PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.
Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng
2015-06-30
Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.
Redox proteomics and the dynamic molecular landscape of the aging brain.
Perluigi, Marzia; Swomley, Aaron M; Butterfield, D Allan
2014-01-01
It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the "way out" of the labyrinth of such complex molecular interactions may help to fill the gap between "normal" brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine "protein" physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age. The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia. Copyright © 2014. Published by Elsevier B.V.
Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan
2011-01-01
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935
Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan
2010-01-01
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.
Korea Brain Initiative: Integration and Control of Brain Functions.
Jeong, Sung-Jin; Lee, Haejin; Hur, Eun-Mi; Choe, Youngshik; Koo, Ja Wook; Rah, Jong-Cheol; Lee, Kea Joo; Lim, Hyun-Ho; Sun, Woong; Moon, Cheil; Kim, Kyungjin
2016-11-02
This article introduces the history and the long-term goals of the Korea Brain Initiative, which is centered on deciphering the brain functions and mechanisms that mediate the integration and control of brain functions that underlie decision-making. The goal of this initiative is the mapping of a functional connectome with searchable, multi-dimensional, and information-integrated features. The project also includes the development of novel technologies and neuro-tools for integrated brain mapping. Beyond the scientific goals this grand endeavor will ultimately have socioeconomic ramifications that not only facilitate global collaboration in the neuroscience community, but also develop various brain science-related industrial and medical innovations. Copyright © 2016. Published by Elsevier Inc.
Stephen Baylin, M.D., Explains Genetics and Epigenetics - TCGA
Stephen Baylin, M.D., at the Johns Hopkins Kimmel Cancer Center discusses the how alterations in the DNA code are deciphered in a combined effort with The Cancer Genome Atlas at the National Cancer Institute to decode the brain cancer genome.
Clustering Coefficients for Correlation Networks.
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.
Clustering Coefficients for Correlation Networks
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties. PMID:29599714
A Multiscale Parallel Computing Architecture for Automated Segmentation of the Brain Connectome
Knobe, Kathleen; Newton, Ryan R.; Schlimbach, Frank; Blower, Melanie; Reid, R. Clay
2015-01-01
Several groups in neurobiology have embarked into deciphering the brain circuitry using large-scale imaging of a mouse brain and manual tracing of the connections between neurons. Creating a graph of the brain circuitry, also called a connectome, could have a huge impact on the understanding of neurodegenerative diseases such as Alzheimer’s disease. Although considerably smaller than a human brain, a mouse brain already exhibits one billion connections and manually tracing the connectome of a mouse brain can only be achieved partially. This paper proposes to scale up the tracing by using automated image segmentation and a parallel computing approach designed for domain experts. We explain the design decisions behind our parallel approach and we present our results for the segmentation of the vasculature and the cell nuclei, which have been obtained without any manual intervention. PMID:21926011
FOXP2 and the neuroanatomy of speech and language.
Vargha-Khadem, Faraneh; Gadian, David G; Copp, Andrew; Mishkin, Mortimer
2005-02-01
That speech and language are innate capacities of the human brain has long been widely accepted, but only recently has an entry point into the genetic basis of these remarkable faculties been found. The discovery of a mutation in FOXP2 in a family with a speech and language disorder has enabled neuroscientists to trace the neural expression of this gene during embryological development, track the effects of this gene mutation on brain structure and function, and so begin to decipher that part of our neural inheritance that culminates in articulate speech.
Deciphering human motion to discriminate social interactions: a developmental neuroimaging study
Sapey-Triomphe, Laurie-Anne; Centelles, Laurie; Roth, Muriel; Fonlupt, Pierre; Hénaff, Marie-Anne; Assaiante, Christine
2017-01-01
Abstract Non-verbal communication plays a major role in social interaction understanding. Using functional magnetic resonance imaging, we explored the development of the neural networks involved in social interaction recognition based on human motion in children (8–11), adolescents (13–17), and adults (20–41). Participants watched point-light videos depicting two actors interacting or moving independently and were asked whether these agents were interacting or not. All groups successfully performed the discrimination task, but children had a lower performance and longer response times than the older groups. In all three groups, the posterior parts of the superior temporal sulci and middle temporal gyri, the inferior frontal gyri and the anterior temporal lobes showed greater activation when observing social interactions. In addition, adolescents and adults recruited the caudate nucleus and some frontal regions that are part of the mirror system. Adults showed greater activations in parietal and frontal regions (part of them belonging to the social brain) than adolescents. An increased number of regions that are part of the mirror system network or the social brain, as well as the caudate nucleus, were recruited with age. In conclusion, a shared set of brain regions enabling the discrimination of social interactions from neutral movements through human motion is already present in 8-year-old children. Developmental processes such as refinements in the social brain and mirror system would help grasping subtle cues in non-verbal aspects of social interactions. PMID:28008075
"Who" is saying "what"? Brain-based decoding of human voice and speech.
Formisano, Elia; De Martino, Federico; Bonte, Milene; Goebel, Rainer
2008-11-07
Can we decipher speech content ("what" is being said) and speaker identity ("who" is saying it) from observations of brain activity of a listener? Here, we combine functional magnetic resonance imaging with a data-mining algorithm and retrieve what and whom a person is listening to from the neural fingerprints that speech and voice signals elicit in the listener's auditory cortex. These cortical fingerprints are spatially distributed and insensitive to acoustic variations of the input so as to permit the brain-based recognition of learned speech from unknown speakers and of learned voices from previously unheard utterances. Our findings unravel the detailed cortical layout and computational properties of the neural populations at the basis of human speech recognition and speaker identification.
The evolution of academic neurology: new information will bring new meaning.
Mobley, William; N Rosenberg, Roger
2012-03-01
We are on the cusp of what promises to be an era of unprecedented progress in neurology. Even with current fiscal constraints and serious concerns about how health care will be organized and financed, in the next 2 decades progress in neurology and neurological science will create important new insights into understanding the brain as we decipher its disorders and discover and apply effective treatments.
Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding
Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro
2015-01-01
Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045
Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V
2015-01-01
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.
Low Level Laser Therapy for Traumatic Brain Injury
2015-10-01
resonance imaging as the primary outcome measure. The second objective is a series of preclinical (mouse) investigations to decipher the mechanisms of LLLT...abnormal imaging (matching DoD definition of moderate TBI) and an anticipated hospital admission of 3 days or longer. We ran the study with these...moderate TBIs fall within the GCS13-15 with abnormal imaging category (instead of GCS9-12). These patients are typically admitted to the ED
Identification of novel phosphatidic acid-binding proteins in the rat brain.
Park, ChiHu; Kang, Du-Seock; Shin, Geon-Hoon; Seo, Jeongkon; Kim, Hyein; Suh, Pann-Ghill; Bae, Chang-Dae; Shin, Joo-Ho
2015-05-19
Phosphatidic acid (PA) is an abundant negatively-charged phospholipid and has long been considered to be an important signaling molecule in diverse cellular events. Thus, the identification of proteins that specifically interact with PA is of considerable interest to understand the regulatory roles of PA. Herein, lipid-affinity purification and mass spectrometric analysis reveals 43 proteins, 19 known and 24 novel, as PA-binding proteins. A lipid-protein overlay assay confirmed that GDI1, PACSIN1, and DPYSL2 interact with not only with PA but also with other phospholipids. These results might be helpful for deciphering the functional effect of PA in the brain. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A Novel Approach to Primary Cell Culture for Octopus vulgaris Neurons
Maselli, Valeria; Xu, Fenglian; Syed, Naweed I.; Polese, Gianluca; Di Cosmo, Anna
2018-01-01
Octopus vulgaris is a unique model system for studying complex behaviors in animals. It has a large and centralized nervous system made up of lobes that are involved in controlling various sophisticated behaviors. As such, it may be considered as a model organism for untangling the neuronal mechanisms underlying behaviors—including learning and memory. However, despite considerable efforts, Octopus lags behind its other counterparts vis-à-vis its utility in deciphering the cellular, molecular and synaptic mechanisms underlying various behaviors. This study represents a novel approach designed to establish a neuronal cell culture protocol that makes this species amenable to further exploitation as a model system. Here we developed a protocol that enables dissociation of neurons from two specific Octopus' brain regions, the vertical-superior frontal system and the optic lobes, which are involved in memory, learning, sensory integration and adult neurogenesis. In particular, cells dissociated with enzyme papain and cultured on Poly-D-Lysine-coated dishes with L15-medium and fetal bovine serum yielded high neuronal survival, axon growth, and re-growth after injury. This model was also explored to define optimal culture conditions and to demonstrate the regenerative capabilities of adult Octopus neurons after axotomy. This study thus further underscores the importance of Octopus neurons as a model system for deciphering fundamental molecular and cellular mechanism of complex brain function and underlying behaviors. PMID:29666582
Role of mechanical factors in cortical folding development
NASA Astrophysics Data System (ADS)
Razavi, Mir Jalil; Zhang, Tuo; Li, Xiao; Liu, Tianming; Wang, Xianqiao
2015-09-01
Deciphering mysteries of the structure-function relationship in cortical folding has emerged as the cynosure of recent research on brain. Understanding the mechanism of convolution patterns can provide useful insight into the normal and pathological brain function. However, despite decades of speculation and endeavors the underlying mechanism of the brain folding process remains poorly understood. This paper focuses on the three-dimensional morphological patterns of a developing brain under different tissue specification assumptions via theoretical analyses, computational modeling, and experiment verifications. The living human brain is modeled with a soft structure having outer cortex and inner core to investigate the brain development. Analytical interpretations of differential growth of the brain model provide preliminary insight into the critical growth ratio for instability and crease formation of the developing brain followed by computational modeling as a way to offer clues for brain's postbuckling morphology. Especially, tissue geometry, growth ratio, and material properties of the cortex are explored as the most determinant parameters to control the morphogenesis of a growing brain model. As indicated in results, compressive residual stresses caused by the sufficient growth trigger instability and the brain forms highly convoluted patterns wherein its gyrification degree is specified with the cortex thickness. Morphological patterns of the developing brain predicted from the computational modeling are consistent with our neuroimaging observations, thereby clarifying, in part, the reason of some classical malformation in a developing brain.
On initial Brain Activity Mapping of episodic and semantic memory code in the hippocampus.
Tsien, Joe Z; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Wang, Phillip Lei; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-10-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
On Initial Brain Activity Mapping of Associative Memory Code in the Hippocampus
Tsien, Joe Z.; Li, Meng; Osan, Remus; Chen, Guifen; Lin, Longian; Lei Wang, Phillip; Frey, Sabine; Frey, Julietta; Zhu, Dajiang; Liu, Tianming; Zhao, Fang; Kuang, Hui
2013-01-01
It has been widely recognized that the understanding of the brain code would require large-scale recording and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway, we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are essential to decipher and measure real-time memory traces and neural dynamics. We also provide an example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical and combinatorial feature-coding cell assembly mechanism represents an emergent property for enabling the neural networks to generate and organize not only episodic memory, but also semantic knowledge and imagination. PMID:23838072
Dharmadhikari, Avinash V.; Kang, Sung-Hae L.; Szafranski, Przemyslaw; Person, Richard E.; Sampath, Srirangan; Prakash, Siddharth K.; Bader, Patricia I.; Phillips, John A.; Hannig, Vickie; Williams, Misti; Vinson, Sherry S.; Wilfong, Angus A.; Reimschisel, Tyler E.; Craigen, William J.; Patel, Ankita; Bi, Weimin; Lupski, James R.; Belmont, John; Cheung, Sau Wai; Stankiewicz, Pawel
2012-01-01
We have identified a rare small (∼450 kb unique sequence) recurrent deletion in a previously linked attention-deficit hyperactivity disorder (ADHD) locus at 2q21.1 in five unrelated families with developmental delay (DD)/intellectual disability (ID), ADHD, epilepsy and other neurobehavioral abnormalities from 17 035 samples referred for clinical chromosomal microarray analysis. Additionally, a DECIPHER (http://decipher.sanger.ac.uk) patient 2311 was found to have the same deletion and presented with aggressive behavior. The deletion was not found in either six control groups consisting of 13 999 healthy individuals or in the DGV database. We have also identified reciprocal duplications in five unrelated families with autism, developmental delay (DD), seizures and ADHD. This genomic region is flanked by large, complex low-copy repeats (LCRs) with directly oriented subunits of ∼109 kb in size that have 97.7% DNA sequence identity. We sequenced the deletion breakpoints within the directly oriented paralogous subunits of the flanking LCR clusters, demonstrating non-allelic homologous recombination as a mechanism of formation. The rearranged segment harbors five genes: GPR148, FAM123C, ARHGEF4, FAM168B and PLEKHB2. Expression of ARHGEF4 (Rho guanine nucleotide exchange factor 4) is restricted to the brain and may regulate the actin cytoskeletal network, cell morphology and migration, and neuronal function. GPR148 encodes a G-protein-coupled receptor protein expressed in the brain and testes. We suggest that small rare recurrent deletion of 2q21.1 is pathogenic for DD/ID, ADHD, epilepsy and other neurobehavioral abnormalities and, because of its small size, low frequency and more severe phenotype might have been missed in other previous genome-wide screening studies using single-nucleotide polymorphism analyses. PMID:22543972
Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V
2015-01-01
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126
Challenges and Opportunities in Mining Neuroscience Data
Akil, Huda; Martone, Maryann E.; Van Essen, David C.
2011-01-01
Understanding the brain requires a broad range of approaches and methods from the domains of biology, psychology, chemistry, physics, and mathematics. The fundamental challenge is to decipher the “neural choreography” associated with complex behaviors and functions, including thoughts, memories, actions, and emotions. This demands the acquisition and integration of vast amounts of data of many types, at multiple scales in time and in space. Here, we discuss the need for neuroinformatics approaches to accelerate progress, using several illustrative examples. The nascent field of ‘connectomics’ aims to comprehensively describe neuronal connectivity at either a macroscopic level (long-distance pathways for the entire brain) or a microscopic level (axons, dendrites, synapses in a small brain region). The Neuroscience Information Framework encompasses all of neuroscience and facilitates integration of existing knowledge and databases of many types. These examples illustrate the opportunities and challenges of data mining across multiple tiers of neuroscience information and underscore the need for cultural and infrastructure changes if neuroinformatics is to fulfill its potential to advance our understanding of the brain. PMID:21311009
Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.
2013-01-01
A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438
Neural mechanisms of movement planning: motor cortex and beyond.
Svoboda, Karel; Li, Nuo
2018-04-01
Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.
Tayebi Meybodi, Ali; Lawton, Michael T
2018-02-23
Brain arteriovenous malformations (bAVM) are challenging lesions. Part of this challenge stems from the infinite diversity of these lesions regarding shape, location, anatomy, and physiology. This diversity has called on a variety of treatment modalities for these lesions, of which microsurgical resection prevails as the mainstay of treatment. As such, outcome prediction and managing strategy mainly rely on unraveling the nature of these complex tangles and ways each lesion responds to various therapeutic modalities. This strategy needs the ability to decipher each lesion through accurate and efficient categorization. Therefore, classification schemes are essential parts of treatment planning and outcome prediction. This article summarizes different surgical classification schemes and outcome predictors proposed for bAVMs.
From the connectome to the synaptome: an epic love story.
DeFelipe, Javier
2010-11-26
A major challenge in neuroscience is to decipher the structural layout of the brain. The term "connectome" has recently been proposed to refer to the highly organized connection matrix of the human brain. However, defining how information flows through such a complex system represents so difficult a task that it seems unlikely it could be achieved in the near future or, for the most pessimistic, perhaps ever. Circuit diagrams of the nervous system can be considered at different levels, although they are surely impossible to complete at the synaptic level. Nevertheless, advances in our capacity to marry macro- and microscopic data may help establish a realistic statistical model that could describe connectivity at the ultrastructural level, the "synaptome," giving us cause for optimism.
DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences
Wright, Erik S.; Yilmaz, L. Safak
2012-01-01
DECIPHER is a new method for finding 16S rRNA chimeric sequences by the use of a search-based approach. The method is based upon detecting short fragments that are uncommon in the phylogenetic group where a query sequence is classified but frequently found in another phylogenetic group. The algorithm was calibrated for full sequences (fs_DECIPHER) and short sequences (ss_DECIPHER) and benchmarked against WigeoN (Pintail), ChimeraSlayer, and Uchime using artificially generated chimeras. Overall, ss_DECIPHER and Uchime provided the highest chimera detection for sequences 100 to 600 nucleotides long (79% and 81%, respectively), but Uchime's performance deteriorated for longer sequences, while ss_DECIPHER maintained a high detection rate (89%). Both methods had low false-positive rates (1.3% and 1.6%). The more conservative fs_DECIPHER, benchmarked only for sequences longer than 600 nucleotides, had an overall detection rate lower than that of ss_DECIPHER (75%) but higher than those of the other programs. In addition, fs_DECIPHER had the lowest false-positive rate among all the benchmarked programs (<0.20%). DECIPHER was outperformed only by ChimeraSlayer and Uchime when chimeras were formed from closely related parents (less than 10% divergence). Given the differences in the programs, it was possible to detect over 89% of all chimeras with just the combination of ss_DECIPHER and Uchime. Using fs_DECIPHER, we detected between 1% and 2% additional chimeras in the RDP, SILVA, and Greengenes databases from which chimeras had already been removed with Pintail or Bellerophon. DECIPHER was implemented in the R programming language and is directly accessible through a webpage or by downloading the program as an R package (http://DECIPHER.cee.wisc.edu). PMID:22101057
Brain coordination dynamics: True and false faces of phase synchrony and metastability
Tognoli, Emmanuelle; Kelso, J.A. Scott
2009-01-01
Understanding the coordination of multiple parts in a complex system such as the brain is a fundamental challenge. We present a theoretical model of cortical coordination dynamics that shows how brain areas may cooperate (integration) and at the same time retain their functional specificity (segregation). This model expresses a range of desirable properties that the brain is known to exhibit, including self-organization, multi-functionality, metastability and switching. Empirically, the model motivates a thorough investigation of collective phase relationships among brain oscillations in neurophysiological data. The most serious obstacle to interpreting coupled oscillations as genuine evidence of inter-areal coordination in the brain stems from volume conduction of electrical fields. Spurious coupling due to volume conduction gives rise to zero-lag (inphase) and antiphase synchronization whose magnitude and persistence obscure the subtle expression of real synchrony. Through forward modeling and the help of a novel colorimetric method, we show how true synchronization can be deciphered from continuous EEG patterns. Developing empirical efforts along the lines of continuous EEG analysis constitutes a major response to the challenge of understanding how different brain areas work together. Key predictions of cortical coordination dynamics can now be tested thereby revealing the essential modus operandi of the intact living brain. PMID:18938209
Borck, Cornelius
2016-01-01
A recent paper famously accused the rising field of social neuroscience of using faulty statistics under the catchy title ‘Voodoo Correlations in Social Neuroscience’. This Special Issue invites us to take this claim as the starting point for a cross-cultural analysis: in which meaningful ways can recent research in the burgeoning field of functional imaging be described as, contrasted with, or simply compared to animistic practices? And what light does such a reading shed on the dynamics and effectiveness of a century of brain research into higher mental functions? Reviewing the heated debate from 2009 around recent trends in neuroimaging as a possible candidate for current instances of ‘soul catching’, the paper will then compare these forms of primarily image-based brain research with older regimes, revolving around the deciphering of the brain’s electrical activity. How has the move from a decoding paradigm to a representational regime affected the conceptualisation of self, psyche, mind and soul (if there still is such an entity)? And in what ways does modern technoscience provide new tools for animating brains? PMID:27292322
Label-free volumetric optical imaging of intact murine brains
NASA Astrophysics Data System (ADS)
Ren, Jian; Choi, Heejin; Chung, Kwanghun; Bouma, Brett E.
