Effects of non-pharmacological pain treatments on brain states
Jensen, Mark P.; Sherlin, Leslie H.; Askew, Robert L.; Fregni, Felipe; Witkop, Gregory; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin
2013-01-01
Objective To (1) evaluate the effects of a single session of four non-pharmacological pain interventions, relative to a sham tDCS procedure, on pain and electroencephalogram- (EEG-) assessed brain oscillations, and (2) determine the extent to which procedure-related changes in pain intensity are associated with changes in brain oscillations. Methods 30 individuals with spinal cord injury and chronic pain were given an EEG and administered measures of pain before and after five procedures (hypnosis, meditation, transcranial direct current stimulation [tDCS], and neurofeedback) and a control sham tDCS procedure. Results Each procedure was associated with a different pattern of changes in brain activity, and all active procedures were significantly different from the control procedure in at least three bandwidths. Very weak and mostly non-significant associations were found between changes in EEG-assessed brain activity and pain. Conclusions Different non-pharmacological pain treatments have distinctive effects on brain oscillation patterns. However, changes in EEG-assessed brain oscillations are not significantly associated with changes in pain, and therefore such changes do not appear useful for explaining the benefits of these treatments. Significance The results provide new findings regarding the unique effects of four non-pharmacological treatments on pain and brain activity. PMID:23706958
Boly, M; Coleman, M R; Davis, M H; Hampshire, A; Bor, D; Moonen, G; Maquet, P A; Pickard, J D; Laureys, S; Owen, A M
2007-07-01
The assessment of voluntary behavior in non-communicative brain injured patients is often challenging due to the existence of profound motor impairment. In the absence of a full understanding of the neural correlates of consciousness, even a normal activation in response to passive sensory stimulation cannot be considered as proof of the presence of awareness in these patients. In contrast, predicted activation in response to the instruction to perform a mental imagery task would provide evidence of voluntary task-dependent brain activity, and hence of consciousness, in non-communicative patients. However, no data yet exist to indicate which imagery instructions would yield reliable single subject activation. The aim of the present study was to establish such a paradigm in healthy volunteers. Two exploratory experiments evaluated the reproducibility of individual brain activation elicited by four distinct mental imagery tasks. The two most robust mental imagery tasks were found to be spatial navigation and motor imagery. In a third experiment, where these two tasks were directly compared, differentiation of each task from one another and from rest periods was assessed blindly using a priori criteria and was correct for every volunteer. The spatial navigation and motor imagery tasks described here permit the identification of volitional brain activation at the single subject level, without a motor response. Volunteer as well as patient data [Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., Laureys, S., Pickard J.D., 2006. Detecting awareness in the vegetative state. Science 313, 1402] strongly suggest that this paradigm may provide a method for assessing the presence of volitional brain activity, and thus of consciousness, in non-communicative brain-injured patients.
Spatial Rotation and Recognizing Emotions: Gender Related Differences in Brain Activity
ERIC Educational Resources Information Center
Jausovec, Norbert; Jausovec, Ksenija
2008-01-01
In three experiments, gender and ability (performance and emotional intelligence) related differences in brain activity--assessed with EEG methodology--while respondents were solving a spatial rotation tasks and identifying emotions in faces were investigated. The most robust gender related difference in brain activity was observed in the lower-2…
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas
2013-01-01
The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338
Estévez, Natalia; Yu, Ningbo; Brügger, Mike; Villiger, Michael; Hepp-Reymond, Marie-Claude; Riener, Robert; Kollias, Spyros
2014-11-01
In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.
The integration of brain dissection within the medical neuroscience laboratory enhances learning.
Rae, Guenevere; Cork, R John; Karpinski, Aryn C; Swartz, William J
2016-11-01
The purpose of this study was to design a one-hour brain dissection protocol for a medical neuroscience course and evaluate the short and long-term effects of its implementation on medical students. First-year medical students (n = 166) participated in a brain dissection activity that included dissection of the basal nuclei and associated deep brain structures. Short-term retention was assessed by administering identical pre- and post-activity tests involving identification of brain structures. Following the brain dissection, the students' posttest scores were significantly higher (68.8% ± 17.8%; mean percent score ± SD) than their pretest scores (35.8% ± 20.0%) (P ≤ 0.0001). Long-term retention was evaluated by conducting an identical assessment five months after completion of the course. Students who participated in the dissection activity (n = 80) had significantly higher scores (46.6% ± 23.8%) than the students who did not participate in the dissection activity (n = 85) (38.1% ± 23.9%) (P ≤ 0.05). In addition to the long-term retention assessment, the NBME ® Subject Examination scores of students who participated in the dissection activity were significantly higher than the students who did not participate in the dissection activity (P ≤ 0.01). Results suggest that this succinct brain dissection activity may be a practical addition to an undergraduate medical neuroscience course for increasing the effectiveness of neuroanatomy training. This effect may have long-term benefits on knowledge retention and may be correlated with higher performance levels on standardized subject examinations. Anat Sci Educ 9: 565-574. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Tarvonen-Schröder, Sinikka; Tenovuo, Olli; Kaljonen, Anne; Laimi, Katri
2018-06-15
To investigate functioning measured with the 12-item World Health Organization Disability Assessment Schedule (WHODAS 2.0) in patients with mild, moderate and severe traumatic brain injury, and to compare patients' experiences with assessments made by their significant others and by consultant neurologists. A total of 112 consecutive patients with traumatic brain injury (29 mild, 43 moderate, 40 severe) and their significant others completed a 12-item WHODAS 2.0 survey. A neurologist assessed functioning with the International Classification of Functioning, Disability and Health minimal generic set. The total patient and proxy WHODAS 2.0 sum score was rated as severe, and impairments in household tasks, learning, community life, emotional functions, concentrating, dealing with strangers, maintaining friendships, and working ability as around moderate in all 3 severity groups. In standing, walking, washing, and dressing oneself the reported impairments increased from mild in mild traumatic brain injury to moderate in severe traumatic brain injury. A neurologist rated the overall functioning, working ability, and motor activities most impaired in severe traumatic brain injury, while there were no between-group differences in energy and drive functions and emotional functions. Patients with chronic traumatic brain injury perceive a diversity of significant difficulties in activities and participation irrespective of the severity of the injury. We recommend assessing disability in traumatic brain injury with the short and understandable WHODAS 2.0 scale, when planning client-oriented services.
Baik, Jong Sam; Jang, Seong Ho; Park, Dong Sik
2009-01-01
To develop an objective and scientific method to evaluate the brain injured and brain diseased persons with motor dysfunction, American Medical Association's Guides to the Evaluation of Permanent Impairment was used as an exemplar. After the motor dysfunction due to brain injury or brain disease was confirmed, active range of motion and muscle strength of affected extremities were measured. Also, the total function of extremities was evaluated through the assessment of activities of daily living, fine coordination of hand, balance and gait. Then, the total score of manual muscle test and functional assessment of impaired upper and lower extremity were added, respectively. Spasticity of upper and lower extremity was used as minus factors. Patients with movement disorder such as Parkinson's disease were assessed based on the degree of dysfunction in response to medication. We develop a new rating system based on the concept of total score. PMID:19503680
Mura, Marco; Castagna, Alessandro; Fontani, Vania; Rinaldi, Salvatore
2012-01-01
Purpose This study assessed changes in functional dysmetria (FD) and in brain activation observable by functional magnetic resonance imaging (fMRI) during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC) pulse, according to the precisely defined neuropostural optimization (NPO) protocol. Population and methods Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO. Results A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task. Conclusion Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD. PMID:22536071
Kontos, A P; Huppert, T J; Beluk, N H; Elbin, R J; Henry, L C; French, J; Dakan, S M; Collins, M W
2014-12-01
There is no accepted clinical imaging modality for concussion, and current imaging modalities including fMRI, DTI, and PET are expensive and inaccessible to most clinics/patients. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and low-cost imaging modality that can measure brain activity. The purpose of this study was to compare brain activity as measured by fNIRS in concussed and age-matched controls during the performance of cognitive tasks from a computerized neurocognitive test battery. Participants included nine currently symptomatic patients aged 18-45 years with a recent (15-45 days) sport-related concussion and five age-matched healthy controls. The participants completed a computerized neurocognitive test battery while wearing the fNIRS unit. Our results demonstrated reduced brain activation in the concussed subject group during word memory, (spatial) design memory, digit-symbol substitution (symbol match), and working memory (X's and O's) tasks. Behavioral performance (percent-correct and reaction time respectively) was lower for concussed participants on the word memory, design memory, and symbol match tasks than controls. The results of this preliminary study suggest that fNIRS could be a useful, portable assessment tool to assess reduced brain activation and augment current approaches to assessment and management of patients following concussion.
ERIC Educational Resources Information Center
Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack
2014-01-01
The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…
Gennaro, Federico; de Bruin, Eling D.
2018-01-01
Assessment of the cortical role during bipedalism has been a methodological challenge. While surface electroencephalography (EEG) is capable of non-invasively measuring cortical activity during human locomotion, it is associated with movement artifacts obscuring cerebral sources of activity. Recently, statistical methods based on blind source separation revealed potential for resolving this issue, by segregating non-cerebral/artifactual from cerebral sources of activity. This step marked a new opportunity for the investigation of the brains’ role while moving and was tagged mobile brain/body imaging (MoBI). This methodology involves simultaneous mobile recording of brain activity with several other body behavioral variables (e.g., muscle activity and kinematics), through wireless recording wearable devices/sensors. Notably, several MoBI studies using EEG–EMG approaches recently showed that the brain is functionally connected to the muscles and active throughout the whole gait cycle and, thus, rejecting the long-lasting idea of a solely spinal-driven bipedalism. However, MoBI and brain/muscle connectivity assessments during human locomotion are still in their fledgling state of investigation. Mobile brain/body imaging approaches hint toward promising opportunities; however, there are some remaining pitfalls that need to be resolved before considering their routine clinical use. This article discusses several of these pitfalls and proposes research to address them. Examples relate to the validity, reliability, and reproducibility of this method in ecologically valid scenarios and in different populations. Furthermore, whether brain/muscle connectivity within the MoBI framework represents a potential biomarker in neuromuscular syndromes where gait disturbances are evident (e.g., age-related sarcopenia) remains to be determined. PMID:29535995
Analysis of brain patterns using temporal measures
Georgopoulos, Apostolos
2015-08-11
A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.
Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L
2014-09-01
Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.
Huppert, T. J.; Beluk, N. H.; Elbin, R. J.; Henry, L. C.; French, J.; Dakan, S. M.; Collins, M. W.
2016-01-01
There is no accepted clinical imaging modality for concussion, and current imaging modalities including fMRI, DTI, and PET are expensive and inaccessible to most clinics/ patients. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and low-cost imaging modality that can measure brain activity. The purpose of this study was to compare brain activity as measured by fNIRS in concussed and age-matched controls during the performance of cognitive tasks from a computerized neurocognitive test battery. Participants included nine currently symptomatic patients aged 18–45 years with a recent (15–45 days) sport-related concussion and five age-matched healthy controls. The participants completed a computerized neurocognitive test battery while wearing the fNIRS unit. Our results demonstrated reduced brain activation in the concussed subject group during word memory, (spatial) design memory, digit-symbol substitution (symbol match), and working memory (X’s and O’s) tasks. Behavioral performance (percent-correct and reaction time respectively) was lower for concussed participants on the word memory, design memory, and symbol match tasks than controls. The results of this preliminary study suggest that fNIRS could be a useful, portable assessment tool to assess reduced brain activation and augment current approaches to assessment and management of patients following concussion. PMID:24477579
Kim, Gwang-Won; Jeong, Gwang-Woo
2017-02-20
The aging process and menopausal transition are important factors in sexual dysfunction of menopausal women. No neuroimaging study has assessed the age- and menopause-related changes on brain activation areas associated with sexual arousal in menopausal women. The purpose of this study was to evaluate the time course of regional brain activity associated with sexual arousal evoked by visual stimulation in premenopausal and menopausal women, and further to assess the effect of menopause on the brain areas associated with sexual arousal in menopausal women using functional magnetic resonance imaging (fMRI). Thirty volunteers consisting of 15 premenopausal and 15 menopausal women underwent the fMRI. For the activation condition, volunteers viewed sexually arousing visual stimulation. The brain areas with significantly higher activation in premenopausal women compared with menopausal women included the thalamus, amygdala, and anterior cingulate cortex (ACC) using analysis of covariance adjusting for age (p<0.005). Blood-oxygen-level-dependent signal changes in the amygdala while viewing erotic video were positively correlated with estrogen levels in the two groups. Our findings suggest that reduced brain activity of the thalamus, amygdala, and ACC in menopausal women may be associated with menopause-related decrease in sexual arousal. These findings might help elucidate the neural mechanisms associated with sexual dysfunction in menopausal women. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L
2014-08-26
The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.
Hyper-resting brain entropy within chronic smokers and its moderation by Sex.
Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze
2016-07-05
Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers' brains, however less is known about the temporal dynamics within smokers' brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking.
Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria
2015-01-01
Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870
Decoding Spontaneous Emotional States in the Human Brain
Kragel, Philip A.; Knodt, Annchen R.; Hariri, Ahmad R.; LaBar, Kevin S.
2016-01-01
Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738
ICA model order selection of task co-activation networks.
Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.
ICA model order selection of task co-activation networks
Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802
Brain Activity on Navigation in Virtual Environments.
ERIC Educational Resources Information Center
Mikropoulos, Tassos A.
2001-01-01
Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…
White, David J; Cox, Katherine H M; Hughes, Matthew E; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B
2016-01-01
This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18-40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment ( n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.
White, David J.; Cox, Katherine H. M.; Hughes, Matthew E.; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B.
2016-01-01
This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18–40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity. PMID:27994548
Broetz, Doris; Braun, Christoph; Weber, Cornelia; Soekadar, Surjo R; Caria, Andrea; Birbaumer, Niels
2010-09-01
There is no accepted and efficient rehabilitation strategy to reduce focal impairments for patients with chronic stroke who lack residual movements. A 67-year-old hemiplegic patient with no active finger extension was trained with a brain-computer interface (BCI) combined with a specific daily life-oriented physiotherapy. The BCI used electrical brain activity (EEG) and magnetic brain activity (MEG) to drive an orthosis and a robot affixed to the patient's affected upper extremity, which enabled him to move the paralyzed arm and hand driven by voluntary modulation of micro-rhythm activity. In addition, the patient practiced goal-directed physiotherapy training. Over 1 year, he completed 3 training blocks. Arm motor function, gait capacities (using Fugl-Meyer Assessment, Wolf Motor Function Test, Modified Ashworth Scale, 10-m walk speed, and goal attainment score), and brain reorganization (functional MRI, MEG) were repeatedly assessed. The ability of hand and arm movements as well as speed and safety of gait improved significantly (mean 46.6%). Improvement of motor function was associated with increased micro-oscillations in the ipsilesional motor cortex. This proof-of-principle study suggests that the combination of BCI training with goal-directed, active physical therapy may improve the motor abilities of chronic stroke patients despite apparent initial paralysis.
Increased resting-state brain entropy in Alzheimer's disease.
Xue, Shao-Wei; Guo, Yonghu
2018-03-07
Entropy analysis of resting-state functional MRI (R-fMRI) is a novel approach to characterize brain temporal dynamics and facilitates the identification of abnormal brain activity caused by several disease conditions. However, Alzheimer's disease (AD)-related brain entropy mapping based on R-fMRI has not been assessed. Here, we measured the sample entropy and voxel-wise connectivity of the network degree centrality (DC) of the intrinsic brain activity acquired by R-fMRI in 26 patients with AD and 26 healthy controls. Compared with the controls, AD patients showed increased entropy in the middle temporal gyrus and the precentral gyrus and also showed decreased DC in the precuneus. Moreover, the magnitude of the negative correlation between local brain activity (entropy) and network connectivity (DC) was increased in AD patients in comparison with healthy controls. These findings provide new evidence on AD-related brain entropy alterations.
DiBona, G F
2003-03-01
Administration of angiotensin II (angII) into the cerebral ventricles or specific brain sites impairs arterial baroreflex regulation of renal sympathetic nerve activity (SNA). Further insight into this effect was derived from: (a) using specific non-peptide angII receptor antagonists to assess the role of endogenous angII acting on angII receptor subtypes, (b) microinjection of angII receptor antagonists into brain sites behind an intact blood-brain barrier to assess the role of endogenous angII of brain origin and (c) alterations in dietary sodium intake, a known physiological regulator of activity of the renin-angiotensin system (RAS), to assess the ability to physiologically regulate the activity of the brain RAS. In rats in balance on low, normal or dietary sodium intake, losartan or candesartan was injected into the lateral cerebral ventricle or the rostral ventrolateral medulla (RVLM) and the effects on basal renal SNA and the arterial baroreflex sigmoidal relationship between renal SNA and arterial pressure were determined. With both routes of administration, the effects were proportional to the activity of the RAS as indexed by plasma renin activity (PRA). The magnitude of both the decrease in basal renal SNA and the parallel resetting of arterial baroreflex regulation of renal SNA to a lower arterial pressure was greatest in low-sodium rats with highest PRA and least in high-sodium rats with lowest PRA. Disinhibition of the paraventricular nucleus (PVN) by injection of bicuculline causes pressor, tachycardic and renal sympathoexcitatory responses mediated via an angiotensinergic projection from PVN to RVLM. In comparison with responses in normal sodium rats, these responses were greatly diminished in high-sodium rats and greatly enhanced in low-sodium rats. Physiological changes in the activity of the RAS produced by alterations in dietary sodium intake regulate the contribution of endogenous angII of brain origin in the modulation of arterial baroreflex regulation of renal SNA.
ERIC Educational Resources Information Center
Wilke, Marko; Lidzba, Karen; Krageloh-Mann, Ingeborg
2009-01-01
Instead of assessing activation in distinct brain regions, approaches to investigating the networks underlying distinct brain functions have come into the focus of neuroscience research. Here, we provide a completely data-driven framework for assessing functional and causal connectivity in functional magnetic resonance imaging (fMRI) data,…
Hyper-resting brain entropy within chronic smokers and its moderation by Sex
Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze
2016-01-01
Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking. PMID:27377552
Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers.
Culbertson, Christopher S; Bramen, Jennifer; Cohen, Mark S; London, Edythe D; Olmstead, Richard E; Gan, Joanna J; Costello, Matthew R; Shulenberger, Stephanie; Mandelkern, Mark A; Brody, Arthur L
2011-05-01
Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Randomized, double-blind, before-after controlled trial. Academic brain imaging center. Thirty nicotine-dependent smokers (paid volunteers). Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions.
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo
2016-01-01
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.
The Correlation Between Cognitive and Movement Shifting and Brain Activity in Children With ADHD.
Kang, Kyoung Doo; Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F
2018-05-01
We assessed the correlation between the deficits of cognition, movement, and brain activity in children with Attention Deficit Hyperactvity Disorder (ADHD). We recruited 15 children with ADHD and 15 age- and sex-matched healthy control participants. Clinical symptoms, cognitive shifting, movement shifting, and brain activity were assessed using the Korean ADHD Rating Scale, the Wisconsin Card Sorting Test (WCST), the 7- and 14-ring drill test with hop jumps (7 HJ and 14 HJ), and 3.0 Tesla functional magnetic resonance imaging scanner, respectively. ADHD children showed an increased distance traveled and decreased speed on the 14 HJ task. In response to the WCST task, ADHD children showed decreased activation within right gyrus. Total distance on the 14 HJ task was negatively correlated with the mean β value of Cluster 2 in ADHD children. These results suggested that children with ADHD showed difficulty with attention shifting as well as with movement shifting.
Starr, James M; Graham, Stephen E; Ross, David G; Tornero-Velez, Rogelio; Scollon, Edward J; Devito, Michael J; Crofton, Kevin M; Wolansky, Marcelo J; Hughes, Michael F
2014-06-05
National surveys of United States households and child care centers have demonstrated that pyrethroids are widely distributed in indoor habited dwellings and this suggests that co-exposure to multiple pyrethroids occurs in nonoccupational settings. The purpose of this research was to use an environmentally relevant mixture of pyrethroids to assess their cumulative effect on motor activity and develop kinetic profiles for these pyrethroids and their hydrolytic metabolites in brain and blood of rats. Rats were dosed orally at one of two levels (1.5× or 5.0× the calculated dose that decreases rat motor activity by 30%) with a mixture of cypermethrin, deltamethrin, esfenvalerate, cis-/trans-permethrin, and β-cyfluthrin in corn oil. At 1, 2, 4, 8, or 24h after dosing, the motor activity of each animal was assessed and the animals sacrificed. Concentrations of pyrethroids in brain and blood, and the following metabolites: cis-/trans-dichlorovinyl-dimethylcyclopropane-carboxylic acid, 3-phenoxybenzoic acid, 3-phenoxybenzyl alcohol, 4-fluoro-3-phenoxybenzoic acid, and cis-dibromovinyl-dimethylcyclopropane-carboxylic acid were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS). Using this pyrethroid mixture in rats, the results suggest there is greater metabolism of trans-permethrin prior to entering the systemic circulatory system. All pyrethroids had tissue half-lives (t1/2) of less than 5h, excepting esfenvalerate in brain. At early time points, relative pyrethroid brain concentrations approximated their dose mixture proportions and a sigmoidal Emax model described the relationship between motor activity decrease and total pyrethroid brain concentration. In blood, the t1/2's of the cyclopropane metabolites were longer than the phenoxybenzoic metabolites. However, relative to their respective precursors, concentrations of the phenoxybenzoic acids were much higher than concentrations of the cyclopropane metabolites. Brain concentrations of all metabolites were low relative to blood concentrations. This implies limited metabolite penetration of the blood-brain barrier and little metabolite formation within the brain. toxicokinetic differences between the pyrethroids did not appear to be important determinants of their relative potency and their effect on motor activity was consistent with a pyrethroid dose additive model. Published by Elsevier Ireland Ltd.
Hadanny, A.; Golan, H.; Fishlev, G.; Bechor, Y.; Volkov, O.; Suzin, G.; Ben-Jacob, E.; Efrati, S.
2015-01-01
Abstract Purpose: Cognitive impairment may occur in 42–50% of cardiac arrest survivors. Hyperbaric oxygen therapy (HBO2) has recently been shown to have neurotherapeutic effects in patients suffering from chronic cognitive impairments (CCI) consequent to stroke and mild traumatic brain injury. The objective of this study was to assess the neurotherapeutic effect of HBO2 in patients suffering from CCI due to cardiac arrest. Methods: Retrospective analysis of patients with CCI caused by cardiac arrest, treated with 60 daily sessions of HBO2. Evaluation included objective computerized cognitive tests (NeuroTrax), Activity of Daily Living (ADL) and Quality of life questionnaires. The results of these tests were compared with changes in brain activity as assessed by single photon emission computed tomography (SPECT) brain imaging. Results: The study included 11 cases of CCI patients. Patients were treated with HBO2, 0.5–7.5 years (mean 2.6 ± 0.6 years) after the cardiac arrest. HBO2 was found to induce modest, but statistically significant improvement in memory, attention and executive function (mean scores) of 12% , 20% and 24% respectively. The clinical improvements were found to be well correlated with increased brain activity in relevant brain areas as assessed by computerized analysis of the SPECT imaging. Conclusions: Although further research is needed, the results demonstrate the beneficial effects of HBO2 on CCI in patients after cardiac arrest, even months to years after the acute event. PMID:26409406
Spetter, Maartje S; de Graaf, Cees; Viergever, Max A; Smeets, Paul A M
2012-04-01
After food consumption, the motivation to eat (wanting) decreases and associated brain reward responses change. Wanting-related brain responses and how these are affected by consumption of specific foods are ill documented. Moreover, the predictive value of food-induced brain responses for subsequent consumption has not been assessed. We aimed to determine the effects of consumption of sweet and savory foods on taste activation in the brain and to assess how far taste activation can predict subsequent ad libitum intake. Fifteen healthy men (age: 27 ± 2 y, BMI: 22.0 ± 1.5 kg/m2) participated in a randomized crossover trial. After a >3-h fast, participants were scanned with the use of functional MRI before and after consumption of a sweet or savory preload (0.35 L fruit or tomato juice) on two occasions. After the scans, the preload juice was consumed ad libitum. During scanning, participants tasted the juices and rated their pleasantness. Striatal taste activation decreased after juice consumption, independent of pleasantness. Sweet and savory taste activation were not differentially affected by consumption. Anterior cingulate taste activation predicted subsequent ad libitum intake of sweet (r = -0.78; P < 0.001(uncorrected)) as well as savory juice (r = -0.70; P < 0.001(uncorrected)). In conclusion, we showed how taste activation of brain reward areas changes following food consumption. These changes may be associated with the food's physiological relevance. Further, the results suggest that anterior cingulate taste activation reflects food-specific satiety. This extends our understanding of the representation of food specific-appetite in the brain and shows that neuroimaging may provide objective and more accurate measures of food motivation than self-report measures.
Okumura, Yuka; Asano, Yoshitaka; Takenaka, Shunsuke; Fukuyama, Seisuke; Yonezawa, Shingo; Kasuya, Yukinori; Shinoda, Jun
2014-01-01
The aim of this study was to objectively evaluate the brain activity potential of patients with impaired consciousness in a chronic stage of diffuse brain injury (DBI) using functional MRI (fMRI) following music stimulation (MS). Two patients in a minimally conscious state (MCS) and five patients in a vegetative state (VS) due to severe DBI were enrolled along with 21 healthy adults. This study examined the brain regions activated by music and assessed topographical differences of the MS-activated brain among healthy adults and these patients. MS was shown to activate the bilateral superior temporal gyri (STG) of both healthy adults and patients in an MCS. In four of five patients in a VS, however, no significant activation in STG could be induced by the same MS. The remaining patient in a VS displayed the same MS-induced brain activation in STG as healthy adults and patients in an MCS and this patient's status also improved to an MCS 4 months after the study. The presence of STG activation by MS may predict a possible improvement of patients in a VS to MCS and fMRI employing MS may be a useful modality to objectively evaluate consciousness in these patients.
Veretennikoff, Katie; Walker, David; Biggs, Vivien; Robinson, Gail
2017-09-24
Changes in cognition, behaviour and emotion frequently occur in patients with primary and secondary brain tumours. This impacts the ability to make considered decisions, especially following surgical resection, which is often overlooked in the management of patients. Moreover, the impact of cognitive deficits on decision making ability affects activities of daily living and functional independence. The assessment process to ascertain decision making capacity remains a matter of debate. One avenue for evaluating a patient's ability to make informed decisions in the context of brain tumour resection is neuropsychological assessment. This involves the assessment of a wide range of cognitive abilities on standard measurement tools, providing a robust approach to ascertaining capacity. Evidence has shown that a comprehensive and tailored neuropsychological assessment has greater sensitivity than brief cognitive screening tools to detect subtle and/or specific cognitive deficits in brain tumours. It is the precise nature and severity of any cognitive deficits that determines any implications for decision making capacity. This paper focuses on cognitive deficits and decision making capacity following surgical resection of both benign and malignant, and primary and secondary brain tumours in adult patients, and the implications for patients' ability to consent to future medical treatment and make decisions related to everyday activities.
Veretennikoff, Katie; Walker, David; Biggs, Vivien; Robinson, Gail
2017-01-01
Changes in cognition, behaviour and emotion frequently occur in patients with primary and secondary brain tumours. This impacts the ability to make considered decisions, especially following surgical resection, which is often overlooked in the management of patients. Moreover, the impact of cognitive deficits on decision making ability affects activities of daily living and functional independence. The assessment process to ascertain decision making capacity remains a matter of debate. One avenue for evaluating a patient’s ability to make informed decisions in the context of brain tumour resection is neuropsychological assessment. This involves the assessment of a wide range of cognitive abilities on standard measurement tools, providing a robust approach to ascertaining capacity. Evidence has shown that a comprehensive and tailored neuropsychological assessment has greater sensitivity than brief cognitive screening tools to detect subtle and/or specific cognitive deficits in brain tumours. It is the precise nature and severity of any cognitive deficits that determines any implications for decision making capacity. This paper focuses on cognitive deficits and decision making capacity following surgical resection of both benign and malignant, and primary and secondary brain tumours in adult patients, and the implications for patients’ ability to consent to future medical treatment and make decisions related to everyday activities. PMID:28946652
Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain
2014-10-01
between blood cholinesterase activity and neurobehavioral deficits (Rohlman et al., 2011). Finally, one additional argument against the premise that AChE...baseline scan (repeated exposure CPF group only). 2.4 Cholinesterase activity Cholinesterase activity was assessed in brain using the method of...Moser VC.2006. Behavioral toxicity of cholinesterase inhibitors. In: Gupta, RC., editor. Toxicology of Organophosphate and Carbamate Compounds
Functional vision in children with perinatal brain damage.
Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški
2014-09-01
Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.
2016-01-01
Currently, anesthesiologists use clinical parameters to directly measure the depth of anesthesia (DoA). This clinical standard of monitoring is often combined with brain monitoring for better assessment of the hypnotic component of anesthesia. Brain monitoring devices provide indices allowing for an immediate assessment of the impact of anesthetics on consciousness. However, questions remain regarding the mechanisms underpinning these indices of hypnosis. By briefly describing current knowledge of the brain's electrical activity during general anesthesia, as well as the operating principles of DoA monitors, the aim of this work is to simplify our understanding of the mathematical processes that allow for translation of complex patterns of brain electrical activity into dimensionless indices. This is a challenging task because mathematical concepts appear remote from clinical practice. Moreover, most DoA algorithms are proprietary algorithms and the difficulty of exploring the inner workings of mathematical models represents an obstacle to accurate simplification. The limitations of current DoA monitors — and the possibility for improvement — as well as perspectives on brain monitoring derived from recent research on corticocortical connectivity and communication are also discussed. PMID:27066200
Sowman, Paul F; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W
2014-01-01
The neural causes of stuttering remain unknown. One explanation comes from neuroimaging studies that have reported abnormal lateralization of activation in the brains of people who stutter. However, these findings are generally based on data from adults with a long history of stuttering, raising the possibility that the observed lateralization anomalies are compensatory rather than causal. The current study investigated lateralization of brain activity in language-related regions of interest in young children soon after the onset of stuttering. We tested 24 preschool-aged children, half of whom had a positive diagnosis of stuttering. All children participated in a picture-naming experiment whilst their brain activity was recorded by magnetoencephalography. Source analysis performed during an epoch prior to speech onset was used to assess lateralized activation in three regions of interest. Activation was significantly lateralized to the left hemisphere in both groups and not different between groups. This study shows for the first time that significant speech preparatory brain activation can be identified in young children during picture-naming and supports the contention that, in stutterers, aberrant lateralization of brain function may be the result of neuroplastic adaptation that occurs as the condition becomes chronic.
Effect of Bupropion Treatment on Brain Activation Induced by Cigarette-Related Cues in Smokers
Culbertson, Christopher S.; Bramen, Jennifer; Cohen, Mark S.; London, Edythe D.; Olmstead, Richard E.; Gan, Joanna J.; Costello, Matthew R.; Shulenberger, Stephanie; Mandelkern, Mark A.; Brody, Arthur L.
2011-01-01
Context Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. Objective To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Design Randomized, double-blind, before-after controlled trial. Setting Academic brain imaging center. Participants Thirty nicotine-dependent smokers (paid volunteers). Interventions Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Main Outcome Measures Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Results Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Conclusions Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions. PMID:21199957
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level ofmore » neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. In conclusion, our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses tostress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.« less
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; ...
2016-02-03
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level ofmore » neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. In conclusion, our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses tostress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.« less
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo
2016-01-01
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888
Bagarinao, Epifanio; Yoshida, Akihiro; Ueno, Mika; Terabe, Kazunori; Kato, Shohei; Isoda, Haruo; Nakai, Toshiharu
2018-01-01
Motor imagery (MI), a covert cognitive process where an action is mentally simulated but not actually performed, could be used as an effective neurorehabilitation tool for motor function improvement or recovery. Recent approaches employing brain-computer/brain-machine interfaces to provide online feedback of the MI during rehabilitation training have promising rehabilitation outcomes. In this study, we examined whether participants could volitionally recall MI-related brain activation patterns when guided using neurofeedback (NF) during training. The participants' performance was compared to that without NF. We hypothesized that participants would be able to consistently generate the relevant activation pattern associated with the MI task during training with NF compared to that without NF. To assess activation consistency, we used the performance of classifiers trained to discriminate MI-related brain activation patterns. Our results showed significantly higher predictive values of MI-related activation patterns during training with NF. Additionally, this improvement in the classification performance tends to be associated with the activation of middle temporal gyrus/inferior occipital gyrus, a region associated with visual motion processing, suggesting the importance of performance monitoring during MI task training. Taken together, these findings suggest that the efficacy of MI training, in terms of generating consistent brain activation patterns relevant to the task, can be enhanced by using NF as a mechanism to enable participants to volitionally recall task-related brain activation patterns.
Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.
Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C
2014-12-01
The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
Analyzing and Assessing Brain Structure with Graph Connectivity Measures
2014-05-09
structural brain networks, i.e. determining which regions of the brain are physically connected. Meanwhile, functional MRI ( fMRI ) yields an image of...produced by fMRI is a map of which parts are of the brain are active and which are not at a given time. In creating functional networks, regions of...the brain which often activitate together, i.e., often show up on fMRI as deoxygenated regions together, are considered connected. DTI allows the
Saleh, Dalia O; Ahmed, Rania F; Amin, Mohamed M
2017-03-01
The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day) -1 ) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet-fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet-induced NASH in rats.
Tourette syndrome and other chronic tic disorders: an update on clinical management.
Martino, Davide; Pringsheim, Tamara M
2018-02-01
The management of Tourette syndrome (TS) and other chronic tic disorders occurs in multiple stages and begins with comprehensive assessment and complex psychoeducation. Behavioral and pharmacological interventions (second stage) are needed when tics cause physical or psychosocial impairment. Deep brain stimulation surgery or experimental therapies represent the third stage. Areas covered: Discussed are recent advances in assessment and therapy of chronic tic disorders, encompassing the three stages of intervention, with the addition of experimental, non-invasive brain stimulation strategies. A PubMed search was performed using as keywords: 'tic disorders', 'Tourette syndrome', 'assessment', 'rating scales', 'behavioral treatment', 'pharmacological treatment', 'deep brain stimulation', 'transcranial magnetic (or current) stimulation', and 'transcranial current stimulation'. More than 300 peer-reviewed articles were evaluated. The studies discussed have been selected on the basis of novelty and impact. Expert commentary: Comprehensive assessment of tic disorders and psychoeducation are crucial to a correct active management approach. Behavioral treatments represent first line of active interventions, with increasing potential offered by telehealth. Antipsychotics and alpha agonists remain first line pharmacological interventions for tics, although VMAT-2 inhibitors appear promising. Deep brain stimulation is a potential option for medically refractory, severely disabled patients with tics, but age and target selection require further investigation.
Zhu, Xiao-Hong; Lu, Ming; Chen, Wei
2018-07-01
Brain energy metabolism relies predominantly on glucose and oxygen utilization to generate biochemical energy in the form of adenosine triphosphate (ATP). ATP is essential for maintaining basal electrophysiological activities in a resting brain and supporting evoked neuronal activity under an activated state. Studying complex neuroenergetic processes in the brain requires sophisticated neuroimaging techniques enabling noninvasive and quantitative assessment of cerebral energy metabolisms and quantification of metabolic rates. Recent state-of-the-art in vivo X-nuclear MRS techniques, including 2 H, 17 O and 31 P MRS have shown promise, especially at ultra-high fields, in the quest for understanding neuroenergetics and brain function using preclinical models and in human subjects under healthy and diseased conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Prevention of Blast-Related Injuries
2017-09-01
allow early screening and assessment of brain abnormality in soldiers to enable timely therapeutic intervention. The current study reports on the...use of qEEG in blast-induced brain injury using a swine model. The purposes are to determine if qEEG can detect brain activity abnormalities early...brain functional abnormalities and deficits in absence of any clinical mTBI symptoms. Methods such as EEG-wavelet entropy measures [36] and Shannon
Yang, Yan-Fang; Zhang, Lei; Yang, Xiu-Wei
2018-01-20
Angelicae Pubescentis Radix (APR) is a widely-used traditional Chinese medicine. Pharmacological studies have begun to probe its biological activities on neurological disorders recently. To assess the brain penetration and distribution of APR, a validated ultra-performance liquid chromatography tandem mass spectrometry method was applied to the simultaneous determinations of the main coumarins from APR in the rat cerebrospinal fluid (CSF) and brain after oral administration of APR extract, including psoralen, xanthotoxin, bergapten, isoimperatorin, columbianetin, columbianetin acetate, columbianadin, oxypeucedanin hydrate, angelol B, osthole, meranzin hydrate and nodakenetin. Most of the tested coumarins entered the rat CSF and brain quickly, and double-peak phenomena in concentration-time curves were similar to those of their plasma pharmacokinetics. Columbianetin had the highest concentration in the CSF and brain, while psoralen and columbianetin acetate had the largest percent of CSF/plasma and brain/plasma, indicating that these three coumarins may be worthy of further research on the possible nervous effects. Correlations between the in vivo brain distributions and plasma pharmacokinetics of these coumarins were well verified. These results provided valuable information for the overall in vivo brain distribution characteristics of APR and also for its further studies on the active substances for the central nervous system.
Funayama, Risa; Sugiura, Motoaki; Sassa, Yuko; Jeong, Hyeonjeong; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta
2012-01-01
Mate choice is an example of sophisticated daily decision making supported by multiple componential processes. In mate-choice literature, different characteristics of the value dimensions, including the sex difference in the value dimensions, and the involvement of self-assessment due to the mutual nature of the choice, have been suggested. We examined whether the brain-activation pattern during virtual mate choice would be congruent with these characteristics in terms of stimulus selectivity and activated brain regions. In measuring brain activity, young men and women were shown two pictures of either faces or behaviors, and they indicated which person they would choose either as a spouse or as a friend. Activation selective to spouse choice was observed face-selectively in men's amygdala and behavior-selectively in women's motor system. During both partner-choice conditions, behavior-selective activation was observed in the temporoparietal regions. Taking the available knowledge of these regions into account, these results are congruent with the suggested characteristics of value dimensions for physical attractiveness, parenting resources, and beneficial personality traits for a long-lasting relationship, respectively. The medial prefrontal and posterior cingulate cortices were nonselectively activated during the partner choices, suggesting the involvement of a self-assessment process. The results thus provide neuroscientific support for the multi-component mate-choice mechanism.
Schultheiss, Oliver C; Wirth, Michelle M; Waugh, Christian E; Stanton, Steven J; Meier, Elizabeth A; Reuter-Lorenz, Patricia
2008-12-01
This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-dominance (surprised faces) and control stimuli (neutral faces, gray squares) under oddball-task conditions. Consistent with hypotheses, high-power participants showed stronger activation in response to emotional faces in brain structures involved in emotion and motivation (insula, dorsal striatum, orbitofrontal cortex) than low-power participants.
Xu, Xiaomeng; Brown, Lucy; Aron, Arthur; Cao, Guikang; Feng, Tingyong; Acevedo, Bianca; Weng, Xuchu
2012-09-20
Early-stage romantic love is associated with activation in reward and motivation systems of the brain. Can these localized activations, or others, predict long-term relationship stability? We contacted participants from a previous fMRI study of early-stage love by Xu et al. [34] after 40 months from initial assessments. We compared brain activation during the initial assessment at early-stage love for those who were still together at 40 months and those who were apart, and surveyed those still together about their relationship happiness and commitment at 40 months. Six participants who were still with their partners at 40 months (compared to six who had broken up) showed less activation during early-stage love in the medial orbitofrontal cortex, right subcallosal cingulate and right accumbens, regions implicated in long-term love and relationship satisfaction [1,2]. These regions of deactivation at the early stage of love were also negatively correlated with relationship happiness scores collected at 40 months. Other areas involved were the caudate tail, and temporal and parietal lobes. These data are preliminary evidence that neural responses in the early stages of romantic love can predict relationship stability and quality up to 40 months later in the relationship. The brain regions involved suggest that forebrain reward functions may be predictive for relationship stability, as well as regions involved in social evaluation, emotional regulation, and mood. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana
2018-02-23
To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.
Dual-echo ASL based assessment of motor networks: a feasibility study
NASA Astrophysics Data System (ADS)
Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria
2018-04-01
Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.
Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.
Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A
2004-11-01
Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.
Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W
2017-01-01
Background The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Objective Identify regions of the brain activated and examine associations between activation and behavior. Methods This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Results Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed. Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392, P=.043). Conclusion Presenting personalized glucose feedback resulted in significantly more brain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. PMID:29117928
Rattner, B.A.
1982-01-01
Brain cholinesterase (ChE) activity has been used extensively to monitor exposure to organophosphorus (OP) and carbamate (CB) insecticides in wild birds. A series of factorial experiments was conducted to assess the extent to which noncontaminant-related environmental conditions might affect brain ChE activity and thereby confound the diagnosis of OP and CB intoxication. Underfeeding (restricting intake to 50% of control for 21 d or fasting for 1-3 d) or exposure to elevated temperature (36 + 1?C for 1 d) caused only slight reductions (10-17%) in brain AChE activity in adult male Japanese quail (Coturnix coturnix japonica). This degree of 'reduction' in brain AChE activity is considerably less than the 50% 'inhibition' criterion employed in the diagnosis of insecticide-induced mortality, but nevertheless approaches the 20% 'inhibition' level used as a conservative estimate of sublethal exposure to a known insecticide application.
Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury.
Lee, Stephanie W; Gajavelli, Shyam; Spurlock, Markus S; Andreoni, Cody; de Rivero Vaccari, Juan Pablo; Bullock, M Ross; Keane, Robert W; Dietrich, W Dalton
2018-04-02
Penetrating traumatic brain injury (PTBI) is a significant cause of death and disability in the United States. Inflammasomes are one of the key regulators of the interleukin (IL)-1β mediated inflammatory responses after traumatic brain injury. However, the contribution of inflammasome signaling after PTBI has not been determined. In this study, adult male Sprague-Dawley rats were subjected to sham procedures or penetrating ballistic-like brain injury (PBBI) and sacrificed at various time-points. Tissues were assessed by immunoblot analysis for expression of IL-1β, IL-18, and components of the inflammasome: apoptosis-associated speck-like protein containing a caspase-activation and recruitment domain (ASC), caspase-1, X-linked inhibitor of apoptosis protein (XIAP), nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), and gasdermin-D (GSDMD). Specific cell types expressing inflammasome proteins also were evaluated immunohistochemically and assessed quantitatively. After PBBI, expression of IL-1β, IL-18, caspase-1, ASC, XIAP, and NLRP3 peaked around 48 h. Brain protein lysates from PTBI animals showed pyroptosome formation evidenced by ASC laddering, and also contained increased expression of GSDMD at 48 h after injury. ASC-positive immunoreactive neurons within the perilesional cortex were observed at 24 h. At 48 h, ASC expression was concentrated in morphologically activated cortical microglia. This expression of ASC in activated microglia persisted until 12 weeks following PBBI. This is the first report of inflammasome activation after PBBI. Our results demonstrate cell-specific patterns of inflammasome activation and pyroptosis predominantly in microglia, suggesting a sustained pro-inflammatory state following PBBI, thus offering a therapeutic target for this type of brain injury.
Functional characteristics of the brain in college students with internet gaming disorder.
Liu, Jun; Li, Weihui; Zhou, Shunke; Zhang, Li; Wang, Zhiyuan; Zhang, Yan; Jiang, Yebin; Li, Lingjiang
2016-03-01
Internet gaming disorder (IGD) is a subtype of internet addiction disorder (IAD), but its pathogenesis remains unclear. This study investigated brain function in IGD individuals using task-state functional magnetic resonance imaging (fMRI). It is a prospective study in 19 IGD individuals and 19 matched healthy controls. They all received internet videogame stimuli while a 3.0 T fMRI was used to assess echo planar imaging. Brain activity was analyzed using the Brain Voyager software package. Functional data were spatially smoothed using Gaussian kernel. The threshold level was positioned at 10 pixels, and the activation range threshold was set to 10 voxels. Activated brain regions were compared between the two groups, as well as the amount of activated voxels. The internet videogame stimuli activated brain regions in both groups. Compared with controls, the IGD group showed increased activation in the right superior parietal lobule, right insular lobe, right precuneus, right cingulated gyrus, right superior temporal gyrus, and left brainstem. There was a significant difference in the number of activated voxels between the two groups. An average of 1078 voxels was activated in the IGD group compared with only 232 in the control group. Internet videogame play activates the vision, space, attention, and execution centers located in the occipital, temporal, parietal, and frontal gyri. Abnormal brain function was noted in IGD subjects, with hypofunction of the frontal cortex. IGD subjects showed laterality activation of the right cerebral hemisphere.
Loitfelder, Marisa; Fazekas, Franz; Koschutnig, Karl; Fuchs, Siegrid; Petrovic, Katja; Ropele, Stefan; Pichler, Alexander; Jehna, Margit; Langkammer, Christian; Schmidt, Reinhold; Neuper, Christa; Enzinger, Christian
2014-01-01
Extrapolations from previous cross-sectional fMRI studies suggest cerebral functional changes with progression of Multiple Sclerosis (MS), but longitudinal studies are scarce. We assessed brain activation changes over time in MS patients using a cognitive fMRI paradigm and examined correlations with clinical and cognitive status and brain morphology. 13 MS patients and 15 healthy controls (HC) underwent MRI including fMRI (go/no-go task), neurological and neuropsychological exams at baseline (BL) and follow-up (FU; minimum 12, median 20 months). We assessed estimates of and changes in fMRI activation, total brain and subcortical grey matter volumes, cortical thickness, and T2-lesion load. Bland-Altman (BA) plots served to assess fMRI signal variability. Cognitive and disability levels remained largely stable in the patients. With the fMRI task, both at BL and FU, patients compared to HC showed increased activation in the insular cortex, precuneus, cerebellum, posterior cingulate cortex, and occipital cortex. At BL, patients vs. HC also had lower caudate nucleus, thalamus and putamen volumes. Over time, patients (but not HC) demonstrated fMRI activity increments in the left inferior parietal lobule. These correlated with worse single-digit-modality test (SDMT) performance. BA-plots attested to reproducibility of the fMRI task. In the patients, the right caudate nucleus decreased in volume which again correlated with worsening SDMT performance. Given preserved cognitive performance, the increased activation at BL in the patients may be viewed as largely adaptive. In contrast, the negative correlation with SDMT performance suggests increasing parietal activation over time to be maladaptive. Several areas with purported relevance for cognition showed decreased volumes at BL and right caudate nucleus volume decline correlated with decreasing SDMT performance. This highlights the dynamics of functional changes and the strategic importance of specific brain areas for cognitive processes in MS.
Raine, A; Meloy, J R; Bihrle, S; Stoddard, J; LaCasse, L; Buchsbaum, M S
1998-01-01
There appear to be no brain imaging studies investigating which brain mechanisms subserve affective, impulsive violence versus planned, predatory violence. It was hypothesized that affectively violent offenders would have lower prefrontal activity, higher subcortical activity, and reduced prefrontal/subcortical ratios relative to controls, while predatory violent offenders would show relatively normal brain functioning. Glucose metabolism was assessed using positron emission tomography in 41 comparisons, 15 predatory murderers, and nine affective murderers in left and right hemisphere prefrontal (medial and lateral) and subcortical (amygdala, midbrain, hippocampus, and thalamus) regions. Affective murderers relative to comparisons had lower left and right prefrontal functioning, higher right hemisphere subcortical functioning, and lower right hemisphere prefrontal/subcortical ratios. In contrast, predatory murderers had prefrontal functioning that was more equivalent to comparisons, while also having excessively high right subcortical activity. Results support the hypothesis that emotional, unplanned impulsive murderers are less able to regulate and control aggressive impulses generated from subcortical structures due to deficient prefrontal regulation. It is hypothesized that excessive subcortical activity predisposes to aggressive behaviour, but that while predatory murderers have sufficiently good prefrontal functioning to regulate these aggressive impulses, the affective murderers lack such prefrontal control over emotion regulation.
Same-session functional assessment of rat retina and brain with manganese-enhanced MRI
Bissig, David; Berkowitz, Bruce A.
2013-01-01
Manganese-enhanced MRI (MEMRI) is a powerful non-invasive approach for objectively measuring either retina or binocular visual brain activity in vivo. In this study, we investigated the sensitivity of MEMRI to monocular stimulation using a new protocol for providing within-subject functional comparisons in the retina and brain in the same scanning session. Adult Sprague Dawley or Long–Evans rats had one eye covered with an opaque patch. After intraperitoneal Mn2+ administration on the following day, rats underwent visual stimulation for 8 h. Animals were then anesthetized, and the brain and each eye examined by MEMRI. Function was assessed through pairwise comparisons of the patched (dark-adapted) versus unpatched (light-exposed) eyes, and of differentially-stimulated brain structures – the dorsal lateral geniculate nucleus, superior colliculus, and visual cortical regions – contralateral to the patched versus unpatched eye. As expected, Mn2+ uptake was greater in the outer retina of dark-adapted, relative to light-exposed, eyes (P<0.05). Contralateral to the unpatched eye, significantly more Mn2+ uptake was found throughout the visual brain regions than in the corresponding structures contralateral to the patched eye (P<0.05). Notably, this regional pattern of activity corresponded well to previous work with monocular stimulation. No stimulation-dependent differences in Mn2+ uptake were observed in negative control brain regions (P>0.05). Post-hoc assessment of functional data by animal age and strain revealed no significant effects. These results demonstrate, for the first time, the acquisition of functional MRI data from the eye and visual brain regions in a single scanning session. PMID:21749922
Stabile, Frank A.; Carson, Richard E.
2017-01-01
Although there is growing evidence that estradiol modulates female perception of male sexual signals, relatively little research has focused on female auditory processing. We used in vivo 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging to examine the neuronal effects of estradiol and conspecific song in female house sparrows (Passer domesticus). We assessed brain glucose metabolism, a measure of neuronal activity, in females with empty implants, estradiol implants, and empty implants ~1 month after estradiol implant removal. Females were exposed to conspecific or heterospecific songs immediately prior to imaging. The activity of brain regions involved in auditory perception did not differ between females with empty implants exposed to conspecific vs. heterospecific song, but neuronal activity was significantly reduced in females with estradiol implants exposed to heterospecific song. Furthermore, our within-individual design revealed that changes in brain activity due to high estradiol were actually greater several weeks after peak hormone exposure. Overall, this study demonstrates that PET imaging is a powerful tool for assessing large-scale changes in brain activity in living songbirds, and suggests that after breeding is done, specific environmental and physiological cues are necessary for estradiol-stimulated females to lose the selectivity they display in neural response to conspecific song. PMID:28832614
Smit, Dirk J A; Anokhin, Andrey P
2017-05-01
The brain continuously develops and reorganizes to support an expanding repertoire of behaviors and increasingly complex cognition. These processes may, however, also result in the appearance or disappearance of specific neurodevelopmental disorders such as attention problems. To investigate whether brain activity changed during adolescence, how genetics shape this change, and how these changes were related to attention problems, we measured EEG activity in 759 twins and siblings, assessed longitudinally in four waves (12, 14, 16, and 18years of age). Attention problems were assessed with the SWAN at waves 12, 14, and 16. To characterize functional brain development, we used a measure of temporal stability (TS) of brain oscillations over the recording time of 5min reflecting the tendency of a brain to maintain the same oscillatory state for longer or shorter periods. Increased TS may reflect the brain's tendency to maintain stability, achieve focused attention, and thus reduce "mind wandering" and attention problems. The results indicate that brain TS is increased across the scalp from 12 to 18. TS showed large individual differences that were heritable. Change in TS (alpha oscillations) was heritable between 12 and 14 and between 14 and 16 for the frontal brain areas. Absolute levels of brain TS at each wave were positively correlated with attention problems but not significantly. High and low attention problems subjects showed different developmental trajectories in TS, which was significant in a cluster of frontal leads. These results indicate that trajectories in brain TS development are a biomarker for the developing brain. TS in brain oscillations is highly heritable, and age-related change in TS is also heritable in selected brain areas. These results suggest that high and low attention problems subjects are at different stages of brain development. Copyright © 2016. Published by Elsevier B.V.
Malec, J F; Moessner, A M; Kragness, M; Lezak, M D
2000-02-01
Evaluate the psychometric properties of the Mayo-Portland Adaptability Inventory (MPAI). Rating scale (Rasch) analysis of MPAI and principal component analysis of residuals; the predictive validity of the MPAI measures and raw scores was assessed in a sample from a day rehabilitation program. Outpatient brain injury rehabilitation. 305 persons with brain injury. A 22-item scale reflecting severity of sequelae of brain injury that contained a mix of indicators of impairment, activity, and participation was identified. Scores and measures for MPAI scales were strongly correlated and their predictive validities were comparable. Impairment, activity, and participation define a single dimension of brain injury sequelae. The MPAI shows promise as a measure of this construct.
Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Song, Jie; Nair, Veena A; Grogan, Scott W; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek
2014-01-01
This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.
Ishiuji, Y.; Coghill, R.C.; Patel, T.S.; Oshiro, Y.; Kraft, R.A.; Yosipovitch, G.
2009-01-01
Summary Background Little is known about brain mechanisms supporting the experience of chronic puritus in disease states. Objectives To examine the difference in brain processing of histamine-induced itch in patients with active atopic dermatitis (AD) vs. healthy controls with the emerging technique of functional magnetic resonance imaging (fMRI) using arterial spin labelling (ASL). Methods Itch was induced with histamine iontophoresis in eight patients with AD and seven healthy subjects. Results We found significant differences in brain processing of histamine-induced itch between patients with AD and healthy subjects. Patients with AD exhibited bilateral activation of the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), retrosplenial cingulate cortex and dorsolateral prefrontal cortex (DLPFC) as well as contralateral activation of the caudate nucleus and putamen. In contrast, healthy subjects activated the primary motor cortex, primary somatosensory cortex and superior parietal lobe. The PCC and precuneus exhibited significantly greater activity in patients vs. healthy subjects. A significant correlation between percentage changes of brain activation was noted in the activation of the ACC and contralateral insula and histamine-induced itch intensity as well as disease severity in patients with AD. In addition, an association was noted between DLPFC activity and disease severity. Conclusions Our results demonstrate that ASL fMRI is a promising technique to assess brain activity in chronic itch. Brain activity of acute itch in AD seems to differ from that in healthy subjects. Moreover, the activity in cortical areas involved in affect and emotion correlated to measures of disease severity. PMID:19663870
Association of objectively measured physical activity with brain structure: UK Biobank study.
