. - Highlights: • A single neonatal exposure to chlorpyrifos or carbaryl induced developmental neurotoxic effects. • The neurotoxic effects were not caused by acute AChE inhibition. • The neurotoxic effects manifested as altered levels of neuroproteins in the developing brain. • The neurotoxic effects manifested as adult persistent aberrant behavior and cognitive function. • The neurotoxic effects are suggested to be caused by disrupted brain development.« less
Ogawa, Mikako; Tatsumi, Ryo; Fujio, Masakazu; Katayama, Jiro; Magata, Yasuhiro
2006-04-01
Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) alpha7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for alpha7 nAChRs. Therefore we synthesized (R)-3'-(5-[125I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3']oxazolidin]-2'-one ([125I]I-TSA) and evaluated its potential for the in vivo detection of alpha7 nAChR in brain. In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [(125)I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 mul, i.c.v.) or nonradioactive I-TSA (50 micromol/kg, i.v.). I-TSA exhibited a high affinity and selectivity for the alpha7 nAChR (K(i) for alpha7 nAChR = 0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (alpha7 nAChR-rich region) and was rather rapid in the cerebellum (alpha7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Despite its high affinity and selectivity, [125I]I-TSA does not appear to be a suitable tracer for in vivo alpha7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.
Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; Nichols, Weston A; Moaddel, Ruin; Xiao, Cheng; Lester, Henry A
2016-03-09
Upregulation of β2 subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) is implicated in several aspects of nicotine addiction, and menthol cigarette smokers tend to upregulate β2* nAChRs more than nonmenthol cigarette smokers. We investigated the effect of long-term menthol alone on midbrain neurons containing nAChRs. In midbrain dopaminergic (DA) neurons from mice containing fluorescent nAChR subunits, menthol alone increased the number of α4 and α6 nAChR subunits, but this upregulation did not occur in midbrain GABAergic neurons. Thus, chronic menthol produces a cell-type-selective upregulation of α4* nAChRs, complementing that of chronic nicotine alone, which upregulates α4 subunit-containing (α4*) nAChRs in GABAergic but not DA neurons. In mouse brain slices and cultured midbrain neurons, menthol reduced DA neuron firing frequency and altered DA neuron excitability following nAChR activation. Furthermore, menthol exposure before nicotine abolished nicotine reward-related behavior in mice. In neuroblastoma cells transfected with fluorescent nAChR subunits, exposure to 500 nm menthol alone also increased nAChR number and favored the formation of (α4)3(β2)2 nAChRs; this contrasts with the action of nicotine itself, which favors (α4)2(β2)3 nAChRs. Menthol alone also increases the number of α6β2 receptors that exclude the β3 subunit. Thus, menthol stabilizes lower-sensitivity α4* and α6 subunit-containing nAChRs, possibly by acting as a chemical chaperone. The abolition of nicotine reward-related behavior may be mediated through menthol's ability to stabilize lower-sensitivity nAChRs and alter DA neuron excitability. We conclude that menthol is more than a tobacco flavorant: administered alone chronically, it alters midbrain DA neurons of the nicotine reward-related pathway. Copyright © 2016 the authors 0270-6474/16/362957-18$15.00/0.
Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar
2014-01-01
Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney. PMID:24927349
Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar
2014-04-01
Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.
Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B.
2016-01-01
Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing the α4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [3H]CMPI upon photolysis at 312 nm to identify its binding sites in Torpedo nAChRs. Recording from Xenopus oocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2 nAChR to 10 μM ACh (EC10) by 400% and with an EC50 of ∼1 µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10 µM) ACh responses of (α4)2(β2)3 nAChRs and fully inhibited human muscle and Torpedo nAChRs with IC50 values of ∼0.5 µM. Upon irradiation at 312 nm, [3H]CMPI photoincorporated into each Torpedo [(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [3H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr190, αTyr198, γTrp55, γTyr111, γTyr117, δTrp57) that was fully inhibitable by agonist and lower-efficiency, state-dependent [3H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing an α4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2 nAChR. PMID:26976945
Mishra, Amrita; Mishra, Arun K; Jha, Shivesh
2018-03-01
Brahmi vati (BV) is an Ayurvedic polyherbal formulation used since ancient times and has been prescribed in seizures associated with schizophrenia and related memory loss by Ayurvedic practitioners in India. The aim of the study was to investigate these claims by evaluation of anticonvulsant, antischizophreniac, and memory-enhancing activities. Antioxidant condition of brain was determined by malondialdehyde (MDA) and reduced glutathione (GSH) levels estimations. Acetylcholinesterase (AChE) was quantitatively estimated in the brain tissue. Brahmi vati was prepared in-house by strictly following the traditional Ayurvedic formula. Bacoside A rich fraction (BA) of Bacopa monnieri was prepared by extraction and fractionation. It was than standardized by High Performance Liquid Chromatography (HPLC) and given in the dose of 32.5mg/kg body weight to the different groups of animals for 7days. On the seventh day, activities were performed adopting standard procedures. Brahmi vati showed significant anticonvulsant, memory-enhancing and antischizophrenia activities, when compared with the control groups and BA. It cause significantly higher brain glutathione levels. Acetylcholinesterase activity was found to be significantly low in BV-treated group. The finding of the present study suggests that BV may be used to treat seizures associated with schizophrenia and related memory loss. Copyright © 2018 Elsevier Inc. All rights reserved.
Staley, Julie K; van Dyck, Christopher H; Weinzimmer, David; Brenner, Eric; Baldwin, Ronald M; Tamagnan, Gilles D; Riccardi, Patrizia; Mitsis, Effie; Seibyl, John P
2005-09-01
(123)I-5-IA-85380 ((123)I-5-IA; [(123)I]-5-iodo-3-[2(S)-azetidinylmethoxy]pyridine) is a promising SPECT radiotracer for imaging beta(2)-containing nicotinic acetylcholine receptors (beta(2)-nAChRs) in brain. Beta(2)-nAChRs are the initial site of action of nicotine and are implicated in various neuropsychiatric disorders. The feasibility and reproducibility of the bolus-plus-constant-infusion paradigm for equilibrium modeling of (123)I-5-IA using SPECT in healthy nonsmokers was studied. Ten healthy nonsmokers (mean age +/- SD, 43.7 +/- 9.9 y) underwent two (123)I-5-IA SPECT scans within 4 wk. (123)I-5-IA was administered as a bolus (125.8 +/- 14.6 MBq) plus constant infusion (18.1 +/- 1.5 MBq/h). SPECT acquisitions (30 min) and venous blood sampling were performed every 60 min throughout the infusion (10-14 h). The test-retest variability and reliability of plasma activity (kBq/mL), the regional brain activity reflected by units of kBq/mL and %ID/mL (injected dose/mL brain tissue), and the equilibrium outcome measures V(T)' (ratio of total uptake to total plasma parent concentration) and V(T) (ratio of total uptake to free plasma parent concentration) were evaluated in 4 brain areas, including thalamus, striatum, cortex, and cerebellum. Linear regression analysis revealed that time-activity curves for both plasma and brain (123)I-5-IA activity stabilized by 5 h, with an average change of [2.5%/h between 6 and 8 h of infusion, permitting equilibrium modeling. The plasma free fraction (f(1)), total parent, and clearance demonstrated good test-retest variability (mean, 10.9%-12.5%), whereas the variability of free parent was greater (mean, 24.3%). Regional brain activity (kBq/mL) demonstrated good test-retest variability (11.1%-16.4%) that improved when corrected for infusion rate (mean, 8.2%-9.9%) or for injected dose (mean, 9.5%-13.3%). V(T)' demonstrated better test-retest variability (mean, 7.0%-8.9%) than V(T) (mean, 12.9%-14.6%). Reliability assessed by the intraclass correlation coefficient (ICC) was superior for kBq/mL (ICC = 0.83-0.90) and %ID/mL (ICC = 0.93-0.96) compared with V(T)' (ICC = 0.30-0.64) and V(T) (ICC = 0.28-0.60). The lower reliability of V(T) was attributed to the poor reliability of the free fraction (ICC = 0.35) and free parent (ICC = 0.68). These results support the feasibility and reproducibility of equilibrium imaging with (123)I-5-IA for measurement of beta(2)-nAChRs in human brain.
Derivatives of dibenzothiophene for PET imaging of α7-Nicotinic Acetylcholine Receptors
Gao, Yongjun; Kellar, Kenneth J.; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Dannals, Robert F.; Horti, Andrew G.
2013-01-01
A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.4 – 20 nM) has been synthesized for PET imaging of α7-nAChRs. Two radiolabeled members of the series [18F]7a (Ki = 0.4 nM) and [18F]7c (Ki = 1.3 nM) were synthesized. [18F]7a and [18F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [18F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR CNS drugs demonstrated that [18F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [18F]7a (BPND = 5.3 – 8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [18F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates. PMID:24050653
The role of acetylcholine in cocaine addiction.
Williams, Mark J; Adinoff, Bryon
2008-07-01
Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery. Ultimately, ACh modulation may be a potential target for pharmacological treatment interventions in cocaine-addicted subjects. However, the complicated neurocircuitry of the cholinergic system, the multiple ACh receptor subtypes, the confluence of excitatory and inhibitory ACh inputs, and the unique properties of the striatal cholinergic interneurons suggest that a precise target of cholinergic manipulation will be required to impact substance use in the clinical population.
Maize acetylcholinesterase is a positive regulator of heat tolerance in plants.
Yamamoto, Kosuke; Sakamoto, Hikaru; Momonoki, Yoshie S
2011-11-01
We previously reported that native tropical zone plants showed high acetylcholinesterase (AChE) activity during heat stress, and that AChE activity in endodermal cells of maize seedlings was increased by heat treatment. However, the physiological role of AChE in heat stressed plants is still unclear. Here we report (1) tissue-specific expression and subcellular localization of maize AChE, (2) elevation of AChE activity and possible post-translational modifications of this enzyme under heat stress, and (3) involvement of AChE in plant heat stress tolerance. Maize AChE was mainly expressed in coleoptile nodes and seeds. Maize AChE fused with green fluorescent protein (GFP) was localized in extracellular spaces of transgenic rice plants. Therefore, in maize coleoptile nodes and seeds AChE mainly functions in the cell wall matrix. After heat treatment, enhanced maize AChE activity was observed by in vitro activity measurement and by in situ cytochemical staining; transcript and protein levels, however, were not changed. Protein gel blot analysis revealed two AChE isoforms (upper and lower); the upper-form gradually disappeared after heat treatment. Thus, maize AChE activity might be enhanced through a post-translational modification response to heat stress. Finally, we found that overexpression of maize AChE in transgenic tobacco plants enhanced heat tolerance relative to that of non-transgenic plants, suggesting AChE plays a positive role in maize heat tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.
Power, John M; Sah, Pankaj
2008-03-19
Acetylcholine (ACh) is an important modulator of learning, memory, and synaptic plasticity in the basolateral amygdala (BLA) and other brain regions. Activation of muscarinic acetylcholine receptors (mAChRs) suppresses a variety of potassium currents, including sI(AHP), the calcium-activated potassium conductance primarily responsible for the slow afterhyperpolarization (AHP) that follows a train of action potentials. Muscarinic stimulation also produces inositol 1,4,5-trisphosphate (IP(3)), releasing calcium from intracellular stores. Here, we show using whole-cell patch-clamp recordings and high-speed fluorescence imaging that focal application of mAChR agonists evokes large rises in cytosolic calcium in the soma and proximal dendrites in rat BLA projection neurons that are often associated with activation of an outward current that hyperpolarizes the cell. This hyperpolarization results from activation of small conductance calcium-activated potassium (SK) channels, secondary to the release of calcium from intracellular stores. Unlike bath application of cholinergic agonists, which always suppressed the AHP, focal application of ACh often evoked a paradoxical enhancement of the AHP and spike-frequency adaptation. This enhancement was correlated with amplification of the action potential-evoked calcium response and resulted from the activation of SK channels. When SK channels were blocked, cholinergic stimulation always reduced the AHP and spike-frequency adaptation. Conversely, suppression of the sI(AHP) by the beta-adrenoreceptor agonist, isoprenaline, potentiated the cholinergic enhancement of the AHP. These results suggest that competition between cholinergic suppression of the sI(AHP) and cholinergic activation of the SK channels shapes the AHP and spike-frequency adaptation.
Kang, Jin Yong; Lee, Du Sang; Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Ha, Gi Jeong; Seo, Weon Taek
2017-01-01
The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H2O2-induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H2O2-induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis. PMID:29081819
Kang, Jin Yong; Lee, Du Sang; Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Ha, Gi Jeong; Seo, Weon Taek; Heo, Ho Jin
2017-01-01
The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H 2 O 2 -induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H 2 O 2 -induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Aiqiong; Du, Dan; Lin, Yuehe
Acetylcholinesterase (AChE) enzyme activity in red blood cells (RBCs) is a useful biomarker for biomonitoring of exposures to organophosphorus (OP) pesticides and chemical nerve agents. In this paper, we reported a new method for AChE activity assay based on selective immuno-capture of AChE from biological samples followed by enzyme activity assay of captured AChE using a disposable electrochemical sensor. The electrochemical sensor is based on multiwalled carbon nanotubes-gold nanocomposites (MWCNTs-Au) modified screen printed carbon electrode (SPCE). Upon the completion of immunoreaction, the target AChE (including active and inhibited) is captured onto the electrode surface and followed by an electrochemical detectionmore » of enzymatic activity in the presence of acetylthiocholine. A linear response is obtained over standard AChE concentration range from 0.1 to 10 nM. To demonstrate the capability of this new biomonitoring method, AChE solutions dosed with different concentration of paraoxon were used to validate the new AChE assay method. AChE inhibition in OP dosed solutions was proportional to its concentration from 0.2 to 50 nM. The new AChE activity assay method for biomonitoring of OP exposure was further validated with in-vitro paraoxon-dosed RBC samples. The established electrochemical sensing platform for AChE activity assay not only avoids the problem of overlapping substrate specificity with esterases by using selective antibody, but also eliminates potential interference from other electroactive species in biological samples. It offers a new approach for sensitive, selective, and rapid AChE activity assay for biomonitoring of exposures to OPs.« less
Yadav, Monu; Jindal, Deepak Kumar; Dhingra, Mamta Sachdeva; Kumar, Anil; Parle, Milind; Dhingra, Sameer
2018-04-01
Gallic acid has been reported to possess a number of psychopharmacological activities. These activities are attributed to the antioxidant potential due to the presence of phenolic moeity. The present study was carried out to investigate the protective effects of gallic acid in an experimental model of ketamine-induced psychosis in mice. Ketamine (50 mg/kg, i.p.) was used to induce stereotyped psychotic behavioural symptoms in mice. Behavioural studies (locomotor activity, stereotype behaviour, immobility duration and memory retention) were carried out to investigate the protective of gallic acid on ketamine-induced psychotic symptoms, followed by biochemical and neurochemical changes and cellular alterations in the brain. Chronic treatment with gallic acid for 15 consecutive days significantly attenuated stereotyped behavioural symptoms in mice. Biochemical estimations revealed that gallic acid reduced the lipid peroxidation and restored the total brain proteins. Furthermore, gallic acid remarkably reduced the dopamine levels, AChE activity and inflammatory surge (serum TNF-α), and increased the levels of GABA and increased glutathione in mice. The study revealed that gallic acid could ameliorate psychotic symptoms and biochemical changes in mice, indicating protective effects in psychosis.
Schliebs, R; Liebmann, A; Bhattacharya, S K; Kumar, A; Ghosal, S; Bigl, V
1997-02-01
Although some promising results have been achieved by acetylcholinesterase inhibitors, an effective therapeutic intervention in Alzheimer's disease still remains an important goal. Sitoindosides VII-X, and withaferin-A, isolated from aqueous methanol extract from the roots of cultivated varieties of Withania somnifera (known as Indian Ginseng), as well as Shilajit, a pale-brown to blackish brown exudation from steep rocks of the Himalaya mountain, are used in Indian medicine to attenuate cerebral functional deficits, including amnesia, in geriatric patients. The present investigation was conducted to assess whether the memory-enhancing effects of plant extracts from Withania somnifera and Shilajit are owing to neurochemical alterations of specific transmitter systems. Therefore, histochemistry to analyse acetylcholinesterase activity as well as receptor autoradiography to detect cholinergic, glutamatergic and GABAergic receptor subtypes were performed in brain slices from adult male Wistar rats, injected intraperitoneally daily with an equimolar mixture of sitoindosides VII-X and withaferin-A (prepared from Withania somnifera) or with Shilajit, at doses of 40 mg/kg of body weight for 7 days. Administration of Shilajit led to reduced acetylcholinesterase staining, restricted to the basal forebrain nuclei including medial septum and the vertical limb of the diagonal band. Systemic application of the defined extract from Withania somnifera, however, led to differential effects on AChE activity in basal forebrain nuclei: slightly enhanced AChE activity was found in the lateral septum and globus pallidus, whereas in the vertical diagonal band AChE activity was reduced following treatment with sitoindosides VII-X and withaferin-A. These changes were accompanied by enhanced M1-muscarinic cholinergic receptor binding in lateral and medial septum as well as in frontal cortices, whereas the M2-muscarinic receptor binding sites were increased in a number of cortical regions including cingulate, frontal, piriform, parietal and retrosplenial cortex. Treatment with Shilajit or the defined extract from Withania somnifera affected neither GABAA and benzodiazepine receptor binding nor NMDA and AMPA glutamate receptor subtypes in any of the cortical or subcortical regions studied. The data suggest that Shilajit and the defined extract from Withania somnifera affect preferentially events in the cortical and basal forebrain cholinergic signal transduction cascade. The drug-induced increase in cortical muscarinic acetylcholine receptor capacity might partly explain the cognition-enhancing and memory-improving effects of extracts from Withania somnifera observed in animals and humans.
Chaudhary, Bharti; Bist, Renu
2017-05-01
The objective of the study was to evaluate the neuroprotective effects of bacoside A and bromelain against dichlorvos-incited toxicity. Healthy 6-8-week old, male Swiss mice were administered subacute doses of dichlorvos (40 mg/kg bw), bacoside A (5 mg/kg bw) and bromelain (70 mg/kg bw). AChE, BChE, GABA, serotonin and total protein content and their expressions were used for determination of toxic action of dichlorvos. Protective effects of bacoside A and bromelain were evaluated on the same parameters. Exposure to dichlorvos leads to significant decline in activities of AChE (p < 0.01, p < 0.001), BChE (p < 0.05) and GABA (p < 0.01) and total protein levels (p < 0.01). Antioxidant treatment significantly increased the activities of AChE (p < 0.01, p < 0.001), BChE (p < 0.05), GABA (p < 0.01) and total protein level (p < 0.05) compared to those in dichlorvos-treated mice. Overexpression of Hsp 70 protein and underexpression of phosphorylase a and b, catalase SOD and GPx were observed after dichlorvos exposure which suggests the oxidative stress. The results indicate that dichlorvos-induced neuronal damage which results in the generation of molecular expression of proteins is in agreement with the biochemical data ameliorated by bacoside A and bromelain.
Aydın, Birsen
2017-03-01
Argan oil (AO) is rich in minor compounds such as polyphenols and tocopherols which are powerful antioxidants. Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Mitochondrial oxidative stress and dysfunction is one of the most probable molecular mechanisms of neurodegenerative diseases. Female Sprague Dawley rats were exposed to ACR (50mg/kg i.p. three times a week), AO (6ml/kg,o.p, per day) or together for 30days. The activities of cytosolic enzymes such as xanthine oxidase (XO), glucose 6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), mitochondrial oxidative stress, oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, mitochondrial metabolic function, adenosine triphosphate (ATP) level and acetylcholinesterase (AChE) activity were assessed in rat brain. Cytosolic and mitochondrial antioxidant enzymes were significantly diminished in the brains of rats treated with ACR compared to those in control. Besides, ACR treatment resulted in a significant reduction in brain ATP level, mitochondrial metabolic function, OXPHOS and TCA enzymes. Administration of AO restored both the cytosolic and mitochondrial oxidative stress by normalizing nicotinamide adenine dinucleotide phosphate (NADPH) generating enzymes. In addition, improved mitochondrial function primarily enhancing nicotinamide adenine dinucleotide (NADH) generated enzymes activities and ATP level in the mitochondria. The reason for AO's obvious beneficial effects in this study may be due to synergistic effects of its different bioactive compounds which is especially effective on mitochondria. Modulation of the brain mitochondrial functions and antioxidant systems by AO may lead to the development of new mitochondria-targeted antioxidants in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Wang, Lei; Albrecht, Meredith A; Wurtman, Richard J
2007-02-16
The biosynthesis of brain membrane phosphatides, e.g., phosphatidylcholine (PtdCho), may utilize three circulating compounds: choline, uridine (a precursor for UTP, CTP, and CDP-choline), and a PUFA (e.g., docosahexaenoic acid); moreover, oral administration of the uridine source uridine-5'-monophosphate (UMP) can significantly increase levels of the phosphatides throughout the rodent brain. Since PtdCho can provide choline for acetylcholine (ACh) synthesis, we determined whether UMP administration also affects ACh levels in striatum and striatal extracellular fluid, in aged and young rats. Among aged animals consuming a UMP-containing diet (2.5%, w/w) for 1 or 6 weeks, baseline ACh levels in striatal dialysates rose from 73 fmol/min to 148 or 197 fmol/min (P<0.05). Consuming a lower dose (0.5%) for 1 week produced a smaller but still significant increase (from 75 to 92 fmol/min, P<0.05), and elevated striatal ACh content (by 16%; P<0.05). Dietary UMP (0.5%, 1 week) also amplified the increase in ACh caused by giving atropine (10 microM in the aCSF); atropine alone increased ACh concentrations from 81 to 386 fmol/min in control rats and from 137 to 680 fmol/min in those consuming UMP (P<0.05). Young rats eating the UMP-containing diet exhibited similar increases in basal ECF ACh (from 105 to 118 fmol/min) and in the increase produced by atropine (from 489 to 560 fmol/min; P<0.05). These data suggest that giving a uridine source may enhance some cholinergic functions, perhaps by increasing brain phosphatide levels.