2017-04-01
A central effort of today’s neuroscience is to study the brain’s ’wiring diagram’. The nervous system is believed to be a network of neurons interacting with each other through synaptic connection between axons and dendrites, therefore the neuronal connectivity map not only depicts the underlying anatomy, but also has important behavioral implications. Different approaches have been utilized to decipher neuronal circuits, including electron microscopy (EM) and light microscopy (LM). However, these approaches typically demand extensive sectioning and reconstruction for a brain sample. Recently, tissue clearing methods have enabled the investigation of a fully assembled biological system with greatly improved light penetration. Yet, most of these implementations, still require either genetic or exogenous contrast labeling for light microscopy. Here we demonstrate a high-speed approach, termed as Clearing Assisted Scattering Tomography (CAST), where intact brains can be imaged at optical resolution without labeling by leveraging tissue clearing and the scattering contrast of optical frequency domain imaging (OFDI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Schiess, Adrian B.; Howell, Jamie
2013-10-01
The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we willmore » instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.« less
Nanotools for Neuroscience and Brain Activity Mapping
Alivisatos, A. Paul; Andrews, Anne M.; Boyden, Edward S.; Chun, Miyoung; Church, George M.; Deisseroth, Karl; Donoghue, John P.; Fraser, Scott E.; Lippincott-Schwartz, Jennifer; Looger, Loren L.; Masmanidis, Sotiris; McEuen, Paul L.; Nurmikko, Arto V.; Park, Hongkun; Peterka, Darcy S.; Reid, Clay; Roukes, Michael L.; Scherer, Axel; Schnitzer, Mark; Sejnowski, Terrence J.; Shepard, Kenneth L.; Tsao, Doris; Turrigiano, Gina; Weiss, Paul S.; Xu, Chris; Yuste, Rafael; Zhuang, Xiaowei
2013-01-01
Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function. PMID:23514423
Evolvix BEST Names for semantic reproducibility across code2brain interfaces
Scheuer, Katherine S.; Keel, Seth A.; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C.; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G.; Moog, Cecilia L.; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist‐Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda‐Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L.; Freiberg, Erika; Waters, Noah P.; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M.; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha
2016-01-01
Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general‐purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long‐term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder‐brains to reader‐brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. PMID:27918836
Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi
2018-05-16
Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.
Liu, Bin; Gao, Hui-Ming; Hong, Jau-Shyong
2003-01-01
Idiopathic Parkinson's disease (PD) is a devastating movement disorder characterized by selective degeneration of the nigrostriatal dopaminergic pathway. Neurodegeneration usually starts in the fifth decade of life and progresses over 5-10 years before reaching the fully symptomatic disease state. Despite decades of intense research, the etiology of sporadic PD and the mechanism underlying the selective neuronal loss remain unknown. However, the late onset and slow-progressing nature of the disease has prompted the consideration of environmental exposure to agrochemicals, including pesticides, as a risk factor. Moreover, increasing evidence suggests that early-life occurrence of inflammation in the brain, as a consequence of either brain injury or exposure to infectious agents, may play a role in the pathogenesis of PD. Most important, there may be a self-propelling cycle of inflammatory process involving brain immune cells (microglia and astrocytes) that drives the slow yet progressive neurodegenerative process. Deciphering the molecular and cellular mechanisms governing those intricate interactions would significantly advance our understanding of the etiology and pathogenesis of PD and aid the development of therapeutic strategies for the treatment of the disease. PMID:12826478
Recent and ancient recharge deciphered by multi-dating tracer technique
NASA Astrophysics Data System (ADS)
Dogramaci, Shawan; Cook, Peter; Mccallum, Jimes; Purtchert, Roland
2017-04-01
Determining groundwater residence time from environmental tracer concentrations obtained from open bores or long screened intervals is fraught with difficulty because the sampled water represents variety of ages. Information on the distribution of groundwater age is commonly obtained by measuring more than one tracer. We examined the use of the multi-tracer technique representing different time frames (39Ar, 85Kr, 14C, 3H, CFC 11- CFC-12 CFC-113, SF6 and Cl,) to decipher the groundwater ages sampled from long screened bores in a regional aquifer in the Pilbara region of northwest Australia. We then applied a technique that assumes limited details of the form of the age distribution. Tracer concentrations suggest that groundwater samples are a mixture of young and old water - the former is inferred to represent localised recharge from an adjacent creek, and the latter to be diffuse recharge. Using our method, we were able to identify distinct age components in the groundwater. The results suggest the presence of four distinct age groups; zero and 20 years, 50 to 100 years, 100 to 600 years and approximately 1000 years old. These relatively high recharge events were consistent with local recharge sources (50-100 years) and confirmed by palaeo-climate record obtained from lake sediments. We found that although the ages of these components were well constrained, the relative proportions of each component was highly sensitive to errors of environmental tracer data. Our results show that the method we implemented can identify distinct age groups in groundwater samples without prior knowledge of the age distribution. The presence of distinct recharge times gives insight into groundwater flow conditions over long periods of time.
The science of neural interface systems.
Hatsopoulos, Nicholas G; Donoghue, John P
2009-01-01
The ultimate goal of neural interface research is to create links between the nervous system and the outside world either by stimulating or by recording from neural tissue to treat or assist people with sensory, motor, or other disabilities of neural function. Although electrical stimulation systems have already reached widespread clinical application, neural interfaces that record neural signals to decipher movement intentions are only now beginning to develop into clinically viable systems to help paralyzed people. We begin by reviewing state-of-the-art research and early-stage clinical recording systems and focus on systems that record single-unit action potentials. We then address the potential for neural interface research to enhance basic scientific understanding of brain function by offering unique insights in neural coding and representation, plasticity, brain-behavior relations, and the neurobiology of disease. Finally, we discuss technical and scientific challenges faced by these systems before they are widely adopted by severely motor-disabled patients.
Empirical neuroenchantment: from reading minds to thinking critically
Ali, Sabrina S.; Lifshitz, Michael; Raz, Amir
2014-01-01
While most experts agree on the limitations of neuroimaging, the unversed public—and indeed many a scholar—often valorizes brain imaging without heeding its shortcomings. Here we test the boundaries of this phenomenon, which we term neuroenchantment. How much are individuals ready to believe when encountering improbable information through the guise of neuroscience? We introduced participants to a crudely-built mock brain scanner, explaining that the machine would measure neural activity, analyze the data, and then infer the content of complex thoughts. Using a classic magic trick, we crafted an illusion whereby the imaging technology seemed to decipher the internal thoughts of participants. We found that most students—even undergraduates with advanced standing in neuroscience and psychology, who have been taught the shortcomings of neuroimaging—deemed such unlikely technology highly plausible. Our findings highlight the influence neuro-hype wields over critical thinking. PMID:24904389
Duric, Vanja
2014-01-01
Since the 1960s, when the first tricyclic and monoamine oxidase inhibitor antidepressant drugs were introduced, most of the ensuing agents were designed to target similar brain pathways that elevate serotonin and/or norepinephrine signaling. Fifty years later, the main goal of the current depression research is to develop faster-acting, more effective therapeutic agents with fewer side effects, as currently available antidepressants are plagued by delayed therapeutic onset and low response rates. Clinical and basic science research studies have made significant progress towards deciphering the pathophysiological events within the brain involved in development, maintenance, and treatment of major depressive disorder. Imaging and postmortem brain studies in depressed human subjects, in combination with animal behavioral models of depression, have identified a number of different cellular events, intracellular signaling pathways, proteins, and target genes that are modulated by stress and are potentially vital mediators of antidepressant action. In this review, we focus on several neural mechanisms, primarily within the hippocampus and prefrontal cortex, which have recently been implicated in depression and treatment response. PMID:22585060
NASA Astrophysics Data System (ADS)
Sugawara, Shigeru
2015-10-01
Obliterated writing is writing that has been obscured by different-colored materials. There are obliterated writings that cannot be detected by conventional methods. A method for deciphering such obliterated writings was developed in this study. Mid-infrared spectroscopic imaging in the wavelength range of 2.5-14 μm was used for deciphering because the infrared spectrum differs among different brands of colorants. Obliterated writings were made by pressing information protection stamps onto characters written by 4 kinds of colorants. The samples were tested for deciphering by the Fourier-transform infrared imaging system. Two peak areas of two specific wavenumber regions of each reflectance spectrum were calculated and the ratio of the two values is displayed as a unique gray scale in the spectroscopic image. As a result, the absorption peak at various wavenumbers could be used to decipher obliterated writings that could not be detected by the conventional methods. Ten different parameters for deciphering obliterated writing were found in this study.
Psychiatry's Catch 22, Need For Precision, And Placing Schools In Perspective
Singh, Ajai R.
2013-01-01
The catch 22 situation in psychiatry is that for precise diagnostic categories/criteria, we need precise investigative tests, and for precise investigative tests, we need precise diagnostic criteria/categories; and precision in both diagnostics and investigative tests is nonexistent at present. The effort to establish clarity often results in a fresh maze of evidence. In finding the way forward, it is tempting to abandon the scientific method, but that is not possible, since we deal with real human psychopathology, not just concepts to speculate over. Search for clear-cut definitions/diagnostic criteria in psychiatry must be relentless. There is a greater need to be ruthless and blunt in this, rather than being accommodative of diverse opinions. Investigative tests – psychological, serum, CSF, or neuroimaging - are only corroborative at present; they need to become definitive. Medicalisation appears most prominent in psychiatry; so, diagnostic proliferation and fuzziness appear inevitable. And yet, the established diagnostic entities need to forward greater and conclusive precision. Also, the need for clarity and precision must outweigh pandering to and mollifying diverse interests, moreso in the upcoming revision of diagnostic manuals. This is specially because the DSM-5, being an Association manual, may need to accommodate powerful member lobbies; and ICD-11 may similarly need to cater to diverse country lobbies. Finding precise biological correlates of psychiatric phenomena, whether through neuroimaging, molecular neurobiology and/or neurogenomics, is the right way forward. It is in the 1.5-kg structure in the cranium that all secrets of psychiatric conditions lie. Social forces, behavioural modification, psychosocial restructuring, study of intrapsychic processes, and philosophical insights are not to be discounted, but they are supplementary to the primary goal – studying and deciphering those brain processes that result in psychiatric malfunction. Experimental breakthroughs, both in psychiatric aetiology and therapeutics, will come mainly from biology and its adjunct, psychopharmacology; while supplementary and complementary breakthroughs will come from the psychosocial, cognitive and behavioural approaches; the support base will come from phenomenology, epidemiology, nosology and diagnostics; while insights and leads can hopefully come from many fields, especially the psychosocial, the behavioural, the cognitive and the philosophical. Major energies must now be marshalled towards finding biomarkers and deciphering the precise phenotype–genotype–endophenotype axis of psychiatric disorders. Energies also need to be focussed on unravelling those critical processes in the brain that tip the scale towards psychiatric disorders. At how those critical processes are set into motion by forces de novo, in utero, in the genes and their expression, by the environment's psychopathological social forces – stress, peer pressure, poverty, deprivation, alienation, malnutrition, discrimination of various types (caste, gender, race, etc.), mass conflicts (war, terror attacks, etc.), disasters (natural and man-made), religious/ideological fascism – or social institutions like marriage, family, work place, political governance, etc. Ultimately, we must decipher how the brain goes into malfunction when such varied forces impinge on it, which precise cortical areas and neuronal cellular and molecular processes are involved in such malfunction and its manifestation, as also which of these are involved when malfunction ceases and health is restored, and the psychosocial processes and institutions which aid such health restoration, as also those which promote well-being and help in primary prevention. Emphasis on the brain and its intimate neurological and molecular mechanisms will not impinge on, or nullify, importance of the ‘mind,’ wherein subtle and gross brain functions in the form of behaviour, thought and emotions in all their ramifications will continue to be the focus of psychological, cognitive, sociological, psychopharmacological, behavioural and philosophical research. Progress in brain research must move in tandem with progress in ‘mind’ research. PMID:23678237
Psychiatry's Catch 22, Need For Precision, And Placing Schools In Perspective.
Singh, Ajai R
2013-01-01
The catch 22 situation in psychiatry is that for precise diagnostic categories/criteria, we need precise investigative tests, and for precise investigative tests, we need precise diagnostic criteria/categories; and precision in both diagnostics and investigative tests is nonexistent at present. The effort to establish clarity often results in a fresh maze of evidence. In finding the way forward, it is tempting to abandon the scientific method, but that is not possible, since we deal with real human psychopathology, not just concepts to speculate over. Search for clear-cut definitions/diagnostic criteria in psychiatry must be relentless. There is a greater need to be ruthless and blunt in this, rather than being accommodative of diverse opinions. Investigative tests - psychological, serum, CSF, or neuroimaging - are only corroborative at present; they need to become definitive. Medicalisation appears most prominent in psychiatry; so, diagnostic proliferation and fuzziness appear inevitable. And yet, the established diagnostic entities need to forward greater and conclusive precision. Also, the need for clarity and precision must outweigh pandering to and mollifying diverse interests, moreso in the upcoming revision of diagnostic manuals. This is specially because the DSM-5, being an Association manual, may need to accommodate powerful member lobbies; and ICD-11 may similarly need to cater to diverse country lobbies. Finding precise biological correlates of psychiatric phenomena, whether through neuroimaging, molecular neurobiology and/or neurogenomics, is the right way forward. It is in the 1.5-kg structure in the cranium that all secrets of psychiatric conditions lie. Social forces, behavioural modification, psychosocial restructuring, study of intrapsychic processes, and philosophical insights are not to be discounted, but they are supplementary to the primary goal - studying and deciphering those brain processes that result in psychiatric malfunction. Experimental breakthroughs, both in psychiatric aetiology and therapeutics, will come mainly from biology and its adjunct, psychopharmacology; while supplementary and complementary breakthroughs will come from the psychosocial, cognitive and behavioural approaches; the support base will come from phenomenology, epidemiology, nosology and diagnostics; while insights and leads can hopefully come from many fields, especially the psychosocial, the behavioural, the cognitive and the philosophical. Major energies must now be marshalled towards finding biomarkers and deciphering the precise phenotype-genotype-endophenotype axis of psychiatric disorders. Energies also need to be focussed on unravelling those critical processes in the brain that tip the scale towards psychiatric disorders. At how those critical processes are set into motion by forces de novo, in utero, in the genes and their expression, by the environment's psychopathological social forces - stress, peer pressure, poverty, deprivation, alienation, malnutrition, discrimination of various types (caste, gender, race, etc.), mass conflicts (war, terror attacks, etc.), disasters (natural and man-made), religious/ideological fascism - or social institutions like marriage, family, work place, political governance, etc. Ultimately, we must decipher how the brain goes into malfunction when such varied forces impinge on it, which precise cortical areas and neuronal cellular and molecular processes are involved in such malfunction and its manifestation, as also which of these are involved when malfunction ceases and health is restored, and the psychosocial processes and institutions which aid such health restoration, as also those which promote well-being and help in primary prevention. Emphasis on the brain and its intimate neurological and molecular mechanisms will not impinge on, or nullify, importance of the 'mind,' wherein subtle and gross brain functions in the form of behaviour, thought and emotions in all their ramifications will continue to be the focus of psychological, cognitive, sociological, psychopharmacological, behavioural and philosophical research. Progress in brain research must move in tandem with progress in 'mind' research.
Copper signaling in the brain and beyond.
Ackerman, Cheri M; Chang, Christopher J
2018-03-30
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article
NASA Astrophysics Data System (ADS)
Perez Velazquez, Jose Luis
2005-12-01
Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.
Song, Juhyun; Yoon, So Ra
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases. PMID:28680530
Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.
Garbade, Sven F; Greenberg, Cheryl R; Demirkol, Mübeccel; Gökçay, Gülden; Ribes, Antonia; Campistol, Jaume; Burlina, Alberto B; Burgard, Peter; Kölker, Stefan
2014-09-01
Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by inherited deficiency of glutaryl-CoA dehydrogenase and is characterized biochemically by an accumulation of putatively neurotoxic dicarboxylic metabolites. The majority of untreated patients develops a complex movement disorder with predominant dystonia during age 3-36 months. Magnetic resonance imaging (MRI) studies have demonstrated striatal and extrastriatal abnormalities. The major aim of this study was to elucidate the complex neuroradiological pattern of patients with GA-I and to associate the MRI findings with the severity of predominant neurological symptoms. In 180 patients, detailed information about the neurological presentation and brain region-specific MRI abnormalities were obtained via a standardized questionnaire. Patients with a movement disorder had more often MRI abnormalities in putamen, caudate, cortex, ventricles and external CSF spaces than patients without or with minor neurological symptoms. Putaminal MRI changes and strongly dilated ventricles were identified as the most reliable predictors of a movement disorder. In contrast, abnormalities in globus pallidus were not clearly associated with a movement disorder. Caudate and putamen as well as cortex, ventricles and external CSF spaces clearly collocalized on a two-dimensional map demonstrating statistical similarity and suggesting the same underlying pathomechanism. This study demonstrates that complex statistical methods are useful to decipher the age-dependent and region-specific MRI patterns of rare neurometabolic diseases and that these methods are helpful to elucidate the clinical relevance of specific MRI findings.