Hamer, Mark; Sharma, Nikhil; Batty, G David
2018-05-18
Physical activity may be beneficial for cognition but mechanisms are unclear. We examined the association between objectively assessed physical activity and brain volume, with a focus on the hippocampus region. We used data from UK Biobank (n=5,272; aged 55.4±7.5 yrs; 45.6% men) collected through 2013-2016. Participants wore the Axivity AX3 wrist-worn triaxial accelerometer for seven days to assess habitual physical activity. Structural magnetic resonance imaging was performed using a standard Siemens Skyra 3T running VD13A SP4 to obtain images of the brain. There was an association between physical activity (per SD increase) and grey matter volume after adjustment for a range of covariates, although this association was only detected in older adults (>60 yrs old). We also observed associations of physical activity with both left (B=0.52, 95% CI, 0.01, 1.03; p=0.046) and right hippocampal volume (B=0.59, 95% CI, 0.08, 1.10; p=0.024) in covariate adjusted models. In summary, physical activity may play a role in the prevention of neurodegenerative diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Li, H; Wei, D; Browning, M; Du, X; Zhang, Q; Qiu, J
2016-04-01
Attention bias modification (ABM) training has been suggested to effectively reduce depressive symptoms, and may be useful in the prevention of the illness in individuals with subthreshold symptoms, yet little is known about the spontaneous brain activity changes associated with ABM training. Resting-state functional MRI was used to explore the effects of ABM training on subthreshold depression (SubD) and corresponding spontaneous brain activity changes. Participants were 41 young women with SubD and 26 matched non-depressed controls. Participants with SubD were randomized to receive either ABM or placebo training during 28 sessions across 4 weeks. Non-depressed controls were assessed before training only. Attentional bias, depressive severity, and spontaneous brain activity before and after training were assessed in both training groups. Findings revealed that compared to active control training, ABM training significantly decreased depression symptoms, and increased attention for positive stimuli. Resting-state data found that ABM training significantly reduced amplitude of low-frequency fluctuations (ALFF) of the right anterior insula (AI) and right middle frontal gyrus which showed greater ALFF than non-depressed controls before training; Functional connectivity strength between right AI and the right frontoinsular and right supramarginal gyrus were significantly decreased after training within the ABM group; moreover, the improvement of depression symptoms following ABM significantly correlated with the connectivity strength reductions between right AI and right frontoinsular and right supramarginal gyrus. These results suggest that ABM has the potential to reshape the abnormal patterns of spontaneous brain activity in relevant neural circuits associated with depression.
Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo
2017-10-01
Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Changes in cue-induced, prefrontal cortex activity with video-game play.
Han, Doug Hyun; Kim, Yang Soo; Lee, Yong Sik; Min, Kyung Joon; Renshaw, Perry F
2010-12-01
Brain responses, particularly within the orbitofrontal and cingulate cortices, to Internet video-game cues in college students are similar to those observed in patients with substance dependence in response to the substance-related cues. In this study, we report changes in brain activity between baseline and following 6 weeks of Internet video-game play. We hypothesized that subjects with high levels of self-reported craving for Internet video-game play would be associated with increased activity in the prefrontal cortex, particularly the orbitofrontal and anterior cingulate cortex. Twenty-one healthy university students were recruited. At baseline and after a 6-week period of Internet video-game play, brain activity during presentation of video-game cues was assessed using 3T blood oxygen level dependent functional magnetic resonance imaging. Craving for Internet video-game play was assessed by self-report on a 7-point visual analogue scale following cue presentation. During a standardized 6-week video-game play period, brain activity in the anterior cingulate and orbitofrontal cortex of the excessive Internet game-playing group (EIGP) increased in response to Internet video-game cues. In contrast, activity observed in the general player group (GP) was not changed or decreased. In addition, the change of craving for Internet video games was positively correlated with the change in activity of the anterior cingulate in all subjects. These changes in frontal-lobe activity with extended video-game play may be similar to those observed during the early stages of addiction.
Effect of x-radiation to brain on cerebral glucose utilization in the rat.
D'Aquino, S; Cicciarello, R; D'Avella, D; Mesiti, M; Albiero, F; Princi, P; Gagliardi, M E; Russi, E; D'Aquino, A
1990-01-01
We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- cGy/day given 5 days a week) to a total dose of 4000 cGy. Metabolic experiments were made 2 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, brain areas with the highest basal metabolic rates showed the greatest percentage drop of glucose utilization. Post-irradiation metabolic alterations possibly provide an explanation for the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy.
Thomas, Bianca Lee; Viljoen, Margaretha
2016-01-01
The aim of this study was to assess baseline EEG brain wave activity in children with attention-deficit/hyperactivity disorder (ADHD) and to examine the effects of evoked attention and methylphenidate on this activity. Children with ADHD (n = 19) were tested while they were stimulant free and during a period in which they were on stimulant (methylphenidate) medication. Control subjects (n = 18) were tested once. EEG brain wave activity was tested both at baseline and during focussed attention. Attention was evoked and EEG brain wave activity was determined by means of the BioGraph Infiniti biofeedback apparatus. The main finding of this study was that control subjects and stimulant-free children with ADHD exhibited the expected reactivity in high alpha-wave activity (11-12 Hz) from baseline to focussed attention; however, methylphenidate appeared to abolish this reactivity. Methylphenidate attenuates the normal cortical response to a cognitive challenge. © 2016 S. Karger AG, Basel.
Brain representations for acquiring and recalling visual-motor adaptations
Bédard, Patrick; Sanes, Jerome N.
2014-01-01
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676
Murik, S E; Shapkin, A G
2004-08-01
It has been proposed to assess functional and metabolic state of the brain nervous tissue in terms of bioelectrical parameters. Simultaneous recording of the DC potential level and total slow electrical activity of the nervous tissue was performed in the object of study by nonpolarizable Ag/AgCl electrodes with a DC amplifier. The functional and metabolic state of the brain was determined in terms of enhancement or reduction in the total slow electrical activity and positive or negative shifts in the DC potential level.
Comparison of laterality index of upper and lower limb movement using brain activated fMRI
NASA Astrophysics Data System (ADS)
Harirchian, Mohammad Hossein; Oghabian, Mohammad Ali; Rezvanizadeh, Alireza; Bolandzadeh, Niousha
2008-03-01
Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions such as motor functions. This asymmetry maybe altered in some clinical conditions such as Multiple Sclerosis (MS). The aim of this study was to delineate the laterality differences for upper and lower limbs in healthy subjects to compare this pattern with subjects suffering from MS in advance. Hence 9 Male healthy subjects underwent fMRI assessment, while they were asked to move their limbs in a predetermined pattern. The results showed that hands movement activates the brain with a significant lateralization in pre-motor cortex in comparison with lower limb. Also, dominant hands activate brain more lateralized than the non-dominant hand. In addition, Left basal ganglia were observed to be activated regardless of the hand used, While, These patterns of Brain activation was not detected in lower limbs. We hypothesize that this difference might be attributed to this point that hand is usually responsible for precise and fine voluntary movements, whereas lower limb joints are mainly responsible for locomotion, a function integrating voluntary and automatic bilateral movements.
Jager, Gerry; Block, Robert I; Luijten, Maartje; Ramsey, Nick F
2010-06-01
Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and executive control. Prefrontal and temporal regions are critically involved in these functions. Maturational processes leave these brain areas prone to the potentially harmful effects of cannabis use. We performed a two-site (United States and The Netherlands; pooled data) functional magnetic resonance imaging (MRI) study with a cross-sectional design, investigating the effects of adolescent cannabis use on working memory (WM) and associative memory (AM) brain function in 21 abstinent but frequent cannabis-using boys (13-19) years of age and compared them with 24 nonusing peers. Brain activity during WM was assessed before and after rule-based learning (automatization). AM was assessed using a pictorial hippocampal-dependent memory task. Cannabis users performed normally on both memory tasks. During WM assessment, cannabis users showed excessive activity in prefrontal regions when a task was novel, whereas automatization of the task reduced activity to the same level in users and controls. No effect of cannabis use on AM-related brain function was found. In adolescent cannabis users, the WM system was overactive during a novel task, suggesting functional compensation. Inefficient WM recruitment was not related to a failure in automatization but became evident when processing continuously changing information. The results seem to confirm the vulnerability of still developing frontal lobe functioning for early-onset cannabis use. 2010 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Tauhid, Shahamat; Chu, Renxin; Sasane, Rahul; Glanz, Bonnie I; Neema, Mohit; Miller, Jennifer R; Kim, Gloria; Signorovitch, James E; Healy, Brian C; Chitnis, Tanuja; Weiner, Howard L; Bakshi, Rohit
2015-11-01
Multiple sclerosis (MS) commonly affects occupational function. We investigated the link between brain MRI and employment status. Patients with MS (n = 100) completed a Work Productivity and Activity Impairment (WPAI) (general health version) survey measuring employment status, absenteeism, presenteeism, and overall work and daily activity impairment. Patients "working for pay" were considered employed; "temporarily not working but looking for work," "not working or looking for work due to age," and "not working or looking for work due to disability" were considered not employed. Brain MRI T1 hypointense (T1LV) and T2 hyperintense (T2LV) lesion volumes were quantified. To assess lesional destructive capability, we calculated each subject's ratio of T1LV to T2LV (T1/T2). Normalized brain parenchymal volume (BPV) assessed brain atrophy. The mean (SD) age was 45.5 (9.7) years; disease duration was 12.1 (8.1) years; 75 % were women, 76 % were relapsing-remitting, and 76 % were employed. T1LV, T1/T2, Expanded Disability Status Scale (EDSS) scores, and activity impairment were lower and BPV was higher in the employed vs. not employed group (Wilcoxon tests, p < 0.05). Age, disease duration, MS clinical subtype, and T2LV did not differ between groups (p > 0.05). In multivariable logistic regression modeling, adjusting for age, sex, and disease duration, higher T1LV predicted a lower chance of employment (p < 0.05). Pearson correlations showed that EDSS was associated with activity impairment (p < 0.05). Disease duration, age, and MRI measures were not correlated with activity impairment or other WPAI outcomes (p > 0.05). We report a link between brain atrophy and lesions, particularly lesions with destructive potential, to MS employment status.
Nikolaidis, Aki; Voss, Michelle W.; Lee, Hyunkyu; Vo, Loan T. K.; Kramer, Arthur F.
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research. PMID:24711792
Nikolaidis, Aki; Voss, Michelle W; Lee, Hyunkyu; Vo, Loan T K; Kramer, Arthur F
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
Motor Sequence Learning-Induced Neural Efficiency in Functional Brain Connectivity
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2016-01-01
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. PMID:27845228
Effects of neurofeedback therapy in healthy young subjects.
Altan, Sümeyra; Berberoglu, Bercim; Canan, Sinan; Dane, Şenol
2016-12-01
Neurofeedback refers to a form of operant conditioning of electrical brain activity, in which desirable brain activity is rewarded and undesirable brain activity is inhibited. The research team aimed to examine the efficacy of neurofeedback therapy on electroencephalogram (EEG) for heart rate, electrocardiogram (ECG) and galvanic skin resistance (GSR) parameters in a healthy young male population. Forty healthy young male subjects aged between 18 to 30 years participated in this study. Neurofeedback application of one session was made with bipolar electrodes placed on T3 and T4 (temporal 3 and 4) regions and with reference electrode placed on PF1 (prefrontal 1). Electroencephalogram (EEG), electrocardiogram (ECG) and galvanic skin resistance (GSR) were assessed during Othmer neurofeedback application of one session to regulate slow wave activity for forty minutes thorough the session. Data assessed before neurofeedback application for 5 minutes and during neurofeedback application of 30 minutes and after neurofeedback application for 5 minutes throughout the session of 40 minutes. Means for each 5 minutes, that is to say, a total 8 data points for each subjects over 40 minutes, were assessed. Galvanic skin resistance increased and heart rate decreased after neurofeedback therapy. Beta activity in EEG increased and alfa activity decreased after neurofeedback therapy. These results suggest that neurofeedback can be used to restore sympathovagal imbalances. Also, it may be accepted as a preventive therapy for psychological and neurological problems.
Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight
NASA Technical Reports Server (NTRS)
Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar;
2017-01-01
Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
Human Brain Activity Patterns beyond the Isoelectric Line of Extreme Deep Coma
Kroeger, Daniel; Florea, Bogdan; Amzica, Florin
2013-01-01
The electroencephalogram (EEG) reflects brain electrical activity. A flat (isoelectric) EEG, which is usually recorded during very deep coma, is considered to be a turning point between a living brain and a deceased brain. Therefore the isoelectric EEG constitutes, together with evidence of irreversible structural brain damage, one of the criteria for the assessment of brain death. In this study we use EEG recordings for humans on the one hand, and on the other hand double simultaneous intracellular recordings in the cortex and hippocampus, combined with EEG, in cats. They serve to demonstrate that a novel brain phenomenon is observable in both humans and animals during coma that is deeper than the one reflected by the isoelectric EEG, and that this state is characterized by brain activity generated within the hippocampal formation. This new state was induced either by medication applied to postanoxic coma (in human) or by application of high doses of anesthesia (isoflurane in animals) leading to an EEG activity of quasi-rhythmic sharp waves which henceforth we propose to call ν-complexes (Nu-complexes). Using simultaneous intracellular recordings in vivo in the cortex and hippocampus (especially in the CA3 region) we demonstrate that ν-complexes arise in the hippocampus and are subsequently transmitted to the cortex. The genesis of a hippocampal ν-complex depends upon another hippocampal activity, known as ripple activity, which is not overtly detectable at the cortical level. Based on our observations, we propose a scenario of how self-oscillations in hippocampal neurons can lead to a whole brain phenomenon during coma. PMID:24058669
The Future of Preschool Prevention, Assessment, and Intervention.
Hudziak, Jim; Archangeli, Christopher
2017-07-01
Preschoolers are in the most rapid period of brain development. Environment shapes the structure and function of the developing brain. Promoting brain health requires cultivation of healthy environments at home, school, and in the community. This improves the emotional-behavioral and physical health of all children, can prevent problems in children at risk, and can alter the trajectory of children already suffering. For clinicians, this starts with assessing and treating the entire family, equipping parents with the principles of parent management training, and incorporating wellness prescriptions for nutrition, physical activity, music, and mindfulness. Copyright © 2017 Elsevier Inc. All rights reserved.
Starr, James M; Scollon, Edward J; Hughes, Michael F; Ross, David G; Graham, Stephen E; Crofton, Kevin M; Wolansky, Marcelo J; Devito, Michael J; Tornero-Velez, Rogelio
2012-12-01
Due to extensive use, human exposure to multiple pyrethroid insecticides occurs frequently. Studies of pyrethroid neurotoxicity suggest a common mode of toxicity and that pyrethroids should be considered cumulatively to model risk. The objective of this work was to use a pyrethroid mixture that reflects human exposure to common pyrethroids to develop comparative toxicokinetic profiles in rats, and then model the relationship between brain concentration and motor activity. Data from a national survey of child care centers were used to make a mixture reflecting proportions of the most prevalent pyrethroids: permethrin, cypermethrin, β-cyfluthrin, deltamethrin, and esfenvalerate. The mixture was administered orally at one of two concentrations (11.2 and 27.4 mg/kg) to adult male rats. At intervals from 1 to 24h, motor activity was assessed and the animals were sacrificed. Pyrethroid concentrations were measured in the blood, liver, fat, and brain. After controlling for dose, there were no differences in any tissue concentrations, except blood at the initial time point. Elimination half-lives for all pyrethroids in all tissues were < 7h. Brain concentrations of all pyrethroids (when cis- and trans-permethrin were pooled) at the initial time point were proportional to their relative doses. Decreases in motor activity indicated dose additivity, and the relationship between pyrethroid brain concentration and motor activity was described by a four-parameter sigmoidal E(max) model. This study links environmental data with toxicokinetic and neurobehavioral assays to support cumulative risk assessments of pyrethroid pesticides. The results support the additive model of pyrethroid effect on motor activity and suggest that variation in the neurotoxicity of individual pyrethroids is related to toxicodynamic rather than toxicokinetic differences.
Jean-Xavier, Céline; Perreault, Marie-Claude
2018-01-01
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.
Jean-Xavier, Céline; Perreault, Marie-Claude
2018-01-01
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302
Milnes, Matthew R; Roberts, Robert N; Guillette, Louis J
2002-01-01
During embryogenesis, incubation temperature and the hormonal environment influence gonadal differentiation of some reptiles, including all crocodilians. Current evidence suggests that aromatase, the enzyme that converts androgens to estrogens, has a role in sexual differentiation of species that exhibit temperature-dependent sex determination (TSD). During the temperature-sensitive period (TSP) of sex determination, we compared aromatase activity in the brain and gonads of putative male and female alligator embryos to determine if aromatase activity in the embryonic brain could provide the hormonal environment necessary for ovarian development in a TSD species. In addition, we assessed the pattern of aromatase activity in the brain and gonads of embryos treated with estradiol-17beta (E(2)) and incubated at male-producing temperatures to compare enzyme activity in E(2) sex-reversed females to control males and females. This has particular significance regarding wildlife species living in areas contaminated with suspected environmental estrogens. Gonadal aromatase activity remained low during the early stages of the TSP in both sexes and increased late in the TSP only in females. Aromatase activity in the brain increased prior to gonadal differentiation in both sexes. These results suggest that aromatase activity in the brain is not directly responsible for mediating differentiation of the gonad. E(2) exposure at male-producing temperatures resulted in sex-reversed females that had intermediate gonad function and masculinized brain activity. This study indicates the need to examine multiple end points and to determine the persistence of developmental alterations in contaminant-exposed wildlife populations. PMID:12060834
Galli, Giulia; Griffiths, Victoria A; Otten, Leun J
2014-03-01
It has been shown that the effectiveness with which unpleasant events are encoded into memory is related to brain activity set in train before the events. Here, we assessed whether encoding-related activity before an aversive event can be modulated by emotion regulation. Electrical brain activity was recorded from the scalps of healthy women while they performed an incidental encoding task on randomly intermixed unpleasant and neutral visual scenes. A cue presented 1.5 s before each picture indicated the upcoming valence. In half of the blocks of trials, the instructions emphasized to let emotions arise in a natural way. In the other half, participants were asked to decrease their emotional response by adopting the perspective of a detached observer. Memory for the scenes was probed 1 day later with a recognition memory test. Brain activity before unpleasant scenes predicted later memory of the scenes, but only when participants felt their emotions and did not detach from them. The findings indicate that emotion regulation can eliminate the influence of anticipatory brain activity on memory encoding. This may be relevant for the understanding and treatment of psychiatric diseases with a memory component.
Graph-based network analysis of resting-state functional MRI.
Wang, Jinhui; Zuo, Xinian; He, Yong
2010-01-01
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Brain activity during driving with distraction: an immersive fMRI study
Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.
2013-01-01
Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757
Grooms, Dustin R; Kiefer, Adam W; Riley, Michael A; Ellis, Jonathan D; Thomas, Staci; Kitchen, Katie; DiCesare, Christopher; Bonnette, Scott; Gadd, Brooke; Barber Foss, Kim D; Yuan, Weihong; Silva, Paula; Galloway, Ryan; Diekfuss, Jed; Leach, James; Berz, Kate; Myer, Gregory D
2018-03-27
A limiting factor for reducing anterior cruciate ligament (ACL) injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. To determine the neural mechanisms for injury risk reducing biomechanics transfer to sport after ACL injury prevention training. Cohort study Setting: Research laboratory Participants: Four healthy high school soccer athletes. Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg-press task was completed with neuroimaging before and after training. A virtual reality soccer specific landing task was also competed following training to assess transfer of movement mechanics. Landing mechanics during the virtual reality soccer task and blood oxygen level dependent signal change during neuroimaging. Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg-press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Changes in brain activity may underlie adaptation and transfer of injury risk reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.
Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery
NASA Astrophysics Data System (ADS)
Abdalmalak, Androu; Milej, Daniel; Diop, Mamadou; Naci, Lorina; Owen, Adrian M.; St. Lawrence, Keith
2016-03-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique for detecting brain activity, which has been previously used during motor and motor executive tasks. There is an increasing interest in using fNIRS as a brain computer interface (BCI) for patients who lack the physical, but not the mental, ability to respond to commands. The goal of this study is to assess the feasibility of time-resolved fNIRS to detect brain activity during motor imagery. Stability tests were conducted to ensure the temporal stability of the signal, and motor imagery data were acquired on healthy subjects. The NIRS probes were placed on the scalp over the premotor cortex (PMC) and supplementary motor area (SMA), as these areas are responsible for motion planning. To confirm the fNIRS results, subjects underwent functional magnetic resonance imaging (fMRI) while performing the same task. Seven subjects have participated to date, and significant activation in the SMA and/or the PMC during motor imagery was detected by both fMRI and fNIRS in 4 of the 7 subjects. No activation was detected by either technique in the remaining three participants, which was not unexpected due to the nature of the task. The agreement between the two imaging modalities highlights the potential of fNIRS as a BCI, which could be adapted for bedside studies of patients with disorders of consciousness.
Scholkmann, Felix; Holper, Lisa; Wolf, Ursula; Wolf, Martin
2013-11-27
Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.
Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki
2016-01-01
Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768
Forgacs, Peter B; Conte, Mary M; Fridman, Esteban A; Voss, Henning U; Victor, Jonathan D; Schiff, Nicholas D
2014-12-01
Standard clinical characterization of patients with disorders of consciousness (DOC) relies on observation of motor output and may therefore lead to the misdiagnosis of vegetative state or minimally conscious state in patients with preserved cognition. We used conventional electroencephalographic (EEG) measures to assess a cohort of DOC patients with and without functional magnetic resonance imaging (fMRI)-based evidence of command-following, and correlated the findings with standard clinical behavioral evaluation and brain metabolic activity. We enrolled 44 patients with severe brain injury. Behavioral diagnosis was established using standardized clinical assessments. Long-term EEG recordings were analyzed to determine wakeful background organization and presence of elements of sleep architecture. A subset of patients had fMRI testing of command-following using motor imagery paradigms (26 patients) and resting brain metabolism measurement using (18) fluorodeoxyglucose positron emission tomography (31 patients). All 4 patients with fMRI evidence of covert command-following consistently demonstrated well-organized EEG background during wakefulness, spindling activity during sleep, and relative preservation of cortical metabolic activity. In the entire cohort, EEG organization and overall brain metabolism showed no significant association with bedside behavioral testing, except in a few cases when EEG was severely abnormal. These findings suggest that conventional EEG is a simple strategy that complements behavioral and imaging characterization of DOC patients. Preservation of specific EEG features may be used to assess the likelihood of unrecognized cognitive abilities in severely brain-injured patients with very limited or no motor responses. © 2014 American Neurological Association.
Noninvasive Assessment of Attention State from Correlated Oscillations in Brain and Muscle
2010-11-29
rhythms depend in part on activity in the thalamus. EMG is a composite of muscle fiber action potentials occurring in the muscle . The action...the subjects were asked to perform the isometric MVCs with the first dorsal interosseus muscle of the right hand. The MVC was determined using a...REPORT Noninvasive assessment of attention state from correlated oscillations in brain and muscle 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In motor
Distinct Brain Mechanisms Support Spatial vs. Temporal Filtering of Nociceptive Information
Nahman-Averbuch, H.; Martucci, K.T.; Granovsky, Y.; Weissman-Fogel, I.; Yarnitsky, D.; Coghill, R. C.
2014-01-01
The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional MRI during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula and SII. OA produced reduced activity in SI, but was associated with greater activation in the anterior insula, dorso-lateral prefrontal cortex, intra-parietal sulcus, and inferior parietal lobule relative to CPM. In the brainstem, CPM consistently produced reductions in activity while OA produced increases in activity. Conjunction analysis confirmed that CPM related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs. temporal filtering of nociceptive information. PMID:25047783
Heim, Stefan; Grande, Marion; Meffert, Elisabeth; Eickhoff, Simon B; Schreiber, Helen; Kukolja, Juraj; Shah, Nadim Jon; Huber, Walter; Amunts, Katrin
2010-12-01
Recent theories of developmental dyslexia explain reading deficits in terms of deficient phonological awareness, attention, visual and auditory processing, or automaticity. Since dyslexia has a neurobiological basis, the question arises how the reader's proficiency in these cognitive variables affects the brain regions involved in visual word recognition. This question was addressed in two fMRI experiments with 19 normally reading children (Experiment 1) and 19 children with dyslexia (Experiment 2). First, reading-specific brain activation was assessed by contrasting the BOLD signal for reading aloud words vs. overtly naming pictures of real objects. Next, ANCOVAs with brain activation during reading the individuals' scores for all five cognitive variables assessed outside the scanner as covariates were performed. Whereas the normal readers' brain activation during reading showed co-variation effects predominantly in the right hemisphere, the reverse pattern was observed for the dyslexics. In particular, middle frontal gyrus, inferior parietal cortex, and precuneus showed contralateral effects for controls as compared to dyslexics. In line with earlier findings in the literature, these data hint at a global change in hemispheric asymmetry during cognitive processing in dyslexic readers, which, in turn, might affect reading proficiency. Copyright © 2010 Elsevier Inc. All rights reserved.
Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.
Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H
2013-03-01
Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Effects of a cognitive training on spatial learning and associated functional brain activations
2013-01-01
Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447
Effects on birds of fenthion aerial application for mosquito control
DeWeese, L.R.; McEwen, L.C.; Settimi, L.A.; Deblinger, R.D.
1983-01-01
Effects on birds of an aerial application of fenthion, a potent organophosphorus cholinesterase (ChE)-inhibiting insecticide, were assessed on four study sites 1.8 to 3.6 km2 in size. These sites were located within 121.5 km2 of wet meadows treated with 47 g of fenthion (AI) per ha in ultralow- volume formulation. Assessment methods were searches for sick or dead birds, measurements of brain ChE activity in specimens found dead or collected alive at different time intervals, and counts of bird populations. After treatment, 99 birds and 15 mammals were found sick or dead; 106 of these were on one site. Brain ChE activity in dead birds was depressed sufficiently to indicate that death was caused by an anti-ChE substance. Brain ChE activity in three common bird species collected alive showed the greatest reduction 2 days postspray. Two of these species had ChE activity that was still significantly (P<0.05) depressed 15 days postspray. Bird populations declined most where mortality was heaviest. Fenthion sprayed for mosquito control was life threatening to many birds inhabiting treated meadows.
Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L
2015-07-01
Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami
2016-03-01
Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.
Wadden, Katie P.; Woodward, Todd S.; Metzak, Paul D.; Lavigne, Katie M.; Lakhani, Bimal; Auriat, Angela M.; Boyd, Lara A.
2015-01-01
Following stroke, functional networks reorganize and the brain demonstrates widespread alterations in cortical activity. Implicit motor learning is preserved after stroke. However the manner in which brain reorganization occurs, and how it supports behaviour within the damaged brain remains unclear. In this functional magnetic resonance imaging (fMRI) study, we evaluated whole brain patterns of functional connectivity during the performance of an implicit tracking task at baseline and retention, following 5 days of practice. Following motor practice, a significant difference in connectivity within a motor network, consisting of bihemispheric activation of the sensory and motor cortices, parietal lobules, cerebellar and occipital lobules, was observed at retention. Healthy subjects demonstrated greater activity within this motor network during sequence learning compared to random practice. The stroke group did not show the same level of functional network integration, presumably due to the heterogeneity of functional reorganization following stroke. In a secondary analysis, a binary mask of the functional network activated from the aforementioned whole brain analyses was created to assess within-network connectivity, decreasing the spatial distribution and large variability of activation that exists within the lesioned brain. The stroke group demonstrated reduced clusters of connectivity within the masked brain regions as compared to the whole brain approach. Connectivity within this smaller motor network correlated with repeated sequence performance on the retention test. Increased functional integration within the motor network may be an important neurophysiological predictor of motor learning-related change in individuals with stroke. PMID:25757996
King, G.R.; Ernst, T.; Deng, W.; Stenger, A.; Gonzales, R.M.K; Nakama, H.; Chang, L.
2012-01-01
Cannabis is the most abused illegal substance in the United States. Alterations in brain function and motor behavior have been reported in chronic cannabis users, but the results have been variable. The current study aimed to determine whether chronic active cannabis use in humans may alter psychomotor function, brain activation, and hypothalamic-pituitary-axis (HPA) function in men and women. 30 cannabis users (16 men and 14 women, 18 to 45 years old) and 30 non-drug user controls (16 men and 14 women, 19 to 44 years old) were evaluated with neuropsychological tests designed to assess motor behavior and functional MRI (fMRI), using a 3 Tesla scanner, during a visually paced finger-sequencing task, cued by a flashing checkerboard (at 2 or 4 Hz). Salivary cortisol was measured to assess HPA function. Male, but not female, cannabis users had significantly slower performance on psychomotor speed tests. As a group, cannabis users had greater activation in BA 6 than controls, while controls had greater activation in the visual area BA 17 than cannabis users. Cannabis users also had higher salivary cortisol levels than controls (p = 0.002). Chronic active cannabis use is associated with slower and less efficient psychomotor function, especially in the male users, as indicated by a shift from regions involved with automated visually guided responses to more executive or attentional control areas. These brain activities may be attenuated by the higher cortisol levels in the cannabis users which in turn may lead to less efficient visual-motor function. PMID:22159107
Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent
2012-01-01
Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828
Parametric fMRI analysis of visual encoding in the human medial temporal lobe.
Rombouts, S A; Scheltens, P; Machielson, W C; Barkhof, F; Hoogenraad, F G; Veltman, D J; Valk, J; Witter, M P
1999-01-01
A number of functional brain imaging studies indicate that the medial temporal lobe system is crucially involved in encoding new information into memory. However, most studies were based on differences in brain activity between encoding of familiar vs. novel stimuli. To further study the underlying cognitive processes, we applied a parametric design of encoding. Seven healthy subjects were instructed to encode complex color pictures into memory. Stimuli were presented in a parametric fashion at different rates, thus representing different loads of encoding. Functional magnetic resonance imaging (fMRI) was used to assess changes in brain activation. To determine the number of pictures successfully stored into memory, recognition scores were determined afterwards. During encoding, brain activation occurred in the medial temporal lobe, comparable to the results obtained by others. Increasing the encoding load resulted in an increase in the number of successfully stored items. This was reflected in a significant increase in brain activation in the left lingual gyrus, in the left and right parahippocampal gyrus, and in the right inferior frontal gyrus. This study shows that fMRI can detect changes in brain activation during variation of one aspect of higher cognitive tasks. Further, it strongly supports the notion that the human medial temporal lobe is involved in encoding novel visual information into memory.
Combination cell therapy with mesenchymal stem cells and neural stem cells for brain stroke in rats.
Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam
2015-05-01
Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats.
NASA Astrophysics Data System (ADS)
Molteni, Erika; Contini, Davide; Caffini, Matteo; Baselli, Giuseppe; Spinelli, Lorenzo; Cubeddu, Rinaldo; Cerutti, Sergio; Bianchi, Anna Maria; Torricelli, Alessandro
2012-05-01
We evaluated frontal brain activation during a mixed attentional/working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-domain functional near-infrared spectroscopy (fNIRS). Brain activation was assessed, and load-related oxy- and deoxy-hemoglobin changes were studied. Generalized linear model (GLM) was applied to the data to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short-term memorization. GLM was applied to the data twice: for modeling the task as a whole and for specifically investigating brain activation at each cognitive load. This twofold employment of GLM allowed (1) the extraction and isolation of different information from the same signals, obtained through the modeling of different cognitive categories (sustained attention and working memory), and (2) the evaluation of model fitness, by inspection and comparison of residuals (i.e., unmodeled part of the signal) obtained in the two different cases. Results attest to the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Some hemispherical differences have also been highlighted frontally: deoxy-hemoglobin changes manifested a strong right lateralization, whereas modifications in oxy- and total hemoglobin showed a medial localization. The present work successfully explored the capability of fNIRS to detect the two neurophysiological categories under investigation and distinguish their activation patterns.
Krey, Anke; Kwan, Michael; Chan, Hing Man
2014-11-01
Mercury (Hg) has been detected in polar bear brain tissue, but its biological effects are not well known. Relationships between Hg concentrations and neurochemical enzyme activities and receptor binding were assessed in the cerebellum, frontal lobes, and occipital lobes of 24 polar bears collected from Nunavik (Northern Quebec), Canada. The concentration-response relationship was further studied with in vitro experiments using pooled brain homogenate of 12 randomly chosen bears. In environmentally exposed brain samples, there was no correlative relationship between Hg concentration and cholinesterase (ChE) activity or muscarinic acetylcholine receptor (mAChR) binding in any of the 3 brain regions. Monoamine oxidase (MAO) activity in the occipital lobe showed a negative correlative relationship with total Hg concentration. In vitro experiments, however, demonstrated that Hg (mercuric chloride and methylmercury chloride) can inhibit ChE and MAO activities and muscarinic mAChR binding. These results show that Hg can alter neurobiochemical parameters but the current environmental Hg exposure level does have an effect on the neurochemistry of polar bears from northern Canada. © 2014 SETAC.
Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.
2016-01-01
Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051
Li, Dan; Liu, Nan; Zhao, Hai-Hua; Zhang, Xu; Kawano, Hitoshi; Liu, Lu; Zhao, Liang; Li, Hong-Peng
2017-03-29
Astrocyte activation is a hallmark of traumatic brain injury resulting in neurological dysfunction or death for an overproduction of inflammatory cytokines and glial scar formation. Both the silent mating type information (Sirt1) expression and mitogen-activated protein kinase (MAPK) signal pathway activation represent a promising therapeutic target for several models of neurodegenerative diseases. We investigated the potential effects of Sirt1 upregulation and MAPK pathway pharmacological inhibition on astrocyte activation in vitro and in vivo. Moreover, we attempted to confirm the underlying interactions between Sirt1 and MAPK pathways in astrocyte activation after brain injury. The present study employs an interleukin-1β (IL-1β) stimulated primary cortical astrocyte model in vitro and a nigrostriatal pathway injury model in vivo to mimic the astrocyte activation induced by traumatic brain injury. The activation of GFAP, Sirt1, and MAPK pathways were detected by Western blot; astrocyte morphological hypertrophy was assessed using immunofluorescence staining; in order to explore the neuroprotective effect of regulation Sirt1 expression and MAPK pathway activation, the motor and neurological function tests were assessed after injury. GFAP level and morphological hypertrophy of astrocytes are elevated after injury in vitro or in vivo. Furthermore, the expressions of phosphorylated extracellular regulated protein kinases (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated p38 activation (p-p38) are upregulated, but the Sirt1 expression is downregulated. Overexpression of Sirt1 significantly increases the p-ERK expression and reduces the p-JNK and p-p38 expressions. Inhibition of ERK, JNK, or p38 activation respectively with their inhibitors significantly elevated the Sirt1 expression and attenuated the astrocyte activation. Both the overproduction of Sirt1 and inhibition of ERK, JNK, or p38 activation can alleviate the astrocyte activation, thereby improving the neurobehavioral function according to the modified neurological severity scores (mNSS) and balance latency test. Thus, Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the MAPK pathway activation induced by brain injury in vitro and in vivo.
Itoh, Toru; Sumiyoshi, Tomiki; Higuchi, Yuko; Suzuki, Michio; Kawasaki, Yasuhiro
2011-08-01
We sought to determine if altered electroencephalography (EEG) activities, such as delta band activity, in specific brain regions are associated with psychotic symptoms. Data were obtained from 17 neuroleptic-naive patients with schizophrenia and age- and sex-matched 17 healthy control subjects. Low Resolution Brain Electromagnetic Tomography (LORETA) was used to generate current source density images of delta, theta, alpha, and beta activities. Localization of the difference in EEG activity between the two groups was assessed by voxel-by-voxel non-paired t-test of the LORETA images. Spearman's correlation coefficient was obtained to relate LORETA values of EEG current density in brain regions showing a significant between-group difference and psychopathology scores. Delta band activity, represented by LORETA current density, was greater for patients in the following areas; the left inferior temporal gyrus, right middle frontal gyrus, right superior frontal gyrus, right inferior frontal gyrus, and right parahippocampal gyrus. LORETA values for delta band activity in the above five brain regions were negatively correlated with negative, but not positive symptoms. The results of this study suggest the role for electrophysiological changes in some of the brain regions, e.g. prefrontal cortex, in the manifestation of negative symptoms. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Influence of metformin on mitochondrial subproteome in the brain of apoE knockout mice.
Suski, Maciej; Olszanecki, Rafał; Chmura, Łukasz; Stachowicz, Aneta; Madej, Józef; Okoń, Krzysztof; Adamek, Dariusz; Korbut, Ryszard
2016-02-05
Neurodegenerative diseases are the set of progressive, age-related brain disorders, characterized by an excessive accumulation of mutant proteins in the certain regions of the brain. Such changes, collectively identified as causal factors of neurodegeneration, all impact mitochondria, imminently leading to their dysfunction. These observations predestine mitochondria as an attractive drug target for counteracting degenerative brain damage. The aim of this study was to use a differential proteomic approach to comprehensively assess the changes in mitochondrial protein expression in the brain of apoE-knockout mice (apoE(-/-)) and to investigate the influence of prolonged treatment with metformin - an indirect activator of AMP-activated protein kinase (AMPK) on the brain mitoproteome in apoE(-/-) mice. The quantitative assessment of the brain mitoproteome in apoE(-/-) revealed the changes in 10 proteins expression as compared to healthy C57BL/6J mice and 25 proteins expression in metformin-treated apoE(-/-) mice. Identified proteins mainly included apoptosis regulators, metabolic enzymes and structural proteins. In summary, our study provided proteomic characteristics suggesting the decrease of antioxidant defense and structural disturbances in the brain mitochondria of apoE(-/-) mice as compared to healthy controls. In this setting, the use of metformin changed the expression of several proteins primarily involved in metabolic processes, the regulation of apoptosis and the structural maintenance of mitochondria, what could potentially restore their native functionalities. Copyright © 2015 Elsevier B.V. All rights reserved.
Shang, Chi-Yung; Sheng, Chia; Yang, Li-Kuang; Chou, Tai-Li; Gau, Susan Shur-Fen
2018-06-01
Although previous functional neuroimaging studies have found abnormal brain activations in individuals with attention deficit hyperactivity disorder (ADHD), little was known about distinct brain dysfunctions across different ADHD subtypes. The objective of the present study was to investigate the abnormal brain activations associated with two ADHD subtypes, predominantly inattentive (ADHD-PI) and combined (ADHD-C) subtypes. Twenty-five adults with ADHD-PI, 25 with ADHD-C, and 30 healthy controls (HC) participated in this study. The brain function of the participants were assessed by using the counting Stroop task inside the scanner and the Conners' Continuous Performance Test (CCPT) outside the scanner. The HC group showed greater activations in the caudate nucleus and inferior frontal gyrus (IFG) than the ADHD-PI and ADHD-C groups. The ADHD-PI group showed greater activations in the superior parietal lobule (SPL) than the ADHD-C group. In all participants with ADHD, we found negative correlations of activation in the left caudate and the left IFG with the standard deviation of the reaction time of the CCPT, and negative correlations of activation in the left SPL with the reaction time changes across different inter-stimulus intervals. Our results demonstrated altered brain activity in the frontostriatal networks of adults with ADHD-PI and the fronto-striato-parietal networks of adults with ADHD-C. Abnormalities in the parietal areas may represent the main difference between the ADHD-PI and ADHD-C subtypes.
Variability in memory performance in aged healthy individuals: an fMRI study.
Grön, Georg; Bittner, Daniel; Schmitz, Bernd; Wunderlich, Arthur P; Tomczak, Reinhard; Riepe, Matthias W
2003-01-01
Episodic memory performance varies in older subjects but underlying biological correlates remain as yet ambiguous. We investigated episodic memory in healthy older individuals (n=24; mean age: 64.4+/-6.7 years) without subjective memory complaints or objective cognitive impairment. Episodic memory was assessed with repetitive learning and recall of abstract geometric patterns during fMRI. Group analysis of brain activity during initial learning and maximum recall revealed hippocampal activation. Correlation analysis of brain activation and task performance demonstrated significant hippocampal activity during initial learning and maximum recall in a success-dependent manner. Neither age nor gray matter densities correlated with hippocampal activation. Functional imaging of episodic memory thus permits to detect objectively variability in hippocampal recruitment in healthy aged individuals without subjective memory complaints. Correlation analysis of brain activation and performance during an episodic memory task may be used to determine and follow-up hippocampal malfunction in a very sensitive manner.
Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper
2013-09-01
To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.
Dørum, Erlend S; Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Lund, Martina J; Tønnesen, Siren; Sneve, Markus H; Mathiesen, Nina C; Rustan, Øyvind G; Gjertsen, Øivind; Vatn, Sigurd; Fure, Brynjar; Andreassen, Ole A; Nordvik, Jan Egil; Westlye, Lars T
2016-11-01
Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. We obtained fMRI data during MOT at two load conditions from a group of younger ( n = 25, mean age = 24.4 ± 5.1 years) and older ( n = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.
Liang, Shengxiang; Lin, Yunjiao; Lin, Bingbing; Li, Jianhong; Liu, Weilin; Chen, Lidian; Zhao, Shujun; Tao, Jing
2017-09-01
To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T
2012-02-28
A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene-brain-behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ~6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development.
Clemente, Miriam; Rey, Beatriz; Rodriguez-Pujadas, Aina; Breton-Lopez, Juani; Barros-Loscertales, Alfonso; Baños, Rosa M; Botella, Cristina; Alcañiz, Mariano; Avila, Cesar
2014-06-27
To date, still images or videos of real animals have been used in functional magnetic resonance imaging protocols to evaluate the brain activations associated with small animals' phobia. The objective of our study was to evaluate the brain activations associated with small animals' phobia through the use of virtual environments. This context will have the added benefit of allowing the subject to move and interact with the environment, giving the subject the illusion of being there. We have analyzed the brain activation in a group of phobic people while they navigated in a virtual environment that included the small animals that were the object of their phobia. We have found brain activation mainly in the left occipital inferior lobe (P<.05 corrected, cluster size=36), related to the enhanced visual attention to the phobic stimuli; and in the superior frontal gyrus (P<.005 uncorrected, cluster size=13), which is an area that has been previously related to the feeling of self-awareness. In our opinion, these results demonstrate that virtual stimulus can enhance brain activations consistent with previous studies with still images, but in an environment closer to the real situation the subject would face in their daily lives.
Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG
Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Iglesias, Juan Eugenio; Hämäläinen, Matti S.; Purdon, Patrick L.
2017-01-01
Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. PMID:29138310
Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment.
Rosano, Caterina; Venkatraman, Vijay K; Guralnik, Jack; Newman, Anne B; Glynn, Nancy W; Launer, Lenore; Taylor, Christopher A; Williamson, Jeff; Studenski, Stephanie; Pahor, Marco; Aizenstein, Howard
2010-06-01
Short-term adherence to physical activity (PA) in older adults improves psychomotor processing abilities and is associated with greater brain activation. It is not known whether these associations are also significant for longer-term adherence to moderate-intensity activities. We measured the cross-sectional association of regular walking with brain activation while performing the digit symbol substitution test (DSST). Participants of the lifestyle interventions and independence for elders-pilot study were examined 2 years after completing a 1-year treatment, consisting of either PA or education in successful aging (SA). Data were obtained from 20 PA participants who reported having remained active for 2 years after the end of the treatment and from 10 SA participants who reported having remained sedentary during the same period (mean age: 81.5 and 80.8 years). Complete brain activation and behavioral data were available for 17 PA and 10 SA participants. Two years after the formal intervention had ended, the PA group engaged in more minutes of moderate activity and had significantly greater DSST score and higher brain activation within regions important for processing speed (left dorsolateral prefrontal, posterior parietal, and anterior cingulate cortices). Associations were independent of self-reported health, blood pressure, cognition, medication records, gray matter atrophy, and white matter hyperintensities. Persistent engagement in PA may have beneficial effects on psychomotor processing speed and brain activation, even for moderate levels and even when started late in life. Future studies are warranted to assess whether these beneficial effects are explained by delayed neuronal degeneration and/or new neurogenesis.
Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong
2011-04-01
Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.
Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim
2012-01-01
Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809
Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia
2015-12-01
Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.
Kullmann, Stephanie; Frank, Sabine; Heni, Martin; Ketterer, Caroline; Veit, Ralf; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert
2013-01-01
There is accumulating evidence that food consumption is controlled by a wide range of brain circuits outside of the homeostatic system. Activation in these brain circuits may override the homeostatic system and also contribute to the enormous increase of obesity. However, little is known about the influence of hormonal signals on the brain's non-homeostatic system. Thus, selective insulin action in the brain was investigated by using intranasal application. We performed 'resting-state' functional magnetic resonance imaging in 17 healthy lean female subjects to assess intrinsic brain activity by fractional amplitude of low-frequency fluctuations (fALFF) before, 30 and 90 min after application of intranasal insulin. Here, we showed that insulin modulates intrinsic brain activity in the hypothalamus and orbitofrontal cortex. Furthermore, we could show that the prefrontal and anterior cingulate cortex response to insulin is associated with body mass index. This demonstrates that hormonal signals as insulin may reduce food intake by modifying the reward and prefrontal circuitry of the human brain, thereby potentially decreasing the rewarding properties of food. Due to the alarming increase in obesity worldwide, it is of great importance to identify neural mechanisms of interaction between the homeostatic and non-homeostatic system to generate new targets for obesity therapy. Copyright © 2012 S. Karger AG, Basel.
Spetter, Maartje S; de Graaf, Cees; Mars, Monica; Viergever, Max A; Smeets, Paul A M
2014-01-01
During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural evidence for the importance of sensory stimulation in the process of satiation. ClinicalTrials.gov NCT01644539.
Spetter, Maartje S.; de Graaf, Cees; Mars, Monica; Viergever, Max A.; Smeets, Paul A. M.
2014-01-01
During food consumption the brain integrates multiple interrelated neural and hormonal signals involved in the regulation of food intake. Factors influencing the decision to stop eating include the foods' sensory properties, macronutrient content, and volume, which in turn affect gastric distention and appetite hormone responses. So far, the contributions of gastric distention and oral stimulation by food on brain activation have not been studied. The primary objective of this study was to assess the effect of gastric distention with an intra-gastric load and the additional effect of oral stimulation on brain activity after food administration. Our secondary objective was to study the correlations between hormone responses and appetite-related ratings and brain activation. Fourteen men completed three functional magnetic resonance imaging sessions during which they either received a naso-gastric infusion of water (stomach distention), naso-gastric infusion of chocolate milk (stomach distention + nutrients), or ingested chocolate-milk (stomach distention + nutrients + oral exposure). Appetite ratings and blood parameters were measured at several time points. During gastric infusion, brain activation was observed in the midbrain, amygdala, hypothalamus, and hippocampus for both chocolate milk and water, i.e., irrespective of nutrient content. The thalamus, amygdala, putamen and precuneus were activated more after ingestion than after gastric infusion of chocolate milk, whereas infusion evoked greater activation in the hippocampus and anterior cingulate. Moreover, areas involved in gustation and reward were activated more after oral stimulation. Only insulin responses following naso-gastric infusion of chocolate milk correlated with brain activation, namely in the putamen and insula. In conclusion, we show that normal (oral) food ingestion evokes greater activation than gastric infusion in stomach distention and food intake-related brain areas. This provides neural evidence for the importance of sensory stimulation in the process of satiation. Trial Registration ClinicalTrials.gov NCT01644539. PMID:24614074
Motor sequence learning-induced neural efficiency in functional brain connectivity.
Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M
2017-02-15
Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Blancas, A; González-García, S D; Rodríguez, K; Escobar, C
2014-12-05
Scheduled and restricted access to a palatable snack, i.e. chocolate, elicits a brief and strong anticipatory activation and entrains brain areas related with reward and motivation. This behavioral and neuronal activation persists for more than 7days when this protocol is interrupted, suggesting the participation of a time-keeping system. The process that initiates this anticipation may provide a further understanding of the time-keeping system underlying palatable food entrainment. The aim of this study was to analyze how this entraining protocol starts and to dissect neuronal structures that initiate a chocolate-entrained activation. We assessed the development of anticipation of 5g of chocolate during the first 8days of the entrainment protocol. General activity of control and chocolate-entrained rats was continuously monitored with movement sensors. Moreover, motivation to obtain the chocolate was assessed by measuring approaches and interaction responses toward a wire-mesh box containing chocolate. Neuronal activation was determined with c-Fos in reward-related brain areas. We report a progressive increase in the interaction with a box to obtain chocolate parallel to a progressive neuronal activation. A significant anticipatory activation was observed in the prefrontal cortex on day 3 of entrainment and in the nucleus accumbens on day 5, while the arcuate nucleus and pyriform cortex reached significant activation on day 8. The gradual response observed with this protocol indicates that anticipation of a rewarding food requires repetitive and predictable experiences in order to acquire a temporal estimation. We also confirm that anticipation of palatable food involves diverse brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Yaseen, Zimri S.; Zhang, Xian; Muran, J. Christopher; Winston, Arnold; Galynker, Igor I.
2016-01-01
Objectives: The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects’ mothers. Methods: Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with “default mode network” (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Results: Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. Conclusion: The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, ‘core-self’-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system. PMID:27014022
Yaseen, Zimri S; Zhang, Xian; Muran, J Christopher; Winston, Arnold; Galynker, Igor I
2016-01-01
The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects' mothers. Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with "default mode network" (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, 'core-self'-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system.
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
On the Application of Quantitative EEG for Characterizing Autistic Brain: A Systematic Review
Billeci, Lucia; Sicca, Federico; Maharatna, Koushik; Apicella, Fabio; Narzisi, Antonio; Campatelli, Giulia; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo
2013-01-01
Autism-Spectrum Disorders (ASD) are thought to be associated with abnormalities in neural connectivity at both the global and local levels. Quantitative electroencephalography (QEEG) is a non-invasive technique that allows a highly precise measurement of brain function and connectivity. This review encompasses the key findings of QEEG application in subjects with ASD, in order to assess the relevance of this approach in characterizing brain function and clustering phenotypes. QEEG studies evaluating both the spontaneous brain activity and brain signals under controlled experimental stimuli were examined. Despite conflicting results, literature analysis suggests that QEEG features are sensitive to modification in neuronal regulation dysfunction which characterize autistic brain. QEEG may therefore help in detecting regions of altered brain function and connectivity abnormalities, in linking behavior with brain activity, and subgrouping affected individuals within the wide heterogeneity of ASD. The use of advanced techniques for the increase of the specificity and of spatial localization could allow finding distinctive patterns of QEEG abnormalities in ASD subjects, paving the way for the development of tailored intervention strategies. PMID:23935579
Krishna, Gokul; Muralidhara
2018-05-25
Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong
2017-12-01
Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart Association, Inc.
Turco, Cristina; Di Pino, Giovanni; Arcara, Giorgio
2018-01-01
Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (−) centered over C4 and the anode (+) centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may be of help in personalizing treatments in neurological disorders. PMID:29593782
Psychotic Experiences, Working Memory, and the Developing Brain: A Multimodal Neuroimaging Study
Fonville, Leon; Cohen Kadosh, Kathrin; Drakesmith, Mark; Dutt, Anirban; Zammit, Stanley; Mollon, Josephine; Reichenberg, Abraham; Lewis, Glyn; Jones, Derek K.; David, Anthony S.
2015-01-01
Psychotic experiences (PEs) occur in the general population, especially in children and adolescents, and are associated with poor psychosocial outcomes, impaired cognition, and increased risk of transition to psychosis. It is unknown how the presence and persistence of PEs during early adulthood affects cognition and brain function. The current study assessed working memory as well as brain function and structure in 149 individuals, with and without PEs, drawn from a population cohort. Observer-rated PEs were classified as persistent or transient on the basis of longitudinal assessments. Working memory was assessed using the n-back task during fMRI. Dynamic causal modeling (DCM) was used to characterize frontoparietal network configuration and voxel-based morphometry was utilized to examine gray matter. Those with persistent, but not transient, PEs performed worse on the n-back task, compared with controls, yet showed no significant differences in regional brain activation or brain structure. DCM analyses revealed greater emphasis on frontal connectivity within a frontoparietal network in those with PEs compared with controls. We propose that these findings portray an altered configuration of working memory function in the brain, potentially indicative of an adaptive response to atypical development associated with the manifestation of PEs. PMID:26286920
Brain activation and connectivity of social cognition using diffuse optical imaging
NASA Astrophysics Data System (ADS)
Zhu, Banghe; Godavarty, Anuradha
2009-02-01
In the current research, diffuse optical imaging (DOI) is used for the first time towards studies related to sociocommunication impairments, which is a characteristic feature of autism. DOI studies were performed on normal adult volunteers to determine the differences in the brain activation (cognitive regions) in terms of the changes in the cerebral blood oxygenation levels in response to joint and non-joint attention based stimulus (i.e. socio-communicative paradigms shown as video clips). Functional connectivity models are employed to assess the extent of synchronization between the left and right pre-frontal regions of the brain in response to the above stimuli.
Disparate effects of training on brain activation in Parkinson disease.
Maidan, Inbal; Rosenberg-Katz, Keren; Jacob, Yael; Giladi, Nir; Hausdorff, Jeffrey M; Mirelman, Anat
2017-10-24
To compare the effects of 2 forms of exercise, i.e., a 6-week trial of treadmill training with virtual reality (TT + VR) that targets motor and cognitive aspects of safe ambulation and a 6-week trial of treadmill training alone (TT), on brain activation in patients with Parkinson disease (PD). As part of a randomized controlled trial, patients were randomly assigned to 6 weeks of TT (n = 17, mean age 71.5 ± 1.5 years, disease duration 11.6 ± 1.6 years; 70% men) or TT + VR (n = 17, mean age 71.2 ± 1.7 years, disease duration 7.9 ± 1.4 years; 65% men). A previously validated fMRI imagery paradigm assessed changes in neural activation pretraining and post-training. Participants imagined themselves walking in 2 virtual scenes projected in the fMRI: (1) a clear path and (2) a path with virtual obstacles. Whole brain and region of interest analyses were performed. Brain activation patterns were similar between training arms before the interventions. After training, participants in the TT + VR arm had lower activation than the TT arm in Brodmann area 10 and the inferior frontal gyrus (cluster level familywise error-corrected [FWEcorr] p < 0.012), while the TT arm had lower activation than TT + VR in the cerebellum and middle temporal gyrus (cluster level FWEcorr p < 0.001). Changes in fall frequency and brain activation were correlated in the TT + VR arm. Exercise modifies brain activation patterns in patients with PD in a mode-specific manner. Motor-cognitive training decreased the reliance on frontal regions, which apparently resulted in improved function, perhaps reflecting increased brain efficiency. © 2017 American Academy of Neurology.