Tobacco smoke exposure induces nicotine dependence in rats
Small, Elysia; Shah, Hina P.; Davenport, Jake J.; Geier, Jacqueline E.; Yavarovich, Kate R.; Yamada, Hidetaka; Sabarinath, Sreedharan N.; Derendorf, Hartmut; Pauly, James R.; Gold, Mark S.; Bruijnzeel, Adrie W.
2013-01-01
RATIONALE Tobacco smoke contains nicotine and many other compounds that act in concert on the brain reward system. Therefore, animal models are needed that allow the investigation of chronic exposure to the full spectrum of tobacco smoke constituents. OBJECTIVES The aim of these studies was to investigate if exposure to tobacco smoke leads to nicotine dependence in rats. METHODS The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Somatic signs were recorded from a checklist of nicotine abstinence signs. Nicotine self-administration sessions were conducted to investigate if tobacco smoke exposure affects the motivation to self-administer nicotine. Nicotinic receptor autoradiography was used to investigate if exposure to tobacco smoke affects central α7 nicotinic acetylcholine receptor (nAChR) and non-α7 nAChR levels (primarily α4β2 nAChRs). RESULTS The nAChR antagonist mecamylamine dose-dependently elevated the brain reward thresholds of the rats exposed to tobacco smoke and did not affect the brain reward thresholds of the untreated control rats. Furthermore, mecamylamine induced more somatic withdrawal signs in the smoke exposed rats than in the control rats. Nicotine self-administration was decreased 1 day after the last tobacco smoke exposure sessions and was returned to control levels 5 days later. Tobacco smoke exposure increased the α7 nAChR density in the CA2/3 area and the stratum oriens and increased the non-α7 nAChR density in the dentate gyrus. CONCLUSION Tobacco smoke exposure leads to nicotine dependence as indicated by precipitated affective and somatic withdrawal signs and induces an upregulation of nAChRs in the hippocampus. PMID:19936715
Human brain nicotinic receptors, their distribution and participation in neuropsychiatric disorders.
Graham, A J; Martin-Ruiz, C M; Teaktong, T; Ray, M A; Court, J A
2002-08-01
Mapping of nicotinic acetylcholine receptor (nAChR) subtypes and subunits in human brain is far from complete, however it is clear that multiple subunits are present (including alpha3, alpha4, alpha5, alpha6 and alpha7, beta2, alpha3 and beta4) and that these receptors are not solely distributed on neurones, but also on cerebral vasculature and astrocytes. It is important to elucidate subunit composition of receptors associated with different cell types and pathways within the human CNS in terms of potential nicotinic therapy for a range of both developmental and age-related disorders in which nAChR attenuation occurs. Reductions in nAChRs are reported in Alzheimer's and Parkinson's diseases, dementia with Lewy bodies, schizophrenia and autism, but may not be associated with reduced cortical cholinergic innervation observed in vascular dementia or occur at an early stage in Down's syndrome. Changes in nAChR expression in neuropsychiatric disorders appear to be brain region and subtype specific and have been shown in some instances to be associated with pathology and symptomatology. It is likely that deficits in alpha4-containing receptors predominate in cortical areas in Alzheimer's disease and autism, whereas reduction of alpha7 receptors may be more important in schizophrenia. Changes in astrocytic and vascular nAChR expression in neurodegenerative diseases should also be considered. Studies using both animal models and human autopsy tissue suggest that nAChRs can play a role in neuroprotection against age-related pathology. It is possible that the development of nAChR subtype specific drugs may lead to advances in therapy for both age-related and psychiatric disorders.
Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer’s disease
Bastiat, Guillaume; Plourde, François; Motulsky, Aude; Furtos, Alexandra; Dumont, Yvan; Quirion, Rémi; Fuhrmann, Gregor; Leroux, Jean-Christophe
2015-01-01
Organogels can be prepared by immobilizing an organic phase into a three-dimensional network coming from the self-assembly of a low molecular weight gelator molecule. In this work, an injectable subcutaneous organogel system based on safflower oil and a modified-tyrosine organogelator was evaluated in vivo for the delivery of rivastigmine, an acetylcholinesterase (AChE) inhibitor used in the treatment of Alzheimer’s disease. Different implant formulations were injected and the plasmatic drug concentration was assayed for up to 35 days. In parallel, the inhibition of AChE in different brain sections and the biocompatibility of the implants were monitored. The pharmacokinetic profiles were found to be influenced by the gel composition, injected dose and volume of the implant. The sustained delivery of rivastigmine was accompanied by a significant prolonged inhibition of AChE in the hippocampus, a brain structure involved in memory. The implant induced only a minimal to mild chronic inflammation and fibrosis, which was comparable to poly(D,L-lactide-co-glycolide) in situ-forming implants. These findings suggest that tyrosine-based organogels could represent an alternative approach to current formulations for the sustained delivery of cholinesterase inhibitors. PMID:20472283
Volknandt, W; Zimmermann, H
1986-11-01
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.
Tsuneki, H; Klink, R; Léna, C; Korn, H; Changeux, J P
2000-07-01
Nicotinic acetylcholine receptors (nAChRs) are expressed in the midbrain ascending dopaminergic system, a target of many addictive drugs. Here we assessed the intracellular Ca2+ level by imaging fura-2-loaded cells in substantia nigra pars compacta in mouse brain slices, and we examined the influence on this level of prolonged exposures to nicotine using mice lacking the nAChR beta2-subunit. In control cells, superfusion with nicotine (10-100 microM) caused a long-lasting rise of intracellular Ca2+ level which depended on extracellular Ca2+. This nicotinic response was almost completely absent in beta2-/- mutant mice, leaving a small residual response to a high concentration (100 microM) of nicotine which was inhibited by the alpha7-subunit-selective antagonist, methyllycaconitine. Conversely, the alpha7-subunit-selective agonist choline (10 mM) caused a methyllycaconitine-sensitive increase in intracellular Ca2+ level both in wild-type and beta2-/- mutant mice. Nicotine-elicited Ca2+ mobilization was reduced by the Na+ channel blocker tetrodotoxin (TTX) and by T-type Ca2+ channel blocking agents, whereas the choline-elicited Ca2+ increase was insensitive to TTX. Neither nicotine nor choline produced Ca2+ increase following inhibition of the release of Ca2+ from intracellular stores by dantrolene. These results demonstrate that in nigral dopaminergic neurons, nicotine can elicit Ca2+ mobilization via activation of two distinct nAChR subtypes: that of beta2-subunit-containing nAChR followed by activation of Na+ channel and T-type Ca2+ channels, and/or activation of alpha7-subunit-containing nAChR. The Ca2+ influx due to nAChR activation is subsequently amplified by the recruitment of intracellular Ca2+ stores. This Ca2+ mobilization may possibly contribute to the long-term effects of nicotine on the dopaminergic system.
Holmstrand, Ericka C.; Lund, David; Cherian, Ajeesh Koshy; Wright, Jane; Martin, Rolicia F.; Ennis, Elizabeth A.; Stanwood, Gregg D.; Sarter, Martin; Blakely, Randy D.
2014-01-01
The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC–CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [3H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC–CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC–CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC–CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC–CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC–CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity. PMID:24274995
Mansour, Somaya Z; El-Marakby, Seham M; Moawed, Fatma S M
2017-07-01
Hepatic encephalopathy (HE) is a syndrome resulting from acute or chronic liver failure. This study was designed to evaluate the effect of rutin on thioacetamide (TAA) or γ-radiation-induced HE model. Animals were received with TAA (200mg/kg, i.p.) twice weekly for four weeks or exposed to 6Gy of γ-radiation to induce HE then groups orally treated with rutin (50mg/kg b.wt.) for four weeks. At the end of experiment, blood, liver and brain samples were collected to assess biochemical and biophysical markers as well histopathological investigations. TAA or γ-radiation exposed rats experienced increases in serum activities of ALT, AST, ALP and ammonia level. Also an alteration in relative permeability and conductivity of erythrocytes was observed. Furthermore, cytokines levels and AChE activity were induced whereas the activities of HO-1 and neurotransmitters contents were depleted. TAA or γ-radiation caused distortion of hepatic and brain architecture as shown by histopathological examination. Treatment with rutin resulted in improvement in liver function by the decline in serum AST and ALT activities and reduction in serum ammonia level. In addition, the administration of rutin significantly modulated the alteration in cytokines levels and neurotransmitters content. Histopathological examinations of liver and brain tissues showed that administration of rutin has attenuate TAA or radiation-induced damage and improve tissue architecture. Consequently, rutin has been a powerful hepatoprotective effect to combat hepatic encephalopathy associated hyperammonemia and its consequential damage in liver and brain. Copyright © 2017 Elsevier B.V. All rights reserved.
1986-04-11
Leudee NWI 5th England 18. brain;striatum;hippocampus;cortex;brainstem;rat;hydrophilic drugs;hydrophobic drugs; oxotremorine ;physostigmine;choline...challenged with oxotremorine , marked cross-tolerance to the ACh-increasing action f the muscarinic receptor agonist was induced in both striatum and...responses except for slight tremor.A Fig. 2 shows the dose-response curves of the muscarinic agonists oxotremorine and the butynyl base, McN-A-343, a
Lyukmanova, Ekaterina N; Shenkarev, Zakhar O; Shulepko, Mikhail A; Mineev, Konstantin S; D'Hoedt, Dieter; Kasheverov, Igor E; Filkin, Sergey Yu; Krivolapova, Alexandra P; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A; Arseniev, Alexander S; Bertrand, Daniel; Tsetlin, Victor I; Kirpichnikov, Mikhail P
2011-03-25
Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.
Liu, Jian-Min; Wu, Peng-Fei; Rao, Jing; Zhou, Jun; Shen, Zu-Cheng; Luo, Han; Huang, Jian-Geng; Liang, Xiao; Long, Li-Hong; Xie, Qing-Guo; Jiang, Feng-Chao; Wang, Fang; Chen, Jian-Guo
2016-03-01
Chemical entities containing mercapto group have been increasingly attractive in the therapy of central nerve system (CNS) diseases. In the recent study, we screened a series of mercapto-tacrine derivatives with synergistic neuropharmacological profiles in vitro. We investigated the effect and mechanism of ST09, a thioester derivative of tacrine containing a potential mercapto group, on the vascular dementia (VaD) model of rat induced by bilateral common carotid arteries occlusion (2-VO). ST09 and its active metabolite ST10 retained excellent inhibition on acetylcholinesterase (AChE) activity. ST09 significantly attenuated the 2-VO-induced impairment in spatial acquisition performance and inhibited the 2-VO-induced rise of AChE activity. In the VaD model, ST09 attenuated the oxidative stress and decreased the apoptosis in the cortex and hippocampus. Compared with donepezil, ST09 exhibited a better effect on the regeneration of free thiols in 2-VO rats. Interestingly, ST09, not donepezil, greatly improved glucose metabolism in various brain regions of 2-VO rats using functional imaging of (18) F-labeled fluoro-deoxyglucose (FDG) positron emission tomography (PET). ST09 may serve as a more promising agent for the therapy of VaD than tacrine owing to the introduction of a potential mercapto group into the parent skeleton. © 2016 John Wiley & Sons Ltd.
Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage
Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio
2013-01-01
The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401
Huperzine A, but not tacrine, stimulates S100B secretion in astrocyte cultures.
Lunardi, Paula; Nardin, Patrícia; Guerra, Maria Cristina; Abib, Renata; Leite, Marina Concli; Gonçalves, Carlos-Alberto
2013-04-09
The loss of cholinergic function in the central nervous system contributes significantly to the cognitive decline associated with advanced age and dementias. Huperzine A (HupA) is a selective inhibitor of acetylcholinesterase (AChE) and has been shown to significantly reduce cognitive impairment in animal models of dementia. Based on the importance of astrocytes in physiological and pathological brain activities, we investigated the effect of HupA and tacrine on S100B secretion in primary astrocyte cultures. S100B is an astrocyte-derived protein that has been proposed to be a marker of brain injury. Primary astrocyte cultures were exposed to HupA, tacrine, cholinergic agonists, and S100B secretion was measured by enzyme-linked immunosorbent assay (ELISA) at 1 and 24h. HupA, but not tacrine, at 100μM significantly increased S100B secretion in astrocyte cultures. Nicotine (at 100 and 1000μM) was able to stimulate S100B secretion in astrocyte cultures. Our data reinforce the idea that AChE inhibitors, particularly HupA, do not act exclusively on the acetylcholine balance. This effect of HupA could contribute to improve the cognitive deficit observed in patients, which are attributed to cholinergic dysfunction. In addition, for the first time, to our knowledge, these data indicate that S100B secretion can be modulated by nicotinic receptors, in addition to glutamate, dopamine and serotonin receptors. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhang, Zi-Gang; Wang, Xin; Zai, Jin-Hai; Sun, Cai-Hua; Yan, Bing-Chun
2018-05-01
To examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level. The modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus. Compared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05). ICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Amenta, F; Tayebati, S K
2008-01-01
Acetylcholine (ACh) is a neurotransmitter widely diffused in central, peripheral, autonomic and enteric nervous system. This paper has reviewed the main mechanisms of ACh synthesis, storage, and release. Presynaptic choline transport supports ACh production and release, and cholinergic terminals express a unique transporter critical for neurotransmitter release. Neurons cannot synthesize choline, which is ultimately derived from the diet and is delivered through the blood stream. ACh released from cholinergic synapses is hydrolyzed by acetylcholinesterase into choline and acetyl coenzyme A and almost 50% of choline derived from ACh hydrolysis is recovered by a high-affinity choline transporter. Parallel with the development of cholinergic hypothesis of geriatric memory dysfunction, cholinergic precursor loading strategy was tried for treating cognitive impairment occurring in Alzheimer's disease. Controlled clinical studies denied clinical usefulness of choline and lecithin (phosphatidylcholine), whereas for other phospholipids involved in choline biosynthetic pathways such as cytidine 5'-diphosphocholine (CDP-choline) or alpha-glyceryl-phosphorylcholine (choline alphoscerate) a modest improvement of cognitive dysfunction in adult-onset dementia disorders is documented. These inconsistencies have probably a metabolic explanation. Free choline administration increases brain choline availability but it does not increase ACh synthesis/or release. Cholinergic precursors to serve for ACh biosynthesis should be incorporate and stored into phospholipids in brain. It is probable that appropriate ACh precursors and other correlated molecules (natural or synthesized) could represent a tool for developing therapeutic strategies by revisiting and updating treatments/supplementations coming out from this therapeutic stalemate.
Calas, André-Guilhem; Dias, José; Rousseau, Catherine; Arboléas, Mélanie; Touvrey-Loiodice, Mélanie; Mercey, Guillaume; Jean, Ludovic; Renard, Pierre-Yves; Nachon, Florian
2017-04-01
Organophosphorus nerve agents, like VX, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). AChE inhibited by VX can be reactivated using powerful nucleophilic molecules, most commonly oximes, which are one major component of the emergency treatment in case of nerve agent intoxication. We present here a comparative in vivo study on Swiss mice of four reactivators: HI-6, pralidoxime and two uncharged derivatives of 3-hydroxy-2-pyridinaldoxime that should more easily cross the blood-brain barrier and display a significant central nervous system activity. The reactivability kinetic profile of the oximes is established following intraperitoneal injection in healthy mice, using an original and fast enzymatic method based on the reactivation potential of oxime-containing plasma samples. HI-6 displays the highest reactivation potential whatever the conditions, followed by pralidoxime and the two non quaternary reactivators at the dose of 50 mg/kg bw. But these three last reactivators display equivalent reactivation potential at the same dose of 100 μmol/kg bw. Maximal reactivation potential closely correlates to surviving test results of VX intoxicated mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong
2015-01-01
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity. PMID:25965066
Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong
2015-01-01
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grunwald, J.; Raveh, L.; Doctor, B.P.
1994-12-31
Huperzine A (HUP) is a naturally-occurring, potent, reversible inhibitor of acetylcholinesterase (AChE) that crosses the blood-brain barrier. To examine its ability to protect against nerve agent poisoning, HUP was administered i.p. to mice, and the s.c. LD50 of soman was determined at various time intervals after pretreatment. Results were compared to those obtained for animals treated with physostigmine. A protective ratio of approximately 2 was maintained for at least 6 hr after a single injection of HUP, without the need for any post-challenge drug therapy. By contrast, pretreatment with physostigmine increased the LD50 of soman by 1.4- to 1.5-fold formore » only up to 90 min. The long-lasting antidotal efficacy displayed by HUP correlated with the time course of the blood-AChE inhibition. The results suggest that the protection of animals by HUP from soman poisoning was achieved by temporarily sequestering the active site region of the physiologically important AChE.« less
Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel
2015-01-01
Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Haoran; Fan, Haoqun; Gao, Xiaohui; Huang, Xueqing; Liu, Xianjun; Liu, Linbo; Zhou, Chao; Tang, Jingjing; Wang, Qiuan; Liu, Wukun
2016-08-01
In order to study the structure-activity relationship of Flavokawain B Mannich-based derivatives as acetylcholinesterase (AChE) inhibitors in our recent investigation, 20 new nitrogen-containing chalcone derivatives (4 a-8d) were designed, synthesized, and evaluated for AChE inhibitory activity in vitro. The results suggested that amino alkyl side chain of chalcone dramatically influenced the inhibitory activity against AChE. Among them, compound 6c revealed the strongest AChE inhibitory activity (IC50 value: 0.85 μmol/L) and the highest selectivity against AChE over BuChE (ratio: 35.79). Enzyme kinetic study showed that the inhibition mechanism of compound 6c against AChE was a mixed-type inhibition. The molecular docking assay showed that this compound can both bind with the catalytic site and the peripheral site of AChE.
Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats.
El-Akabawy, Gehan; El-Kholy, Wael
2014-05-01
Diabetes mellitus results in neuronal damage caused by increased intracellular glucose leading to oxidative stress. Recent evidence revealed the potential of ginger for reducing diabetes-induced oxidative stress markers. The aim of this study is to investigate, for the first time, whether the antioxidant properties of ginger has beneficial effects on the structural brain damage associated with diabetes. We investigated the observable neurodegenerative changes in the frontal cortex, dentate gyrus, and cerebellum after 4, 6, and 8 weeks of streptozotocin (STZ)-induced diabetes in rats and the effect(s) of ginger (500 mg/kg/day). Sections of frontal cortex, dentate gyrus, and cerebellum were stained with hematoxylin and eosin and examined using light microscopy. In addition, quantitative immunohistochemical assessments of the expression of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, caspase-3, glial fibrillary acidic protein (GFAP), acetylcholinesterase (AChE), and Ki67 were performed. Our results revealed a protective role of ginger on the diabetic brain via reducing oxidative stress, apoptosis, and inflammation. In addition, this study revealed that the beneficial effect of ginger was also mediated by modulating the astroglial response to the injury, reducing AChE expression, and improving neurogenesis. These results represent a new insight into the beneficial effects of ginger on the structural alterations of diabetic brain and suggest that ginger might be a potential therapeutic strategy for the treatment of diabetic-induced damage in brain. Copyright © 2014 Elsevier GmbH. All rights reserved.
Different Cholinesterase Inhibitor Effects on CSF Cholinesterases in Alzheimer Patients
Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger
2014-01-01
Background The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. Methods and Findings AD patients aged 50–85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman’s colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2%increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. Conclusion The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation. PMID:19199870
Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients.
Nordberg, Agneta; Darreh-Shori, Taher; Peskind, Elaine; Soininen, Hilkka; Mousavi, Malahat; Eagle, Gina; Lane, Roger
2009-02-01
The current study aimed to compare the effects of different cholinesterase inhibitors on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities and protein levels, in the cerebrospinal fluid (CSF) of Alzheimer disease (AD) patients. AD patients aged 50-85 years were randomized to open-label treatment with oral rivastigmine, donepezil or galantamine for 13 weeks. AChE and BuChE activities were assayed by Ellman's colorimetric method. Protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). Primary analyses were based on the Completer population (randomized patients who completed Week 13 assessments). 63 patients were randomized to treatment. Rivastigmine was associated with decreased AChE activity by 42.6% and decreased AChE protein levels by 9.3%, and decreased BuChE activity by 45.6% and decreased BuChE protein levels by 21.8%. Galantamine decreased AChE activity by 2.1% and BuChE activity by 0.5%, but increased AChE protein levels by 51.2% and BuChE protein levels by 10.5%. Donepezil increased AChE and BuChE activities by 11.8% and 2.8%, respectively. Donepezil caused a 215.2% increase in AChE and 0.4% increase in BuChE protein levels. Changes in mean AChE-Readthrough/Synaptic ratios, which might reflect underlying neurodegenerative processes, were 1.4, 0.6, and 0.4 for rivastigmine, donepezil and galantamine, respectively. The findings suggest pharmacologically-induced differences between rivastigmine, donepezil and galantamine. Rivastigmine provides sustained inhibition of AChE and BuChE, while donepezil and galantamine do not inhibit BuChE and are associated with increases in CSF AChE protein levels. The clinical implications require evaluation.
Lee, Sang-Hoon; Park, Jin-Sook; Kim, Se-Kwon; Ahn, Chang-Bum; Je, Jae-Young
2009-02-01
Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer's sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000-5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Abeta(25-35) in PC12 cell lines.
Rahim, Nur Syafiqah; Lim, Siong Meng; Mani, Vasudevan; Abdul Majeed, Abu Bakar; Ramasamy, Kalavathy
2017-12-01
Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. VCO-fed Wistar rats exhibited significant (p < 0.05) improvement of cognitive functions [reduced escape latency (≥ 1.8 s), reduced escape distance (≥ 0.3 m) and increased total time spent on platform (≥ 1 s)]. The findings were accompanied by elevation of ACh (15%), SOD (8%), CAT (≥ 54%), GSH (≥ 20%) and GPx (≥ 12%) and reduction of AChE (≥17%), MDA (> 33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.