Roth, Wera; Hecker, David; Fava, Eugenio
2016-01-01
MicroRNAs (miRNAs) are emerging as significant regulators of mRNA complexity in the human central nervous system (CNS) thereby controlling distinct gene expression profiles in a spatio-temporal manner during development, neuronal plasticity, aging and (age-related) neurodegeneration, including Alzheimer's disease (AD). Increasing effort is expended towards dissecting and deciphering the molecular and genetic mechanisms of neurobiological and pathological functions of these brain-enriched miRNAs. Along these lines, recent data pinpoint distinct miRNAs and miRNA networks being linked to APP splicing, processing and Aβ pathology (Lukiw et al., Front Genet 3:327, 2013), and furthermore, to the regulation of tau and its cellular subnetworks (Lau et al., EMBO Mol Med 5:1613, 2013), altogether underlying the onset and propagation of Alzheimer's disease. MicroRNA profiling studies in Alzheimer's disease suffer from poor consensus which is an acknowledged concern in the field, and constitutes one of the current technical challenges. Hence, a strong demand for experimental and computational systems biology approaches arises, to incorporate and integrate distinct levels of information and scientific knowledge into a complex system of miRNA networks in the context of the transcriptome, proteome and metabolome in a given cellular environment. Here, we will discuss the state-of-the-art technologies and computational approaches on hand that may lead to a deeper understanding of the complex biological networks underlying the pathogenesis of Alzheimer's disease.
Paneri, Sofia; Gregoriou, Georgia G.
2017-01-01
The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784
The retina as a window to the brain-from eye research to CNS disorders.
London, Anat; Benhar, Inbal; Schwartz, Michal
2013-01-01
Philosophers defined the eye as a window to the soul long before scientists addressed this cliché to determine its scientific basis and clinical relevance. Anatomically and developmentally, the retina is known as an extension of the CNS; it consists of retinal ganglion cells, the axons of which form the optic nerve, whose fibres are, in effect, CNS axons. The eye has unique physical structures and a local array of surface molecules and cytokines, and is host to specialized immune responses similar to those in the brain and spinal cord. Several well-defined neurodegenerative conditions that affect the brain and spinal cord have manifestations in the eye, and ocular symptoms often precede conventional diagnosis of such CNS disorders. Furthermore, various eye-specific pathologies share characteristics of other CNS pathologies. In this Review, we summarize data that support examination of the eye as a noninvasive approach to the diagnosis of select CNS diseases, and the use of the eye as a valuable model to study the CNS. Translation of eye research to CNS disease, and deciphering the role of immune cells in these two systems, could improve our understanding and, potentially, the treatment of neurodegenerative disorders.
Paneri, Sofia; Gregoriou, Georgia G
2017-01-01
The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.
Taotie neurons regulate appetite in Drosophila
Zhan, Yin Peng; Liu, Li; Zhu, Yan
2016-01-01
The brain has an essential role in maintaining a balance between energy intake and expenditure of the body. Deciphering the processes underlying the decision-making for timely feeding of appropriate amounts may improve our understanding of physiological and psychological disorders related to feeding control. Here, we identify a group of appetite-enhancing neurons in a behavioural screen for flies with increased appetite. Manipulating the activity of these neurons, which we name Taotie neurons, induces bidirectional changes in feeding motivation. Long-term stimulation of Taotie neurons results in flies with highly obese phenotypes. Furthermore, we show that the in vivo activity of Taotie neurons in the neuroendocrine region reflects the hunger/satiety states of un-manipulated animals, and that appetitive-enhancing Taotie neurons control the secretion of insulin, a known regulator of feeding behaviour. Thus, our study reveals a new set of neurons regulating feeding behaviour in the high brain regions that represents physiological hunger states and control feeding behaviour in Drosophila. PMID:27924813
Lee, Siu Sylvia
2004-05-05
Aging is a complex process that involves the gradual functional decline of many different tissues and cells. Gene expression microarray analysis provides a comprehensive view of the gene expression signature associated with age and is particularly valuable for understanding the molecular mechanisms that contribute to the aging process. However, because of the stochastic nature of the aging process, animals of the same chronological age often manifest great physiological differences. Therefore, profiling the gene expression pattern of a large population of aging animals risks either exaggerating or masking the changes in gene expression that correspond to physiological aging. In a recent paper, Golden and Melov surveyed the gene expression profiles of individual aging Caenorhabditis elegans, hoping to circumvent the problem of variability among worms of the same chronological age. This initial analysis of age-dependent gene expression in individual aging worms is an important step toward deciphering the molecular basis of physiological aging.
Cannon, Tyrone D; Thompson, Paul M; van Erp, Theo G M; Huttunen, Matti; Lonnqvist, Jouko; Kaprio, Jaakko; Toga, Arthur W
2006-01-01
There is an urgent need to decipher the complex nature of genotype-phenotype relationships within the multiple dimensions of brain structure and function that are compromised in neuropsychiatric syndromes such as schizophrenia. Doing so requires sophisticated methodologies to represent population variability in neural traits and to probe their heritable and molecular genetic bases. We have recently developed and applied computational algorithms to map the heritability of, as well as genetic linkage and association to, neural features encoded using brain imaging in the context of three-dimensional (3D), populationbased, statistical brain atlases. One set of algorithms builds on our prior work using classical twin study methods to estimate heritability by fitting biometrical models for additive genetic, unique, and common environmental influences. Another set of algorithms performs regression-based (Haseman-Elston) identical-bydescent linkage analysis and genetic association analysis of DNA polymorphisms in relation to neural traits of interest in the same 3D population-based brain atlas format. We demonstrate these approaches using samples of healthy monozygotic (MZ) and dizygotic (DZ) twin pairs, as well as MZ and DZ twin pairs discordant for schizophrenia, but the methods can be generalized to other classes of relatives and to other diseases. The results confirm prior evidence of genetic influences on gray matter density in frontal brain regions. They also provide converging evidence that the chromosome 1q42 region is relevant to schizophrenia by demonstrating linkage and association of markers of the Transelin-Associated-Factor-X and Disrupted-In- Schizophrenia-1 genes with prefrontal cortical gray matter deficits in twins discordant for schizophrenia.
Evolvix BEST Names for semantic reproducibility across code2brain interfaces.
Loewe, Laurence; Scheuer, Katherine S; Keel, Seth A; Vyas, Vaibhav; Liblit, Ben; Hanlon, Bret; Ferris, Michael C; Yin, John; Dutra, Inês; Pietsch, Anthony; Javid, Christine G; Moog, Cecilia L; Meyer, Jocelyn; Dresel, Jerdon; McLoone, Brian; Loberger, Sonya; Movaghar, Arezoo; Gilchrist-Scott, Morgaine; Sabri, Yazeed; Sescleifer, Dave; Pereda-Zorrilla, Ivan; Zietlow, Andrew; Smith, Rodrigo; Pietenpol, Samantha; Goldfinger, Jacob; Atzen, Sarah L; Freiberg, Erika; Waters, Noah P; Nusbaum, Claire; Nolan, Erik; Hotz, Alyssa; Kliman, Richard M; Mentewab, Ayalew; Fregien, Nathan; Loewe, Martha
2017-01-01
Names in programming are vital for understanding the meaning of code and big data. We define code2brain (C2B) interfaces as maps in compilers and brains between meaning and naming syntax, which help to understand executable code. While working toward an Evolvix syntax for general-purpose programming that makes accurate modeling easy for biologists, we observed how names affect C2B quality. To protect learning and coding investments, C2B interfaces require long-term backward compatibility and semantic reproducibility (accurate reproduction of computational meaning from coder-brains to reader-brains by code alone). Semantic reproducibility is often assumed until confusing synonyms degrade modeling in biology to deciphering exercises. We highlight empirical naming priorities from diverse individuals and roles of names in different modes of computing to show how naming easily becomes impossibly difficult. We present the Evolvix BEST (Brief, Explicit, Summarizing, Technical) Names concept for reducing naming priority conflicts, test it on a real challenge by naming subfolders for the Project Organization Stabilizing Tool system, and provide naming questionnaires designed to facilitate C2B debugging by improving names used as keywords in a stabilizing programming language. Our experiences inspired us to develop Evolvix using a flipped programming language design approach with some unexpected features and BEST Names at its core. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.
Sethy, Niroj Kumar; Singh, Manjulata; Kumar, Rajesh; Ilavazhagan, Govindasamy; Bhargava, Kalpana
2011-03-01
Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.
Illuminating odors: when optogenetics brings to light unexpected olfactory abilities
Grimaud, Julien
2016-01-01
For hundreds of years, the sense of smell has generated great interest in the world literature, oenologists, and perfume makers but less of scientists. Only recently this sensory modality has gained new attraction in neuroscience when original tools issued from physiology, anatomy, or molecular biology were available to decipher how the brain makes sense of olfactory cues. However, this move was promptly dampened by the difficulties of developing quantitative approaches to study the relationship between the physical characteristics of stimuli and the sensations they create. An upswing of olfactory investigations occurred when genetic tools could be used in combination with devices borrowed from the physics of light (a hybrid technique called optogenetics) to scrutinize the olfactory system and to provide greater physiological precision for studying olfactory-driven behaviors. This review aims to present the most recent studies that have used light to activate components of the olfactory pathway, such as olfactory receptor neurons, or neurons located further downstream, while leaving intact others brain circuits. With the use of optogenetics to unravel the mystery of olfaction, scientists have begun to disentangle how the brain makes sense of smells. In this review, we shall discuss how the brain recognizes odors, how it memorizes them, and how animals make decisions based on odorants they are capable of sensing. Although this review deals with olfaction, the role of light will be central throughout. PMID:27194792
Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers.
Cole, James H; Franke, Katja
2017-12-01
The brain changes as we age and these changes are associated with functional deterioration and neurodegenerative disease. It is vital that we better understand individual differences in the brain ageing process; hence, techniques for making individualised predictions of brain ageing have been developed. We present evidence supporting the use of neuroimaging-based 'brain age' as a biomarker of an individual's brain health. Increasingly, research is showing how brain disease or poor physical health negatively impacts brain age. Importantly, recent evidence shows that having an 'older'-appearing brain relates to advanced physiological and cognitive ageing and the risk of mortality. We discuss controversies surrounding brain age and highlight emerging trends such as the use of multimodality neuroimaging and the employment of 'deep learning' methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pradat, Pierre-François; Kabashi, Edor; Desnuelle, Claude
2015-10-01
The aim of this review is to refer to recent arguments supporting the existence of specific propagation mechanisms associated with spreading of neuron injury in amyotrophic lateral sclerosis (ALS). Misfolded ALS-linked protein accumulation can induce aggregation of their native equivalent isoforms through a mechanism analogous to the infectious prion proteins initiation and its propagation. Although ALS is clinically heterogeneous, a shared characteristic is the focal onset and the progressive extension to all body regions. Being viewed until now as just summation of the increased number of affected neurons, dispersion is now rather considered as the result of a seeded self-propagating process. A sequential regional spreading pattern is supported by the distribution of TDP-43 aggregates in ALS autopsy cases. Electrophysiology and advanced neuroimaging methods also recently provided some evidence for propagation of lesions both in the brain and spinal cord, more longitudinal studies being still needed. Lesions are supposed to spread cell-to-cell regionally or through connected neuronal pathway. At the molecular level, the prion-like spreading is an emerging mechanism hypothesis, but other machineries such as those that are in charge of dealing with misfolded proteins and secretion of deleterious peptides may be involved in the propagation of neuron loss. Deciphering the mechanisms underlying spreading of ALS symptoms is of crucial importance to better understand this neurodegenerative disease, build new and appropriate animal models and to define novel therapeutic targets.
Increased brain-predicted aging in treated HIV disease
Underwood, Jonathan; Caan, Matthan W.A.; De Francesco, Davide; van Zoest, Rosan A.; Leech, Robert; Wit, Ferdinand W.N.M.; Portegies, Peter; Geurtsen, Gert J.; Schmand, Ben A.; Schim van der Loeff, Maarten F.; Franceschi, Claudio; Sabin, Caroline A.; Majoie, Charles B.L.M.; Winston, Alan; Reiss, Peter; Sharp, David J.
2017-01-01
Objective: To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. Methods: A large sample of virologically suppressed HIV-positive adults (n = 162, age 45–82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18–90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age − chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. Results: HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (−0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. Conclusion: Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging. PMID:28258081
Increased brain-predicted aging in treated HIV disease.
Cole, James H; Underwood, Jonathan; Caan, Matthan W A; De Francesco, Davide; van Zoest, Rosan A; Leech, Robert; Wit, Ferdinand W N M; Portegies, Peter; Geurtsen, Gert J; Schmand, Ben A; Schim van der Loeff, Maarten F; Franceschi, Claudio; Sabin, Caroline A; Majoie, Charles B L M; Winston, Alan; Reiss, Peter; Sharp, David J
2017-04-04
To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. A large sample of virologically suppressed HIV-positive adults (n = 162, age 45-82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18-90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age - chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (-0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Luders, Eileen; Cherbuin, Nicolas; Gaser, Christian
2016-07-01
Normal aging is known to be accompanied by loss of brain substance. The present study was designed to examine whether the practice of meditation is associated with a reduced brain age. Specific focus was directed at age fifty and beyond, as mid-life is a time when aging processes are known to become more prominent. We applied a recently developed machine learning algorithm trained to identify anatomical correlates of age in the brain translating those into one single score: the BrainAGE index (in years). Using this validated approach based on high-dimensional pattern recognition, we re-analyzed a large sample of 50 long-term meditators and 50 control subjects estimating and comparing their brain ages. We observed that, at age fifty, brains of meditators were estimated to be 7.5years younger than those of controls. In addition, we examined if the brain age estimates change with increasing age. While brain age estimates varied only little in controls, significant changes were detected in meditators: for every additional year over fifty, meditators' brains were estimated to be an additional 1month and 22days younger than their chronological age. Altogether, these findings seem to suggest that meditation is beneficial for brain preservation, effectively protecting against age-related atrophy with a consistently slower rate of brain aging throughout life. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ben-Peshat, Malka; Sitton, Shoshana
2011-01-01
We present here the findings of an ethno-visual research study involving the creation of a mental map of images, artifacts and practices in Tel Aviv's New Central Bus Station. This huge and complex building, part bus station, part shopping mall, has become a stage for multicultural encounters and interactions among diverse communities of users.…
Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A
2016-01-01
Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease.
Assembling a Cellular User Manual for the Brain.
Sloan, Steven A; Barres, Ben A
2018-03-28
For many years, efforts to decipher the various cellular components that comprise the CNS were stymied by a lack of technical strategies for isolating and profiling the brain's resident cell types. The advent of transcriptional profiling, combined with powerful new purification schemes, changed this reality and transformed our understanding of the macroglial populations within the brain. Here, we chronicle the historical context and scientific setting for our efforts to transcriptionally profile neurons, astrocytes, and oligodendrocytes, and highlight some of the profound discoveries that were cultivated by these data.Following a lengthy battle with pancreatic cancer, Ben Barres passed away during the writing of this Progression piece. Among Ben's innumerable contributions to the greater scientific community, his addition of publicly available transcriptome databases of CNS cell types will forever remain a relic of his generous spirit and boundless scientific curiosity. Although he had impressively committed a majority of these enormous gene lists to memory, Ben could oftentimes be spotted at meetings buried in his cell phone on the Barres RNAseq database. Perhaps the only thing he enjoyed more than exploring these data himself, was knowing how useful these contributions had been (and will hopefully continue to be) to his scientific peers. Copyright © 2018 the authors 0270-6474/18/383149-05$15.00/0.
The role of cannabinoids in adult neurogenesis
Prenderville, Jack A; Kelly, Áine M; Downer, Eric J
2015-01-01
The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750
Responses on a lateralized lexical decision task relate to both reading times and comprehension.
Michael, Mary
2009-12-01
Research over the last few years has shown that the dominance of the left hemisphere in language processing is less complete than previously thought [Beeman, M. (1993). Semantic processing in the right hemisphere may contribute to drawing inferences from discourse. Brain and Language, 44, 80-120; Faust, M., & Chiarello, C. (1998). Sentence context and lexical ambiguity resolution by the two hemispheres. Neuropsychologia, 36(9), 827-835; Weems, S. A., & Zaidel, E. (2004). The relationship between reading ability and lateralized lexical decision. Brain and Cognition, 55(3), 507-515]. Engaging the right brain in language processing is required for processing speaker/writer intention, particularly in those subtle interpretive processes that help in deciphering humor, irony, and emotional inference. In two experiments employing a divided field or lateralized lexical decision task (LLDT), accuracy and reaction times (RTs) were related to reading times and comprehension on sentence reading. Differences seen in RTs and error rates by visual fields were found to relate to performance. Smaller differences in performance between fields tended to be related to better performance on the LLDT in both experiments and, in Experiment 1, to reading measures. Readers who can exploit both hemispheres for language processing equally appear to be at an advantage in lexical access and possibly also in reading performance.
The Two-Brains Hypothesis: Towards a guide for brain-brain and brain-machine interfaces.
Goodman, G; Poznanski, R R; Cacha, L; Bercovich, D
2015-09-01
Great advances have been made in signaling information on brain activity in individuals, or passing between an individual and a computer or robot. These include recording of natural activity using implants under the scalp or by external means or the reverse feeding of such data into the brain. In one recent example, noninvasive transcranial magnetic stimulation (TMS) allowed feeding of digitalized information into the central nervous system (CNS). Thus, noninvasive electroencephalography (EEG) recordings of motor signals at the scalp, representing specific motor intention of hand moving in individual humans, were fed as repetitive transcranial magnetic stimulation (rTMS) at a maximum intensity of 2.0[Formula: see text]T through a circular magnetic coil placed flush on each of the heads of subjects present at a different location. The TMS was said to induce an electric current influencing axons of the motor cortex causing the intended hand movement: the first example of the transfer of motor intention and its expression, between the brains of two remote humans. However, to date the mechanisms involved, not least that relating to the participation of magnetic induction, remain unclear. In general, in animal biology, magnetic fields are usually the poor relation of neuronal current: generally "unseen" and if apparent, disregarded or just given a nod. Niels Bohr searched for a biological parallel to complementary phenomena of physics. Pertinently, the two-brains hypothesis (TBH) proposed recently that advanced animals, especially man, have two brains i.e., the animal CNS evolved as two fundamentally different though interdependent, complementary organs: one electro-ionic (tangible, known and accessible), and the other, electromagnetic (intangible and difficult to access) - a stable, structured and functional 3D compendium of variously induced interacting electro-magnetic (EM) fields. Research on the CNS in health and disease progresses including that on brain-brain, brain-computer and brain-robot engineering. As they grow even closer, these disciplines involve their own unique complexities, including direction by the laws of inductive physics. So the novel TBH hypothesis has wide fundamental implications, including those related to TMS. These require rethinking and renewed research engaging the fully complementary equivalence of mutual magnetic and electric field induction in the CNS and, within this context, a new mathematics of the brain to decipher higher cognitive operations not possible with current brain-brain and brain-machine interfaces. Bohr may now rest.