Phonological Working Memory for Words and Nonwords in Cerebral Cortex
ERIC Educational Resources Information Center
Perrachione, Tyler K.; Ghosh, Satrajit S.; Ostrovskaya, Irina; Gabrieli, John D. E.; Kovelman, Ioulia
2017-01-01
Purpose: The primary purpose of this study was to identify the brain bases of phonological working memory (the short-term maintenance of speech sounds) using behavioral tasks analogous to clinically sensitive assessments of nonword repetition. The secondary purpose of the study was to identify how individual differences in brain activation were…
A regional consensus recommendation on brain atrophy as an outcome measure in multiple sclerosis.
Alroughani, Raed; Deleu, Dirk; El Salem, Khalid; Al-Hashel, Jasem; Alexander, K John; Abdelrazek, Mohamed Assem; Aljishi, Adel; Alkhaboori, Jaber; Al Azri, Faisal; Al Zadjali, Nahida; Hbahbih, Majed; Sokrab, Tag Eldin; Said, Mohamed; Rovira, Àlex
2016-11-24
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory and neurodegenerative processes leading to irreversible neurological impairment. Brain atrophy occurs early in the course of the disease at a rate greater than the general population. Brain volume loss (BVL) is associated with disability progression and cognitive impairment in patients with MS; hence its value as a potential target in monitoring and treating MS is discussed. A group of MS neurologists and neuro-radiologists reviewed the current literature on brain atrophy and discussed the challenges in assessing and implementing brain atrophy measurements in clinical practice. The panel used a voting system to reach a consensus and the votes were counted for the proposed set of questions for cognitive and brain atrophy assessments. The panel of experts was able to identify recent studies, which demonstrated the correlation between BVL and future worsening of disability and cognition. The current evidence revealed that reduction of BVL could be achieved with different disease-modifying therapies (DMTs). BVL provided a better treatment and monitoring strategy when it is combined to the composite measures of "no evidence of disease activity" (NEDA). The panel recommended a set of cognitive assessment tools and MRI methods and software applications that may help in capturing and measuring the underlying MS pathology with high degree of specificity. BVL was considered to be a useful measurement to longitudinally assess disease progression and cognitive function in patients with MS. Brain atrophy measurement was recommended to be incorporated into the concept of NEDA. Consequently, a consensus recommendation was reached in anticipation for implementation of the use of cognitive assessment and brain atrophy measurements on a regional level.
Individual differences in solving arithmetic word problems
2013-01-01
Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107
Song, Si-Xin; Gao, Jun-Ling; Wang, Kai-Jie; Li, Ran; Tian, Yan-Xia; Wei, Jian-Qiang; Cui, Jian-Zhong
2013-01-01
Diffuse brain injury (DBI) is a leading cause of mortality and disability among young individuals and adults worldwide. In specific cases, DBI is associated with permanent spatial learning dysfunction and motor deficits due to primary and secondary brain damage. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a major complex that produces reactive oxygen species (ROS) during the ischemic period. The complex aggravates brain damage and cell death following ischemia/reperfusion injury; however, its role in DBI remains unclear. The present study aimed to investigate the hypothesis that levels of NOX2 (a catalytic subunit of NOX) protein expression and the activation of NOX are enhanced following DBI induction in rats and are involved in aggravating secondary brain damage. A rat model of DBI was created using a modified weight-drop device. Our results demonstrated that NOX2 protein expression and NOX activity were enhanced in the CA1 subfield of the hippocampus at 48 and 72 h following DBI induction. Treatment with apocynin (50 mg/kg body weight), a specific inhibitor of NOX, injected intraperitoneally 30 min prior to DBI significantly attenuated NOX2 protein expression and NOX activation. Moreover, treatment with apocynin reduced brain edema and improved spatial learning function assessed using the Morris water maze. These results reveal that treatment with apocynin may provide a new neuroprotective therapeutic strategy against DBI by diminishing the upregulation of NOX2 protein and NOX activity.
Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.
Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi
2016-09-26
Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.
Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E; Cohen, Leonardo G; Birbaumer, Niels; Soekadar, Surjo R
2016-10-15
Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0-4Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Garcia-Cossio, Eliana; Witkowski, Matthias; Robinson, Stephen E.; Cohen, Leonardo G.; Birbaumer, Niels; Soekadar, Surjo R.
2016-01-01
Transcranial direct current stimulation (tDCS) can influence cognitive, affective or motor brain functions. Whereas previous imaging studies demonstrated widespread tDCS effects on brain metabolism, direct impact of tDCS on electric or magnetic source activity in task-related brain areas could not be confirmed due to the difficulty to record such activity simultaneously during tDCS. The aim of this proof-of-principal study was to demonstrate the feasibility of whole-head source localization and reconstruction of neuromagnetic brain activity during tDCS and to confirm the direct effect of tDCS on ongoing neuromagnetic activity in task-related brain areas. Here we show for the first time that tDCS has an immediate impact on slow cortical magnetic fields (SCF, 0–4 Hz) of task-related areas that are identical with brain regions previously described in metabolic neuroimaging studies. 14 healthy volunteers performed a choice reaction time (RT) task while whole-head magnetoencephalography (MEG) was recorded. Task-related source-activity of SCFs was calculated using synthetic aperture magnetometry (SAM) in absence of stimulation and while anodal, cathodal or sham tDCS was delivered over the right primary motor cortex (M1). Source reconstruction revealed task-related SCF modulations in brain regions that precisely matched prior metabolic neuroimaging studies. Anodal and cathodal tDCS had a polarity-dependent impact on RT and SCF in primary sensorimotor and medial centro-parietal cortices. Combining tDCS and whole-head MEG is a powerful approach to investigate the direct effects of transcranial electric currents on ongoing neuromagnetic source activity, brain function and behavior. PMID:26455796
ERIC Educational Resources Information Center
Perera, Thushanthi; Frei, Simone; Frei, Balz; Bobe, Gerd
2015-01-01
A sedentary life style contributes to many chronic diseases and poor educational performance. Since elementary school-aged children spend most wakeful hours in school, classroom teachers are essential for providing physical activity (PA) breaks during school. As first objective, we assessed current PA levels for Oregon public elementary schools…
Human Exploration of Enclosed Spaces through Echolocation.
Flanagin, Virginia L; Schörnich, Sven; Schranner, Michael; Hummel, Nadine; Wallmeier, Ludwig; Wahlberg, Magnus; Stephan, Thomas; Wiegrebe, Lutz
2017-02-08
Some blind humans have developed echolocation, as a method of navigation in space. Echolocation is a truly active sense because subjects analyze echoes of dedicated, self-generated sounds to assess space around them. Using a special virtual space technique, we assess how humans perceive enclosed spaces through echolocation, thereby revealing the interplay between sensory and vocal-motor neural activity while humans perform this task. Sighted subjects were trained to detect small changes in virtual-room size analyzing real-time generated echoes of their vocalizations. Individual differences in performance were related to the type and number of vocalizations produced. We then asked subjects to estimate virtual-room size with either active or passive sounds while measuring their brain activity with fMRI. Subjects were better at estimating room size when actively vocalizing. This was reflected in the hemodynamic activity of vocal-motor cortices, even after individual motor and sensory components were removed. Activity in these areas also varied with perceived room size, although the vocal-motor output was unchanged. In addition, thalamic and auditory-midbrain activity was correlated with perceived room size; a likely result of top-down auditory pathways for human echolocation, comparable with those described in echolocating bats. Our data provide evidence that human echolocation is supported by active sensing, both behaviorally and in terms of brain activity. The neural sensory-motor coupling complements the fundamental acoustic motor-sensory coupling via the environment in echolocation. SIGNIFICANCE STATEMENT Passive listening is the predominant method for examining brain activity during echolocation, the auditory analysis of self-generated sounds. We show that sighted humans perform better when they actively vocalize than during passive listening. Correspondingly, vocal motor and cerebellar activity is greater during active echolocation than vocalization alone. Motor and subcortical auditory brain activity covaries with the auditory percept, although motor output is unchanged. Our results reveal behaviorally relevant neural sensory-motor coupling during echolocation. Copyright © 2017 the authors 0270-6474/17/371614-14$15.00/0.
Sergutina, A V; Rakhmanova, V I
2016-06-01
Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.
Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen
2015-08-01
To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P < 0.05 uncorrected). This study found that, at 1 month after LT, spontaneous brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.
Liu, Xun; Hairston, Jacqueline; Schrier, Madeleine; Fan, Jin
2011-01-01
To better understand the reward circuitry in human brain, we conducted activation likelihood estimation (ALE) and parametric voxel-based meta-analyses (PVM) on 142 neuroimaging studies that examined brain activation in reward-related tasks in healthy adults. We observed several core brain areas that participated in reward-related decision making, including the nucleus accumbens (NAcc), caudate, putamen, thalamus, orbitofrontal cortex (OFC), bilateral anterior insula, anterior (ACC) and posterior (PCC) cingulate cortex, as well as cognitive control regions in the inferior parietal lobule and prefrontal cortex (PFC). The NAcc was commonly activated by both positive and negative rewards across various stages of reward processing (e.g., anticipation, outcome, and evaluation). In addition, the medial OFC and PCC preferentially responded to positive rewards, whereas the ACC, bilateral anterior insula, and lateral PFC selectively responded to negative rewards. Reward anticipation activated the ACC, bilateral anterior insula, and brain stem, whereas reward outcome more significantly activated the NAcc, medial OFC, and amygdala. Neurobiological theories of reward-related decision making should therefore distributed and interrelated representations of reward valuation and valence assessment into account. PMID:21185861
Physical activity, fitness, glucose homeostasis, and brain morphology in twins.
Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M
2015-03-01
The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P < 0.001. Among healthy adult male twins in their mid-30s, a greater level of physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.
Owens, Max M; Amlung, Michael T; Beach, Steven R H; Sweet, Lawrence H; MacKillop, James
2017-07-11
Delayed reward discounting (DRD), the degree to which future rewards are discounted relative to immediate rewards, is used as an index of impulsive decision-making and has been associated with a number of problematic health behaviors. Given the robust behavioral association between DRD and addictive behavior, there is an expanding literature investigating the differences in the functional and structural correlates of DRD in the brain between addicted and healthy individuals. However, there has yet to be a systematic review which characterizes differences in regional brain activation, functional connectivity, and structure and places them in the larger context of the DRD literature. The objective of this systematic review is to summarize and critically appraise the existing literature examining differences between addicted and healthy individuals in the neural correlates of DRD using magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI). A systematic search strategy will be implemented that uses Boolean search terms in PubMed/MEDLINE and PsycINFO, as well as manual search methods, to identify the studies comprehensively. This review will include studies using MRI or fMRI in humans to directly compare brain activation, functional connectivity, or structure in relation to DRD between addicted and healthy individuals or continuously assess addiction severity in the context of DRD. Two independent reviewers will determine studies that meet the inclusion criteria for this review, extract data from included studies, and assess the quality of included studies using the Grading of Recommendations Assessment, Development and Evaluation framework. Then, narrative review will be used to explicate the differences in structural and functional correlates of DRD implicated by the literature and assess the strength of evidence for this conclusion. This review will provide a needed critical exegesis of the MRI studies that have been conducted investigating brain differences in addictive behavior in relation to healthy samples in the context of DRD. This will provide clarity on the elements of neural activation, connectivity, and structure that are most implicated in the differences in DRD seen in addicted individuals. PROSPERO CRD42017056857.
Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.
Nelson, David V; Esty, Mary Lee
2015-10-01
Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Coen, S J
2011-06-01
Functional neuroimaging has been used extensively in conjunction with gastric balloon distension in an attempt to unravel the relationship between the brain, regulation of hunger, satiety, and food intake tolerance. A number of researchers have also adopted a more physiological approach using intra-gastric administration of a liquid meal which has revealed different brain responses to gastric balloon distension. These differences are important as they question the utility and relevance of non-physiological models such as gastric balloon distension, especially when investigating mechanisms of feeding behavior such as satiety. However, an assessment of the relevance of physiological versus non-physiological gastric distension has been problematic due to differences in distension volumes between studies. In this issue of Neurogastroenterology and Motility, Geeraerts et al. compare brain activity during volume matched nutrient gastric distension and balloon distension in healthy volunteers. Gastric balloon distension activated the 'visceral pain neuromatrix'. This network of brain regions was deactivated during nutrient infusion, supporting the notion that brain activity during physiological versus non-physiological distension is indeed different. The authors suggest deactivation of the pain neuromatrix during nutrient infusion serves as a prerequisite for tolerance of normal meal volumes in health. © 2011 Blackwell Publishing Ltd.
Activation of monoamine oxidase isotypes by prolonged intake of aluminum in rat brain.
Huh, Jae-Wan; Choi, Myung-Min; Lee, Jang Han; Yang, Seung-Ju; Kim, Mi Jung; Choi, Jene; Lee, Kwan Ho; Lee, Jong Eun; Cho, Sung-Woo
2005-10-01
Rats were fed 100 microM aluminum maltolate for one year in their drinking water. Brain aluminum contents have increased 4.2-fold in the aluminum-treated group, whereas no significant changes in the body weight, brain weight, and brain protein content were observed. Long-term aluminum feeding induced apoptosis as assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling method and showed activatory effects on the catalytic efficiency (kcat/KM) of monoamine oxidase-A and monoamine oxidase-B up to 1.9- and 3.8-fold, respectively. The expression level of monoamine oxidase isotypes on the Western blot remained unchanged between the two groups, suggesting a change in post-translational regulation of the activities of monoamine oxidase isotypes by long-term aluminum feeding.
Magnoni, Sandra; Esparza, Thomas J; Conte, Valeria; Carbonara, Marco; Carrabba, Giorgio; Holtzman, David M; Zipfel, Greg J; Stocchetti, Nino; Brody, David L
2012-04-01
Axonal injury is believed to be a major determinant of adverse outcomes following traumatic brain injury. However, it has been difficult to assess acutely the severity of axonal injury in human traumatic brain injury patients. We hypothesized that microdialysis-based measurements of the brain extracellular fluid levels of tau and neurofilament light chain, two low molecular weight axonal proteins, could be helpful in this regard. To test this hypothesis, 100 kDa cut-off microdialysis catheters were placed in 16 patients with severe traumatic brain injury at two neurological/neurosurgical intensive care units. Tau levels in the microdialysis samples were highest early and fell over time in all patients. Initial tau levels were >3-fold higher in patients with microdialysis catheters placed in pericontusional regions than in patients in whom catheters were placed in normal-appearing right frontal lobe tissue (P = 0.005). Tau levels and neurofilament light-chain levels were positively correlated (r = 0.6, P = 0.013). Neurofilament light-chain levels were also higher in patients with pericontusional catheters (P = 0.04). Interestingly, initial tau levels were inversely correlated with initial amyloid-β levels measured in the same samples (r = -0.87, P = 0.000023). This could be due to reduced synaptic activity in areas with substantial axonal injury, as amyloid-β release is closely coupled with synaptic activity. Importantly, high initial tau levels correlated with worse clinical outcomes, as assessed using the Glasgow Outcome Scale 6 months after injury (r = -0.6, P = 0.018). Taken together, our data add support for the hypothesis that axonal injury may be related to long-term impairments following traumatic brain injury. Microdialysis-based measurement of tau levels in the brain extracellular space may be a useful way to assess the severity of axonal injury acutely in the intensive care unit. Further studies with larger numbers of patients will be required to assess the reproducibility of these findings and to determine whether this approach provides added value when combined with clinical and radiological information.
Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.
Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen
2018-09-17
Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.
Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit
2015-01-01
Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg(-1)BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.
A fast atlas-guided high density diffuse optical tomography system for brain imaging
NASA Astrophysics Data System (ADS)
Dai, Xianjin; Zhang, Tao; Yang, Hao; Jiang, Huabei
2017-02-01
Near infrared spectroscopy (NIRS) is an emerging functional brain imaging tool capable of assessing cerebral concentrations of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) during brain activation noninvasively. As an extension of NIRS, diffuse optical tomography (DOT) not only shares the merits of providing continuous readings of cerebral oxygenation, but also has the ability to provide spatial resolution in the millimeter scale. Based on the scattering and absorption properties of nonionizing near-infrared light in biological tissue, DOT has been successfully applied in the imaging of breast tumors, osteoarthritis and cortex activations. Here, we present a state-of-art fast high density DOT system suitable for brain imaging. It can achieve up to a 21 Hz sampling rate for a full set of two-wavelength data for 3-D DOT brain image reconstruction. The system was validated using tissue-mimicking brain-model phantom. Then, experiments on healthy subjects were conducted to demonstrate the capability of the system.
NASA Astrophysics Data System (ADS)
Louis, Chelsey N.
Schizophrenia is a neurological disorder associated with cognitive impairments, and clinical symptoms of hallucinations and delusions. Recent imaging and behavioral studies have repeatedly shown aberrant brain activity in the hippocampal regions in relation to episodic memory impairments associated with schizophrenia. These findings have warranted further research to elucidate the neural processes associated with episodic memory. Therefore, the current study examined activity in a priori brain regions associated with episodic memory using the face-name paired-associates fMRI task to determine whether there was reliable activation patterns observed in healthy subjects and patients with self-reported schizophrenia. This was evaluated by using ROI analysis and whole brain analysis to examine activity between subjects during a session, and by using Pearson's R correlation coefficients to examine test-retest reliability over time. 30 schizophrenic (SZ) patients and 31 healthy control (HC) volunteers underwent a series of assessments including the fMRI behavioral task, face-name paired-associates task. The tests were conducted twice with a 14-day interval for the subjects. The results indicated no reliable brain activation in the hippocampus between scanning sessions for either the SZ or HC groups. However, distinct activation patterns were observed within sessions for both groups. These patterns were observed in the hippocampus, and regions of the frontal lobe and occipital lobe. Future studies should further explore these brain activity patterns across sessions in SZ patients compared to HC subjects to determine whether these patterns are due to pathological mechanisms associated with schizophrenia.
Modi, Hemel Narendra; Singh, Harsimrat; Yang, Guang-Zhong; Darzi, Ara; Leff, Daniel Richard
2017-11-01
Functional neuroimaging technologies enable assessment of operator brain function and can deepen our understanding of skills learning, ergonomic optima, and cognitive processes in surgeons. Although there has been a critical mass of data detailing surgeons' brain function, this literature has not been reviewed systematically. A systematic search of original neuroimaging studies assessing surgeons' brain function and published up until November 2016 was conducted using Medline, Embase, and PsycINFO databases. Twenty-seven studies fulfilled the inclusion criteria, including 3 feasibility studies, 14 studies exploring the neural correlates of technical skill acquisition, and the remainder investigating brain function in the context of intraoperative decision-making (n = 1), neurofeedback training (n = 1), robot-assisted technology (n = 5), and surgical teaching (n = 3). Early stages of learning open surgical tasks (knot-tying) are characterized by prefrontal cortical activation, which subsequently attenuates with deliberate practice. However, with complex laparoscopic skills (intracorporeal suturing), prefrontal cortical engagement requires substantial training, and attenuation occurs over a longer time course, after years of refinement. Neurofeedback and interventions that improve neural efficiency may enhance technical performance and skills learning. Imaging surgeons' brain function has identified neural signatures of expertise that might help inform objective assessment and selection processes. Interventions that improve neural efficiency may target skill-specific brain regions and augment surgical performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Sundaram, Thirunavukkarasu; Jeong, Gwang-Woo; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun
2010-01-01
To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal.
Sundaram, Thirunavukkarasu; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun
2010-01-01
Objective To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Materials and Methods Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. Results For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Conclusion Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal. PMID:20461181
Distributed Patterns of Reactivation Predict Vividness of Recollection.
St-Laurent, Marie; Abdi, Hervé; Buchsbaum, Bradley R
2015-10-01
According to the principle of reactivation, memory retrieval evokes patterns of brain activity that resemble those instantiated when an event was first experienced. Intuitively, one would expect neural reactivation to contribute to recollection (i.e., the vivid impression of reliving past events), but evidence of a direct relationship between the subjective quality of recollection and multiregional reactivation of item-specific neural patterns is lacking. The current study assessed this relationship using fMRI to measure brain activity as participants viewed and mentally replayed a set of short videos. We used multivoxel pattern analysis to train a classifier to identify individual videos based on brain activity evoked during perception and tested how accurately the classifier could distinguish among videos during mental replay. Classification accuracy correlated positively with memory vividness, indicating that the specificity of multivariate brain patterns observed during memory retrieval was related to the subjective quality of a memory. In addition, we identified a set of brain regions whose univariate activity during retrieval predicted both memory vividness and the strength of the classifier's prediction irrespective of the particular video that was retrieved. Our results establish distributed patterns of neural reactivation as a valid and objective marker of the quality of recollection.
The Effects of Taekwondo Training on Brain Connectivity and Body Intelligence.
Kim, Young Jae; Cha, Eun Joo; Kim, Sun Mi; Kang, Kyung Doo; Han, Doug Hyun
2015-07-01
Many studies have reported that Taekwondo training could improve body perception, control and brain activity, as assessed with an electroencephalogram. This study aimed to assess body intelligence and brain connectivity in children with Taekwondo training as compared to children without Taekwondo training. Fifteen children with Taekwondo training (TKD) and 13 age- and sex-matched children who had no previous experience of Taekwondo training (controls) were recruited. Body intelligence, clinical characteristics and brain connectivity in all children were assessed with the Body Intelligence Scale (BIS), self-report, and resting state functional magnetic resonance imaging. The mean BIS score in the TKD group was higher than that in the control group. The TKD group showed increased low-frequency fluctuations in the right frontal precentral gyrus and the right parietal precuneus, compared to the control group. The TKD group showed positive cerebellum vermis (lobe VII) seed to the right frontal, left frontal, and left parietal lobe. The control group showed positive cerebellum seed to the left frontal, parietal, and occipital cortex. Relative to the control group, the TKD group showed increased functional connectivity from cerebellum seed to the right inferior frontal gyrus. To the best of our knowledge, this is the first study to assess the effect of Taekwondo training on brain connectivity in children. Taekwondo training improved body intelligence and brain connectivity from the cerebellum to the parietal and frontal cortex.
Bauer, Julia; Chen, Wenjing; Nischwitz, Sebastian; Liebl, Jakob; Rieken, Stefan; Welzel, Thomas; Debus, Juergen; Parodi, Katia
2018-04-24
A reliable Monte Carlo prediction of proton-induced brain tissue activation used for comparison to particle therapy positron-emission-tomography (PT-PET) measurements is crucial for in vivo treatment verification. Major limitations of current approaches to overcome include the CT-based patient model and the description of activity washout due to tissue perfusion. Two approaches were studied to improve the activity prediction for brain irradiation: (i) a refined patient model using tissue classification based on MR information and (ii) a PT-PET data-driven refinement of washout model parameters. Improvements of the activity predictions compared to post-treatment PT-PET measurements were assessed in terms of activity profile similarity for six patients treated with a single or two almost parallel fields delivered by active proton beam scanning. The refined patient model yields a generally higher similarity for most of the patients, except in highly pathological areas leading to tissue misclassification. Using washout model parameters deduced from clinical patient data could considerably improve the activity profile similarity for all patients. Current methods used to predict proton-induced brain tissue activation can be improved with MR-based tissue classification and data-driven washout parameters, thus providing a more reliable basis for PT-PET verification. Copyright © 2018 Elsevier B.V. All rights reserved.
Aid, Saba; Parikh, Nishant; Palumbo, Sara; Bosetti, Francesca
2010-07-12
Neuroinflammation is a critical component in the progression of several neurological and neurodegenerative diseases and cyclooxygenases (COX)-1 and -2 are key regulators of innate immune responses. We recently demonstrated that COX-1 deletion attenuates, whereas COX-2 deletion enhances, the neuroinflammatory response, blood-brain barrier permeability and leukocyte recruitment during lipopolysaccharide (LPS)-induced innate immune activation. Here, we used transgenic mice, which overexpressed human COX-2 via neuron-specific Thy-1 promoter (TgCOX-2), causing elevated prostaglandins (PGs) levels. We tested whether neuronal COX-2 overexpression affects the glial response to a single intracerebroventricular injection of LPS, which produces a robust neuroinflammatory reaction. Relative to non-transgenic controls (NTg), 7 month-old TgCOX-2 did not show any basal neuroinflammation, as assessed by gene expression of markers of inflammation and oxidative stress, neuronal damage, as assessed by Fluoro-JadeB staining, or systemic inflammation, as assessed by plasma levels of IL-1beta and corticosterone. Twenty-four hours after LPS injection, all mice showed increased microglial activation, as indicated by Iba1 immunostaining, neuronal damage, mRNA expression of cytokines (TNF-alpha, IL-6), reactive oxygen expressing enzymes (iNOS and NADPH oxidase subunits), endogenous COX-2, cPLA(2) and mPGES-1, and hippocampal and cortical IL-1beta levels. However, the increases were similar in TgCOX-2 and NTg. In NTg, LPS increased brain PGE(2) to the levels observed in TgCOX-2. These results suggest that PGs derived from neuronal COX-2 do not play a role in the neuroinflammatory response to acute activation of brain innate immunity. This is likely due to the direct effect of LPS on glial rather than neuronal cells. Published by Elsevier Ireland Ltd.
Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.
Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H
2017-07-01
Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.
Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.
Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo
2017-12-01
Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.
Rey, Beatriz; Rodriguez-Pujadas, Aina; Breton-Lopez, Juani; Barros-Loscertales, Alfonso; Baños, Rosa M; Botella, Cristina; Alcañiz, Mariano; Avila, Cesar
2014-01-01
Background To date, still images or videos of real animals have been used in functional magnetic resonance imaging protocols to evaluate the brain activations associated with small animals’ phobia. Objective The objective of our study was to evaluate the brain activations associated with small animals’ phobia through the use of virtual environments. This context will have the added benefit of allowing the subject to move and interact with the environment, giving the subject the illusion of being there. Methods We have analyzed the brain activation in a group of phobic people while they navigated in a virtual environment that included the small animals that were the object of their phobia. Results We have found brain activation mainly in the left occipital inferior lobe (P<.05 corrected, cluster size=36), related to the enhanced visual attention to the phobic stimuli; and in the superior frontal gyrus (P<.005 uncorrected, cluster size=13), which is an area that has been previously related to the feeling of self-awareness. Conclusions In our opinion, these results demonstrate that virtual stimulus can enhance brain activations consistent with previous studies with still images, but in an environment closer to the real situation the subject would face in their daily lives. PMID:25654753
CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.
Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe
2016-04-12
CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.
Atypical Brain Activation during Simple & Complex Levels of Processing in Adult ADHD: An fMRI Study
ERIC Educational Resources Information Center
Hale, T. Sigi; Bookheimer, Susan; McGough, James J.; Phillips, Joseph M.; McCracken, James T.
2007-01-01
Objective: Executive dysfunction in ADHD is well supported. However, recent studies suggest that more fundamental impairments may be contributing. We assessed brain function in adults with ADHD during simple and complex forms of processing. Method: We used functional magnetic resonance imaging with forward and backward digit spans to investigate…
Broussard, John I; Acion, Laura; De Jesús-Cortés, Héctor; Yin, Terry; Britt, Jeremiah K; Salas, Ramiro; Costa-Mattioli, Mauro; Robertson, Claudia; Pieper, Andrew A; Arciniegas, David B; Jorge, Ricardo
2018-01-01
Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.
Cognitive-motor dual-task interference: A systematic review of neural correlates.
Leone, Carmela; Feys, Peter; Moumdjian, Lousin; D'Amico, Emanuele; Zappia, Mario; Patti, Francesco
2017-04-01
Cognitive-motor interference refers to dual-tasking (DT) interference (DTi) occurring when the simultaneous performance of a cognitive and a motor task leads to a percentage change in one or both tasks. Several theories exist to explain DTi in humans: the capacity-sharing, the bottleneck and the cross-talk theories. Numerous studies investigating whether a specific brain locus is associated with cognitive-motor DTi have been conducted, but not systematically reviewed. We aimed to review the evidences on brain activity associated with the cognitive-motor DT, in order to better understand the neurological basis of the CMi. Results were reported according to the technique used to assess brain activity. Twenty-three articles met the inclusion criteria. Out of them, nine studies used functional magnetic resonance imaging to show an additive, under-additive, over- additive, or a mixed activation pattern of the brain. Seven studies used near-infrared spectroscopy, and seven neurophysiological instruments. Yet a specific DT locus in the brain cannot be concluded from the overall current literature. Future studies are warranted to overcome the shortcomings identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Janse Van Rensburg, Kate; Taylor, Adrian; Hodgson, Tim; Benattayallah, Abdelmalek
2009-04-01
Substances of misuse (such as nicotine) are associated with increases in activation within the mesocorticolimbic brain system, a system thought to mediate the rewarding effects of drugs of abuse. Pharmacological treatments have been designed to reduce cigarette cravings during temporary abstinence. Exercise has been found to be an effective tool for controlling cigarette cravings. The objective of this study is to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomized crossover design, regular smokers (n = 10) undertook an exercise (10 min moderate-intensity stationary cycling) and control (passive seating for same duration) session, following 15 h of nicotine abstinence. Following treatments, participants entered a functional Magnetic Resonance Imaging (fMRI) scanner. Subjects viewed a random series of smoking and neutral images for 3 s, with an average inter-stimulus-interval (ISI) of 10 s. Self-reported cravings were assessed at baseline, mid-, and post-treatments. A significant interaction effect (time by group) was found, with self-reported cravings lower during and following exercise. During control scanning, significant activation was recorded in areas associated with reward (caudate nucleus), motivation (orbitofrontal cortex) and visuo-spatial attention (parietal lobe, parahippocampal, and fusiform gyrus). Post-exercise scanning showed hypo-activation in these areas with a concomitant shift of activation towards areas identified in the 'brain default mode' (Broadmanns Area 10). The study confirms previous evidence that a single session of exercise can reduce cigarette cravings, and for the first time provides evidence of a shift in regional activation in response to smoking cues.
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults. PMID:29472847
A balance of activity in brain control and reward systems predicts self-regulatory outcomes
Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.
2017-01-01
Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants’ food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters’ control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. PMID:28158874
Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang
2018-01-01
Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.
A balance of activity in brain control and reward systems predicts self-regulatory outcomes.
Lopez, Richard B; Chen, Pin-Hao A; Huckins, Jeremy F; Hofmann, Wilhelm; Kelley, William M; Heatherton, Todd F
2017-05-01
Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants' food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters' control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. © The Author (2017). Published by Oxford University Press.
Ballard, Peter; Yates, James W T; Yang, Zhenfan; Kim, Dong-Wan; Yang, James Chih-Hsin; Cantarini, Mireille; Pickup, Kathryn; Jordan, Angela; Hickey, Mike; Grist, Matthew; Box, Matthew; Johnström, Peter; Varnäs, Katarina; Malmquist, Jonas; Thress, Kenneth S; Jänne, Pasi A; Cross, Darren
2016-10-15
Approximately one-third of patients with non-small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Osimertinib demonstrated greater penetration of the mouse blood-brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [ 11 C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [ 11 C]rociletinib and [ 11 C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130-40. ©2016 AACR. ©2016 American Association for Cancer Research.
Hayes, Scott M.; Hayes, Jasmeet P.; Williams, Victoria J.; Liu, Huiting; Verfaellie, Mieke
2017-01-01
Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO2) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions, consistent with the brain compensation hypothesis. PMID:28161031
Hayes, Scott M; Hayes, Jasmeet P; Williams, Victoria J; Liu, Huiting; Verfaellie, Mieke
2017-06-01
Older adults (OA), relative to young adults (YA), exhibit age-related alterations in functional Magnetic Resonance Imaging (fMRI) activity during associative encoding, which contributes to deficits in source memory. Yet, there are remarkable individual differences in brain health and memory performance among OA. Cardiorespiratory fitness (CRF) is one individual difference factor that may attenuate brain aging, and thereby contribute to enhanced source memory in OA. To examine this possibility, 26 OA and 31 YA completed a treadmill-based exercise test to evaluate CRF (peak VO 2 ) and fMRI to examine brain activation during a face-name associative encoding task. Our results indicated that in OA, peak VO 2 was positively associated with fMRI activity during associative encoding in multiple regions including bilateral prefrontal cortex, medial frontal cortex, bilateral thalamus and left hippocampus. Next, a conjunction analysis was conducted to assess whether CRF influenced age-related differences in fMRI activation. We classified OA as high or low CRF and compared their activation to YA. High fit OA (HFOA) showed fMRI activation more similar to YA than low fit OA (LFOA) (i.e., reduced age-related differences) in multiple regions including thalamus, posterior and prefrontal cortex. Conversely, in other regions, primarily in prefrontal cortex, HFOA, but not LFOA, demonstrated greater activation than YA (i.e., increased age-related differences). Further, fMRI activity in these brain regions was positively associated with source memory among OA, with a mediation model demonstrating that associative encoding activation in medial frontal cortex indirectly influenced the relationship between peak VO 2 and subsequent source memory performance. These results indicate that CRF may contribute to neuroplasticity among OA, reducing age-related differences in some brain regions, consistent with the brain maintenance hypothesis, but accentuating age-differences in other regions, consistent with the brain compensation hypothesis. Published by Elsevier Ltd.
Kodama, Takayuki; Nakano, Hideki; Katayama, Osamu; Murata, Shin
2017-01-01
The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder.
Kadowaki, Masaru; Tadenuma, Taku; Kumahashi, Nobuyuki; Uchio, Yuji
2017-11-01
Patellar instability with medial patellofemoral ligament (MPFL) deficiency is a common sports injury among young people. Although nonoperative and surgical treatment can provide stability of the patella, patients often have anxiety related to the knee. We speculate that neural dysfunction may be related to anxiety in these patients; however, the mechanism in the brain that generates this anxiety remains unknown. (1) How does brain activity in patients with MPFL deficiency change in the areas related to somatic sensation against lateral shift of the patella? (2) How does patella instability, which can lead to continuous fear or apprehension for dislocation, influence brain activity in the areas related to emotion? Nineteen patients with MPFL deficiency underwent surgical reconstruction in our hospital from April 2012 to March 2014. Excluding seven patients with osteochondral lesions, 12 patients (five males and seven females; mean age, 20 years) with MPFL deficiency were sequentially included in this study. Eleven control subjects (four males and seven females; mean age, 23 years) were recruited from medical students who had no history of knee injury. Diagnosis of the MPFL deficiency was made with MR images, which confirmed the rupture, and by proving the instability with a custom-made biomechanical device. Brain activity during passive lateral stress to the patella was assessed by functional MRI. Functional and anatomic images were analyzed using statistical parametric mapping. Differences in functional MRI outcome measures from the detected activated brain regions between the patients with MPFL deficiency and controls were assessed using t tests. Intergroup analysis showed less activity in several sensorimotor cortical areas, including the contralateral primary somatosensory areas (% signal change for MPFL group 0.49% versus 1.1% for the control group; p < 0.001), thalamus (0.2% versus 0.41% for the MPFL versus control, respectively; p < 0.001), ipsilateral thalamus (0.02% versus 0.27% for the MPFL versus control, respectively; p < 0.001), and ipsilateral cerebellum (0.82% versus 1.25% for the MPFL versus control, respectively; p < 0.001) in the MPFL deficiency group than in the control group. In contrast, the MPFL deficiency group showed more activity in several areas, including the contralateral primary motor area (1.06% versus 0.6% for the MPFL versus control, respectively; p < 0.001), supplementary motor area (0.89% versus 0.52% for the MPFL versus control, respectively; p < 0.001), prefrontal cortex (1.09% versus 1.09% for the MPFL versus control, respectively; p < 0.001), inferior parietal lobule (0.89% versus 0.62% for the MPFL versus control, respectively; p < 0.001), anterior cingulate cortex (0.84% versus 0.08% for the MPFL versus control, respectively; p < 0.001), visual cortex (0.86% versus 0.14% for the MPFL versus control, respectively; p < 0.001), vermis (1.18% versus 0.37% for the MPFL versus control, respectively; p < 0.001), and ipsilateral prefrontal cortex (1.1% versus 0.75% for the MPFL versus control, respectively; p < 0.001) than did the control group. Less activity in the contralateral somatosensory cortical areas suggested that MPFL deficiency may lead to diminished somatic sensation against lateral shift of the patella. In contrast, increased activity in the anterior cingulate cortex, prefrontal cortex, and inferior parietal lobule may indicate anxiety or fear resulting from patellar instability, which is recognized as an aversion similar to that toward chronic pain. This study suggests that specific brain-area activity is increased in patients with MPFL deficiency relative to that in controls. Further longitudinal research to assess brain activity and proprioception between patients pre- and postreconstructive knee surgery may reveal more regarding how patella instability is related to brain function. We hope that based on such research, a neural approach to improve patella-instability-related brain function can be developed.
Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei
2018-03-15
To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Okello, Edward J; Abadi, Awatf M; Abadi, Saad A
2016-06-01
Tea has been associated with many mental benefits, such as attention enhancement, clarity of mind, and relaxation. These psychosomatic states can be measured in terms of brain activity using an electroencephalogram (EEG). Brain activity can be assessed either during a state of passive activity or when performing attention tasks and it can provide useful information about the brain's state. This study investigated the effects of green and black consumption on brain activity as measured by a simplified EEG, during passive activity. Eight healthy volunteers participated in the study. The EEG measurements were performed using a two channel EEG brain mapping instrument - HeadCoach™. Fast Fourier transform algorithm and EEGLAB toolbox using the Matlab software were used for data processing and analysis. Alpha, theta, and beta wave activities were all found to increase after 1 hour of green and black tea consumption, albeit, with very considerable inter-individual variations. Our findings provide further evidence for the putative beneficial effects of tea. The highly significant increase in theta waves (P < 0.004) between 30 minutes and 1 hour post-consumption of green tea may be an indication of its putative role in cognitive function, specifically alertness and attention. There were considerable inter-individual variations in response to the two teas which may be due genetic polymorphisms in metabolism and/or influence of variety/blend, dose and content of the selected products whose chemistry and therefore efficacy will have been influenced by 'from field to shelf practices'.
Buckalew, Neilly; Haut, Marc W.; Aizenstein, Howard; Morrow, Lisa; Perera, Subashan; Kuwabara, Hiroto; Weiner, Debra K.
2010-01-01
Objective The primary aim of this pilot study was to identify structural and functional brain differences in older adults with self-reported disabling chronic low back pain (CLBP) compared with those who reported non-disabling CLBP. Design Cross-sectional. Participants Sixteen cognitively intact older adults, eight with disabling CLBP and eight with non-disabling. Exclusions were psychiatric or neurological disorders, substance abuse, opioid use, or diabetes mellitus. Methods Participants underwent: structural and functional brain MRI; neuropsychological assessment using the Repeatable Battery for the Assessment of Neuropsychological Status, Trail Making Tests A and B; and physical performance assessment using the Short Physical Performance Battery. Results In the disabled group there was significantly lower white matter (WM) integrity (P < 0.05) of the splenium of the corpus callosum. This group also demonstrated activation of the right medial prefrontal cortex at rest whereas the non-disabled demonstrated activation of the left lateral prefrontal cortex. Combined groups analysis revealed a strong positive correlation (rs = 0.80, P < 0.0002) between WM integrity of the left centrum semiovale with gait-speed. Secondary analysis revealed a strong negative correlation between total months of CLBP and WM integrity of the SCC (rs = −0.59, P < 0.02). Conclusions Brain structure and function is different in older adults with disabling CLBP compared to those with non-disabling CLBP. Deficits in brain morphology combining groups are associated with pain duration and poor physical function. Our findings suggest brain structure and function may play a key role in chronic-pain-related-disability and may be important treatment targets. PMID:20609128
Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity
van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A. M.
2016-01-01
A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be overruled by a conditioned response to its flavor. In conclusion, the brain reward response to calories from a long chain starch sugar (maltodextrin) varies with trait reward sensitivity. The absence of this effect in a familiar beverage warrants further research into its relevance for real life ingestive behavior. PMID:26834598
Assessing Effects of Prenatal Alcohol Exposure Using Group-wise Sparse Representation of FMRI Data
Lv, Jinglei; Jiang, Xi; Li, Xiang; Zhu, Dajiang; Zhao, Shijie; Zhang, Tuo; Hu, Xintao; Han, Junwei; Guo, Lei; Li, Zhihao; Coles, Claire; Hu, Xiaoping; Liu, Tianming
2015-01-01
Task-based fMRI activation mapping has been widely used in clinical neuroscience in order to assess different functional activity patterns in conditions such as prenatal alcohol exposure (PAE) affected brains and healthy controls. In this paper, we propose a novel, alternative approach of group-wise sparse representation of the fMRI data of multiple groups of subjects (healthy control, exposed non-dysmorphic PAE and exposed dysmorphic PAE) and assess the systematic functional activity differences among these three populations. Specifically, a common time series signal dictionary is learned from the aggregated fMRI signals of all three groups of subjects, and then the weight coefficient matrices (named statistical coefficient map (SCM)) associated with each common dictionary were statistically assessed for each group separately. Through inter-group comparisons based on the correspondence established by the common dictionary, our experimental results have demonstrated that the group-wise sparse coding strategy and the SCM can effectively reveal a collection of brain networks/regions that were affected by different levels of severity of PAE. PMID:26195294
Shafi, Mouhsin M.; Westover, M. Brandon; Fox, Michael D.; Pascual-Leone, Alvaro
2012-01-01
Much recent work in systems neuroscience has focused on how dynamic interactions between different cortical regions underlie complex brain functions such as motor coordination, language, and emotional regulation. Various studies using neuroimaging and neurophysiologic techniques have suggested that in many neuropsychiatric disorders, these dynamic brain networks are dysregulated. Here we review the utility of combined noninvasive brain stimulation and neuroimaging approaches towards greater understanding of dynamic brain networks in health and disease. Brain stimulation techniques, such as transcranial magnetic stimulation and transcranial direct current stimulation, use electromagnetic principles to noninvasively alter brain activity, and induce focal but also network effects beyond the stimulation site. When combined with brain imaging techniques such as functional MRI, PET and EEG, these brain stimulation techniques enable a causal assessment of the interaction between different network components, and their respective functional roles. The same techniques can also be applied to explore hypotheses regarding the changes in functional connectivity that occur during task performance and in various disease states such as stroke, depression and schizophrenia. Finally, in diseases characterized by pathologic alterations in either the excitability within a single region or in the activity of distributed networks, such techniques provide a potential mechanism to alter cortical network function and architectures in a beneficial manner. PMID:22429242
Glapa, Agata; Grzesiak, Joanna; Laudanska-Krzeminska, Ida; Chin, Ming-Kai; Edginton, Christopher R; Mok, Magdalena Mo Ching; Bronikowski, Michal
2018-02-21
The purpose of this study was to examine the effectiveness of the Brain Breaks® Physical Activity Solutions in changing attitudes toward physical activity of school children in a community in Poland. In 2015, a sample of 326 pupils aged 9-11 years old from 19 classes at three selected primary schools were randomly assigned to control and experimental groups within the study. During the classes, children in the experimental group performed physical activities two times per day in three to five minutes using Brain Breaks® videos for four months, while the control group did not use the videos during the test period. Students' attitudes toward physical activities were assessed before and after the intervention using the "Attitudes toward Physical Activity Scale". Repeated measures of ANOVA were used to examine the change from pre- to post-intervention. Overall, a repeated measures ANOVA indicated time-by-group interaction effects in 'Self-efficacy on learning with video exercises', F(1.32) = 75.28, p = 0.00, η2 = 0.19. Although the changes are minor, there were benefits of the intervention. It may be concluded that HOPSports Brain Breaks® Physical Activity Program contributes to better self-efficacy on learning while using video exercise of primary school children.
The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency.
McDonough, Ian M; Haber, Sara; Bischof, Gérard N; Park, Denise C
2015-01-01
Correlational and limited experimental evidence suggests that an engaged lifestyle is associated with the maintenance of cognitive vitality in old age. However, the mechanisms underlying these engagement effects are poorly understood. We hypothesized that mental effort underlies engagement effects and used fMRI to examine the impact of high-challenge activities (digital photography and quilting) compared with low-challenge activities (socializing or performing low-challenge cognitive tasks) on neural function at pretest, posttest, and one year after the engagement program. In the scanner, participants performed a semantic-classification task with two levels of difficulty to assess the modulation of brain activity in response to task demands. The High-Challenge group, but not the Low-Challenge group, showed increased modulation of brain activity in medial frontal, lateral temporal, and parietal cortex-regions associated with attention and semantic processing-some of which were maintained a year later. This increased modulation stemmed from decreases in brain activity during the easy condition for the High-Challenge group and was associated with time committed to the program, age, and cognition. Sustained engagement in cognitively demanding activities facilitated cognition by increasing neural efficiency. Mentally-challenging activities may be neuroprotective and an important element to maintaining a healthy brain into late adulthood.
Behavioral changes and cholinesterase activity of rats acutely treated with propoxur.
Thiesen, F V; Barros, H M; Tannhauser, M; Tannhauser, S L
1999-01-01
Early assessment of neurological and behavioral effects is extremely valuable for early identification of intoxications because preventive measures can be taken against more severe or chronic toxic consequences. The time course of the effects of an oral dose of the anticholinesterase agent propoxur (8.3 mg/kg) was determined on behaviors displayed in the open-field and during an active avoidance task by rats and on blood and brain cholinesterase activity. Maximum inhibition of blood cholinesterase was observed within 30 min after administration of propoxur. The half-life of enzyme-activity recovery was estimated to be 208.6 min. Peak brain cholinesterase inhibition was also detected between 5 and 30 min of the pesticide administration, but the half-life for enzyme activity recovery was much shorter, in the range of 85 min. Within this same time interval of the enzyme effects, diminished motor and exploratory activities and decreased performance of animals in the active avoidance task were observed. Likewise, behavioral normalization after propoxur followed a time frame similar to that of brain cholinesterase. These data indicate that behavioral changes that occur during intoxication with low oral doses of propoxur may be dissociated from signs characteristic of cholinergic over-stimulation but accompany brain cholinesterase activity inhibition.
Vieira, Juliano M; Carvalho, Fabiano B; Gutierres, Jessié M; Soares, Mayara S P; Oliveira, Pathise S; Rubin, Maribel A; Morsch, Vera M; Schetinger, Maria Rosa; Spanevello, Roselia M
2017-11-01
Here we investigated the impact of chronic high-intensity interval training (HIIT) and caffeine consumption on the activities of Na + -K + -ATPase and enzymes of the antioxidant system, as well as anxiolytic-like behaviour in the rat brain. Animals were divided into groups: control, caffeine (4 mg/kg), caffeine (8 mg/kg), HIIT, HIIT plus caffeine (4 mg/kg) and HIIT plus caffeine (8 mg/kg). Rats were trained three times per week for 6 weeks, and caffeine was administered 30 minutes before training. We assessed the anxiolytic-like behaviour, Na + -K + -ATPase, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) in the brain. HIIT-induced anxiolytic-like behaviour increased Na + -K + -ATPase and GPx activities and TBARS levels, altered the activities of SOD and CAT in different brain regions, and decreased GSH levels. Caffeine, however, elicited anxiogenic-like behaviour and blocked HIIT effects. The combination of caffeine and HIIT prevented the increase in SOD activity in the cerebral cortex and GPx activity in three brain regions. Our results show that caffeine promoted anxiogenic behaviour and prevented HIIT-induced changes in the antioxidant system and Na + -K + -ATPase activities.
The Synapse Project: Engagement in mentally challenging activities enhances neural efficiency
McDonough, Ian M.; Haber, Sara; Bischof, Gérard N.; Park, Denise C.
2015-01-01
Purpose: Correlational and limited experimental evidence suggests that an engaged lifestyle is associated with the maintenance of cognitive vitality in old age. However, the mechanisms underlying these engagement effects are poorly understood. We hypothesized that mental effort underlies engagement effects and used fMRI to examine the impact of high-challenge activities (digital photography and quilting) compared with low-challenge activities (socializing or performing low-challenge cognitive tasks) on neural function at pretest, posttest, and one year after the engagement program. Methods: In the scanner, participants performed a semantic-classification task with two levels of difficulty to assess the modulation of brain activity in response to task demands. Results: The High-Challenge group, but not the Low-Challenge group, showed increased modulation of brain activity in medial frontal, lateral temporal, and parietal cortex—regions associated with attention and semantic processing—some of which were maintained a year later. This increased modulation stemmed from decreases in brain activity during the easy condition for the High-Challenge group and was associated with time committed to the program, age, and cognition. Conclusions: Sustained engagement in cognitively demanding activities facilitated cognition by increasing neural efficiency. Mentally-challenging activities may be neuroprotective and an important element to maintaining a healthy brain into late adulthood. PMID:26484698
Autistic Traits and Brain Activation during Face-to-Face Conversations in Typically Developed Adults
Suda, Masashi; Takei, Yuichi; Aoyama, Yoshiyuki; Narita, Kosuke; Sakurai, Noriko; Fukuda, Masato; Mikuni, Masahiko
2011-01-01
Background Autism spectrum disorders (ASD) are characterized by impaired social interaction and communication, restricted interests, and repetitive behaviours. The severity of these characteristics is posited to lie on a continuum that extends into the general population. Brain substrates underlying ASD have been investigated through functional neuroimaging studies using functional magnetic resonance imaging (fMRI). However, fMRI has methodological constraints for studying brain mechanisms during social interactions (for example, noise, lying on a gantry during the procedure, etc.). In this study, we investigated whether variations in autism spectrum traits are associated with changes in patterns of brain activation in typically developed adults. We used near-infrared spectroscopy (NIRS), a recently developed functional neuroimaging technique that uses near-infrared light, to monitor brain activation in a natural setting that is suitable for studying brain functions during social interactions. Methodology We monitored regional cerebral blood volume changes using a 52-channel NIRS apparatus over the prefrontal cortex (PFC) and superior temporal sulcus (STS), 2 areas implicated in social cognition and the pathology of ASD, in 28 typically developed participants (14 male and 14 female) during face-to-face conversations. This task was designed to resemble a realistic social situation. We examined the correlations of these changes with autistic traits assessed using the Autism-Spectrum Quotient (AQ). Principal Findings Both the PFC and STS were significantly activated during face-to-face conversations. AQ scores were negatively correlated with regional cerebral blood volume increases in the left STS during face-to-face conversations, especially in males. Conclusions Our results demonstrate successful monitoring of brain function during realistic social interactions by NIRS as well as lesser brain activation in the left STS during face-to-face conversations in typically developed participants with higher levels of autistic traits. PMID:21637754
Suda, Masashi; Takei, Yuichi; Aoyama, Yoshiyuki; Narita, Kosuke; Sakurai, Noriko; Fukuda, Masato; Mikuni, Masahiko
2011-01-01
Autism spectrum disorders (ASD) are characterized by impaired social interaction and communication, restricted interests, and repetitive behaviours. The severity of these characteristics is posited to lie on a continuum that extends into the general population. Brain substrates underlying ASD have been investigated through functional neuroimaging studies using functional magnetic resonance imaging (fMRI). However, fMRI has methodological constraints for studying brain mechanisms during social interactions (for example, noise, lying on a gantry during the procedure, etc.). In this study, we investigated whether variations in autism spectrum traits are associated with changes in patterns of brain activation in typically developed adults. We used near-infrared spectroscopy (NIRS), a recently developed functional neuroimaging technique that uses near-infrared light, to monitor brain activation in a natural setting that is suitable for studying brain functions during social interactions. We monitored regional cerebral blood volume changes using a 52-channel NIRS apparatus over the prefrontal cortex (PFC) and superior temporal sulcus (STS), 2 areas implicated in social cognition and the pathology of ASD, in 28 typically developed participants (14 male and 14 female) during face-to-face conversations. This task was designed to resemble a realistic social situation. We examined the correlations of these changes with autistic traits assessed using the Autism-Spectrum Quotient (AQ). Both the PFC and STS were significantly activated during face-to-face conversations. AQ scores were negatively correlated with regional cerebral blood volume increases in the left STS during face-to-face conversations, especially in males. Our results demonstrate successful monitoring of brain function during realistic social interactions by NIRS as well as lesser brain activation in the left STS during face-to-face conversations in typically developed participants with higher levels of autistic traits.
Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long
2014-01-01
Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490
Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C.; Papousek, Ilona; Weiss, Elisabeth M.
2015-01-01
Abstract This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3‐week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty‐three participants were tested three times (psychometric tests and fMRI assessment) with an intertest‐interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time‐delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole‐brain voxel‐wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well‐known creativity‐related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. Hum Brain Mapp 36:4104–4115, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178653
Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T
2012-01-01
A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene–brain–behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ∼6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development. PMID:22832821
Butler, Julie M; Maruska, Karen P
2016-01-01
Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and -ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during territorial interactions to mediate crucial behavioral choices such as whether or not to engage in a territorial fight. To our knowledge, this is also the first evidence of a subpallial nucleus receiving mechanosensory input, providing important information for elucidating homologies of decision-making circuits across vertebrates. These novel results highlight the importance of considering multimodal sensory input in mediating context-appropriate behaviors that will provide broad insights on the evolution of decision-making networks across all taxa.
Lee, Linda L.; Puchowicz, Michelle; Golub, Mari S.; Befroy, Douglas E.; Wilson, Dennis W.; Anderson, Steven; Cline, Gary; Bini, Jason; Borkowski, Kamil; Knotts, Trina A.; Rutledge, John C.
2018-01-01
Recent work suggests that diet affects brain metabolism thereby impacting cognitive function. Our objective was to determine if a western diet altered brain metabolism, increased blood-brain barrier (BBB) transport and inflammation, and induced cognitive impairment in C57BL/6 (WT) mice and low-density lipoprotein receptor null (LDLr -/-) mice, a model of hyperlipidemia and cognitive decline. We show that a western diet and LDLr -/- moderately influence cognitive processes as assessed by Y-maze and radial arm water maze. Also, western diet significantly increased BBB transport, as well as microvessel factor VIII in LDLr -/- and microglia IBA1 staining in WT, both indicators of activation and neuroinflammation. Interestingly, LDLr -/- mice had a significant increase in 18F- fluorodeoxyglucose uptake irrespective of diet and brain 1H-magnetic resonance spectroscopy showed increased lactate and lipid moieties. Metabolic assessments of whole mouse brain by GC/MS and LC/MS/MS showed that a western diet altered brain TCA cycle and β-oxidation intermediates, levels of amino acids, and complex lipid levels and elevated proinflammatory lipid mediators. Our study reveals that the western diet has multiple impacts on brain metabolism, physiology, and altered cognitive function that likely manifest via multiple cellular pathways. PMID:29444171
Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.
Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S
2013-12-15
This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.
[Ecological assessment of executive functions in a patient with acquired brain injury].