Oboh, Ganiyu; Ogunruku, Omodesola O; Oyeleye, Sunday I; Olasehinde, Tosin A; Ademosun, Ayokunle O; Boligon, Aline Augusti
2017-05-04
This study investigated the inhibitory effects of phenolic-rich extracts from Clerodendrum volubile leaves on cholinergic [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] and monoaminergic [monoamine oxidase (MAO)] enzymes' activities and pro-oxidants [Fe 2+ and quinolinic acid-(QA)] induced lipid peroxidation in rats brain homogenates in vitro. Free phenolic extracts (FPE) and bound phenolic extracts (BPE) were obtained via solvent extraction, and the total phenol and flavonoid contents were evaluated. The phenolic constituents of the extracts were also determined using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). Our findings revealed that FPE had higher AChE (2.06 μg/mL), BChE (2.79 μg/mL), and MAO (2.81 μg/mL) inhibitory effects than BPE [AChE, 2.80 μg/mL; BChE, 3.40 μg/mL; MAO, 3.39 μg/mL]. Furthermore, FPE also had significantly (P < 0.05) higher inhibitory effects on Fe 2+ and QA-induced lipid peroxidation compared to BPE. FPE (162.61 mg GAE/g) had higher total phenol content than BPE. However, BPE (18.65 mg QE/g) had significantly higher total flavonoid content than FPE (13.32 mg QE/g). Phenolic acids (such as gallic acid, catechin, chlorogenic, caffeic, ellagic, p-Coumaric acids) and flavonoids (catechins, rutin and quercetin) were present in both extracts. This study revealed that the enzymes' inhibitory activities and antioxidant potentials of phenolic-rich extracts from C. volubile could be part of the mechanism of actions behind its use for memory/cognitive function as obtained in folklore. However, FPE exhibited significantly higher enzymes, inhibitory and antioxidant potentials than BPE.
Grossberg, Stephen
2017-01-01
Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer’s disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer’s disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective. PMID:29163063
Zhang, Jingnan; Yue, Xiangpei; Luo, Hongjun; Jiang, Wenjing; Mei, Yufei; Ai, Li; Gao, Ge; Wu, Yan; Yang, Hui; An, Jieran; Ding, Shumao; Yang, Xu; Sun, Bingui; Luo, Wenhong; He, Rongqiao; Jia, Jianping; Lyu, Jihui; Tong, Zhiqian
2018-06-05
Pharmacological treatments for Alzheimer's disease (AD) have not resulted in desirable clinical efficacy over 100 years. Hydrogen peroxide (H2O2), a reactive and the most stable compound of reactive oxygen species (ROS), contributes to oxidative stress in AD patients. Here, we designed a medical device to emit red light at 630±15 nm from a light-emitting diode (LED-RL) and investigated whether the LED-RL reduces brain H2O2 levels and improves memory in senescence-accelerated prone 8 mouse (SAMP8) model of age-related dementia. We found that age-associated H2O2 directly inhibited formaldehyde dehydrogenase (FDH). FDH inactivity and semicarbazide-sensitive amine oxidase (SSAO) disorder resulted in endogenous formaldehyde (FA) accumulation. Unexpectedly, excess FA, in turn, caused acetylcholine (Ach) deficiency by inhibiting choline acetyltransferase (ChAT) activity in vitro and in vivo. Interestingly, the 630-nm red light can penetrate the skull and abdomen with light penetration rates: ~49% and ~43%, respectively. Illumination with LED-RL markedly activated both catalase and FDH in the brains, cultured cells and purified protein solutions, all reduced brain H2O2 and FA levels and restored brain Ach contents. Consequently, LED-RL not only prevented early-stage memory decline but also rescued late-stage memory deficits in SAMP8 mice. We developed a phototherapeutic device with 630-nm red light, and this LED-RL reduced brain H2O2 levels and reversed age-related memory disorders. The phototherapy of LED-RL has low photo toxicity and high rate of tissue penetration, and non-invasively reverses aging-associated cognitive decline. This finding opens a promising opportunity to translate LED-RL into clinical treatment for patients with dementia.
Koh, Eun-Kyoung; Yun, Woo-Bin; Kim, Ji-Eun; Song, Sung-Hwa; Sung, Ji-Eun; Lee, Hyun-Ah; Seo, Eun-Ji; Jee, Seung-Wan; Bae, Chang-Joon; Hwang, Dae-Youn
2016-06-01
To investigate the beneficial effects of diosgenin (DG) on the multiple types of brain damage induced by Aβ-42 peptides and neurotoxicants, alterations in the specific aspects of brain functions were measured in trimethyltin (TMT)-injected transgenic 2576 (TG) mice that had been pretreated with DG for 21 days. Multiple types of damage were successfully induced by Aβ-42 accumulation and TMT injection into the brains of TG mice. However, DG treatment significantly reduced the number of Aβ-stained plaques and dead cells in the granule cells layer of the dentate gyrus. Significant suppression of acetylcholinesterase (AChE) activity and Bax/Bcl-2 expression was also observed in the DG treated TG mice (TG+DG group) when compared with those of the vehicle (VC) treated TG mice (TG+VC group). Additionally, the concentration of nerve growth factor (NGF) was dramatically enhanced in TG+DG group, although it was lower in the TG+VC group than the non-transgenic (nTG) group. Furthermore, the decreased phosphorylation of downstream members in the TrkA high affinity receptor signaling pathway in the TG+VC group was significantly recovered in the TG+DG group. A similar pattern was observed in p75(NTR) expression and JNK phosphorylation in the NGF low affinity receptor signaling pathway. Moreover, superoxide dismutase (SOD) activity was enhanced in the TG+DG group, while the level of malondialdehyde (MDA), a marker of lipid peroxidation, was lower in the TG+DG group than the TG+VC group. These results suggest that DG could exert a wide range of beneficial activities for multiple types of brain damage through stimulation of NGF biosynthesis.
Koh, Eun-Kyoung; Yun, Woo-Bin; Kim, Ji-Eun; Song, Sung-Hwa; Sung, Ji-Eun; Lee, Hyun-Ah; Seo, Eun-Ji; Jee, Seung-Wan
2016-01-01
To investigate the beneficial effects of diosgenin (DG) on the multiple types of brain damage induced by Aβ-42 peptides and neurotoxicants, alterations in the specific aspects of brain functions were measured in trimethyltin (TMT)-injected transgenic 2576 (TG) mice that had been pretreated with DG for 21 days. Multiple types of damage were successfully induced by Aβ-42 accumulation and TMT injection into the brains of TG mice. However, DG treatment significantly reduced the number of Aβ-stained plaques and dead cells in the granule cells layer of the dentate gyrus. Significant suppression of acetylcholinesterase (AChE) activity and Bax/Bcl-2 expression was also observed in the DG treated TG mice (TG+DG group) when compared with those of the vehicle (VC) treated TG mice (TG+VC group). Additionally, the concentration of nerve growth factor (NGF) was dramatically enhanced in TG+DG group, although it was lower in the TG+VC group than the non-transgenic (nTG) group. Furthermore, the decreased phosphorylation of downstream members in the TrkA high affinity receptor signaling pathway in the TG+VC group was significantly recovered in the TG+DG group. A similar pattern was observed in p75NTR expression and JNK phosphorylation in the NGF low affinity receptor signaling pathway. Moreover, superoxide dismutase (SOD) activity was enhanced in the TG+DG group, while the level of malondialdehyde (MDA), a marker of lipid peroxidation, was lower in the TG+DG group than the TG+VC group. These results suggest that DG could exert a wide range of beneficial activities for multiple types of brain damage through stimulation of NGF biosynthesis. PMID:27382379
Reversal of Trimethyltin-Induced Learning and Memory Deficits by 3,5-Dicaffeoylquinic Acid.
Kang, Jin Yong; Park, Seon Kyeong; Guo, Tian Jiao; Ha, Jeong Su; Lee, Du Sang; Kim, Jong Min; Lee, Uk; Kim, Dae Ok; Heo, Ho Jin
2016-01-01
The antiamnesic effect of 3,5-dicaffeoylquinic acid (3,5-diCQA) as the main phenolic compound in Artemisia argyi H. extract on cognitive dysfunction induced by trimethyltin (TMT) (7.1 μ g/kg of body weight; intraperitoneal injection) was investigated in order to assess its ameliorating function in mice. In several behavioral tests, namely, the Y-maze, passive avoidance, and Morris water maze (MWM) test, 3,5-diCQA significantly ameliorated learning and memory deficits. After the behavioral tests, brain tissues from the mice were analyzed to characterize the basis of the neuroprotective effect. Acetylcholine (ACh) levels increased, whereas the activity of acetylcholinesterase (AChE) decreased upon administration of 3,5-diCQA. In addition, 3,5-diCQA effectively protected against an increase in malondialdehyde (MDA) content, an increase in the oxidized glutathione (GSH) ratio, and a decline of total superoxide dismutase (SOD) level. 3,5-diCQA may prevent neuronal apoptosis through the protection of mitochondrial activities and the repression of apoptotic signaling molecules such as p-Akt, BAX, and p-tau (Ser 404).
Reversal of Trimethyltin-Induced Learning and Memory Deficits by 3,5-Dicaffeoylquinic Acid
Kang, Jin Yong; Park, Seon Kyeong; Guo, Tian Jiao; Ha, Jeong Su; Lee, Du Sang; Kim, Jong Min; Lee, Uk; Kim, Dae Ok
2016-01-01
The antiamnesic effect of 3,5-dicaffeoylquinic acid (3,5-diCQA) as the main phenolic compound in Artemisia argyi H. extract on cognitive dysfunction induced by trimethyltin (TMT) (7.1 μg/kg of body weight; intraperitoneal injection) was investigated in order to assess its ameliorating function in mice. In several behavioral tests, namely, the Y-maze, passive avoidance, and Morris water maze (MWM) test, 3,5-diCQA significantly ameliorated learning and memory deficits. After the behavioral tests, brain tissues from the mice were analyzed to characterize the basis of the neuroprotective effect. Acetylcholine (ACh) levels increased, whereas the activity of acetylcholinesterase (AChE) decreased upon administration of 3,5-diCQA. In addition, 3,5-diCQA effectively protected against an increase in malondialdehyde (MDA) content, an increase in the oxidized glutathione (GSH) ratio, and a decline of total superoxide dismutase (SOD) level. 3,5-diCQA may prevent neuronal apoptosis through the protection of mitochondrial activities and the repression of apoptotic signaling molecules such as p-Akt, BAX, and p-tau (Ser 404). PMID:28105250
Gao, Xiao-Hui; Zhou, Chao; Liu, Hao-Ran; Liu, Lin-Bo; Tang, Jing-Jing; Xia, Xin-Hua
2017-12-01
A new series of tertiary amine derivatives of chlorochalcone (4a∼4l) were designed, synthesized and evaluated for the effect on acetylcholinesterase (AChE) and buthylcholinesterase (BuChE). The results indicated that all compounds revealed moderate or potent inhibitory activity against AChE, and some possessed high selectivity for AChE over BuChE. The structure-activity investigation showed that the substituted position of chlorine significantly influenced the activity and selectivity. The alteration of tertiary amine group also leads to obvious change in bioactivity. Among them, IC 50 of compound 4l against AChE was 0.17 ± 0.06 µmol/L, and the selectivity was 667.2 fold for AChE over BuChE. Molecular docking and enzyme kinetic study on compound 4l suggested that it simultaneously binds to the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE. Further study showed that the pyrazoline derivatives synthesized from chlorochalcones had weaker activity and lower selectivity in inhibiting AChE compared to that of chlorochalcone derivatives.
James, Shelly L; Ahmed, S Kaleem; Murphy, Stephanie; Braden, Michael R; Belabassi, Yamina; VanBrocklin, Henry F; Thompson, Charles M; Gerdes, John M
2014-07-16
Radiosynthesis of a fluorine-18 labeled organophosphate (OP) inhibitor of acetylcholinesterase (AChE) and subsequent positron emission tomography (PET) imaging using the tracer in the rat central nervous system are reported. The tracer structure, which contains a novel β-fluoroethoxy phosphoester moiety, was designed as an insecticide-chemical nerve agent hybrid to optimize handling and the desired target reactivity. Radiosynthesis of the β-fluoroethoxy tracer is described that utilizes a [(18)F]prosthetic group coupling approach. The imaging utility of the [(18)F]tracer is demonstrated in vivo within rats by the evaluation of its brain penetration and cerebral distribution qualities in the absence and presence of a challenge agent. The tracer effectively penetrates brain and localizes to cerebral regions known to correlate with the expression of the AChE target. Brain pharmacokinetic properties of the tracer are consistent with the formation of an OP-adducted acetylcholinesterase containing the fluoroethoxy tracer group. Based on the initial favorable in vivo qualities found in rat, additional [(18)F]tracer studies are ongoing to exploit the technology to dynamically probe organophosphate mechanisms of action in mammalian live tissues.
Proteomic Analysis of an α7 Nicotinic Acetylcholine Receptor Interactome
Paulo, Joao A.; Brucker, William J.; Hawrot, Edward
2009-01-01
The α7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity α-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive α-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from α7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the α7 nAChR, and many are associated with multiple signaling pathways that may be implicated in α7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for α-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal α7 nAChRs. PMID:19714875
Del Bello, Fabio; Bonifazi, Alessandro; Giorgioni, Gianfabio; Cifani, Carlo; Micioni Di Bonaventura, Maria Vittoria; Petrelli, Riccardo; Piergentili, Alessandro; Fontana, Stefano; Mammoli, Valerio; Yano, Hideaki; Matucci, Rosanna; Vistoli, Giulio; Quaglia, Wilma
2018-04-26
In the present article, the M 1 mAChR bitopic agonist 1-[3-(4-butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1, 1) has been demonstrated to show unexpected D 4 R selectivity over D 2 R and D 3 R and to behave as a D 4 R antagonist. To better understand the structural features required for the selective interaction with the D 4 R and to obtain compounds unable to activate mAChRs, the aliphatic butyl chain and the piperidine nucleus of 1 were modified, affording compounds 2-14. The 4-benzylpiperidine 9 and the 4-phenylpiperazine 12 showed high D 4 R affinity and selectivity not only over the other D 2 -like subtypes, but also over M 1 -M 5 mAChRs. Derivative 12 was also highly selective over some selected off-targets. This compound showed biased behavior, potently and partially activating G i protein and inhibiting β-arrestin2 recruitment in functional studies. Pharmacokinetic studies demonstrated that it was characterized by a relevant brain penetration. Therefore, 12 might be a useful tool to better clarify the role played by D 4 R in disorders in which this subtype is involved.
A Model of Medical Countermeasures for Organophosphates
2015-10-01
Animal Data ................................................................. 51 6.2.1. Verifying AChE Activity ...17 Figure 4-3. Model Output for AChE Activity and Free/Stimulated Receptor Fraction with No OP Exposure...Figure 6-1. Sarin Model Output Compared to Individual AChE Activity in Acute Phase Following Tokyo Sarin Attack
Li, Libing; Matsuoka, Isao; Sakamoto, Kazuho; Kimura, Junko
2016-06-08
We compared the effects of lysophosphatidylcholine (LPC) and acetylcholine (ACh) on IK(ACh), ICa and a non-selective cation current (INSC) in guinea-pig atrial myocytes to clarify whether LPC and ACh activate similar Gi/o-coupled effector systems. IK(ACh), ICa and INSC were analyzed in single atrial myocytes by the whole cell patch-clamp. LPC induced INSC in a concentration-dependent manner in atrial cells. ACh activated IK(ACh), but failed to evoke INSC. LPC also activated IK(ACh) but with significantly less potency than ACh. The effects of both ligands on IK(ACh) were inhibited by intracellular loading of pre-activated PTX. This treatment also inhibited LPC-induced INSC, indicating that IK(ACh) and INSC induced by LPC are both mediated by Gi/o. LPC and ACh had similar potencies in inhibiting ICa, which was pre-augmented by forskolin, indicating that LPC and ACh activate similar amounts of α-subunits of Gi/o. The different effects of LPC and ACh on IK(ACh) and INSC may suggest that LPC and ACh activate Gi/o having different types of βγ subunits, and that LPC-induced INSC may be mediated by βγ subunits of Gi/o, which are less effective in inducing IK(ACh).
Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E
2017-12-15
The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Protection against both lethal and behavioral effects of soman.
Harris, L W; McDonough, J H; Stitcher, D L; Lennox, W J
1984-01-01
This work developed two drug mixtures which alone had no effect on performance of a criterion behavior but when given as a pretreatment would protect against organophosphate-induced lethality and incapacitation. Candidate drugs (alone and together) were given to rats trained to respond on a two-component Fixed Ratio 10 - Extinction (FR10-EXT) schedule. After generating dose response curves for each cholinolytic drug, mixtures of atropine (A) + mecamylamine (M) + pyridostigmine (Py) or physostigmine (Ph) were prepared and a combination of doses that produced no effects on operant performance was determined (Mix I:A = .78, M = .78, Py = .056 mg/kg; Mix II:A = .78, M = .78, Ph = .026 mg/kg). Both pretreatment mixtures provided equivalent protection against the lethal effects of the organophosphate soman; however only Mix II was capable of reversing soman-induced physical incapacitation (PI) as assessed by performance on an accelerating rotarod or FR10 responding. Pretreatment of animals with Mix II resulted in significantly higher levels of brain acetylcholinesterase (AChE) than Mix I pretreated subjects 4 hrs after 1.3 LD50 soman, although peripheral AChE levels were not different. The results indicate organophosphate-induced PI can be attenuated by pretreatment with tertiary carbamates which protect significant amounts of brain AChE from irreversible inhibition.
Wu, Celeste Yin-Chieh; Chen, Po-Yi; Chen, Mei-Fang; Kuo, Jon-Son; Lee, Tony Jer-Fu
2012-01-01
Memantine, an NMDA receptor antagonist used for treatment of Alzheimer’s disease (AD), is known to block the nicotinic acetylcholine receptors (nAChRs) in the central nervous system (CNS). In the present study, we examined by wire myography if memantine inhibited α3β2-nAChRs located on cerebral perivascular sympathetic nerve terminals originating in the superior cervical ganglion (SCG), thus, leading to inhibition of nicotine-induced nitrergic neurogenic dilation of isolated porcine basilar arteries. Memantine concentration-dependently blocked nicotine-induced neurogenic dilation of endothelium-denuded basilar arteries without affecting that induced by transmural nerve stimulation, sodium nitroprusside, or isoproterenol. Furthermore, memantine significantly inhibited nicotine-elicited inward currents in Xenopous oocytes expressing α3β2-, α7- or α4β2-nAChR, and nicotine-induced calcium influx in cultured rat SCG neurons. These results suggest that memantine is a non-specific antagonist for nAChR. By directly inhibiting α3β2-nAChRs located on the sympathetic nerve terminals, memantine blocks nicotine-induced neurogenic vasodilation of the porcine basilar arteries. This effect of memantine is expected to reduce the blood supply to the brain stem and possibly other brain regions, thus, decreasing its clinical efficacy in the treatment of Alzheimer’s disease. PMID:22792283
Abdel-Rahman, A; Abou-Donia, Suzanne; El-Masry, Eman; Shetty, Ashok; Abou-Donia, Mohamed
2004-01-23
Exposure to a combination of stress and low doses of the chemicals pyridostigmine bromide (PB), DEET, and permethrin in adult rats, a model of Gulf War exposure, produces blood-brain barrier (BBB) disruption and neuronal cell death in the cingulate cortex, dentate gyrus, thalamus, and hypothalamus. In this study, neuropathological alterations in other areas of the brain where no apparent BBB disruption was observed was studied following such exposure. Animals exposed to both stress and chemical exhibited decreased brain acetylcholinesterase (AChE) activity in the midbrain, brainstem, and cerebellum and decreased m2 muscarinic acetylcholine (ACh) receptor ligand binding in the midbrain and cerebellum. These alterations were associated with significant neuronal cell death, reduced microtubule-associated protein (MAP-2) expression, and increased glial fibrillary acidic protein (GFAP) expression in the cerebral cortex and the hippocampal subfields CA1 and CA3. In the cerebellum, the neurochemical alterations were associated with Purkinje cell loss and increased GFAP immunoreactivity in the white matter. However, animals subjected to either stress or chemicals alone did not show any of these changes in comparison to vehicle-treated controls. Collectively, these results suggest that prolonged exposure to a combination of stress and the chemicals PB, DEET, and permethrin can produce significant damage to the cerebral cortex, hippocampus, and cerebellum, even in the absence of apparent BBB damage. As these areas of the brain are respectively important for the maintenance of motor and sensory functions, learning and memory, and gait and coordination of movements, such alterations could lead to many physiological, pharmacological, and behavioral abnormalities, particularly motor deficits and learning and memory dysfunction.
Acetamide Derivatives of Chromen-2-ones as Potent Cholinesterase Inhibitors.
Prasad, Suchita; Kumar, Bipul; Kumar, Shiv; Chand, Karam; Kamble, Shashank S; Gautam, Hemant K; Sharma, Sunil K
2017-08-01
Alzheimer's disease (AD), a neurodegenerative disorder, is a serious medical issue worldwide with drastic social consequences. Inhibition of cholinesterase is one of the rational and effective approaches to retard the symptoms of AD and, hence, consistent efforts are being made to develop efficient anti-cholinesterase agents. In pursuit of this, a series of 19 acetamide derivatives of chromen-2-ones were synthesized and evaluated for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory potential. All the synthesized compounds exhibited significant anti-AChE and anti-BChE activity, with IC 50 values in the range of 0.24-10.19 μM and 0.64-30.08 μM, respectively, using donepezil hydrochloride as the standard. Out of 19 compounds screened, 3 compounds, viz. 22, 40, and 43, caused 50% inhibition of AChE at 0.24, 0.25, and 0.25 μM, respectively. A kinetic study revealed them to be mixed-type inhibitors, binding with both the CAS and PAS sites of AChE. The above-selected compounds were found to be effective inhibitors of AChE-induced and self-mediated Aβ 1-42 aggregation. ADMET predictions demonstrated that these compounds may possess suitable blood-brain barrier (BBB) permeability. Hemolytic assay results revealed that these compounds did not lyse human RBCs up to a thousand times of their IC 50 value. MTT assays performed for the shortlisted compounds showed them to be negligibly toxic after 24 h of treatment with the SH-SY5Y neuroblastoma cells. These results provide insights for further optimization of the scaffolds for designing the next generation of compounds as lead cholinesterase inhibitors. © 2017 Deutsche Pharmazeutische Gesellschaft.
Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin
2006-10-01
The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.
Ismail, Manal Fouad; Elmeshad, Aliaa Nabil; Salem, Neveen Abdel-Hameed
2013-01-01
To sustain the effect of rivastigmine, a hydrophilic cholinesterase inhibitor, nanobased formulations were prepared. The efficacy of the prepared rivastigmine liposomes (RLs) in comparison to rivastigmine solution (RS) was assessed in an aluminium chloride (AlCl(3))-induced Alzheimer's model. Liposomes were prepared by lipid hydration (F1) and heating (F2) methods. Rats were treated with either RS or RLs (1 mg/kg/day) concomitantly with AlCl(3) (50 mg/kg/day). The study showed that the F1 method produced smaller liposomes (67.51 ± 14.2 nm) than F2 (528.7 ± 15.5 nm), but both entrapped the same amount of the drug (92.1% ± 1.4%). After 6 hours, 74.2% ± 1.5% and 60.8% ± 2.3% of rivastigmine were released from F1 and F2, respectively. Both RLs and RS improved the deterioration of spatial memory induced by AlCl(3), with RLs having a superior effect. Further biochemical measurements proved that RS and RLs were able to lower plasma C-reactive protein, homocysteine and asymmetric dimethy-larginine levels. RS significantly attenuated acetylcholinesterase (AChE) activity, whereas Na(+)/K(+)-adenosine triphosphatase (ATPase) activity was enhanced compared to the AlCl(3)-treated animals; however, RLs succeeded in normalization of AChE and Na(+)/K(+) ATPase activities. Gene-expression profile showed that cotreatment with RS to AlCl(3)-treated rats succeeded in exerting significant decreases in BACE1, AChE, and IL1B gene expression. Normalization of the expression of the aforementioned genes was achieved by coadministration of RLs to AlCl(3)-treated rats. The profound therapeutic effect of RLs over RS was evidenced by nearly preventing amyloid plaque formation, as shown in the histopathological examination of rat brain. RLs could be a potential drug-delivery system for ameliorating Alzheimer's disease.
Ismail, Manal Fouad; ElMeshad, Aliaa Nabil; Salem, Neveen Abdel-Hameed
2013-01-01
Background To sustain the effect of rivastigmine, a hydrophilic cholinesterase inhibitor, nanobased formulations were prepared. The efficacy of the prepared rivastigmine liposomes (RLs) in comparison to rivastigmine solution (RS) was assessed in an aluminium chloride (AlCl3)-induced Alzheimer’s model. Methods Liposomes were prepared by lipid hydration (F1) and heating (F2) methods. Rats were treated with either RS or RLs (1 mg/kg/day) concomitantly with AlCl3 (50 mg/kg/day). Results The study showed that the F1 method produced smaller liposomes (67.51 ± 14.2 nm) than F2 (528.7 ± 15.5 nm), but both entrapped the same amount of the drug (92.1% ± 1.4%). After 6 hours, 74.2% ± 1.5% and 60.8% ± 2.3% of rivastigmine were released from F1 and F2, respectively. Both RLs and RS improved the deterioration of spatial memory induced by AlCl3, with RLs having a superior effect. Further biochemical measurements proved that RS and RLs were able to lower plasma C-reactive protein, homocysteine and asymmetric dimethy-larginine levels. RS significantly attenuated acetylcholinesterase (AChE) activity, whereas Na+/K+-adenosine triphosphatase (ATPase) activity was enhanced compared to the AlCl3-treated animals; however, RLs succeeded in normalization of AChE and Na+/K+ ATPase activities. Gene-expression profile showed that cotreatment with RS to AlCl3-treated rats succeeded in exerting significant decreases in BACE1, AChE, and IL1B gene expression. Normalization of the expression of the aforementioned genes was achieved by coadministration of RLs to AlCl3-treated rats. The profound therapeutic effect of RLs over RS was evidenced by nearly preventing amyloid plaque formation, as shown in the histopathological examination of rat brain. Conclusion RLs could be a potential drug-delivery system for ameliorating Alzheimer’s disease. PMID:23378761
Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism.
Rahman, Shafiqur; Engleman, Eric A; Bell, Richard L
2016-01-01
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions. Copyright © 2016. Published by Elsevier Inc.
Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P
2013-09-01
Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension. Copyright © 2013 Elsevier Inc. All rights reserved.
Maulvault, Ana Luísa; Barbosa, Vera; Alves, Ricardo; Custódio, Ana; Anacleto, Patrícia; Repolho, Tiago; Pousão Ferreira, Pedro; Rosa, Rui; Marques, António; Diniz, Mário
2017-05-15
The ecotoxicological effects of methylmercury (MeHg) exposure have been intensively described in literature. Yet, it is still unclear how marine biota will respond to the presence of MeHg under climate change, namely ocean warming. The present study aimed to investigate, for the first time, fish condition [Fulton's K index (K), hepatosomatic index (HIS) and brain-to-body mass ratio (BB-ratio)] and several stress-related responses in an ecologically and commercially important fish species (Dicentrachus labrax) exposed for 28days to dietary MeHg (8.0mg kg-1 dw) and temperature increase (+4°C). Results showed significant impairments on fish condition, i.e. up to 34% decrease on K, >100% increase on HIS and 44% decrease on BB-ratio, compared to control conditions. Significant changes on tissue biochemical responses were observed in fish exposed to both stressors, acting alone or combined, evidencing the relevance of assessing possible interactions between different environmental stressors in ecotoxicological studies. For instance, muscle showed to be the least affected tissue, only revealing significant alterations in GST activity of MeHg-enriched fish. On the other hand, liver exhibited a significant induction of GST (>100%) and CAT (up to 74%) in MeHg-enriched fish, regardless of temperature exposure, as well as decreased SOD activity (19%) and increased HSP70/HSC70 content (87%) in fish exposed to warming alone. Brain showed to be affected by temperature (69% of GST inhibition and >100% of increased CAT activity), MeHg (>100% of increased CAT activity, 47% of SOD inhibition and 55% of AChE inhibition), as well as by the combination of both (GST, SOD and AChE inhibition, 17%, 48% and 53%, respectively). Hence, our data provides evidences that the toxicological aspects of MeHg ca be potentiated by warmer temperatures, thus, evidencing the need for further research combining contaminants exposure and climate change effects, to better forecast ecological impacts in the ocean of tomorrow. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Niladri; Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9; Stamler, Christopher J.
2005-05-15
Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl{sub 2}) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl{sub 2} and MeHg on [{sup 3}H]-quinuclidinyl benzilate ([{sup 3}H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse,more » mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B {sub max}) and ligand affinity (K {sub d}). Subsequently, samples were exposed to HgCl{sub 2} or MeHg to derive IC50 values and inhibition constants (K {sub i}). Results demonstrate that HgCl{sub 2} is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [{sup 3}H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies.« less
Chi, Feng; Wang, Lin; Zheng, Xueye; Wu, Chun-Hua; Jong, Ambrose; Sheard, Michael A; Shi, Wei; Huang, Sheng-He
2011-01-01
Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/-)) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7(-/-) BMEC and α7(-/-) mice. Stimulation by nicotine was abolished in the α7(-/-) cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/-) cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/-) mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7(-/-) mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.
Zheng, Xueye; Wu, Chun-Hua; Jong, Ambrose; Sheard, Michael A.; Shi, Wei; Huang, Sheng-He
2011-01-01
Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7-/-) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in α7-/- BMEC and α7-/- mice. Stimulation by nicotine was abolished in the α7-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the α7-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation. PMID:21966399
Yang, Zhen-Zhen; Zhang, Yan-Qing; Wang, Zhan-Zhang; Wu, Kai; Lou, Jin-Ning; Qi, Xian-Rong
2013-08-16
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder associated with cholinergic neurons degeneration. The blood-brain barrier (BBB) not only provides protection for the brain but also hinders the treatment and diagnosis of this neurological disease, because the drugs must cross BBB to reach the lesions. The present work was aimed at formulating rivastigmine liposomes (Lp) and cell-penetrating peptide (CPP) modified liposomes (CPP-Lp) to improve rivastigmine distribution in brain and proceed to enhance pharmacodynamics by intranasal (IN) administration and minimize side effects. The results revealed that Lp especially the CPP-Lp can enhance the permeability across the BBB by murine brain microvascular endothelial cells model in vitro. IN administration of rivastigmine solution and rivastigmine liposomes demonstrated the capacity to improve rivastigmine distribution and adequate retention in CNS regions especially in hippocampus and cortex, which were the regions most affected by AD, than that of IV administration. Importantly, the lagging but intense inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities were relative to the extended release, absorption and retention. In addition, there was very mild nasal toxicity of liposomal formulations. The data suggest that rivastigmine liposomes especially CPP-Lp improve the brain delivery and enhance pharmacodynamics which respect to BBB penetration and nasal olfactory pathway into brain after IN administration, and simultaneously decrease the hepatic first pass metabolism and gastrointestinal adverse effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.
2013-01-01
In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737
Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R
2013-11-01
In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.
Frobert, Y; Créminon, C; Cousin, X; Rémy, M H; Chatel, J M; Bon, S; Bon, C; Grassi, J
1997-05-23
We analyzed 45 batches of venom from 20 different species belonging to 11 genera from the 3 main families of venomous snakes (Elapidae, Viperidae and Crotalidae). We found high acetylcholinesterase (AChE) activity in all venoms from Elapidae, except in those from the Dendroaspis genus. AChE was particularly abundant in Bungarus venoms which contain up to 8 mg of enzyme per gram of dried venom. We could not detect acetylcholinesterase activity in any batch of venom from Viperidae or Crotalidae. Titration of active sites with an organophosphorous agent (MPT) revealed that the AChE of all venoms have similar turnovers (6000 to 8000 s(-1)) which are clearly higher than those of Torpedo and mammalian enzymes but lower than that of Electrophorus. AChEs from the venom of elapid snakes of the Bungarus, Naja, Ophiophagus and Haemacatus genera were purified by affinity chromatography. SDS-PAGE analysis and sucrose gradient centrifugation demonstrated that AChE is exclusively present as a nonamphiphilic monomer. These enzymes are true AChEs, hydrolyzing acetylthiocholine faster than propionylthiocholine and butyrylthiocholine and exhibiting excess substrate inhibition. Twenty-seven different monoclonal antibodies directed against AChE from Bungarus fasciatus venom were raised in mice. Half of them recognized exclusively the Bungarus enzyme while the others cross-reacted with AChEs from other venoms. Polyspecific mAbs were used to demonstrate that venoms from Dendroaspis, which contain the AChE inhibitor fasciculin but lack AChE activity, were also devoid of immunoreactive AChE protein. AChE inhibitors acting at the active site (edrophonium, tacrine) and at the peripheral site (propidium, fasciculin), as well as bis-quaternary ligands (BW284C51, decamethonium), were tested against the venom AChEs from 11 different species. All enzymes had a very similar pattern of reactivity with regard to the different inhibitors, with the exception of fasciculin. AChEs from Naja and Haemacatus venoms were relatively insensitive to fasciculin inhibition (IC50 > 10(-6) M), while Bungarus (IC50 approximately 10(-8) M) and especially Ophiophagus (IC50 < 10(-10) M) AChEs were inhibited very efficiently. Ophiophagus and Bungarus AChEs were also efficiently inhibited by a monoclonal antibody (Elec-410) previously described as a specific ligand for the Electrophorus electricus peripheral site. Taken together, these results show that the venoms of most Elapidae snakes contain large amounts of a highly active non-amphiphilic monomeric AChE. All snake venom AChEs show strong immunological similarities and possess very similar enzymatic properties. However, they present quite different sensitivity to peripheral site inhibitors, fasciculin and the monoclonal antibody Elec-410.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Charles
2003-02-12
Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). The primary mechanism of action for CPF involves the inhibition of acetylcholinesterase (AChE) by the active metabolite, CPF-oxon, with subsequent accumulation of acetylcholine (ACh) resulting in a wide range of neutotoxicity. CPF-oxon, can likewise inhibit other non-target cholinesterases (ChE) such as butyrylcholinesterase (BuChE), which represents a detoxification mechanism and a potential biomarker of exposure/response. Biological monitoring for OPs has focused on measuring parent chemical or metabolite in blood and urine or blood ChE inhibition. Salivary biomonitoring has recently been explored as a practical method for examination of chemical exposure; however, theremore » are a limited number of studies exploring its use for OPs. To evaluate the use of salivary ChE as a biological monitor for OP exposure, the current study characterized salivary ChE activity in Sprague-Dawley rats through its comparison with brain and plasma ChE using BW284C51 and iso-OMPA as selective inhibitors of AChE and BuChE, respectively. The study also estimated the kinetic constants describing BuChE interaction with CPF-oxon. A modified Ellman assay in conjunction with pharmacodynamic (PD) modeling was used to characterize the in vitro titration of diluted rat salivary ChE enzyme with CPF-oxon. The results indicated that, more than 95% of rat salivary ChE activity was associated with BuChE activity, total BuChE active site concentration was 0.0012 0.00013 nmol/ml saliva, reactivation rate constant (Kr) was 0.068 0.008 h-1 and inhibitory (Ki) rate constant of 8.825 and 9.80 nM-1h-1 determined experimentally and using model optimization respectively. These study results would be helpful for further evaluating the potential utility of salivary ChE as a practical tool for biological monitor of OP exposures.« less
Chowdhury, Amrita A; Gawali, Nitin B; Shinde, Prashant; Munshi, Renuka; Juvekar, Archana R
2018-04-26
Lipopolysaccharide (LPS), an endotoxin from the outer membrane of Gram negative bacteria has been reported to cause neuroinflammation and learning and memory deficits. There are reports describing the beneficial effects of Imperatorin (IMP), a naturally occurring furanocoumarin in central nervous system (CNS) disorders such as anxiety and epilepsy. In the current study, we investigated whether IMP protects against LPS mediated memory deficits and neuroinflammation. Mice pretreated with IMP (5, 10 mg/kg po) were administered LPS (250 μg/kg ip) for 7 days. Memory was evaluated in the Morris water maze (MWM) and Y maze. The mice were euthanised and different biochemical assessments were carried out to measure oxidative stress and acetyl choline esterase (AChE). Further, evaluation of proinflammatory cytokines such as tumor necrosis factor (TNF-α) and interleukin-6 (IL-6) levels and brain derived neurotrophic factor (BDNF) in hippocampus and cortex of brain were performed. LPS administration caused poor memory retention in both, MWM and Y maze, and caused distinct oxidative stress since decrease in superoxide dismutase (SOD), reduced glutathione (GSH) levels and increased lipid peroxidation were observed. Also, a significant rise was observed in the levels of AChE. Moreover, a rise in TNF-α and IL-6 levels and depleted levels of BDNF were noted. IMP pretreatment reversed LPS induced behavioral and memory disturbances and significantly decreased the oxidative stress and AChE levels. It also reduced TNF-α and IL-6 levels and caused a significant upregulation of BDNF levels. Present study highlights the potential neuroprotective role of IMP against LPS mediated cognitive impairment and neuroinflammation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ohta, Kazumasa; Takahashi, Chifumi; Tosuji, Hiroaki
2009-08-01
The activity of acetylcholinesterase (AchE) increases rapidly after the gastrula stage of sea urchin development. In this report, changes in activity and in the molecular differentiation of AchE were investigated. AchE activity increased slightly during gastrulation and rose sharply thereafter, and was dependent on new RNA synthesis. No activity of butyrylcholinesterase was found. Morphogenesis in sea urchin embryos was inhibited by the AchE inhibitor eserine, which specifically inhibited arm rod formation but not body rod formation. Spicule formation and enzyme activity in cultured micromeres were inhibited by eserine in a dose-dependent manner. During gastrulation, two molecular forms of AchE were detected with polyacrylamide gel electrophoresis. The appearance of an additional band on the gel was consistent with the occurrence of a remarkable increase in the enzyme activity. This additional band appeared as a larger molecular form in Anthocidaris crassispina, Hemicentrotus pulcherrimus, Stomopneustes variolaris, and Strongylocentrotus nudus, and as a smaller form in Clypeaster japonicus and Temnopleurus hardwicki. These results suggest that the change in the molecular form of AchE induced a change in enzymatic activity that in turn may play a role in spicule elongation in sea urchin embryos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakao, Atsunori; Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213; Kaczorowski, David J.
2008-03-14
Galantamine, a reversible inhibitor of acetylcholine esterase (AChE), is a novel drug treatment for mild to moderate Alzheimer's disease and vascular dementia. Interestingly, it has been suggested that galantamine treatment is associated with more clinical benefit in patients with mild-to-moderate Alzheimer disease compared to other AChE inhibitors. We hypothesized that the protective effects of galantamine would involve induction of the protective gene, heme oxygenase-1 (HO-1), in addition to enhancement of the cholinergic system. Brain microvascular endothelial cells (mvECs) were isolated from spontaneous hypertensive rats. Galantamine significantly reduced H{sub 2}O{sub 2}-induced cell death of mvECs in association with HO-1 induction. Thesemore » protective effects were completely reversed by nuclear factor-{kappa}B (NF-{kappa}B) inhibition or HO inhibition. Furthermore, galantamine failed to induce HO-1 in mvECs which lack inducible nitric oxide synthase (iNOS), supplementation of a nitric oxide (NO) donor or iNOS gene transfection on iNOS-deficient mvECs resulted in HO-1 induction with galantamine. These data suggest that the protective effects of galantamine require NF-{kappa}B activation and iNOS expression, in addition to HO-1. Likewise, carbon monoxide (CO), one of the byproducts of HO, up-regulated HO-1 and protected mvECs from oxidative stress in a similar manner. Our data demonstrate that galantamine mediates cytoprotective effects on mvECs through induction HO-1. This pharmacological action of galantamine may, at least in part, account for the superior clinical efficacy of galantamine in vascular dementia and Alzheimer disease.« less
Xu, Miranda L; Bi, Cathy W C; Liu, Etta Y L; Dong, Tina T X; Tsim, Karl W K
2017-07-28
Acetylcholinesterase (AChE) hydrolyzes acetylcholine to terminate cholinergic transmission in neurons. Apart from this AChE activity, emerging evidence suggests that AChE could also function in other, non-neuronal cells. For instance, in bone, AChE exists as a proline-rich membrane anchor (PRiMA)-linked globular form in osteoblasts, in which it is proposed to play a noncholinergic role in differentiation. However, this hypothesis is untested. Here, we found that in cultured rat osteoblasts, AChE expression was increased in parallel with osteoblastic differentiation. Because several lines of evidence indicate that AChE activity in osteoblast could be triggered by Wnt/β-catenin signaling, we added recombinant human Wnt3a to cultured osteoblasts and found that this addition induced expression of the ACHE gene and protein product. This Wnt3a-induced AChE expression was blocked by the Wnt-signaling inhibitor Dickkopf protein-1 (DKK-1). We hypothesized that the Runt-related transcription factor 2 (Runx2), a downstream transcription factor in Wnt/β-catenin signaling, is involved in AChE regulation in osteoblasts, confirmed by the identification of a Runx2-binding site in the ACHE gene promoter, further corroborated by ChIP. Of note, Runx2 overexpression in osteoblasts induced AChE expression and activity of the ACHE promoter tagged with the luciferase gene. Moreover, deletion of the Runx2-binding site in the ACHE promoter reduced its activity during osteoblastic differentiation, and addition of 5-azacytidine and trichostatin A to differentiating osteoblasts affected AChE expression, suggesting epigenetic regulation of the ACHE gene. We conclude that AChE plays a role in osteoblastic differentiation and is regulated by both Wnt3a and Runx2. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay
2016-01-01
In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.
Mamczarz, Jacek; Pescrille, Joseph D.; Gavrushenko, Lisa; Burke, Richard D.; Fawcett, William P.; DeTolla, Louis J.; Chen, Hegang; Pereira, Edna F.R.; Albuquerque, Edson X.
2017-01-01
Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25 mg/kg, s.c.) or vehicle (peanut oil) for 10 days starting on presumed gestation day (GD) 53–55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain. PMID:27296654
Menze, Esther T; Esmat, Ahmed; Tadros, Mariane G; Abdel-Naim, Ashraf B; Khalifa, Amani E
2015-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
2009-01-01
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1−M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional high-throughput screening and subsequent diversity-oriented synthesis approach, we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150−500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10 μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia. PMID:21961051
An ex vivo study of nitric oxide efflux from human erythrocytes in both genders.
Duarte, Catarina; Napoleão, Patrícia; Freitas, Teresa; Saldanha, Carlota
2016-01-01
Acetylcholinesterase (AChE) is located on outer surface of erythrocyte membrane. Gender-related differences in erythrocyte AChE enzyme activity had been verified in young adults. It is also known that binding of acetylcholine (ACh) with AChE on erythrocyte membrane initiates a signal transduction mechanism that stimulates nitric oxide (NO) efflux. This ex vivo study was done to compare the amount of NO efflux obtained from erythrocytes of healthy donors in males and females. We included 66 gender age-matched healthy donors (40-60 years old). We performed quantification of erythrocyte NO efflux from erythrocytes and of the membrane AChE enzyme activity. There are no significant differences in NO efflux from erythrocytes between men and women. Regarding AChE enzyme activity values, in this range of age, no differences between genders were obtained. However, the values of AChE enzyme activity in the third quartile of NO efflux values were significantly higher (p < 0.05) in women than in men. The efflux of NO from erythrocyte of healthy humans did not change with gender. For the same range of values of NO efflux from erythrocytes, in both gender, it was verified higher values of AChE enzyme activity in women.