Gender effects on age-related changes in brain structure.
Xu, J; Kobayashi, S; Yamaguchi, S; Iijima, K; Okada, K; Yamashita, K
2000-01-01
Previous reports have suggested that brain atrophy is associated with aging and that there are gender differences in brain atrophy with aging. These reports, however, neither exclude silent brain lesions in "healthy subjects" nor divide the brain into subregions. The aim of this study is to clarify the effect of gender on age-related changes in brain subregions by MR imaging. A computer-assisted system was used to calculate the brain matter area index (BMAI) of various regions of the brain from MR imaging of 331 subjects without brain lesions. There was significantly more brain atrophy with aging in the posterior parts of the right frontal lobe in male subjects than there was in female subjects. Age-related atrophy in the middle part of the right temporal lobe, the left basal ganglia, the parietal lobe, and the cerebellum also was found in male subjects, but not in female subjects. In the temporal lobe, thalamus, parieto-occipital lobe, and cerebellum, brain volume in the left hemisphere is significantly smaller than in the right hemisphere; sex and age did not affect the hemisphere differences of brain volume in these regions. The effect of gender on brain atrophy with aging varied in different subregions of the brain. There was more brain atrophy with aging in male subjects than in female subjects.
Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways
Krasnova, Irina N.; Justinova, Zuzana; Cadet, Jean Lud
2017-01-01
Rationale and objectives Addiction to psychostimulant methamphetamine (METH) remains a major public health problem in the world. Animal models that use METH self-administration incorporate many features of human drug-taking behavior and are very helpful in elucidating mechanisms underlying METH addiction. These models are also helping to decipher the neurobiological substrates of associated neuropsychiatric complications. This review summarizes our work on the influence of METH self-administration on dopamine systems, transcriptional and immune responses in the brain. Methods We used the rat model of METH self-administration with extended access (15 hours/day for 8 consecutive days) to investigate the effects of voluntary METH intake on the markers of dopamine system integrity and changes in gene expression observed in the brain at 2 hours – 1 month after cessation of drug exposure. Results Extended access to METH self-administration caused changes in the rat brain that are consistent with clinical findings reported in neuroimaging and post-mortem studies of human METH addicts. In addition, gene expression studies using striatal tissues from METH self-administering rats revealed increased expression of genes involved in CREB signaling pathway and in the activation of neuroinflammatory response in the brain. Conclusion These data show an association of METH exposure with activation of neuroplastic and neuroinflammatory cascades in the brain. The neuroplastic changes may be involved in promoting METH addiction. Neuroinflammatory processes in the striatum may underlie cognitive deficits, depression, and parkinsonism reported in METH addicts. Therapeutic approaches that include suppression of neuroinflammation may be beneficial to addicted patients. PMID:26873080
A Rich-Club Organization in Brain Ischemia Protein Interaction Network
Alawieh, Ali; Sabra, Zahraa; Sabra, Mohammed; Tomlinson, Stephen; Zaraket, Fadi A.
2015-01-01
Ischemic stroke involves multiple pathophysiological mechanisms with complex interactions. Efforts to decipher those mechanisms and understand the evolution of cerebral injury is key for developing successful interventions. In an innovative approach, we use literature mining, natural language processing and systems biology tools to construct, annotate and curate a brain ischemia interactome. The curated interactome includes proteins that are deregulated after cerebral ischemia in human and experimental stroke. Network analysis of the interactome revealed a rich-club organization indicating the presence of a densely interconnected hub structure of prominent contributors to disease pathogenesis. Functional annotation of the interactome uncovered prominent pathways and highlighted the critical role of the complement and coagulation cascade in the initiation and amplification of injury starting by activation of the rich-club. We performed an in-silico screen for putative interventions that have pleiotropic effects on rich-club components and we identified estrogen as a prominent candidate. Our findings show that complex network analysis of disease related interactomes may lead to a better understanding of pathogenic mechanisms and provide cost-effective and mechanism-based discovery of candidate therapeutics. PMID:26310627
Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang
2017-03-21
Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Phagocyte dysfunction, tissue aging and degeneration
2013-01-01
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. PMID:23748186
Brain aging, Alzheimer's disease, and mitochondria
Swerdlow, Russell H.
2011-01-01
The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438
The effect of spectacle treatment in patients with mild traumatic brain injury: a pilot study.
Johansson, Jan; Nygren de Boussard, Catharina; Öqvist Seimyr, Gustaf; Pansell, Tony
2017-05-01
Visual symptoms and dysfunctions may be a part of the long-term issues following mild traumatic brain injury. These issues may have an impact on near work and reading, and thus affect activities of daily life and the ability to return to work. The purpose of the study was to assess the effect of spectacle treatment on near work-related visual symptoms, visual function and reading performance in patients with persisting symptoms after mild traumatic brain injury. Eight patients with persisting symptoms after mild traumatic brain injury and anomalies of binocular function were included. Binocular function, visual symptoms and reading performance were assessed before and after spectacle treatment. Reading eye movements were recorded with eye tracking. Four patients showed a considerable symptom reduction along with minor improvement in clinical visual measures. Reading performance improved in four patients; however, the relationship to symptom reduction was inconsistent. The improvement was correlated to reduced average number of fixations per word (r = -0.89, p = 0.02), reduced proportion of regressive saccades (r = -0.93, p = 0.01) and a significant increase of mean progressive saccade length (p = 0.03). This pilot study found that spectacle treatment, specifically directed at optimising near task visual function, significantly reduced symptoms in 50 per cent of patients and improved reading performance in 50 per cent. While promising, lack of placebo control and lack of correlation between reading performance and symptom improvements means we cannot decipher mechanisms without further study. © 2016 Optometry Australia.
Loss of Brain Aerobic Glycolysis in Normal Human Aging.
Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E
2017-08-01
The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuroimaging explanations of age-related differences in task performance.
Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov
2014-01-01
Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.
Moroz, Leonid L.
2015-01-01
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570–600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the “omic” era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless “experiments” Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. PMID:26163680
Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study.
Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S
2016-06-01
Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used support vector regression, a supervised machine learning technique, to address this question. In a longitudinal sample of 341 schizophrenia patients and 386 healthy subjects with one or more structural MRI scans (1,197 in total), machine learning algorithms were used to build models to predict the age of the brain and the presence of schizophrenia ("schizophrenia score"), based on the gray matter density maps. Age at baseline ranged from 16 to 67 years, and follow-up scans were acquired between 1 and 13 years after the baseline scan. Differences between brain age and chronological age ("brain age gap") and between schizophrenia score and healthy reference score ("schizophrenia gap") were calculated. Accelerated brain aging was calculated from changes in brain age gap between two consecutive measurements. The age prediction model was validated in an independent sample. In schizophrenia patients, brain age was significantly greater than chronological age at baseline (+3.36 years) and progressively increased during follow-up (+1.24 years in addition to the baseline gap). The acceleration of brain aging was not constant: it decreased from 2.5 years/year just after illness onset to about the normal rate (1 year/year) approximately 5 years after illness onset. The schizophrenia gap also increased during follow-up, but more pronounced variability in brain abnormalities at follow-up rendered this increase nonsignificant. The progressive brain loss in schizophrenia appears to reflect two different processes: one relatively homogeneous, reflecting accelerated aging of the brain and related to various measures of outcome, and a more variable one, possibly reflecting individual variation and medication use. Differentiating between these two processes may not only elucidate the various factors influencing brain loss in schizophrenia, but also assist in individualizing treatment.
Banks, William A; Abrass, Christine K; Hansen, Kim M
2016-01-01
Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.
Keeping brains young with making music.
Rogenmoser, Lars; Kernbach, Julius; Schlaug, Gottfried; Gaser, Christian
2018-01-01
Music-making is a widespread leisure and professional activity that has garnered interest over the years due to its effect on brain and cognitive development and its potential as a rehabilitative and restorative therapy of brain dysfunctions. We investigated whether music-making has a potential age-protecting effect on the brain. For this, we studied anatomical magnetic resonance images obtained from three matched groups of subjects who differed in their lifetime dose of music-making activities (i.e., professional musicians, amateur musicians, and non-musicians). For each subject, we calculated a so-called BrainAGE score which corresponds to the discrepancy (in years) between chronological age and the "age of the brain", with negative values reflecting an age-decelerating brain and positive values an age-accelerating brain, respectively. The index of "brain age" was estimated using a machine-learning algorithm that was trained in a large independent sample to identify anatomical correlates of brain-aging. Compared to non-musicians, musicians overall had lower BrainAGE scores, with amateur musicians having the lowest scores suggesting that music-making has an age-decelerating effect on the brain. Unlike the amateur musicians, the professional musicians showed a positive correlation between their BrainAGE scores and years of music-making, possibly indicating that engaging more intensely in just one otherwise enriching activity might not be as beneficial than if the activity is one of several that an amateur musician engages in. Intense music-making activities at a professional level could also lead to stress-related interferences and a less enriched environment than that of amateur musicians, possibly somewhat diminishing the otherwise positive effect of music-making.
BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.
Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian
2017-08-30
BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Deep into the Brain: Artificial Intelligence in Stroke Imaging
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-01-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives. PMID:29037014
Deep into the Brain: Artificial Intelligence in Stroke Imaging.
Lee, Eun-Jae; Kim, Yong-Hwan; Kim, Namkug; Kang, Dong-Wha
2017-09-01
Artificial intelligence (AI), a computer system aiming to mimic human intelligence, is gaining increasing interest and is being incorporated into many fields, including medicine. Stroke medicine is one such area of application of AI, for improving the accuracy of diagnosis and the quality of patient care. For stroke management, adequate analysis of stroke imaging is crucial. Recently, AI techniques have been applied to decipher the data from stroke imaging and have demonstrated some promising results. In the very near future, such AI techniques may play a pivotal role in determining the therapeutic methods and predicting the prognosis for stroke patients in an individualized manner. In this review, we offer a glimpse at the use of AI in stroke imaging, specifically focusing on its technical principles, clinical application, and future perspectives.
The Effect of Age, Race, and Sex on Social Cognitive Performance in Individuals With Schizophrenia.
Pinkham, Amy E; Kelsven, Skylar; Kouros, Chrystyna; Harvey, Philip D; Penn, David L
2017-05-01
Age, race, and sex are linked to social cognitive performance among healthy individuals, but whether similar effects are evident in schizophrenia is unknown. Data from 170 individuals with schizophrenia or schizoaffective disorder and 98 healthy controls were used to examine relations between these demographic factors and performance across multiple domains and measures of social cognition. Sex was not related to performance on any domain, but older age was related to poorer emotion recognition from dynamic stimuli in both patients and controls. In patients, older age was also associated with better abilities to decipher hints. Both Caucasian patients and controls performed better than African American individuals on emotion recognition and mental state attribution tasks that use only Caucasian individuals as visual stimuli. Findings suggest rather limited influences of demographic factors but do demonstrate normative age and race effects among patients. Findings also highlight important methodological considerations for measurement of social cognition.
ERIC Educational Resources Information Center
Moertel, Cheryl; Frutiger, Bruce
1996-01-01
Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)
Hughes, Daniel F; Walker, Ellen M; Gignac, Paul M; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S; Greenbaum, Eli; Khan, Arshad M
2016-01-01
Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity.
Hughes, Daniel F.; Walker, Ellen M.; Gignac, Paul M.; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S.; Greenbaum, Eli
2016-01-01
Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated multiple approaches to preserving intact lizard brains in remote field conditions with limited access to supplies and a high degree of environmental exposure. This protocol should serve as a malleable framework for researchers attempting to rescue perishable and irreplaceable morphological and molecular data from regions of disappearing biodiversity. Our approach can be harnessed to extend the numbers of species being actively studied by the neuroscience community, by reducing some of the difficulty associated with acquiring brains of animal species that are not readily available in captivity. PMID:27196138
Premature brain aging in humans exposed to maternal nutrient restriction during early gestation.
Franke, Katja; Gaser, Christian; Roseboom, Tessa J; Schwab, Matthias; de Rooij, Susanne R
2018-06-01
Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain aging in late adulthood. We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR) would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the effect being stronger in men. Utilizing the Dutch famine birth cohort (n = 118; mean age: 67.5 ± 0.9 years), this study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during early gestation on individual brain aging in late adulthood. Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05). Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R 2 = 0.63, p < 0.01). The findings of our study on exposure to prenatal undernutrition being associated with a status of premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-life health characteristics, are strongly supporting the critical importance of sufficient nutrient supply during pregnancy. Interestingly, the status of premature brain aging in participants exposed to the Dutch famine during early gestation occurred in the absence of fetal growth restriction at birth as well as vascular pathology in late-life. Additionally, the neuroimaging brain aging biomarker presented in this study will further enable tracking effects of environmental influences or (preventive) treatments on individual brain maturation and aging in epidemiological and clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Forebrain networks and the control of feeding by environmental learned cues
Petrovich, Gorica D.
2013-01-01
The motivation to eat is driven by a complex sum of physiological and non-physiological influences computed by the brain. Physiological signals that inform the brain about energy and nutrient needs are the primary drivers, but environmental signals unrelated to energy balance also control appetite and eating. The two components could act in concert to support the homeostatic regulation of food intake. Often, however, environmental influences rival physiological control and stimulate eating irrespective of satiety, or inhibit eating irrespective of hunger. If persistent, such maladaptive challenges to the physiological system could lead to dysregulated eating and ultimately to eating disorders. Nevertheless, the brain mechanisms underlying environmental contribution in the control of food intake are poorly understood. This paper provides an overview in recent advances in deciphering the critical brain systems using rodent models for environmental control by learned cues. These models use associative learning to compete with the physiological control, and in one preparation food cues stimulate a meal despite satiety, while in another preparation fear cues stop a meal despite hunger. Thus far, four forebrain regions have been identified as part of the essential cue induced feeding circuitry. These are telencephalic areas critical for associative learning, memory encoding, and decision making, the amygdala, hippocampus and prefrontal cortex and the lateral hypothalamus, which functions to integrate feeding, reward, and motivation. This circuitry also engages two orexigenic peptides, ghrelin and orexin. A parallel amygdalar circuitry supports fear cue cessation of feeding. These findings illuminate the brain mechanisms underlying environmental control of food intake and might be also relevant to aspects of human appetite and maladaptive overeating and undereating. PMID:23562305
Two-photon imaging and analysis of neural network dynamics
NASA Astrophysics Data System (ADS)
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Fully Passive Wireless Acquisition of Neuropotentials
NASA Astrophysics Data System (ADS)
Schwerdt, Helen N.
The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power sources and may alleviate heat trauma and reliability issues that limit practical implementation of existing implantable neurorecorders.
Trace Pb concentrations in groundwater within glacial deposits across Maine fluctuate considerably. Deciphering the distribution and sources of naturally occurring Pb in groundwater with only the use of conventional anomaly identification techniques presents a challenge. In a rep...
Hung, Man-Hsin; Liu, Chun-Yu; Shiau, Cheng-Ying; Hsu, Chin-Yi; Tsai, Yi-Fang; Wang, Yu-Ling; Tai, Ling-Chen; King, Kuang-Liang; Chao, Ta-Chung; Chiu, Jen-Hwey; Su, Cheng-Hsi; Lo, Su-Shun; Tzeng, Cheng-Hwai; Shyr, Yi-Ming; Tseng, Ling-Ming
2014-01-01
Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. Of the 2248 eligible patients, 164 (7.3%) developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507). Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.
Monophasic demyelination reduces brain growth in children
Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S.; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E. Ann; Narayanan, Sridar; Arnold, Douglas L.; Verhey, Leonard H.; Banwell, Brenda; Collins, D. Louis
2017-01-01
Objective: To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. Methods: We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Results: Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Conclusions: Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. PMID:28381515
Monophasic demyelination reduces brain growth in children.
Aubert-Broche, Bérengère; Weier, Katrin; Longoni, Giulia; Fonov, Vladimir S; Bar-Or, Amit; Marrie, Ruth Ann; Yeh, E Ann; Narayanan, Sridar; Arnold, Douglas L; Verhey, Leonard H; Banwell, Brenda; Collins, D Louis
2017-05-02
To investigate how monophasic acquired demyelinating syndromes (ADS) affect age-expected brain growth over time. We analyzed 83 pediatric patients imaged serially from initial demyelinating attack: 18 with acute disseminated encephalomyelitis (ADEM) and 65 with other monophasic ADS presentations (monoADS). We further subdivided the monoADS group by the presence (n = 33; monoADSlesion) or absence (n = 32; monoADSnolesion) of T2 lesions involving the brain at onset. We used normative data to compare brain volumes and calculate age- and sex-specific z scores, and used mixed-effect models to investigate their relationship with time from demyelinating illness. Children with monophasic demyelination (ADEM, non-ADEM with brain lesions, and those without brain involvement) demonstrated reduced age-expected brain growth on serial images, driven by reduced age-expected white matter growth. Cortical gray matter volumes were not reduced at onset but demonstrated reduced age-expected growth afterwards in all groups. Brain volumes differed from age- and sex-expected values to the greatest extent in children with ADEM. All patient groups failed to recover age-expected brain growth trajectories. Brain volume, and more importantly age-expected brain growth, is negatively affected by acquired demyelination, even in the absence of chronicity, implicating factors other than active inflammation as operative in this process. © 2017 American Academy of Neurology.
Latimer, Caitlin S; Searcy, James L; Bridges, Michael T; Brewer, Lawrence D; Popović, Jelena; Blalock, Eric M; Landfield, Philip W; Thibault, Olivier; Porter, Nada M
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging.