Chevignard, M; Taillefer, C; Picq, C; Pradat-Diehl, P
2008-03-01
Dysexecutive syndrome is one of the most frequent sequel of severe traumatic brain injury. It causes severe disabilities and it is incompletely assessed by the classical "paper and pencil" neuropsychological tests. We developed an ecological assessment conducted in a naturalistic situation, consisting of a cooking task, and we described a classification of errors. This assessment is very sensitive, even to a mild dysexecutive syndrome. To describe the disabilities in activities of daily living of a traumatic brain-injured patient and to demonstrate the sensitivity of an ill-structured ecological assessment. We report a single case study illustrating how the ecological assessment by the cooking task helped better understand and characterize the patient's disabilities. The patient presented severe disabilities in daily life activities, which were well described by his family. His cognitive disorders were mild in the cognitive tests, even those supposed to be more ecological, such as the Six Elements Task or script generation. He exhibited very severe disorders in the cooking task, with a very high number of errors. Moreover, duration of the cooking task was very long; he did not achieve the goal and exhibited dangerous behaviour. The cooking task involves abilities to deal with multitasking, which particularly involve executive functions. The most severe disorders were observed during the patient's interaction with the environment while conducting a complex goal-directed action plan, indicating control disorders. This type of naturalistic assessment provides very useful information to help patients organise their familial, social or professional reintegration.
Preterm EEG: a multimodal neurophysiological protocol.
Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa
2012-02-18
Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.
Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa
2017-12-01
Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.
Sémiond, D; Sidhu, S S; Bissery, M-C; Vrignaud, P
2013-09-01
While first-generation taxanes are valuable treatment options for many solid tumors, they are limited by an inability to cross the blood-brain barrier (BBB) and by limited efficacy in pediatric patients. Following promising preclinical data for the next-generation taxane cabazitaxel, including activity in tumor models fully sensitive, poorly sensitive or insensitive to docetaxel, and its ability to cross the BBB, further preclinical studies of cabazitaxel relevant to these two clinical indications were performed. Cabazitaxel brain distribution was assessed in mice, rats and dogs. Cabazitaxel antitumor activity was assessed in mice bearing intracranial human glioblastoma (SF295; U251) xenografts, and subcutaneous cell line-derived human pediatric sarcoma (rhabdomyosarcoma RH-30; Ewing's sarcoma TC-71 and SK-ES-1) or patient-derived pediatric sarcoma (osteosarcoma DM77 and DM113; Ewing's sarcoma DM101) xenografts. The activity of cabazitaxel-cisplatin combination was evaluated in BALB/C mice bearing the syngeneic murine colon adenocarcinoma, C51. Cabazitaxel penetrated rapidly in the brain, with a similar brain-blood radioactivity exposure relationship across different animal species. In intracranial human glioblastoma models, cabazitaxel demonstrated superior activity to docetaxel both at early (before BBB disruption) and at advanced stages, consistent with enhanced brain penetration. Compared with similar dose levels of docetaxel, cabazitaxel induced significantly greater tumor growth inhibition across six pediatric tumor models and more tumor regressions in five of the six models. Therapeutic synergism was observed between cisplatin and cabazitaxel, regardless of administration sequence. These preclinical data suggest that cabazitaxel could be an effective therapy in CNS and pediatric tumors, supporting ongoing clinical evaluation in these indications.
Mattalloni, Mara Soledad; Deza-Ponzio, Romina; Albrecht, Paula Alejandra; Cancela, Liliana Marina; Virgolini, Miriam Beatriz
2017-02-01
Lead (Pb) is a developmental neurotoxicant that elicits differential responses to drugs of abuse. Particularly, ethanol consumption has been demonstrated to be increased as a consequence of environmental Pb exposure, with catalase (CAT) and brain acetaldehyde (ACD, the first metabolite of ethanol) playing a role. The present study sought to interfere with ethanol metabolism by inhibiting ALDH2 (mitochondrial aldehyde dehydrogenase) activity in both liver and brain from control and Pb-exposed rats as a strategy to accumulate ACD, a substance that plays a major role in the drug's reinforcing and/or aversive effects. To evaluate the impact on a 2-h chronic voluntary ethanol intake test, developmentally Pb-exposed and control rats were administered with cyanamide (CY, an ALDH inhibitor) either systemically or intracerebroventricularly (i.c.v.) on the last 4 sessions of the experiment. Furthermore, on the last session and after locomotor activity was assessed, all animals were sacrificed to obtain brain and liver samples for ALDH2 and CAT activity determination. Systemic CY administration reduced the elevated ethanol intake already reported in the Pb-exposed animals (but not in the controls) accompanied by liver (but not brain) ALDH2 inactivation. On the other hand, a 0.3 mg i.c.v. CY administration enhanced both ethanol intake and locomotor activity accompanied by brain ALDH2 inactivation in control animals, while an increase in ethanol consumption was also observed in the Pb-exposed group, although in the absence of brain ALDH2 blockade. No changes were observed in CAT activity as a consequence of CY administration. These results support the participation of liver and brain ACD in ethanol intake and locomotor activity, responses that are modulated by developmental Pb exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Jensen, Chad D; Kirwan, C Brock
2015-03-01
Research conducted with adults suggests that successful weight losers demonstrate greater activation in brain regions associated with executive control in response to viewing high-energy foods. No previous studies have examined these associations in adolescents. Functional neuroimaging was used to assess brain response to food images among groups of overweight (OW), normal-weight (NW), and successful weight-losing (SWL) adolescents. Eleven SWL, 12 NW, and 11 OW participants underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. When viewing high-energy food images, SWLs demonstrated greater activation in the dorsolateral prefrontal cortex (DLPFC) compared with OW and NW controls. Compared with NW and SWL groups, OW individuals demonstrated greater activation in the ventral striatum and anterior cingulate in response to food images. Adolescent SWLs demonstrated greater neural activation in the DLPFC compared with OW/NW controls when viewing high-energy food stimuli, which may indicate enhanced executive control. OW individuals' brain responses to food stimuli may indicate greater reward incentive processes than either SWL or NW groups. © 2015 The Obesity Society.
The neuroscience of observing consciousness & mirror neurons in therapeutic hypnosis.
Rossi, Ernest L; Rossi, Kathryn L
2006-04-01
Neuroscience documents the activity of "mirror neurons" in the human brain as a mechanism whereby we experience empathy and recognize the intentions of others by observing their behavior and automatically matching their brain activity. This neural basis of empathy finds support in research on dysfunctions in the mirror systems of humans with autism and fMRI research on normal subjects designed to assess intentionality, emotions, and complex cognition. Such empathy research now appears to be consistent with the historical and research literature on hypnotic induction, rapport, and many of the classical phenomena of suggestion. A preliminary outline of how mirror neurons may function as a rapport zone mediating between observing consciousness, the gene expression/protein synthesis cycle, and brain plasticity in therapeutic hypnosis and psychosomatic medicine is proposed. Brain plasticity is generalized in the theory, research, and practice of utilizing mirror neurons as an explanatory framework in developing and training new skill sets for facilitating an activity-dependent approach to creative problem solving, mind-body healing, and rehabilitation with therapeutic hypnosis.
A resource for assessing information processing in the developing brain using EEG and eye tracking
Langer, Nicolas; Ho, Erica J.; Alexander, Lindsay M.; Xu, Helen Y.; Jozanovic, Renee K.; Henin, Simon; Petroni, Agustin; Cohen, Samantha; Marcelle, Enitan T.; Parra, Lucas C.; Milham, Michael P.; Kelly, Simon P.
2017-01-01
We present a dataset combining electrophysiology and eye tracking intended as a resource for the investigation of information processing in the developing brain. The dataset includes high-density task-based and task-free EEG, eye tracking, and cognitive and behavioral data collected from 126 individuals (ages: 6–44). The task battery spans both the simple/complex and passive/active dimensions to cover a range of approaches prevalent in modern cognitive neuroscience. The active task paradigms facilitate principled deconstruction of core components of task performance in the developing brain, whereas the passive paradigms permit the examination of intrinsic functional network activity during varying amounts of external stimulation. Alongside these neurophysiological data, we include an abbreviated cognitive test battery and questionnaire-based measures of psychiatric functioning. We hope that this dataset will lead to the development of novel assays of neural processes fundamental to information processing, which can be used to index healthy brain development as well as detect pathologic processes. PMID:28398357
A resource for assessing information processing in the developing brain using EEG and eye tracking.
Langer, Nicolas; Ho, Erica J; Alexander, Lindsay M; Xu, Helen Y; Jozanovic, Renee K; Henin, Simon; Petroni, Agustin; Cohen, Samantha; Marcelle, Enitan T; Parra, Lucas C; Milham, Michael P; Kelly, Simon P
2017-04-11
We present a dataset combining electrophysiology and eye tracking intended as a resource for the investigation of information processing in the developing brain. The dataset includes high-density task-based and task-free EEG, eye tracking, and cognitive and behavioral data collected from 126 individuals (ages: 6-44). The task battery spans both the simple/complex and passive/active dimensions to cover a range of approaches prevalent in modern cognitive neuroscience. The active task paradigms facilitate principled deconstruction of core components of task performance in the developing brain, whereas the passive paradigms permit the examination of intrinsic functional network activity during varying amounts of external stimulation. Alongside these neurophysiological data, we include an abbreviated cognitive test battery and questionnaire-based measures of psychiatric functioning. We hope that this dataset will lead to the development of novel assays of neural processes fundamental to information processing, which can be used to index healthy brain development as well as detect pathologic processes.
NASA Astrophysics Data System (ADS)
Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias
2018-04-01
Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.
Genova, Helen M.; Rajagopalan, Venkateswaran; DeLuca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn
2013-01-01
The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with “state” fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased “trait” fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a “fatigue-network” in MS. PMID:24223850
Genova, Helen M; Rajagopalan, Venkateswaran; Deluca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn
2013-01-01
The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.
Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.
2010-01-01
This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837
Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M.
2015-01-01
Objectives It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Methods Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. Results In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. Conclusions This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system. PMID:25965336
A non invasive wearable sensor for the measurement of brain temperature.
Dittmar, A; Gehin, C; Delhomme, G; Boivin, D; Dumont, G; Mott, C
2006-01-01
As the thermoregulation centres are deep in the brain, the cerebral temperature is one of the most important markers of fever, circadian rhythms physical and mental activities. However due to a lack of accessibility, the brain temperature is not easily measured. The axillary, buccal, tympanic and rectal temperatures do not reflect exactly the cerebral temperature. Nevertheless the rectal temperature is used as probably the most reliable indicator of the core body temperature. The brain temperature can be measured using NMR spectroscopy, microwave radiometry, near infrared spectroscopy, ultra-sound thermometry. However none of those methods are amenable to long term ambulatory use outside of the laboratory or of the hospital during normal daily activities, sport, etc. The brain core temperature "BCT" sensor, developed by the Biomedical Microsensors dpt of LPM at INSA-Lyon is a flexible active sensor using "zero-heat-flow" principle. The sensor has been used for experimental measurement: brain temperature during mental activity, and in hospital for the study of circadian rhythms. The results are in agreement with the measurement by the rectal probe. There are 2 versions of this sensor: a non ambulatory for the use in hospitals, and an ambulatory version using teletransmission. We are working for improving the autonomy of the ambulatory version up to several days. This wearable biomedical sensor (WBS) can be used for circadian assessment for chronobiology studies and in medical therapies.
McCulloch, Karen L; Goldman, Sarah; Lowe, Lynn; Radomski, Mary Vining; Reynolds, John; Shapiro, Rita; West, Therese A
2015-01-01
Previously published mild traumatic brain injury (mTBI) management guidelines provide very general recommendations to return individuals with mTBI to activity. This lack of specific guidance creates variation in military rehabilitation. The Office of the Army Surgeon General in collaboration with the Defense and Veterans Brain Injury Center, a component center of the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury, convened an expert working group to review the existing literature and propose clinical recommendations that standardize rehabilitation activity progression following mTBI. A Progressive Activity Working Group consisted of 11 Department of Defense representatives across all service branches, 7 Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury representatives, and 8 academic/research/civilian experts with experience assessing and treating individuals with mTBI for return to activity. An expert working group meeting included the Progressive Activity Working Group and 15 additional subject matter experts. In February 2012, the Progressive Activity Working Group was established to determine the need and purpose of the rehabilitation recommendations. Following literature review, a table was created on the basis of the progression from the Zurich consensus statement on concussion in sport. Issues were identified for discussion with a meeting of the larger expert group during a July 2012 conference. Following development of rehabilitation guidance, the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury coordinated a similar process for military primary care providers. End products for rehabilitation and primary care providers include specific recommendations for return to activity after concussion. A 6-stage progression specifies activities in physical, cognitive, and balance/vestibular domains and allows for resumption of activity for those with low-level or preinjury symptom complaints. The clinical recommendations for progressive return to activity represent an important effort to standardize activity progression across functional domains and offer providers duty-specific activities to incorporate into intervention. Recommendations were released in January 2014.
Burton, Michael D; Johnson, Rodney W
2012-07-01
Excessive production of pro-inflammatory cytokines in the senescent brain in response to peripheral immune stimulation is thought to induce behavioral pathology, however, few studies have examined if the increase in pro-inflammatory cytokines is accompanied by an increase in cytokine signaling. Here, we focused on IL-6 as a prototypic pro-inflammatory cytokine and used phosphorylated STAT3 as a marker of IL-6 signaling. In an initial study, IL-6 mRNA and the magnitude and duration of STAT3 activation were increased in the hippocampus of senescent mice compared to adults after i.p. injection of LPS. The LPS-induced increase in STAT3 activity was ablated in aged IL-6(-/-) mice, suggesting IL-6 is a key driver of STAT3 activity in the aged brain. To determine if IL-6 activated the classical or trans-signaling pathway, before receiving LPS i.p., aged mice were injected ICV with sgp130, an antagonist of the trans-signaling pathway. Importantly, the LPS-induced increases in both IL-6 and STAT3 activity in the hippocampus were inhibited by sgp130. To assess hippocampal function, aged mice were injected ICV with sgp130 and i.p. with LPS immediately after the acquisition phase of contextual fear conditioning, and immobility was assessed in the retention phase 48h later. LPS reduced immobility in aged mice, indicating immune activation interfered with memory consolidation. However, sgp130 blocked the deficits in contextual fear conditioning caused by LPS. Taken together, the results suggest IL-6 trans-signaling is increased in the senescent brain following peripheral LPS challenge and that sgp130 may protect against infection-related neuroinflammation and cognitive dysfunction in the aged. Copyright © 2011 Elsevier Inc. All rights reserved.
Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury
2012-11-01
testing and advanced MRI techniques [task-activated functional MRI (fMRI) and diffusion tensor imaging ( DTI )] to gain a comprehensive understanding of... DTI fiber tracking) and neurobehavioral testing (computerized assessment and standard neuropsychological testing) on 60 chronic trauma patients: 15...data analysis. 15. SUBJECT TERMS Blast-related traumatic brain injury (TBI), fMRI, DTI , cognition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION
ERIC Educational Resources Information Center
Hoppe, Christian; Fliessbach, Klaus; Stausberg, Sven; Stojanovic, Jelena; Trautner, Peter; Elger, Christian E.; Weber, Bernd
2012-01-01
The neurophysiological mechanisms underlying superior cognitive performance are a research area of high interest. The majority of studies on the brain-performance relationship assessed the effects of capability-related group factors (e.g. talent, gender) on task-related brain activations while only few studies examined the effect of the inherent…
Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio
2017-05-15
Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate (C18), a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dumais, Kelly M; Franklin, Teresa R; Jagannathan, Kanchana; Hager, Nathan; Gawrysiak, Michael; Betts, Jennifer; Farmer, Stacey; Guthier, Emily; Pater, Heather; Janes, Amy C; Wetherill, Reagan R
2017-09-01
Biological sex influences cigarette smoking behavior. More men than women smoke, but women have a harder time quitting. Sex differences in smoking cue (SC) reactivity may underlie such behavioral differences. However, the influence of sex on brain reactivity to SCs has yielded inconsistent findings suggesting the need for continued study. Here, we investigated the effect of sex on SC reactivity across two sites using different imaging modalities and SC stimulus types. Pseudo-continuous arterial spin-labeled (pCASL) perfusion functional magnetic resonance imaging (fMRI) was used to assess brain responses to SC versus non-SC videos in 40 smokers (23 females) at the University of Pennsylvania. BOLD fMRI was used to assess brain responses to SC versus non-SC still images in 32 smokers (18 females) at McLean Hospital. Brain reactivity to SCs was compared between men and women and was correlated with SC-induced craving. In both cohorts, males showed higher SC versus non-SC reactivity compared to females in reward-related brain regions (i.e., ventral striatum/ventral pallidum, ventral medial prefrontal cortex). Brain activation during SC versus non-SC exposure correlated positively with SC-induced subjective craving in males, but not females. The current work provides much needed replication and validation of sex differences in SC-reactivity. These findings also add to a body of literature showing that men have greater reward-related brain activation to drug cues across drug classes. Such sex differences confirm the need to consider sex not only when evaluating SC-reactivity but when examining nicotine dependence etiology and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing the direct effects of deep brain stimulation using embedded axon models
NASA Astrophysics Data System (ADS)
Sotiropoulos, Stamatios N.; Steinmetz, Peter N.
2007-06-01
To better understand the spatial extent of the direct effects of deep brain stimulation (DBS) on neurons, we implemented a geometrically realistic finite element electrical model incorporating anisotropic and inhomogenous conductivities. The model included the subthalamic nucleus (STN), substantia nigra (SN), zona incerta (ZI), fields of Forel H2 (FF), internal capsule (IC) and Medtronic 3387/3389 electrode. To quantify the effects of stimulation, we extended previous studies by using multi-compartment axon models with geometry and orientation consistent with anatomical features of the brain regions of interest. Simulation of axonal firing produced a map of relative changes in axonal activation. Voltage-controlled stimulation, with clinically typical parameters at the dorso-lateral STN, caused axon activation up to 4 mm from the target. This activation occurred within the FF, IC, SN and ZI with current intensities close to the average injected during DBS (3 mA). A sensitivity analysis of model parameters (fiber size, fiber orientation, degree of inhomogeneity, degree of anisotropy, electrode configuration) revealed that the FF and IC were consistently activated. Direct activation of axons outside the STN suggests that other brain regions may be involved in the beneficial effects of DBS when treating Parkinsonian symptoms.
Han, Doug Hyun; Hwang, Jun Won; Renshaw, Perry F
2010-08-01
Bupropion has been used in the treatment of patients with substance dependence based on its weak inhibition of dopamine and norepinephrine reuptake. We hypothesized that 6 weeks of bupropion sustained release (SR) treatment would decrease craving for Internet game play as well as video game cue-induced brain activity in patients with Internet video game addiction (IAG). Eleven subjects who met criteria for IAG, playing StarCraft (>30 hr/week), and eight healthy comparison subjects (HC) who had experience playing StarCraft (<3 days/week and <1 hr/day). At baseline and at the end of 6 weeks of bupropion SR treatment, brain activity in response to StarCraft cue presentation was assessed using 1.5 Tesla functional MRI. In addition, symptoms of depression, craving for playing the game, and the severity of Internet addiction were evaluated by Beck Depression Inventory, self-report of craving on a 7-point visual analogue scale, and Young's Internet Addiction Scale, respectively. In response to game cues, IAG showed higher brain activation in left occipital lobe cuneus, left dorsolateral prefrontal cortex, and left parahippocampal gyrus than HC. After a 6 week period of bupropion SR, craving for Internet video game play, total game play time, and cue-induced brain activity in dorsolateral prefrontal cortex were decreased in the IAG. We suggest that bupropion SR may change craving and brain activity in ways that are similar to those observed in individuals with substance abuse or dependence. PsycINFO Database Record 2010 APA, all rights reserved.
Kontos, Anthony P.; Reches, Amit; Elbin, R. J.; Dickman, Dalia; Laufer, Ilan; Geva, Amir; Shacham, Galit; DeWolf, Ryan; Collins, Michael W.
2015-01-01
Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4-week post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM. PMID:26091725
2011-01-01
Background We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection. PMID:21385378
Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo
2018-05-01
Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.
Masago, Kayo; Kihara, Yasuyuki; Yanagida, Keisuke; Hamano, Fumie; Nakagawa, Shinsuke; Niwa, Masami; Shimizu, Takao
2018-07-02
Cerebral edema is a life-threatening neurological condition characterized by brain swelling due to the accumulation of excess fluid both intracellularly and extracellularly. Fulminant hepatic failure (FHF) develops cerebral edema by disrupting blood-brain barrier (BBB). However, the mechanisms by which mediator induces brain edema in FHF remain to be elucidated. Here, we assessed a linkage between brain edema and lysophosphatidic acid (LPA) signaling by utilizing an animal model of FHF and in vitro BBB model. Azoxymethane-treated mice developed FHF and hepatic encephalopathy, associated with higher autotaxin (ATX) activities in serum than controls. Using in vitro BBB model, LPA disrupted the structural integrity of tight junction proteins including claudin-5, occludin, and ZO-1. Furthermore, LPA decreased transendothelial electrical resistances in in vitro BBB model, and induced cell contraction in brain endothelial monolayer cultures, both being inhibited by a Rho-associated protein kinase inhibitor, Y-27632. The brain capillary endothelial cells predominantly expressed LPA 6 mRNA, whose knockdown blocked the LPA-induced endothelial cell contraction. Taken together, the up-regulation of serum ATX in hepatic encephalopathy may activate the LPA-LPA 6 -G 12/13 -Rho pathway in brain capillary endothelial cells, leading to enhancement of BBB permeability and brain edema. Copyright © 2018 Elsevier Inc. All rights reserved.
Flood, Andrew; Waddington, Gordon; Cathcart, Stuart
2016-05-01
Transcranial direct current stimulation (tDCS) is a form of brain stimulation that allows for the selective increase or decrease in the cortical excitability of a targeted region. When applied over the motor cortex it has been shown to induce changes in cortical and subcortical brain regions involved in descending pain inhibition or conditioned pain modulation (CPM). The aim of the current study was to assess whether activation of pain inhibitory pathways via tDCS of the motor cortex facilitates the CPM response. Elevated CPM after active tDCS of the motor cortex was hypothesized. Thirty healthy male volunteers attended 2 experimental sessions separated by 7 days. Both sessions consisted of CPM assessment after 20 minutes of either active or sham (placebo) tDCS over the motor cortex. CPM capacity was assessed via the pain-inhibits-pain protocol; CPM responses were shown to be elevated after active compared with sham tDCS. This report concludes that tDCS of the motor cortex enhances the CPM response in healthy men. This finding supports the potential utility of tDCS interventions in clinical pain treatment. The use of noninvasive brain stimulation over the motor cortex was shown to enhance the CPM effect. This finding supports the use of tDCS in the treatment of chronic pain, particularly in sufferers exhibiting maladaptive CPM. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Reches, A; Kutcher, J; Elbin, R J; Or-Ly, H; Sadeh, B; Greer, J; McAllister, D J; Geva, A; Kontos, A P
2017-01-01
The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician's decision-making process. The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions.
Reches, A.; Kutcher, J.; Elbin, R. J.; Or-Ly, H.; Sadeh, B.; Greer, J.; McAllister, D. J.; Geva, A.; Kontos, A. P.
2017-01-01
ABSTRACT Background: The clinical diagnosis and management of patients with sport-related concussion is largely dependent on subjectively reported symptoms, clinical examinations, cognitive, balance, vestibular and oculomotor testing. Consequently, there is an unmet need for objective assessment tools that can identify the injury from a physiological perspective and add an important layer of information to the clinician’s decision-making process. Objective: The goal of the study was to evaluate the clinical utility of the EEG-based tool named Brain Network Activation (BNA) as a longitudinal assessment method of brain function in the management of young athletes with concussion. Methods: Athletes with concussion (n = 86) and age-matched controls (n = 81) were evaluated at four time points with symptom questionnaires and BNA. BNA scores were calculated by comparing functional networks to a previously defined normative reference brain network model to the same cognitive task. Results: Subjects above 16 years of age exhibited a significant decrease in BNA scores immediately following injury, as well as notable changes in functional network activity, relative to the controls. Three representative case studies of the tested population are discussed in detail, to demonstrate the clinical utility of BNA. Conclusion: The data support the utility of BNA to augment clinical examinations, symptoms and additional tests by providing an effective method for evaluating objective electrophysiological changes associated with sport-related concussions. PMID:28055228
A brain electrical signature of left-lateralized semantic activation from single words.
Koppehele-Gossel, Judith; Schnuerch, Robert; Gibbons, Henning
2016-01-01
Lesion and imaging studies consistently indicate a left-lateralization of semantic language processing in human temporo-parietal cortex. Surprisingly, electrocortical measures, which allow a direct assessment of brain activity and the tracking of cognitive functions with millisecond precision, have not yet been used to capture this hemispheric lateralization, at least with respect to posterior portions of this effect. Using event-related potentials, we employed a simple single-word reading paradigm to compare neural activity during three tasks requiring different degrees of semantic processing. As expected, we were able to derive a simple temporo-parietal left-right asymmetry index peaking around 300ms into word processing that neatly tracks the degree of semantic activation. The validity of this measure in specifically capturing verbal semantic activation was further supported by a significant relation to verbal intelligence. We thus posit that it represents a promising tool to monitor verbal semantic processing in the brain with little technological effort and in a minimal experimental setup. Copyright © 2016 Elsevier Inc. All rights reserved.
Schaefer, Michael; Rotte, Michael
2007-08-24
Culturally based brands have a high impact on people's economic actions. Here we aimed to examine whether socioeconomic information conveyed by certain classes of brands (prestigious versus pragmatic classes) differentially evoke brain response. We presented icons of brands while recording subject's brain activity during a functional magnetic resonance imaging (fMRI) session. After the experiment, we asked subjects to assess the brands according to different characteristics. Results revealed an active network of bilateral superior frontal gyri, hippocampus and posterior cingulate related to familiar brands in general. Brands of the category sports and luxury activated regions in medial prefrontal cortex (MPFC) and precuneus. In contrast, brands rated as value products activated the left superior frontal gyrus and anterior cingulate cortex (ACC). The results suggest an active cortical network related to cognitive control for value brands and a network known to be associated with self-relevant processing for prestigious brands. We discuss the results as differential engagement of the prefrontal cortex depending on the attributed characteristic of a brand.
Amygdala response to self-critical stimuli and symptom improvement in psychotherapy for depression.
Doerig, Nadja; Krieger, Tobias; Altenstein, David; Schlumpf, Yolanda; Spinelli, Simona; Späti, Jakub; Brakowski, Janis; Quednow, Boris B; Seifritz, Erich; Holtforth, Martin Grosse
2016-02-01
Cognitive-behavioural therapy is efficacious in the treatment of major depressive disorder but response rates are still far from satisfactory. To better understand brain responses to individualised emotional stimuli and their association with outcome, to enhance treatment. Functional magnetic resonance imaging data were collected prior to individual psychotherapy. Differences in brain activity during passive viewing of individualised self-critical material in 23 unmedicated out-patients with depression and 28 healthy controls were assessed. The associations between brain activity, cognitive and emotional change, and outcome were analysed in 21 patients. Patients showed enhanced activity in the amygdala and ventral striatum compared with the control group. Non-response to therapy was associated with enhanced activity in the right amygdala compared with those who responded, and activity in this region was negatively associated with outcome. Emotional but not cognitive changes mediated this association. Amygdala hyperactivity may lessen symptom improvement in psychotherapy for depression through attenuating emotional skill acquisition. © The Royal College of Psychiatrists 2016.
Functional Brain Activation in Response to a Clinical Vestibular Test Correlates with Balance
Noohi, Fatemeh; Kinnaird, Catherine; DeDios, Yiri; Kofman, Igor S.; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2017-01-01
The current study characterizes brain fMRI activation in response to two modes of vestibular stimulation: Skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit either a vestibulo-spinal reflex [saccular-mediated colic Vestibular Evoked Myogenic Potentials (cVEMP)], or an ocular muscle response [utricle-mediated ocular VEMP (oVEMP)]. Research suggests that the skull tap elicits both saccular and utricle-mediated VEMPs, while being faster and less irritating for subjects than the high decibel tones required to elicit VEMPs. However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of brain activity. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation. Here we hypothesized that pneumatically powered skull taps would elicit a similar pattern of brain activity as shown in previous studies. Our results provide the first evidence of using pneumatically powered skull taps to elicit vestibular activity inside the MRI scanner. A conjunction analysis revealed that skull taps elicit overlapping activation with auditory tone bursts in the canonical vestibular cortical regions. Further, our postural control assessments revealed that greater amplitude of brain activation in response to vestibular stimulation was associated with better balance control for both techniques. Additionally, we found that skull taps elicit more robust vestibular activity compared to auditory tone bursts, with less reported aversive effects, highlighting the utility of this approach for future clinical and basic science research. PMID:28344549
Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo
2016-04-29
Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.
Li, Zhengjun; Zang, Yu-Feng; Ding, Jianping; Wang, Ze
2017-04-01
The time-to-time fluctuations (TTFs) of resting-state brain activity as captured by resting-state fMRI (rsfMRI) have been repeatedly shown to be informative of functional brain structures and disease-related alterations. TTFs can be characterized by the mean and the range of successive difference. The former can be measured with the mean squared successive difference (MSSD), which is mathematically similar to standard deviation; the latter can be calculated by the variability of the successive difference (VSD). The purpose of this study was to evaluate both the resting state-MSSD and VSD of rsfMRI regarding their test-retest stability, sensitivity to brain state change, as well as their biological meanings. We hypothesized that MSSD and VSD are reliable in resting brain; both measures are sensitive to brain state changes such as eyes-open compared to eyes-closed condition; both are predictive of age. These hypotheses were tested with three rsfMRI datasets and proven true, suggesting both MSSD and VSD as reliable and useful tools for resting-state studies.
[Three-dimensional reconstruction of functional brain images].
Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I
1999-08-01
We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.
Fetal brain hypometabolism during prolonged hypoxaemia in the llama
Ebensperger, Germán; Ebensperger, Renato; Herrera, Emilio A; Riquelme, Raquel A; Sanhueza, Emilia M; Lesage, Florian; Marengo, Juan J; Tejo, Rodrigo I; Llanos, Aníbal J; Reyes, Roberto V
2005-01-01
In this study we looked for additional evidence to support the hypothesis that fetal llama reacts to hypoxaemia with adaptive brain hypometabolism. We determined fetal llama brain temperature, Na+ and K+ channel density and Na+–K+-ATPase activity. Additionally, we looked to see whether there were signs of cell death in the brain cortex of llama fetuses submitted to prolonged hypoxaemia. Ten fetal llamas were instrumented under general anaesthesia to measure pH, arterial blood gases, mean arterial pressure, heart rate, and brain and core temperatures. Measurements were made 1 h before and every hour during 24 h of hypoxaemia (n = 5), which was imposed by reducing maternal inspired oxygen fraction to reach a fetal arterial partial pressure of oxygen (Pa,O2) of about 12 mmHg. A normoxaemic group was the control (n = 5). After 24 h of hypoxaemia, we determined brain cortex Na+–K+-ATPase activity, ouabain binding, and the expression of NaV1.1, NaV1.2, NaV1.3, NaV1.6, TREK1, TRAAK and KATP channels. The lack of brain cortex damage was assessed as poly ADP-ribose polymerase (PARP) proteolysis. We found a mean decrease of 0.56°C in brain cortex temperature during prolonged hypoxaemia, which was accompanied by a 51% decrease in brain cortex Na+–K+-ATPase activity, and by a 44% decrease in protein content of NaV1.1, a voltage-gated Na+ channel. These changes occurred in absence of changes in PARP protein degradation, suggesting that the cell death of the brain was not enhanced in the fetal llama during hypoxaemia. Taken together, these results provide further evidence to support the hypothesis that the fetal llama responds to prolonged hypoxaemia with adaptive brain hypometabolism, partly mediated by decreases in Na+–K+-ATPase activity and expression of NaV channels. PMID:16037083
Tractography patterns of subthalamic nucleus deep brain stimulation.
Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin
2016-04-01
Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Cognitive Interventions in Older Persons: Do They Change the Functioning of the Brain?
van Os, Yindee; de Vugt, Marjolein E.; van Boxtel, Martin
2015-01-01
Background. Cognitive interventions for older persons that may diminish the burden of cognitive problems and could delay conversion to dementia are of great importance. The underlying mechanisms of such interventions might be psychological compensation and neuronal plasticity. This review provides an overview of the literature concerning the evidence that cognitive interventions cause brain activation changes, even in damaged neural systems. Method. A systematic search of the literature was conducted in several international databases, Medline, Embase, Cinahl, Cochrane, and Psychinfo. The methodological quality was assessed according to the guidelines of the Dutch Institute for Health Care Improvement (CBO). Results. Nineteen relevant articles were included with varied methodological quality. All studies were conducted in diverse populations from healthy elderly to patients with dementia and show changes in brain activation after intervention. Conclusions. The results thus far show that cognitive interventions cause changes in brain activation patterns. The exact interpretation of these neurobiological changes remains unclear. More study is needed to understand the extent to which cognitive interventions are effective to delay conversion to dementia. Future studies should more explicitly try to relate clinically significant improvement to changes in brain activation. Long-term follow-up data are necessary to evaluate the stability of the effects. PMID:26583107
Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.
Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S
2016-06-01
Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress. Copyright © 2016 Elsevier GmbH. All rights reserved.
Resting-state functional brain connectivity: lessons from functional near-infrared spectroscopy.
Niu, Haijing; He, Yong
2014-04-01
Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain's low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.
Flodin, Pär; Jonasson, Lars S.; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C. J.
2017-01-01
Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64–78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO2-peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas. PMID:28848424
Flodin, Pär; Jonasson, Lars S; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C J
2017-01-01
Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO 2 -peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO 2 -peak was negativly related to BOLD-signal fluctuations (BOLD STD ) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO 2 -related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO 2 -peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas.
Mechanisms of neuroimmune gene induction in alcoholism.
Crews, Fulton T; Vetreno, Ryan P
2016-05-01
Alcoholism is a primary, chronic relapsing disease of brain reward, motivation, memory, and related circuitry. It is characterized by an individual's continued drinking despite negative consequences related to alcohol use, which is exemplified by alcohol use leading to clinically significant impairment or distress. Chronic alcohol consumption increases the expression of innate immune signaling molecules (ISMs) in the brain that alter cognitive processes and promote alcohol drinking. Unraveling the mechanisms of alcohol-induced neuroimmune gene induction is complicated by positive loops of multiple cytokines and other signaling molecules that converge on nuclear factor kappa-light-chain-enhancer of activated B cells and activator protein-1 leading to induction of additional neuroimmune signaling molecules that amplify and expand the expression of ISMs. Studies from our laboratory employing reverse transcription polymerase chain reaction (RT-PCR) to assess mRNA, immunohistochemistry and Western blot analysis to assess protein expression, and others suggest that ethanol increases brain neuroimmune gene and protein expression through two distinct mechanisms involving (1) systemic induction of innate immune molecules that are transported from blood to the brain and (2) the direct release of high-mobility group box 1 (HMGB1) from neurons in the brain. Released HMGB1 signals through multiple receptors, particularly Toll-like receptor (TLR) 4, that potentiate cytokine receptor responses leading to a hyperexcitable state that disrupts neuronal networks and increases excitotoxic neuronal death. Innate immune gene activation in brain is persistent, consistent with the chronic relapsing disease that is alcoholism. Expression of HMGB1, TLRs, and other ISMs is increased several-fold in the human orbital frontal cortex, and expression of these molecules is highly correlated with each other as well as lifetime alcohol consumption and age of drinking onset. The persistent and cumulative nature of alcohol on HMGB1 and TLR gene induction support their involvement in alcohol-induced long-term changes in brain function and neurodegeneration.
Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard
2016-04-01
The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cicciarello, R; Russi, E; Albiero, F; Mesiti, M; Torre, E; D'Aquino, A; Raffaele, L; Bertolani, S; D'Avella, D
1990-11-01
Whole brain irradiation (WBR) can produce acute and chronic neurological adverse effects, which are usually divided into acute, early delayed and late delayed reactions according to the time of onset. To assess the impact of WBR on brain functional parameters during the early-delayed phase, we employed the [14C]-2-deoxyglucose (2-DG) and the [14C]-alfa-aminoisobutyric (AIB) acid quantitative autoradiographic techniques to study local cerebral glucose utilization and blood-brain barrier permeability, respectively. Sprague-Dowley albino rats were exposed to conventional fractionation (200 Gy/day 5 days a week) for a total dose of 4000 Gy. Experiments were made 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. As a rule, brain areas with the highest basal metabolic rates showed the highest percentage drop in glucose utilization. Changes in blood-brain barrier function, as assessed by an increased transcapillary transport of AIB, were also demonstrated in specific brain regions. This study illustrates how moderate doses of WBR induce well-defined changes in brain metabolism and BBB function, which are possibly involved in the pathogenesis of the early-delayed radiation-induced cerebral dysfunction in humans.
Lin, Zi-Jing; Li, Lin; Cazzell, Mary; Liu, Hanli
2014-08-01
Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain activity. Common methods used in DOT image analysis to define brain activation have limitations because the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex (DLPFC) during the active-choice mode and a different activation pattern between genders; these findings correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies. Copyright © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Gender-related differences in lateralization of hippocampal activation and cognitive strategy.
Frings, Lars; Wagner, Kathrin; Unterrainer, Josef; Spreer, Joachim; Halsband, Ulrike; Schulze-Bonhage, Andreas
2006-03-20
Gender-related differences in brain activation patterns and their lateralization associated with cognitive functions have been reported in the field of language, emotion, and working memory. Differences have been hypothesized to be due to different cognitive strategies. The aim of the present study was to test whether lateralization of brain activation in the hippocampi during memory processing differs between the sexes. We acquired functional magnetic resonance imaging data from healthy female and male study participants performing a spatial memory task and quantitatively assessed the lateralization of hippocampal activation in each participant. Hippocampal activation was significantly more left lateralized in women, and more right lateralized in men. Correspondingly, women rated their strategy as being more verbal than men did.
A Within-subjects Experimental Protocol to Assess the Effects of Social Input on Infant EEG.
St John, Ashley M; Kao, Katie; Chita-Tegmark, Meia; Liederman, Jacqueline; Grieve, Philip G; Tarullo, Amanda R
2017-05-03
Despite the importance of social interactions for infant brain development, little research has assessed functional neural activation while infants socially interact. Electroencephalography (EEG) power is an advantageous technique to assess infant functional neural activation. However, many studies record infant EEG only during one baseline condition. This protocol describes a paradigm that is designed to comprehensively assess infant EEG activity in both social and nonsocial contexts as well as tease apart how different types of social inputs differentially relate to infant EEG. The within-subjects paradigm includes four controlled conditions. In the nonsocial condition, infants view objects on computer screens. The joint attention condition involves an experimenter directing the infant's attention to pictures. The joint attention condition includes three types of social input: language, face-to-face interaction, and the presence of joint attention. Differences in infant EEG between the nonsocial and joint attention conditions could be due to any of these three types of input. Therefore, two additional conditions (one with language input while the experimenter is hidden behind a screen and one with face-to-face interaction) were included to assess the driving contextual factors in patterns of infant neural activation. Representative results demonstrate that infant EEG power varied by condition, both overall and differentially by brain region, supporting the functional nature of infant EEG power. This technique is advantageous in that it includes conditions that are clearly social or nonsocial and allows for examination of how specific types of social input relate to EEG power. This paradigm can be used to assess how individual differences in age, affect, socioeconomic status, and parent-infant interaction quality relate to the development of the social brain. Based on the demonstrated functional nature of infant EEG power, future studies should consider the role of EEG recording context and design conditions that are clearly social or nonsocial.
Nutritional status, assessment, requirements and adequacy of traumatic brain injury patients.
Daradkeh, Ghazi; Essa, Musthafa Mohamed; Al-Adawi, S Samir; Subash, Selvaraju; Mahmood, Lubna; Kumar, Parvathy R
2014-10-01
Traumatic Brain Injury (TBI) has been considered as a serious public health problem. Each year, traumatic brain injuries are contributing to a substantial number of cases of permanent disability and deaths and it can be classified according to the severity into penetrating and closed head injury. Symptoms, beside to be unconscious can be defined as vomiting, nausea, headache, dizziness, lack of motor coordination, difficulty in balancing, blurred vision and lightheadedness, bad taste in the mouth, ringing in the ears, fatigue and lethargy as well as changes in sleep patterns. The brain is known to be the functional regulator for all the metabolic activities inside the body and TBI patients mostly have a complex metabolic alterations including aberrant cellular metabolism, abnormal metabolic processes, changes in hormones functions and inflammatory cascade. The TBI patient's status needed to be assessed medically and nutritionally since the medical status of the patients can affect the nutrition part. Data from the four assessment tools are needed to be correctly used and interpreted in order to make a proper nutritional diagnosis, clinical assessment, biochemistry as well as anthropometric measurements. Regardless the methods used for assessing TBI patients, having adequate intake and medical care can lead to a reduction in hospital costs, numbers of day hospitalized, numbers of hours of mechanical ventilation and in the overall infection rates.
Doesburg, Sam M.; Chau, Cecil M.; Cheung, Teresa P.L.; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T.; Miller, Steven P.; Cepeda, Ivan L.; Synnes, Anne; Grunau, Ruth E.
2013-01-01
Children born very prematurely (≤32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; ≤28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal painrelated stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. PMID:23711638
Prefrontal brain asymmetry and pre-menstrual dysphoric disorder symptomatology.
Accortt, Eynav E; Stewart, Jennifer L; Coan, James A; Manber, Rachel; Allen, John J B
2011-01-01
Pre-menstrual dysphoric disorder (PMDD), a dysphoric form of pre-menstrual syndrome, is included as a diagnosis for further study in the DSM-IV-TR (APA, 2000). The present study investigated whether a marker of risk for major depressive disorder (MDD), prefrontal brain asymmetry, also characterizes women with PMDD. In a sample of 25 college women with PMDD symptomatology and 25 matched controls, resting frontal electroencephalographic (EEG) activity was assessed on four occasions within a two-week span. Across several frontal sites women with PMDD had relatively less left than right prefrontal brain activity, consistent with a diathesis-stress model for menstrual-related dysphoria. The findings suggest an overlap in the risk profile for MDD and PMDD. Published by Elsevier B.V.
Development of Purine-Derived 18F-Labeled Pro-drug Tracers for Imaging of MRP1 Activity with PET
2014-01-01
Multidrug resistance-associated protein 1 (MRP1) is a drug efflux transporter that has been implicated in the pathology of several neurological diseases and is associated with development of multidrug resistance. To enable measurement of MRP1 function in the living brain, a series of 6-halopurines decorated with fluorinated side chains have been synthesized and evaluated as putative pro-drug tracers. The tracers were designed to undergo conjugation with glutathione within the brain and hence form the corresponding MRP1 substrate tracers in situ. 6-Bromo-7-(2-[18F]fluoroethyl)purine showed good brain uptake and rapid metabolic conversion. Dynamic PET imaging demonstrated a marked difference in brain clearance rates between wild-type and mrp1 knockout mice, suggesting that the tracer can allow noninvasive assessment of MRP1 activity in vivo. PMID:24456310
Iuculano, Teresa; Rosenberg-Lee, Miriam; Richardson, Jennifer; Tenison, Caitlin; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod
2015-09-30
Competency with numbers is essential in today's society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal-occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention.
Beretta, S; Pastori, C; Sala, G; Piazza, F; Ferrarese, C; Cattalini, A; de Curtis, M; Librizzi, L
2011-05-01
The acute effects of simvastatin lactone (lipophilic) and simvastatin acid (hydrophilic) on transient focal ischemia were assessed using the isolated guinea pig brain maintained in vitro by arterial perfusion. This new model of cerebral ischemia allows the assessment of the very early phase of the ischemic process, with the functional preservation of the vascular and neuronal compartments and the blood-brain barrier (bbb). The middle cerebral artery was transiently tied for 30 min followed by reperfusion for 60 min. Statins (nanomolar doses) were administered by intravascular continuous infusion starting 60 min before ischemia induction. Brain cortical activity and arterial vascular tone were continuously recorded. At the end of the experiment immunoreactivity for microtubule-associated protein 2 (MAP-2), expression of survival kinases (ERK and Akt) and total anti-oxidant capacity were assayed. Brains treated with simvastatin lactone showed i) reduced amplitude and delayed onset of ischemic depressions, ii) preservation of MAP-2 immunoreactivity, iii) activation of ERK signaling in the ischemic hemisphere and iv) increase in whole-brain anti-oxidant capacity. Treatment with the bbb-impermeable simvastatin acid was ineffective on the above-mentioned parameters. Vascular resistance recordings and Akt signaling were unchanged by any statin treatment. Our findings suggest that intravascular-delivered simvastatin exerts an acute lipophilicity-dependent protective effect in the early phase of cerebral ischemia. Copyright © 2011 Elsevier Ltd. All rights reserved.
Altered prefrontal brain activity in persons at risk for Alzheimer's disease: an fMRI study.
Elgh, Eva; Larsson, Anne; Eriksson, Sture; Nyberg, Lars
2003-06-01
Early diagnosis of Alzheimer's disease (AD) is critical for adequate treatment and care. Recently it has been shown that functional magnetic resonance imaging (fMRI) can be important in preclinical detection of AD. The purpose of this study was to examine possible differences in memory-related brain activation between persons with high versus low risk for AD. This was achieved by combining a validated neurocognitive screening battery (the 7-minutes test) with memory assessment and fMRI. One hundred two healthy community-living persons with subjective memory complaints were recruited through advertisement and tested with the 7-minutes test. Based on their test performance they were classified as having either high (n = 8) or low risk (n = 94) for AD. Six high-risk individuals and six age-, sex-, and education-matched low-risk individuals were investigated with fMRI while engaged in episodic memory tasks. The high-risk individuals performed worse than low-risk individuals on tests of episodic memory. Patterns of brain activity during episodic encoding and retrieval showed significant group differences (p < .05 corrected). During both encoding and retrieval, the low-risk persons showed increased activity relative to a baseline condition in prefrontal brain regions that previously have been implicated in episodic memory. By contrast, the high-risk persons did not significantly activate any prefrontal regions, but instead showed increased activity in visual occipito-temporal regions. Patterns of prefrontal brain activity related to episodic memory differ between persons with high versus low risk for AD, and lowered prefrontal activity may predict subsequent disease.
Dennis, Andrea; Bosnell, Rose; Dawes, Helen; Howells, Ken; Cockburn, Janet; Kischka, Udo; Matthews, Paul; Johansen-Berg, Heidi
2011-04-01
Stroke patients often have difficulties in simultaneously performing a motor and cognitive task. Functional imaging studies have shown that movement of an affected hand after stroke is associated with increased activity in multiple cortical areas, particularly in the contralesional hemisphere. We hypothesized patients for whom executing simple movements demands greater selective attention will show greater brain activity during movement. Eight chronic stroke patients performed a behavioral interference test using a visuo-motor tracking with and without a simultaneous cognitive task. The magnitude of behavioral task decrement under cognitive motor interference (CMI) conditions was calculated for each subject. Functional MRI was used to assess brain activity in the same patients during performance of a visuo-motor tracking task alone; correlations between CMI score and movement-related brain activation were then explored. Movement-related activation in the dorsal precentral gyrus of the contralesional hemisphere correlated strongly and positively with CMI score (r(2) at peak voxel=0.92; P<0.05). Similar but weaker relationships were observed in the ventral precentral and middle frontal gyrus. There was no independent relationship between hand motor impairment and CMI. Results suggest that variations in the degree to which a cognitive task interferes with performance of a concurrent motor task explains a substantial proportion of the variations in movement-related brain activity in patients after stroke. The results emphasize the importance of considering cognitive context when interpreting brain activity patterns and provide a rationale for further evaluation of integrated cognitive and movement interventions for rehabilitation in stroke.
Functional brain connectivity when cooperation fails.
Balconi, Michela; Vanutelli, Maria Elide; Gatti, Laura
2018-06-01
Functional connectivity during cooperative actions is an important topic in social neuroscience that has yet to be answered. Here, we examined the effects of administration of (fictitious) negative social feedback in relation to cooperative capabilities. Cognitive performance and neural activation underlying the execution of joint actions was recorded with functional near-infrared spectroscopy (fNIRS) on prefrontal regions during a task where pairs of participants received negative feedback after their joint action. Performance (error rates (ERs) and response times (RTs)) and intra- and inter-brain connectivity indices were computed, along with the ConIndex (inter-brain/intra-brain connectivity). Finally, correlational measures were considered to assess the relation between these different measures. Results showed that the negative feedback was able to modulate participants' responses for both behavioral and neural components. Cognitive performance was decreased after the feedback. Moreover, decreased inter-brain connectivity and increased intra-brain connectivity was induced by the feedback, whereas the cooperative task pre-feedback condition was able to increase the brain-to-brain coupling, mainly localized within the dorsolateral prefrontal cortex (DLPFC). Finally, the presence of significant correlations between RTs and inter-brain connectivity revealed that ineffective joint action produces the worst cognitive performance and a more 'individual strategy' for brain activity, limiting the inter-brain connectivity. The present study provides a significant contribution to the identification of patterns of intra- and inter-brain functional connectivity when negative social reinforcement is provided in relation to cooperative actions. Copyright © 2018 Elsevier Inc. All rights reserved.
Reindl, Vanessa; Gerloff, Christian; Scharke, Wolfgang; Konrad, Kerstin
2018-05-26
Parent-child synchrony, the coupling of behavioral and biological signals during social contact, may fine-tune the child's brain circuitries associated with emotional bond formation and the child's development of emotion regulation. Here, we examined the neurobiological underpinnings of these processes by measuring parent's and child's prefrontal neural activity concurrently with functional near-infrared spectroscopy hyperscanning. Each child played both a cooperative and a competitive game with the parent, mostly the mother, as well as an adult stranger. During cooperation, parent's and child's brain activities synchronized in the dorsolateral prefrontal and frontopolar cortex (FPC), which was predictive for their cooperative performance in subsequent trials. No significant brain-to-brain synchrony was observed in the conditions parent-child competition, stranger-child cooperation and stranger-child competition. Furthermore, parent-child compared to stranger-child brain-to-brain synchrony during cooperation in the FPC mediated the association between the parent's and the child's emotion regulation, as assessed by questionnaires. Thus, we conclude that brain-to-brain synchrony may represent an underlying neural mechanism of the emotional connection between parent and child, which is linked to the child's development of adaptive emotion regulation. Future studies may uncover whether brain-to-brain synchrony can serve as a neurobiological marker of the dyad's socio-emotional interaction, which is sensitive to risk conditions, and can be modified by interventions. Copyright © 2018 Elsevier Inc. All rights reserved.
Gómez, Carlos; Poza, Jesús; Gutiérrez, María T; Prada, Esther; Mendoza, Nuria; Hornero, Roberto
2016-11-01
The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen(®) intervention on individuals with brain-injury and control subjects. EEG activity was recorded preceding and following a Snoezelen(®) session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: median frequency (MF), individual alpha frequency (IAF), sample entropy (SampEn) and Lempel-Ziv complexity (LZC). Our results showed decreased values for MF, IAF, SampEn and LZC as a consequence of the therapy. The main changes between pre-stimulation and post-stimulation conditions were found in occipital and parietal brain areas. Additionally, these changes are more widespread in controls than in brain-injured subjects, which can be due to cognitive deficits in TBI and CP groups. Our findings support the notion that Snoezelen(®) therapy affects central nervous system, inducing a slowing of oscillatory activity, as well as a decrease of EEG complexity and irregularity. These alterations seem to be related with higher levels of relaxation of the participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Detecting switching and intermittent causalities in time series
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Papo, David
2017-04-01
During the last decade, complex network representations have emerged as a powerful instrument for describing the cross-talk between different brain regions both at rest and as subjects are carrying out cognitive tasks, in healthy brains and neurological pathologies. The transient nature of such cross-talk has nevertheless by and large been neglected, mainly due to the inherent limitations of some metrics, e.g., causality ones, which require a long time series in order to yield statistically significant results. Here, we present a methodology to account for intermittent causal coupling in neural activity, based on the identification of non-overlapping windows within the original time series in which the causality is strongest. The result is a less coarse-grained assessment of the time-varying properties of brain interactions, which can be used to create a high temporal resolution time-varying network. We apply the proposed methodology to the analysis of the brain activity of control subjects and alcoholic patients performing an image recognition task. Our results show that short-lived, intermittent, local-scale causality is better at discriminating both groups than global network metrics. These results highlight the importance of the transient nature of brain activity, at least under some pathological conditions.
Zhu, Hao-Jie; Wang, Jun-Sheng; DeVane, C Lindsay; Williard, Robin L; Donovan, Jennifer L; Middaugh, Lawrence D; Gibson, Brian B; Patrick, Kennerly S; Markowitz, John S
2006-07-01
The psychostimulant medications methylphenidate (MPH) and amphetamine (AMP), available in various ratios or enantiopure formulations of their respective active dextrorotary isomers, constitute the majority of agents used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Substantial interindividual variability occurs in their pharmacokinetics and tolerability. Little is known regarding the potential role of drug transporters such as P-glycoprotein (P-gp) in psychostimulant pharmacokinetics and response. Therefore, experiments were carried out in P-gp knockout (KO) mice versus wild-type (WT) mice after intraperitoneal dosing (2.5 mg/kg) of d-MPH or (3.0 mg/kg) of d-AMP. After the administration of each psychostimulant, locomotor activity was assessed at 30-min intervals for 2 h. Total brain-to-plasma drug concentration ratios were determined at 10-, 30-, and 80-min postdosing time-points. The results showed no statistically supported genotypic difference in d-AMP-induced locomotor activity stimulation or in brain-to-plasma ratio of d-AMP. As for d-MPH, the P-gp KO mice had 33% higher brain concentrations (p < 0.05) and 67.5% higher brain-to-plasma ratios (p < 0.01) than WT controls at the 10-min postdosing timepoint. However, in spite of elevated brain concentrations, d-MPH-induced locomotor activity increase was attenuated for P-gp compared with that for WT mice. These data indicate that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of d-AMP. In addition, d-MPH is a relatively weak P-gp substrate, and its entry into the brain may be limited by P-gp. Furthermore, the mechanism by which d-MPH-induced locomotor activity was attenuated in P-gp KO mice remains to be elucidated.