Sepsova, Vendula; Karasova, Jana Zdarova; Korabecny, Jan; Dolezal, Rafael; Zemek, Filip; Bennion, Brian J.; Kuca, Kamil
2013-01-01
Acetylcholinesterase (AChE) reactivators were developed for the treatment of organophosphate intoxication. Standard care involves the use of anticonvulsants (e.g., diazepam), parasympatolytics (e.g., atropine) and oximes that restore AChE activity. However, oximes also bind to the active site of AChE, simultaneously acting as reversible inhibitors. The goal of the present study is to determine how oxime structure influences the inhibition of human recombinant AChE (hrAChE). Therefore, 24 structurally different oximes were tested and the results compared to the previous eel AChE (EeAChE) experiments. Structural factors that were tested included the number of pyridinium rings, the length and structural features of the linker, and the number and position of the oxime group on the pyridinium ring. PMID:23959117
Singh, A K; Spassova, D
1998-01-01
Physostigmine, aldicarb and carbaryl were potent inhibitors of acetylcholinesterase (AChE). The physostigmine-inhibited AChE fluoresced at 300 nm excitation and 500 nm emission wavelengths, but the aldicarb and carbaryl inhibited enzyme did not. This suggests that the carbamylated active center is not the fluorescing site in AChE. The fluorescence intensity of physostigmine-inhibited AChE decreased with increasing the substrate (acetylthiocholine) concentration, thus indicating that physostigmine binding to the active site is essential for the development of fluorescence. Thus, the physostigmine-inhibited AChE fluoresces due to the binding of trimethylpyrrolo[2,3-b]indol (TMPI) moiety, formed by the hydrolysis of physostigmine, to a peripheral site in AChE. The fluorescence intensity of the physostigmine-inhibited enzyme decreased when the inhibited-enzyme was dialyzed for either 30 min that poorly reactivated the enzyme or 180 min that fully reactivated the enzyme. This suggests that dialysis dissociates the AChE-TMPI complex much faster than it reactivates the carbamylated AChE. Ephedrine, propranolol and phenothiazines including trifluoparazine (TPZ) caused non-competitive inhibition, while hexamethonium caused an uncompetitive inhibition of AChE activity. TPZ, upon binding with AChE, formed a fluorescent TPZ-enzyme complex. The fluorescence intensity of TPZ-AChE complex was effectively decreased by ephedrine, but not by propranolol or hexamethonium. This indicates that TPZ and ephedrine bind to the same site in AChE which is different from the site/or sites to which propranolol or hexamethonium bind. Hexamethonium protected AChE from inhibition by carbamates and decreased the fluorescence intensity of the physostigmine-inhibited AChE. Phenothiazines and ephedrine did not modulate the enzyme inhibition or the fluorescence intensity of the physostigmine-inhibited AChE. Propranolol and TPZ potentiated the enzyme inhibition and increased the fluorescence intensity in the presence of physostigmine. These compounds, however, did not affect the inhibition of AChE by carbaryl or aldicarb. Ephedrine blocked the effects of TPZ, but did not alter the effects of propranolol on physostigmine-inhibited AChE. AChE, therefore, contains multiple peripheral binding sites which, upon binding to specific ligands, transduce differential signals to the active center.
Birikh, Klara R.; Sklan, Ella H.; Shoham, Shai; Soreq, Hermona
2003-01-01
Behavioral reactions to stress are altered in numerous psychiatric and neurodegenerative syndromes, but the corresponding molecular processes and signal transduction pathways are yet unknown. Here, we report that, in mice, the stress-induced splice variant of acetylcholinesterase, AChE-R, interacts intraneuronally with the scaffold protein RACK1 and through it, with its target, protein kinase CβII (PKCβII), which is known to be involved in fear conditioning. In stress-responsive brain regions of normal FVB/N mice, the mild stress of i.p. injection increased AChE and PKCβII levels in a manner suppressible by antisense prevention of AChE-R accumulation. Injection stress also prolonged conflict between escape and hiding in the emergence into an open field test. Moreover, transgenic FVB/N mice overexpressing AChE-R displayed prolonged delay to emerge into another field (fear-induced behavioral inhibition), associated with chronically intensified neuronal colabeling of RACK1 and PKCβII in stress-responsive brain regions. These findings are consistent with the hypothesis that stress-associated changes in cholinergic gene expression regulate neuronal PKCβII functioning, promoting fear-induced conflict behavior after stress. PMID:12509514
Mohamed, Magda A; Mahdy, El-Sayed M E; Ghazy, Abd-El-Hady M; Ibrahim, Nihal M; El-Mezayen, Hatem A; Ghanem, Manal M E
2016-02-01
The infectivity and detoxifying enzyme activities including glutathione-S-transferase (GST), acetylcholinesterase (AChE) and carboxylesterase (CaE) are investigated in the infective juveniles (IJs) of six different strains of Heterorhabditis bacteriophora as a biocontrol agent against insect pests. The specific activities ranged from 10.8-29.8 and 50-220units/mg protein for GST and AChE, respectively; and from 24.7-129 and 22.6-77.3units/mg protein for CaE as estimated by P-nitrophenyl and α-naphthyl acetates, respectively. H. bacteriophora EM2 strain has the highest infectivity and the highest enzymatic activities as well. AChE is the predominant detoxifying enzyme that might imply its major role in the detoxification of insecticide(s). The isoenzyme pattern demonstrated two major slow-moving isoforms in all EPN strains examined. Purification of two AChE isoforms, AChEAII and AChEBI, from H. bacteriophora EM2 strain is performed by ammonium sulfate precipitation, gel filtration on Sephacryl S-200 and chromatography on DEAE-Sepharose. AChEAII and AChEBII have specific activities of 1207 and 1560unit/mg protein, native molecular weights of 180 and 68kDa, and are found in dimeric and monomeric forms, respectively. Both isoforms showed optimum activity at pH8.5 and 35°C. AChEBI exhibited higher thermal stability and higher activation energy than AChEAII. The enzymatic activities of purified AChEs are completely inhibited by Hg(+2) and Ni(+2) and greatly enhanced by Mn(+2). The substrate specificity, the relative efficiency of substrates hydrolysis, substrate inhibition and inhibition by BW284C51, but not by iso-OMPA, clearly indicated that they are true AChEs; their properties are compared with those recorded for insects as target hosts for H. bacteriophora EM2. Copyright © 2015 Elsevier Inc. All rights reserved.
Kulshreshtha, Akanksha; Piplani, Poonam
2016-10-21
The present study reports the effect of amide derivatives of 1,3,4-thiadizoles on scopolamine induced deficit cholinergic neurotransmission and oxidative stress serving as promising leads for the therapeutics of cognitive dysfunction. Fourteen compounds (2c-8d) have been synthesised and evaluated against behavioural alterations using step down passive avoidance protocol and morris water maze and at a dose of 0.5 mg/kg with reference to the standard, Rivastigmine. All the synthesised compounds were evaluated for their in vitro acetylcholinesterase (AChE) inhibition at five different concentrations using mice brain homogenate as the source of the enzyme. Biochemical estimation of markers of oxidative stress (lipid peroxidation, superoxide dismutase, glutathione, plasma nitrite, catalase) has also been carried out to assess the role of synthesised molecules on the oxidative damage induced by scopolamine. The compounds 5c, 6c and 8c displayed appreciable activity with an IC50 value of 3 μM, 3.033 μM and 2.743 μM, respectively towards acetylcholinesterase inhibition. These compounds also decreased scopolamine induced oxidative stress, thus serving as promising leads for the amelioration of oxidative stress induced cognitive decline. The molecular docking study performed to predict the binding mode of the compounds also suggested that these compounds bind appreciably with the amino acids present in the active site of recombinant human acetylcholinesterase (rhAChE). The results indicated that these compounds could be further traversed as inhibitors of AChE and oxidative stress for the treatment of cognitive dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior
Notarangelo, Francesca M.; Pocivavsek, Ana
2016-01-01
The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-D-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. PMID:26944732
Plasma B-esterase activities in European raptors.
Roy, Claudie; Grolleau, Gérard; Chamoulaud, Serge; Rivière, Jean-Louis
2005-01-01
B-esterases are serine hydrolases composed of cholinesterases, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and carboxylesterase (CbE). These esterases, found in blood plasma, are inhibited by organophosphorus (OP) and carbamate (CB) insecticides and can be used as nondestructive biomarkers of exposure to anticholinesterase insecticides. Furthermore, B-esterases are involved in detoxification of these insecticides. In order to establish the level of these enzymes and to have reference values for their normal activities, total plasma cholinesterase (ChE), AChE and BChE activities, and plasma CbE activity were determined in 729 European raptors representing 20 species, four families, and two orders. The diurnal families of the Falconiforme order were represented by Accipitridae and Falconidae and the nocturnal families of the Strigiforme order by Tytonidae and Strigidae. Intraspecies differences in cholinesterase activities according to sex and/or age were investigated in buzzards (Buteo buteo), sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus), barn owls (Tyto alba), and tawny owls (Strix aluco). Sex-related differences affecting ChE and AChE activities were observed in young kestrels (2-3-mo-old) and age-related differences in kestrels (ChE and AChE), sparrowhawks (AChE), and tawny owls (ChE, AChE, and BChE). The interspecies analysis yielded a negative correlation between ChE activity and body mass taking into account the relative contribution of AChE and BChE to ChE activity, with the exception of the honey buzzard (Pernis apivorus). The lowest ChE activities were found in the two largest species, Bonelli's eagle (Hieraaetus fasciatus) and Egyptian vulture (Neophron percnopterus) belonging to the Accipitridae family. The highest ChE activities were found in the relatively small species belonging to the Tytonidae and Strigidae families and in honey buzzard of the Accipitridae family. Species of the Accipitridae, Tytonidae, and Strigidae families were characterized by a BChE contribution that dominated the total ChE activity, while in the species of the Falconidae family, AChE activity dominated. With the exception of the barn owl, CbE activity (eserine-insensitive alpha-naphthyl acetate esterase [alpha-NAE] activity) in all species was almost absent or very low. The values obtained in this study for ChE, AChE, and BChE activities and the AChE:BChE ratios for buzzard, kestrel, barn owl, and tawny owl provide a good estimate of the normal values in free-living individuals of these European species. They can be used as a baseline to evaluate the effect of anticholinesterase insecticides in the field.
Chinnadurai, Raj Kumar; Saravanaraman, Ponne; Boopathy, Rathanam
2015-08-15
Acetylcholinesterase (AChE) exhibits two different activities, namely esterase and aryl acylamidase (AAA). Unlike esterase, AAA activity of AChE is inhibited by the active site inhibitors while remaining unaffected by the peripheral anionic site inhibitors. This differential inhibitory pattern of active and peripheral anionic site inhibitors on the AAA activity remains unanswered. To answer this, we investigated the mechanism of binding and trafficking of AAA substrates using in silico tools. Molecular docking of serotonin and AAA substrates (o-nitroacetanilide, and o-nitrotrifluoroacetanilide,) onto AChE shows that these compounds bind at the side door of AChE. Thus, we conceived that the AAA substrates prefer the side door to reach the active site for their catalysis. Further, steered molecular dynamics simulations show that the force required for binding and trafficking of the AAA substrate through the side door is comparatively lesser than their dissociation (900kJ/mol/nm). Among the two substrates, o-nitrotrifluoroacetanilide required lesser force (380kJ/mol/nm) than o-nitroacetanilide the (550kJ/mol/nm) for its binding, thus validating o-nitrotrifluoroacetanilide as a better substrate. With these observations, we resolve that the AAA activity of AChE is mediated through its side door. Therefore, binding of PAS inhibitors at the main door of AChE remain ineffective against AAA activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Action of AF64A on rat brain muscarinic receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eva, C.; Costa, E.
ICV administration of compound AF64A (ethylcholine mustard aziridium ion) induces a long-term selective cholinergic hypofunction; however, it does not modify the characteristics of muscarinic receptors. In brain muscarinic receptor activation can either stimulate phosphoinositide turnover or inhibit adenylate cyclase. ICV infusion of AF64A (5 nmol/side/2.5 ..mu..l) reduced the hippocampal ACh content 10 or 30 days after the treatment to 75% of the control values. Under these conditions neither in the striatum nor in the frontal cortex ACh levels were decreased. The carbachol dose-dependent stimulation in hippocampal slices differed from that observed in control rats. The carbachol efficacy was increased butmore » its potency was unchanged by AF64A. In contrast, ICV administration of AF64A failed to alter the oxotremorine efficacy or potency in inhibiting the forskolin stimulated adenylate cyclase in rat hippocampal membranes. These results suggest the two transducer systems coupled to muscarinic receptors may be differentially regulatable by cholinergic input.« less
Ali, Mumtaz; Muhammad, Sultan; Shah, Muhammad R.; Khan, Ajmal; Rashid, Umer; Farooq, Umar; Ullah, Farhat; Sadiq, Abdul; Ayaz, Muhammad; Ali, Majid; Ahmad, Manzoor; Latif, Abdul
2017-01-01
Crataegus oxyacantha is an important herbal supplement and famous for its antioxidant potential. The antioxidant in combination with anticholinesterase activity can be considered as an important target in the management of Alzheimer’s disease. The compounds isolated from C. oxyacantha were evaluated for cholinesterases inhibitory activity using Ellman’s assay with Galantamine as standard drug. Total of nine (1–9) compounds were isolated. Compounds 1 and 2 were isolated for the first time from natural source. Important natural products like β-Sitosterol-3-O-β-D-Glucopyranoside (3), lupeol (4), β-sitosterol (5), betulin (6), betulinic acid (7), oleanolic acid (8), and chrysin (9) have also been isolated from C. oxyacantha. Overall, all the compounds exhibited an overwhelming acetylcholinesterase (AChE) inhibition potential in the range 5.22–44.47 μM. The compound 3 was prominent AChE inhibitor with IC50 value of 5.22 μM. Likewise, all the compounds were also potent in butyrylcholinesterase (BChE) inhibitions with IC50s of up to 0.55–15.36 μM. All the compounds, except 3, were selective toward BChE. Mechanism of the inhibition of both the enzymes were further studied by docking procedures using Genetic Optimization for Ligand Docking suit v5.4.1. Furthermore, computational blood brain barrier prediction of the isolated compounds suggest that these are BBB+. PMID:28638340
Gulati, Puja; Muthuraman, Arunachalam; Kaur, Parneet
2015-04-01
The present study was designed to investigate the role of flunarizine (a non-selective calcium channel blocker) on cerebral ischemic-reperfusion associated cognitive dysfunction in aged mice. Bilateral carotid artery occlusion of 12min followed by reperfusion for 24h was given to induce cerebral injury in male Swiss mice. The assessment of learning & memory was performed by Morris water maze test; motor in-coordination was evaluated by rota rod, lateral push and inclined beam walking tests; cerebral infarct size was quantified by triphenyltetrazolium chloride staining. In addition, reduced glutathione (GSH), total calcium and acetylcholinesterase (AChE) activity were also estimated in aged brain tissue. Donepezil treated group served as a positive control in this study. Ischemia reperfusion (I/R) injury produced significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Further, I/R injury also produced significant increase in levels of total calcium, AChE activity and decrease in GSH levels. Pretreatment of flunarizine significantly attenuated I/R induced infarct size, behavioral and biochemical changes. Hence, it may be concluded that, a non-selective calcium channel blocker can be useful in I/R associated cognitive dysfunction due to its anti-oxidant, anti-infarct and modulatory actions of neurotransmitters & calcium channels. Copyright © 2015 Elsevier Inc. All rights reserved.
Daily rhythms in locomotor circuits in Drosophila involve PDF
Pírez, Nicolás; Christmann, Bethany L.
2013-01-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep. PMID:23678016
Daily rhythms in locomotor circuits in Drosophila involve PDF.
Pírez, Nicolás; Christmann, Bethany L; Griffith, Leslie C
2013-08-01
The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.
Bagrov, Ia Iu; Manusova, N B
2011-01-01
Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.
Ito, K; Kawachi, M; Matsunaga, Y; Hori, Y; Ozaki, T; Nagahama, K; Hirayama, M; Kawabata, Y; Shiraishi, Y; Takei, M; Tanaka, T
2016-04-01
Acotiamide is a first-in-class prokinetic drug approved in Japan for the treatment of functional dyspepsia. Given that acotiamide enhances gastric motility in conscious dogs and rats, we assessed the in vitro effects of this drug on the contraction of guinea pig stomach strips and on acetylcholinesterase (AChE) activity in stomach homogenate following fundus removal. We also investigated the serotonin 5-HT4 receptor agonist mosapride, dopamine D2 receptor and AChE inhibitor itopride, and representative AChE inhibitor neostigmine. Acotiamide (0.3 and 1 μM) and itopride (1 and 3 μM) significantly enhanced the contraction of gastric body strips induced by electrical field stimulation (EFS), but mosapride (1 and 10 μM) did not. Acotiamide and itopride significantly enhanced the contraction of gastric body and antrum strips induced by acetylcholine (ACh), but not that induced by carbachol (CCh). Neostigmine also significantly enhanced the contraction of gastric body strips induced by ACh, but not that by CCh. In contrast, mosapride failed to enhance contractions induced by either ACh or CCh in gastric antrum strips. Acotiamide exerted mixed inhibition of AChE, and the percentage inhibition of acotiamide (100 μM) against AChE activity was markedly reduced after the reaction mixture was dialyzed. In contrast, itopride exerted noncompetitive inhibition on AChE activity. These results indicate that acotiamide enhances ACh-dependent contraction in gastric strips of guinea pigs via the inhibition of AChE activity, and that it exerts mixed and reversible inhibition of AChE derived from guinea pig stomach. © Georg Thieme Verlag KG Stuttgart · New York.
Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity.
Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M
2017-01-01
The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM) may predispose to Alzheimer's disease (AD). The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE) activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE) and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μ mol/mL, mixed type of inhibition) and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE) at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC 50 = 890 nmol/mL, noncompetitive inhibition) and BuChE (IC 50 = 28 nmol/mL, mixed type inhibition), while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC 50 = 184 nmol/mL). Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.
Trafficking of cholinesterases and neuroligins mutant proteins. An association with autism.
De Jaco, Antonella; Comoletti, Davide; King, Charles C; Taylor, Palmer
2008-09-25
Autism encompasses a wide spectrum of disorders arising during brain development. Recent studies reported that sequence polymorphisms in neuroligin-3 (NLGN3) and neuroligin-4 (NLGN4) genes have been linked to autism spectrum disorders indicating neuroligin genes as candidate targets in brain disorders. We have characterized a single mutation found in two affected brothers that substituted Arg451 to Cys in NL3. Our data show that the exposed Cys causes retention of the protein in the endoplasmic reticulum (ER) when expressed in HEK-293 cells. To examine whether the introduction of a Cys in the C-terminal region of other alpha/beta-hydrolase fold proteins could promote the same cellular phenotype, we made homologous mutations in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and found a similar processing deficiency and intracellular retention (De Jaco et al., J Biol Chem. 2006, 281:9667-76). NL3, AChE and BChE mutant proteins are recognized as misfolded in the ER, and degraded via the proteasome pathway. A 2D electrophoresis coupled with mass spectrometry based approach was used to analyze proteins co-immunoprecipitating with NL3 and show differential expression of factors interacting with wild type and mutant NL3. We identified several proteins belonging to distinct ER resident chaperones families, including calnexin, responsible for playing a role in the folding steps of the AChE and NLs.
Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg
2014-10-01
Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model. Copyright © 2014 Elsevier B.V. All rights reserved.
Pandey, Sony; Sree, Ayinampudi; Sethi, Dipti Priya; Kumar, Chityal Ganesh; Kakollu, Sudha; Chowdhury, Lipsa; Dash, Soumya Suchismita
2014-02-15
Acetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. The inhibitors have a significant pharmacological role in neurodegenerative diseases like Alzheimer's and Parkinson's etc. Although plants have been a significant source of these compounds, there are very few sporadic reports of microorganisms producing such inhibitors. Anticholinesterase activity in bacterial associates of marine soft corals and sponges were not previously reported. We screened 887 marine bacteria for the presence of acetylcholinesterase inhibitors, in a microplate based assay, and found that 140 (15.8%) of them inhibit the electric eel enzyme, acetylcholinesterase. Majority of the active isolates were bacterial associates of soft corals followed by sediment isolates while most of the potent inhibitors belonged to the bacterial associates of marine sponges. Maximum inhibition (54%) was exhibited by a bacterial strain M18SP4P (ii), isolated from the marine sponge Fasciospongia cavernosa. Based on phenotypic characterization and 16S rDNA sequencing, the strain was identified as Bacillus subtilis - revealing yet another activity in a strain of the model organism that is considered to be a cell factory. TLC bioautography of the methanol extract of this culture, showed the presence of two major components having this activity, when compared to Galanthamine, the positive control. From the results of our study, we conclude that acetylcholinesterase inhibitors are quite prevalent in marine bacteria, particularly the bacterial associates of marine invertebrates. Several potential AChE inhibitors in marine bacteria are waiting to be discovered to provide easily manipulable natural sources for the mass production of these therapeutic compounds.