Latimer, Caitlin S.; Searcy, James L.; Bridges, Michael T.; Brewer, Lawrence D.; Popović, Jelena; Blalock, Eric M.; Landfield, Philip W.; Thibault, Olivier; Porter, Nada M.
2011-01-01
Healthy brain aging and cognitive function are promoted by exercise. The benefits of exercise are attributed to several mechanisms, many which highlight its neuroprotective role via actions that enhance neurogenesis, neuronal morphology and/or neurotrophin release. However, the brain is also composed of glial and vascular elements, and comparatively less is known regarding the effects of exercise on these components in the aging brain. Here, we show that aerobic exercise at mid-age decreased markers of unhealthy brain aging including astrocyte hypertrophy, a hallmark of brain aging. Middle-aged female mice were assigned to a sedentary group or provided a running wheel for six weeks. Exercise decreased hippocampal astrocyte and myelin markers of aging but increased VEGF, a marker of angiogenesis. Brain vascular casts revealed exercise-induced structural modifications associated with improved endothelial function in the periphery. Our results suggest that age-related astrocyte hypertrophy/reactivity and myelin dysregulation are aggravated by a sedentary lifestyle and accompanying reductions in vascular function. However, these effects appear reversible with exercise initiated at mid-age. As this period of the lifespan coincides with the appearance of multiple markers of brain aging, including initial signs of cognitive decline, it may represent a window of opportunity for intervention as the brain appears to still possess significant vascular plasticity. These results may also have particular implications for aging females who are more susceptible than males to certain risk factors which contribute to vascular aging. PMID:22046366
Lobo, Jennifer M; Trifiletti, Daniel M; Sturz, Vanessa N; Dicker, Adam P; Buerki, Christine; Davicioni, Elai; Cooperberg, Matthew R; Karnes, R Jeffrey; Jenkins, Robert B; Den, Robert B; Showalter, Timothy N
2017-06-01
Controversy exists regarding the effectiveness of early adjuvant versus salvage radiation therapy after prostatectomy for prostate cancer. Estimates of prostate cancer progression from the Decipher genomic classifier (GC) could guide informed decision-making and improve the outcomes for patients. We developed a Markov model to compare the costs and quality-adjusted life years (QALYs) associated with GC-based treatment decisions regarding adjuvant therapy after prostatectomy with those of 2 control strategies: usual care (determined from patterns of care studies) and the alternative of 100% adjuvant radiation therapy. Using the bootstrapping method of sampling with replacement, the cases of 10,000 patients were simulated during a 10-year time horizon, with each subject having individual estimates for cancer progression (according to GC findings) and noncancer mortality (according to age). GC-based care was more effective and less costly than 100% adjuvant radiation therapy and resulted in cost savings up to an assay cost of $11,402. Compared with usual care, GC-based care resulted in more QALYs. Assuming a $4000 assay cost, the incremental cost-effectiveness ratio was $90,833 per QALY, assuming a 7% usage rate of adjuvant radiation therapy. GC-based care was also associated with a 16% reduction in the percentage of patients with distant metastasis at 5 years compared with usual care. The Decipher GC could be a cost-effective approach for genomics-driven cancer treatment decisions after prostatectomy, with improvements in estimated clinical outcomes compared with usual care. The individualized decision analytic framework applied in the present study offers a flexible approach to estimate the potential utility of genomic assays for personalized cancer medicine. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-24
... DEPARTMENT OF STATE [Public Notice 7855] Culturally Significant Objects Imported for Exhibition; Determinations: ``Quay Brothers: On Deciphering the Pharmacist's Prescription for Lip-Reading Puppets'' AGENCY...: On Deciphering the Pharmacist's Prescription for Lip-Reading Puppets'' imported from abroad for...
Multiple Brain Markers are Linked to Age-Related Variation in Cognition
Hedden, Trey; Schultz, Aaron P.; Rieckmann, Anna; Mormino, Elizabeth C.; Johnson, Keith A.; Sperling, Reisa A.; Buckner, Randy L.
2016-01-01
Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65–90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70–80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health. PMID:25316342
Phagocyte dysfunction, tissue aging and degeneration.
Li, Wei
2013-09-01
Immunologically-silent phagocytosis of apoptotic cells is critical to maintaining tissue homeostasis and innate immune balance. Aged phagocytes reduce their functional activity, leading to accumulation of unphagocytosed debris, chronic sterile inflammation and exacerbation of tissue aging and damage. Macrophage dysfunction plays an important role in immunosenescence. Microglial dysfunction has been linked to age-dependent neurodegenerations. Retinal pigment epithelial (RPE) cell dysfunction has been implicated in the pathogenesis of age-related macular degeneration (AMD). Despite several reports on the characterization of aged phagocytes, the role of phagocyte dysfunction in tissue aging and degeneration is yet to be fully appreciated. Lack of knowledge of molecular mechanisms by which aging reduces phagocyte function has hindered our capability to exploit the therapeutic potentials of phagocytosis for prevention or delay of tissue degeneration. This review summarizes our current knowledge of phagocyte dysfunction in aged tissues and discusses possible links to age-related diseases. We highlight the challenges to decipher the molecular mechanisms, present new research approaches and envisage future strategies to prevent phagocyte dysfunction, tissue aging and degeneration. Copyright © 2013 Elsevier B.V. All rights reserved.
Generality and specificity in cognitive aging: a volumetric brain analysis.
Staff, Roger T; Murray, Alison D; Deary, Ian J; Whalley, Lawrence J
2006-05-01
To investigate whether, in old age, brain volume differences are associated with age-related change in general mental ability and/or specific cognitive abilities. The authors investigate the association between brain volumes and current cognitive function in a well-characterized sample of healthy old people (aged 79-80) whose intelligence was recorded at age 11. This allowed estimation of intellectual change over the life span. After accounting for childhood intelligence, associations were found between specific cognitive measures and brain volumes. An association was also found between volumes and the general intelligence factor g. After removing the influence of g from each of the specific cognitive measures, no remaining significant associations were found between brain volumes and the specific part of each test. Generalized cognitive aging is associated with brain volume differences, but there is no evidence in this sample that specific components of cognitive aging are associated with differences in brain volume.
Cole, J H; Ritchie, S J; Bastin, M E; Valdés Hernández, M C; Muñoz Maniega, S; Royle, N; Corley, J; Pattie, A; Harris, S E; Zhang, Q; Wray, N R; Redmond, P; Marioni, R E; Starr, J M; Cox, S R; Wardlaw, J M; Sharp, D J; Deary, I J
2018-01-01
Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N=2001), then tested in the Lothian Birth Cohort 1936 (N=669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death. PMID:28439103
Age-and Brain Region-Specific Differences in Mitochondrial ...
Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellum (CER), striatum (STR), hippocampus (HIP)] of four diverse age groups [1 Month (young), 4 Month (adult), 12 Month (middle-aged), 24 Month (old age)] to understand age-related differences in selected brain regions and their contribution to age-related chemical sensitivity. Mitochondrial bioenergetics parameters and enzyme activity were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State 111 respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12 and 24 Month age groups. Activities of mitochondrial pyruvate dehydrogenase complex (PDHC) and electron transport chain (ETC) complexes I, II, and IV enzymes were also age- and brain-region specific. In general changes associated with age were more pronounced, with
Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William
2016-07-01
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.
Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels
Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William
2016-01-01
Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945
Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging.
Shamir, Lior; Long, Joe
2016-01-01
While cognition is clearly affected by aging, it is unclear whether the process of brain aging is driven solely by accumulation of environmental damage, or involves biological pathways. We applied quantitative image analysis to profile the alteration of brain tissues during aging. A dataset of 463 brain MRI images taken from a cohort of 416 subjects was analyzed using a large set of low-level numerical image content descriptors computed from the entire brain MRI images. The correlation between the numerical image content descriptors and the age was computed, and the alterations of the brain tissues during aging were quantified and profiled using machine learning. The comprehensive set of global image content descriptors provides high Pearson correlation of ~0.9822 with the chronological age, indicating that the machine learning analysis of global features is sensitive to the age of the subjects. Profiling of the predicted age shows several periods of mild changes, separated by shorter periods of more rapid alterations. The periods with the most rapid changes were around the age of 55, and around the age of 65. The results show that the process of brain aging of is not linear, and exhibit short periods of rapid aging separated by periods of milder change. These results are in agreement with patterns observed in cognitive decline, mental health status, and general human aging, suggesting that brain aging might not be driven solely by accumulation of environmental damage. Code and data used in the experiments are publicly available.
The impact of brain size on pilot performance varies with aviation training and years of education
Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.
2010-01-01
Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103
Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome
NASA Astrophysics Data System (ADS)
Poirot, Olivier; Timsit, Youri
2016-05-01
From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.
Saffin, Jillian M.; Tohid, Hassaan
2016-01-01
Understanding social cognition has become a hallmark in deciphering autism spectrum disorder. Neurobiological theories are taking precedence in causation studies as researchers look to abnormalities in brain development as the cause of deficits in social behavior, cognitive processes, and language. Following their discovery in the 1990s, mirror neurons have become a dominant theory for that the mirror neuron system may play a critical role in the pathophysiology of various symptoms of autism. Over the decades, the theory has evolved from the suggestion of a broken mirror neuron system to impairments in mirror neuron circuitry. The mirror neuron system has not gained total support due to inconsistent findings; a comprehensive analysis of the growing body of research could shed light on the benefits, or the disadvantage of continuing to study mirror neurons and their connection to autism. PMID:27094520
Viral-genetic tracing of the input-output organization of a central noradrenaline circuit.
Schwarz, Lindsay A; Miyamichi, Kazunari; Gao, Xiaojing J; Beier, Kevin T; Weissbourd, Brandon; DeLoach, Katherine E; Ren, Jing; Ibanes, Sandy; Malenka, Robert C; Kremer, Eric J; Luo, Liqun
2015-08-06
Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating. However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input-output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The 'tracing the relationship between input and output' method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input-output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.
Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun
2016-02-23
We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.
Brain age and other bodily 'ages': implications for neuropsychiatry.
Cole, James H; Marioni, Riccardo E; Harris, Sarah E; Deary, Ian J
2018-06-11
As our brains age, we tend to experience cognitive decline and are at greater risk of neurodegenerative disease and dementia. Symptoms of chronic neuropsychiatric diseases are also exacerbated during ageing. However, the ageing process does not affect people uniformly; nor, in fact, does the ageing process appear to be uniform even within an individual. Here, we outline recent neuroimaging research into brain ageing and the use of other bodily ageing biomarkers, including telomere length, the epigenetic clock, and grip strength. Some of these techniques, using statistical approaches, have the ability to predict chronological age in healthy people. Moreover, they are now being applied to neurological and psychiatric disease groups to provide insights into how these diseases interact with the ageing process and to deliver individualised predictions about future brain and body health. We discuss the importance of integrating different types of biological measurements, from both the brain and the rest of the body, to build more comprehensive models of the biological ageing process. Finally, we propose seven steps for the field of brain-ageing research to take in coming years. This will help us reach the long-term goal of developing clinically applicable statistical models of biological processes to measure, track and predict brain and body health in ageing and disease.
Do glutathione levels decline in aging human brain?
Tong, Junchao; Fitzmaurice, Paul S; Moszczynska, Anna; Mattina, Katie; Ang, Lee-Cyn; Boileau, Isabelle; Furukawa, Yoshiaki; Sailasuta, Napapon; Kish, Stephen J
2016-04-01
For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Moroz, Leonid L
2015-12-01
The origins of neural systems and centralized brains are one of the major transitions in evolution. These events might occur more than once over 570-600 million years. The convergent evolution of neural circuits is evident from a diversity of unique adaptive strategies implemented by ctenophores, cnidarians, acoels, molluscs, and basal deuterostomes. But, further integration of biodiversity research and neuroscience is required to decipher critical events leading to development of complex integrative and cognitive functions. Here, we outline reference species and interdisciplinary approaches in reconstructing the evolution of nervous systems. In the "omic" era, it is now possible to establish fully functional genomics laboratories aboard of oceanic ships and perform sequencing and real-time analyses of data at any oceanic location (named here as Ship-Seq). In doing so, fragile, rare, cryptic, and planktonic organisms, or even entire marine ecosystems, are becoming accessible directly to experimental and physiological analyses by modern analytical tools. Thus, we are now in a position to take full advantages from countless "experiments" Nature performed for us in the course of 3.5 billion years of biological evolution. Together with progress in computational and comparative genomics, evolutionary neuroscience, proteomic and developmental biology, a new surprising picture is emerging that reveals many ways of how nervous systems evolved. As a result, this symposium provides a unique opportunity to revisit old questions about the origins of biological complexity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Functional metagenomics to decipher food-microbe-host crosstalk.
Larraufie, Pierre; de Wouters, Tomas; Potocki-Veronese, Gabrielle; Blottière, Hervé M; Doré, Joël
2015-02-01
The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food-microbe-host crosstalk.
Onset of multiple sclerosis before adulthood leads to failure of age-expected brain growth
Aubert-Broche, Bérengère; Fonov, Vladimir; Narayanan, Sridar; Arnold, Douglas L.; Araujo, David; Fetco, Dumitru; Till, Christine; Sled, John G.; Collins, D. Louis
2014-01-01
Objective: To determine the impact of pediatric-onset multiple sclerosis (MS) on age-expected brain growth. Methods: Whole brain and regional volumes of 36 patients with relapsing-remitting MS onset prior to 18 years of age were segmented in 185 longitudinal MRI scans (2–11 scans per participant, 3-month to 2-year scan intervals). MRI scans of 25 age- and sex-matched healthy normal controls (NC) were also acquired at baseline and 2 years later on the same scanner as the MS group. A total of 874 scans from 339 participants from the NIH-funded MRI study of normal brain development acquired at 2-year intervals were used as an age-expected healthy growth reference. All data were analyzed with an automatic image processing pipeline to estimate the volume of brain and brain substructures. Mixed-effect models were built using age, sex, and group as fixed effects. Results: Significant group and age interactions were found with the adjusted models fitting brain volumes and normalized thalamus volumes (p < 10−4). These findings indicate a failure of age-normative brain growth for the MS group, and an even greater failure of thalamic growth. In patients with MS, T2 lesion volume correlated with a greater reduction in age-expected thalamic volume. To exclude any scanner-related influence on our data, we confirmed no significant interaction of group in the adjusted models between the NC and NIH MRI Study of Normal Brain Development groups. Conclusions: Our results provide evidence that the onset of MS during childhood and adolescence limits age-expected primary brain growth and leads to subsequent brain atrophy, implicating an early onset of the neurodegenerative aspect of MS. PMID:25378667
In vivo PET imaging of neuroinflammation in Alzheimer's disease.
Lagarde, Julien; Sarazin, Marie; Bottlaender, Michel
2018-05-01
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Taking Systems Medicine to Heart.
Trachana, Kalliopi; Bargaje, Rhishikesh; Glusman, Gustavo; Price, Nathan D; Huang, Sui; Hood, Leroy E
2018-04-27
Systems medicine is a holistic approach to deciphering the complexity of human physiology in health and disease. In essence, a living body is constituted of networks of dynamically interacting units (molecules, cells, organs, etc) that underlie its collective functions. Declining resilience because of aging and other chronic environmental exposures drives the system to transition from a health state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction problem that requires deep understanding of biology and innovation in study design, technology, and data analysis. With a focus on the principles of systems medicine, this Review discusses approaches for deciphering this biological complexity from a novel perspective, namely, understanding how disease-perturbed networks function; their study provides insights into fundamental disease mechanisms. The immediate goals for systems medicine are to identify early transitions to cardiovascular (and other chronic) diseases and to accelerate the translation of new preventive, diagnostic, or therapeutic targets into clinical practice, a critical step in the development of personalized, predictive, preventive, and participatory (P4) medicine. © 2018 American Heart Association, Inc.
Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram
Batra, Marion; Nägele, Thomas
2015-01-01
Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526
Estimated maximal and current brain volume predict cognitive ability in old age
Royle, Natalie A.; Booth, Tom; Valdés Hernández, Maria C.; Penke, Lars; Murray, Catherine; Gow, Alan J.; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.
2013-01-01
Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. PMID:23850342
Angel, Lucie; Bouazzaoui, Badiâa; Isingrini, Michel; Fay, Séverine; Taconnat, Laurence; Vanneste, Sandrine; Ledoux, Moïse; Gissot, Valérie; Hommet, Caroline; Andersson, Fréderic; Barantin, Laurent; Cottier, Jean-Philippe; Pasco, Jérémy; Desmidt, Thomas; Patat, Frédéric; Camus, Vincent; Remenieras, Jean-Pierre
2018-06-01
Aging is characterized by a cognitive decline of fluid abilities and is also associated with electrophysiological changes. The vascular hypothesis proposes that brain is sensitive to vascular dysfunction which may accelerate age-related brain modifications and thus explain age-related neurocognitive decline. To test this hypothesis, cognitive performance was measured in 39 healthy participants from 20 to 80 years, using tests assessing inhibition, fluid intelligence, attention and crystallized abilities. Brain functioning associated with attentional abilities was assessed by measuring the P3b ERP component elicited through an auditory oddball paradigm. To assess vascular health, we used an innovative measure of the pulsatility of deep brain tissue, due to variations in cerebral blood flow over the cardiac cycle. Results showed (1) a classical effect of age on fluid neurocognitive measures (inhibition, fluid intelligence, magnitude and latency of the P3b) but not on crystallized measures, (2) that brain pulsatility decreases with advancing age, (3) that brain pulsatility is positively correlated with fluid neurocognitive measures and (4) that brain pulsatility strongly mediated the age-related variance in cognitive performance and the magnitude of the P3b component. The mediating role of the brain pulsatility in age-related effect on neurocognitive measures supports the vascular hypothesis of cognitive aging. Copyright © 2018 Elsevier Inc. All rights reserved.
PPARγ and Stress: Implications for Aging
Ulrich-Lai, Yvonne M.; Ryan, Karen K.
2012-01-01
Complex interactions link psychological stress and aging - stress generally promotes aging processes, and conversely, aging can contribute to stress dysregulation. Stress and aging have remarkably similar effects on brain. Both induce neuroinflammation and alter neuronal metabolism and activity, which to varying extents are causally-linked to the development of stress and aging pathology. As such, induction of one or more of these brain disturbances by either stress or aging could predispose for the development of dysfunction in the other. Notably, peroxisome proliferator-activated receptor γ (PPARγ) is expressed in brain regions that regulate both stress and aging (e.g., hippocampus) and can act to prevent the consequences of aging and stress on the brain. In addition, PPARγ agonists reduce the physiological stress response itself. Thus, PPARγ may represent a critical mechanistic link between brain aging and stress that could hold therapeutic potential for the prevention and treatment of age-related cognitive and mood disorders. PMID:22960592
Deciphering indented impressions on plastic.