Murphy, Clodagh M; Christakou, Anastasia; Giampietro, Vincent; Brammer, Michael; Daly, Eileen M; Ecker, Christine; Johnston, Patrick; Spain, Debbie; Robertson, Dene M; Murphy, Declan G; Rubia, Katya
2017-11-01
People with autism spectrum disorder (ASD) have poor decision-making and temporal foresight. This may adversely impact on their everyday life, mental health, and productivity. However, the neural substrates underlying poor choice behavior in people with ASD, or its' neurofunctional development from childhood to adulthood, are unknown. Despite evidence of atypical structural brain development in ASD, investigation of functional brain maturation in people with ASD is lacking. This cross-sectional developmental fMRI study investigated the neural substrates underlying performance on a temporal discounting (TD) task in 38 healthy (11-35 years old) male adolescents and adults with ASD and 40 age, sex, and IQ-matched typically developing healthy controls. Most importantly, we assessed group differences in the neurofunctional maturation of TD across childhood and adulthood. Males with ASD had significantly poorer task performance and significantly lower brain activation in typical regions that mediate TD for delayed choices, in predominantly right hemispheric regions of ventrolateral/dorsolateral prefrontal cortices, ventromedial prefrontal cortex, striatolimbic regions, and cerebellum. Importantly, differential activation in ventromedial frontal cortex and cerebellum was associated with abnormal functional brain maturation; controls, in contrast to people with ASD, showed progressively increasing activation with increasing age in these regions; which furthermore was associated with performance measures and clinical ASD measures (stereotyped/restricted interests). Findings provide first cross-sectional evidence that reduced activation of TD mediating brain regions in people with ASD during TD is associated with abnormal functional brain development in these regions between childhood and adulthood, and this is related to poor task performance and clinical measures of ASD. Hum Brain Mapp 38:5343-5355, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Assessing visual requirements for social context-dependent activation of the songbird song system
Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.
2008-01-01
Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930
How the brain attunes to sentence processing: Relating behavior, structure, and function
Fengler, Anja; Meyer, Lars; Friederici, Angela D.
2016-01-01
Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477
Stakeholder opinion of functional communication activities following traumatic brain injury.
Larkins, B M; Worrall, L E; Hickson, L M
2004-07-01
To establish a process whereby assessment of functional communication reflects the authentic communication of the target population. The major functional communication assessments available from the USA may not be as relevant to those who reside elsewhere, nor assessments developed primarily for persons who have had a stroke as relevant for traumatic brain injury rehabilitation. The investigation used the Nominal Group Technique to elicit free opinion and support individuals who have compromised communication ability. A survey mailed out sampled a larger number of stakeholders to test out differences among groups. Five stakeholder groups generated items and the survey determined relative 'importance'. The stakeholder groups in both studies comprised individuals with traumatic brain injury and their families, health professionals, third-party payers, employers, and Maori, the indigenous population of New Zealand. There was no statistically significant difference found between groups for 19 of the 31 items. Only half of the items explicitly appear on a well-known USA functional communication assessment. The present study has implications for whether functional communication assessments are valid across cultures and the type of impairment.
Comparison of fMRI paradigms assessing visuospatial processing: Robustness and reproducibility
Herholz, Peer; Zimmermann, Kristin M.; Westermann, Stefan; Frässle, Stefan; Jansen, Andreas
2017-01-01
The development of brain imaging techniques, in particular functional magnetic resonance imaging (fMRI), made it possible to non-invasively study the hemispheric lateralization of cognitive brain functions in large cohorts. Comprehensive models of hemispheric lateralization are, however, still missing and should not only account for the hemispheric specialization of individual brain functions, but also for the interactions among different lateralized cognitive processes (e.g., language and visuospatial processing). This calls for robust and reliable paradigms to study hemispheric lateralization for various cognitive functions. While numerous reliable imaging paradigms have been developed for language, which represents the most prominent left-lateralized brain function, the reliability of imaging paradigms investigating typically right-lateralized brain functions, such as visuospatial processing, has received comparatively less attention. In the present study, we aimed to establish an fMRI paradigm that robustly and reliably identifies right-hemispheric activation evoked by visuospatial processing in individual subjects. In a first study, we therefore compared three frequently used paradigms for assessing visuospatial processing and evaluated their utility to robustly detect right-lateralized brain activity on a single-subject level. In a second study, we then assessed the test-retest reliability of the so-called Landmark task–the paradigm that yielded the most robust results in study 1. At the single-voxel level, we found poor reliability of the brain activation underlying visuospatial attention. This suggests that poor signal-to-noise ratios can become a limiting factor for test-retest reliability. This represents a common detriment of fMRI paradigms investigating visuospatial attention in general and therefore highlights the need for careful considerations of both the possibilities and limitations of the respective fMRI paradigm–in particular, when being interested in effects at the single-voxel level. Notably, however, when focusing on the reliability of measures of hemispheric lateralization (which was the main goal of study 2), we show that hemispheric dominance (quantified by the lateralization index, LI, with |LI| >0.4) of the evoked activation could be robustly determined in more than 62% and, if considering only two categories (i.e., left, right), in more than 93% of our subjects. Furthermore, the reliability of the lateralization strength (LI) was “fair” to “good”. In conclusion, our results suggest that the degree of right-hemispheric dominance during visuospatial processing can be reliably determined using the Landmark task, both at the group and single-subject level, while at the same time stressing the need for future refinements of experimental paradigms and more sophisticated fMRI data acquisition techniques. PMID:29059201
Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.
Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David
2017-05-08
The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Goldman, Marina; Szucs-Reed, Regina P; Jagannathan, Kanchana; Ehrman, Ronald N; Wang, Ze; Li, Yin; Suh, Jesse J; Kampman, Kyle; O'Brien, Charles P; Childress, Anna Rose; Franklin, Teresa R
2013-01-01
: Determining the brain substrates underlying the motivation to abuse addictive drugs is critical for understanding and treating addictive disorders. Laboratory neuroimaging studies have demonstrated differential activation of limbic and motivational circuitry (eg, amygdala, hippocampus, ventral striatum, insula, and orbitofrontal cortex) triggered by cocaine, heroin, nicotine, and alcohol cues. The literature on neural responses to marijuana cues is sparse. Thus, the goals of this study were to characterize the brain's response to marijuana cues, a major motivator underlying drug use and relapse, and determine whether these responses are linked to self-reported craving in a clinically relevant population of treatment-seeking marijuana-dependent subjects. : Marijuana craving was assessed in 12 marijuana-dependent subjects using the Marijuana Craving Questionnaire-Short Form. Subsequently, blood oxygen level dependent functional magnetic resonance imaging data were acquired during exposure to alternating 20-second blocks of marijuana-related versus matched nondrug visual cues. : Brain activation during marijuana cue exposure was significantly greater in the bilateral amygdala and the hippocampus. Significant positive correlations between craving scores and brain activation were found in the ventral striatum and the medial and lateral orbitofrontal cortex (P < 0.0001). : This study presents direct evidence for a link between reward-relevant brain responses to marijuana cues and craving and extends the current literature on marijuana cue reactivity. Furthermore, the correlative relationship between craving and brain activity in reward-related regions was observed in a clinically relevant sample (treatment-seeking marijuana-dependent subjects). Results are consistent with prior findings in cocaine, heroin, nicotine, and alcohol cue studies, indicating that the brain substrates of cue-triggered drug motivation are shared across abused substances.
Elie, Julie Estelle; Soula, Hédi Antoine; Trouvé, Colette; Mathevon, Nicolas; Vignal, Clémentine
2015-12-01
Individual cages represent a widely used housing condition in laboratories. This isolation represents an impoverished physical and social environment in gregarious animals. It prevents animals from socializing, even when auditory and visual contact is maintained. Zebra finches are colonial songbirds that are widely used as laboratory animals for the study of vocal communication from brain to behavior. In this study, we investigated the effect of single housing on the vocal behavior and the brain activity of male zebra finches (Taeniopygia guttata): male birds housed in individual cages were compared to freely interacting male birds housed as a social group in a communal cage. We focused on the activity of septo-hypothalamic regions of the "social behavior network" (SBN), a set of limbic regions involved in several social behaviors in vertebrates. The activity of four structures of the SBN (BSTm, medial bed nucleus of the stria terminalis; POM, medial preoptic area; lateral septum; ventromedial hypothalamus) and one associated region (paraventricular nucleus of the hypothalamus) was assessed using immunoreactive nuclei density of the immediate early gene Zenk (egr-1). We further assessed the identity of active cell populations by labeling vasotocin (VT). Brain activity was related to behavioral activities of birds like physical and vocal interactions. We showed that individual housing modifies vocal exchanges between birds compared to communal housing. This is of particular importance in the zebra finch, a model species for the study of vocal communication. In addition, a protocol that daily removes one or two birds from the group affects differently male zebra finches depending of their housing conditions: while communally-housed males changed their vocal output, brains of individually housed males show increased Zenk labeling in non-VT cells of the BSTm and enhanced correlation of Zenk-revealed activity between the studied structures. These results show that housing conditions must gain some attention in behavioral neuroscience protocols. Copyright © 2015. Published by Elsevier SAS.
Besnard, Jeremy; Richard, Paul; Banville, Frederic; Nolin, Pierre; Aubin, Ghislaine; Le Gall, Didier; Richard, Isabelle; Allain, Phillippe
2016-01-01
Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.
Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ronald; Emsell, Louise; Smeets, Ann; Christiaens, Marie-Rose; Amant, Frederic; Sunaert, Stefan
2014-07-01
To examine whether cognitive complaints after treatment for breast cancer are associated with detectable changes in brain activity during multitasking. Eighteen patients who were scheduled to receive chemotherapy performed a functional magnetic resonance imaging multitasking task in the scanner before the start of treatment (t1) and 4 to 6 months after finishing treatment (t2). Sixteen patients who were not scheduled to receive chemotherapy and 17 matched healthy controls performed the same task at matched intervals. Task difficulty level was adjusted individually to match performance across participants. Statistical Parametric Mapping 8 (SPM8) software was used for within-group, between-group, and group-by-time interaction image analyses. Voxel-based paired t tests revealed significantly decreased activation (P < .05) from t1 to t2 at matched performance in the multitasking network of chemotherapy-treated patients, whereas no changes were noted in either of the control groups. At baseline, there were no differences between the groups. Furthermore, in contrast to controls, the chemotherapy-treated patients reported a significant increase in cognitive complaints (P < .05) at t2. Significant (P < .05) correlations were found between these increases and decreases in multitasking-related brain activation. Moreover, a significant group-by-time interaction (P < .05) was found whereby chemotherapy-treated patients showed decreased activation and healthy controls did not. These results suggest that changes in brain activity may underlie chemotherapy-induced cognitive complaints. The observed changes might be related to chemotherapy-induced damage to the brain or reduced connectivity between brain regions rather than to changes in effort or changes in functional strategy. To the best of our knowledge, this is the first longitudinal study providing evidence for a relationship between longitudinal changes in cognitive complaints and changes in brain activation after chemotherapy. © 2014 by American Society of Clinical Oncology.
Tomita, Nozomi; Imai, Shoji; Kanayama, Yusuke; Kawashima, Issaku; Kumano, Hiroaki
2017-06-01
While dichotic listening (DL) was originally intended to measure bottom-up selective attention, it has also become a tool for measuring top-down selective attention. This study investigated the brain regions related to top-down selective and divided attention DL tasks and a 2-back task using alphanumeric and Japanese numeric sounds. Thirty-six healthy participants underwent near-infrared spectroscopy scanning while performing a top-down selective attentional DL task, a top-down divided attentional DL task, and a 2-back task. Pearson's correlations were calculated to show relationships between oxy-Hb concentration in each brain region and the score of each cognitive task. Different brain regions were activated during the DL and 2-back tasks. Brain regions activated in the top-down selective attention DL task were the left inferior prefrontal gyrus and left pars opercularis. The left temporopolar area was activated in the top-down divided attention DL task, and the left frontopolar area and left dorsolateral prefrontal cortex were activated in the 2-back task. As further evidence for the finding that each task measured different cognitive and brain area functions, neither the percentages of correct answers for the three tasks nor the response times for the selective attentional task and the divided attentional task were correlated to one another. Thus, the DL and 2-back tasks used in this study can assess multiple areas of cognitive, brain-related dysfunction to explore their relationship to different psychiatric and neurodevelopmental disorders.
Parés, D; Martínez-Vilalta, M; Ortiz, H; Soriano-Mas, C; Maestre-Gonzalez, Y; Pujol, J; Grande, L
2018-04-14
Voluntary anal sphincter function is driven by an extended network of brain structures, most of which are still unknown. Disturbances in this function may cause fecal incontinence. The aim of this study was to characterize the cerebral areas involved in voluntary contraction of the anorectal sphincter in healthy women and in a group of patients with fecal incontinence by using a standardized functional magnetic resonance imaging (fMRI) protocol. This comparative study included 12 healthy women (mean age 53.17 ± 4.93 years) and 12 women with fecal incontinence (56.25 ± 6.94 years). An MRI-compatible anal manometer was used to register voluntary external anal sphincter contraction. During brain fMRI imaging, participants were cued to perform 10-s series of self-paced anal sphincter contractions at an approximate rate of 1 Hz. Brain structures linked to anal sphincter contractions were mapped and the findings were compared between the 2 study groups. There were no differences in the evoked brain activity between the 2 groups. In healthy women, group fMRI analysis revealed significant activations in medial primary motor cortices, supplementary motor area, bilateral putamen, and cerebellum, as well as in the supramarginal gyrus and visual areas. In patients with fecal incontinence, the activation pattern involved similar regions without significant differences with healthy women. This brain fMRI-anorectal protocol was able to map the brain regions linked to voluntary anal sphincter function in healthy and women with fecal incontinence. © 2018 John Wiley & Sons Ltd.
Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor
NASA Astrophysics Data System (ADS)
Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.
2016-06-01
The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.
Self-efficacy is independently associated with brain volume in older women.
Davis, Jennifer C; Nagamatsu, Lindsay S; Hsu, Chun Liang; Beattie, B Lynn; Liu-Ambrose, Teresa
2012-07-01
ageing is highly associated with neurodegeneration and atrophy of the brain. Evidence suggests that personality variables are risk factors for reduced brain volume. We examine whether falls-related self-efficacy is independently associated with brain volume. a cross-sectional analysis of whether falls-related self-efficacy is independently associated with brain volumes (total, grey and white matter). Three multivariate regression models were constructed. Covariates included in the models were age, global cognition, systolic blood pressure, functional comorbidity index and current physical activity level. MRI scans were acquired from 79 community-dwelling senior women aged 65-75 years old. Falls-related self-efficacy was assessed by the activities-specific balance confidence (ABC) scale. after accounting for covariates, falls-related self-efficacy was independently associated with both total brain volume and total grey matter volume. The final model for total brain volume accounted for 17% of the variance, with the ABC score accounting for 8%. For total grey matter volume, the final model accounted for 24% of the variance, with the ABC score accounting for 10%. we provide novel evidence that falls-related self-efficacy, a modifiable risk factor for healthy ageing, is positively associated with total brain volume and total grey matter volume. ClinicalTrials.gov Identifier: NCT00426881.
Self-efficacy is independently associated with brain volume in older women
Davis, Jennifer C.; Nagamatsu, Lindsay S.; Hsu, Chun Liang; Beattie, B. Lynn; Liu-Ambrose, Teresa
2015-01-01
Background Aging is highly associated with neurodegeneration and atrophy of the brain. Evidence suggests that personality variables are risk factors for reduced brain volume. We examine whether falls-related self-efficacy is independently associated with brain volume. Method A cross-sectional analysis of whether falls-related self-efficacy is independently associated with brain volumes (total, grey, and white matter). Three multivariate regression models were constructed. Covariates included in the models were age, global cognition, systolic blood pressure, functional comorbidity index, and current physical activity level. MRI scans were acquired from 79 community-dwelling senior women aged 65 to 75 years old. Falls-related self-efficacy was assessed by the Activities Specific Balance Confidence (ABC) Scale. Results After accounting for covariates, falls-related self-efficacy was independently associated with both total brain volume and total grey matter volume. The final model for total brain volume accounted for 17% of the variance, with the ABC score accounting for 8%. For total grey matter volume, the final model accounted for 24% of the variance, with the ABC score accounting for 10%. Conclusion We provide novel evidence that falls-related self-efficacy, a modifiable risk factor for healthy aging, is positively associated with total brain volume and total grey matter volume. Trial Registration ClinicalTrials.gov Identifier: NCT00426881. PMID:22436405
Liu, Siyuan; Erkkinen, Michael G.; Healey, Meghan L.; Xu, Yisheng; Swett, Katherine E.; Chow, Ho Ming
2015-01-01
Abstract Creativity, a multifaceted construct, can be studied in various ways, for example, investigating phases of the creative process, quality of the creative product, or the impact of expertise. Previous neuroimaging studies have assessed these individually. Believing that each of these interacting features must be examined simultaneously to develop a comprehensive understanding of creative behavior, we examined poetry composition, assessing process, product, and expertise in a single experiment. Distinct activation patterns were associated with generation and revision, two major phases of the creative process. Medial prefrontal cortex (MPFC) was active during both phases, yet responses in dorsolateral prefrontal and parietal executive systems (DLPFC/IPS) were phase‐dependent, indicating that while motivation remains unchanged, cognitive control is attenuated during generation and re‐engaged during revision. Experts showed significantly stronger deactivation of DLPFC/IPS during generation, suggesting that they may more effectively suspend cognitive control. Importantly however, similar overall patterns were observed in both groups, indicating the same cognitive resources are available to experts and novices alike. Quality of poetry, assessed by an independent panel, was associated with divergent connectivity patterns in experts and novices, centered upon MPFC (for technical facility) and DLPFC/IPS (for innovation), suggesting a mechanism by which experts produce higher quality poetry. Crucially, each of these three key features can be understood in the context of a single neurocognitive model characterized by dynamic interactions between medial prefrontal areas regulating motivation, dorsolateral prefrontal, and parietal areas regulating cognitive control and the association of these regions with language, sensorimotor, limbic, and subcortical areas distributed throughout the brain. Hum Brain Mapp 36:3351–3372, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:26015271
Howell, David R; Meehan, William P; Barber Foss, Kim D; Reches, Amit; Weiss, Michal; Myer, Gregory D
2018-05-31
To investigate the association between dual-task gait performance and brain network activation (BNA) using an electroencephalography (EEG)-based Go/No-Go paradigm among children and adolescents with concussion. Participants with a concussion completed a visual Go/No-Go task with collection of electroencephalogram brain activity. Data were treated with BNA analysis, which involves an algorithmic approach to EEG-ERP activation quantification. Participants also completed a dual-task gait assessment. The relationship between dual-task gait speed and BNA was assessed using multiple linear regression models. Participants (n = 20, 13.9 ± 2.3 years of age, 50% female) were tested at a mean of 7.0 ± 2.5 days post-concussion and were symptomatic at the time of testing (post-concussion symptom scale = 40.4 ± 21.9). Slower dual-task average gait speed (mean = 82.2 ± 21.0 cm/s) was significantly associated with lower relative time BNA scores (mean = 39.6 ± 25.8) during the No-Go task (β = 0.599, 95% CI = 0.214, 0.985, p = 0.005, R 2 = 0.405), while controlling for the effect of age and gender. Among children and adolescents with a concussion, slower dual-task gait speed was independently associated with lower BNA relative time scores during a visual Go/No-Go task. The relationship between abnormal gait behaviour and brain activation deficits may be reflective of disruption to multiple functional abilities after concussion.
DI NARDO, W.; GIANNANTONIO, S.; DI GIUDA, D.; DE CORSO, E.; SCHINAIA, L.; PALUDETTI, G.
2013-01-01
SUMMARY Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods. PMID:23620636
Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia
Siegel, Chad S.; McCullough, Louise D.
2013-01-01
Background Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by activation of Poly (ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. Purpose This study examined stroke induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. Methods Mice were subjected to Middle Cerebral Artery Occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation was assessed 6 hours after ischemia. In additional cohorts, Nicotinamide (500mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24 hours after ischemia. Results Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. Conclusions Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes. PMID:23403179
NASA Astrophysics Data System (ADS)
Tian, Fenghua; Kozel, F. Andrew; Yennu, Amarnath; Croarkin, Paul E.; McClintock, Shawn M.; Mapes, Kimberly S.; Husain, Mustafa M.; Liu, Hanli
2012-11-01
Repetitive transcranial magnetic stimulation (rTMS) is a technology that stimulates neurons with rapidly changing magnetic pulses with demonstrated therapeutic applications for various neuropsychiatric disorders. Functional near-infrared spectroscopy (fNIRS) is a suitable tool to assess rTMS-evoked brain responses without interference from the magnetic or electric fields generated by the TMS coil. We have previously reported a channel-wise study of combined rTMS/fNIRS on the motor and prefrontal cortices, showing a robust decrease of oxygenated hemoglobin concentration (Δ[HbO2]) at the sites of 1-Hz rTMS and the contralateral brain regions. However, the reliability of this putative clinical tool is unknown. In this study, we develop a rapid optical topography approach to spatially characterize the rTMS-evoked hemodynamic responses on a standard brain atlas. A hemispherical approximation of the brain is employed to convert the three-dimensional topography on the complex brain surface to a two-dimensional topography in the spherical coordinate system. The test-retest reliability of the combined rTMS/fNIRS is assessed using repeated measurements performed two to three days apart. The results demonstrate that the Δ[HbO2] amplitudes have moderate-to-high reliability at the group level; and the spatial patterns of the topographic images have high reproducibility in size and a moderate degree of overlap at the individual level.
Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter
2017-01-15
Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.
Golukhova, Elena Z.; Polunina, Anna G.; Lefterova, Natalia P.; Begachev, Alexey V.
2011-01-01
Cardiac surgery is commonly associated with brain ischemia. Few studies addressed brain electric activity changes after on-pump operations. Eyes closed EEG was performed in 22 patients (mean age: 45.2 ± 11.2) before and two weeks after valve replacement. Spouses of patients were invited to participate as controls. Generalized increase of beta power most prominent in beta-1 band was an unambiguous pathological sign of postoperative cortex dysfunction, probably, manifesting due to gamma-activity slowing (“beta buzz” symptom). Generalized postoperative increase of delta-1 mean frequency along with increase of slow-wave activity in right posterior region may be hypothesized to be a consequence of intraoperative ischemia as well. At the same time, significant changes of alpha activity were observed in both patient and control groups, and, therefore, may be considered as physiological. Unexpectedly, controls showed prominent increase of electric activity in left temporal region whereas patients were deficient in left hemisphere activity in comparison with controls at postoperative followup. Further research is needed in order to determine the true neurological meaning of the EEG findings after on-pump operations. PMID:21776370
Havermans, Anne; Vuurman, Eric F; van den Hurk, Job; Hoogsteder, Philippe; van Schayck, Onno C P
2014-08-01
To assess whether immunization attenuates nicotinic stimulation of the brain and elucidate brain and behavioural responses during exposure to smoking cues and a working memory task. Randomized, placebo-controlled parallel-group, repeated-measures design. Maastricht University, the Netherlands. Forty-eight male smokers were randomized to receive five injections with either 400 μg/ml of the 3'-aminomethylnicotine Pseudomonas aeruginosa r-Exoprotein-conjugated vaccine or placebo. Subjects were tested on two occasions, once after a nicotine challenge and once after a placebo challenge, and were asked to refrain from smoking 10 hours before testing. Reaction-times and accuracies were recorded during an n-back task. Moreover, regional blood oxygenated level-dependent (BOLD) response was measured during this task and during smoking cue exposure. Greater activation was found in response to smoking cues compared to neutral cues in bilateral trans-occipital sulcus (P < 0.005); however, this effect did not survive correction for multiple comparisons. There was no difference in brain activity to smoking cues between the treatment groups and no effects of acute nicotine challenge were established. For the n-back task we found working memory load-sensitive increases in brain activity in several frontal and parietal areas (P < 0.0025). However, no effects of immunization or nicotine challenge were observed. No significant effects of immunization on brain activity in response to a nicotine challenge were established. Therefore this vaccine is not likely to be an effective aid in smoking cessation. © 2014 Society for the Study of Addiction.
Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik
2014-01-01
Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532
Fink, Andreas; Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C; Papousek, Ilona; Weiss, Elisabeth M
2015-10-01
This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3-week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty-three participants were tested three times (psychometric tests and fMRI assessment) with an intertest-interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time-delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole-brain voxel-wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well-known creativity-related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. © 2015 Wiley Periodicals, Inc.
Brain-water diffusion coefficients reflect the severity of inherited prion disease
Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.
2010-01-01
Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS = Brief Psychiatric Rating Scale; BSE = bovine spongiform encephalopathy; CDR = Clinician's Dementia Rating Scale; CGIS = Clinician's Global Impression of Disease; CI = confidence interval; DWI = diffusion-weighted imaging; FLAIR = fluid-attenuated inversion recovery; FOV = field of view; GM = gray matter; LC = left head of caudate; LP = left putamen; LPu = left pulvinar; MMSE = Mini-Mental State Examination; NBV = normalized brain volume; PH = peak height; PL = peak location; RC = right head of caudate; RP = right putamen; RPu = right pulvinar; ROI = region of interest; sCJD = sporadic Creutzfeldt-Jakob disease; TE = echo time; TI = inversion time; TR = repetition time; vCJD = variant Creutzfeldt-Jakob disease; WB = whole brain; WM = white matter. PMID:20177119
The association between cortisol and the BOLD response in male adolescents undergoing fMRI.
Keulers, Esther H H; Stiers, Peter; Nicolson, Nancy A; Jolles, Jelle
2015-02-19
MRI participation has been shown to induce subjective and neuroendocrine stress reactions. A recent aging study showed that cortisol levels during fMRI have an age-dependent effect on cognitive performance and brain functioning. The present study examined whether this age-specific influence of cortisol on behavioral and brain activation levels also applies to adolescence. Salivary cortisol as well as subjective experienced anxiety were assessed during the practice session, at home, and before, during and after the fMRI session in young versus old male adolescents. Cortisol levels were enhanced pre-imaging relative to during and post-imaging in both age groups, suggesting anticipatory stress and anxiety. Overall, a negative correlation was found between cortisol output during the fMRI experiment and brain activation magnitude during performance of a gambling task. In young but not in old adolescents, higher cortisol output was related to stronger deactivation of clusters in the anterior and posterior cingulate cortex. In old but not in young adolescents, a negative correlation was found between cortisol and activation in the inferior parietal and in the superior frontal cortex. In sum, cortisol increased the deactivation of several brain areas, although the location of the affected areas in the brain was age-dependent. The present findings suggest that cortisol output during fMRI should be considered as confounder and integrated in analyzing developmental changes in brain activation during adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.
Association between vitamin D levels and inflammatory activity in brain death: A prospective study.
Custódio, Geisiane; Schwarz, Patrícia; Crispim, Daisy; Moraes, Rafael B; Czepielewski, Mauro; Leitão, Cristiane B; Rech, Tatiana H
2018-06-01
Vitamin D insufficiency is linked to several common inflammatory disorders. Brain death (BD) causes a massive catecholamine release, leading to intense inflammatory activity. We aimed to evaluate vitamin D serum levels in brain-dead individuals in comparison to critically ill patients without BD to assess the correlation between vitamin D and cytokine levels. Sixteen brain-dead patients and 32 critically ill controls were prospectively enrolled. Blood samples from 25 brain-dead patients from a previous study were also used for vitamin D quantification. Plasma TNF, IL-1β, IL-6, IL-8, IL-10, IFN-γ and serum vitamin D levels were compared using Student's t-test or one-way ANOVA. Spearman's test was used to assess the correlation between vitamin D and cytokine levels. Mean vitamin D levels were 16.4 ± 7.9 ng/mL, with 52 patients (71.2%) classified as vitamin D deficient (serum levels < 20 ng/mL). Vitamin D levels were similar in 41 brain-dead patients as compared to control subjects (15.6 ± 6.9 ng/mL vs 17.4 ± 9.0 ng/mL; p = 0.383). Moderate direct correlations were observed between vitamin D and IL-8, IL-10, and IFN-γ in the prospective group of 16 brain-dead patients (IL-8: r = 0.5, p = 0.049; IL-10 r = 0.67, p = 0.005; IFN-γ r = 0.6, p = 0.015). Vitamin D was inversely correlated with IL-6 (r = -0.36, p = 0.044) in critically ill controls. Vitamin D serum levels were similarly low in brain-dead and critically ill patients. In brain-dead patients, vitamin D serum levels correlated with plasma IL-8, IL-10 and IFN-γ. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sreenivasan, Rajesh; Joshi, Preeti G.; Joshi, Nanda B.
1997-01-01
Photoinduced structural and functional changes were studied in the subcellular membranes isolated from HpD treated cells. Changes in the limiting anisotropy of lipid specific probes 1,6,Diphenyl-1,3,5,hexatriene (DPH) and 1-(4-Trimethyl ammonium 1,6 diphenyl)-1,3,5,hexatriene toulene sulphonate (TMA-DPH) incorporated into the membrane were used to assess the structural alterations while changes in the activity of the marker enzymes were used to assess the functional alterations. Our results suggest that damage to the endoplasmic reticulum may play an important role in the photosensitization of brain tumor cells.
Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B
2016-11-01
In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m - 2 ) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m - 2 ), both before and 30 min after consumption of a standardized meal (~260 kcal). Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.
Kontos, Anthony P; Reches, Amit; Elbin, R J; Dickman, Dalia; Laufer, Ilan; Geva, Amir B; Shacham, Galit; DeWolf, Ryan; Collins, Michael W
2016-06-01
Post-traumatic migraine (PTM) (i.e., headache, nausea, light and/or noise sensitivity) is an emerging risk factor for prolonged recovery following concussion. Concussions and migraine share similar pathophysiology characterized by specific ionic imbalances in the brain. Given these similarities, patients with PTM following concussion may exhibit distinct electrophysiological patterns, although researchers have yet to examine the electrophysiological brain activation in patients with PTM following concussion. A novel approach that may help differentiate brain activation in patients with and without PTM is brain network activation (BNA) analysis. BNA involves an algorithmic analysis applied to multichannel EEG-ERP data that provides a network map of cortical activity and quantitative data during specific tasks. A prospective, repeated measures design was used to evaluate BNA (during Go/NoGo task), EEG-ERP, cognitive performance, and concussion related symptoms at 1, 2, 3, and 4 weeks post-injury intervals among athletes with a medically diagnosed concussion with PTM (n = 15) and without (NO-PTM) (n = 22); and age, sex, and concussion history matched controls without concussion (CONTROL) (n = 20). Participants with PTM had significantly reduced BNA compared to NO-PTM and CONTROLS for Go and NoGo components at 3 weeks and for NoGo component at 4 weeks post-injury. The PTM group also demonstrated a more prominent deviation of network activity compared to the other two groups over a longer period of time. The composite BNA algorithm may be a more sensitive measure of electrophysiological change in the brain that can augment established cognitive assessment tools for detecting impairment in individuals with PTM.
Active video gaming improves body coordination in survivors of childhood brain tumours.
Sabel, Magnus; Sjölund, Anette; Broeren, Jürgen; Arvidsson, Daniel; Saury, Jean-Michel; Blomgren, Klas; Lannering, Birgitta; Emanuelson, Ingrid
2016-10-01
We investigated whether active video gaming (AVG) could bring about regular, enjoyable, physical exercise in children treated for brain tumours, what level of physical activity could be reached and if the children's physical functioning improved. Thirteen children, aged 7-17 years, were randomised to either AVG or waiting-list. After 10-12 weeks they crossed-over. Weekly Internet coaching sessions were used to sustain motivation and evaluate enjoyment. Energy expenditure (EE) levels were measured as Metabolic Equivalent of Task (MET), using a multisensory activity monitor. Single-blinded assessments of physical functioning were done, using the Bruininks-Osteretsky Test of Motor Performance, second edition, evaluating participants before and after the intervention period, as well as comparing the randomisation groups after the first period. All patients completed the study. AVG sessions (mean duration 47 minutes) were performed on 72% of all days. Mean EE level during AVG sessions was 3.0 MET, corresponding to moderate physical activity. The Body Coordination score improved by 15% (p = 0.021) over the intervention period. In this group of childhood brain tumour survivors, home-based AVG, supported by a coach, was a feasible, enjoyable and moderately intense form of exercise that improved Body Coordination. Implications for Rehabilitation Childhood brain tumour survivors frequently have cognitive problems, inferior physical functioning and are less physically active compared to their healthy peers. Active video gaming (AVG), supported by Internet coaching, is a feasible home-based intervention in children treated for brain tumours, promoting enjoyable, regular physical exercise of moderate intensity. In this pilot study, AVG with Nintendo Wii improved Body Coordination.
Di Giorgio, C; Boyer, L; De Meo, M; Laurant, C; Elias, R; Ollivier, E
2015-07-01
DIG, a liquid herbal preparation made from a mixture of diluted mother tinctures of Berberis vulgaris, Taraxacum officinale and Arctium lappa, was assessed for its antimutagenic properties against mitomycin C. The micronucleus assay on Chinese hamster ovary (CHO)-K1 cells was used to evaluate the in vitro anticlastogenic activity of DIG compared to those of separately diluted mother tinctures. The micronucleus assay was performed on mouse erythrocytes and the comet assay was performed on mouse liver, kidney, lung, brain and testicles to assess the protective effects of DIG (0.2 and 2 % at libitum) against an intraperitoneal injection of mitomycin C (1 mg Kg(-1)) in mice. DIG exerted a powerful anticlastogenic activity, under both pretreatment and simultaneous treatment conditions as assessed by the micronucleus assay in CHO-K1 cells. Its protective activity was greater than that observed for each mother tincture. DIG reduced micronuclei levels in mouse erythrocytes and suppressed >80 % of DNA strand breaks in the liver, kidney, lung, brain and testicles of mice exposed to mitomycin C.
Shtyrov, Yury; MacGregor, Lucy J
2016-05-24
Rapid and efficient processing of external information by the brain is vital to survival in a highly dynamic environment. The key channel humans use to exchange information is language, but the neural underpinnings of its processing are still not fully understood. We investigated the spatio-temporal dynamics of neural access to word representations in the brain by scrutinising the brain's activity elicited in response to psycholinguistically, visually and phonologically matched groups of familiar words and meaningless pseudowords. Stimuli were briefly presented on the visual-field periphery to experimental participants whose attention was occupied with a non-linguistic visual feature-detection task. The neural activation elicited by these unattended orthographic stimuli was recorded using multi-channel whole-head magnetoencephalography, and the timecourse of lexically-specific neuromagnetic responses was assessed in sensor space as well as at the level of cortical sources, estimated using individual MR-based distributed source reconstruction. Our results demonstrate a neocortical signature of automatic near-instant access to word representations in the brain: activity in the perisylvian language network characterised by specific activation enhancement for familiar words, starting as early as ~70 ms after the onset of unattended word stimuli and underpinned by temporal and inferior-frontal cortices.
Motor rehabilitation in stroke and traumatic brain injury: stimulating and intense.
Breceda, Erika Y; Dromerick, Alexander W
2013-12-01
The purpose of this review is to provide an update on the latest neurorehabilitation literature for motor recovery in stroke and traumatic brain injury to assist clinical decision making and assessing future research directions. The emerging approach to motor restoration is now multimodal. It engages the traditional multidisciplinary rehabilitation team, but incorporates highly structured activity-based therapies, pharmacology, brain stimulation and robotics. Clinical trial data support selective serotonin reuptake inhibitors and amantadine to assist motor recovery poststroke and traumatic brain injury, respectively. Similarly, there is continued support for intensity as a key factor in activity-based therapies, across skilled and nonskilled interventions. Aerobic training appears to have multiple benefits; increasing the capacity to meet the demands of hemiparetic gait improves endurance for activities of daily living while promoting cognition and mood. At this time, the primary benefit of robotic therapy lies in the delivery of highly intense and repetitive motor practice. Both transcranial direct current and magnetic stimulation therapies are in early stages, but have promise in motor and language restoration. Advancements in neurorehabilitation have shifted treatment away from nonspecific activity regimens and amphetamines. As the body of knowledge grows, evidence-based practice using interventions targeted at specific subgroups becomes progressively more feasible.
Nieradko-Iwanicka, Barbara; Borzęcki, Andrzej
2016-04-01
Fenpropathrin (Fen) is a pyrethroid (Pyr) insecticide. Pyrs are used in veterinary medicine, in agriculture and for domestic purposes. As their use increases, new questions about their side effects and mode of action in non-target organisms arise. The objective of this work was to characterize dose-response relationship for in vivo motor function and memory in mice exposed to Fen for 28 days and to assess its influence on activity of antioxidant enzymes in mice brains. The experiment was performed using 64 female mice. Fen at the dose of 11.9mg/kg of body mass, 5.95mg/kg or 2.38mg/kg was administered ip to the mice for 28 consecutive days. Motor function and spatial working memory were tested on days 7, 14 and 28. On day 29, the animals were sacrificed and brains were used to determine activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Fen significantly decreased locomotor activity in mice receiving the highest dose at every stage of the experiment. Lower doses reduced locomotion on days 7 and 14. Fen did not produce memory impairment. A decrease in activities of SOD and GPx was recorded in mice brains. The decrease of SOD activity in mice brains results from direct inhibition of the enzyme by Fen and/or increased utilization due to excessive free radical formation in conditions of Fen-induced oxidative stress. The reduction in GPx activity is probably due to limited glutathione availability. The reduced locomotor activity is a behavioral demonstration of Fen-induced damage in the dopaminergic system. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Large-Scale Phase Synchrony Reflects Clinical Status After Stroke: An EEG Study.
Kawano, Teiji; Hattori, Noriaki; Uno, Yutaka; Kitajo, Keiichi; Hatakenaka, Megumi; Yagura, Hajime; Fujimoto, Hiroaki; Yoshioka, Tomomi; Nagasako, Michiko; Otomune, Hironori; Miyai, Ichiro
2017-06-01
Stroke-induced focal brain lesions often exert remote effects via residual neural network activity. Electroencephalographic (EEG) techniques can assess neural network modifications after brain damage. Recently, EEG phase synchrony analyses have shown associations between the level of large-scale phase synchrony of brain activity and clinical symptoms; however, few reports have assessed such associations in stroke patients. The aim of this study was to investigate the clinical relevance of hemispheric phase synchrony in stroke patients by calculating its correlation with clinical status. This cross-sectional study included 19 patients with post-acute ischemic stroke admitted for inpatient rehabilitation. Interhemispheric phase synchrony indices (IH-PSIs) were computed in 2 frequency bands (alpha [α], and beta [β]), and associations between indices and scores of the Functional Independence Measure (FIM), the National Institutes of Health Stroke Scale (NIHSS), and the Fugl-Meyer Motor Assessment (FMA) were analyzed. For further assessments of IH-PSIs, ipsilesional intrahemispheric PSIs (IntraH-PSIs) as well as IH- and IntraH-phase lag indices (PLIs) were also evaluated. IH-PSIs correlated significantly with FIM scores and NIHSS scores. In contrast, IH-PSIs did not correlate with FMA scores. IntraH-PSIs correlate with FIM scores after removal of the outlier. The results of analysis with PLIs were consistent with IH-PSIs. The PSIs correlated with performance on the activities of daily living scale but not with scores on a pure motor impairment scale. These results suggest that large-scale phase synchrony represented by IH-PSIs provides a novel surrogate marker for clinical status after stroke.
Szöllősi, Dávid; Hegedűs, Nikolett; Veres, Dániel S; Futó, Ildikó; Horváth, Ildikó; Kovács, Noémi; Martinecz, Bernadett; Dénes, Ádám; Seifert, Daniel; Bergmann, Ralf; Lebeda, Ondřej; Varga, Zoltán; Kaleta, Zoltán; Szigeti, Krisztián; Máthé, Domokos
2018-05-07
The purpose of this study was to evaluate a set of widely used nuclear medicine imaging agents as possible methods to study the early effects of systemic inflammation on the living brain in a mouse model of sepsis-associated encephalopathy (SAE). The lipopolysaccharide (LPS)-induced murine systemic inflammation model was selected as a model of SAE. C57BL/6 mice were used. A multimodal imaging protocol was carried out on each animal 4 h following the intravenous administration of LPS using the following tracers: [ 99m Tc][2,2-dimethyl-3-[(3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(3E)-3-hydroxyiminobutan-2-yl]azanide ([ 99m Tc]HMPAO) and ethyl-7-[ 125 I]iodo-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate ([ 125 I]iomazenil) to measure brain perfusion and neuronal damage, respectively; 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) to measure cerebral glucose uptake. We assessed microglia activity on another group of mice using 2-[6-chloro-2-(4-[ 125 I]iodophenyl)-imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-methyl-acetamide ([ 125 I]CLINME). Radiotracer uptakes were measured in different brain regions and correlated. Microglia activity was also assessed using immunohistochemistry. Brain glutathione levels were measured to investigate oxidative stress. Significantly reduced perfusion values and significantly enhanced [ 18 F]FDG and [ 125 I]CLINME uptake was measured in the LPS-treated group. Following perfusion compensation, enhanced [ 125 I]iomazenil uptake was measured in the LPS-treated group's hippocampus and cerebellum. In this group, both [ 18 F]FDG and [ 125 I]iomazenil uptake showed highly negative correlation to perfusion measured with ([ 99m Tc]HMPAO uptake in all brain regions. No significant differences were detected in brain glutathione levels between the groups. The CD45 and P2Y12 double-labeling immunohistochemistry showed widespread microglia activation in the LPS-treated group. Our results suggest that [ 125 I]CLINME and [ 99m Tc]HMPAO SPECT can be used to detect microglia activation and brain hypoperfusion, respectively, in the early phase (4 h post injection) of systemic inflammation. We suspect that the enhancement of [ 18 F]FDG and [ 125 I]iomazenil uptake in the LPS-treated group does not necessarily reflect neural hypermetabolism and the lack of neuronal damage. They are most likely caused by processes emerging during neuroinflammation, e.g., microglia activation and/or immune cell infiltration.
Coleman, Jaumeiko J; Frymark, Tobi; Franceschini, Nicole M; Theodoros, Deborah G
2015-05-01
This is a systematic review of assessment and treatment of cognitive and communicative abilities of individuals with acquired brain injury via telepractice versus in person. The a priori clinical questions were informed by previous research that highlights the importance of considering any functional implications of outcomes, determining disorder- and setting-specific concerns, and measuring the potential impact of diagnostic accuracy and treatment efficacy data on interpretation of findings. A literature search of multiple databases (e.g., PubMed) was conducted using key words and study inclusion criteria associated with the clinical questions. Ten group studies were accepted that addressed assessment of motor speech, language, and cognitive impairments; assessment of motor speech and language activity limitations/participation restrictions; and treatment of cognitive impairments and activity limitations/participation restrictions. In most cases, equivalence of outcomes was noted across service delivery methods. Limited findings, lack of diagnostic accuracy and treatment efficacy data, and heterogeneity of assessments and interventions precluded robust evaluation of clinical implications for telepractice equivalence and the broader area of telepractice efficacy. Future research is needed that will build upon current knowledge through replication. In addition, further evaluation at the impairment and activity limitation/participation restriction levels is needed.
Kodama, Takayuki; Nakano, Hideki; Katayama, Osamu; Murata, Shin
2017-01-01
Background: The association between motor imagery ability and brain neural activity that leads to the manifestation of a motor illusion remains unclear. Objective: In this study, we examined the association between the ability to generate motor imagery and brain neural activity leading to the induction of a motor illusion by vibratory stimulation. Methods: The sample consisted of 20 healthy individuals who did not have movement or sensory disorders. We measured the time between the starting and ending points of a motor illusion (the time to illusion induction, TII) and performed electroencephalography (EEG). We conducted a temporo-spatial analysis on brain activity leading to the induction of motor illusions using the EEG microstate segmentation method. Additionally, we assessed the ability to generate motor imagery using the Japanese version of the Movement Imagery Questionnaire-Revised (JMIQ-R) prior to performing the task and examined the associations among brain neural activity levels as identified by microstate segmentation method, TII, and the JMIQ-R scores. Results: The results showed four typical microstates during TII and significantly higher neural activity in the ventrolateral prefrontal cortex, primary sensorimotor area, supplementary motor area (SMA), and inferior parietal lobule (IPL). Moreover, there were significant negative correlations between the neural activity of the primary motor cortex (MI), SMA, IPL, and TII, and a significant positive correlation between the neural activity of the SMA and the JMIQ-R scores. Conclusion: These findings suggest the possibility that a neural network primarily comprised of the neural activity of SMA and M1, which are involved in generating motor imagery, may be the neural basis for inducing motor illusions. This may aid in creating a new approach to neurorehabilitation that enables a more robust reorganization of the neural base for patients with brain dysfunction with a motor function disorder. PMID:29172013
Comprehensive Review on Magnetic Resonance Imaging in Alzheimer's Disease.
Dona, Olga; Thompson, Jeff; Druchok, Cheryl
2016-01-01
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. However, definitive diagnosis of AD is only achievable postmortem and currently relies on clinical neurological evaluation. Magnetic resonance imaging (MRI) can evaluate brain changes typical of AD, including brain atrophy, presence of amyloid β (Aβ) plaques, and functional and biochemical abnormalities. Structural MRI (sMRI) has historically been used to assess the inherent brain atrophy present in AD. However, new techniques have recently emerged that have refined sMRI into a more precise tool to quantify the thickness and volume of AD-sensitive cerebral structures. Aβ plaques, a defining pathology of AD, are widely believed to contribute to the progressive cognitive decline in AD, but accurate assessment is only possible on autopsy. In vivo MRI of plaques, although currently limited to mouse models of AD, is a very promising technique. Measuring changes in activation and connectivity in AD-specific regions of the brain can be performed with functional MRI (fMRI). To help distinguish AD from diseases with similar symptoms, magnetic resonance spectroscopy (MRS) can be used to look for differing metabolite concentrations in vivo. Together, these MR techniques, evaluating various brain changes typical of AD, may help to provide a more definitive diagnosis and ease the assessment of the disease over time, noninvasively.
Distribution of lacosamide in the rat brain assessed by in vitro slice technique.
Gáll, Zsolt; Vancea, Szende
2018-01-01
Lacosamide is a newer anticonvulsant and is the only one that enhances the slow inactivation of voltage gated sodium channels. It is also claimed to have disease-modifying potential, but its pharmacokinetic properties have been much less discussed in the literature. In rats, lacosamide shows restricted distribution to tissues, and the brain-to-plasma partition coefficient (K p ) is only 0.553. In this study, the brain disposition of lacosamide was evaluated in rat brains, and its neuropharmacokinetic parameters (i.e., protein binding and intracellular accumulation) were assessed using in vitro methods. Brain slice experiments and brain homogenate binding studies were performed for several drugs acting on the central nervous system, and drugs were assayed by using a liquid chromatography-mass spectrometry system. By applying a combined approach, it was found that (1) the unbound volume of distribution in the brain for lacosamide (V u,brain = 1.37) was lower than that of other classical anticonvulsants; (2) the unbound fraction of lacosamide in the brain (0.899) was slightly lower than its unbound fraction in plasma (0.96); (3) the unbound intracellular-to-extracellular concentration ratio of lacosamide was 1.233, meaning that lacosamide was accumulated in the intracellular space because of its physicochemical properties and zwitterionic structure; and (4) the unbound brain-to-plasma concentration ratio of lacosamide was lower than the total brain-to-plasma concentration ratio (K p,uu,brain = 0.42 vs. K p = 0.553). In conclusion, the limited brain distribution of lacosamide is not related to its nonspecific protein-binding capacity; rather, an active transport mechanism across the blood-brain barrier may be involved, which reduces the anticonvulsant and/or antiepileptogenic actions of this drug.
Mapping a multidimensional emotion in response to television commercials.
Morris, Jon D; Klahr, Nelson J; Shen, Feng; Villegas, Jorge; Wright, Paul; He, Guojun; Liu, Yijun
2009-03-01
Unlike previous emotional studies using functional neuroimaging that have focused on either locating discrete emotions in the brain or linking emotional response to an external behavior, this study investigated brain regions in order to validate a three-dimensional construct--namely pleasure, arousal, and dominance (PAD) of emotion induced by marketing communication. Emotional responses to five television commercials were measured with Advertisement Self-Assessment Manikins (AdSAM) for PAD and with functional magnetic resonance imaging (fMRI) to identify corresponding patterns of brain activation. We found significant differences in the AdSAM scores on the pleasure and arousal rating scales among the stimuli. Using the AdSAM response as a model for the fMRI image analysis, we showed bilateral activations in the inferior frontal gyri and middle temporal gyri associated with the difference on the pleasure dimension, and activations in the right superior temporal gyrus and right middle frontal gyrus associated with the difference on the arousal dimension. These findings suggest a dimensional approach of constructing emotional changes in the brain and provide a better understanding of human behavior in response to advertising stimuli.
Lee, Jooyeon; Torosyan, Nare; Silverman, Daniel H
2017-01-01
Natural compounds in grapes such as resveratrol are known for their antioxidant and anti-inflammatory properties. Some studies have shown a potential role for grapes or wine in slowing cognitive decline and other effects of aging. However, well-controlled experimental data obtained in human subjects are still in need of further development. Here we aimed to systematically assess effects of grapes on regional cerebral metabolism. Ten subjects with mild decline in cognition (mean, 72.2±4.7years; 50% female) were included in this analysis. Participants were randomized into an active grape formulation arm or a placebo arm which consumed a formulation free of polyphenols for six months. Cognitive performance was measured through neuropsychological assessments performed at baseline and 6months after initiation of therapy. Changes in brain metabolism occurring with each therapy regimen were assessed by brain PET scans with the radiotracer [F-18] fluorodeoxyglucose (FDG), obtained during initial evaluation and 6months later. Standardized volumes of interest (sVOI) and statistical parametric mapping (SPM) methods were applied to FDG-PET scans to identify significant regional cerebral metabolic changes. In contrast to participants taking the active grape formulation, who displayed no significant decline in metabolism, the placebo arm underwent significant metabolic decline in sVOI's of the right posterior cingulate cortex (p=0.01), and left superior posterolateral temporal cortex (p=0.04). SPM analyses also found significant declines in the placebo group, particularly in left prefrontal, cingulate, and left superior posterolateral temporal cortex (p<0.01) with stable brain metabolism in the active formulation arm. No significant differences were seen in scores on the neuropsychological battery of tests between the two groups. However, metabolism in right superior parietal cortex and left inferior anterior temporal cortex was correlated with improvements in attention/working memory, as measured with WAIS-III Digital Span within the active formulation group (r=-0.69, p=0.04). The placebo arm had declines in regions of the brain known to be significantly affected in the early stages of Alzheimer's disease, while the active formulation group was spared such decline. This suggests a protective effect of grapes against early pathologic metabolic decline. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain SPECT scans in students with specific learning disability: Preliminary results.
Karande, S; Deshmukh, N; Rangarajan, V; Agrawal, A; Sholapurwala, R
2018-06-08
Brain single-photon emission computed tomography (SPECT) assesses brain function through measurement of regional cerebral blood flow. This study was conducted to assess whether students with newly diagnosed specific learning disability (SpLD) show any abnormalities in cerebral cortex perfusion. Cross-sectional single-arm pilot study in two tertiary care hospitals. Nine students with SpLD were enrolled. Brain SPECT scan was done twice in each student. For the first or "baseline" scan, the student was first made to sit with eyes open in a quiet, dimly lit room for a period of 30-40 min and then injected intravenously with 20 mCi of 99mTc-ECD. An hour later, "baseline scan" was conducted. After a minimum gap of 4 days, a second or "test scan" was conducted, wherein the student performed an age-appropriate curriculum-based test for a period of 30-40 min to activate the areas in central nervous system related to learning before being injected with 20 mCi of 99mTc-ECD. Cerebral cortex perfusion at rest and after activation in each student was compared qualitatively by visual analysis and quantitatively using NeuroGam TM software. Visual analysis showed reduction in regional blood flow in temporoparietal areas in both "baseline" and "test" scans. However, when normalization was attempted and comparison done by Talairach analysis using NeuroGam software, no statistically significant change in regional perfusion in temporoparietal areas was appreciated. Brain SPECT scan may serve as a robust tool to identify changes in regional brain perfusion in students with SpLD.
Karlsson, Louise; Hiemke, Christoph; Carlsson, Björn; Josefsson, Martin; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C
2011-05-01
P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic effects of any antidepressant drug in the P-gp knockout mice model. The aim of this study was to investigate the enantiomeric venlafaxine and metabolite concentrations in serum and brain of abcb1ab⁻/⁻ mice compared to wild-type mice upon chronic dosing, and to assess the effect of venlafaxine treatment on open-field behavior. P-gp knockout and wild-type mice received two daily intraperitoneal injections of venlafaxine (10 mg/kg) over ten consecutive days. Locomotor and rearing activities were assessed on days 7 and 9. After 10 days, drug and metabolite concentrations in brain and serum were determined using an enantioselective LC/MS/MS method. The brain concentrations of venlafaxine and its three demethylated metabolites were two to four times higher in abcb1ab⁻/⁻ mice compared to abcb1ab+/+ mice. The behavioral results indicated an impact on exploration-related behaviors in the open-field as center activity was increased, and rears were decreased by venlafaxine treatment. Our results show that P-gp at the blood-brain barrier plays an important role in limiting brain entry of the enantiomers of venlafaxine and its metabolites after chronic dosing. Taken together, the present pharmacokinetic and pharmacodynamic findings offer the possibility that the expression of P-gp in patients may be a contributing factor for limited treatment response.
Al Aïn, Syrina; Perry, Rosemarie E; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A; Sullivan, Regina M
2017-02-01
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14 C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Measuring emotion in advertising research: prefrontal brain activity.
Silberstein, Richard B; Nield, Geoffrey E
2012-01-01
With the current interest in the role of emotion in advertising and advertising research, there has been an increasing interest in the use of various brain activity measures to access nonverbal emotional responses. One such approach relies on measuring the difference between left and right hemisphere prefrontal cortical activity to assess like and dislike. This approach is based on electroencephalography (EEG) and neuroimaging work, suggesting that the approach/withdrawal (frequently but not always associated with like/dislike) dimension of emotion is indicated by the balance of activity between the left and right prefrontal cortex. Much of this work was initiated by Richard Davidson in the early 1990s. An early study by Davidson et al. measured brain electrical activity to assess patterns of activation during the experience of happiness and disgust. The authors reported that disgust was found to be associated with increased right-sided activation in the frontal and anterior temporal regions compared with happiness. In contrast, happiness was found to be accompanied by left-sided activation in the anterior temporal region compared with disgust. Early reports suggested that frontal laterality indexes motivational valence with positive emotions (happy, like) associated with left greater than the right frontal activity and vice versa. Although these findings appear to be consistent with personality traits (e.g., optimism pessimism), state changes in frontal laterality appears to index approach withdraw rather than emotional valence. Interestingly, the behavioral and motivational correlates of prefrontal asymmetric activity are not restricted to humans or even primates but have been observed in numerous species such as birds and fish (see [4]). Henceforth, we use the term motivational valence (MV) rather than the more cumbersome term approach withdraw.
Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide
2015-12-01
This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian
2014-01-01
Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis. PMID:24614080
Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T
2013-05-01
Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.