Ferlemi, Anastasia-Varvara; Katsikoudi, Antigoni; Kontogianni, Vassiliki G; Kellici, Tahsin F; Iatrou, Grigoris; Lamari, Fotini N; Tzakos, Andreas G; Margarity, Marigoula
2015-07-25
Our aim was to investigate the possible effects of regular drinking of Rosmarinus officinalis L. leaf infusion on behavior and on AChE activity of mice. Rosemary tea (2% w/w) phytochemical profile was investigated through LC/DAD/ESI-MS(n). Adult male mice were randomly divided into two groups: "Rosemary-treated" that received orally the rosemary tea for 4weeks and "control" that received drinking water. The effects of regular drinking of rosemary tea on behavioral parameters were assessed by passive avoidance, elevated plus maze and forced swimming tests. Moreover, its effects on cerebral and liver cholinesterase (ChE) isoforms activity were examined colorimetricaly. Phytochemical analysis revealed the presence of diterpenes, flavonoids and hydroxycinnamic derivatives in rosemary tea; the major compounds were quantitatively determined. Its consumption rigorously affected anxiety/fear and depression-like behavior of mice, though memory/learning was unaffected. ChE isoforms activity was significantly decreased in brain and liver of "rosemary treated" mice. In order to explain the tissue ChE inhibition, principal component analysis, pharmacophore alignment and molecular docking were used to explore a possible relationship between main identified compounds of rosemary tea, i.e. rosmarinic acid, luteolin-7-O-glucuronide, caffeic acid and known AChE inhibitors. Results revealed potential common pharmacophores of the phenolic components with the inhibitors. Our findings suggest that rosemary tea administration exerts anxiolytic and antidepressant effects on mice and inhibits ChE activity; its main phytochemicals may function in a similar way as inhibitors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Parlar, Sulunay; Bayraktar, Gulsah; Tarikogullari, Ayse Hande; Alptüzün, Vildan; Erciyas, Ercin
2016-01-01
A series of pyridinium salts bearing alkylphenyl groups at 1 position and hydrazone structure at 4 position of the pyridinium ring were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The cholinesterase (ChE) inhibitory activity studies were carried out by using the Ellman's colorimetric method. All compounds displayed considerable AChE and BuChE inhibitory activity and some of the compounds manifested remarkable anti-AChE activity compared to the reference compound, galantamine. Among the title compounds, the series including benzofuran aromatic ring exhibited the best inhibitory activity both on AChE and BuChE enzymes. Compound 3b, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-(3-phenylpropyl)pyridinium bromide, was the most active compound with IC50 value of 0.23 (0.24) µM against enantiomeric excess (ee)AChE (human (h)AChE) while compound 3a, 4-[2-(1-(benzofuran-2-yl)ethylidene)hydrazinyl]-1-phenethylpyridinium bromide, was the most active compound with IC50 value of 0.95 µM against BuChE. Moreover, 3a and b exhibited higher activity than the reference compound galantamine (eeAChE (hAChE) IC50 0.43 (0.52) µM; BuChE IC50 14.92 µM). Molecular docking studies were carried out on 3b having highest inhibitory activity against AChE.
Jamal, Mostofa; Ameno, Kiyoshi; Ruby, Mostofa; Miki, Takanori; Tanaka, Naoko; Nakamura, Yu; Kinoshita, Hiroshi
2013-11-20
Neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), play an important role in the maintenance of cholinergic-neuron function. The objective of this study was to investigate whether ethanol (EtOH)- and acetaldehyde (AcH)- induced cholinergic effects would cause neurotrophic alterations in the hippocampus of mice. We used Aldh2 knockout (Aldh2-KO) mice, a model of aldehyde dehydrogenase 2 (ALDH2)-deficiency in humans, to examine the effects of acute administration of EtOH and the role of AcH. Hippocampal slices were collected and the mRNA and protein levels of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), NGF and BDNF were analyzed 30 min after the i.p. administration of EtOH (0.5, 1.0, or 2.0 g/kg). We show that treatment with 2.0 g/kg of EtOH decreased ChAT mRNA and protein levels in Aldh2-KO mice but not in wild-type (WT) mice, which suggests a role for AcH in the mechanism of action of EtOH. The administration of 2.0 g/kg of EtOH increased AChE mRNA in both strains of mice. EtOH failed to change the levels of NGF or BDNF at any dose. Aldh2-KO mice exhibited a distinctly lower expression of ChAT and a higher expression of NGF both at mRNA and protein levels in the hippocampus compared with WT mice. Our observations suggest that administration of EtOH and elevated AcH can alter cholinergic markers in the hippocampus of mice, and this effect did not change the levels of NGF or BDNF. © 2013 Elsevier B.V. All rights reserved.
Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.
Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun
2017-09-01
Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Che, Magnus M; Song, Jian; Oguntayo, Samuel; Doctor, Bhupendra P; Rezk, Peter; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P
2012-05-01
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in the blood and tissues of animals that are treated with a number of endotracheally aerosolized therapeutics for protection against inhalation toxicity to sarin. Therapeutics included, aerosolized atropine methyl bromide (AMB), scopolamine or combination of AMB with salbutamol, sphingosine 1-phosphate, keratinocyte growth factor, adenosine A1 receptor antisense oligonucleotide (EPI2010), 2,3-diacetyloxybenzoic acid (2,3 DABA), oxycyte, and survanta. Guinea pigs exposed to 677.4 mg/m(3) or 846.5 mg/m(3) (1.2 LCt(50)) sarin for 4 min using a microinstillation inhalation exposure technique and treated 1 min later with the aerosolized therapeutics. Treatment with all therapeutics significantly increased the survival rate with no convulsions throughout the 24 h study period. Blood AChE activity determined using acetylthiocholine as substrate showed 20% activity remaining in sarin-exposed animals compare to controls. In aerosolized AMB and scopolamine-treated animals the remaining AChE activity was significantly higher (45-60%) compared to sarin-exposed animals (p < 0.05). Similarly, treatment with all the combination therapeutics resulted in significant increase in blood AChE activity in comparison to sarin-exposed animals although the increases varied between treatments (p < 0.05). BChE activity was increased after treatment with aerosolized therapeutics but was lesser in magnitude compared to AChE activity changes. Various tissues showed elevated AChE activity after therapeutic treatment of sarin-exposed animals. Increased AChE and BChE activities in animals treated with nasal therapeutics suggest that enhanced breathing and reduced respiratory toxicity/lung injury possibly contribute to rapid normalization of chemical warfare nerve agent inhibited cholinesterases.
Valle, Anne M.; Radić, Zoran; Rana, Brinda K.; Mahboubi, Vafa; Wessel, Jennifer; Shih, Pei-an Betty; Rao, Fangwen; O'Connor, Daniel T.
2011-01-01
Cholinergic neurotransmission in the central and autonomic nervous systems regulates immediate variations in and longer-term maintenance of cardiovascular function with acetylcholinesterase (AChE) activity that is critical to temporal responsiveness. Butyrylcholinesterase (BChE), largely confined to the liver and plasma, subserves metabolic functions. AChE and BChE are found in hematopoietic cells and plasma, enabling one to correlate enzyme levels in whole blood with hereditary traits in twins. Using both twin and unrelated subjects, we found certain single nucleotide polymorphisms (SNPs) in the ACHE gene correlated with catalytic properties and general cardiovascular functions. SNP discovery from ACHE resequencing identified 19 SNPs: 7 coding SNPs (cSNPs), of which 4 are nonsynonymous, and 12 SNPs in untranslated regions, of which 3 are in a conserved sequence of an upstream intron. Both AChE and BChE activity traits in blood were heritable: AChE at 48.8 ± 6.1% and BChE at 81.4 ± 2.8%. Allelic and haplotype variations in the ACHE and BCHE genes were associated with changes in blood AChE and BChE activities. AChE activity was associated with BP status and SBP, whereas BChE activity was associated with features of the metabolic syndrome (especially body weight and BMI). Gene products from cDNAs with nonsynonymous cSNPs were expressed and purified. Protein expression of ACHE nonsynonymous variant D134H (SNP6) is impaired: this variant shows compromised stability and altered rates of organophosphate inhibition and oxime-assisted reactivation. A substantial fraction of the D134H instability could be reversed in the D134H/R136Q mutant. Hence, common genetic variations at ACHE and BCHE loci were associated with changes in corresponding enzymatic activities in blood. PMID:21493754
Demirci, Gökhan; Doğaç, Yasemin İspirli; Teke, Mustafa
2015-11-01
In the present study, we immobilized acetylcholinesterase (AChE) enzyme onto acetylcholine removed imprinted polymer and acetylcholine containing polymer. First, the polymers were produced with acetylcholine, substrate of AChE, by dispersion polymerization. Then, the enzyme was immobilized onto the polymers by using two different methods: In the first method (method A), acetylcholine was removed from the polymer, and then AChE was immobilized onto this polymer (acetylcholine removed imprinted polymer). In the second method (method B), AChE was immobilized onto acetylcholine containing polymer by affinity. In method A, enzyme-specific species (binding sites) occurred by removing acetylcholine from the polymer. The immobilized AChE reached 240% relative specific activity comparison with free AChE because the active enzyme molecules bounded onto the polymer. Transmission electron microscopy results were taken before and after immobilization of AChE for the assessment of morphological structure of polymer. Also, the experiments, which include optimum temperature (25-65 °C), optimum pH (3-10), thermal stability (4-70 °C), kinetic parameters, operational stability and reusability, were performed to determine the characteristic of the immobilized AChE. Copyright © 2015 John Wiley & Sons, Ltd.
Gupta, Surbhi; Singh, Prabhat; Sharma, Brij Mohan; Sharma, Bhupesh
2015-01-01
Chronic cerebral hypoperfusion (CCH) has been considered as a critical cause for the development of cognitive decline and dementia of vascular origin. Melatonin receptors have been reported to be beneficial in improving memory deterioration. Phosphodiesterase-1 (PDE1) enzyme offers protection against cognitive impairments and cerebrovascular disorders. Aim of this study is to explore the role of agomelatine (a dual MT1 and MT2 melatonin receptor agonist) and vinpocetine (selective PDE1 inhibitor) in CCH induced vascular dementia (VaD). Two vessel occlusion (2VO) or bilateral common carotid arteries ligation method was performed to initiate a phase of chronic hypoperfusion in mice. 2VO animals have shown significant cognitive deficits (Morris water maze), cholinergic dysfunction (increased acetyl cholinesterase -AChE) activity alongwith increased brain oxidative stress (decreased brain catalase, glutathione, as well as superoxide dismutase with an increase in malondialdehyde levels), and significant increase in brain infarct size (2,3,5- triphenylterazolium chloride-TTC staining). Treatment of agomelatine and vinpocetine reduced CCH induced learning and memory deficits and limited cholinergic dysfunction, oxidative stress, and tissue damage, suggesting that agomelatine and vinpocetine may provide benefits in CCH induced VaD.
Kuno, F; Otoguro, K; Shiomi, K; Iwai, Y; Omura, S
1996-08-01
An in vitro screening method for selective acetylcholinesterase (AChE) inhibitors was established. Inhibitory activity of AChE and butyrylcholinesterase (BuChE) was measured and the culture broths of microorganisms that showed selective inhibition against AChE were characterized. By using this method, a strain producing the novel and selective inhibitors of AChE, arisugacins A and B, was picked out among over seven thousand microorganisms tested. Arisugacins were obtained as white powders from the culture broth together with three known compounds, territrems B and C and cyclopenin that also showed selective inhibition against AChE. Arisugacins and territrems are members of the meroterpenoid compounds. They showed potent inhibitory activities against AChE with IC50 values in range of 1.0 approximately 25.8 nM. Furthermore, they showed greater than 2,000-fold more potent inhibition against AChE than BuChE.
Wu, Jin; Jin, Tian; Wang, Hong; Li, Shi-Tong
2016-01-01
Background: The antagonistic actions of anticholinesterase drugs on non-depolarizing muscle relaxants are theoretically related to the activity of acetylcholinesterase (AChE) in the neuromuscular junction (NMJ). However, till date the changes of AChE activity in the NMJ during sepsis have not been directly investigated. We aimed to investigate the effects of sepsis on the antagonistic actions of neostigmine on rocuronium (Roc) and the underlying changes of AChE activity in the NMJ in a rat model of cecal ligation and puncture (CLP). Methods: A total of 28 male adult Sprague-Dawley rats were randomized to undergo a sham surgery (the sham group, n = 12) or CLP (the septic group, n = 16). After 24 h, the time-response curves of the antagonistic actions of 0.1 or 0.5 μmol/L of neostigmine on Roc (10 μmol/L)-depressed diaphragm twitch tension were measured. Meanwhile, the activity of AChE in the NMJ was detected using a modified Karnovsky and Roots method. The mRNA levels of the primary transcript and the type T transcript of AChE (AChET) in the diaphragm were determined by real-time reverse transcription-polymerase chain reaction. Results: Four of 16 rats in the septic group died within 24 h. The time-response curves of both two concentrations of neostigmine in the septic group showed significant upward shifts from those in the sham group (P < 0.001 for 0.1 μmol/L; P = 0.009 for 0.5 μmol/L). Meanwhile, the average optical density of AChE in the NMJ in the septic group was significantly lower than that in the sham group (0.517 ± 0.045 vs. 1.047 ± 0.087, P < 0.001). The AChE and AChET mRNA expression levels in the septic group were significantly lower than those in the sham group (P = 0.002 for AChE; P = 0.001 for AChET). Conclusions: Sepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ. PMID:27270546
Brahmi rasayana Improves Learning and Memory in Mice
Joshi, Hanumanthachar; Parle, Milind
2006-01-01
Cure of cognitive disorders such as amnesia, attention deficit and Alzheimer's disease is still a nightmare in the field of medicine. Nootropic agents such as piracetam, aniracetam and choline esterase inhibitors like Donepezil® are being used to improve memory, mood and behavior, but the resulting side effects associated with these agents have made their use limited. The present study was undertaken to assess the potential of Brahmi rasayana (BR) as a memory enhancer. BR (100 and 200 mg kg−1 p.o.) was administered for eight successive days to both young and aged mice. Elevated plus maze and passive-avoidance paradigm were employed to evaluate learning and memory parameters. Scopolamine (0.4 mg kg−1 i.p.) was used to induce amnesia in mice. The effect of BR on whole brain AChE activity was also assessed. Piracetam (200 mg kg−1 i.p.) was used as a standard nootropic agent. BR significantly improved learning and memory in young mice and reversed the amnesia induced by both scopolamine (0.4 mg kg−1 i.p.) and natural aging. BR significantly decreased whole brain acetyl cholinesterase activity. BR might prove to be a useful memory restorative agent in the treatment of dementia seen in elderly. PMID:16550227
Roca, Carlos; Requena, Carlos; Sebastián-Pérez, Víctor; Malhotra, Sony; Radoux, Chris; Pérez, Concepción; Martinez, Ana; Antonio Páez, Juan; Blundell, Tom L; Campillo, Nuria E
2018-12-01
Allosteric sites on proteins are targeted for designing more selective inhibitors of enzyme activity and to discover new functions. Acetylcholinesterase (AChE), which is most widely known for the hydrolysis of the neurotransmitter acetylcholine, has a peripheral allosteric subsite responsible for amyloidosis in Alzheimer's disease through interaction with amyloid β-peptide. However, AChE plays other non-hydrolytic functions. Here, we identify and characterise using computational tools two new allosteric sites in AChE, which have allowed us to identify allosteric inhibitors by virtual screening guided by structure-based and fragment hotspot strategies. The identified compounds were also screened for in vitro inhibition of AChE and three were observed to be active. Further experimental (kinetic) and computational (molecular dynamics) studies have been performed to verify the allosteric activity. These new compounds may be valuable pharmacological tools in the study of non-cholinergic functions of AChE.
Cholinesterase inhibitors from the roots of Harpagophytum procumbens.
Bae, Yoon Ho; Cuong, To Dao; Hung, Tran Manh; Kim, Jeong Ah; Woo, Mi Hee; Byeon, Jeong Su; Choi, Jae Sue; Min, Byung Sun
2014-01-01
Inhibition of cholinesterase has been proposed to be a therapeutic target for the treatment of Alzheimer's diseases. In our preliminary screening study on the acetylcholinesterase (AChE) inhibitory activity, an ethyl acetate soluble fraction of the roots of Harpagophytum procumbens (Pedaliaceae) was found to inhibit AChE activity at the concentration of 100 μg/mL. Ten compounds (1-10) were isolated from the active fraction and evaluated for their inhibitory effect on AChE and butyrylcholinesterase (BChE). Among the isolates, verbascosides (5, 6, and 8) containing a caffeoyl and a 3,4-dihydroxyphenethyl groups in their structures, showed effective AChE inhibitory activity and also possessed BChE inhibitory activity. The findings suggest that verbascoside derivatives may be partially related to the anti-Alzheimer effect of this medicinal plant.
Li, Zhiping; Chen, Xia; Lu, Wenqian; Zhang, Shun; Guan, Xin; Li, Zeyu; Wang, Di
2017-01-01
Amanita caesarea, an edible mushroom found mainly in Asia and southern Europe, has been reported to show good antioxidative activities. In the present study, the neuroprotective effects of A. caesarea aqueous extract (AC) were determined in an l-glutamic acid (l-Glu) induced HT22 cell apoptosis model, and in a d-galactose (d-gal) and AlCl3-developed experimental Alzheimer’s disease (AD) mouse model. In 25 mM of l-Glu-damaged HT22 cells, a 3-h pretreatment with AC strongly improved cell viability, reduced the proportion of apoptotic cells, restored mitochondrial function, inhibited the over-production of intracellular reactive oxygen species (ROS) and Ca2+, and suppressed the high expression levels of cleaved-caspase-3, calpain 1, apoptosis-inducing factor (AIF) and Bax. Compared with HT22 exposed only to l-Glu cells, AC enhanced the phosphorylation activities of protein kinase B (Akt) and the mammalian target of rapamycin (mTOR), and suppressed the phosphorylation activities of phosphatase and tensin homolog deleted on chromosome ten (PTEN). In the experimental AD mouse, 28-day AC administration at doses of 250, 500, and 1000 mg/kg/day strongly enhanced vertical movements and locomotor activities, increased the endurance time in the rotarod test, and decreased the escape latency time in the Morris water maze test. AC also alleviated the deposition of amyloid beta (Aβ) in the brain and improved the central cholinergic system function, as indicated by an increase acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations and a reduction in acetylcholine esterase (AchE) levels. Moreover, AC reduced ROS levels and enhanced superoxide dismutase (SOD) levels in the brain of experimental AD mice. Taken together, our data provide experimental evidence that A. caesarea may serve as potential food for treating or preventing neurodegenerative diseases. PMID:28749416
Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides
Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.
2009-01-01
Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501
NASA Astrophysics Data System (ADS)
Islam, Mullah Muhaiminul; Rohman, Mostofa Ataur; Gurung, Arun Bahadur; Bhattacharjee, Atanu; Aguan, Kripamoy; Mitra, Sivaprasad
2018-01-01
The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.
NASA Astrophysics Data System (ADS)
Khoirunisa, V.; Rusydi, F.; Kasai, H.; Gandaryus, A. G.; Dipojono, H. K.
2016-08-01
The catalytic activity of acetylcholinesterase enzyme (AChE) relates to the symptom progress in Alzheimer's disease. Interaction of AChE with rivastigmine (from the medicine) can reduce its catalytic activity toward acetylcholine to decelerate the progression of Alzheimer's disease. This research attempts to study the interaction between AChE and rivastigmine, and also acetylcholine (without the presence of rivastigmine) using density functional theory by simplifying the reaction occurs in the active site, which is assumed to be C2H5OH, C3N2H3(Ch3), and CH3COO-. The results suggest that AChE interacts easier with acetylcholine than with rivastigmine, which implies that the medicine does not effectively reduce the catalytic activity of AChE. At this stage, no experimental data is available to be compared with the calculation results. Nonetheless, this study has shown a good prospect to understand the AChE-substrate interaction using a first-principles calculation.
[125I]Iodo-ASEM, a specific in vivo radioligand for α7-nAChR
Gao, Yongjun; Mease, Ronnie C.; Olson, Thao T.; Kellar, Kenneth J.; Dannals, Robert F.; Pomper, Martin G.; Horti, Andrew G.
2014-01-01
[125I]Iodo-ASEM, a new radioligand with high affinity and selectivity for α7-nAChRs (Ki = 0.5 nM; α7/α4β2 = 3,414), has been synthesized in radiochemical yield of 33 ± 6% from the corresponding di-butyltriazene derivative and at high specific radioactivity (1,600 Ci/mmol; 59.2 MBq/μmol). [125I]Iodo-ASEM readily entered the brains of normal CD-1 mice and specifically and selectively labeled cerebral α7-nAChRs. [125I]iodo-ASEM is a new useful tool for studying α7-nAChR. PMID:25687449
Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah
2017-07-17
Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a useful material for preventing impairment of learning and memory.
Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio
2002-10-03
Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck
2007-01-01
Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki valuesmore » obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.« less
Trujillo, Cleber A.; Sathler, Luciana B.; Juliano, Maria A.; Juliano, Luiz; Ulrich, Henning; Ferreira, Sergio T.
2013-01-01
Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD. PMID:23894286
Corsi-Zuelli, Fabiana Maria das Graças; Brognara, Fernanda; Quirino, Gustavo Fernando da Silva; Hiroki, Carlos Hiroji; Fais, Rafael Sobrano; Del-Ben, Cristina Marta; Ulloa, Luis; Salgado, Helio Cesar; Kanashiro, Alexandre; Loureiro, Camila Marcelino
2017-01-01
Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia. PMID:28620379
Prugh, Amber M; Cole, Stephanie D; Glaros, Trevor; Angelini, Daniel J
2017-03-25
Mesenchymal stem cells (MSCs) are multipotent cells located within various adult tissues. Recent literature has reported that human bone marrow-derived MSCs express active acetylcholinesterase (AChE) and that disruption of AChE activity by organophosphate (OP) chemicals decreases the ability of MSCs to differentiate into osteoblasts. The potential role of AChE in regulating MSC proliferation and differentiation is currently unknown. In the present study, we demonstrate that MSCs exposed to OPs have both decreased AChE activity and abundance. In addition, exposure to these OPs induced cellular death while decreasing cellular proliferation. Exposures to these compounds also reduced the adipogenic/osteogenic differentiation potentials of the MSCs. To elucidate the possible role of AChE in MSCs signaling following OP exposure, we captured potential AChE binding partners by performing polyhistidine (His 8 )-tagged AChE pulldowns, followed by protein identification using liquid chromatography mass spectrometry (LC-MS). Using this method, we determined that the focal adhesion protein, vinculin, is a potential binding partner with AChE in MSCs and these initial findings were confirmed with follow-up co-immunoprecipitation experiments. Identifying AChE binding partners helps to determine potential pathways associated with MSC proliferation and differentiation, and this understanding could lead to the development of future MSC-based tissue repair therapies. Published by Elsevier B.V.
Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
Darvesh, Sultan; Arora, Rakesh C; Martin, Earl; Magee, David; Hopkins, David A; Armour, J Andrew
2004-08-01
Cholinesterase inhibitors used to treat the symptoms of Alzheimer's disease (AD) inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), albeit to different degrees. Because central and peripheral neurons, including intrinsic cardiac neurons located on the surface of the mammalian heart, express both BuChE and AChE, we studied spontaneously active intrinsic cardiac neurons in the pig as a model to assess the effects of inhibition of AChE compared to BuChE. Neuroanatomical experiments showed that some porcine intrinsic cardiac neurons expressed AChE and/or BuChE. Enzyme kinetic experiments with cholinesterase inhibitors, namely, donepezil, galantamine, (+/-) huperzine A, metrifonate, rivastigmine, and tetrahydroaminoacridine, demonstrated that these compounds differentially inhibited porcine AChE and BuChE. Donepezil and (+/-) huperzine A were better reversible inhibitors of AChE, and galantamine equally inhibited both the enzymes. Tetrahydroaminoacridine was a better reversible inhibitor of BuChE. Rivastigmine caused more rapid inactivation of BuChE as compared to AChE. Neurophysiological studies showed that acetylcholine and butyrylcholine increase or decrease the spontaneous activity of the intrinsic cardiac neurons. Donepezil, galantamine, (+/-) huperzine A, and tetrahydroaminoacridine changed spontaneous neuronal activity by about 30-35 impulses per minute, while rivastigmine changed it by approximately 100 impulses per minute. It is concluded that (i) inhibition of AChE and BuChE directly affects the porcine intrinsic cardiac nervous system, (ii) the intrinsic cardiac nervous system represents a suitable model for examining the effects of cholinesterase inhibitors on mammalian neurons in vivo, and (iii) the activity of intrinsic cardiac neurons may be affected by pharmacological agents that inhibit cholinesterases.
Bazalakova, M H; Wright, J; Schneble, E J; McDonald, M P; Heilman, C J; Levey, A I; Blakely, R D
2007-07-01
Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.
Acute toxicity, biochemical and histopathological responses of endosulfan in Chanos chanos.
Kumar, Neeraj; Ambasankar, K; Krishnani, K K; Gupta, S K; Bhushan, Shashi; Minhas, P S
2016-09-01
This study investigated 96h median lethal concentration of endosulfan (99%, pure α: β ratio of 7:3) by conducting static non-renewable acute toxicity bio-assay in Chanos chanos juvenile with average weight (110±5.65g). Further, the effect of different definitive doses (18.5, 19.5, 20.5, 21.5 and 22.5µg/L) of endosulfan on metabolic, heamato-immunoligcal and histopathological response were probed. Anti-oxidative enzymes CAT, SOD and GST showed significant (p<0.01) increase of activity in the liver, gill and brain during exposure to endosulfan in a dose and time dependent manner. The brain AChE activity showed significant (p<0.01) inhibition from 18.5 to 22.5µg/L exposure of endosulfan than the control group. LDH and MDH activity gradually increased with consequent increasing dose of endosulfan exposure in the liver, gill and brain. Similarly, ALT, AST and G6PDH activities in both liver and gill increased with consequent increases in the dose of endosulfan exposure. Immunological profile such as blood glucose and serum cortisol level significantly enhanced while respiratory burst activity declined with consequent increasing doses of endosulfan exposure. Histopathological alteration in the gill demonstrated curling of secondary lamellae, thickening of primary epithelium, shorting of secondary lamellae, epithelial hyperplasia, fusion of secondary lamellae, aneurism, and collapsed secondary lamellae due to dose dependent exposure of endosulfan. Liver histology illustrated cloudy swelling and necrosis with pyknotic nuclei to the moderate dose of endosulfan, whereas higher dose of endosulfan (21.5µg/L) displayed severe necrosis of hepatic cells. Overall results clearly indicate that acute exposure of endosulfan led to pronounced deleterious alterations on biochemical, heamato-immunological, and histopathological responses of C. chanos juvenile. Copyright © 2016 Elsevier Inc. All rights reserved.
MMB-4 Inhibition of Aceylcholinesterase Is Similar across Species
2014-11-01
version 5.4). An IC50 value was determined for AChE from each animal species by fitting the percent of AChE activity with respect to MMB 4 concentration...in GraphPad Prism (version 5) using a nonlinear regression dose response model for inhibition (normalized response with variable slope). Assessing the...Therefore, AChE activity and inhibition studies were carried out at 435 nm to reduce interference from MMB 4. Comparison of IC50 Values for MMB 4 with AChE
Silent synapses in neuromuscular junction development.
Tomàs, Josep; Santafé, Manel M; Lanuza, Maria A; García, Neus; Besalduch, Nuria; Tomàs, Marta
2011-01-01
In the last few years, evidence has been found to suggest that some synaptic contacts become silent but can be functionally recruited before they completely retract during postnatal synapse elimination in muscle. The physiological mechanism of developmental synapse elimination may be better understood by studying this synapse recruitment. This Mini-Review collects previously published data and new results to propose a molecular mechanism for axonal disconnection. The mechanism is based on protein kinase C (PKC)-dependent inhibition of acetylcholine (ACh) release. PKC activity may be stimulated by a methoctramine-sensitive M2-type muscarinic receptor and by calcium inflow though P/Q- and L-type voltage-dependent calcium channels. In addition, tropomyosin-related tyrosine kinase B (trkB) receptor-mediated brain-derived neurotrophic factor (BDNF) activity may oppose the PKC-mediated ACh release depression. Thus, a balance between trkB and muscarinic pathways may contribute to the final functional suppression of some neuromuscular synapses during development. © 2010 Wiley-Liss, Inc.
Anti-Alzheimer's disease activity of compounds from the root bark of Morus alba L.
Kuk, Eun Bi; Jo, A Ra; Oh, Seo In; Sohn, Hee Sook; Seong, Su Hui; Roy, Anupom; Choi, Jae Sue; Jung, Hyun Ah
2017-03-01
The inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) plays important roles in prevention and treatment of Alzheimer's disease (AD). Among the individual parts of Morus alba L. including root bark, branches, leaves, and fruits, the root bark showed the most potent enzyme inhibitory activities. Therefore, the aim of this study was to evaluate the anti-AD activity of the M. alba root bark and its isolate compounds, including mulberrofuran G (1), albanol B (2), and kuwanon G (3) via inhibition of AChE, BChE, and BACE1. Compounds 1 and 2 showed strong AChE- and BChE-inhibitory activities; 1-3 showed significant BACE1 inhibitory activity. Based on the kinetic study with AChE and BChE, 2 and 3 showed noncompetitive-type inhibition; 1 showed mixed-type inhibition. Moreover, 1-3 showed mixed-type inhibition against BACE1. The molecular docking simulations of 1-3 demonstrated negative binding energies, indicating a high affinity to AChE and BACE1. The hydroxyl group of 1-3 formed hydrogen bond with the amino acid residues located at AChE and BACE1. Consequently, these results indicate that the root bark of M. alba and its active compounds might be promising candidates for preventive and therapeutic agents for AD.
The lymphocytic cholinergic system and its contribution to the regulation of immune activity.
Kawashima, Koichiro; Fujii, Takeshi
2003-12-26
Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.
Costantini, Todd W.; Dang, Xitong; Coimbra, Raul; Eliceiri, Brian P.; Baird, Andrew
2015-01-01
Conventional wisdom presumes that the α7nAChR product of CHRNA7 expression mediates the ability of the vagus nerve to regulate the inflammatory response to injury and infection. Yet, 15 years ago, a 2nd structurally distinct and human-specific α7nAChR gene was discovered that has largely escaped attention of the inflammation research community. The gene, originally called dupα7nAChR but now known as CHRFAM7A, has been studied exhaustively in psychiatric research because of its association with mental illness. However, dupα7nAChR/CHRFAM7A expression is relatively low in human brain but elevated in human leukocytes. Furthermore, α7nAChR research in human tissues has been confounded by cross-reacting antibodies and nonspecific oligonucleotide primers that crossreact in immunoblotting, immunohistochemistry, and RT-PCR. Yet, 3 independent reports show the human-specific CHRFAM7A changes cell responsiveness to the canonical α7nAChR/CHRNA7 ion-gated channel. Because of its potential for the injury research community, its possible significance to human leukocyte biology, and its relevance to human inflammation, we review the discovery and structure of the dupα7nAChR/CHRFAM7A gene, the distribution of its mRNA, and its biologic activities and then discuss its possible role(s) in specifying human inflammation and injury. In light of emerging concepts that point to a role for human-specific genes in complex human disease, the existence of a human-specific α7nAChR regulating inflammatory responses in injury underscores the need for caution in extrapolating findings in the α7nAChR literature to man. To this end, we discuss the translational implications of a uniquely human α7nAChR-like gene on new drug target discovery and therapeutics development for injury, infection, and inflammation. PMID:25473097
Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J
2013-03-26
Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Ansari, Reyaz W; Shukla, Rajendra K; Yadav, Rajesh S; Seth, Kavita; Pant, Aditya B; Singh, Dhirendra; Agrawal, Ashok K; Islam, Fakhrul; Khanna, Vinay K
2012-11-01
This study is focused on understanding the mechanism of neurobehavioral toxicity of lambda-cyhalothrin, a new generation type II synthetic pyrethroid in developing rats following their exposure from post-lactational day (PLD)22 to PLD49 and investigate whether neurobehavioral alterations are transient or persistent. Post-lactational exposure to lambda-cyhalothrin (1.0 or 3.0 mg/kg body weight, p.o.) affected grip strength and learning activity in rats on PLD50 and the persistent impairment of grip strength and learning was observed at 15 days after withdrawal of exposure on PLD65. A decrease in the binding of muscarinic-cholinergic receptors in frontocortical, hippocampal, and cerebellar membranes associated with decreased expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in hippocampus was observed following exposure to lambda-cyhalothrin on PLD50 and PLD65. Exposure to lambda-cyhalothrin was also found to increase the expression of growth-associated protein-43 in hippocampus of rats on PLD50 and PLD65 as compared to controls. A significant increase in lipid peroxidation and protein carbonyl levels and decreased levels of reduced glutathione and activity of superoxide dismutase, catalase, and glutathione peroxidase in brain regions of lambda-cyhalothrin exposed rats were distinctly observed indicating increased oxidative stress. Inhibition of ChAT and AChE activity may cause down-regulation of muscarinic-cholinergic receptors consequently impairing learning activity in developing rats exposed to lambda-cyhalothrin. The data further indicate that long-term exposure to lambda-cyhalothrin at low doses may be detrimental and changes in selected behavioral and neurochemical end points may persist if exposure to lambda-cyhalothrin continues.
Chen, Hongxing; Zeng, Xiangfeng; Mu, Lei; Hou, Liping; Yang, Bin; Zhao, Jianliang; Schlenk, Daniel; Dong, Wu; Xie, Lingtian; Zhang, Qianru
2018-09-30
Fluoxetine is a selective serotonin reuptake inhibitor used as an antidepressant and has been frequently detected in aquatic environments. However, its effects in fish from Asia remain relatively less studied. In this study, the topmouth gudgeon Pseudorasbora parva was exposed to 0, 50, and 200 µg/L of fluoxetine for 4 h and 42 d. The effects of fluoxetine on biometrics were compared to biochemical endpoints indicative of stress in different fish tissues (brain, liver, gills and intestine) following exposures. In fish exposed for 42 d, lipid peroxidation endpoints were enhanced 80% in the liver and gills. Acetylcholinesterase (AChE) activity was increased 40% after exposure to 50 µg/L and 55% at 200 µg/L following 4 h exposure. In contrast AChE was increased 26% (at 50 µg/L) after 42 d of exposures. Enhanced ethoxyresorufin-O-deethylase activity (EROD) was detected only in fish exposed to 50 µg/L of fluoxetine for 4 h. The activity of α-glucosidase (α-Glu) was also induced (at 200 µg/L) after 4 h of exposure. After 4 h of exposure, the activities of proteases in the intestine were generally inhibited at 200 µg/L. Both 4 h and 42 d exposures resulted in an increased hepatosomatic index (HSI) but did not affect the condition factor (CF). Our results demonstrate that fluoxetine significantly altered biochemical endpoints in P. parva after acute exposure and the morphological changes in liver size were not observed until 42 d of exposure. Copyright © 2018. Published by Elsevier Inc.
Papouin, Thomas; Dunphy, Jaclyn; Tolman, Michaela; Dineley, Kelly T.; Haydon, Philip G.
2017-01-01
Summary The activation of the N-methyl D-aspartate receptor (NMDAR) is controlled by a glutamate-binding site and a distinct, independently regulated, co-agonist-binding site. In most brain regions, the NMDAR co-agonist is the astrocyte-derived gliotransmitter D-serine. We found that D-serine levels oscillate in mouse hippocampus as a function of wakefulness, in vitro and in vivo. This causes a full saturation of the NMDAR co-agonist site in the dark (active)-phase that dissipates to sub-saturating levels during the light (sleep)-phase, and influences learning performance throughout the day. We demonstrate that hippocampal astrocytes sense the wakefulness-dependent activity of septal cholinergic fibers through the α7-nicotinic acetylcholine receptor (α7nAChR), whose activation drives D-serine release. We conclude that astrocytes tune the gating of synaptic NMDARs to the vigilance state and demonstrate that this is directly relevant to schizophrenia, a disorder characterized by NMDAR and cholinergic hypofunctions. Indeed, bypassing cholinergic activity with a clinically-tested α7nAChR agonist successfully enhances NMDARs activation. PMID:28479102
Muramatsu, Ikunobu; Uwada, Junsuke; Masuoka, Takayoshi; Yoshiki, Hatsumi; Sada, Kiyonao; Lee, Kung-Shing; Nishio, Matomo; Ishibashi, Takaharu; Taniguchi, Takanobu
2017-10-01
In addition to hydrolysis by acetylcholine esterase (AChE), acetylcholine (ACh) is also directly taken up into brain tissues. In this study, we examined whether the uptake of ACh is involved in the regulation of synaptic ACh concentrations. Superfusion experiments with rat striatal segments pre-incubated with [ 3 H]choline were performed using an ultra-mini superfusion vessel, which was developed to minimize superfusate retention within the vessel. Hemicholinium-3 (HC-3) at concentrations less than 1 μM, selectively inhibited the uptake of [ 3 H]choline by the high affinity-choline transporter 1 and had no effect on basal and electrically evoked [ 3 H]efflux in superfusion experiments. In contrast, HC-3 at higher concentrations, as well as tetraethylammonium (>10 μM), which inhibited the uptake of both [ 3 H]choline and [ 3 H]ACh, increased basal [ 3 H]overflow and potentiated electrically evoked [ 3 H]efflux. These effects of HC-3 and tetraethylammonium were also observed under conditions where tissue AChE was irreversibly inactivated by diisopropylfluorophosphate. Specifically, the potentiation of evoked [ 3 H]efflux was significantly higher in AChE-inactivated preparations and was attenuated by atropine. On the other hand, striatal segments pre-incubated with [ 3 H]ACh failed to increase [ 3 H]overflow in response to electrical stimulation. These results show that synaptic ACh concentrations are significantly regulated by the postsynaptic uptake of ACh, as well as by AChE hydrolysis and modulation of ACh release mediated through presynaptic muscarinic ACh receptors. In addition, these data suggest that the recycling of ACh-derived choline may be minor in cholinergic terminals. This study reveals a new mechanism of cholinergic transmission in the central nervous system. © 2017 International Society for Neurochemistry.
NASA Technical Reports Server (NTRS)
Misulis, K. E.; Dettbarn, W. D.
1985-01-01
An investigation was conducted as to whether the predominantly slow SOL, which is low in AChE activity, is initially reinnervated by axons that originally innervated fast muscle fibers with high AChE activity, such as those of the EDL. Local denervation of the SOL in the guinea pig was performed because this muscle is composed solely of slow (type I) fibers; thereby virtually eliminating the possibility of homologous muscle fast fiber innervation. The overshoot in this preparation was qualitatively similar to that seen with distal denervation in the guinea pig and local and distal denervation in the rat. Thus, initial fast fiber innvervation is not responsible for the patterns of change in AChE activity seen with reinnervation in the SOL. It is concluded that the neural control of AChe is different in these two muscles and may reflect specific differences in the characteristics of AChE regulation in fast and slow muscle.
Hoffman, D.J.; Sileo, L.
1984-01-01
Phenyl phosphonothioic acid-O-ethyl-O-[4-nitrophenyl] ester (EPN) is one of the 10 most frequently used organophosphorus insecticides and causes delayed neurotoxicity in adult chickens and mallards. Small amounts of organophosphorus insecticides placed on birds' eggs are embryotoxic and teratogenic. For this reason, the effects of topical egg application on EPN were examined on mallard (Anas platyrhynchos) embryo development. Mallard eggs were treated topically at 72 hr of incubation with 25 microliter of a nontoxic oil vehicle or with EPN in the vehicle at concentrations of approximately 12, 36, or 108 micrograms/g egg, equivalent to one, three, and nine times the agricultural level of application used to spray crops. Treatment with EPN resulted in 22 to 44% mortality over this dose range by 18 days of development compared with 4 and 5% for untreated and vehicle-treated controls. EPN impaired embryonic growth and was highly teratogenic: 37-42% of the surviving embryos at 18 days were abnormal with cervical and axial scoliosis as well as severe edema. Brain weights were significantly lower in EPN-treated groups at different stages of development including hatchlings. Brain neurotoxic esterase (NTE) activity was inhibited by as much as 91% at 11 days, 81% at 18 days, and 79% in hatchlings. Examination of brain NTE activity during the course of normal development revealed an increase of nearly sixfold from Day 11 through hatching. The most rapid increase occurred between Day 20 and hatching. Brain acetylcholinesterase (AChE) activity was inhibited by as much as 41% at 11 days, 47% at 18 days, and 20% in hatchlings. Plasma cholinesterase and alkaline phosphatase activities were inhibited and plasma aspartate aminotransferase activity was increased at one or more stages of development. Hatchlings from EPN-treated eggs were weaker and slower to right themselves. Histopathological examination did not reveal demyelination and axonopathy of the spinal cord that was characteristic of delayed neurotoxicity in adult birds.
Toumi, Hela; Bejaoui, Mustapha; Touaylia, Samir; Burga Perez, Karen F; Ferard, Jean François
2016-11-01
The present study was designed to investigate the effect of carbaryl (carbamate insecticide) on the acetylcholinesterase activity in two strains (same clone A) of the crustacean cladoceran Daphnia magna. Four carbaryl concentrations (0.4, 0.9, 1.8 and 3.7 µg L(-1)) were compared against control AChE activity. Our results showed that after 48 h of carbaryl exposure, all treatments induced a significant decrease of AChE activities whatever the two considered strains. However, different responses were registered in terms of lowest observed effect concentrations (LOEC: 0.4 µg L(-1) for strain 1 and 0.9 µg L(-1) for strains 2) revealing differences in sensitivity among the two tested strains of D. magna. These results suggest that after carbaryl exposure, the AChE activity responses can be also used as a biomarker of susceptibility. Moreover, our results show that strain1 is less sensitive than strain 2 in terms of IC50-48 h of AChE activity. Comparing the EC50-48 h of standard ecotoxicity test and IC50-48 h of AChE inhibition, there is the same order of sensitivity with both strains.
Pandya, Anshul A.; Yakel, Jerrel L.
2013-01-01
The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT1a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors. PMID:23321689
Neuronal oxidative injury and dendritic damage induced by carbofuran: Protection by memantine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Ramesh C.; Milatovic, Snjezana; Dettbarn, Wolf-D.
Carbamate insecticides mediate their neurotoxicity by acetylcholinesterase (AChE) inactivation. Male Sprague-Dawley rats acutely intoxicated with the carbamate insecticide carbofuran (1.5 mg/kg, sc) developed hypercholinergic signs within 5-7 min of exposure, with maximal severity characterized by seizures within 30-60 min, lasting for about 2 h. At the time of peak severity, compared with controls, AChE was maximally inhibited (by 82-90%), radical oxygen species (ROS) markers (F{sub 2}-isoprostanes, F{sub 2}-IsoPs; and F{sub 4}-neuroprostanes, F{sub 4}-NeuroPs) were elevated 2- to 3-fold, and the radical nitrogen species (RNS) marker citrulline was elevated 4- to 8-fold in discrete brain regions (cortex, amygdala, and hippocampus). Inmore » addition, levels of high-energy phosphates (HEPs) were significantly reduced (ATP, by 43-56%; and phosphocreatine, by 37-48%). Values of total adenine nucleotides and total creatine compounds declined markedly (by 41-56% and 35-45%, respectively), while energy charge potential remained unchanged. Quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant decreases in dendritic lengths (by 64%) and spine density (by 60%). Pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist memantine (18 mg/kg, sc), in combination with atropine sulfate (16 mg/kg, sc), significantly attenuated carbofuran-induced changes in AChE activity and levels of F{sub 2}-IsoPs and F{sub 4}-NeuroPs, declines in HEPs, as well as the alterations in morphology of hippocampal neurons. MEM and ATS pretreatment also protected rats from carbofuran-induced hypercholinergic behavioral activity, including seizures. These findings support the involvement of ROS and RNS in seizure-induced neuronal injury and suggest that memantine by preventing carbofuran-induced neuronal hyperactivity blocks pathways associated with oxidative damage in neurons.« less
Kia, Yalda; Osman, Hasnah; Suresh Kumar, Raju; Basiri, Alireza; Murugaiyah, Vikneswaran
2014-04-01
Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gao, Xiaohui; Tang, Jingjing; Liu, Haoran; Liu, Linbo; Kang, Lu; Chen, Wen
2018-12-01
In the present investigation, 48 new tertiary amine derivatives of cinnamic acid, phenylpropionic acid, sorbic acid and hexanoic acid (4d-6g, 10d-12g, 16d-18g and 22d-24g) were designed, synthesized and evaluated for the effect on AChE and BChE in vitro. The results revealed that the alteration of aminoalkyl types and substituted positions markedly influences the effects in inhibiting AChE. Almost of all cinnamic acid derivatives had the most potent inhibitory activity than that of other acid derivatives with the same aminoalkyl side chain. Unsaturated bond and benzene ring in cinnamic acid scaffold seems important for the inhibitory activity against AChE. Among them, compound 6g revealed the most potent AChE inhibitory activity (IC 50 value: 3.64 µmol/L) and highest selectivity over BChE (ratio: 28.6). Enzyme kinetic study showed that it present a mixed-type inhibition against AChE. The molecular docking study suggested that it can bind with the catalytic site and peripheral site of AChE.
Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington's disease.
McFarland, Karen N; Das, Sudeshna; Sun, Ting Ting; Leyfer, Dmitri; Xia, Eva; Sangrey, Gavin R; Kuhn, Alexandre; Luthi-Carter, Ruth; Clark, Timothy W; Sadri-Vakili, Ghazaleh; Cha, Jang-Ho J
2012-01-01
In Huntington's disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression. However, the question remains whether changes in histone modifications correlate with transcriptional abnormalities across the entire transcriptome. Using chromatin immunoprecipitation paired with microarray hybridization (ChIP-chip), we interrogated AcH3-gene interactions genome-wide in striata of 12-week old wild-type (WT) and transgenic (TG) R6/2 mice, an HD mouse model, and correlated these interactions with gene expression levels. At the level of the individual gene, we found decreases in the number of sites occupied by AcH3 in the TG striatum. In addition, the total number of genes bound by AcH3 was decreased. Surprisingly, the loss of AcH3 binding sites occurred within the coding regions of the genes rather than at the promoter region. We also found that the presence of AcH3 at any location within a gene strongly correlated with the presence of its transcript in both WT and TG striatum. In the TG striatum, treatment with histone deacetylase (HDAC) inhibitors increased global AcH3 levels with concomitant increases in transcript levels; however, AcH3 binding at select gene loci increased only slightly. This study demonstrates that histone H3 acetylation at lysine residues 9 and 14 and active gene expression are intimately tied in the rodent brain, and that this fundamental relationship remains unchanged in an HD mouse model despite genome-wide decreases in histone H3 acetylation.
Esterlis, Irina; Ranganathan, Mohini; Bois, Frederic; Pittman, Brian; Picciotto, Marina R; Shearer, Lara; Anticevic, Alan; Carlson, Jon; Niciu, Mark J; Cosgrove, Kelly P; D'Souza, D Cyril
2014-09-15
Schizophrenia is associated with very high rates of tobacco smoking. The latter may be related to an attempt to self-medicate symptoms and/or to alterations in function of high-affinity β2-subunit-containing nicotinic acetylcholine receptors (β2*-nAChRs). Smoking and nonsmoking subjects with schizophrenia (n=31) and age-, smoking-, and sex-matched comparison subjects (n=31) participated in one [123I]5-IA-85380 single photon emission computed tomography scan to quantify β2*-nAChR availability. Psychiatric, cognitive, nicotine craving, and mood assessments were obtained during active smoking, as well as smoking abstinence. There were no differences in smoking characteristics between smokers with and without schizophrenia. Subjects with schizophrenia had lower β2*-nAChR availability relative to comparison group, and nonsmokers had lower β2*-nAChR availability relative to smokers. However, there was no smoking by diagnosis interaction. Relative to nonsmokers with schizophrenia, smokers with schizophrenia had higher β2*-nAChR availability in limited brain regions. In smokers with schizophrenia, higher β2*-nAChR availability was associated with lower negative symptoms of schizophrenia and better performance on tests of executive control. Chronic exposure to antipsychotic drugs was not associated with changes in β2*-nAChR availability in schizophrenia. Although subjects with schizophrenia have lower β2*-nAChR availability relative to comparison group, smokers with schizophrenia appear to upregulate in the cortical regions. Lower receptor availability in smokers with schizophrenia in the cortical regions is associated with a greater number of negative symptoms and worse performance on tests of executive function, suggesting smoking subjects with schizophrenia who upregulate to a lesser degree may be at risk for poorer outcomes. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Yohn, Nicole L; Turner, Jill R; Blendy, Julie A
2014-05-01
Although nicotine mediates its effects through several nicotinic acetylcholine receptor (nAChR) subtypes, it remains to be determined which nAChR subtypes directly mediate heightened anxiety during withdrawal. Relative success in abstinence has been found with the nAChR partial agonist varenicline (Chantix; Pfizer, Groton, CT); however, treatment with this drug fails to alleviate anxiety in individuals during nicotine withdrawal. Therefore, it is hypothesized that success can be found by the repurposing of other nAChR partial agonists for cessation therapies that target anxiety. It is noteworthy that the selective partial agonists for α4β2, ABT-089 [2-methyl-3-[2(S)-pyrrolidinylmethoxy]pyridine], and α7, ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole] (AbbVie, North Chicago, IL), have not been evaluated as possible therapeutics for nicotine cessation. Therefore, we examined the effect of ABT-089 and ABT-107 on anxiety during withdrawal from nicotine in the novelty-induced hypophagia (NIH) paradigm. We found that short-term administration of ABT-089 and ABT-107 alleviate anxiety-like behavior during withdrawal from nicotine while long-term administration of ABT-089 but not ABT-107 reduces anxiety-like behavior during withdrawal. After behavioral testing, brains were harvested and β2-containing nAChRs were measured using [(3)H]epibaditine. ABT-089 and ABT-107 do not upregulate nAChRs, which is in contrast to the upregulation of nAChRs observed after nicotine. Furthermore, ABT-089 is anxiogenic in nicotine naive animals, suggesting that the effects on anxiety are specifically related to the nicotine-dependent state. Together, these studies identify additional nAChR partial agonists that may aid in the rational development of smoking cessation aids.
Freitas, Kelen; Carroll, F. Ivy; Negus, S. Stevens
2015-01-01
Intracranial self-stimulation (ICSS) is one type of preclinical procedure for research on pharmacological mechanisms that mediate abuse potential of drugs acting at various targets including nicotinic acetylcholine receptors (nAChRs). This study compared effects of the non-selective nAChR agonist nicotine (0.032-1.0 mg/kg) and the α4β2-selective nAChR agonist 5-I-A-85380 (0.01-1.0 mg/kg) on ICSS in male Sprague-Dawley rats. Rats were implanted with electrodes targeting the medial forebrain bundle at the level of the lateral hypothalamus and trained to respond under a fixed-ratio 1 schedule for a range of brain stimulation frequencies (158-56 Hz). A broad range of 5-I-A-85380 doses produced an abuse-related increase (or “facilitation”) of low ICSS rates maintained by low brain-stimulation frequencies, and this effect was blocked by both the nonselective nAChR antagonist mecamylamine and the selective α4β2 antagonist dihyrdo-ß-erythroidine (DHßE). Conversely, nicotine produced weaker ICSS facilitation across a narrower range of doses, and higher nicotine doses decreased high rates of ICSS maintained by high brain- stimulation frequencies. The rate-decreasing effects of a high nicotine dose were blocked by mecamylamine but not DHßE. Chronic nicotine treatment produced selective tolerance to rate-decreasing effects of nicotine but did not alter ICSS rate-increasing effects of nicotine. These results suggest that α4β2 receptors are sufficient to mediate abuse-related rate-increasing effects of nAChR agonists in this ICSS procedure. Conversely, nicotine effects at non-α4β2 nAChRs appear to oppose and limit abuse-related effects mediated by α4β2 receptors, although tolerance can develop to these non-α4β2 effects. Selective α4β2 agonists may have higher abuse potential than nicotine. PMID:26461167
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-10-01
Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).
Avena, Nicole M.; Bocarsly, Miriam E.
2012-01-01
Food intake is mediated, in part, through brain pathways for motivation and reinforcement. Dysregulation of these pathways may underlay some of the behaviors exhibited by patients with eating disorders. Research using animal models of eating disorders has greatly contributed to the detailed study of potential brain mechanisms that many underlie the causes or consequences of aberrant eating behaviors. This review focuses on neurochemical evidence of reward-related brain dysfunctions obtained through animal models of binge eating, bulimia nervosa, or anorexia nervosa. The findings suggest that alterations in dopamine (DA), acetylcholine (ACh) and opioid systems in reward-related brain areas occur in response to binge eating of palatable foods. Moreover, animal models of bulimia nervosa suggest that while bingeing on palatable food releases DA, purging attenuates the release of ACh that might otherwise signal satiety. Animal models of anorexia nervosa suggest that restricted access to food enhances the reinforcing effects of DA when the animal does eat. The activity-based anorexia model suggests alterations in mesolimbic DA and serotonin occur as a result of starvation coupled with excessive wheel running. These findings with animal models complement data obtained through neuroimaging and pharmacotherapy studies of clinical populations. Finally, information on the neurochemical consequences of the behaviors associated with these eating disorders will be useful in understanding these complex disorders and may inform future therapeutic approaches, as discussed here. PMID:22138162
Linopirdine. A depolarization-activated releaser of transmitters for treatment of dementia.
Tam, S W; Zaczek, R
1995-01-01
Linopirdine (DuP 996, AVIVA), currently in Phase III clinical trial for the treatment of Alzheimer's disease, is a representative of a class of novel molecules which enhances the stimulus-evoked but not basal release of several neurotransmitters including ACh, DA, 5-HT and Glu. Linopiridine has been shown to enhance ACh release in the hippocampus in vivo. In addition, linopiridine produces a number of effects including EEG patterns of enhanced vigilance, induction of c-fos expression in cerebral cortex, reduction of the increase of cerebral glucose utilization induced by hypoxia, and improved performance in animal models of learning and memory. The specific action of linopiridine on depolarized neurons but not on basal release suggests that compounds of this class will enhance normal brain activity and not lead to a non-specific activation. Furthermore, the effect of linopiridine on multiple neurotransmitter systems that are deficient in Alzheimer's disease suggests that this class of agents may be more efficacious in the treatment of dementia than therapies aimed at individual neurotransmitters systems.
Jaques, Jeandre Augusto dos Santos; Rezer, João Felipe Peres; Carvalho, Fabiano Barbosa; da Rosa, Michelle Melgarejo; Gutierres, Jessié Martins; Gonçalves, Jamile Fabbrin; Schmatz, Roberta; de Bairros, André Valle; Mazzanti, Cinthia Melazzo; Rubin, Maribel Antonello; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa
2012-07-16
Cigarette smoke, a widely spread habit, is associated with a decline in cognitive function and studies have demonstrated that curcumin (Cur), an Indian spice, possesses a strong neuroprotective potential. Considering the relevance of investigating dietary compounds this study aimed to investigate the effect of Cur on memory and acetylcholinesterase (AChE) activity in brain structures and blood of cigarette smoke-exposed rats. Male Wistar rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. The experimental procedures were divided in two sets of experiments. In the first, the animals were divided into 4 groups: Vehicle (corn oil), Cur 12.5 mg/kg, Cur 25 mg/kg and Cur 50 mg/kg. In the second, the animals were divided into 5 groups: Vehicle (corn oil), Smoke, Smoke plus Cur 12.5 mg/kg, Smoke plus Cur 25 mg/kg and Smoke plus Cur 50 mg/kg. Treatment with Cur significantly prevented the decreased latency and cholinergic alterations in cigarette smoke-exposed rats. These AChE alterations could suggest a role in the memory impairment promoted by cigarette smoke-exposure and point toward the potential of Cur to modulate cholinergic neurotransmission and, consequently, improve cognition deficits induced by smoke. This study suggests that the dietary compound Cur may be involved in cholinergic system modulation and as a consequence exert an effect on learning and memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Khalili, Mohsen; Alavi, Mitra; Esmaeil-Jamaat, Elham; Baluchnejadmojarad, Tourandokht; Roghani, Mehrdad
2018-06-20
Brain inflammation is associated with cognitive dysfunction, especially in elderly. Trigonelline is a plant alkaloid and a major component of coffee and fenugreek with anti-diabetic, antioxidant, anti-inflammatory, and neuroprotective effects. In this study, the beneficial effect of trigonelline against lipopolysaccharide (LPS)-induced cognitive decline was assessed in the rat. LPS was injected i.p. at a dose of 500 μg/kg to induce neuroinflammation and trigonelline was administered p.o. at doses of 20, 40, or 80 mg/kg/day 1 h after LPS that continued for one week. Trigonelline-treated LPS-challenged rats showed improved spatial recognition memory in Y maze, discrimination ratio in novel object discrimination test, and retention and recall in passive avoidance paradigm. Additionally, trigonelline lowered hippocampal malondialdehyde (MDA) and acetylcholinesterase (AChE) activity and improved superoxide dismutase (SOD), catalase, and glutathione (GSH). Furthermore, trigonelline depressed hippocampal nuclear factor-kappaB (NF-κB), toll-like receptor 4 (TLR4), and tumor necrosis factor α (TNF α) in LPS-challenged rats. All of the effects of trigonelline followed a dose-dependent pattern and in some aspects, it acted even better than the routinely-used anti-inflammatory drug dexamethasone. Collectively, trigonelline is capable to diminish LPS-induced cognitive decline via suppression of hippocampal oxidative stress and inflammation and appropriate modulation of NF-κB/TLR4 and AChE activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Sun, Jian; Yang, Xiurong
2015-12-15
Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Qingqing; Hu, Yufang; Wu, Di; Ma, Shaohua; Wang, Jiao; Rao, Jiajia; Xu, Lihua; Xu, Huan; Shao, Huili; Guo, Zhiyong; Wang, Sui
2018-06-01
A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H 2 O 2 ), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H 2 O 2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H 2 O 2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC 5 0 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Specific α4β2 Nicotinic Acetylcholine Receptor Binding of [F-18]Nifene in the Rhesus Monkey
Hillmer, A.T.; Wooten, D.W.; Moirano, J.; Slesarev, M.; Barnhart, T.E.; Engle, J.W.; Nickles, R.J.; Murali, D.; Schneider, M.; Mukherjee, J.; Christian, B.T.
2013-01-01
Objective [F-18]Nifene is a PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChR) in the brain. This work assesses the in vivo binding and imaging characteristics of [F-18]nifene in rhesus monkeys for the development of PET experiments examining nAChR binding. Methods Dynamic PET imaging experiments with [F-18]nifene were acquired in 4 anesthetized macaca mulatta (rhesus) monkeys using a microPET P4 scanner. Data acquisition was initiated with a bolus injection of 109 ± 17 MBq [F-18]nifene and the time course of the radioligand in the brain was measured for up to 120 minutes. For two experiments, a displacement dose of (−)nicotine (0.03 mg/kg, i.v.) was given 45–60 minutes post injection and followed 30 minutes later with a second [F-18]nifene injection to measure radioligand nondisplaceable uptake. Time activity curves were extracted in the regions of the antereoventral thalamus (AVT), lateral geniculate nucleus region (LGN), frontal cortex, and the cerebellum (CB). Results The highest levels of [F-18]nifene uptake were observed in the AVT and LGN. Target-to-CB ratios reached maximum values of 3.3 ± 0.4 in the AVT and 3.2 ± 0.3 in the LG 30–45 minutes post-injection. Significant binding of [F-18]nifene was observed in the subiculum, insula cortex, temporal cortex, cingulate gyrus, frontal cortex, striatum, and midbrain areas. The (−)nicotine displaced bound [F-18]nifene to near background levels within 15 minutes post-drug injection. No discernable displacement was observed in the CB, suggesting its potential as a reference region. Logan graphical estimates using the CB as a reference region yielded binding potentials (BPND) of 1.6 ± 0.1 in the AVT, and 1.3 ± 0.1 in the LGN. The post-nicotine injection displayed uniform nondisplaceable uptake of [F-18]nifene throughout gray and white brain matter. Conclusions [F-18]Nifene exhibits rapid equilibration and a moderately high target to background binding profile in the α4β2* nAChR rich regions of the brain, thus providing favorable imaging characteristics as a PET radiotracer for nAChR assay. PMID:21674627
Erythrocyte acetylcholinesterase as biomarker of pesticide exposure: new and forgotten insights.
Assis, Caio R D; Linhares, Amanda G; Cabrera, Mariana P; Oliveira, Vagne M; Silva, Kaline C C; Marcuschi, Marina; Maciel Carvalho, Elba V M; Bezerra, Ranilson S; Carvalho, Luiz B
2018-05-24
Acetylcholinesterase (AChE) acts on the hydrolysis of acetylcholine, rapidly removing this neurotransmitter at cholinergic synapses and neuromuscular junctions as well as in neuronal growth and differentiation, modulation of cell adhesion ("electrotactins") and aryl-acylamidase activity (AAA). This enzyme is also found in erythrocyte, as 160 kDa dimer that anchors to the plasma membrane via glycophosphatidylinositol. The function of this enzyme in erythrocytes has not yet been elucidated; however, it is suspected to participate in cell-to-cell interactions. Here, a review on erythrocyte AChE characteristics and use as biomarker for organophosphorus and carbamate insecticides is presented since it is the first specific target/barrier of the action of these pesticides, besides plasma butyrylcholinesterase (BChE). However, some past and current methods have disadvantages: (a) not discriminating the activities of AChE and BChE; (b) low accuracy due to interference of hemoglobin in whole blood samples. On the other hand, extraction methods of hemoglobin-free erythrocyte AChE allows: (a) the freezing and transporting of samples; (b) samples free of colorimetric interference; (c) data from only erythrocyte AChE activity; (d) erythrocyte AChE specific activity presents higher correlation with the central nervous system AChE than other peripheral ChEs; (e) slow spontaneous regeneration against anti-ChEs agents of AChE in comparison to BChE, thus increasing the chances of detecting such compounds following longer interval after exposure. As monitoring perspectives, hemoglobin-free methodologies may be promising alternatives to assess the degree of exposure since they are not influenced by this interfering agent.
Yang, Zhong-Duo; Duan, Dong-Zhu; Du, Juan; Yang, Ming-Jun; Li, Shuo; Yao, Xiao-Jun
2012-01-01
Geissoschizine methyl ether (1), a newly discovered strong acetylcholinesterase (AChE) inhibitor, along with six weakly active alkaloids, vallesiachotamine (2), hisuteine (3), hirsutine (4), isorhynchophylline (5), cisocorynoxeine (6) and corynoxeine (7) have been isolated from Uncaria rhynchophylla. Geissoschizine methyl ether (1) inhibited 50% of AChE activity at concentrations of 3.7 ± 0.3 µg mL(-1) while the IC(50) value of physostigmine as a standard was 0.013 ± 0.002 µg mL(-1). The mode of AChE inhibition by 1 was reversible and non-competitive. In addition, molecular modelling was performed to explore the binding mode of inhibitor 1 at the active site of AChE.
Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE.
Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Fan, Yue; Shiuan, David; Liu, Jingbo; Chen, Feng
2018-02-21
Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL -1 . In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.
Shelar, Madhuri; Nanaware, Sadhana; Arulmozhi, S; Lohidasan, Sathiyanarayanan; Mahadik, Kakasaheb
2018-06-12
Sarasvata ghrita (SG), a polyherbal formulation from ayurveda, an ancient medicinal system of India, has been used to improve intelligence and memory, treat speech delay, speaking difficulties and low digestion power in children. Study aimed to validate the ethno use of SG in memory enhancement through systematic scientific protocol. The effect of SG and modern extracts of ingredients of SG was compared on cognitive function and neuroprotection in amyloid-β peptide 25-35(Aβ25-35) induced memory impairment in wistar rats. Further the underlying mechanism for neuroprotective activity was investigated. SG was prepared as per traditional method, ethanolic extract (EE) was prepared by conventional method and lipid based extract was prepared by modern extraction method. All extracts were standardised by newly developed HPLC method with respect to marker compounds. SG, EE and LE were administered orally to male Wistar rats at doses of 100,200 and 400 mg/kg Body Weight by feeding needle for a period of 21 days after the intracerebroventricular administration of Aβ25-35 bilaterally. Spatial memory of rats was tested using Morris water maze (MWM) and Radial arm maze (RAM) test. The possible underlying mechanisms for the cognitive improvement exhibited by SG, EE and LE was investigated through ex-vivo brain antioxidant effect, monoamine level estimation, acetylcholine esterase (AchE) inhibitory effect and Brain-derived neurotropic factor (BDNF) levels estimation. SG, EE and LE were analyzed by HPLC method, results showed that EE extract has high percent of selected phytoconstituents as compared with SG and LE. SG and LE decrease escape latency and searching distance in a dose dependant manner during MWM test. In case of RAM significant decrease in number of errors and increase in number of correct choices indicate an elevation in retention and recall aspects of learning and memory after administration of SG an LE. SG and LE extract can efficiently prevent accumulation of β-amyloid plaque in hippocampus region. There was increase in SOD, GSH, CAT and NO level and decrease in MDA levels in SG and LE administered animals. SG and LE have found to exhibit AchE inhibitiory activity and significant dose-dependant increase in BDNF level in the plasma. SG and LE significantly increased the levels of noradrenaline, dopamine and 5-hydroxytryptamine in the brain. The study validated the neuroprotective activity of SG. The study concludes the extraction efficiency of SG for selected phytoconstituents is less than modern methods. However the neuroprotective activity of SG and LE was found to be greater than EE. Copyright © 2018. Published by Elsevier B.V.