Brown, Sharon; Klein, Asne; Chaikovsky, Alan
2003-07-01
The questioned document laboratory is often called upon to decipher writing that has been erased, obliterated, or that has faded. In cases like these, the original writing is no longer legible to the naked eye, but may be enhanced using various light sources. Certain remnants of the ink's components absorb into the substrate's fibers and can be visualized, usually as luminescence or absorbance. A case is described here that involved the theft of a credit card. An empty plastic credit card holder was found in the possession of a suspect, and as submitted for examination. Indented impressions could be discerned on its clear plastic window and presumably originated from the credit card that had been held in the envelope. These indented impressions were deciphered in the hope that they would reveal enough details from the credit card to establish a connection between the plastic envelope and the stolen credit card. With methods generally utilized in the toolmarks and materials laboratory and the photography laboratory of the Israel Police, most of the indented impressions on the plastic were deciphered and a connection between the plastic envelope and the stolen credit card was demonstrated.
Chan, Micaela Y; Na, Jinkyung; Agres, Phillip F; Savalia, Neil K; Park, Denise C; Wig, Gagan S
2018-05-14
An individual's environmental surroundings interact with the development and maturation of their brain. An important aspect of an individual's environment is his or her socioeconomic status (SES), which estimates access to material resources and social prestige. Previous characterizations of the relation between SES and the brain have primarily focused on earlier or later epochs of the lifespan (i.e., childhood, older age). We broaden this work to examine the relationship between SES and the brain across a wide range of human adulthood (20-89 years), including individuals from the less studied middle-age range. SES, defined by education attainment and occupational socioeconomic characteristics, moderates previously reported age-related differences in the brain's functional network organization and whole-brain cortical structure. Across middle age (35-64 years), lower SES is associated with reduced resting-state system segregation (a measure of effective functional network organization). A similar but less robust relationship exists between SES and age with respect to brain anatomy: Lower SES is associated with reduced cortical gray matter thickness in middle age. Conversely, younger and older adulthood do not exhibit consistent SES-related difference in the brain measures. The SES-brain relationships persist after controlling for measures of physical and mental health, cognitive ability, and participant demographics. Critically, an individual's childhood SES cannot account for the relationship between their current SES and functional network organization. These findings provide evidence that SES relates to the brain's functional network organization and anatomy across adult middle age, and that higher SES may be a protective factor against age-related brain decline. Copyright © 2018 the Author(s). Published by PNAS.
Nordin, Kristin; Persson, Jonas; Stening, Eva; Herlitz, Agneta; Larsson, Elna-Marie; Söderlund, Hedvig
2018-02-01
The hippocampus (HC) interacts with distributed brain regions to support memory and shows significant volume reductions in aging, but little is known about age effects on hippocampal whole-brain structural covariance. It is also unclear whether the anterior and posterior HC show similar or distinct patterns of whole-brain covariance and to what extent these are related to memory functions organized along the hippocampal longitudinal axis. Using the multivariate approach partial least squares, we assessed structural whole-brain covariance of the HC in addition to regional volume, in young, middle-aged and older adults (n = 221), and assessed associations with episodic and spatial memory. Based on findings of sex differences in both memory and brain aging, we further considered sex as a potential modulating factor of age effects. There were two main covariance patterns: one capturing common anterior and posterior covariance, and one differentiating the two regions by capturing anterior-specific covariance only. These patterns were differentially related to associative memory while unrelated to measures of single-item memory and spatial memory. Although patterns were qualitatively comparable across age groups, participants' expression of both patterns decreased with age, independently of sex. The results suggest that the organization of hippocampal structural whole-brain covariance remains stable across age, but that the integrity of these networks decreases as the brain undergoes age-related alterations. © 2017 Wiley Periodicals, Inc.
Long-term care: long-term care insurance--2005. End of Year Issue Brief.
Tanner, Rachel; Bercaw, Lawren
2005-12-31
As the "Baby Boom" generation approaches retirement, state and federal lawmakers are struggling to ensure that the nation's long-term care system will provide adequate services for the growing number of senior citizens. A 2003 Administration on Aging report predicted that the elderly population will double by 2030. Accordingly, policymakers must prepare for the impending squeeze on public health and Medicaid resources. Many consumers are exploring private long-term care insurance options as a means of preparing for the cost of eldercare. Yet, a lack of market uniformity has rendered the long-term care insurance industry somewhat difficult for consumers to decipher. In addition, senior care insurance is often costly, particularly for those over age 50.
Xie, Fang; Peng, Fangyu
2017-01-01
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice
Gauba, Esha; Guo, Lan; Du, Heng
2017-01-01
Brain aging is the known strongest risk factor for Alzheimer’s disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD. PMID:27834780
Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice.
Gauba, Esha; Guo, Lan; Du, Heng
2017-01-01
Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.
Brain aging and neurodegeneration: from a mitochondrial point of view.
Grimm, Amandine; Eckert, Anne
2017-11-01
Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid". © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
NASA Astrophysics Data System (ADS)
Li, Yongming; Li, Fan; Wang, Pin; Zhu, Xueru; Liu, Shujun; Qiu, Mingguo; Zhang, Jingna; Zeng, Xiaoping
2016-10-01
Traditional age estimation methods are based on the same idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to accelerated brain aging. This paper considers this deviation and searches for it by maximizing the separability distance value rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to prior knowledge. Secondly, use the support vector regression (SVR) as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the separability distance criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. The experimental results showed that the separability was apparently improved. For normal control-Alzheimer’s disease (NC-AD), normal control-mild cognition impairment (NC-MCI), and MCI-AD, the average improvements were 0.178 (35.11%), 0.033 (14.47%), and 0.017 (39.53%), respectively. For NC-MCI-AD, the average improvement was 0.2287 (64.22%). The estimated brain pathological age could be not only more helpful to the classification of AD but also more precisely reflect accelerated brain aging. In conclusion, this paper offers a new method for brain age estimation that can distinguish different states of AD and can better reflect the extent of accelerated aging.
Estimated maximal and current brain volume predict cognitive ability in old age.
Royle, Natalie A; Booth, Tom; Valdés Hernández, Maria C; Penke, Lars; Murray, Catherine; Gow, Alan J; Maniega, Susana Muñoz; Starr, John; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M
2013-12-01
Brain tissue deterioration is a significant contributor to lower cognitive ability in later life; however, few studies have appropriate data to establish how much influence prior brain volume and prior cognitive performance have on this association. We investigated the associations between structural brain imaging biomarkers, including an estimate of maximal brain volume, and detailed measures of cognitive ability at age 73 years in a large (N = 620), generally healthy, community-dwelling population. Cognitive ability data were available from age 11 years. We found positive associations (r) between general cognitive ability and estimated brain volume in youth (male, 0.28; females, 0.12), and in measured brain volume in later life (males, 0.27; females, 0.26). Our findings show that cognitive ability in youth is a strong predictor of estimated prior and measured current brain volume in old age but that these effects were the same for both white and gray matter. As 1 of the largest studies of associations between brain volume and cognitive ability with normal aging, this work contributes to the wider understanding of how some early-life factors influence cognitive aging. Copyright © 2013 Elsevier Inc. All rights reserved.
Gene expression in the aging human brain: an overview.
Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S
2016-03-01
The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.
Akiguchi, Ichiro; Pallàs, Mercè; Budka, Herbert; Akiyama, Haruhiko; Ueno, Masaki; Han, Jingxian; Yagi, Hideo; Nishikawa, Tomohumi; Chiba, Yoichi; Sugiyama, Hiroshi; Takahashi, Ryoya; Unno, Keiko; Higuchi, Keiichi; Hosokawa, Masanori
2017-08-01
Senescence accelerated mice P8 (SAMP8) show significant age-related deteriorations in memory and learning ability in accordance with early onset and rapid advancement of senescence. Brains of SAMP8 mice reveal an age-associated increase of PAS-positive granular structures in the hippocampal formation and astrogliosis in the brain stem and hippocampus. A spongy degeneration in the brain stem appears at 1 month of age and reaches a maximum at 4-8 months. In addition, clusters of activated microglia also appear around the vacuoles in the brain stem. β/A4(Aβ) protein-like immunoreactive granular structures are observed in various regions and increase in number markedly with age. Other age-associated histological changes include cortical atrophy, neuronal cell loss in locus coeruleus and lateral tegmental nuclei, intraneuronal accumulation of lipopigments in Purkinje cells and eosinophilic inclusion bodies in thalamic neurons. A blood-brain barrier dysfunction and astrogliosis are also prominent with advancing age in the hippocampus. These changes are generally similar to the pathomorphology of aging human brains and characterized by their association with some specific glioneuronal reactions. As for the hallmarks of Alzheimer brains, tau morphology has not yet been confirmed regardless of the age-related increase in phosphorylated tau in SAMP8 mice brains, but early age-related Aβ deposition in the hippocampus has recently been published. SAMP8 mice are, therefore, not only a senescence-accelerated model but also a promising model for Alzheimer's disease and other cognitive disorders. © 2017 Japanese Society of Neuropathology.
Gene expression changes in the course of normal brain aging are sexually dimorphic
Berchtold, Nicole C.; Cribbs, David H.; Coleman, Paul D.; Rogers, Joseph; Head, Elizabeth; Kim, Ronald; Beach, Tom; Miller, Carol; Troncoso, Juan; Trojanowski, John Q.; Zielke, H. Ronald; Cotman, Carl W.
2008-01-01
Gene expression profiles were assessed in the hippocampus, entorhinal cortex, superior-frontal gyrus, and postcentral gyrus across the lifespan of 55 cognitively intact individuals aged 20–99 years. Perspectives on global gene changes that are associated with brain aging emerged, revealing two overarching concepts. First, different regions of the forebrain exhibited substantially different gene profile changes with age. For example, comparing equally powered groups, 5,029 probe sets were significantly altered with age in the superior-frontal gyrus, compared with 1,110 in the entorhinal cortex. Prominent change occurred in the sixth to seventh decades across cortical regions, suggesting that this period is a critical transition point in brain aging, particularly in males. Second, clear gender differences in brain aging were evident, suggesting that the brain undergoes sexually dimorphic changes in gene expression not only in development but also in later life. Globally across all brain regions, males showed more gene change than females. Further, Gene Ontology analysis revealed that different categories of genes were predominantly affected in males vs. females. Notably, the male brain was characterized by global decreased catabolic and anabolic capacity with aging, with down-regulated genes heavily enriched in energy production and protein synthesis/transport categories. Increased immune activation was a prominent feature of aging in both sexes, with proportionally greater activation in the female brain. These data open opportunities to explore age-dependent changes in gene expression that set the balance between neurodegeneration and compensatory mechanisms in the brain and suggest that this balance is set differently in males and females, an intriguing idea. PMID:18832152
Spectral Variability in the Aged Brain during Fine Motor Control
Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.
2016-01-01
Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231
Risk and protective factors for structural brain ageing in the eighth decade of life.
Ritchie, Stuart J; Tucker-Drob, Elliot M; Cox, Simon R; Dickie, David Alexander; Del C Valdés Hernández, Maria; Corley, Janie; Royle, Natalie A; Redmond, Paul; Muñoz Maniega, Susana; Pattie, Alison; Aribisala, Benjamin S; Taylor, Adele M; Clarke, Toni-Kim; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J
2017-11-01
Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.
Adaptation of brain functional and structural networks in aging.
Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi
2015-01-01
The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.
ERIC Educational Resources Information Center
Lai, Su-Huei
A conceptual framework of the modes of problem-solving action has been developed on the basis of a simple relationship cone to assist individuals in diversified professions in inquiry and implementation of theory and practice in their professional development. The conceptual framework is referred to as the Cone-Deciphered Modes of Problem Solving…
Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A
2018-01-01
HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.
Ferritin accumulation under iron scarcity in Drosophila iron cells.
Mehta, A; Deshpande, A; Bettedi, L; Missirlis, F
2009-10-01
Ferritins are highly stable, multi-subunit protein complexes with iron-binding capacities that reach 4500 iron atoms per ferritin molecule. The strict dependence of cellular physiology on an adequate supply of iron cofactors has likely been a key driving force in the evolution of ferritins as iron storage molecules. The insect intestine has long been known to contain cells that are responsive to dietary iron levels and a specialized group of "iron cells" that always accumulate iron-loaded ferritin, even when no supplementary iron is added to the diet. Here, we further characterize ferritin localization in Drosophila melanogaster larvae raised under iron-enriched and iron-depleted conditions. High dietary iron intake results in ferritin accumulation in the anterior midgut, but also in garland (wreath) cells and in pericardial cells, which together filter the circulating hemolymph. Ferritin is also abundant in the brain, where levels remain unaltered following dietary iron chelation, a treatment that depletes ferritin from the aforementioned tissues. We attribute the stability of ferritin levels in the brain to the function of the blood-brain barrier that may shield this organ from systemic iron fluctuations. Most intriguingly, our dietary manipulations demonstrably iron-depleted the iron cells without a concomitant reduction in their production of ferritin. Therefore, insect iron cells may constitute an exception from the evolutionary norm with respect to iron-dependent ferritin regulation. It will be of interest to decipher both the physiological purpose served and the mechanism employed to untie ferritin regulation from cellular iron levels in this cell type.
Yoshida, M. A.; Ogura, A.; Ikeo, K.; Shigeno, S.; Moritaki, T.; Winters, G. C.; Kohn, A. B.; Moroz, L. L.
2015-01-01
Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called “evolutionary tinkering” or “co-option”, and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the “camera” eye from nautilus’ “pinhole” eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids’ opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. PMID:26002349
Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques
2016-02-01
Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Datta, Siddhartha; Chakrabarti, Nilkanta
2018-04-18
Rise in brain lactate is the hallmark of ageing. Separate studies report that ageing is associated with elevation of lactate level and alterations of lactate dehydrogenase (LDH)-A/B mRNA-expression-ratio in cerebral cortex and hippocampus. However, age related lactate rise in brain and its association with LDH status and their brain regional variations are still elusive. In the present study, level of lactate, LDH (A and B) activity and LDH-A expression were evaluated in post-mitochondrial fraction of tissues isolated from four different brain regions (cerebral cortex, hippocampus, substantia nigra and cerebellum) of young and aged mice. Lactate levels elevated in four brain regions with maximum rise in substantia nigra of aged mice. LDH-A protein expression and its activity decreased in cerebral cortex, hippocampus and substantia nigra without any changes of these parameters in cerebellum of aged mice. LDH-B activity decreased in hippocampus, substantia nigra and cerebellum whereas its activity remains unaltered in cerebral cortex of aged mice. Accordingly, the ratio of LDH-A/LDH-B-activity remains unaltered in hippocampus and substantia nigra, decreased in cerebral cortex and increased in cerebellum. Therefore, rise of lactate in three brain regions (cerebral cortex, hippocampus, substantia nigra) appeared to be not correlated with the alterations of its regulatory enzymes activities in these three brain regions, rather it supports the fact of involvement of other mechanisms, like lactate transport and/or aerobic/anaerobic metabolism as the possible cause(s) of lactate rise in these three brain regions. The increase in LDH-A/LDH-B-activity-ratio appeared to be positively correlated with elevated lactate level in cerebellum of aged mice. Overall, the present study indicates that the mechanism of rise in lactate in brain varies with brain regions where LDH status plays an important role during ageing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Abnormal brain aging as a radical-related disease: A new target for nuclear medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujibayashi, Y.; Yamamoto, S.; Waki, A.
DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies.more » In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.« less
The rat: a laboratory model for studies of the diving response
Gan, Qi; Juric, Rajko
2010-01-01
Underwater submersion in mammals induces apnea, parasympathetically mediated bradycardia, and sympathetically mediated peripheral vasoconstriction. These effects are collectively termed the diving response, potentially the most powerful autonomic reflex known. Although these physiological responses are directed by neurons in the brain, study of neural control of the diving response has been hampered since 1) it is difficult to study the brains of animals while they are underwater, 2) feral marine mammals are usually large and have brains of variable size, and 3) there are but few references on the brains of naturally diving species. Similar responses are elicited in anesthetized rodents after stimulation of their nasal mucosa, but this nasopharyngeal reflex has not been compared directly with natural diving behavior in the rat. In the present study, we compared hemodynamic responses elicited in awake rats during volitional underwater submersion with those of rats swimming on the water's surface, rats involuntarily submerged, and rats either anesthetized or decerebrate and stimulated nasally with ammonia vapors. We show that the hemodynamic changes to voluntary diving in the rat are similar to those of naturally diving marine mammals. We also show that the responses of voluntary diving rats are 1) significantly different from those seen during swimming, 2) generally similar to those elicited in trained rats involuntarily “dunked” underwater, and 3) generally different from those seen from dunking naive rats underwater. Nasal stimulation of anesthetized rats differed most from the hemodynamic variables of rats trained to dive voluntarily. We propose that the rat trained to dive underwater is an excellent laboratory model to study neural control of the mammalian diving response, and also suggest that some investigations may be done with nasal stimulation of decerebrate preparations to decipher such control. PMID:20093670
Zheng, Gaoxing; Qi, Xiaoying; Li, Yuzhu; Zhang, Wei; Yu, Yuguo
2018-01-01
The choice of different reference electrodes plays an important role in deciphering the functional meaning of electroencephalography (EEG) signals. In recent years, the infinity zero reference using the reference electrode standard technique (REST) has been increasingly applied, while the average reference (AR) was generally advocated as the best available reference option in previous classical EEG studies. Here, we designed EEG experiments and performed a direct comparison between the influences of REST and AR on EEG-revealed brain activity features for three typical brain behavior states (eyes-closed, eyes-open and music-listening). The analysis results revealed the following observations: (1) there is no significant difference in the alpha-wave-blocking effect during the eyes-open state compared with the eyes-closed state for both REST and AR references; (2) there was clear frontal EEG asymmetry during the resting state, and the degree of lateralization under REST was higher than that under AR; (3) the global brain functional connectivity density (FCD) and local FCD have higher values for REST than for AR under different behavior states; and (4) the value of the small-world network characteristic in the eyes-closed state is significantly (in full, alpha, beta and gamma frequency bands) higher than that in the eyes-open state, and the small-world effect under the REST reference is higher than that under AR. In addition, the music-listening state has a higher small-world network effect than the eyes-closed state. The above results suggest that typical EEG features might be more clearly presented by applying the REST reference than by applying AR when using a 64-channel recording. PMID:29593490
Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan
2014-01-01
Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.