Deng, Bin; Xu, Hao; Zhang, Jin; Wang, Jin; Han, Li-Chun; Li, Li-Ya; Wu, Guang-Li; Hou, Yan-Ning; Guo, Guo-Zhen; Wang, Qiang; Sang, Han-Fei; Xu, Li-Xian
2014-01-01
Electromagnetic pulse (EMP) causes central nervous system damage and neurobehavioral disorders, and sevoflurane protects the brain from ischemic injury. We investigated the effects of sevoflurane on EMP-induced brain injury. Rats were exposed to EMP and immediately treated with sevoflurane. The protective effects of sevoflurane were assessed by Nissl staining, Fluoro-Jade C staining and electron microscopy. The neurobehavioral effects were assessed using the open-field test and the Morris water maze. Finally, primary cerebral cortical neurons were exposed to EMP and incubated with different concentration of sevoflurane. The cellular viability, lactate dehydrogenase (LDH) release, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were assayed. TUNEL staining was performed, and the expression of apoptotic markers was determined. The cerebral cortexes of EMP-exposed rats presented neuronal abnormalities. Sevoflurane alleviated these effects, as well as the learning and memory deficits caused by EMP exposure. In vitro, cell viability was reduced and LDH release was increased after EMP exposure; treatment with sevoflurane ameliorated these effects. Additionally, sevoflurane increased SOD activity, decreased MDA levels and alleviated neuronal apoptosis by regulating the expression of cleaved caspase-3, Bax and Bcl-2. These findings demonstrate that Sevoflurane conferred neuroprotective effects against EMP radiation-induced brain damage by inhibiting neuronal oxidative stress and apoptosis.
Feng, Pan; Becker, Benjamin; Feng, Tingyong; Zheng, Yong
2018-05-15
Sleep deprivation (SD) has been associated with cognitive and emotional disruptions, however its impact on the acquisition of fear and subsequent fear memory consolidation remain unknown. To address this question, we measured human brain activity before and after fear acquisition under conditions of 24 h sleep deprivation versus normal sleep using resting-state functional magnetic resonance imaging (rs-fMRI). Additionally, we explored whether the fear acquisition-induced change of brain activity during the fear memory consolidation window can be predicted by subjective fear ratings and autonomic fear response, assessed by skin conductance responses (SCR) during acquisition. Behaviorally, the SD group demonstrated increased subjective and autonomic fear responses compared to controls at the stage of fear acquisition. During the stage of fear consolidation, the SD group displayed decreased ventromedial prefrontal cortex (vmPFC) activity and concomitantly increased amygdala activity. Moreover, in the SD group fear acquisition-induced brain activity changes in amygdala were positively correlated with both, subjective and autonomic fear indices during acquisition, whereas in controls changes vmPFC activity were positively correlated with fear indices during acquisition. Together, the present findings suggested that SD may weaken the top-down ability of the vmPFC to regulate amygdala activity during fear memory consolidation. Moreover, subjective and objective fear at fear acquisition stage can predict the change of brain activity in amygdala in fear memory consolidation following SD. Copyright © 2018 Elsevier Inc. All rights reserved.
Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed
2017-05-01
The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasegawa, T.; Suzuki, M.; Murayama, H.; Irie, T.; Fukushi, K.; Wada, Y.
1999-08-01
This study assessed the influence of radioactivity out of the field of view (out-of-FOV) on the measurement of brain acetylcholinesterase (AChE) activity with the tracer [/sup 11/C]N-methyl-4-piperidyl-acetate by positron emission tomography in three-dimensional mode. Dynamic scans on a volunteer showed that the out-of-FOV radioactivity in the chest was much higher than that of the brain immediately after tracer injection. A representative phantom measurement was performed to quantitate the systematic errors due to the out-of-FOV radioactivity. Resultant errors in the AChE activity (k3 parameter) as calculated by compartment model analysis were found to be less than one percent in all of the brain regions studied.
Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.
2016-01-01
Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041
Liu, Zhian; Zhang, Ming; Xu, Gongcheng; Huo, Congcong; Tan, Qitao; Li, Zengyong; Yuan, Quan
2017-01-01
Driving a vehicle is a complex activity that requires high-level brain functions. This study aimed to assess the change in effective connectivity (EC) between the prefrontal cortex (PFC), motor-related areas (MA) and vision-related areas (VA) in the brain network among the resting, simple-driving and car-following states. Twelve young male right-handed adults were recruited to participate in an actual driving experiment. The brain delta [HbO2] signals were continuously recorded using functional near infrared spectroscopy (fNIRS) instruments. The conditional Granger causality (GC) analysis, which is a data-driven method that can explore the causal interactions among different brain areas, was performed to evaluate the EC. The results demonstrated that the hemodynamic activity level of the brain increased with an increase in the cognitive workload. The connection strength among PFC, MA and VA increased from the resting state to the simple-driving state, whereas the connection strength relatively decreased during the car-following task. The PFC in EC appeared as the causal target, while the MA and VA appeared as the causal sources. However, l-MA turned into causal targets with the subtask of car-following. These findings indicate that the hemodynamic activity level of the cerebral cortex increases linearly with increasing cognitive workload. The EC of the brain network can be strengthened by a cognitive workload, but also can be weakened by a superfluous cognitive workload such as driving with subtasks. PMID:29163083
Videogame training strategy-induced change in brain function during a complex visuomotor task.
Lee, Hyunkyu; Voss, Michelle W; Prakash, Ruchika Shaurya; Boot, Walter R; Vo, Loan T K; Basak, Chandramallika; Vanpatter, Matt; Gratton, Gabriele; Fabiani, Monica; Kramer, Arthur F
2012-07-01
Although changes in brain function induced by cognitive training have been examined, functional plasticity associated with specific training strategies is still relatively unexplored. In this study, we examined changes in brain function during a complex visuomotor task following training using the Space Fortress video game. To assess brain function, participants completed functional magnetic resonance imaging (fMRI) before and after 30 h of training with one of two training regimens: Hybrid Variable-Priority Training (HVT), with a focus on improving specific skills and managing task priority, or Full Emphasis Training (FET), in which participants simply practiced the game to obtain the highest overall score. Control participants received only 6 h of FET. Compared to FET, HVT learners reached higher performance on the game and showed less brain activation in areas related to visuo-spatial attention and goal-directed movement after training. Compared to the control group, HVT exhibited less brain activation in right dorsolateral prefrontal cortex (DLPFC), coupled with greater performance improvement. Region-of-interest analysis revealed that the reduction in brain activation was correlated with improved performance on the task. This study sheds light on the neurobiological mechanisms of improved learning from directed training (HVT) over non-directed training (FET), which is related to visuo-spatial attention and goal-directed motor planning, while separating the practice-based benefit, which is related to executive control and rule management. Copyright © 2012 Elsevier B.V. All rights reserved.
Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation.
Solis, Ernesto; Bola, R Aaron; Fasulo, Bradley J; Kiyatkin, Eugene A
2017-02-15
Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.
Shaikh, Henna; Lechpammer, Mirna; Jensen, Frances E; Warfield, Simon K; Hansen, Anne H; Kosaras, Bela; Shevell, Michael; Wintermark, Pia
2015-06-01
Many asphyxiated newborns still develop brain injury despite hypothermia therapy. The development of brain injury in these newborns has been related partly to brain perfusion abnormalities. The purposes of this study were to assess brain hyperperfusion over the first month of life in term asphyxiated newborns and to search for some histopathological clues indicating whether this hyperperfusion may be related to activated angiogenesis following asphyxia. In this prospective cohort study, regional cerebral blood flow was measured in term asphyxiated newborns treated with hypothermia around day 10 of life and around 1 month of life using magnetic resonance imaging (MRI) and arterial spin labeling. A total of 32 MRI scans were obtained from 24 term newborns. Asphyxiated newborns treated with hypothermia displayed an increased cerebral blood flow in the injured brain areas around day 10 of life and up to 1 month of life. In addition, we looked at the histopathological clues in a human asphyxiated newborn and in a rat model of neonatal encephalopathy. Vascular endothelial growth factor (VEGF) was expressed in the injured brain of an asphyxiated newborn treated with hypothermia in the first days of life and of rat pups 24-48 h after the hypoxic-ischemic event, and the endothelial cell count increased in the injured cortex of the pups 7 and 11 days after hypoxia-ischemia. Our data showed that the hyperperfusion measured by imaging persisted in the injured areas up to 1 month of life and that angiogenesis was activated in the injured brain of asphyxiated newborns.
Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A
2018-01-01
HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.
Characterizing age-related decline of recognition memory and brain activation profile in mice.
Belblidia, Hassina; Leger, Marianne; Abdelmalek, Abdelouadoud; Quiedeville, Anne; Calocer, Floriane; Boulouard, Michel; Jozet-Alves, Christelle; Freret, Thomas; Schumann-Bard, Pascale
2018-06-01
Episodic memory decline is one of the earlier deficits occurring during normal aging in humans. The question of spatial versus non-spatial sensitivity to age-related memory decline is of importance for a full understanding of these changes. Here, we characterized the effect of normal aging on both non-spatial (object) and spatial (object location) memory performances as well as on associated neuronal activation in mice. Novel-object (NOR) and object-location (OLR) recognition tests, respectively assessing the identity and spatial features of object memory, were examined at different ages. We show that memory performances in both tests were altered by aging as early as 15 months of age: NOR memory was partially impaired whereas OLR memory was found to be fully disrupted at 15 months of age. Brain activation profiles were assessed for both tests using immunohistochemical detection of c-Fos (neuronal activation marker) in 3and 15 month-old mice. Normal performances in NOR task by 3 month-old mice were associated to an activation of the hippocampus and a trend towards an activation in the perirhinal cortex, in a way that did significantly differ with 15 month-old mice. During OLR task, brain activation took place in the hippocampus in 3 month-old but not significantly in 15 month-old mice, which were fully impaired at this task. These differential alterations of the object- and object-location recognition memory may be linked to differential alteration of the neuronal networks supporting these tasks. Copyright © 2018 Elsevier Inc. All rights reserved.
Poleszak, Ewa; Szopa, Aleksandra; Wyska, Elżbieta; Wośko, Sylwia; Serefko, Anna; Wlaź, Aleksandra; Pieróg, Mateusz; Wróbel, Andrzej; Wlaź, Piotr
2015-09-01
Worrying data indicate that excessive caffeine intake applies to patients suffering from mental disorders, including depression. It is thus possible to demonstrate the usefulness of caffeine and its derivatives in the treatment of depression. The main goal of the present studywas to evaluate the influence of caffeine (5mg/kg) on the activity of moclobemide (1.5 mg/kg), venlafaxine (1 mg/kg), bupropion (10 mg/kg), and milnacipran (1.25 mg/kg). Moreover, we assessed the influence of caffeine on their serum and brain levels using highperformance liquid chromatography. The experiment was carried out on naïve adult male Albino Swiss mice. Caffeine and tested drugs were administered intraperitoneally. The influence of caffeine on the activity of selected antidepressant drugs was evaluated in forced swim test (FST). Locomotor activity was estimated to verify and exclude false positive/negative results. To assess the influence of caffeine on the levels of studied antidepressant drugs, their concentrations were determined in murine serum and brains using high-performance liquid chromatography. Caffeine potentiated activity of all antidepressants examined in FST and the observed effects were not due to the increase in locomotor activity in the animals. Only in the case of co-administration of caffeine and milnacipran an increased milnacipran concentration in serum was observed without affecting its concentration in the brain. Caffeine potentiates the activity of antidepressant drugs from different chemical groups. The interactions of caffeine with venlafaxine, bupropion and moclobemide occur in pharmacodynamic phase, whereas the interaction of caffeine–milnacipran occurs, at least partially, in pharmacokinetic phase.
Face-elicited ERPs and affective attitude: brain electric microstate and tomography analyses.
Pizzagalli, D; Lehmann, D; Koenig, T; Regard, M; Pascual-Marqui, R D
2000-03-01
Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.
Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.
Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio
2016-08-25
Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Relation of visual creative imagery manipulation to resting-state brain oscillations.
Cai, Yuxuan; Zhang, Delong; Liang, Bishan; Wang, Zengjian; Li, Junchao; Gao, Zhenni; Gao, Mengxia; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming
2018-02-01
Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.
Gruber, Staci A.; Sagar, Kelly A.; Dahlgren, Mary K.; Gonenc, Atilla; Smith, Rosemary T.; Lambros, Ashley M.; Cabrera, Korine B.; Lukas, Scott E.
2018-01-01
The vast majority of states have enacted full or partial medical marijuana (MMJ) programs, causing the number of patients seeking certification for MMJ use to increase dramatically in recent years. Despite increased use of MMJ across the nation, no studies thus far have examined the specific impact of MMJ on cognitive function and related brain activation. In the present study, MMJ patients seeking treatment for a variety of documented medical conditions were assessed prior to initiating MMJ treatment and after 3 months of treatment as part of a larger longitudinal study. In order to examine the effect of MMJ treatment on task-related brain activation, MMJ patients completed the Multi-Source Interference Test (MSIT) while undergoing functional magnetic resonance imaging (fMRI). We also collected data regarding conventional medication use, clinical state, and health-related measures at each visit. Following 3 months of treatment, MMJ patients demonstrated improved task performance accompanied by changes in brain activation patterns within the cingulate cortex and frontal regions. Interestingly, after MMJ treatment, brain activation patterns appeared more similar to those exhibited by healthy controls from previous studies than at pre-treatment, suggestive of a potential normalization of brain function relative to baseline. These findings suggest that MMJ use may result in different effects relative to recreational marijuana (MJ) use, as recreational consumers have been shown to exhibit decrements in task performance accompanied by altered brain activation. Moreover, patients in the current study also reported improvements in clinical state and health-related measures as well as notable decreases in prescription medication use, particularly opioids and benzodiapezines after 3 months of treatment. Further research is needed to clarify the specific neurobiologic impact, clinical efficacy, and unique effects of MMJ for a range of indications and how it compares to recreational MJ use. PMID:29387010
Gruber, Staci A; Sagar, Kelly A; Dahlgren, Mary K; Gonenc, Atilla; Smith, Rosemary T; Lambros, Ashley M; Cabrera, Korine B; Lukas, Scott E
2017-01-01
The vast majority of states have enacted full or partial medical marijuana (MMJ) programs, causing the number of patients seeking certification for MMJ use to increase dramatically in recent years. Despite increased use of MMJ across the nation, no studies thus far have examined the specific impact of MMJ on cognitive function and related brain activation. In the present study, MMJ patients seeking treatment for a variety of documented medical conditions were assessed prior to initiating MMJ treatment and after 3 months of treatment as part of a larger longitudinal study. In order to examine the effect of MMJ treatment on task-related brain activation, MMJ patients completed the Multi-Source Interference Test (MSIT) while undergoing functional magnetic resonance imaging (fMRI). We also collected data regarding conventional medication use, clinical state, and health-related measures at each visit. Following 3 months of treatment, MMJ patients demonstrated improved task performance accompanied by changes in brain activation patterns within the cingulate cortex and frontal regions. Interestingly, after MMJ treatment, brain activation patterns appeared more similar to those exhibited by healthy controls from previous studies than at pre-treatment, suggestive of a potential normalization of brain function relative to baseline. These findings suggest that MMJ use may result in different effects relative to recreational marijuana (MJ) use, as recreational consumers have been shown to exhibit decrements in task performance accompanied by altered brain activation. Moreover, patients in the current study also reported improvements in clinical state and health-related measures as well as notable decreases in prescription medication use, particularly opioids and benzodiapezines after 3 months of treatment. Further research is needed to clarify the specific neurobiologic impact, clinical efficacy, and unique effects of MMJ for a range of indications and how it compares to recreational MJ use.
Doesburg, Sam M; Chau, Cecil M; Cheung, Teresa P L; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Cepeda, Ivan L; Synnes, Anne; Grunau, Ruth E
2013-10-01
Children born very prematurely (< or =32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; < or =28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal pain-related stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Towards a fourth spatial dimension of brain activity.
Tozzi, Arturo; Peters, James F
2016-06-01
Current advances in neurosciences deal with the functional architecture of the central nervous system, paving the way for general theories that improve our understanding of brain activity. From topology, a strong concept comes into play in understanding brain functions, namely, the 4D space of a "hypersphere's torus", undetectable by observers living in a 3D world. The torus may be compared with a video game with biplanes in aerial combat: when a biplane flies off one edge of gaming display, it does not crash but rather it comes back from the opposite edge of the screen. Our thoughts exhibit similar behaviour, i.e. the unique ability to connect past, present and future events in a single, coherent picture as if we were allowed to watch the three screens of past-present-future "glued" together in a mental kaleidoscope. Here we hypothesize that brain functions are embedded in a imperceptible fourth spatial dimension and propose a method to empirically assess its presence. Neuroimaging fMRI series can be evaluated, looking for the topological hallmark of the presence of a fourth dimension. Indeed, there is a typical feature which reveal the existence of a functional hypersphere: the simultaneous activation of areas opposite each other on the 3D cortical surface. Our suggestion-substantiated by recent findings-that brain activity takes place on a closed, donut-like trajectory helps to solve long-standing mysteries concerning our psychological activities, such as mind-wandering, memory retrieval, consciousness and dreaming state.
Harding, I H; Andrews, Z B; Mata, F; Orlandea, S; Martínez-Zalacaín, I; Soriano-Mas, C; Stice, E; Verdejo-Garcia, A
2018-03-01
Unhealthy dietary choices are a major contributor to harmful weight gain and obesity. This study interrogated the brain substrates of unhealthy versus healthy food choices in vivo, and evaluated the influence of hunger state and body mass index (BMI) on brain activation and connectivity. Thirty adults (BMI: 18-38 kg m -2 ) performed a food-choice task involving preference-based selection between beverage pairs consisting of high-calorie (unhealthy) or low-calorie (healthy) options, concurrent with functional magnetic resonance imaging (fMRI). Selected food stimuli were delivered to participants using an MRI-compatible gustometer. fMRI scans were performed both after 10-h fasting and when sated. Brain activation and hypothalamic functional connectivity were assessed when selecting between unhealthy-healthy beverage pairings, relative to unhealthy-unhealthy and healthy-healthy options. Results were considered significant at cluster-based family-wise error corrected P<0.05. Selecting between unhealthy and healthy foods elicited significant activation in the hypothalamus, the medial and dorsolateral prefrontal cortices, the anterior insula and the posterior cingulate. Hunger was associated with higher activation within the ventromedial and dorsolateral prefrontal cortices, as well as lower connectivity between the hypothalamus and both the ventromedial prefrontal cortex and dorsal striatum. Critically, people with higher BMI showed lower activation of the hypothalamus-regardless of hunger state-and higher activation of the ventromedial prefrontal cortex when hungry. People who are overweight and obese have weaker activation of brain regions involved in energy regulation and greater activation of reward valuation regions while making choices between unhealthy and healthy foods. These results provide evidence for a shift towards hedonic-based, and away from energy-based, food selection in obesity.
Brain endothelial adhesion molecule expression in experimental colitis.
Sans, M; Kawachi, S; Soriano, A; Palacín, A; Morise, Z; Granger, D N; Piqué, J M; Grisham, M B; Panés, J
2001-04-01
1) To determine if endothelial expression of adhesion molecules involved in leukocyte recruitment is increased in the brain and other organs in four different models of experimental colitis, and 2) to investigate whether leukocyte infiltration occurs in the brain of colitic animals. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression was quantified, using the dual radiolabeled antibody technique in rats with trinitrobenzenesulfonic acid (TNBS)-induced colitis, in mice with dextran sulfate sodium (DSS)-induced colitis, in SCID mice reconstituted with CD45RBhigh T-cells, and in IL-10-/- mice. Leukocyte infiltration in the brain of TNBS-induced colitic rats was assessed by myeloperoxidase activity and immunohistochemical staining with anti-CD45 monoclonal antibody. Marked upregulation of brain endothelial VCAM-1 (2- to 5.5-fold) was consistently found in colitic animals in the four models studied. Brain VCAM-1 strongly correlated with colon VCAM-1 and colon weight. By contrast, upregulation of brain ICAM-1 in colitic animals was only observed in the CD45RBhigh transfer (3-fold) and the TNBS-induced (1.5-fold models). Heart and muscle VCAM-1 and ICAM-1 were not upregulated in colitic animals in the majority of models studied. There was no leukocyte infiltration into the brain of TNBS-induced colitic rats. Our study demonstrates a marked and specific upregulation of endothelial VCAM-1 in the brain of colitic animals. This activation of cerebral endothelial cells was not associated with an infiltration of leukocytes into brain tissue.
NASA Astrophysics Data System (ADS)
Lin, Zi-Jing; Li, Lin; Cazzell, Marry; Liu, Hanli
2013-03-01
Functional near-infrared spectroscopy (fNIRS) is a non-invasive imaging technique which measures the hemodynamic changes that reflect the brain activity. Diffuse optical tomography (DOT), a variant of fNIRS with multi-channel NIRS measurements, has demonstrated capability of three dimensional (3D) reconstructions of hemodynamic changes due to the brain activity. Conventional method of DOT image analysis to define the brain activation is based upon the paired t-test between two different states, such as resting-state versus task-state. However, it has limitation because the selection of activation and post-activation period is relatively subjective. General linear model (GLM) based analysis can overcome this limitation. In this study, we combine the 3D DOT image reconstruction with GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with the risk-decision making process. Risk decision-making is an important cognitive process and thus is an essential topic in the field of neuroscience. The balloon analogue risk task (BART) is a valid experimental model and has been commonly used in behavioral measures to assess human risk taking action and tendency while facing risks. We have utilized the BART paradigm with a blocked design to investigate brain activations in the prefrontal and frontal cortical areas during decision-making. Voxel-wise GLM analysis was performed on 18human participants (10 males and 8females).In this work, we wish to demonstrate the feasibility of using voxel-wise GLM analysis to image and study cognitive functions in response to risk decision making by DOT. Results have shown significant changes in the dorsal lateral prefrontal cortex (DLPFC) during the active choice mode and a different hemodynamic pattern between genders, which are in good agreements with published literatures in functional magnetic resonance imaging (fMRI) and fNIRS studies.
Key Role of CD36 in Toll-Like Receptor 2 Signaling in Cerebral Ischemia
Abe, Takato; Shimamura, Munehisa; Jackman, Katherine; Kurinami, Hitomi; Anrather, Josef; Zhou, Ping; Iadecola, Costantino
2010-01-01
Background and Purpose Toll-like receptors (TLRs) and the scavenger receptor CD36 are key molecular sensors for the innate immune response to invading pathogens. However, these receptors may also recognize endogenous “danger signals” generated during brain injury, such as cerebral ischemia, and trigger a maladaptive inflammatory reaction. Indeed, CD36 and TLR2 and 4 are involved in the inflammation and related tissue damage caused by brain ischemia. Because CD36 may act as a coreceptor for TLR2 heterodimers (TLR2/1 or TLR2/6), we tested whether such interaction plays a role in ischemic brain injury. Methods The TLR activators FSL-1 (TLR2/6), Pam3 (TLR2/1), or lipopolysaccharide (TLR4) were injected intracerebroventricularly into wild-type or CD36-null mice, and inflammatory gene expression was assessed in the brain. The effect of TLR activators on the infarct produced by transient middle cerebral artery occlusion was also studied. Results The inflammatory response induced by TLR2/1 activation, but not TLR2/6 or TLR4 activation, was suppressed in CD36-null mice. Similarly, TLR2/1 activation failed to increase infarct volume in CD36-null mice, whereas TLR2/6 or TLR4 activation exacerbated postischemic inflammation and increased infarct volume. In contrast, the systemic inflammatory response evoked by TLR2/6 activation, but not by TLR2/1 activation, was suppressed in CD36-null mice. Conclusions In the brain, TLR2/1 signaling requires CD36. The cooperative signaling of TLR2/1 and CD36 is a critical factor in the inflammatory response and tissue damage evoked by cerebral ischemia. Thus, suppression of CD36-TLR2/1 signaling could be a valuable approach to minimize postischemic inflammation and the attendant brain injury. PMID:20360550
Williams, Leanne M; Gatt, Justine M; Kuan, Stacey A; Dobson-Stone, Carol; Palmer, Donna M; Paul, Robert H; Song, Le; Costa, Paul T; Schofield, Peter R; Gordon, Evian
2009-06-01
Association studies suggest that the low activity variant of the monoamine oxidase A (MAOA)-uVNTR polymorphism confers risk for emotional disturbances associated with antisocial traits, particularly in males. Here, we assessed the low (MAOA-L) activity variant in relation to both brain function and a behavioral index of antisocial traits. From an initial sample of 290 healthy participants, 210 had low (MAOA-L) or high (MAOA-H) activity variants. Participants underwent a brief assessment of personality traits and event-related potential (ERP) recording during an emotion-processing task. Genotype differences in ERPs were localized using LORETA. The MAOA-L genotype was distinguished by elevated scores on the index of antisocial traits. These traits were related to altered ERPs elicited 120-280ms post-stimulus, particularly for negative emotion. Altered neural processing of anger in MAOA-L genotypes was localized to medial frontal, parietal, and superior temporo-occipital regions in males, but only to the superior occipital cortex in females. The MAOA low activity variant may increase susceptibility to antisocial traits through alterations to the neural systems for processing threat-related emotion, especially for males. Monoamines such as noradrenalin and serotonin may modulate these relationships, given that their metabolism varies according to MAOA variants, and that they modulate both emotional brain systems and antisocial aggression.
Revisiting atenolol as a low passive permeability marker.
Chen, Xiaomei; Slättengren, Tim; de Lange, Elizabeth C M; Smith, David E; Hammarlund-Udenaes, Margareta
2017-10-31
Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB. To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis. The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., K p,uu,brain ) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (V u, brain ) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (f u,brain ) of 0.88 ± 0.07. It is concluded, based on K p,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.
Williams, Leanne M; Tsang, Tracey W; Clarke, Simon; Kohn, Michael
2010-10-01
There remains a translational gap between research findings and their implementation in clinical practice that applies to attention-deficit/hyperactivity disorder (ADHD), as well as to other major disorders of brain health in childhood, adolescence and adulthood. Research studies have identified potential 'markers' to support diagnostic, functional assessment and treatment decisions, but there is little consensus about these markers. Of these potential markers, cognitive measures of thinking functions, such as sustaining attention and associated electrical brain activity, show promise in complementing the clinical management process. Emerging evidence highlights the relevance of emotional, as well as thinking, functions to ADHD. Here, we outline an integrative neuroscience framework for ADHD that offers one means to bring together cognitive measures of thinking functions with measures of emotion, and their brain and genetic correlates. Understanding these measures and the relationships between them is a first step towards the development of tools that will help to assess the heterogeneity of ADHD, and aid in tailoring treatment choices.
Yin, Terry; Lindley, Timothy E.; Albert, Gregory W.; Ahmed, Raheel; Schmeiser, Peter B.; Grady, M. Sean; Howard, Matthew A.; Welsh, Michael J.
2013-01-01
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 − after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 − administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI. PMID:23991103
NASA Astrophysics Data System (ADS)
Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.
2016-11-01
Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications.
Wu, Shih-Ying; Sanchez, Carlos Sierra; Samiotaki, Gesthimani; Buch, Amanda; Ferrera, Vincent P.; Konofagou, Elisa E.
2016-01-01
Focused ultrasound with microbubbles has been used to noninvasively and selectively deliver pharmacological agents across the blood-brain barrier (BBB) for treating brain diseases. Acoustic cavitation monitoring could serve as an on-line tool to assess and control the treatment. While it demonstrated a strong correlation in small animals, its translation to primates remains in question due to the anatomically different and highly heterogeneous brain structures with gray and white matteras well as dense vasculature. In addition, the drug delivery efficiency and the BBB opening volume have never been shown to be predictable through cavitation monitoring in primates. This study aimed at determining how cavitation activity is correlated with the amount and concentration of gadolinium delivered through the BBB and its associated delivery efficiency as well as the BBB opening volume in non-human primates. Another important finding entails the effect of heterogeneous brain anatomy and vasculature of a primate brain, i.e., presence of large cerebral vessels, gray and white matter that will also affect the cavitation activity associated with variation of BBB opening in different tissue types, which is not typically observed in small animals. Both these new findings are critical in the primate brain and provide essential information for clinical applications. PMID:27853267
Shafi, Mouhsin M.; Whitfield-Gabrieli, Susan; Chu, Catherine J.; Pascual-Leone, Alvaro; Chang, Bernard S.
2017-01-01
Resting-state functional connectivity MRI (rs-fcMRI) is a technique that identifies connectivity between different brain regions based on correlations over time in the blood-oxygenation level dependent signal. rs-fcMRI has been applied extensively to identify abnormalities in brain connectivity in different neurologic and psychiatric diseases. However, the relationship among rs-fcMRI connectivity abnormalities, brain electrophysiology and disease state is unknown, in part because the causal significance of alterations in functional connectivity in disease pathophysiology has not been established. Transcranial Magnetic Stimulation (TMS) is a technique that uses electromagnetic induction to noninvasively produce focal changes in cortical activity. When combined with electroencephalography (EEG), TMS can be used to assess the brain's response to external perturbations. Here we provide a protocol for combining rs-fcMRI, TMS and EEG to assess the physiologic significance of alterations in functional connectivity in patients with neuropsychiatric disease. We provide representative results from a previously published study in which rs-fcMRI was used to identify regions with abnormal connectivity in patients with epilepsy due to a malformation of cortical development, periventricular nodular heterotopia (PNH). Stimulation in patients with epilepsy resulted in abnormal TMS-evoked EEG activity relative to stimulation of the same sites in matched healthy control patients, with an abnormal increase in the late component of the TMS-evoked potential, consistent with cortical hyperexcitability. This abnormality was specific to regions with abnormal resting-state functional connectivity. Electrical source analysis in a subject with previously recorded seizures demonstrated that the origin of the abnormal TMS-evoked activity co-localized with the seizure-onset zone, suggesting the presence of an epileptogenic circuit. These results demonstrate how rs-fcMRI, TMS and EEG can be utilized together to identify and understand the physiological significance of abnormal brain connectivity in human diseases. PMID:27911366
Loepke, Andreas W; Istaphanous, George K; McAuliffe, John J; Miles, Lili; Hughes, Elizabeth A; McCann, John C; Harlow, Kathryn E; Kurth, C Dean; Williams, Michael T; Vorhees, Charles V; Danzer, Steve C
2009-01-01
Volatile anesthetics, such as isoflurane, are widely used in infants and neonates. Neurodegeneration and neurocognitive impairment after exposure to isoflurane, midazolam, and nitrous oxide in neonatal rats have raised concerns regarding the safety of pediatric anesthesia. In neonatal mice, prolonged isoflurane exposure triggers hypoglycemia, which could be responsible for the neurocognitive impairment. We examined the effects of neonatal isoflurane exposure and blood glucose on brain cell viability, spontaneous locomotor activity, as well as spatial learning and memory in mice. Seven-day-old mice were randomly assigned to 6 h of 1.5% isoflurane with or without injections of dextrose or normal saline, or to 6 h of room air without injections (no anesthesia). Arterial blood gases and glucose were measured. After 2 h, 18 h, or 11 wk postexposure, cellular viability was assessed in brain sections stained with Fluoro-Jade B, caspase 3, or NeuN. Nine weeks postexposure, spontaneous locomotor activity was assessed, and spatial learning and memory were evaluated in the Morris water maze using hidden and reduced platform trials. Apoptotic cellular degeneration increased in several brain regions early after isoflurane exposure, compared with no anesthesia. Despite neonatal cell loss, however, adult neuronal density was unaltered in two brain regions significantly affected by the neonatal degeneration. In adulthood, spontaneous locomotor activity and spatial learning and memory performance were similar in all groups, regardless of neonatal isoflurane exposure. Neonatal isoflurane exposure led to an 18% mortality, and transiently increased Paco(2), lactate, and base deficit, and decreased blood glucose levels. However, hypoglycemia did not seem responsible for the neurodegeneration, as dextrose supplementation failed to prevent neuronal loss. Prolonged isoflurane exposure in neonatal mice led to increased immediate brain cell degeneration, however, no significant reductions in adult neuronal density or deficits in spontaneous locomotion, spatial learning, or memory function were observed.
Effects of Low-Field Magnetic Stimulation on Brain Glucose Metabolism
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Fowler, Joanna S.; Telang, Frank; Wang, Ruiliang; Alexoff, Dave; Logan, Jean; Wong, Christopher; Pradhan, Kith; Caparelli, Elisabeth C.; Ma, Yeming; Jayne, Millard
2010-01-01
Echo Planar imaging (EPI), the gold standard technique for functional MRI (fMRI), is based on fast magnetic field gradient switching. These time-varying magnetic fields induce electric (E) fields in the brain that could influence neuronal activity; but this has not been tested. Here we assessed the effects of EPI on brain glucose metabolism (marker of brain function) using PET and 18F 2-fluoro-2-deoxy-D-glucose (18FDG). Fifteen healthy subjects were in a 4 T magnet during the 18FDG uptake period twice: with (ON) and without (OFF) EPI gradients pulses along the z-axis (Gz: 23 mT/m; 250 microsecond rise-time; 920 Hz). The E-field from these EPI pulses is non-homogeneous, increasing linearly from the gradient’s isocenter (radial and z directions), which allowed us to assess the correlation between local strength of the E-field and the regional metabolic differences between ON and OFF sessions. Metabolic images were normalized to metabolic activity in the plane positioned at the gradient’s isocenter where E=0 for both ON and OFF conditions. Statistical parametric analyses used to identify regions that differed between ON versus OFF (p<0.05, corrected) showed that the relative metabolism was lower in areas at the poles of the brain (inferior occipital and frontal and superior parietal cortices) for ON than for OFF, which was also documented with individual region of interest analysis. Moreover the magnitude of the metabolic decrements was significantly correlated with the estimated strength of E (r=0.68, p<0.0001); the stronger the E-field the larger the decreases. However, we did not detect differences between ON versus OFF conditions on mood ratings nor on absolute whole brain metabolism. This data provides preliminary evidence that EPI sequences may affect neuronal activity and merits further investigation. PMID:20156571
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses
Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295
An assessment of fatigue in patients with postural orthostatic tachycardia syndrome.
Wise, Shelby; Ross, Amanda; Brown, Abigail; Evans, Meredyth; Jason, Leonard
2017-05-01
Individuals with postural orthostatic tachycardia syndrome share many symptoms with those who have chronic fatigue syndrome; one of which is severe fatigue. Previous literature found that those with chronic fatigue syndrome experience many forms of fatigue. The goal of this study was to investigate whether individuals with postural orthostatic tachycardia syndrome also experience multidimensional fatigue and whether these individuals can be clustered into subgroups based on the types of fatigue they endorse. A convenience sample of 138 participants (aged 14-29) with postural orthostatic tachycardia syndrome completed questionnaires that assessed fatigue, brain fog symptom severity, activities that improve brain fog, and brain fog-related disability. An exploratory factor analysis was conducted on the Fatigue Types Questionnaire, and a three-factor solution was produced. Factor scores were then used to cluster the patients into groups using a TwoStep cluster analysis. This resulted in two clusters, a high severity group and a low severity group. The clusters were then compared on a number of items related to symptom expression. Individuals within the more severe cluster had significantly more brain fog at the beginning and end of the survey when compared to cluster two. Those in the more severe cluster also described more activity impairment as well as more frequent, more severe, and more debilitation from postural orthostatic tachycardia syndrome and brain fog. The findings of the factor analysis suggest that patients with postural orthostatic tachycardia syndrome experience fatigue as a multidimensional construct and they also can be subgrouped based on symptom severity.
Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.
Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A
2014-01-01
The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience.
A systematic review of peer mentoring interventions for people with traumatic brain injury.
Morris, Richard Pg; Fletcher-Smith, Joanna C; Radford, Kathryn A
2017-08-01
This systematic review sought evidence concerning the effectiveness of peer mentoring for people with traumatic brain injury. Fourteen electronic databases were searched, including PsycINFO, MEDLINE, CINAHL, EMBASE and the Cochrane Library, from inception to September 21 2016. Ten grey literature databases, PROSPERO, two trials registers, reference lists and author citations were also searched. Studies which employed a model of one-to-one peer mentoring between traumatic brain injury survivors were included. Two reviewers independently screened all titles and abstracts before screening full texts of shortlisted studies. A third reviewer resolved disagreements. Two reviewers independently extracted data and assessed studies for quality and risk of bias. The search returned 753 records, including one identified through hand searching. 495 records remained after removal of duplicates and 459 were excluded after screening. Full texts were assessed for the remaining 36 studies and six met the inclusion criteria. All were conducted in the United States between 1996 and 2012 and employed a variety of designs including two randomised controlled trials. A total of 288 people with traumatic brain injury participated in the studies. No significant improvements in social activity level or social network size were found, but significant improvements were shown in areas including behavioural control, mood, coping and quality of life. There is limited evidence for the effectiveness of peer mentoring after traumatic brain injury. The available evidence comes from small-scale studies, of variable quality, without detailed information on the content of sessions or the 'active ingredient' of the interventions.
Pinter, Daniela; Pegritz, Sandra; Pargfrieder, Christa; Reiter, Gudrun; Wurm, Walter; Gattringer, Thomas; Linderl-Madrutter, Regina; Neuper, Claudia; Fazekas, Franz; Grieshofer, Peter; Enzinger, Christian
2013-01-01
The brain mechanisms underlying successful recovery of hand fuenction after stroke are still not fully understood, although functional MRI (fMRI) studies underline the importance of neuronal plasticity. We explored potential changes in brain activity in 7 patients with subacute to chronic stroke (69 ± 8 years) with moderate- to high-grade distal paresis of the upper limb (Motricity Index: 59.4) after standardized robotic finger-hand rehabilitation training, in addition to conventional rehabilitation therapy for 3 weeks. Behavioral and fMRI assessments were carried out before and after training to characterize changes in brain activity and behavior. The Motricity Index (pre: 59.4, post: 67.2, P < .05) and grip force (pre: 7.26, post: 11.87, P < .05) of the paretic hand increased significantly after rehabilitation. On fMRI, active movement of the affected (left) hand resulted in contralesional (ie, ipsilateral) activation of the primary sensorimotor cortex prior to rehabilitation. After rehabilitation, activation appeared "normalized," including the ipsilesional primary sensorimotor cortex and supplementary motor area (SMA). No changes and no abnormalities of activation maps were seen during movement of the unaffected hand. Subsequent region-of-interest analyses showed no significant ipsilesional activation increases after rehabilitation. Despite behavioral improvements, we failed to identify consistent patterns of functional reorganization in our sample. This warrants caution in the use of fMRI as a tool to explore neural plasticity in heterogeneous samples lacking sufficient statistical power.
Crézé, Camille; Candal, Laura; Cros, Jérémy; Knebel, Jean-François; Seyssel, Kevin; Stefanoni, Nathalie; Schneiter, Philippe; Murray, Micah M; Tappy, Luc; Toepel, Ulrike
2018-05-15
Whether non-nutritive sweetener (NNS) consumption impacts food intake behavior in humans is still unclear. Discrepant sensory and metabolic signals are proposed to mislead brain regulatory centers, in turn promoting maladaptive food choices favoring weight gain. We aimed to assess whether ingestion of sucrose- and NNS-sweetened drinks would differently alter brain responses to food viewing and food intake. Eighteen normal-weight men were studied in a fasted condition and after consumption of a standardized meal accompanied by either a NNS-sweetened (NNS), or a sucrose-sweetened (SUC) drink, or water (WAT). Their brain responses to visual food cues were assessed by means of electroencephalography (EEG) before and 45 min after meal ingestion. Four hours after meal ingestion, spontaneous food intake was monitored during an ad libitum buffet. With WAT, meal intake led to increased neural activity in the dorsal prefrontal cortex and the insula, areas linked to cognitive control and interoception. With SUC, neural activity in the insula increased as well, but decreased in temporal regions linked to food categorization, and remained unchanged in dorsal prefrontal areas. The latter modulations were associated with a significantly lower total energy intake at buffet (mean kcal ± SEM; 791 ± 62) as compared to WAT (942 ± 71) and NNS (917 ± 70). In contrast to WAT and SUC, NNS consumption did not impact activity in the insula, but led to increased neural activity in ventrolateral prefrontal regions linked to the inhibition of reward. Total energy intake at the buffet was not significantly different between WAT and NNS. Our findings highlight the differential impact of caloric and non-caloric sweeteners on subsequent brain responses to visual food cues and energy intake. These variations may reflect an initial stage of adaptation to taste-calorie uncoupling, and could be indicative of longer-term consequences of repeated NNS consumption on food intake behavior.
Thornton, John F; Schneider, Howard; McLean, Mary K; van Lierop, Muriel J; Tarzwell, Robert
2014-01-01
Brain single-photon emission computed tomography (SPECT) scans indirectly show functional activity via measurement of regional cerebral blood flow. Thirty patients at a community-based psychiatric clinic underwent brain SPECT scans. Changes in scoring of before-treatment and after-treatment scans correlated well with changes in patient Global Assessment of Functioning (GAF) scores before treatment and after treatment. Patients were retrospectively matched with controls with similar diagnoses and pretreatment GAF scores, and those who underwent SPECT-guided treatment improved significantly more than the control patients.
Huang, Changsheng; Sakry, Dominik; Menzel, Lutz; Dangel, Larissa; Sebastiani, Anne; Krämer, Tobias; Karram, Khalad; Engelhard, Kristin; Trotter, Jacqueline; Schäfer, Michael K E
2016-04-01
Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2-knockout mice (NG2-KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2-KO compared to wild-type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin-2) were increased in the perilesional brain tissue of NG2-KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2-KO mice. While TBI-induced expression of pro-inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI-induced up-regulation of the C-X-C motif chemokine 13 gene Cxcl13 in NG2-KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2-KO mice still exhibited more pronounced neurological deficits than WT mice, up-regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba-1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI. © 2015 Wiley Periodicals, Inc.
Evaluation of Disease Lesions in the Developing Canine MPS IIIA Brain.
Winner, Leanne K; Marshall, Neil R; Jolly, Robert D; Trim, Paul J; Duplock, Stephen K; Snel, Marten F; Hemsley, Kim M
2018-06-20
Mucopolysaccharidosis IIIA (MPS IIIA) is an inherited neurodegenerative disease of childhood that results in early death. Post-mortem studies have been carried out on human MPS IIIA brain, but little is known about early disease development. Here, we utilised the Huntaway dog model of MPS IIIA to evaluate disease lesion development from 2 to 24 weeks of age. A significant elevation in primarily stored heparan sulphate was observed in all brain regions assessed in MPS IIIA pups ≤9.5 weeks of age. There was a significant elevation in secondarily stored ganglioside (GM3 36:1) in ≤9.5-week-old MPS IIIA pup cerebellum, and other brain regions also exhibited accumulation of this lipid with time. The number of neural stem cells and neuronal precursor cells was essentially unchanged in MPS IIIA dog brain (c.f. unaffected) over the time course assessed, a finding corroborated by neuron cell counts. We observed early neuroinflammatory changes in young MPS IIIA pup brain, with significantly increased numbers of activated microglia recorded in all but one brain region in MPS IIIA pups ≤9.5 weeks of age (c.f. age-matched unaffected pups). In conclusion, infant-paediatric-stage MPS IIIA canine brain exhibits substantial and progressive primary and secondary substrate accumulation, coupled with early and robust microgliosis. Whilst early initiation of treatment is likely to be required to maintain optimal neurological function, the brain's neurodevelopmental potential appears largely unaffected by the disease process; further investigations confirming this are warranted.
[Attentional impairment after traumatic brain injury: assessment and rehabilitation].
Ríos-Lago, M; Muñoz-Céspedes, J M; Paúl-Lapedriza, N
Attention disorders are a major problem after traumatic brain injury underlying deficits in other cognitive functions and in everyday activities, hindering the rehabilitation process and the possibility of return to work. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. Although there are conceptual difficulties, it seems possible to establish a theoretical background to better define attentional impairments and to guide the rehabilitation process. The aim of the present study is to review some of the most important pieces involved in the assessment and rehabilitation of attentional impairments. We also propose an appropriate model for the design of individualized rehabilitation programs. Lastly, different approaches for the rehabilitation are reviewed. Neuropsychological assessment should provide valuable strategies to better design the cognitive rehabilitation programs. It is necessary to establish a link between basic and applied neuropsychology, in order to optimize the treatments for traumatic brain injury patients. It is also emphasized that well-defined cognitive targets and skills are required, given that an unspecific stimulation of cognitive processes (pseudorehabilitation) has been shown to be unsuccessful.
Ren, Yudan; Fang, Jun; Lv, Jinglei; Hu, Xintao; Guo, Cong Christine; Guo, Lei; Xu, Jiansong; Potenza, Marc N; Liu, Tianming
2017-08-01
Assessing functional brain activation patterns in neuropsychiatric disorders such as cocaine dependence (CD) or pathological gambling (PG) under naturalistic stimuli has received rising interest in recent years. In this paper, we propose and apply a novel group-wise sparse representation framework to assess differences in neural responses to naturalistic stimuli across multiple groups of participants (healthy control, cocaine dependence, pathological gambling). Specifically, natural stimulus fMRI (N-fMRI) signals from all three groups of subjects are aggregated into a big data matrix, which is then decomposed into a common signal basis dictionary and associated weight coefficient matrices via an effective online dictionary learning and sparse coding method. The coefficient matrices associated with each common dictionary atom are statistically assessed for each group separately. With the inter-group comparisons based on the group-wise correspondence established by the common dictionary, our experimental results demonstrated that the group-wise sparse coding and representation strategy can effectively and specifically detect brain networks/regions affected by different pathological conditions of the brain under naturalistic stimuli.
Zgaljardic, Dennis J; Yancy, Sybil; Temple, Richard O; Watford, Monica F; Miller, Rebekah
2011-11-01
The assessment of ecological validity of neuropsychological measures is an area of growing interest, particularly in the postacute brain injury rehabilitation (PABIR) setting, as there is an increasing demand for clinicians to address functional and real-world outcomes. In the current study, we assessed the predictive value of the Screening module and the Daily Living tests of the Neuropsychological Assessment Battery (NAB) using clinician ratings from the Mayo-Portland Adaptability Inventory-4 (MPAI-4) in patients with moderate to severe traumatic brain injury. Forty-seven individuals were each administered the NAB Screening module (NAB-SM) and the NAB Daily Living (NAB-DL) tests following admission to a residential PABIR program. MPAI-4 ratings were also obtained at admission. Linear regression analysis was used to examine the association between these functional and neuropsychological assessment measures. We replicated prior work (Temple at al., 2009) and expanded evidence for the ecological validity of the NAB-SM. Furthermore, our findings support the ecological validity of the NAB-DL Bill Payment, Judgment, and Map Reading tests with regards to functional skills and real-world activities. The current study supports prior work from our lab assessing the predictive value of the NAB-SM, as well as provides evidence for the ecological validity for select NAB-DL tests in patients with moderate to severe traumatic brain injury admitted to a residential PABIR program.
Indicators used in livestock to assess unconsciousness after stunning: a review.
Verhoeven, M T W; Gerritzen, M A; Hellebrekers, L J; Kemp, B
2015-02-01
Assessing unconsciousness is important to safeguard animal welfare shortly after stunning at the slaughter plant. Indicators that can be visually evaluated are most often used when assessing unconsciousness, as they can be easily applied in slaughter plants. These indicators include reflexes originating from the brain stem (e.g. eye reflexes) or from the spinal cord (e.g. pedal reflex) and behavioural indicators such as loss of posture, vocalisations and rhythmic breathing. When physically stunning an animal, for example, captive bolt, most important indicators looked at are posture, righting reflex, rhythmic breathing and the corneal or palpebral reflex that should all be absent if the animal is unconscious. Spinal reflexes are difficult as a measure of unconsciousness with this type of stunning, as they may occur more vigorous. For stunning methods that do not physically destroy the brain, for example, electrical and gas stunning, most important indicators looked at are posture, righting reflex, natural blinking response, rhythmic breathing, vocalisations and focused eye movement that should all be absent if the animal is unconscious. Brain stem reflexes such as the cornea reflex are difficult as measures of unconsciousness in electrically stunned animals, as they may reflect residual brain stem activity and not necessarily consciousness. Under commercial conditions, none of the indicators mentioned above should be used as a single indicator to determine unconsciousness after stunning. Multiple indicators should be used to determine unconsciousness and sufficient time should be left for the animal to die following exsanguination before starting invasive dressing procedures such as scalding or skinning. The recording and subsequent assessment of brain activity, as presented in an electroencephalogram (EEG), is considered the most objective way to assess unconsciousness compared with reflexes and behavioural indicators, but is only applied in experimental set-ups. Studies performed in an experimental set-up have often looked at either the EEG or reflexes and behavioural indicators and there is a scarcity of studies that correlate these different readout parameters. It is recommended to study these correlations in more detail to investigate the validity of reflexes and behavioural indicators and to accurately determine the point in time at which the animal loses consciousness.
Methylphenidate therapy improves cognition, mood, and function of brain tumor patients.
Meyers, C A; Weitzner, M A; Valentine, A D; Levin, V A
1998-07-01
Patients with malignant glioma develop progressive neurobehavioral deficits over the course of their illness. These are caused both by the effects of the disease and the effects of radiation and chemotherapy. We sought to determine whether methylphenidate treatment would improve these patients' neurobehavioral functioning despite their expected neurologic deterioration. Thirty patients with primary brain tumors underwent neuropsychologic assessment before and during treatment with methylphenidate. Ability to function in activities of daily living and magnetic resonance imaging (MRI) findings were also documented. Patients were assessed on 10, 20, and 30 mg of methylphenidate twice daily. Significant improvements in cognitive function were observed on the 10-mg twice-daily dose. Functional improvements included improved gait, increased stamina and motivation to perform activities, and in one case, increased bladder control. Adverse effects were minimal and immediately resolved when treatment was discontinued. There was no increase in seizure frequency and the majority of patients on glucocorticoid therapy were able to decrease their dose. Gains in cognitive function and ability to perform activities were observed in the setting of progressive neurologic injury documented by MRI in half of the subjects. This study demonstrated improved patient function in the setting of a progressive neurologic illness. Methylphenidate should be more widely considered as adjuvant brain tumor therapy.
Woytowicz, Elizabeth J; Sours, Chandler; Gullapalli, Rao P; Rosenberg, Joseph; Westlake, Kelly P
2018-01-01
Balance and gait deficits can persist after mild traumatic brain injury (TBI), yet an understanding of the underlying neural mechanism remains limited. The purpose of this study was to investigate differences in attention network modulation in patients with and without balance impairments 2-8 weeks following mild TBI. Using functional magnetic resonance imaging, we compared activity and functional connectivity of cognitive brain regions of the default mode, central-executive and salience networks during a 2-back working memory task in participants with mild TBI and balance impairments (n = 7, age 47 ± 15 years) or no balance impairments (n = 7, age 47 ± 15 years). We first identified greater activation in the lateral occipital cortex in the balance impaired group. Second, we observed stronger connectivity of left pre-supplementary motor cortex in the balance impaired group during the working memory task, which was related to decreased activation of regions within the salience and central executive networks and greater suppression of the default mode network. Results suggest a link between impaired balance and modulation of cognitive resources in patients in mTBI. Findings also highlight the potential importance of moving beyond traditional balance assessments towards an integrative assessment of cognition and balance in this population.
Apixaban decreases brain thrombin activity in a male mouse model of acute ischemic stroke.
Bushi, Doron; Chapman, Joab; Wohl, Anton; Stein, Efrat Shavit; Feingold, Ekaterina; Tanne, David
2018-05-14
Factor Xa (FXa) plays a critical role in the coagulation cascade by generation of thrombin. During focal ischemia thrombin levels increase in the brain tissue and cause neural damage. This study examined the hypothesis that administration of the FXa inhibitor, apixaban, following focal ischemic stroke may have therapeutic potential by decreasing brain thrombin activity and infarct volume. Male mice were divided into a treated groups that received different doses of apixaban (2, 20, 100 mg/kg administered I.P.) or saline (controls) immediately after blocking the middle cerebral artery (MCA). Thrombin activity was measured by a fluorescence assay on fresh coronal slices taken from the mice brains 24 hr following the MCA occlusion. Infarct volume was assessed using triphenyltetrazolium chloride staining. A high dose of apixaban (100 mg/kg) significantly decreased thrombin activity levels in the ipsilateral hemisphere compared to the control group (Slice#5, p = .016; Slice#6, p = .016; Slice#7, p = .016; Slice#8, p = .036; by the nonparametric Mann-Whitney test). In addition, treatment with apixaban doses of both 100 mg/kg (32 ± 8% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .005 by the nonparametric Mann-Whitney test) and 20 mg/kg (43 ± 7% vs. 76 ± 7% in the treatment vs. control groups respectively; p = .019 by the nonparametric Mann-Whitney test) decreased infarct volumes in areas surrounding the ischemic core (Slices #3 and #8). No brain hemorrhages were observed either in the treated or control groups. In summary, I.P. administration of high dose of apixaban immediately after MCA occlusion decreases brain thrombin activity and reduces infarct size. © 2018 Wiley Periodicals, Inc.
Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly
2017-01-01
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.
Lorenz, Laura S; Charrette, Ann L; O'Neil-Pirozzi, Therese M; Doucett, Julia M; Fong, Jeffrey
2018-01-01
Few people with chronic moderate-to-severe brain injury are following recommended physical activity guidelines. Investigate effects of planned, systematic physical activity while cultivating social and emotional well-being of people with chronic moderate-to-severe brain injury. Moderate-to-intensive physical activity would be associated with improvements in impairment and activity limitation measures (endurance, mobility, gait speed) immediately post-intervention and six weeks later (study week 12). The intervention was a single group pre-/post-intervention study with 14 people with chronic moderate-to-severe brain injury who live in brain injury group homes and exercised 60-90 min, 3 days per week for 6 weeks at a maximum heart rate of 50-80%. Pre-post measures (administered weeks 0, 6 and 12) were the 6 Minute Walk Test, High-level Mobility Assessment Tool and 10 Meter Walk Test. The qualitative component used a brief survey and semi-structured interview guide with participants, family members, and staff. Following program completion, post-intervention group changes were noted on all outcome measures and greater than minimal detectable change for people with brain injury. Three transitioned from low to high ambulatory status and maintained this change at 12 weeks. During interviews, participants agreed the program was stimulating. More than eighty percent liked working out in a group and felt better being active. Program impact included physical, cognitive and social/emotional aspects. Social aspects (group format, trainers) were highly motivating and supported by residents, family, and staff. Investments in transportation and recruiting and training interns to assist participants are critical to program sustainability and expansion. Copyright © 2017 Elsevier Inc. All rights reserved.
Huang, Lijie; Huang, Taicheng; Zhen, Zonglei; Liu, Jia
2016-03-15
We present a test-retest dataset for evaluation of long-term reliability of measures from structural and resting-state functional magnetic resonance imaging (sMRI and rfMRI) scans. The repeated scan dataset was collected from 61 healthy adults in two sessions using highly similar imaging parameters at an interval of 103-189 days. However, as the imaging parameters were not completely identical, the reliability estimated from this dataset shall reflect the lower bounds of the true reliability of sMRI/rfMRI measures. Furthermore, in conjunction with other test-retest datasets, our dataset may help explore the impact of different imaging parameters on reliability of sMRI/rfMRI measures, which is especially critical for assessing datasets collected from multiple centers. In addition, intelligence quotient (IQ) was measured for each participant using Raven's Advanced Progressive Matrices. The data can thus be used for purposes other than assessing reliability of sMRI/rfMRI alone. For example, data from each single session could be used to associate structural and functional measures of the brain with the IQ metrics to explore brain-IQ association.
Santangelo, Gabriella; Bisecco, Alvino; Trojano, Luigi; Sacco, Rosaria; Siciliano, Mattia; d'Ambrosio, Alessandro; Della Corte, Marida; Lavorgna, Luigi; Bonavita, Simona; Tedeschi, Gioacchino; Gallo, Antonio
2018-05-26
Cognitive reserve (CR) is a construct that originates from the observation of poor correspondence between brain damage and clinical symptoms. The aim of the study was to investigate the association between cognitive reserve (CR), brain reserve (BR) and cognitive functions and to evaluate whether CR might attenuate/moderate the negative impact of brain atrophy and lesion load on cognitive functions in multiple sclerosis (MS). To achieve these aims, ninety-eight relapsing-remitting MS patients underwent the brief repeatable battery of neuropsychological tests and Stroop test (ST). CR was assessed by vocabulary-based estimate of lifetime intellectual enrichment. All patients underwent a 3T MRI to assess T2-lesion load and atrophy measures, including normalized gray matter and white matter (nWMV) volumes. The BR was evaluated by maximal lifetime brain volume expressed by intracranial volume (ICV). Hierarchical regressions were used to investigate whether higher BR and/or CR is related to better cognitive performances after controlling for potentially confounding factors. The ICV was not associated with any cognitive tests. Intellectual enrichment was positively associated with performance on tests assessing memory, attention and information processing speed, verbal fluency and inhibitory control. Significant relationship between nWMV and ST was moderated by intellectual enrichment. In conclusion, the findings suggested that CR seems to mitigate cognitive dysfunction in MS patients and can reduce the negative impact of brain atrophy on inhibitory control, relevant for integrity of instrumental activities of daily living.
Wilson-Mendenhall, Christine D.; Simmons, W. Kyle; Martin, Alex; Barsalou, Lawrence W.
2014-01-01
Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant, non-linguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept-scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content. PMID:23363408
Chung, Un-Sun; Han, Doug Hyun; Shin, Yee Jin; Renshaw, Perry F
2016-01-01
To help patients with autism spectrum disorder (ASD) improve their social skills, effective interventions and new treatment modalities are necessary. We hypothesized that a prosocial online game would improve social cognition in ASD adolescents, as assessed using metrics of social communication, facial recognition, and emotional words. Ten ASD adolescents underwent cognitive behavior therapy (CBT) using a prosocial online game (game-CBT), and ten ASD adolescents participated in an offline-CBT. At baseline and 6 weeks later, social communication quality, correct identification of emotional words and facial emoticons, and brain activity were assessed in both groups. Social communication quality and correct response rate of emotional words and facial emoticons improved in both groups over the course of the intervention, and there were no significant differences between groups. In response to the emotional words, the brain activity within the temporal and parietal cortices increased in the game-CBT group, while the brain activity within cingulate and parietal cortices increased in the offline-CBT group. In addition, ASD adolescents in the game-CBT group showed increased brain activity within the right cingulate gyrus, left medial frontal gyrus, left cerebellum, left fusiform gyrus, left insular cortex, and sublobar area in response to facial emoticons. A prosocial online game designed for CBT was as effective as offline-CBT in ASD adolescents. Participation in the game especially increased social arousal and aided ASD adolescents in recognizing emotion. The therapy also helped participants more accurately consider associated environments in response to facial emotional stimulation. However, the online CBT was less effective than the offline-CBT at evoking emotions in response to emotional words.
Zhang, Ping; Li, Yanli; Fan, Fengmei; Li, Chiang-Shan R; Luo, Xingguang; Yang, Fude; Yao, Yin; Tan, Yunlong
2018-06-19
We explored resting-state brain activity and its potential links to clinical parameters in schizophrenic patients with tardive dyskinesia (TD) using fractional amplitude of low-frequency fluctuations (fALFF). Resting-state functional magnetic resonance imaging data were acquired from 32 schizophrenic patients with TD (TD group), 31 without TD (NTD group), and 32 healthy controls (HC group). Clinical parameters including psychopathological symptoms, severity of TD, and cognitive function were assessed using the Positive and Negative Syndrome Scale, Abnormal Involuntary Movement Scale (AIMS), and Repeatable Battery for the Assessment of Neuropsychological Status, respectively. Pearson correlation analyses were performed to determine the relationship between the regions with altered fALFF values and clinical parameters in TD patients. The TD group showed decreased fALFF in the left middle occipital gyrus (MOG) and the right calcarine sulcus (CAL) compared to the HC group, and decreased fALFF in the left cuneus compared to the NTD group. In the TD group, fALFF values in the left MOG and the right CAL were correlated separately with the delayed memory score (r = 0.44, p = 0.027; r = 0.43, p = 0.028, respectively). The AIMS total score was negatively correlated to the visuospatial/constructional score (r = -0.53, p = 0.005). Our findings suggested that resting-state brain activity changes were associated with TD in schizophrenic patients. There was an association between the decreased brain activity in the occipital lobe and the delayed memory cognition impairment in this population. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Sex Effects on Smoking Cue Perception in Non-Smokers, Smokers, and Ex-Smokers: A Pilot Study.
Zanchi, Davide; Brody, Arthur; Borgwardt, Stefan; Haller, Sven
2016-01-01
Recent neuroimaging research suggests sex-related brain differences in smoking addiction. In the present pilot study, we assessed gender-related differences in brain activation in response to cigarette-related video cues, investigating non-smokers, smokers, and ex-smokers. First, we compared 29 females (28.6 ± 5.3) vs. 23 males (31.5 ± 6.4), regardless of current smoking status to assess global gender-related effects. Second, we performed a post hoc analysis of non-smokers (9 females and 8 males), smokers (10 females and 8 males), and ex-smokers (10 females and 7 males). Participants performed a block-design functional magnetic resonance imaging paradigm contrasting smoking with control cue video exposures. Data analyses included task-related general linear model, voxel-based morphometry of gray matter (GM), and tract-based spatial statistics of white matter (WM). First, the global effect regardless of current smoking status revealed higher activation in the bilateral superior frontal gyrus and anterior cingulate cortex (ACC) for females compared to males. Second, the analysis according to current smoking status demonstrated higher activation in female vs. male smokers vs. non-smokers in the superior frontal gyrus, anterior and posterior cingulate cortex, and precuneus, and higher activation in female vs. male ex-smokers vs. non-smokers in the right precentral gyrus, in the right insula and ACC. No structural differences were found in GM or WM. The current study identifies gender-related brain functional differences in smokers and ex-smokers compared to non-smokers. The current work can be considered as a starting point for future investigations into gender differences in brain responses to cigarette-related cues.
Chung, Un-sun; Han, Doug Hyun; Shin, Yee Jin; Renshaw, Perry F
2016-01-01
To help patients with autism spectrum disorder (ASD) improve their social skills, effective interventions and new treatment modalities are necessary. We hypothesized that a prosocial online game would improve social cognition in ASD adolescents, as assessed using metrics of social communication, facial recognition, and emotional words. Ten ASD adolescents underwent cognitive behavior therapy (CBT) using a prosocial online game (game-CBT), and ten ASD adolescents participated in an offline-CBT. At baseline and 6 weeks later, social communication quality, correct identification of emotional words and facial emoticons, and brain activity were assessed in both groups. Social communication quality and correct response rate of emotional words and facial emoticons improved in both groups over the course of the intervention, and there were no significant differences between groups. In response to the emotional words, the brain activity within the temporal and parietal cortices increased in the game-CBT group, while the brain activity within cingulate and parietal cortices increased in the offline-CBT group. In addition, ASD adolescents in the game-CBT group showed increased brain activity within the right cingulate gyrus, left medial frontal gyrus, left cerebellum, left fusiform gyrus, left insular cortex, and sublobar area in response to facial emoticons. A prosocial online game designed for CBT was as effective as offline-CBT in ASD adolescents. Participation in the game especially increased social arousal and aided ASD adolescents in recognizing emotion. The therapy also helped participants more accurately consider associated environments in response to facial emotional stimulation. However, the online CBT was less effective than the offline-CBT at evoking emotions in response to emotional words. PMID:27051288
Xu, Bing; Jia, Tianye; Macare, Christine; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Nees, Frauke; Orfanos, Dimitri Papadopoulos; Paus, Tomáš; Poustka, Luise; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Desrivières, Sylvane
2017-05-01
In a recent genomewide association study of subcortical brain volumes, a common genetic variation at rs945270 was identified as having the strongest effect on putamen volume, a brain measurement linked to familial risk for attention-deficit/hyperactivity disorder (ADHD). To determine whether rs945270 might be a genetic determinant of ADHD, its effects on ADHD-related symptoms and neural mechanisms of ADHD, such as response inhibition and reward sensitivity, were explored. A large population sample of 1,834 14-year-old adolescents was used to test the effects of rs945270 on ADHD symptoms assessed through the Strengths and Difficulties Questionnaire and region-of-interest analyses of putamen activation by functional magnetic resonance imaging using the stop signal and monetary incentive delay tasks, assessing response inhibition and reward sensitivity, respectively. There was a significant link between rs945270 and ADHD symptom scores, with the C allele associated with lower symptom scores, most notably hyperactivity. In addition, there were sex-specific effects of this variant on the brain. In boys, the C allele was associated with lower putamen activity during successful response inhibition, a brain response that was not associated with ADHD symptoms. In girls, putamen activation during reward anticipation increased with the number of C alleles, most significantly in the right putamen. Remarkably, right putamen activation during reward anticipation tended to negatively correlate with ADHD symptoms. These results indicate that rs945270 might contribute to the genetic risk of ADHD partly through its effects on hyperactivity and reward processing in girls. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. All rights reserved.
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.
Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon
2016-07-20
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.
Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery
Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio
2016-01-01
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149
Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David
2016-01-01
Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics.
Ino, Tadashi; Nakai, Ryusuke; Azuma, Takashi; Kimura, Toru; Fukuyama, Hidenao
2011-01-01
Recent neuroimaging studies have suggested that brain regions activated during retrieval of autobiographical memory (ABM) overlap with the default mode network (DMN), which shows greater activation during rest than cognitively demanding tasks and is considered to be involved in self-referential processing. However, detailed overlap and segregation between ABM and DMN remain unclear. This fMRI study focuses first on revealing components of the DMN which are related to ABM and those which are unrelated to ABM, and second on extracting the neural bases which are specifically devoted to ABM. Brain activities relative to rest during three tasks matched in task difficulty assessed by reaction time were investigated by fMRI; category cued recall from ABM, category cued recall from semantic memory, and number counting task. We delineated the overlap between the regions that showed less activation during semantic memory and number counting relative to rest, which correspond to the DMN, and the areas that showed greater or less activation during ABM relative to rest. ABM-specific activation was defined as the overlap between the contrast of ABM versus rest and the contrast of ABM versus semantic memory. The fMRI results showed that greater activation as well as less activation during ABM relative to rest overlapped considerably with the DMN, indicating that the DMN is segregated to the regions which are functionally related to ABM and the regions which are unrelated to ABM. ABM-specific activation was observed in the left-lateralized brain regions and most of them fell within the DMN. PMID:21643504
Caminiti, Silvia P; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F
2015-01-01
bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.
Malfait, D; Tucholka, A; Mendizabal, S; Tremblay, J; Poulin, C; Oskoui, M; Srour, M; Carmant, L; Major, P; Lippé, S
2015-11-01
Children with benign epilepsy with centro-temporal spikes (BECTS) often have language problems. Abnormal epileptic activity is found in central and temporal brain regions, which are involved in reading and semantic and syntactic comprehension. Using functional magnetic resonance imaging (fMRI), we examined reading networks in BECTS children with a new sentence reading comprehension task involving semantic and syntactic processing. Fifteen children with BECTS (age=11y 1m ± 16 m; 12 boys) and 18 healthy controls (age=11 y 8m ± 20 m; 11 boys) performed an fMRI reading comprehension task in which they read a pair of syntactically complex sentences and decided whether the target sentence (the second sentence in the pair) was true or false with respect to the first sentence. All children also underwent an exhaustive neuropsychological assessment. We demonstrated weaknesses in several cognitive domains in BECTS children. During the sentence reading fMRI task, left inferior frontal regions and bilateral temporal areas were activated in BECTS children and healthy controls. However, additional brain regions such as the left hippocampus and precuneus were activated in BECTS children. Moreover, specific activation was found in the left caudate and putamen in BECTS children but not in healthy controls. Cognitive results and accuracy during the fMRI task were associated with specific brain activation patterns. BECTS children recruited a wider network to perform the fMRI sentence reading comprehension task, with specific activation in the left dorsal striatum. BECTS cognitive performance differently predicted functional activation in frontal and temporal regions compared to controls, suggesting differences in brain network organisation that contribute to reading comprehension. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole
2016-01-01
Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.
Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo
2014-10-01
Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Morales, Angelica M; Jones, Scott A; Ehlers, Alissa; Lavine, Jessye B; Nagel, Bonnie J
2018-05-07
Beginning to engage in heavy alcohol use during adolescence, as opposed to later in life, is associated with elevated risk for a variety of negative consequences, including the development of an alcohol use disorder. Behavioral studies suggest that poor decision making predicts alcohol use during adolescence; however, more research is needed to determine the neurobiological risk factors that underlie this association. Using functional magnetic resonance imaging, brain activation during decision making involving risk and reward was assessed in 47 adolescents (14-15 years old) with no significant history or alcohol or drug use. After baseline assessment, participants completed follow-up interviews every 3 months to assess the duration to onset of binge drinking. Adolescents who made a greater number of risky selections and had greater activation in the nucleus accumbens, precuneus, and occipital cortex during decision making involving greater potential for risk and reward began binge drinking sooner. Findings suggest that heightened activation of reward circuitry during decision making under risk is a neurobiological risk factor for earlier onset of binge drinking. Furthermore, brain activation was a significant predictor of onset to binge drinking, even after controlling for decision-making behavior, suggesting that neurobiological markers may provide additional predictive validity over behavioral assessments. Interventions designed to modify these behavioral and neurobiological risk factors may be useful for curbing heavy alcohol use during adolescence.
NOMURA, DANIEL K.; CASIDA, JOHN E.
2010-01-01
Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672
Iuculano, Teresa; Rosenberg-Lee, Miriam; Richardson, Jennifer; Tenison, Caitlin; Fuchs, Lynn; Supekar, Kaustubh; Menon, Vinod
2015-01-01
Competency with numbers is essential in today's society; yet, up to 20% of children exhibit moderate to severe mathematical learning disabilities (MLD). Behavioural intervention can be effective, but the neurobiological mechanisms underlying successful intervention are unknown. Here we demonstrate that eight weeks of 1:1 cognitive tutoring not only remediates poor performance in children with MLD, but also induces widespread changes in brain activity. Neuroplasticity manifests as normalization of aberrant functional responses in a distributed network of parietal, prefrontal and ventral temporal–occipital areas that support successful numerical problem solving, and is correlated with performance gains. Remarkably, machine learning algorithms show that brain activity patterns in children with MLD are significantly discriminable from neurotypical peers before, but not after, tutoring, suggesting that behavioural gains are not due to compensatory mechanisms. Our study identifies functional brain mechanisms underlying effective intervention in children with MLD and provides novel metrics for assessing response to intervention. PMID:26419418
Synaptogenesis and heritable aspects of executive attention.
Fossella, John A; Sommer, Tobias; Fan, Jin; Pfaff, Don; Posner, Michael I
2003-01-01
In humans, changes in brain structure and function can be measured non-invasively during postnatal development. In animals, advanced optical imaging measures can track the formation of synapses during learning and behavior. With the recent progress in these technologies, it is appropriate to begin to assess how the physiological processes of synapse, circuit, and neural network formation relate to the process of cognitive development. Of particular interest is the development of executive function, which develops more gradually in humans. One approach that has shown promise is molecular genetics. The completion of the human genome project and the human genome diversity project make it straightforward to ask whether variation in a particular gene correlates with variation in behavior, brain structure, brain activity, or all of the above. Strategies that unify the wealth of biochemical knowledge pertaining to synapse formation with the functional measures of brain structure and activity may lead to new insights in developmental cognitive psychology. Copyright 2003 Wiley-Liss, Inc.
Bigliassi, Marcelo; Karageorghis, Costas I; Nowicky, Alexander V; Orgs, Guido; Wright, Michael J
2016-10-01
The brain mechanisms by which music-related interventions ameliorate fatigue-related symptoms during the execution of fatiguing motor tasks are hitherto under-researched. The objective of the present study was to investigate the effects of music on brain electrical activity and psychophysiological measures during the execution of an isometric fatiguing ankle-dorsiflexion task performed until the point of volitional exhaustion. Nineteen healthy participants performed two fatigue tests at 40% of maximal voluntary contraction while listening to music or in silence. Electrical activity in the brain was assessed by use of a 64-channel EEG. The results indicated that music downregulated theta waves in the frontal, central, and parietal regions of the brain during exercise. Music also induced a partial attentional switching from associative thoughts to task-unrelated factors (dissociative thoughts) during exercise, which led to improvements in task performance. Moreover, participants experienced a more positive affective state while performing the isometric task under the influence of music. © 2016 Society for Psychophysiological Research.
Toyomura, Akira; Yokosawa, Koichi; Shimojo, Atsushi; Fujii, Tetsunoshin; Kuriki, Shinya
2018-06-17
Locomotion, which is one of the most basic motor functions, is critical for performing various daily-life activities. Despite its essential function, assessment of brain activity during lower-limb movement is still limited because of the constraints of existing brain imaging methods. Here, we describe an MR-compatible, cylindrical treadmill device that allows participants to perform stepping movements on an MRI scanner table. The device was constructed from wood and all of the parts were handmade by the authors. We confirmed the MR-compatibility of the device by evaluating the temporal signal-to-noise ratio of 64 voxels of a phantom during scanning. Brain activity was measured while twenty participants turned the treadmill with feet in sync with metronome sounds. The rotary speed of the cylinder was encoded by optical fibers. The post/pre-central gyrus and cerebellum showed significant activity during the movements, which was comparable to the activity patterns reported in previous studies. Head movement on the y- and z-axes was influenced more by lower-limb movement than was head movement on the x-axis. Among the 60 runs (3 runs × 20 participants), head movement during two of the runs (3.3%) was excessive due to the lower-limb movement. Compared to MR-compatible devices proposed in the previous studies, the advantage of this device may be simple structure and replicability to realize stepping movement with a supine position. Collectively, our results suggest that the treadmill device is useful for evaluating lower-limb-related neural activity. Copyright © 2018. Published by Elsevier B.V.
Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian
2018-02-01
Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy.
Hartz, Anika M S; Pekcec, Anton; Soldner, Emma L B; Zhong, Yu; Schlichtiger, Juli; Bauer, Bjoern
2017-04-03
A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.
Traffic pollution exposure is associated with altered brain connectivity in school children.
Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi
2016-04-01
Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. Copyright © 2016 Elsevier Inc. All rights reserved.
Berman, Brian D.; Horovitz, Silvina G.; Venkataraman, Gaurav; Hallett, Mark
2011-01-01
Advances in fMRI data acquisition and processing have made it possible to analyze brain activity as rapidly as the images are acquired allowing this information to be fed back to subjects in the scanner. The ability of subjects to learn to volitionally control localized brain activity within motor cortex using such real-time fMRI-based neurofeedback (NF) is actively being investigated as it may have clinical implications for motor rehabilitation after central nervous system injury and brain-computer interfaces. We investigated the ability of fifteen healthy volunteers to use NF to modulate brain activity within the primary motor cortex (M1) during a finger tapping and tapping imagery task. The M1 hand area ROI (ROIm) was functionally localized during finger tapping and a visual representation of BOLD signal changes within the ROIm fed back to the subject in the scanner. Surface EMG was used to assess motor output during tapping and ensure no motor activity was present during motor imagery task. Subjects quickly learned to modulate brain activity within their ROIm during the finger-tapping task, which could be dissociated from the magnitude of the tapping, but did not show a significant increase within the ROIm during the hand motor imagery task at the group level despite strongly activating a network consistent with the performance of motor imagery. The inability of subjects to modulate M1 proper with motor imagery may reflect an inherent difficulty in activating synapses in this area, with or without NF, since such activation may lead to M1 neuronal output and obligatory muscle activity. Future real-time fMRI-based NF investigations involving motor cortex may benefit from focusing attention on cortical regions other than M1 for feedback training or alternative feedback strategies such as measures of functional connectivity within the motor system. PMID:21803163
Bolo, Nicolas R; Musen, Gail; Jacobson, Alan M; Weinger, Katie; McCartney, Richard L; Flores, Veronica; Renshaw, Perry F; Simonson, Donald C
2011-12-01
To investigate the effects of acute hypoglycemia on working memory and brain function in patients with type 1 diabetes. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging during euglycemic (5.0 mmol/L) and hypoglycemic (2.8 mmol/L) hyperinsulinemic clamps, we compared brain activation response to a working-memory task (WMT) in type 1 diabetic subjects (n = 16) with that in age-matched nondiabetic control subjects (n = 16). Behavioral performance was assessed by percent correct responses. During euglycemia, the WMT activated the bilateral frontal and parietal cortices, insula, thalamus, and cerebellum in both groups. During hypoglycemia, activation decreased in both groups but remained 80% larger in type 1 diabetic versus control subjects (P < 0.05). In type 1 diabetic subjects, higher HbA(1c) was associated with lower activation in the right parahippocampal gyrus and amygdala (R(2) = 0.45, P < 0.002). Deactivation of the default-mode network (DMN) also was seen in both groups during euglycemia. However, during hypoglycemia, type 1 diabetic patients deactivated the DMN 70% less than control subjects (P < 0.05). Behavioral performance did not differ between glycemic conditions or groups. BOLD activation was increased and deactivation was decreased in type 1 diabetic versus control subjects during hypoglycemia. This higher level of brain activation required by type 1 diabetic subjects to attain the same level of cognitive performance as control subjects suggests reduced cerebral efficiency in type 1 diabetes.
Ashkenazi, Lilach; Haim, Abraham
2012-11-15
Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.
Zhang, Zhou; Zhang, Bing; Wang, Xin; Zhang, Xin; Yang, Qing X; Qing, Zhao; Lu, Jiaming; Bi, Yan; Zhu, Dalong
2018-05-01
Type 2 diabetes is reported to be associated with olfactory dysfunction and cognitive decline. However, whether and how olfactory neural circuit abnormalities involve cognitive impairment in diabetes remains uncovered. This study thus aimed to investigate olfactory network alterations and the associations of odor-induced brain activity with cognitive and metabolic parameters in type 2 diabetes. Participants with normal cognition, including 51 patients with type 2 diabetes and 41 control subjects without diabetes, underwent detailed cognitive assessment, olfactory behavior tests, and odor-induced functional MRI measurements. Olfactory brain regions showing significantly different activation between the two groups were selected for functional connectivity analysis. Compared with the control subjects, patients with diabetes demonstrated significantly lower olfactory threshold score, decreased brain activation, and disrupted functional connectivity in the olfactory network. Positive associations of the disrupted functional connectivity with decreased neuropsychology test scores and reduced pancreatic function were observed in patients with diabetes. Notably, the association between pancreatic function and executive function was mediated by olfactory behavior and olfactory functional connectivity. Our results suggested the alteration of olfactory network is present before clinically measurable cognitive decrements in type 2 diabetes, bridging the gap between the central olfactory system and cognitive decline in diabetes. © 2018 by the American Diabetes Association.
Chen, Qiu-Feng; Chen, Hua-Jun; Liu, Jun; Sun, Tao; Shen, Qun-Tai
2016-01-01
Machine learning-based approaches play an important role in examining functional magnetic resonance imaging (fMRI) data in a multivariate manner and extracting features predictive of group membership. This study was performed to assess the potential for measuring brain intrinsic activity to identify minimal hepatic encephalopathy (MHE) in cirrhotic patients, using the support vector machine (SVM) method. Resting-state fMRI data were acquired in 16 cirrhotic patients with MHE and 19 cirrhotic patients without MHE. The regional homogeneity (ReHo) method was used to investigate the local synchrony of intrinsic brain activity. Psychometric Hepatic Encephalopathy Score (PHES) was used to define MHE condition. SVM-classifier was then applied using leave-one-out cross-validation, to determine the discriminative ReHo-map for MHE. The discrimination map highlights a set of regions, including the prefrontal cortex, anterior cingulate cortex, anterior insular cortex, inferior parietal lobule, precentral and postcentral gyri, superior and medial temporal cortices, and middle and inferior occipital gyri. The optimized discriminative model showed total accuracy of 82.9% and sensitivity of 81.3%. Our results suggested that a combination of the SVM approach and brain intrinsic activity measurement could be helpful for detection of MHE in cirrhotic patients.
Pacheco, Thaiana Barbosa Ferreira; Oliveira Rego, Isabelle Ananda; Campos, Tania Fernandes; Cavalcanti, Fabrícia Azevedo da Costa
2017-01-01
Virtual Reality (VR) has been contributing to Neurological Rehabilitation because of its interactive and multisensory nature, providing the potential of brain reorganization. Given the use of mobile EEG devices, there is the possibility of investigating how the virtual therapeutic environment can influence brain activity. To compare theta, alpha, beta and gamma power in healthy young adults during a lower limb motor task in a virtual and real environment. Ten healthy adults were submitted to an EEG assessment while performing a one-minute task consisted of going up and down a step in a virtual environment - Nintendo Wii virtual game "Basic step" - and in a real environment. Real environment caused an increase in theta and alpha power, with small to large size effects mainly in the frontal region. VR caused a greater increase in beta and gamma power, however, with small or negligible effects on a variety of regions regarding beta frequency, and medium to very large effects on the frontal and the occipital regions considering gamma frequency. Theta, alpha, beta and gamma activity during the execution of a motor task differs according to the environment that the individual is exposed - real or virtual - and may have varying size effects if brain area activation and frequency spectrum in each environment are taken into consideration.
Tran, Tuan D.; Amin, Aenia; Jones, Keith G.; Sheffer, Ellen M.; Ortega, Lidia; Dolman, Keith
2017-01-01
Neonatal rats were administered a relatively high concentration of ethyl alcohol (11.9% v/v) during postnatal days 4-9, a time when the fetal brain undergoes rapid organizational change and is similar to accelerated brain changes that occur during the third trimester in humans. This model of fetal alcohol spectrum disorders (FASDs) produces severe brain damage, mimicking the amount and pattern of binge-drinking that occurs in some pregnant alcoholic mothers. We describe the use of trace eyeblink classical conditioning (ECC), a higher-order variant of associative learning, to assess long-term hippocampal dysfunction that is typically seen in alcohol-exposed adult offspring. At 90 days of age, rodents were surgically prepared with recording and stimulating electrodes, which measured electromyographic (EMG) blink activity from the left eyelid muscle and delivered mild shock posterior to the left eye, respectively. After a 5 day recovery period, they underwent 6 sessions of trace ECC to determine associative learning differences between alcohol-exposed and control rats. Trace ECC is one of many possible ECC procedures that can be easily modified using the same equipment and software, so that different neural systems can be assessed. ECC procedures in general, can be used as diagnostic tools for detecting neural pathology in different brain systems and different conditions that insult the brain. PMID:28809846
Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu
2018-04-23
Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.
Al Aïn, Syrina; Perry, Rosemarie E.; Nuñez, Bestina; Kayser, Kassandra; Hochman, Chase; Brehman, Elizabeth; LaComb, Miranda; Wilson, Donald A.; Sullivan, Regina M.
2016-01-01
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother’s social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering. PMID:26934130
Appearance Matters: Neural Correlates of Food Choice and Packaging Aesthetics
Van der Laan, Laura N.; De Ridder, Denise T. D.; Viergever, Max A.; Smeets, Paul A. M.
2012-01-01
Neuro-imaging holds great potential for predicting choice behavior from brain responses. In this study we used both traditional mass-univariate and state-of-the-art multivariate pattern analysis to establish which brain regions respond to preferred packages and to what extent neural activation patterns can predict realistic low-involvement consumer choices. More specifically, this was assessed in the context of package-induced binary food choices. Mass-univariate analyses showed that several regions, among which the bilateral striatum, were more strongly activated in response to preferred food packages. Food choices could be predicted with an accuracy of up to 61.2% by activation patterns in brain regions previously found to be involved in healthy food choices (superior frontal gyrus) and visual processing (middle occipital gyrus). In conclusion, this study shows that mass-univariate analysis can detect small package-induced differences in product preference and that MVPA can successfully predict realistic low-involvement consumer choices from functional MRI data. PMID:22848586
Satou, Tadaaki; Ogawa, Yuko; Koike, Kazuo
2015-08-01
We previously reported finding anxiolytic-like activity for sandalwood oil after administration in mice. In this report, we further investigated the emotional behavior associated with inhaled or intraperitoneally administered (+)-α-santalol, the main component of sandalwood oil, in addition to examining whether pharmacological or neurological transfers are responsible for this behavior. After administration of (+)-α-santalol by inhalation or intraperitoneal injection, we assessed anxiolytic-like and locomotor activities using elevated-plus maze tests. We also examined the relationship between the emotional behavior and the (+)-α-santalol brain concentration. Anxiolytic-like activity was not observed immediately after administration or after water-immersion stress for 24 h for either the (+)-α-santalol 2 μL/L air inhalation or the (+)-α-santalol 0.03 mL/kg (i.p.) administration. However, mice administered (+)-α-santalol 0.03 mL/kg intraperitoneally exhibited a significant decrease in the locomotor activity after exposure to water-immersion stress for 24 h. The brain (+)-α-santalol concentration was 2.6 µg/g tissue after (+)-α-santalol 0.03 mL/kg (i.p.) administration. The observed shift of (+)-α-santalol to the brain suggests that this component acts via pharmacological transfer and is responsible for the sedative effect but not the anxiolytic-like activity. Copyright © 2015 John Wiley & Sons, Ltd.
Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network.
Kuck, Heleln; Grossbach, Michael; Bangert, Marc; Altenmüller, Eckart
2003-11-01
To determine cortical structures involved in "global" meter and "local" rhythm processing, slow brain potentials (DC potentials) were recorded from the scalp of 18 musically trained subjects while listening to pairs of monophonic sequences with both metric structure and rhythmic variations. The second sequence could be either identical to or different from the first one. Differences were either of a metric or a rhythmic nature. The subjects' task was to judge whether the sequences were identical or not. During processing of the auditory tasks, brain activation patterns along with the subjects' performance were assessed using 32-channel DC electroencephalography. Data were statistically analyzed using MANOVA. Processing of both meter and rhythm produced sustained cortical activation over bilateral frontal and temporal brain regions. A shift towards right hemispheric activation was pronounced during presentation of the second stimulus. Processing of rhythmic differences yielded a more centroparietal activation compared to metric processing. These results do not support Lerdhal and Jackendoff's two-component model, predicting a dissociation of left hemispheric rhythm and right hemispheric meter processing. We suggest that the uniform right temporofrontal predominance reflects auditory working memory and a pattern recognition module, which participates in both rhythm and meter processing. More pronounced parietal activation during rhythm processing may be related to switching of task-solving strategies towards mental imagination of the score.
Kinreich, Sivan; Intrator, Nathan; Hendler, Talma
2011-01-01
One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively.
Chen, Ai-Guo; Zhu, Li-Na; Yan, Jun; Yin, Heng-Chan
2016-01-01
Working memory lies at the core of cognitive function and plays a crucial role in children's learning, reasoning, problem solving, and intellectual activity. Behavioral findings have suggested that acute aerobic exercise improves children's working memory; however, there is still very little knowledge about whether a single session of aerobic exercise can alter working memory's brain activation patterns, as assessed by functional magnetic resonance imaging (fMRI). Therefore, we investigated the effect of acute moderate-intensity aerobic exercise on working memory and its brain activation patterns in preadolescent children, and further explored the neural basis of acute aerobic exercise on working memory in these children. We used a within-subjects design with a counterbalanced order. Nine healthy, right-handed children were scanned with a Siemens MAGNETOM Trio 3.0 Tesla magnetic resonance imaging scanner while they performed a working memory task (N-back task), following a baseline session and a 30-min, moderate-intensity exercise session. Compared with the baseline session, acute moderate-intensity aerobic exercise benefitted performance in the N-back task, increasing brain activities of bilateral parietal cortices, left hippocampus, and the bilateral cerebellum. These data extend the current knowledge by indicating that acute aerobic exercise enhances children's working memory, and the neural basis may be related to changes in the working memory's brain activation patterns elicited by acute aerobic exercise.
The neural basis of impaired self-awareness after traumatic brain injury
Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H.; Leech, Robert
2014-01-01
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at ‘rest’. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network. PMID:24371217
The neural basis of impaired self-awareness after traumatic brain injury.
Ham, Timothy E; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H; Leech, Robert; Sharp, David J
2014-02-01
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network.
Zhu, Shun-Wei; Pham, Therese M; Aberg, Elin; Brené, Stefan; Winblad, Bengt; Mohammed, Abdul H; Baumans, Vera
2006-02-15
This study assessed the effects of intermittent individual housing on behaviour and brain neurotrophins, and whether physical exercise could influence alternate individual-housing-induced effects. Five-week-old BALB/c mice were either housed in enhanced social (E) or standard social (S) housing conditions for 2 weeks. Thereafter they were divided into six groups and for 6 weeks remained in the following experimental conditions: Control groups remained in their respective housing conditions (E-control, S-control); enhanced individual (E-individual) and standard individual (S-individual) groups were exposed every other day to individual cages without running-wheels; enhanced running-wheel (E-wheel) and standard running-wheel (S-wheel) groups were put on alternate days in individual running-wheel cages. Animals were assessed for activity in an automated individual cage system (LABORAS) and brain neurotrophins analysed. Intermittent individual housing increased behavioural activity and reduced nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in frontal cortex; while it increased BDNF level in the amygdala and BDNF protein and mRNA in hippocampus. Besides normalizing motor activity and regulating BDNF and NGF levels in hippocampus, amygdala and cerebellum, physical exercise did not attenuate reduction of cortical NGF and BDNF induced by intermittent individual housing. This study demonstrates that alternate individual housing has significant impact on behaviour and brain neurotrophin levels in mice, which can be partially altered by voluntary physical exercise. Our results also suggest that some changes in neurotrophin levels induced by intermittent individual housing are not similar to those caused by continuous individual housing.
Bushi, Doron; Stein, Efrat Shavit; Golderman, Valery; Feingold, Ekaterina; Gera, Orna; Chapman, Joab; Tanne, David
2017-01-01
Brain thrombin activity is increased following acute ischemic stroke and may play a pathogenic role through the protease-activated receptor 1 (PAR1). In order to better assess these factors, we obtained a novel detailed temporal and spatial profile of thrombin activity in a mouse model of permanent middle cerebral artery occlusion (pMCAo). Thrombin activity was measured by fluorescence spectroscopy on coronal slices taken from the ipsilateral and contralateral hemispheres 2, 5, and 24 h following pMCAo ( n = 5, 6, 5 mice, respectively). Its spatial distribution was determined by punch samples taken from the ischemic core and penumbra and further confirmed using an enzyme histochemistry technique ( n = 4). Levels of PAR1 were determined using western blot. Two hours following pMCAo, thrombin activity in the stroke core was already significantly higher than the contralateral area (11 ± 5 vs. 2 ± 1 mU/ml). At 5 and 24 h, thrombin activity continued to rise linearly ( r = 0.998, p = 0.001) and to expand in the ischemic hemisphere beyond the ischemic core reaching deleterious levels of 271 ± 117 and 123 ± 14 mU/ml (mean ± SEM) in the basal ganglia and ischemic cortex, respectively. The peak elevation of thrombin activity in the ischemic core that was confirmed by fluorescence histochemistry was in good correlation with the infarcts areas. PAR1 levels in the ischemic core decreased as stroke progressed and thrombin activity increased. In conclusion, there is a time- and space-related increase in brain thrombin activity in acute ischemic stroke that is closely related to the progression of brain damage. These results may be useful in the development of therapeutic strategies for ischemic stroke that involve the thrombin-PAR1 pathway in order to prevent secondary thrombin related brain damage.
Veldhuijzen, Dieuwke S.; Keaser, Michael L.; Traub, Deborah S.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.
2013-01-01
Sex differences in pain sensitivity have been consistently found but the basis for these differences is incompletely understood. The present study assessed how pain-related neural processing varies across the menstrual cycle in normally cycling, healthy females, and whether menstrual cycle effects are based on fluctuating sex hormone levels. Fifteen subjects participated in four test sessions during their menstrual, mid-follicular, ovulatory, and midluteal phases. Brain activity was measured while nonpainful and painful stimuli were applied with a pressure algometer. Serum hormone levels confirmed that scans were performed at appropriate cycle phases in 14 subjects. No significant cycle phase differences were found for pain intensity or unpleasantness ratings of stimuli applied during fMRI scans. However, lower pressure pain thresholds were found for follicular compared to other phases. Pain-specific brain activation was found in several regions traditionally associated with pain processing, including the medial thalamus, anterior and mid-insula, mid-cingulate, primary and secondary somatosensory cortices, cerebellum, and frontal regions. The inferior parietal lobule, occipital gyrus, cerebellum and several frontal regions demonstrated interaction effects between stimulus level and cycle phase, indicating differential processing of pain-related responses across menstrual cycle phases. Correlational analyses indicated that cycle-related changes in pain sensitivity measures and brain activation were only partly explained by varying sex hormone levels. These results show that pain-related cerebral activation varies significantly across the menstrual cycle, even when perceived pain intensity and unpleasantness remain constant. The involved brain regions suggest that cognitive pain or more general bodily awareness systems are most susceptible to menstrual cycle effects. PMID:23528204
Jastreboff, Ania M; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M; Sherwin, Robert S; Potenza, Marc N
2013-02-01
Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity.
Neural Correlates of Stress- and Food Cue–Induced Food Craving in Obesity
Jastreboff, Ania M.; Sinha, Rajita; Lacadie, Cheryl; Small, Dana M.; Sherwin, Robert S.; Potenza, Marc N.
2013-01-01
OBJECTIVE Obesity is associated with alterations in corticolimbic-striatal brain regions involved in food motivation and reward. Stress and the presence of food cues may each motivate eating and engage corticolimibic-striatal neurocircuitry. It is unknown how these factors interact to influence brain responses and whether these interactions are influenced by obesity, insulin levels, and insulin sensitivity. We hypothesized that obese individuals would show greater responses in corticolimbic-striatal neurocircuitry after exposure to stress and food cues and that brain activations would correlate with subjective food craving, insulin levels, and HOMA-IR. RESEARCH DESIGN AND METHODS Fasting insulin levels were assessed in obese and lean subjects who were exposed to individualized stress and favorite-food cues during functional MRI. RESULTS Obese, but not lean, individuals exhibited increased activation in striatal, insular, and hypothalamic regions during exposure to favorite-food and stress cues. In obese but not lean individuals, food craving, insulin, and HOMA-IR levels correlated positively with neural activity in corticolimbic-striatal brain regions during favorite-food and stress cues. The relationship between insulin resistance and food craving in obese individuals was mediated by activity in motivation-reward regions including the striatum, insula, and thalamus. CONCLUSIONS These findings demonstrate that obese, but not lean, individuals exhibit increased corticolimbic-striatal activation in response to favorite-food and stress cues and that these brain responses mediate the relationship between HOMA-IR and food craving. Improving insulin sensitivity and in turn reducing corticolimbic-striatal reactivity to food cues and stress may diminish food craving and affect eating behavior in obesity. PMID:23069840
Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism.
Kaur, Ravneet; Singh, Varinder; Shri, Richa
2017-08-01
Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms. Copyright © 2017. Published by Elsevier Masson SAS.
Brain response to visual sexual stimuli in homosexual pedophiles
Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke
2008-01-01
Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269
Brain response to visual sexual stimuli in homosexual pedophiles.
Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke
2008-01-01
The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.
NASA Astrophysics Data System (ADS)
Okada, Yoshio; Pratt, Kevin; Atwood, Christopher; Mascarenas, Anthony; Reineman, Richard; Nurminen, Jussi; Paulson, Douglas
2006-02-01
We developed a prototype of a mobile, high-resolution, multichannel magnetoencephalography (MEG) system, called babySQUID, for assessing brain functions in newborns and infants. Unlike electroencephalography, MEG signals are not distorted by the scalp or the fontanels and sutures in the skull. Thus, brain activity can be measured and localized with MEG as if the sensors were above an exposed brain. The babySQUID is housed in a moveable cart small enough to be transported from one room to another. To assess brain functions, one places the baby on the bed of the cart and the head on its headrest with MEG sensors just below. The sensor array consists of 76 first-order axial gradiometers, each with a pickup coil diameter of 6mm and a baseline of 30mm, in a high-density array with a spacing of 12-14mm center-to-center. The pickup coils are 6±1mm below the outer surface of the headrest. The short gap provides unprecedented sensitivity since the scalp and skull are thin (as little as 3-4mm altogether) in babies. In an electromagnetically unshielded room in a hospital, the field sensitivity at 1kHz was ˜17fT/√Hz. The noise was reduced from ˜400to200fT/√Hz at 1Hz using a reference cancellation technique and further to ˜40fT/√Hz using a gradient common mode rejection technique. Although the residual environmental magnetic noise interfered with the operation of the babySQUID, the instrument functioned sufficiently well to detect spontaneous brain signals from babies with a signal to noise ratio (SNR) of as much as 7.6:1. In a magnetically shielded room, the field sensitivity was 17fT/√Hz at 20Hz and 30fT/√Hz at 1Hz without implementation of reference or gradient cancellation. The sensitivity was sufficiently high to detect spontaneous brain activity from a 7month old baby with a SNR as much as 40:1 and evoked somatosensory responses with a 50Hz bandwidth after as little as four averages. We expect that both the noise and the sensor gap can be reduced further by approximately half with a gain in SNR of about four. Thus, we conclude from the performance of the prototype that it should be feasible to improve the babySQUID to detect cortical activity in infants in real time with high spatial resolution.
The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long-Evans rats...
PREFERENCE FOR FLUENT VERSUS DISFLUENT WORK SCHEDULES
Fienup, Daniel M; Ahlers, Ashley A; Pace, Gary
2011-01-01
Two studies were conducted that examined the preference of a student diagnosed with a brain injury. In Study 1, a preference assessment was followed by a three-choice concurrent-operants reinforcer assessment. Two choices resulted in access to preferred activities for completing work, and a third choice resulted in access to nothing (i.e., no activity). Unpredictably, the participant consistently chose the no-activity option. Study 2 examined why this student preferred work associated with no activity over preferred activities. Through a variety of concurrent-operants procedures, it was determined that she preferred fluent work followed by reinforcers rather than work that was broken up by access to preferred activities. Implications for research on preference are discussed. PMID:22219534
Baseline Brain Activity Predicts Response to Neuromodulatory Pain Treatment
Jensen, Mark P.; Sherlin, Leslie H.; Fregni, Felipe; Gianas, Ann; Howe, Jon D.; Hakimian, Shahin
2015-01-01
Objectives The objective of this study was to examine the associations between baseline electroencephalogram (EEG)-assessed brain oscillations and subsequent response to four neuromodulatory treatments. Based on available research, we hypothesized that baseline theta oscillations would prospectively predict response to hypnotic analgesia. Analyses involving other oscillations and the other treatments (meditation, neurofeedback, and both active and sham transcranial direct current stimulation) were viewed as exploratory, given the lack of previous research examining brain oscillations as predictors of response to these other treatments. Design Randomized controlled study of single sessions of four neuromodulatory pain treatments and a control procedure. Methods Thirty individuals with spinal cord injury and chronic pain had their EEG recorded before each session of four active treatments (hypnosis, meditation, EEG biofeedback, transcranial direct current stimulation) and a control procedure (sham transcranial direct stimulation). Results As hypothesized, more presession theta power was associated with greater response to hypnotic analgesia. In exploratory analyses, we found that less baseline alpha power predicted pain reduction with meditation. Conclusions The findings support the idea that different patients respond to different pain treatments and that between-person treatment response differences are related to brain states as measured by EEG. The results have implications for the possibility of enhancing pain treatment response by either 1) better patient/treatment matching or 2) influencing brain activity before treatment is initiated in order to prepare patients to respond. Research is needed to replicate and confirm the findings in additional samples of individuals with chronic pain. PMID:25287554
Effects of penetrating traumatic brain injury on event segmentation and memory.
Zacks, Jeffrey M; Kurby, Christopher A; Landazabal, Claudia S; Krueger, Frank; Grafman, Jordan
2016-01-01
Penetrating traumatic brain injury (pTBI) is associated with deficits in cognitive tasks including comprehension and memory, and also with impairments in tasks of daily living. In naturalistic settings, one important component of cognitive task performance is event segmentation, the ability to parse the ongoing stream of behavior into meaningful units. Event segmentation ability is associated with memory performance and with action control, but is not well assessed by standard neuropsychological assessments or laboratory tasks. Here, we measured event segmentation and memory in a sample of 123 male military veterans aged 59-81 who had suffered a traumatic brain injury as young men, and 34 demographically similar controls. Participants watched movies of everyday activities and segmented them to identify fine-grained or coarse-grained events, and then completed tests of recognition memory for pictures from the movies and of memory for the temporal order of actions in the movies. Lesion location and volume were assessed with computed tomography (CT) imaging. Patients with traumatic brain injury were impaired on event segmentation. Those with larger lesions had larger impairments for fine segmentation and also impairments for both memory measures. Further, the degree of memory impairment was statistically mediated by the degree of event segmentation impairment. There was some evidence that lesions to the ventromedial prefrontal cortex (vmPFC) selectively impaired coarse segmentation; however, lesions outside of a priori regions of interest also were associated with impaired segmentation. One possibility is that the effect of vmPFC damage reflects the role of prefrontal event knowledge representations in ongoing comprehension. These results suggest that assessment of naturalistic event comprehension can be a valuable component of cognitive assessment in cases of traumatic brain injury, and that interventions aimed at event segmentation could be clinically helpful. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rachmiel, M; Cohen, M; Heymen, E; Lezinger, M; Inbar, D; Gilat, S; Bistritzer, T; Leshem, G; Kan-Dror, E; Lahat, E; Ekstein, D
2016-02-01
To assess the association between hyperglycemia and electrical brain activity in type 1 diabetes mellitus (T1DM). Nine youths with T1DM were monitored simultaneously and continuously by EEG and continuous glucose monitor system, for 40 h. EEG powers of 0.5-80 Hz frequency bands in all the different brain regions were analyzed according to interstitial glucose concentration (IGC) ranges of 4-11 mmol/l, 11-15.5 mmol/l and >15.5 mmol/l. Analysis of variance was used to examine the differences in EEG power of each frequency band between the subgroups of IGC. Analysis was performed separately during wakefulness and sleep, controlling for age, gender and HbA1c. Mean IGC was 11.49 ± 5.26 mmol/l in 1253 combined measurements. IGC>15.5 mmol/l compared to 4-11 mmol/l was associated during wakefulness with increased EEG power of low frequencies and with decreased EEG power of high frequencies. During sleep, it was associated with increased EEG power of low frequencies in all brain areas and of high frequencies in frontal and central areas. Asymptomatic transient hyperglycemia in youth with T1DM is associated with simultaneous alterations in electrical brain activity during wakefulness and sleep. The clinical implications of immediate electrical brain alterations under hyperglycemia need to be studied and may lead to adaptations of management. Copyright © 2015. Published by Elsevier Ireland Ltd.
Gotink, Rinske A; Meijboom, Rozanna; Vernooij, Meike W; Smits, Marion; Hunink, M G Myriam
2016-10-01
The objective of the current study was to systematically review the evidence of the effect of secular mindfulness techniques on function and structure of the brain. Based on areas known from traditional meditation neuroimaging results, we aimed to explore a neuronal explanation of the stress-reducing effects of the 8-week Mindfulness Based Stress Reduction (MBSR) and Mindfulness Based Cognitive Therapy (MBCT) program. We assessed the effect of MBSR and MBCT (N=11, all MBSR), components of the programs (N=15), and dispositional mindfulness (N=4) on brain function and/or structure as assessed by (functional) magnetic resonance imaging. 21 fMRI studies and seven MRI studies were included (two studies performed both). The prefrontal cortex, the cingulate cortex, the insula and the hippocampus showed increased activity, connectivity and volume in stressed, anxious and healthy participants. Additionally, the amygdala showed decreased functional activity, improved functional connectivity with the prefrontal cortex, and earlier deactivation after exposure to emotional stimuli. Demonstrable functional and structural changes in the prefrontal cortex, cingulate cortex, insula and hippocampus are similar to changes described in studies on traditional meditation practice. In addition, MBSR led to changes in the amygdala consistent with improved emotion regulation. These findings indicate that MBSR-induced emotional and behavioral changes are related to functional and structural changes in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Significance of the Feuerstein approach in neurocognitive rehabilitation.
Lebeer, Jo
2016-06-18
The theory of Structural Cognitive Modifiability and Mediated Learning Experience of Reuven Feuerstein states that individuals with brain impairment, because of congenital or acquired origin, may substantially and structurally improve their cognitive functioning, by a systematic intervention based on a specific, criteria-based type of interaction ("mediated learning"). Three application systems are based on it: a dynamic-interactive assessment of learning capacity and processes of learning, the LPAD (Learning Propensity Assessment Device); a cognitive intervention program called "Instrumental Enrichment Program", which trains cognitive, metacognitive and executive functions; and a program, which is oriented at working in context, Shaping Modifying Environments. These programs have been applied in widely different target groups: from children and young adults with learning and developmental disabilities, at risk of school failure, or having failed at school, because of socio-economic disadvantage or congenital neurological impairment; disadvantaged youngsters and adults in vocational training, to elderly people at the beginning of a dementia process. Experience with cognitive rehabilitation of children and adults with acquired brain damage, has been relatively recent, first in the Feuerstein Institute's Brain Injury Unit in Jerusalem, later in other centers in different parts of the world; therefore scientific data are scarce. The purpose of this paper is to examine how the Feuerstein-approach fits into the goals and proposed approaches of cognitive rehabilitation, and to explore its relevance for assessment and intervention in individuals with congenital or acquired brain damage. The methodology of the Feuerstein approach consists of four pillars: dynamic assessment, cognitive activation, mediated learning and shaping a modifying environment. The criteria of mediated learning experience are explained with specific reference to people with acquired brain injury. The procedure of learning propensity assessment device uses visuo-spatial and verbal tasks known from neuropsychological assessment (such as Rey's complex figure drawing), as well as a in a pre-test - brief intervention - post-test format. Cognitive activation is done in various ways: a paper-and-pencil relatively content-free program called "instrumental enrichment", with transfer of learned principles into daily life situations, followed by metacognitive feedback. Four case histories of acquired brain damage are analyzed: a 19 year old man with extensive post-astrocytoma frontotemporal brain lesions; a 19 year old man with bilateral frontal and right temporal and parieto-occipital parenchymatous destruction after a traumatic brain injury; a 24 year old man with hemispherectomy for intractable epilepsy because of Sturge-Weber syndrome; and a 30-year old man with left porencephalic cyst after cerebral hemorrhage. Structural cognitive improvement could be demonstrated in positive change scores in visuo-spatial memory, associative and verbal memory, abstract thinking, and organizing tasks, even more than 10 years post-TBI. In some cases a rise in IQ has been documented. Improvement in daily life functioning and academic skills (re)learning has also been seen. Though impossible to claim scientific evidence, the case histories nevertheless suggest the importance of interactive assessment in designing intervention programs which have sufficient intensity, frequency, duration and consistency of mediation; furthermore, an essential ingredient is the ecological approach which requires working with the patient and the whole network around; a firm "belief system" or that modifiability is possible even with severe brain damage and many years after the injury; a cognitive, metacognitive and executive approach, and a quality of interaction according to criteria of mediated learning. They suggest that Feuerstein approach may offer interesting perspectives to cognitive rehabilitation. More extensive research is needed to provide a broader scientific evidence base.
Tabei, Ken-ichi
2015-01-01
While music triggers many physiological and psychological reactions, the underlying neural basis of perceived and experienced emotions during music listening remains poorly understood. Therefore, using functional magnetic resonance imaging (fMRI), I conducted a comparative study of the different brain areas involved in perceiving and feeling emotions during music listening. I measured fMRI signals while participants assessed the emotional expression of music (perceived emotion) and their emotional responses to music (felt emotion). I found that cortical areas including the prefrontal, auditory, cingulate, and posterior parietal cortices were consistently activated by the perceived and felt emotional tasks. Moreover, activity in the inferior frontal gyrus increased more during the perceived emotion task than during a passive listening task. In addition, the precuneus showed greater activity during the felt emotion task than during a passive listening task. The findings reveal that the bilateral inferior frontal gyri and the precuneus are important areas for the perception of the emotional content of music as well as for the emotional response evoked in the listener. Furthermore, I propose that the precuneus, a brain region associated with self-representation, might be involved in assessing emotional responses.
Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano
2015-01-01
Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002
Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.
2014-01-01
Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an association of physical activity with cognitive functioning among 1,032 midlife volunteers (mean age = 44.59 years), we evaluated participants’ performance on a battery of tests assessing memory, learning, and executive processes, and evaluated their physical activity with the Paffenbarger Physical Activity Questionnaire. BDNF genotype interacted robustly with physical activity to affect working memory, but not other areas of cognitive functioning. In particular, greater levels of physical activity offset a deleterious effect of the Met allele on working memory performance. These findings suggest that physical activity can modulate domain-specific genetic (BDNF) effects on cognition. PMID:23907543
Wright, W Geoffrey; Handy, Justin D; Avcu, Pelin; Ortiz, Alejandro; Haran, F Jay; Doria, Michael; Servatius, Richard J
2018-03-01
Postural control and stress reactivity were investigated in active duty coast guard personnel to determine whether they are sensitive to lifetime effects of mild traumatic brain injury (mTBI). A custom-designed and validated virtual reality-based computerized posturography device was used to assess postural stability, whereas emotional reactivity was assessed using the acoustic startle response (ASR), and neurocognitive performance was assessed using the defense-automated neurobehavioral assessment (DANA). It was hypothesized that residual and subtle postural control imbalance and deficits in cognitive and sensory reactivity would be evident in those reporting multiple lifetime mTBI. Active duty military personnel (N = 36; 7 females and 29 males) with no Deployment Limiting Medical Condition were recruited and tested on all assessments. Medical history information provided a history of head injury. Thirty-nine percent of participants reported having a previous mTBI (nine reporting one and five reporting more than one incident). No participant had experienced a head injury within the past year and all were symptom free. A significant effect of number of mTBI was found in the postural assessment (p = 0.002). Lifetime mTBI was associated with suppressed ASR magnitude (p = 0.03) but did not affect neurocognitive performance. The current findings provide new insight into ongoing controversies concerning sensitivity to functional deficits following mTBI and when the window for treatment or restoration ends.