Neuroanatomical Substrates of Age-Related Cognitive Decline
ERIC Educational Resources Information Center
Salthouse, Timothy A.
2011-01-01
There are many reports of relations between age and cognitive variables and of relations between age and variables representing different aspects of brain structure and a few reports of relations between brain structure variables and cognitive variables. These findings have sometimes led to inferences that the age-related brain changes cause the…
Cuzzilla, R; Spittle, A J; Lee, K J; Rogerson, S; Cowan, F M; Doyle, L W; Cheong, J L Y
2018-06-01
Brain growth in the early postnatal period following preterm birth has not been well described. This study of infants born at <30 weeks' gestational age and without major brain injury aimed to accomplish the following: 1) assess the reproducibility of linear measures made from cranial ultrasonography, 2) evaluate brain growth using sequential cranial ultrasonography linear measures from birth to term-equivalent age, and 3) explore perinatal predictors of postnatal brain growth. Participants comprised 144 infants born at <30 weeks' gestational age at a single center between January 2011 and December 2013. Infants with major brain injury seen on cranial ultrasonography or congenital or chromosomal abnormalities were excluded. Brain tissue and fluid spaces were measured from cranial ultrasonography performed as part of routine clinical care. Brain growth was assessed in 3 time intervals: <7, 7-27, and >27 days' postnatal age. Data were analyzed using intraclass correlation coefficients and mixed-effects regression. A total of 429 scans were assessed for 144 infants. Several linear measures showed excellent reproducibility. All measures of brain tissue increased with postnatal age, except for the biparietal diameter, which decreased within the first postnatal week and increased thereafter. Gestational age of ≥28 weeks at birth was associated with slower growth of the biparietal diameter and ventricular width compared with gestational age of <28 weeks. Postnatal corticosteroid administration was associated with slower growth of the corpus callosum length, transcerebellar diameter, and vermis height. Sepsis and necrotizing enterocolitis were associated with slower growth of the transcerebellar diameter. Postnatal brain growth in infants born at <30 weeks' gestational age can be evaluated using sequential linear measures made from routine cranial ultrasonography and is associated with perinatal predictors of long-term development. © 2018 by American Journal of Neuroradiology.
Plasticity of the aging brain: new directions in cognitive neuroscience.
Gutchess, Angela
2014-10-31
Cognitive neuroscience has revealed aging of the human brain to be rich in reorganization and change. Neuroimaging results have recast our framework around cognitive aging from one of decline to one emphasizing plasticity. Current methods use neurostimulation approaches to manipulate brain function, providing a direct test of the ways that the brain differently contributes to task performance for younger and older adults. Emerging research into emotional, social, and motivational domains provides some evidence for preservation with age, suggesting potential avenues of plasticity, alongside additional evidence for reorganization. Thus, we begin to see that aging of the brain, amidst interrelated behavioral and biological changes, is as complex and idiosyncratic as the brain itself, qualitatively changing over the life span. Copyright © 2014, American Association for the Advancement of Science.
Metabolic drift in the aging brain.
Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary
2016-05-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.
USDA-ARS?s Scientific Manuscript database
Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to death of brain cells that transmit dopamine (DA), one of the brain chemicals responsible for transmitting signals between brain nerve cells. We examined the neuroprotective ef...
Sex differences and structural brain maturation from childhood to early adulthood.
Koolschijn, P Cédric M P; Crone, Eveline A
2013-07-01
Recent advances in structural brain imaging have demonstrated that brain development continues through childhood and adolescence. In the present cross-sectional study, structural MRI data from 442 typically developing individuals (range 8-30) were analyzed to examine and replicate the relationship between age, sex, brain volumes, cortical thickness and surface area. Our findings show differential patterns for subcortical and cortical areas. Analysis of subcortical volumes showed that putamen volume decreased with age and thalamus volume increased with age. Independent of age, males demonstrated larger amygdala and thalamus volumes compared to females. Cerebral white matter increased linearly with age, at a faster pace for females than males. Gray matter showed nonlinear decreases with age. Sex-by-age interactions were primarily found in lobar surface area measurements, with males demonstrating a larger cortical surface up to age 15, while cortical surface in females remained relatively stable with increasing age. The current findings replicate some, but not all prior reports on structural brain development, which calls for more studies with large samples, replications, and specific tests for brain structural changes. In addition, the results point toward an important role for sex differences in brain development, specifically during the heterogeneous developmental phase of puberty. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mutant Alpha-Synuclein Causes Age-Dependent Neuropathology in Monkey Brain
Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua
2015-01-01
Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2–3, 7–8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. PMID:26019347
Intersection between metabolic dysfunction, high fat diet consumption, and brain aging.
Uranga, Romina M; Bruce-Keller, Annadora J; Morrison, Christopher D; Fernandez-Kim, Sun Ok; Ebenezer, Philip J; Zhang, Le; Dasuri, Kalavathi; Keller, Jeffrey N
2010-07-01
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Walk like me, talk like me. The connection between mirror neurons and autism spectrum disorder.
Saffin, Jillian M; Tohid, Hassaan
2016-04-01
Understanding social cognition has become a hallmark in deciphering autism spectrum disorder. Neurobiological theories are taking precedence in causation studies as researchers look to abnormalities in brain development as the cause of deficits in social behavior, cognitive processes, and language. Following their discovery in the 1990s, mirror neurons have become a dominant theory for that the mirror neuron system may play a critical role in the pathophysiology of various symptoms of autism. Over the decades, the theory has evolved from the suggestion of a broken mirror neuron system to impairments in mirror neuron circuitry. The mirror neuron system has not gained total support due to inconsistent findings; a comprehensive analysis of the growing body of research could shed light on the benefits, or the disadvantage of continuing to study mirror neurons and their connection to autism.
From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin
Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.
2017-01-01
Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990
Nakamura, Takeshi; Aoki, Kazuhiro; Matsuda, Michiyuki
2008-08-01
Genetically encoded probes based on Förster resonance energy transfer (FRET) enable us to decipher spatiotemporal information encoded in complex tissues such as the brain. Firstly, this review focuses on FRET probes wherein both the donor and acceptor are fluorescence proteins and are incorporated into a single molecule, i.e. unimolecular probes. Advantages of these probes lie in their easy loading into cells, the simple acquisition of FRET images, and the clear evaluation of data. Next, we introduce our recent study which encompasses FRET imaging and in silico simulation. In nerve growth factor-induced neurite outgrowth in PC12 cells, we found positive and negative signaling feedback loops. We propose that these feedback loops determine neurite-budding sites. We would like to emphasize that it is now time to accelerate crossover research in neuroscience, optics, and computational biology.
Brenachot, Xavier; Rigault, Caroline; Nédélec, Emmanuelle; Laderrière, Amélie; Khanam, Tasneem; Gouazé, Alexandra; Chaudy, Sylvie; Lemoine, Aleth; Datiche, Frédérique; Gascuel, Jean; Pénicaud, Luc; Benani, Alexandre
2014-01-01
Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented activation of the St8sia4 gene transcription, reduced polysialylation, altered the acute homeostatic feeding response to HFD and increased the body weight gain. These findings indicate that impaired hypothalamic polysialylation contribute to the development of obesity, and establish a role for MOF in the brain control of energy balance. PMID:25161885
Mapping Sub-Second Structure in Mouse Behavior
Wiltschko, Alexander B.; Johnson, Matthew J.; Iurilli, Giuliano; Peterson, Ralph E.; Katon, Jesse M.; Pashkovski, Stan L.; Abraira, Victoria E.; Adams, Ryan P.; Datta, Sandeep Robert
2015-01-01
Summary Complex animal behaviors are likely built from simpler modules, but their systematic identification in mammals remains a significant challenge. Here we use depth imaging to show that three-dimensional (3D) mouse pose dynamics are structured at the sub-second timescale. Computational modeling of these fast dynamics effectively describes mouse behavior as a series of reused and stereotyped modules with defined transition probabilities. We demonstrate this combined 3D imaging and machine learning method can be used to unmask potential strategies employed by the brain to adapt to the environment, to capture both predicted and previously-hidden phenotypes caused by genetic or neural manipulations, and to systematically expose the global structure of behavior within an experiment. This work reveals that mouse body language is built from identifiable components and is organized in a predictable fashion; deciphering this language establishes an objective framework for characterizing the influence of environmental cues, genes and neural activity on behavior. PMID:26687221
What can parasitoid wasps teach us about decision-making in insects?
Libersat, Frederic; Gal, Ram
2013-01-01
Millions of years of co-evolution have driven parasites to display very complex and exquisite strategies to manipulate the behaviour of their hosts. However, although parasite-induced behavioural manipulation is a widespread phenomenon, the underlying neuronal mechanisms are only now beginning to be deciphered. Here, we review recent advancements in the study of the mechanisms by which parasitoid wasps use chemical warfare to manipulate the behaviour of their insect hosts. We focus on a particular case study in which a parasitoid wasp (the jewel wasp Ampulex compressa) performs a delicate brain surgery on its prey (the American cockroach Periplaneta americana) to take away its motivation to initiate locomotion. Following a brief background account of parasitoid wasps that manipulate host behaviour, we survey specific aspects of the unique effects of the A. compressa venom on the regulation of spontaneous and evoked behaviour in the cockroach host.
Ageing and brain white matter structure in 3,513 UK Biobank participants
Cox, Simon R.; Ritchie, Stuart J.; Tucker-Drob, Elliot M.; Liewald, David C.; Hagenaars, Saskia P.; Davies, Gail; Wardlaw, Joanna M.; Gale, Catharine R.; Bastin, Mark E.; Deary, Ian J.
2016-01-01
Quantifying the microstructural properties of the human brain's connections is necessary for understanding normal ageing and disease. Here we examine brain white matter magnetic resonance imaging (MRI) data in 3,513 generally healthy people aged 44.64–77.12 years from the UK Biobank. Using conventional water diffusion measures and newer, rarely studied indices from neurite orientation dispersion and density imaging, we document large age associations with white matter microstructure. Mean diffusivity is the most age-sensitive measure, with negative age associations strongest in the thalamic radiation and association fibres. White matter microstructure across brain tracts becomes increasingly correlated in older age. This may reflect an age-related aggregation of systemic detrimental effects. We report several other novel results, including age associations with hemisphere and sex, and comparative volumetric MRI analyses. Results from this unusually large, single-scanner sample provide one of the most extensive characterizations of age associations with major white matter tracts in the human brain. PMID:27976682
Fasting and Fast Food Diet Play an Opposite Role in Mice Brain Aging.
Castrogiovanni, Paola; Li Volti, Giovanni; Sanfilippo, Cristina; Tibullo, Daniele; Galvano, Fabio; Vecchio, Michele; Avola, Roberto; Barbagallo, Ignazio; Malaguarnera, Lucia; Castorina, Sergio; Musumeci, Giuseppe; Imbesi, Rosa; Di Rosa, Michelino
2018-01-20
Fasting may be exploited as a possible strategy for prevention and treatment of several diseases such as diabetes, obesity, and aging. On the other hand, high-fat diet (HFD) represents a risk factor for several diseases and increased mortality. The aim of the present study was to evaluate the impact of fasting on mouse brain aging transcriptome and how HFD regulates such pathways. We used the NCBI Gene Expression Omnibus (GEO) database, in order to identify suitable microarray datasets comparing mouse brain transcriptome under fasting or HFD vs aged mouse brain transcriptome. Three microarray datasets were selected for this study, GSE24504, GSE6285, and GSE8150, and the principal molecular mechanisms involved in this process were evaluated. This analysis showed that, regardless of fasting duration, mouse brain significantly expressed 21 and 30 upregulated and downregulated genes, respectively. The involved biological processes were related to cell cycle arrest, cell death inhibition, and regulation of cellular metabolism. Comparing mouse brain transcriptome under fasting and aged conditions, we found out that the number of genes in common increased with the duration of fasting (222 genes), peaking at 72 h. In addition, mouse brain transcriptome under HFD resembles for the 30% the one of the aged mice. Furthermore, several molecular processes were found to be shared between HFD and aging. In conclusion, we suggest that fasting and HFD play an opposite role in brain transcriptome of aged mice. Therefore, an intermittent diet could represent a possible clinical strategy to counteract aging, loss of memory, and neuroinflammation. Furthermore, low-fat diet leads to the inactivation of brain degenerative processes triggered by aging.
Association of Structural Global Brain Network Properties with Intelligence in Normal Aging
Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas
2014-01-01
Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994
Neurogenesis in the aging brain.
Apple, Deana M; Solano-Fonseca, Rene; Kokovay, Erzsebet
2017-10-01
Adult neurogenesis is the process of producing new neurons from neural stem cells (NSCs) for integration into the brain circuitry. Neurogenesis occurs throughout life in the ventricular-subventricular zone (V-SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the hippocampal dentate gyrus. However, during aging, NSCs and their progenitors exhibit reduced proliferation and neuron production, which is thought to contribute to age-related cognitive impairment and reduced plasticity that is necessary for some types of brain repair. In this review, we describe NSCs and their niches during tissue homeostasis and how they undergo age-associated remodeling and dysfunction. We also discuss some of the functional ramifications in the brain from NSC aging. Finally, we discuss some recent insights from interventions in NSC aging that could eventually translate into therapies for healthy brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Tian, Lixia; Ma, Lin; Wang, Linlin
2016-04-01
In contrast to extended research interests in the maturation and aging of human brain, alterations of brain structure and function from early to middle adulthood have been much less studied. The aim of the present study was to investigate the extent and pattern of the alterations of functional interactions between brain regions from early to middle adulthood. We carried out the study by multivariate pattern analysis of resting-state fMRI (RS-fMRI) data of 63 adults aged 18 to 45 years. Specifically, using elastic net, we performed brain age estimation and age-group classification (young adults aged 18-28 years vs. middle-aged adults aged 35-45 years) based on the resting-state functional connectivities (RSFCs) between 160 regions of interest (ROIs) evaluated on the RS-fMRI data of each subject. The results indicate that the estimated brain ages were significantly correlated with the chronological age (R=0.78, MAE=4.81), and a classification rate of 94.44% and area under the receiver operating characteristic curve (AUC) of 0.99 were obtained when classifying the young and middle-aged adults. These results provide strong evidence that functional interactions between brain regions undergo notable alterations from early to middle adulthood. By analyzing the RSFCs that contribute to brain age estimation/age-group classification, we found that a majority of the RSFCs were inter-network, and we speculate that inter-network RSFCs might mature late but age early as compared to intra-network ones. In addition, the strengthening/weakening of the RSFCs associated with the left/right hemispheric ROIs, the weakening of cortico-cerebellar RSFCs and the strengthening of the RSFCs between the default mode network and other networks contributed much to both brain age estimation and age-group classification. All these alterations might reflect that aging of brain function is already in progress in middle adulthood. Overall, the present study indicated that the RSFCs undergo notable alterations from early to middle adulthood and highlighted the necessity of careful considerations of possible influences of these alterations in related studies. Copyright © 2016 Elsevier Inc. All rights reserved.
The Influence of the Brain on Overpopulation, Ageing and Dependency.
ERIC Educational Resources Information Center
Cape, Ronald D. T.
1989-01-01
With time, an increasing number in the world population is becoming old, and changes in the aging brain mean that a significant proportion of the aged are likely to be dependent on others. The devotion of resources to research into the aging brain could bring benefits far outweighing the investment. (Author/CW)
Seo, Y; Jeong, B; Kim, J-W; Choi, J
2010-01-01
The various changes of sexuality, including decreased sexual desire and erectile dysfunction, are also accompanied with aging. To understand the effect of aging on sexuality, we explored the relationship between age and the visual erotic stimulation-related brain response in sexually active male subjects. Twelve healthy, heterosexual male subjects (age 22-47 years) were recorded the functional magnetic resonance imaging (fMRI) signals of their brain activation elicited by passive viewing erotic (ERO), happy-faced (HA) couple, food and nature pictures. Mixed effect analysis and correlation analysis were performed to investigate the relationship between the age and the change of brain activity elicited by erotic stimuli. Our results showed age was positively correlated with the activation of right occipital fusiform gyrus and amygdala, and negatively correlated with the activation of right insula and inferior frontal gyrus. These findings suggest age might be related with functional decline in brain regions being involved in both interoceptive sensation and prefrontal modulation while it is related with the incremental activity of the brain region for early processing of visual emotional stimuli in sexually healthy men.
A common brain network links development, aging, and vulnerability to disease.
Douaud, Gwenaëlle; Groves, Adrian R; Tamnes, Christian K; Westlye, Lars Tjelta; Duff, Eugene P; Engvig, Andreas; Walhovd, Kristine B; James, Anthony; Gass, Achim; Monsch, Andreas U; Matthews, Paul M; Fjell, Anders M; Smith, Stephen M; Johansen-Berg, Heidi
2014-12-09
Several theories link processes of development and aging in humans. In neuroscience, one model posits for instance that healthy age-related brain degeneration mirrors development, with the areas of the brain thought to develop later also degenerating earlier. However, intrinsic evidence for such a link between healthy aging and development in brain structure remains elusive. Here, we show that a data-driven analysis of brain structural variation across 484 healthy participants (8-85 y) reveals a largely--but not only--transmodal network whose lifespan pattern of age-related change intrinsically supports this model of mirroring development and aging. We further demonstrate that this network of brain regions, which develops relatively late during adolescence and shows accelerated degeneration in old age compared with the rest of the brain, characterizes areas of heightened vulnerability to unhealthy developmental and aging processes, as exemplified by schizophrenia and Alzheimer's disease, respectively. Specifically, this network, while derived solely from healthy subjects, spatially recapitulates the pattern of brain abnormalities observed in both schizophrenia and Alzheimer's disease. This network is further associated in our large-scale healthy population with intellectual ability and episodic memory, whose impairment contributes to key symptoms of schizophrenia and Alzheimer's disease. Taken together, our results suggest that the common spatial pattern of abnormalities observed in these two disorders, which emerge at opposite ends of the life spectrum, might be influenced by the timing of their separate and distinct pathological processes in disrupting healthy cerebral development and aging, respectively.
Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi
2017-01-01
While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and right inferior frontal gyrus (IFG), which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.