Fisetin Protects against Intracerebral Hemorrhage-Induced Neuroinflammation in Aged Mice.
Chen, Cheng; Yao, Li; Cui, Jing; Liu, Bao
2018-01-01
Fisetin is commonly used as an anti-inflammatory and neuroprotective drug. In this study, we aimed to investigate the efficacy of fisetin in alleviating intracerebral hemorrhage (ICH)-induced brain injury. Mouse ICH models were constructed using the collagenase-induction method. ICH mice received fisetin treatment at the dose of 10-90 mg/kg, followed by the evaluation of neurological deficit through neurologic severity scores (mNSS), brain water content and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis of cell apoptosis. Cytokine levels were also assessed with enzyme-linked immunosorbent assay. The activation of astrocytes and microglia was evaluated through S100 staining and Western blot analysis of ionized calcium-binding adaptor molecule 1 respectively. Nuclear factor kappa-B (NF-κB) signaling was also evaluated by Western blot. ICH mice demonstrated dramatic increase in mNSS, brain edema and cell apoptosis, indicating severe brain deficit. Fisetin treatment lowered these parameters, suggesting the alleviation of brain injury. Levels of proinflammatory cytokines were reduced, accompanied by a prominent decrease in activated astrocytes and microglia. NF-κB signaling was also attenuated by fisetin treatment. Fisetin effectively alleviates ICH by downregulating proinflammatory cytokines and attenuating NF-κB signaling. These data suggest fisetin as a valuable natural flavonol for clinical management of ICH-induced brain injury. © 2018 S. Karger AG, Basel.
Cognitive benefit and cost of acute stress is differentially modulated by individual brain state.
Kohn, Nils; Hermans, Erno J; Fernández, Guillén
2017-07-01
Acute stress is associated with beneficial as well as detrimental effects on cognition in different individuals. However, it is not yet known how stress can have such opposing effects. Stroop-like tasks typically show this dissociation: stress diminishes speed, but improves accuracy. We investigated accuracy and speed during a stroop-like task of 120 healthy male subjects after an experimental stress induction or control condition in a randomized, counter-balanced cross-over design; we assessed brain-behavior associations and determined the influence of individual brain connectivity patterns on these associations, which may moderate the effect and help identify stress resilience factors. In the mean, stress was associated to increase in accuracy, but decrease in speed. Accuracy was associated to brain activation in a distributed set of brain regions overlapping with the executive control network (ECN) and speed to temporo-parietal activation. In line with a stress-related large-scale network reconfiguration, individuals showing an upregulation of the salience and down-regulation of the executive-control network under stress displayed increased speed, but decreased performance. In contrast, individuals who upregulate their ECN under stress show improved performance. Our results indicate that the individual large-scale brain network balance under acute stress moderates cognitive consequences of threat. © The Author (2017). Published by Oxford University Press.
Flint, Robert D; Scheid, Michael R; Wright, Zachary A; Solla, Sara A; Slutzky, Marc W
2016-03-23
The human motor system is capable of remarkably precise control of movements--consider the skill of professional baseball pitchers or surgeons. This precise control relies upon stable representations of movements in the brain. Here, we investigated the stability of cortical activity at multiple spatial and temporal scales by recording local field potentials (LFPs) and action potentials (multiunit spikes, MSPs) while two monkeys controlled a cursor either with their hand or directly from the brain using a brain-machine interface. LFPs and some MSPs were remarkably stable over time periods ranging from 3 d to over 3 years; overall, LFPs were significantly more stable than spikes. We then assessed whether the stability of all neural activity, or just a subset of activity, was necessary to achieve stable behavior. We showed that projections of neural activity into the subspace relevant to the task (the "task-relevant space") were significantly more stable than were projections into the task-irrelevant (or "task-null") space. This provides cortical evidence in support of the minimum intervention principle, which proposes that optimal feedback control (OFC) allows the brain to tightly control only activity in the task-relevant space while allowing activity in the task-irrelevant space to vary substantially from trial to trial. We found that the brain appears capable of maintaining stable movement representations for extremely long periods of time, particularly so for neural activity in the task-relevant space, which agrees with OFC predictions. It is unknown whether cortical signals are stable for more than a few weeks. Here, we demonstrate that motor cortical signals can exhibit high stability over several years. This result is particularly important to brain-machine interfaces because it could enable stable performance with infrequent recalibration. Although we can maintain movement accuracy over time, movement components that are unrelated to the goals of a task (such as elbow position during reaching) often vary from trial to trial. This is consistent with the minimum intervention principle of optimal feedback control. We provide evidence that the motor cortex acts according to this principle: cortical activity is more stable in the task-relevant space and more variable in the task-irrelevant space. Copyright © 2016 the authors 0270-6474/16/363623-10$15.00/0.
Burgess, Gregory C; Depue, Brendan E; Ruzic, Luka; Willcutt, Erik G; Du, Yiping P; Banich, Marie T
2010-04-01
Attentional control difficulties in individuals with attention-deficit/hyperactivity disorder (ADHD) might reflect poor working memory (WM) ability, especially because WM ability and attentional control rely on similar brain regions. The current study examined whether WM ability might explain group differences in brain activation between adults with ADHD and normal control subjects during attentional demand. Participants were 20 adults with ADHD combined subtype with no comorbid psychiatric or learning disorders and 23 control subjects similar in age, IQ, and gender. The WM measures were obtained from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-Revised. Brain activation was assessed with functional magnetic resonance imaging (fMRI) while performing a Color-Word Stroop task. Group differences in WM ability explained a portion of the activation in left dorsolateral prefrontal cortex (DLPFC), which has been related to the creation and maintenance of an attentional set for task-relevant information. In addition, greater WM ability predicted increased activation of brain regions related to stimulus-driven attention and response selection processes in the ADHD group but not in the control group. The inability to maintain an appropriate task set in young adults with combined type ADHD, associated with decreased activity in left DLPFC, might in part be due to poor WM ability. Furthermore, in individuals with ADHD, higher WM ability might relate to increased recruitment of stimulus-driven attention and response selection processes, perhaps as a compensatory strategy. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Brain reactivity to alcohol and cannabis marketing during sobriety and intoxication.
de Sousa Fernandes Perna, Elizabeth B; Theunissen, Eef L; Kuypers, Kim P C; Evers, Elisabeth A; Stiers, Peter; Toennes, Stefan W; Witteman, Jurriaan; van Dalen, Wim; Ramaekers, Johannes G
2017-05-01
Drugs of abuse stimulate striatal dopamine release and activate reward pathways. This study examined the impact of alcohol and cannabis marketing on the reward circuit in alcohol and cannabis users while sober and intoxicated. It was predicted that alcohol and cannabis marketing would increase striatal activation when sober and that reward sensitivity would be less during alcohol and cannabis intoxication. Heavy alcohol (n = 20) and regular cannabis users (n = 21) participated in a mixed factorial study involving administration of alcohol and placebo in the alcohol group and cannabis and placebo in the cannabis group. Non-drug users (n = 20) served as between group reference. Brain activation after exposure to alcohol and cannabis marketing movies was measured using functional magnetic resonance imaging and compared between groups while sober and compared with placebo while intoxicated. Implicit alcohol and cannabis cognitions were assessed by means of a single-category implicit association test. Alcohol and cannabis marketing significantly increased striatal BOLD activation across all groups while sober. Striatal activation however decreased during intoxication with alcohol and cannabis. Implicit associations with cannabis marketing cues were significantly more positive in alcohol and cannabis users as compared with non-drug using controls. Public advertising of alcohol or cannabis use elicits striatal activation in the brain's reward circuit. Reduction of marketing would reduce brain exposure to reward cues that motivate substance use. Conversely, elevated dopamine levels protect against the reinforcing potential of marketing. © 2016 Society for the Study of Addiction.
Felt, Barbara T.; Beard, John L.; Schallert, Timothy; Shao, Jie; Aldridge, J. Wayne; Connor, James R.; Georgieff, Michael K.; Lozoff, Betsy
2006-01-01
Background Iron deficiency anemia (IDA) has been associated with altered cognitive, motor, and social-emotional outcomes in human infants. We recently reported that rats with chronic perinatal IDA, had altered regional brain iron, monoamines, and sensorimotor skill emergence during early development. Objective To examine the long-term consequences of chronic perinatal IDA on behavior, brain iron and monoamine systems after dietary iron treatment in rats. Methods Sixty dams were randomly assigned to iron-sufficient (CN) or low-iron (EID) diets during gestation and lactation. Thereafter, all offspring were fed the iron-sufficient diet, assessed for hematology and behavior after weaning and into adulthood and for brain measures as adults (regional brain iron, monoamines, dopamine and serotonin transporters, and dopamine receptor). Behavioral assessments included sensorimotor function, general activity, response to novelty, spatial alternation, and spatial water maze performance. Results Hematology and growth were similar for EID and CN rats by postnatal day 35. In adulthood, EID thalamic iron content was lower. Monoamines, dopamine transporter, and dopamine receptor concentrations did not differ from CN. EID serotonin transporter concentration was reduced in striatum and related regions. EID rats had persisting sensorimotor deficits (delayed vibrissae-evoked forelimb placing, longer sticker removal time, and more imperfect grooming chains), were more hesitant in novel settings, and had poorer spatial water maze performance than CN. General activity and spatial alternation were similar for EID and CN. Conclusion Rats that had chronic perinatal IDA showed behavioral impairments that suggest persistent striatal dopamine and hippocampal dysfunction despite normalization of hematology, growth and most brain measures. PMID:16713640
Galazky, Imke; Kaufmann, Jörn; Lorenzl, Stefan; Ebersbach, Georg; Gandor, Florin; Zaehle, Tino; Specht, Sylke; Stallforth, Sabine; Sobieray, Uwe; Wirkus, Edyta; Casjens, Franziska; Heinze, Hans-Jochen; Kupsch, Andreas; Voges, Jürgen
2018-05-01
The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders. Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities. Effects of stimulation frequencies at 8, 20, 60 and 130 Hz on motor scores and gait were assessed. Motor scores were followed up for two years postoperatively. Activities of daily living, frequency of falls, health-related quality of life, cognition and mood at 12 months were compared to baseline parameters. Surgical and stimulation related adverse events were assessed. Bilateral pedunculopontine nucleus deep brain stimulation at 8 Hz significantly improved axial motor symptoms and cyclic gait parameters, while high frequency stimulation did not ameliorate gait and balance but improved hypokinesia. This improvement however did not translate into clinically relevant benefits. Frequency of falls was not reduced. Activities of daily living, quality of life and frontal cognitive functions declined, while mood remained unchanged. Bilateral pedunculopontine nucleus deep brain stimulation in progressive supranuclear palsy generates frequency-dependent effects with improvement of cyclic gait parameters at low frequency and amelioration of hypokinesia at high frequency stimulation. However, these effects do not translate into a clinically important improvement. Copyright © 2018. Published by Elsevier Ltd.
Anbarasi, Kothandapani; Vani, Ganapathy; Devi, Chennam Srinivasulu Shyamala
2005-01-01
Chronic exposure to cigarette smoke affects the structure and function of mitochondria, which may account for the pathogenesis of smoking-related diseases. Bacopa monniera Linn., used in traditional Indian medicine for various neurological disorders, was shown to possess mitrochondrial membrane-stabilizing properties in the rat brain during exposure to morphine. We investigated the protective effect of bacoside A, the active principle of Bacopa monniera, against mitochondrial dysfunction in rat brain induced by cigarette smoke. Male Wistar albino rats were exposed to cigarette smoke and administered bacoside A for a period of 12 weeks. The mitochondrial damage in the brain was assessed by examining the levels of lipid peroxides, cholesterol, phospholipid, cholesterol/phospholipid (C/P) ratio, and the activities of isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, NADH dehydrogenase, and cytochrome C oxidase. The oxidative phosphorylation (rate of succinate oxidation, respiratory control ratio and ADP/O ratio, and the levels of ATP) was evaluated for the assessment of mitochondrial functional capacity. We found significantly elevated levels of lipid peroxides, cholesterol, and C/P ratio, and decreased levels of phospholipids and mitochondrial enzymes in the rats exposed to cigarette smoke. Measurement of oxidative phosphorylation revealed a marked depletion in all the variables studied. Administration of bacoside A prevented the structural and functional impairment of mitochondria upon exposure to cigarette smoke. From the results, we suggest that chronic cigarette smoke exposure induces damage to the mitochondria and that bacoside A protects the brain from this damage by maintaining the structural and functional integrity of the mitochondrial membrane.
Monfort, Jordi; Pujol, Jesús; Contreras-Rodríguez, Oren; Llorente-Onaindia, Jone; López-Solà, Marina; Blanco-Hinojo, Laura; Vergés, Josep; Herrero, Marta; Sánchez, Laura; Ortiz, Hector; Montañés, Francisco; Deus, Joan; Benito, Pere
2017-06-21
Knee osteoarthritis is causing pain and functional disability. One of the inherent problems with efficacy assessment of pain medication was the lack of objective pain measurements, but functional magnetic resonance imaging (fMRI) has emerged as a useful means to objectify brain response to painful stimulation. We have investigated the effect of chondroitin sulfate (CS) on brain response to knee painful stimulation in patients with knee osteoarthritis using fMRI. Twenty-two patients received CS (800mg/day) and 27 patients placebo, and were assessed at baseline and after 4 months of treatment. Two fMRI tests were conducted in each session by applying painful pressure on the knee interline and on the patella surface. The outcome measurement was attenuation of the response evoked by knee painful stimulation in the brain. fMRI of patella pain showed significantly greater activation reduction under CS compared with placebo in the region of the mesencephalic periaquecductal gray. The CS group, additionally showed pre/post-treatment activation reduction in the cortical representation of the leg. No effects of CS were detected using the interline pressure test. fMRI was sensitive to objectify CS effects on brain response to painful pressure on patellofemoral cartilage, which is consistent with the known CS action on chondrocyte regeneration. The current work yields further support to the utility of fMRI to objectify treatment effects on osteoarthritis pain. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Novel codrugs with GABAergic activity for dopamine delivery in the brain.
Denora, Nunzio; Cassano, Tommaso; Laquintana, Valentino; Lopalco, Antonio; Trapani, Adriana; Cimmino, Concetta Stefania; Laconca, Leonardo; Giuffrida, Andrea; Trapani, Giuseppe
2012-11-01
This study investigates the use of codrugs of the GABAergic agent 2-phenyl-imidazo[1,2-a]pyridinacetamide and dopamine (DA) or ethyl ester L-Dopa (LD) as a strategy to deliver DA and simultaneously activate GABA-receptors in the brain. For this purpose, both DA and LD ethyl ester were linked by carbamate bond to imidazo[1,2-a]pyridine acetamide moieties to yield two DA- and two LD-imidazopyridine derivatives. These compounds were evaluated in vitro to assess their stability, binding affinities and cell membrane transport, and in vivo to assess their bio-availability via microdialysis studies. The two DA derivatives were adequately stable in buffered solution, but underwent cleavage in diluted human serum. By contrast, the LD derivatives were unstable in buffered solution. Receptor binding studies showed that the DA-imidazopyridine carbamates had binding affinity for benzodiazepine receptors in the nanomolar range. Brain microdialysis experiments indicated that intraperitoneal administration of the DA derivatives sustained DA levels in rat striatum over a 4-h period. These results suggest that DA-imidazopyridine carbamates are new DA codrugs with potential application for DA replacement therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jimenez, Jon J.; Yang, Runze; Nathoo, Nabeela; Varshney, Vishal P.; Golestani, Ali-Mohammad; Goodyear, Bradley G.; Metz, Luanne M.; Dunn, Jeff F.
2014-07-01
Multiple sclerosis (MS) impairs brain activity through demyelination and loss of axons. Increased brain activity is accompanied by increases in microvascular hemoglobin oxygen saturation (oxygenation) and total hemoglobin, which can be measured using functional near-infrared spectroscopy (fNIRS). Due to the potentially reduced size and integrity of the white matter tracts within the corpus callosum, it may be expected that MS patients have reduced functional communication between the left and right sides of the brain; this could potentially be an indicator of disease progression. To assess interhemispheric communication in MS, we used fNIRS during a unilateral motor task and the resting state. The magnitude of the change in hemoglobin parameters in the motor cortex was significantly reduced in MS patients during the motor task relative to healthy control subjects. There was also a significant decrease in interhemispheric communication between the motor cortices (expressed as coherence) in MS patients compared to controls during the motor task, but not during the resting state. fNIRS assessment of interhemispheric coherence during task execution may be a useful marker in disorders with white matter damage or axonal loss, including MS.
Schankin, Christoph J; Maniyar, Farooq H; Seo, Youngho; Kori, Shashidar; Eller, Michael; Chou, Denise E; Blecha, Joseph; Murphy, Stephanie T; Hawkins, Randall A; Sprenger, Till; VanBrocklin, Henry F; Goadsby, Peter J
2016-07-01
SEE DREIER DOI 101093/AWW112 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: For many decades a breakdown of the blood-brain barrier has been postulated to occur in migraine. Hypothetically this would facilitate access of medications, such as dihydroergotamine or triptans, to the brain despite physical properties otherwise restricting their entry. We studied the permeability of the blood-brain barrier in six migraineurs and six control subjects at rest and during acute glyceryl trinitrate-induced migraine attacks using positron emission tomography with the novel radioligand (11)C-dihydroergotamine, which is chemically identical to pharmacologically active dihydroergotamine. The influx rate constant Ki, average dynamic image and time activity curve were assessed using arterial blood sampling and served as measures for receptor binding and thus blood-brain barrier penetration. At rest, there was binding of (11)C-dihydroergotamine in the choroid plexus, pituitary gland, and venous sinuses as expected from the pharmacology of dihydroergotamine. However, there was no binding to the brain parenchyma, including the hippocampus, the area with the highest density of the highest-affinity dihydroergotamine receptors, and the raphe nuclei, a postulated brainstem site of action during migraine, suggesting that dihydroergotamine is not able to cross the blood-brain barrier. This binding pattern was identical in migraineurs during glyceryl trinitrate-induced migraine attacks as well as in matched control subjects. We conclude that (11)C-dihydroergotamine is unable to cross the blood-brain barrier interictally or ictally demonstrating that the blood-brain barrier remains tight for dihydroergotamine during acute glyceryl trinitrate-induced migraine attacks. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
Lewis Phillips, Gail D; Nishimura, Merry C; Lacap, Jennifer Arca; Kharbanda, Samir; Mai, Elaine; Tien, Janet; Malesky, Kimberly; Williams, Simon P; Marik, Jan; Phillips, Heidi S
2017-08-01
The extent to which efficacy of the HER2 antibody Trastuzumab in brain metastases is limited by access of antibody to brain lesions remains a question of significant clinical importance. We investigated the uptake and distribution of trastuzumab in brain and mammary fat pad grafts of HER2-positive breast cancer to evaluate the relationship of these parameters to the anti-tumor activity of trastuzumab and trastuzumab emtansine (T-DM1). Mouse transgenic breast tumor cells expressing human HER2 (Fo2-1282 or Fo5) were used to establish intracranial and orthotopic tumors. Tumor uptake and tissue distribution of systemically administered 89 Zr-trastuzumab or muMAb 4D5 (murine parent of trastuzumab) were measured by PET and ELISA. Efficacy of muMAb 4D5, the PI3K/mTOR inhibitor GNE-317, and T-DM1 was also assessed. 89 Zr-trastuzumab and muMAb 4D5 exhibited robust uptake into Fo2-1282 brain tumors, but not normal brains. Uptake into brain grafts was similar to mammary grafts. Despite this, muMAb 4D5 was less efficacious in brain grafts. Co-administration of muMAb 4D5 and GNE-317, a brain-penetrant PI3K/mTOR inhibitor, provided longer survival in mice with brain lesions than either agent alone. Moreover, T-DM1 increased survival in the Fo5 brain metastasis model. In models of HER2-positive breast cancer brain metastasis, trastuzumab efficacy does not appear to be limited by access to intracranial tumors. Anti-tumor activity improved with the addition of a brain-penetrant PI3K/mTOR inhibitor, suggesting that combining targeted therapies is a more effective strategy for treating HER2-positive breast cancer brain metastases. Survival was also extended in mice with Fo5 brain lesions treated with T-DM1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padilla, S.; Marshall, R.S.; Hunter, D.L.
To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n = 4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); carbofuran (0.5 mg/kg in corn oil); formetanate HCl (10 mg/kg in water); methomyl (3 mg/kg in water); methiocarb (25 mg/kg in corn oil); oxamyl (1 mg/kg in water); or propoxur (20 mg/kg in corn oil). This level of dosing produced at least 40% brain ChE inhibition. Brain and blood were taken from 0.5 tomore » 24 h after dosing for analysis of ChE activity using two different methods: (1) a radiometric method which limits the amount of reactivation of ChE activity, and (2) a spectrophotometric method (Ellman method using traditional, unmodified conditions) which may encourage reactivation. The time of peak ChE inhibition was similar for all seven N-methyl carbamate pesticides: 0.5-1.0 h after dosing. By 24 h, brain and RBC ChE activity in all animals returned to normal. The spectrophotometric method underestimated ChE inhibition. Moreover, there was a strong, direct correlation between brain and RBC ChE activity (radiometric assay) for all seven compounds combined (r {sup 2} = 0.73, slope 1.1), while the spectrophotometric analysis of the same samples showed a poor correlation (r {sup 2} = 0.09). For formetanate, propoxur, methomyl, and methiocarb, brain and RBC ChE inhibitions were not different over time, but for carbaryl, carbofuran and oxamyl, the RBC ChE was slightly more inhibited than brain ChE. These data indicate (1) the radiometric method is superior for analyses of ChE activity in tissues from carbamate-treated animals (2) that animals treated with these N-methyl carbamate pesticides are affected rapidly, and recover rapidly, and (3) generally, assessment of RBC ChE is an accurate predictor of brain ChE inhibition for these seven pesticides.« less
Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F
2016-01-01
In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.
Jukuri, Tuomas; Kiviniemi, Vesa; Nikkinen, Juha; Miettunen, Jouko; Mäki, Pirjo; Jääskeläinen, Erika; Mukkala, Sari; Koivukangas, Jenni; Nordström, Tanja; Taanila, Anja; Moilanen, Irma; Heinimaa, Markus; Barnett, Jennifer H; Jones, Peter B; Murray, Graham K; Veijola, Juha
2013-02-01
The default mode network (DMN) is active in the brain at rest and de-activated during cognitive tasks. Abnormal function in the DMN has been reported in people with schizophrenia but it is not known whether this applies also to people with a familial risk for psychosis (FR). We compared the activity of the DMN between FR participants and controls. We conducted a resting state functional MRI (R-fMRI) in 72 young adults without psychosis and with a history of psychosis in one or both parents (FR group) and 72 age matched controls without parental psychosis, and without current psychosis or a current prodromal syndrome. Both groups were drawn from the Northern Finland Birth Cohort 1986 (Oulu Brain and Mind study). Parental psychosis was established using the Finnish hospital discharge register. We pre-processed R-fMRI data using independent component analysis followed by a dual regression approach to assess differences between the groups. The FR vs. Control group differences were assessed using non-parametric permutation tests utilizing threshold-free cluster enhancement and correcting for multiple comparisons (p<0.05). FR participants demonstrated significantly lower activity compared with controls in the posterior cingulate cortex, the central node of the DMN. The size of the region was 41 mm(3). The activity of the DMN differed between FR and control groups. This suggests that familial risk for psychotic disorders may be mediated through genetic effects on connectivity in the posterior cingulate cortex. Copyright © 2012 Elsevier B.V. All rights reserved.
Pizem, Joze; Velnar, Tomaz; Prestor, Borut; Mlakar, Jernej; Popovic, Mara
2014-01-01
Despite the important prognostic value of brain invasion in meningiomas, little attention has been paid to its massessment, and the parameters associated with brain invasion assessability (identification of brain tissue in the surgical specimen) are not well characterized. The aim of our study was to determine the parameters that are associated with brain invasion assessability and brain invasion in meningiomas. By binary logistic regression analysis, we studied the association of various clinical and pathologic parameters with brain invasion assessabilitym and brain invasion in 294 meningiomas: 149 unselected consecutive meningiomas with extensive sampling, diagnosed in 2009 and 2010, collected prospectively, and 145 meningiomas diagnosed in 1999 and 2000 when little attention was paid to brain invasion assessment. Meningioma grade, size and number of tissue blocks were independent predictors of brain invasion assessability. Brain tissue was identified in 78 of 233 (33%) benign, 33 of 51 (65%) atypical, and 10 of 10 (100%) malignant meningiomas. In univariate analysis, group (prospective vs.retrospective), type (recurrent vs. primary), cleavability, meningioma grade and mitotic count were predictors of brain invasion, while only meningioma grade, and group retained predictive value in multivariate analysis. Brain invasion, when assessable, was identified in 22 of 78 (28%) benign, 21 of 33 (64%) atypical, and 10 of 10 (100%) malignant meningiomas. Brain invasion assessability is related to meningioma grade and size and can be improved by extensive sampling of meningioma surgical.
ERIC Educational Resources Information Center
Bowers, Jeffrey S.; Davis, Colin J.; Mattys, Sven L.; Damian, Markus F.; Hanley, Derek
2009-01-01
Three picture-word interference (PWI) experiments assessed the extent to which embedded subset words are activated during the identification of spoken superset words (e.g., "bone" in "trombone"). Participants named aloud pictures (e.g., "brain") while spoken distractors were presented. In the critical condition,…
Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.
Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia
2017-07-15
In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.
Chronic Methamphetamine Effects on Brain Structure and Function in Rats
Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.
2016-01-01
Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity. PMID:27275601
Chronic Methamphetamine Effects on Brain Structure and Function in Rats.
Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D
2016-01-01
Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity.
Monitoring alert and drowsy states by modeling EEG source nonstationarity
NASA Astrophysics Data System (ADS)
Hsu, Sheng-Hsiou; Jung, Tzyy-Ping
2017-10-01
Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r = -0.390 with alertness models and r = 0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to monitoring cognitive or mental states of human operators in attention-critical settings or in passive brain-computer interfaces.
Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko
2017-01-01
The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN (n = 18) and a group of HW participants (n = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients. PMID:28993739
Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko
2017-01-01
The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN ( n = 18) and a group of HW participants ( n = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients.
Neural contributions to flow experience during video game playing.
Klasen, Martin; Weber, René; Kircher, Tilo T J; Mathiak, Krystyna A; Mathiak, Klaus
2012-04-01
Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed-at least partially-by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment.
Towards a hemodynamic BCI using transcranial Doppler without user-specific training data
NASA Astrophysics Data System (ADS)
Aleem, Idris; Chau, Tom
2013-02-01
Transcranial Doppler (TCD) was recently introduced as a new brain-computer interface (BCI) modality for detecting task-induced hemispheric lateralization. To date, single-trial discrimination between a lateralized mental activity and a rest state has been demonstrated with long (45 s) activation time periods. However, the possibility of detecting successive activations in a user-independent framework (i.e. without training data from the user) remains an open question. Objective. The objective of this research was to assess TCD-based detection of lateralized mental activity with a user-independent classifier. In so doing, we also investigated the accuracy of detecting successive lateralizations. Approach. TCD data from 18 participants were collected during verbal fluency, mental rotation tasks and baseline counting tasks. Linear discriminant analysis and a set of four time-domain features were used to classify successive left and right brain activations. Main results. In a user-independent framework, accuracies up to 74.6 ± 12.6% were achieved using training data from a single participant, and lateralization task durations of 18 s. Significance. Subject-independent, algorithmic classification of TCD signals corresponding to successive brain lateralization may be a feasible paradigm for TCD-BCI design.
Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network.
Sciaraffa, Nicolina; Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Colosimo, Alfredo; Bezerianos, Anastasios; Thakor, Nitish V; Babiloni, Fabio
2017-07-21
Subjects' interaction is the core of most human activities. This is the reason why a lack of coordination is often the cause of missing goals, more than individual failure. While there are different subjective and objective measures to assess the level of mental effort required by subjects while facing a situation that is getting harder, that is, mental workload, to define an objective measure based on how and if team members are interacting is not so straightforward. In this study, behavioral, subjective and synchronized electroencephalographic data were collected from couples involved in a cooperative task to describe the relationship between task difficulty and team coordination, in the sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity analysis provided information about the whole interacting system. The results showed that averaged local properties of a brain network were affected by task difficulty. In particular, strength changed significantly with task difficulty and clustering coefficients strongly correlated with the workload itself. In particular, a higher workload corresponded to lower clustering values over the central and parietal brain areas. Such results has been interpreted as less efficient organization of the network when the subjects' activities, due to high workload tendencies, were less coordinated.
Urbanowicz, Tomasz K; Budniak, Wiktor; Buczkowski, Piotr; Perek, Bartłomiej; Walczak, Maciej; Tomczyk, Jadwiga; Katarzyński, Sławomir; Jemielity, Marek
2014-12-01
Monitoring the central nervous system during aortic dissection repair may improve the understanding of the intraoperative changes related to its bioactivity. The aim of the study was to evaluate the influence of deep hypothermia on intraoperative brain bioactivity measured by the compressed spectral array (CSA) method and to assess the influence of the operations on postoperative cognitive function. The study enrolled 40 patients (31 men and 9 women) at the mean age of 60.2 ± 8.6 years, diagnosed with acute aortic dissection. They underwent emergency operations in deep hypothermic circulatory arrest (DHCA). During the operations, brain bioactivity was monitored with the compressed spectral array method. There were no intraoperative deaths. Electrocerebral silence during DHCA was observed in 31 patients (74%). The lowest activity was observed during DHCA: it was 0.01 ± 0.05 nW in the left hemisphere and 0.01 ± 0.03 nW in the right hemisphere. The postoperative results of neurological tests deteriorated statistically significantly (26.9 ± 1.7 points vs. 22.0 ± 1.7 points; p < 0.001), especially among patients who exhibited brain activity during DHCA. The compressed spectral array method is clinically useful in monitoring brain bioactivity during emergency operations of acute aortic dissections. Electrocerebral silence occurs in 75% of patients during DHCA. The cognitive function of patients deteriorates significantly after operations with DHCA.
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Determining Brain Mechanisms that Underpin Analgesia Induced by the Use of Pain Coping Skills.
Cole, Leonie J; Bennell, Kim L; Ahamed, Yasmin; Bryant, Christina; Keefe, Francis; Moseley, G Lorimer; Hodges, Paul; Farrell, Michael J
2018-02-16
Cognitive behavioral therapies decrease pain and improve mood and function in people with osteoarthritis. This study assessed the effects of coping strategies on the central processing of knee pain in people with osteoarthritis of the knees. Mechanical pressure was applied to exacerbate knee pain in 28 people with osteoarthritis of the knee. Reports of pain intensity and functional magnetic resonance imaging measures of pain-related brain activity were recorded with and without the concurrent use of pain coping skills. Coping skills led to a significant reduction in pain report (Coping = 2.64 ± 0.17, Not Coping = 3.28 ± 0.15, P < 0.001). These strategies were associated with increased activation in pain modulatory regions of the brain (medial prefrontal and rostral anterior cingulate cortices, Pcorrected < 0.05) and decreased pain-related activation in regions that process noxious input (midcingulate cortex, supplementary motor area, secondary somatosensory cortex, and anterior parietal lobule, Pcorrected < 0.05). The magnitude of the decrease in pain report during the use of pain coping strategies was found to be proportional to the decrease in pain-related activation in brain regions that code the aversive/emotional dimension of pain (anterior insula, inferior frontal gyrus, orbitofrontal cortex, Pcorrected < 0.05) but did not differ between groups with and without training in coping skills. However, training in coping skills reduced the extent to which brain responses to noxious input were influenced by anxiety. The results of this study support previous reports of pain modulation by cognitive pain coping strategies and contribute to the current understanding of how analgesia associated with the use of pain coping strategies is represented in the brain.
Noé, Francesco M; Bellistri, Elisa; Colciaghi, Francesca; Cipelletti, Barbara; Battaglia, Giorgio; de Curtis, Marco; Librizzi, Laura
2016-06-01
Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.
Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika
2016-03-01
Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p < 0.05) and performed worse in beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.
Lowe, Sonya S; Danielson, Brita; Beaumont, Crystal; Watanabe, Sharon M; Baracos, Vickie E; Courneya, Kerry S
2015-07-01
The aim of this study is to examine the demographic, medical, and social-cognitive correlates of objectively measured sedentary behavior in advanced cancer patients with brain metastases. Advanced cancer patients diagnosed with brain metastases, aged 18 years or older, cognitively intact, and with palliative performance scale greater than 30%, were recruited from a Rapid Access Palliative Radiotherapy Program multidisciplinary brain metastases clinic. A cross-sectional survey interview assessed the theory of planned behavior variables and medical and demographic information. Participants wore activPAL™ (PAL Technologies Ltd, Glasgow, United Kingdom) accelerometers recording time spent supine, sitting, standing, and stepping during 7 days encompassing palliative whole brain radiotherapy treatments. Thirty-one patients were recruited. Correlates of median time spent supine or sitting in hours per day were instrumental attitude (i.e., perceived benefits) of physical activity (r = -0.42; p = 0.030) and affective attitude (i.e., perceived enjoyment) of physical activity (r = -0.43; p = 0.024). Moreover, participants who sat or were supine for greater than 20.7 h per day reported significantly lower instrumental attitude (M = 0.7; 95% CI = 0.0-1.4; p = 0.051) and affective attitude (M = 0.7; 95% CI = 0.0-1.4; p = 0.041). Finally, participants who were older than 60 years of age spent more time sitting or being supine. Instrumental attitude and affective attitude were the strongest correlates of objectively measured sedentary behavior. This information could inform intervention studies to increase physical activity in advanced cancer patients with brain metastases. Copyright © 2014 John Wiley & Sons, Ltd.
[The pharmacology of memory (results and prospects)].
Borodkin, Iu S; Zaĭtsev, Iu V
1984-07-01
Principal possibilities and limits of using the pharmacological approach for control of memory in studies of neurophysiological and neurochemical mechanisms of learning and memory in humans and animals are reviewed as well as its place in experimental and clinical therapy of memory disorders. Using an unspecific connector aethimizol as a pharmacological probe aided to assess changes accompanying the formation and consolidation of memory traces. The significance of fast and slow bioelectrical brain activity in the memory processing, the role of enzymes involved in transcription and template chromatine activity of the neurons under the effect of drugs on memory and learning, the correlation between time-depending learning and the pattern of RNA synthesis in brain cells, as well as possibilities and pathways of utilization of drugs in the correction of the long-term memory matrix formed by a stable pathological state of the brain, are discussed.
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
Radon inhalation protects against transient global cerebral ischemic injury in gerbils.
Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori
2014-10-01
Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils.
Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments.
Balardin, Joana B; Zimeo Morais, Guilherme A; Furucho, Rogério A; Trambaiolli, Lucas; Vanzella, Patricia; Biazoli, Claudinei; Sato, João R
2017-01-01
Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS) have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis), playing a musical instrument (i.e., piano and violin) alone or in duo and performing daily activities for many hours (i.e., continuous monitoring). Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.
Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments
Balardin, Joana B.; Zimeo Morais, Guilherme A.; Furucho, Rogério A.; Trambaiolli, Lucas; Vanzella, Patricia; Biazoli, Claudinei; Sato, João R.
2017-01-01
Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS) have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis), playing a musical instrument (i.e., piano and violin) alone or in duo and performing daily activities for many hours (i.e., continuous monitoring). Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience. PMID:28567011
Hu, Guoku; Liao, Ke; Yang, Lu; Pendyala, Gurudutt; Kook, Yeonhee; Fox, Howard S; Buch, Shilpa
2017-09-01
Astrocyte activation is a hallmark of HIV infection and aging in the CNS. In chronically infected HIV patients, prolonged activation of astrocytes has been linked to accelerated aging including but not limited to neurocognitive impairment and frailty. The current study addresses the role of HIV protein Tat in inducing a set of small noncoding microRNAs (miRNA) that play critical role in astrogliosis. In our efforts to link astrocyte activation as an indicator of aging, we assessed the brains of both wild type and HIV transgenic rats for the expression of glial fibrillary acidic protein (GFAP). As expected, in the WT animals we observed age-dependent increase in astrogliosis in the older animals compared to the younger group. Interestingly, compared to the young WT group, young HIV Tg rats exhibited higher levels of GFAP in this trend was also observed in the older HIV Tg rats compared to the older WT group. Based on the role of SIRT1 in aging and the regulation of SIRT1 by miRNAs-34a and -138, we next assessed the expression levels of these miRs in the brains of both the young an old WT and HIV Tg rats. While there were no significant differences in the young WT versus the HIV Tg rats, in the older HIV Tg rats there was a significant upregulation in the expression of miRs-34a & -138 in the brains. Furthermore, increased expression of miRs-34a & -138 in the older Tg rats, correlated with a concomitant decrease in their common anti-aging target protein SIRT1, in the brains of these animals. To delineate the mechanism of action we assessed the role of HIV-Tat (present in the Tg rats) in inducing miRs-34a & -138 in both the primary astrocytes and the astrocytoma cell line A172, thereby leading to posttranscriptional suppression of SIRT1 with a concomitant up regulation of NF-kB driven expression of GFAP.
NASA Astrophysics Data System (ADS)
Li, Lin; Zeng, Li; Lin, Zi-Jing; Cazzell, Mary; Liu, Hanli
2015-05-01
Test-retest reliability of neuroimaging measurements is an important concern in the investigation of cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in inter-rater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess intertest reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk decision-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed and solutions are suggested.
Function Lateralization via Measuring Coherence Laterality
Wang, Ze; Mechanic-Hamilton, Dawn; Pluta, John; Glynn, Simon; Detre, John A.
2009-01-01
A data-driven approach for lateralization of brain function based on the spatial coherence difference of functional MRI (fMRI) data in homologous regions-of-interest (ROI) in each hemisphere is proposed. The utility of using coherence laterality (CL) to determine function laterality was assessed first by examining motor laterality using normal subjects’ data acquired both at rest and with a simple unilateral motor task and subsequently by examining mesial temporal lobe memory laterality in normal subjects and patients with temporal lobe epilepsy. The motor task was used to demonstrate that CL within motor ROI correctly lateralized functional stimulation. In patients with unilateral epilepsy studied during a scene-encoding task, CL in a hippocampus-parahippocampus-fusiform (HPF) ROI was concordant with lateralization based on task activation, and the CL index (CLI) significantly differentiated the right side group to the left side group. By contrast, normal controls showed a symmetric HPF CLI distribution. Additionally, similar memory laterality prediction results were still observed using CL in epilepsy patients with unilateral seizures after the memory encoding effect was removed from the data, suggesting the potential for lateralization of pathological brain function based on resting fMRI data. A better lateralization was further achieved via a combination of the proposed approach and the standard activation based approach, demonstrating that assessment of spatial coherence changes provides a complementary approach to quantifying task-correlated activity for lateralizing brain function. PMID:19345736
Gender differences in creative thinking: behavioral and fMRI findings.
Abraham, Anna; Thybusch, Kristin; Pieritz, Karoline; Hermann, Christiane
2014-03-01
Gender differences in creativity have been widely studied in behavioral investigations, but this topic has rarely been the focus of neuroscientific research. The current paper presents follow-up analyses of a previous fMRI study (Abraham et al., Neuropsychologia 50(8):1906-1917, 2012b), in which behavioral and brain function during creative conceptual expansion as well as general divergent thinking were explored. Here, we focus on gender differences within the same sample. Conceptual expansion was assessed with the alternate uses task relative to the object location task, whereas divergent thinking was assessed in terms of responses across both the alternate uses and object location tasks relative to n-back working memory tasks. While men and women were indistinguishable in terms of behavioral performance across all tasks, the pattern of brain activity while engaged in the tasks in question was indicative of strategy differences between the genders. Brain areas related to semantic cognition, rule learning and decision making were preferentially engaged in men during conceptual expansion, whereas women displayed higher activity in regions related to speech processing and social perception. During divergent thinking, declarative memory related regions were strongly activated in men, while regions involved in theory of mind and self-referential processing were more engaged in women. The implications of gender differences in adopted strategies or cognitive style when faced with generative tasks are discussed.
Ibitayo, A O; Afolabi, O B; Akinyemi, A J; Ojiezeh, T I; Adekoya, K O; Ojewunmi, O O
2017-01-01
The advent of Wi-Fi connected high technology devices in executing day-to-day activities is fast evolving especially in developing countries of the world and hence the need to assess its safety among others. The present study was conducted to investigate the injurious effect of radiofrequency emissions from installed Wi-Fi devices in brains of young male rats. Animals were divided into four equal groups; group 1 served as control while groups 2, 3, and 4 were exposed to 2.5 Ghz at intervals of 30, 45, and 60 consecutive days with free access to food and water ad libitum. Alterations in harvested brain tissues were confirmed by histopathological analyses which showed vascular congestion and DNA damage in the brain was assayed using agarose gel electrophoresis. Histomorphometry analyses of their brain tissues showed perivascular congestion and tissue damage as well.
Gene expression changes in the course of normal brain aging are sexually dimorphic
Berchtold, Nicole C.; Cribbs, David H.; Coleman, Paul D.; Rogers, Joseph; Head, Elizabeth; Kim, Ronald; Beach, Tom; Miller, Carol; Troncoso, Juan; Trojanowski, John Q.; Zielke, H. Ronald; Cotman, Carl W.
2008-01-01
Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20–99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea. PMID:18832152
Abdel-Bar, Hend Mohamed; Abdel-Reheem, Amal Youssef; Awad, Gehanne Abdel Samie; Mortada, Nahed Daoud
2013-01-01
The aim of the study was to target clonazepam, a CNS active drug, to the brain through the non-invasive intranasal (in) route using of nanocarriers with proven safety in clonazepam nanocarriers were prepared by mixing isopropyl myristate, Tween 80, Cremophor EL or lecithin, polyethylene glycol 200, propylene glycol or ethanol in different ratios with water. in-vitro characterization of the nanocarriers was done by various methods including: polarized light microscopy, particle size determination, viscosity measurements and drug release studies. in-vivo study comparing intranasal and intravenous administration was performed. The drug targeting efficiency (DTE %) and direct nose to brain transport percentage (DTP %) were calculated and nasal integrity assessment was carried out. The obtained formulae had particle size below 100 nm favoring rapid direct nose to brain transport and the time for 100% drug release (T100%) depended on systems composition. Plasma Tmax of clonazepam nanostructured carriers varied from 10-30 min., while their brain Tmax did not exceed 10 min, in comparison with 30 min for iv solution. Although there was no significant difference (p>0.05) between the plasma AUC0-∞ of the different tested nanocarriers and intravenous one, the increase in brain AUC 0 -∞ of different nasal formulations in comparison to that of iv administration (3.6 -7.2 fold) confirms direct nose to brain transport via olfactory region. Furthermore, DTE and DTP% confirmed brain targeting of clonazepam following intranasal administration. The results confirmed that intranasal nanocarriers were proved to be safe alternative for iv clonazepam delivery with rapid nose to brain transport.
Characterizing Resting-State Brain Function Using Arterial Spin Labeling
Jann, Kay; Wang, Danny J.J.
2015-01-01
Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930
Clemens, Benjamin; Regenbogen, Christina; Koch, Kathrin; Backes, Volker; Romanczuk-Seiferth, Nina; Pauly, Katharina; Shah, N Jon; Schneider, Frank; Habel, Ute; Kellermann, Thilo
2015-01-01
In functional magnetic resonance imaging (fMRI) studies that apply a "subsequent memory" approach, successful encoding is indicated by increased fMRI activity during the encoding phase for hits vs. misses, in areas underlying memory encoding such as the hippocampal formation. Signal-detection theory (SDT) can be used to analyze memory-related fMRI activity as a function of the participant's memory trace strength (d(')). The goal of the present study was to use SDT to examine the relationship between fMRI activity during incidental encoding and participants' recognition performance. To implement a new approach, post-experimental group assignment into High- or Low Performers (HP or LP) was based on 29 healthy participants' recognition performance, assessed with SDT. The analyses focused on the interaction between the factors group (HP vs. LP) and recognition performance (hits vs. misses). A whole-brain analysis revealed increased activation for HP vs. LP during incidental encoding for remembered vs. forgotten items (hits > misses) in the insula/temporo-parietal junction (TPJ) and the fusiform gyrus (FFG). Parameter estimates in these regions exhibited a significant positive correlation with d('). As these brain regions are highly relevant for salience detection (insula), stimulus-driven attention (TPJ), and content-specific processing of mnemonic stimuli (FFG), we suggest that HPs' elevated memory performance was associated with enhanced attentional and content-specific sensory processing during the encoding phase. We provide first correlative evidence that encoding-related activity in content-specific sensory areas and content-independent attention and salience detection areas influences memory performance in a task with incidental encoding of facial stimuli. Based on our findings, we discuss whether the aforementioned group differences in brain activity during incidental encoding might constitute the basis of general differences in memory performance between HP and LP.
Janse Van Rensburg, Kate; Taylor, Adrian; Benattayallah, Abdelmalek; Hodgson, Tim
2012-06-01
Smokers show heightened activation toward smoking-related stimuli and experience increased cravings which can precipitate smoking cessation relapse. Exercise can be effective for modulating cigarette cravings and attenuating reactivity to smoking cues, but the mechanism by which these effects occur remains uncertain. The objective of the study was to assess the effect of exercise on regional brain activation in response to smoking-related images during temporary nicotine abstinence. In a randomised crossover design, overnight abstinent smokers (n = 20) underwent an exercise (10-min moderate-intensity stationary cycling) and passive control (seating for the same duration) treatment, following 15 h of nicotine abstinence. After each treatment, participants underwent functional magnetic resonance imaging (fMRI) brain scanning while viewing a random series of blocked smoking or neutral images. Self-reported cravings were assessed at baseline, mid-, and post-treatments. There was a significant interaction effect (treatment × time) for desire to smoke, F (2,32) = 12.5, p < 0.001, with significantly lower scores following the exercise at all time points compared with the control treatment. After both exercise and rest, significant areas of activation were found in areas of the limbic lobe and in areas associated with visual attention in response to smoking-related stimuli. Smokers showed increased activation to smoking images in areas associated with primary and secondary visual processing following rest, but not following a session of exercise. The study shows differing activation towards smoking images following exercise compared to a control treatment and may point to a neuro-cognitive process following exercise that mediates effects on cigarette cravings.
Adams, Rachel Sayko; Larson, Mary Jo; Corrigan, John D; Horgan, Constance M; Williams, Thomas V
2012-01-01
To determine whether combat-acquired traumatic brain injury (TBI) is associated with postdeployment frequent binge drinking among a random sample of active duty military personnel. Active duty military personnel who returned home within the past year from deployment to a combat theater of operations and completed a survey health assessment (N = 7155). Cross-sectional observational study with multivariate analysis of responses to the 2008 Department of Defense Survey of Health Related Behaviors Among Active Duty Military Personnel, an anonymous, random, population-based assessment of the armed forces. Frequent binge drinking: 5 or more drinks on the same occasion, at least once per week, in the past 30 days. TBI-AC: self-reported altered consciousness only; loss of consciousness (LOC) of less than 1 minute (TBI-LOC <1); and LOC of 1 minute or greater (TBI-LOC 1+) after combat injury event exposure. Of active duty military personnel who had a past year combat deployment, 25.6% were frequent binge drinkers and 13.9% reported experiencing a TBI on the deployment, primarily TBI-AC (7.5%). In regression models adjusting for demographics and positive screen for posttraumatic stress disorder, active duty military personnel with TBI had increased odds of frequent binge drinking compared with those with no injury exposure or without TBI: TBI-AC (adjusted odds ratio, 1.48; 95% confidence interval, 1.18-1.84); TBI-LOC 1+ (adjusted odds ratio, 1.67; 95% confidence interval, 1.00-2.79). Traumatic brain injury was significantly associated with past month frequent binge drinking after controlling for posttraumatic stress disorder, combat exposure, and other covariates.
Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T
2015-06-01
The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Gama, Marco A S; Raposo, Nádia R B; Mury, Fábio B; Lopes, Fernando C F; Dias-Neto, Emmanuel; Talib, Leda L; Gattaz, Wagner F
2015-10-01
Reduced phospholipase A2 (PLA2) activity has been reported in blood cells and in postmortem brains of patients with Alzheimer disease (AD), and there is evidence that conjugated linoleic acid (CLA) modulates the activity of PLA2 groups in non-brain tissues. As CLA isomers were shown to be actively incorporated and metabolized in the brains of rats, we hypothesized that feeding a diet naturally enriched in CLA would affect the activity and expression of Pla 2 -encoding genes in rat brain tissue, with possible implications for memory. To test this hypothesis, Wistar rats were trained for the inhibitory avoidance task and fed a commercial diet (control) or experimental diets containing either low CLA- or CLA-enriched butter for 4 weeks. After this period, the rats were tested for memory retrieval and killed for tissue collection. Hippocampal expression of 19 Pla 2 genes was evaluated by qPCR, and activities of PLA2 groups (cPLA2, iPLA2, and sPLA2) were determined by radioenzymatic assay. Rats fed the high CLA diet had increased hippocampal mRNA levels for specific PLA2 isoforms (iPla 2 g6γ; cPla 2 g4a, sPla 2 g3, sPla 2 g1b, and sPla 2 g12a) and higher enzymatic activity of all PLA2 groups as compared to those fed the control and the low CLA diet. The increment in PLA2 activities correlated significantly with memory enhancement, as assessed by increased latency in the step-down inhibitory avoidance task after 4 weeks of treatment (rs = 0.69 for iPLA2, P < 0.001; rs = 0.81 for cPLA2, P < 0.001; and rs = 0.69 for sPLA2, P < 0.001). In face of the previous reports showing reduced PLA2 activity in AD brains, the present findings suggest that dairy products enriched in cis-9, trans-11 CLA may be useful in the treatment of this disease.
Larsen, F; Leira, H L
1988-11-01
This study addresses the prevalence of organic brain syndrome (OBS) among long-term toluene-exposed rotagravure workers who are still working. The prevalence of OBS in 22 workers exposed to toluene for a minimum of 12 years and 19 unexposed control subjects, matched for age and employment status, was assessed with a comprehensive clinical psychiatric interview. There was a significantly greater prevalence of mild chronic encephalopathy and organic affective syndrome in the toluene-exposed group.
Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology
2013-10-01
REPORT TYPE Annual 3. DATES COVERED 30 Sep 2012 – 29 Sep 2013 4 . TITLE AND SUBTITLE 5a. CONTRACT NUMBER Novel Genetic Models to Study the Role...infiltration and activation of monocytes due to disruption of the blood-brain barrier [ 4 -6]. Assessing the exact roles of these cells in AD pathogenesis...paradigm of TBI Statement of Work: Task 1. Generate animals required for studies (timeframe, months 2- 4 ) Task 2. Perform FPI (timeframe, months 4 -8
Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.
Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon
2014-01-01
Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.
Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study
Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.
2013-01-01
To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072
Kothari, Mohit; Spin-Neto, Rubens; Nielsen, Jørgen Feldbæk
2016-01-01
To perform a detailed clinical oral health assessment and oral-health-related social and behavioural aspect assessment in individuals with acquired brain injury (ABI). Prospective observational study. Thirteen individuals with ABI were recruited. Individual's social and behavioural history, bed-side oral examination score (BOE), tooth condition and periodontal status (bleeding, plaque and clinical attachment loss) were thoroughly examined. The entire examination took up to 60 minutes, using proper dental armamentarium. All evaluated individuals were diagnosed with chronic generalized periodontitis. A relationship between active periodontal disease and severe BOE score was observed (p = 0.01). Significant interaction between severe BOE scores (≥ 15 or ≥ 14) and periodontal disease severity of ≥ 2 mm (p = 0.01) was observed. The same interaction was seen between severe BOE scores and the combination of 75% extent and 2 mm severity (p = 0.01). Severity and activity of periodontitis showed dependence on individual brushing frequency (p = 0.03 and p = 0.05, respectively). Individuals with ABI had a poor status across a range of oral-, dental- and periodontal-related parameters. Further structured studies are required to define evidence-based assessment approaches for such clinical reality.
Soleman, Remi S; Schagen, Sebastian E E; Veltman, Dick J; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T; Lambalk, Cornelis B; Wouters, Femke; Delemarre-van de Waal, Henriette A
2013-08-01
In the literature, verbal fluency (VF) is generally described as a female-favoring task. Although it is conceivable that this sex difference only evolves during adolescence or adulthood under influence of sex steroids, this has never been investigated in young adolescents. First, to assess sex differences in VF performance and regional brain activation in adolescents. Second, to determine if untreated transsexual adolescents differ from their sex of birth with regard to VF performance and regional brain activation. Twenty-five boys, 26 girls, 8 Male-to-Female transsexual adolescents (MtFs), and 14 Female-to-Male transsexual adolescents (FtMs) were tested in a cross-sectional study, while performing a phonetic and semantic VF task within an MRI scanner. Functional MRI response during VF task. Boys and girls produced similar amounts of words, but the group MtFs produced significantly more words in the phonetic condition compared to control boys, girls, and FtMs. During the semantic condition, no differences were found. With regard to brain activity, control boys showed more activation in the right Rolandic operculum, a small area adjacent to Broca's area, compared to girls. No significant differences in brain activity were found comparing transsexual adolescents, although sub-threshold activation was found in the right Rolandic operculum indicating a trendwise increase in activation from control girls to FtMs to MtFs to control boys. The better performance of MtFs is consistent with our expectation that MtFs perform better on female-favoring tasks. Moreover, they produced more words than girls and FtMs. Even though a trendwise linear increase in brain activity between the four groups only approached significance, it may indicate differences in individuals with gender identity disorder compared to their birth sex. Although our findings should thus be interpreted with caution, they suggest a biological basis for both transgender groups performing in-between the two sexes. © 2013 International Society for Sexual Medicine.
Keerativittayayut, Ruedeerat; Aoki, Ryuta; Sarabi, Mitra Taghizadeh; Jimura, Koji; Nakahara, Kiyoshi
2018-06-18
Although activation/deactivation of specific brain regions have been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here we investigated time-varying functional connectivity patterns across the human brain in periods of 30-40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding. © 2018, Keerativittayayut et al.
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.