Age-related apparent diffusion coefficient changes in the normal brain.
Watanabe, Memi; Sakai, Osamu; Ozonoff, Al; Kussman, Steven; Jara, Hernán
2013-02-01
To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.
Brain arterial aging and its relationship to Alzheimer dementia
Honig, Lawrence; Elkind, Mitchell S.V.; Mohr, Jay P.; Goldman, James; Dwork, Andrew J.; Morgello, Susan; Marshall, Randolph S.
2016-01-01
Objective: To test the hypothesis that brain arterial aging is associated with the pathologic diagnosis of Alzheimer disease (AD). Methods: Brain large arteries were assessed for diameter, gaps in the internal elastic lamina (IEL), luminal stenosis, atherosclerosis, and lumen-to-wall ratio. Elastin, collagen, and amyloid were assessed with Van Gieson, trichrome, and Congo red staining intensities, and quantified automatically. Brain infarcts and AD (defined pathologically) were assessed at autopsy. We created a brain arterial aging (BAA) score with arterial characteristics associated with aging after adjusting for demographic and clinical variables using cross-sectional generalized linear models. Results: We studied 194 autopsied brains, 25 (13%) of which had autopsy evidence of AD. Brain arterial aging consisted of higher interadventitial and lumen diameters, thickening of the wall, increased prevalence of IEL gaps, concentric intima thickening, elastin loss, increased amyloid deposition, and a higher IEL proportion without changes in lumen-to-wall ratio. In multivariable analysis, a high IEL proportion (B = 1.96, p = 0.030), thick media (B = 3.50, p = 0.001), elastin loss (B = 6.16, p < 0.001), IEL gaps (B = 3.14, p = 0.023), and concentric intima thickening (B = 7.19, p < 0.001) were used to create the BAA score. Adjusting for demographics, vascular risk factors, atherosclerosis, and brain infarcts, the BAA score was associated with AD (B = 0.022, p = 0.002). Conclusions: Aging of brain large arteries is characterized by arterial dilation with a commensurate wall thickening, elastin loss, and IEL gaps. Greater intensity of arterial aging was associated with AD independently of atherosclerosis and brain infarcts. Understanding the drivers of arterial aging may advance the knowledge of the pathophysiology of AD. PMID:26984942
Brain arterial aging and its relationship to Alzheimer dementia.
Gutierrez, Jose; Honig, Lawrence; Elkind, Mitchell S V; Mohr, Jay P; Goldman, James; Dwork, Andrew J; Morgello, Susan; Marshall, Randolph S
2016-04-19
To test the hypothesis that brain arterial aging is associated with the pathologic diagnosis of Alzheimer disease (AD). Brain large arteries were assessed for diameter, gaps in the internal elastic lamina (IEL), luminal stenosis, atherosclerosis, and lumen-to-wall ratio. Elastin, collagen, and amyloid were assessed with Van Gieson, trichrome, and Congo red staining intensities, and quantified automatically. Brain infarcts and AD (defined pathologically) were assessed at autopsy. We created a brain arterial aging (BAA) score with arterial characteristics associated with aging after adjusting for demographic and clinical variables using cross-sectional generalized linear models. We studied 194 autopsied brains, 25 (13%) of which had autopsy evidence of AD. Brain arterial aging consisted of higher interadventitial and lumen diameters, thickening of the wall, increased prevalence of IEL gaps, concentric intima thickening, elastin loss, increased amyloid deposition, and a higher IEL proportion without changes in lumen-to-wall ratio. In multivariable analysis, a high IEL proportion (B = 1.96, p = 0.030), thick media (B = 3.50, p = 0.001), elastin loss (B = 6.16, p < 0.001), IEL gaps (B = 3.14, p = 0.023), and concentric intima thickening (B = 7.19, p < 0.001) were used to create the BAA score. Adjusting for demographics, vascular risk factors, atherosclerosis, and brain infarcts, the BAA score was associated with AD (B = 0.022, p = 0.002). Aging of brain large arteries is characterized by arterial dilation with a commensurate wall thickening, elastin loss, and IEL gaps. Greater intensity of arterial aging was associated with AD independently of atherosclerosis and brain infarcts. Understanding the drivers of arterial aging may advance the knowledge of the pathophysiology of AD. © 2016 American Academy of Neurology.
Rosano, Caterina; Marsland, Anna L; Gianaros, Peter J
2012-02-01
Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests that inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, circulating inflammatory markers have been associated with declines in cognitive function and worsening of brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This increased propensity to central inflammation may contribute to poor brain health and premature brain aging. Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo. This review assesses the role that inflammation may play in the brain changes that often accompany aging, focusing on relationships between peripheral inflammatory markers and brain health among well-functioning, community-dwelling adults seventy years and older. We propose that monitoring and maintaining lower levels of systemic and central inflammation among older adults could help preserve brain health and support successful aging. Hence, we also identify plausible ways and novel experimental study designs of maintaining brain health late in age through interventions that target the immune system.
Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C.; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi
2013-01-01
Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence. PMID:23390528
Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi
2013-01-01
Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.
Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging.
Zamroziewicz, Marta K; Barbey, Aron K
2016-01-01
Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition-from entire diets to specific nutrients-affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging.
Nutritional Cognitive Neuroscience: Innovations for Healthy Brain Aging
Zamroziewicz, Marta K.; Barbey, Aron K.
2016-01-01
Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that seeks to understand nutrition's impact on cognition and brain health across the life span. Research in this burgeoning field demonstrates that many aspects of nutrition—from entire diets to specific nutrients—affect brain structure and function, and therefore have profound implications for understanding the nature of healthy brain aging. The aim of this Focused Review is to examine recent advances in nutritional cognitive neuroscience, with an emphasis on methods that enable discovery of nutrient biomarkers that predict healthy brain aging. We propose an integrative framework that calls for the synthesis of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i) methods for the precise characterization of nutritional health based on the analysis of nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive neuroscience will continue to advance our understanding of the beneficial effects of nutrition on the aging brain and establish effective nutritional interventions to promote healthy brain aging. PMID:27375409
The glia doctrine: addressing the role of glial cells in healthy brain ageing.
Nagelhus, Erlend A; Amiry-Moghaddam, Mahmood; Bergersen, Linda H; Bjaalie, Jan G; Eriksson, Jens; Gundersen, Vidar; Leergaard, Trygve B; Morth, J Preben; Storm-Mathisen, Jon; Torp, Reidun; Walhovd, Kristine B; Tønjum, Tone
2013-10-01
Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans. Exosomes are extracelluar membrane vesicles that facilitate communication between glia, and have significant potential for biomarker discovery and drug delivery. Polymorphisms in DNA repair genes may indirectly influence the structure and function of membrane proteins expressed in glial cells and predispose specific cell subgroups to degeneration. Physical exercise may reduce or retard age-related brain deterioration by a mechanism involving neuro-glial processes. It is most likely that additional information about the distribution, structure and function of glial cells will yield novel insight into human brain ageing. Systematic studies of glia and their functions are expected to eventually lead to earlier detection of ageing-related brain dysfunction and to interventions that could delay, reduce or prevent brain dysfunction. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Congenital heart disease affects cerebral size but not brain growth.
Ortinau, Cynthia; Inder, Terrie; Lambeth, Jennifer; Wallendorf, Michael; Finucane, Kirsten; Beca, John
2012-10-01
Infants with congenital heart disease (CHD) have delayed brain maturation and alterations in brain volume. Brain metrics is a simple measurement technique that can be used to evaluate brain growth. This study used brain metrics to test the hypothesis that alterations in brain size persist at 3 months of age and that infants with CHD have slower rates of brain growth than control infants. Fifty-seven infants with CHD underwent serial brain magnetic resonance imaging (MRI). To evaluate brain growth across the first 3 months of life, brain metrics were undertaken using 19 tissue and fluid spaces shown on MRIs performed before surgery and again at 3 months of age. Before surgery, infants with CHD have smaller frontal, parietal, cerebellar, and brain stem measures (p < 0.001). At 3 months of age, alterations persisted in all measures except the cerebellum. There was no difference between control and CHD infants in brain growth. However, the cerebellum trended toward greater growth in infants with CHD. Somatic growth was the primary factor that related to brain growth. Presence of focal white matter lesions before and after surgery did not relate to alterations in brain size or growth. Although infants with CHD have persistent alterations in brain size at 3 months of age, rates of brain growth are similar to that of healthy term infants. Somatic growth was the primary predictor of brain growth, emphasizing the importance of optimal weight gain in this population.
Strauss, Wayne L; Unis, Alan S; Cowan, Charles; Dawson, Geraldine; Dager, Stephen R
2002-05-01
Pediatric populations, including those with autistic disorder or other pervasive developmental disorders, increasingly are being prescribed selective serotonin reuptake inhibitors (SSRIs). Little is known about the age-related brain pharmacokinetics of SSRIs; there is a lack of data regarding optimal dosing of medications for children. The authors used fluorine magnetic resonance spectroscopy ((19)F MRS) to evaluate age effects on whole-brain concentrations of fluvoxamine and fluoxetine in children taking SSRIs. Twenty-one pediatric subjects with diagnoses of autistic disorder or other pervasive developmental disorders, 6-15 years old and stabilized with a consistent dose of fluvoxamine or fluoxetine, were recruited for the study; 16 successfully completed the imaging protocol. Whole-brain drug levels in this group were compared to similarly acquired data from 28 adults. A significant relationship between dose and brain drug concentration was observed for both drugs across the age range studied. Brain fluvoxamine concentration in the children was lower, consistent with a lower dose/body mass drug prescription; when brain concentration was adjusted for dose/mass, age effects were no longer significant. Brain fluoxetine concentration was similar between age groups; no significant age effects on brain fluoxetine drug levels remained after adjustment for dose/mass. Observations of brain fluoxetine bioavailability and elimination half-life also were similar between age groups. These findings suggest that fluvoxamine or fluoxetine prescriptions adjusted for dose/mass are an acceptable treatment approach for medicating children with autistic disorder or other pervasive developmental disorders. It must be determined whether these findings can be generalized to other pediatric populations.
Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.
Brickman, Adam M; Schupf, Nicole; Manly, Jennifer J; Luchsinger, José A; Andrews, Howard; Tang, Ming X; Reitz, Christiane; Small, Scott A; Mayeux, Richard; DeCarli, Charles; Brown, Truman R
2008-08-01
Aging is accompanied by a decrease in brain volume and by an increase in cerebrovascular disease. To examine the effects of age, sex, race/ethnicity, and vascular disease history on measures of brain morphology, including relative brain volume, ventricular volume, hippocampus and entorhinal cortex volumes, and white matter hyperintensity (WMH) burden, in a large community-based cohort of racially/ethnically diverse older adults without dementia. The associations of age, sex, race/ethnicity, and self-reported vascular disease history with brain morphology were examined in a cross-sectional study using multiple linear regression analyses. Sex x race/ethnicity interactions were also considered. The Washington Heights-Inwood Columbia Aging Project, a community-based epidemiological study of older adults from 3 racial/ethnic groups (white, Hispanic, and African American) from northern Manhattan. Beginning in 2003, high-resolution quantitative magnetic resonance (MR) images were acquired in 769 participants without dementia. Relative brain volume (total brain volume/intracranial volume), ventricular volume, and hippocampus and entorhinal cortex volumes were derived manually on high-resolution MR images. White matter hyperintensities were quantified semiautomatically on fluid-attenuated inversion recovery-T2-weighted MR images. Older age was associated with decreased relative brain volume and with increased ventricular and WMH volumes. Hispanic and African American participants had larger relative brain volumes and more severe WMH burden than white participants, but the associations of these variables with age were similar across racial/ethnic groups. Compared with men, women had larger relative brain volumes. Vascular disease was associated with smaller relative brain volume and with higher WMH burden, particularly among African Americans. Older age and vascular disease, particularly among African Americans, are associated with increased brain atrophy and WMH burden. African American and Hispanic subjects have larger relative brain volumes and more WMH than white subjects. Racial/ethnic group differences in WMH severity seem to be partially attributable to differences in vascular disease. Future work will focus on the determinants and cognitive correlates of these differences.
Deciphering neuronal population codes for acute thermal pain
NASA Astrophysics Data System (ADS)
Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing
2017-06-01
Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.
Ai, Hiroyuki; Kai, Kazuki; Kumaraswamy, Ajayrama; Ikeno, Hidetoshi; Wachtler, Thomas
2017-11-01
Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee ( Apis mellifera ). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. SIGNIFICANCE STATEMENT The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication. Copyright © 2017 the authors 0270-6474/17/3710624-12$15.00/0.
Gestational Age and Neonatal Brain Microstructure in Term Born Infants: A Birth Cohort Study
Broekman, Birit F. P.; Wang, Changqing; Li, Yue; Rifkin-Graboi, Anne; Saw, Seang Mei; Chong, Yap-Seng; Kwek, Kenneth; Gluckman, Peter D.; Fortier, Marielle V.; Meaney, Michael J.; Qiu, Anqi
2014-01-01
Objective Understanding healthy brain development in utero is crucial in order to detect abnormal developmental trajectories due to developmental disorders. However, in most studies neuroimaging was done after a significant postnatal period, and in those studies that performed neuroimaging on fetuses, the quality of data has been affected due to complications of scanning during pregnancy. To understand healthy brain development between 37–41 weeks of gestational age, our study assessed the in utero growth of the brain in healthy term born babies with DTI scanning soon after birth. Methods A cohort of 93 infants recruited from maternity hospitals in Singapore underwent diffusion tensor imaging between 5 to 17 days after birth. We did a cross-sectional examination of white matter microstructure of the brain among healthy term infants as a function of gestational age via voxel-based analysis on fractional anisotropy. Results Greater gestational age at birth in term infants was associated with larger fractional anisotropy values in early developing brain regions, when corrected for age at scan. Specifically, it was associated with a cluster located at the corpus callosum (corrected p<0.001), as well as another cluster spanning areas of the anterior corona radiata, anterior limb of internal capsule, and external capsule (corrected p<0.001). Conclusions Our findings show variation in brain maturation associated with gestational age amongst ‘term’ infants, with increased brain maturation when born with a relatively higher gestational age in comparison to those infants born with a relatively younger gestational age. Future studies should explore if these differences in brain maturation between 37 and 41 weeks of gestational age will persist over time due to development outside the womb. PMID:25535959
Mutant alpha-synuclein causes age-dependent neuropathology in monkey brain.
Yang, Weili; Wang, Guohao; Wang, Chuan-En; Guo, Xiangyu; Yin, Peng; Gao, Jinquan; Tu, Zhuchi; Wang, Zhengbo; Wu, Jing; Hu, Xintian; Li, Shihua; Li, Xiao-Jiang
2015-05-27
Parkinson's disease (PD) is an age-dependent neurodegenerative disease that often occurs in those over age 60. Although rodents and small animals have been used widely to model PD and investigate its pathology, their short life span makes it difficult to assess the aging-related pathology that is likely to occur in PD patient brains. Here, we used brain tissues from rhesus monkeys at 2-3, 7-8, and >15 years of age to examine the expression of Parkin, PINK1, and α-synuclein, which are known to cause PD via loss- or gain-of-function mechanisms. We found that α-synuclein is increased in the older monkey brains, whereas Parkin and PINK1 are decreased or remain unchanged. Because of the gain of toxicity of α-synuclein, we performed stereotaxic injection of lentiviral vectors expressing mutant α-synuclein (A53T) into the substantia nigra of monkeys and found that aging also increases the accumulation of A53T in neurites and its associated neuropathology. A53T also causes more extensive reactive astrocytes and axonal degeneration in monkey brain than in mouse brain. Using monkey brain tissues, we found that A53T interacts with neurofascin, an adhesion molecule involved in axon subcellular targeting and neurite outgrowth. Aged monkey brain tissues show an increased interaction of neurofascin with A53T. Overexpression of A53T causes neuritic toxicity in cultured neuronal cells, which can be attenuated by transfected neurofascin. These findings from nonhuman primate brains reveal age-dependent pathological and molecular changes that could contribute to the age-dependent neuropathology in PD. Copyright © 2015 the authors 0270-6474/15/358345-14$15.00/0.
Individual differences in human brain development.
Brown, Timothy T
2017-01-01
This article discusses recent scientific advances in the study of individual differences in human brain development. Focusing on structural neuroimaging measures of brain morphology and tissue properties, two kinds of variability are related and explored: differences across individuals of the same age and differences across age as a result of development. A recent multidimensional modeling study is explained, which was able to use brain measures to predict an individual's chronological age within about one year on average, in children, adolescents, and young adults between 3 and 20 years old. These findings reveal great regularity in the sequence of the aggregate brain state across different ages and phases of development, despite the pronounced individual differences people show on any single brain measure at any given age. Future research is suggested, incorporating additional measures of brain activity and function. WIREs Cogn Sci 2017, 8:e1389. doi: 10.1002/wcs.1389 For further resources related to this article, please visit the WIREs website. © 2016 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.
Neuroimaging Studies Illustrate the Commonalities Between Ageing and Brain Diseases.
Cole, James H
2018-07-01
The lack of specificity in neuroimaging studies of neurological and psychiatric diseases suggests that these different diseases have more in common than is generally considered. Potentially, features that are secondary effects of different pathological processes may share common neurobiological underpinnings. Intriguingly, many of these mechanisms are also observed in studies of normal (i.e., non-pathological) brain ageing. Different brain diseases may be causing premature or accelerated ageing to the brain, an idea that is supported by a line of "brain ageing" research that combines neuroimaging data with machine learning analysis. In reviewing this field, I conclude that such observations could have important implications, suggesting that we should shift experimental paradigm: away from characterizing the average case-control brain differences resulting from a disease toward methods that place individuals in their age-appropriate context. This will also lead naturally to clinical applications, whereby neuroimaging can contribute to a personalized-medicine approach to improve brain health. © 2018 WILEY Periodicals, Inc.
Age, Intelligence, and Event-Related Brain Potentials during Late Childhood: A Longitudinal Study.
ERIC Educational Resources Information Center
Stauder, Johannes E. A.; van der Molen, Maurits W.; Molenaar, Peter C. M.
2003-01-01
Studied the relationship between event-related brain activity, age, and intelligence using a visual oddball task presented to girls at 9, 10, and 11 years of age. Findings for 26 girls suggest a qualitative shift in the relation between event-related brain activity and intelligence between 9 and 10 years of age. (SLD)
Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation.
Matt, Stephanie M; Johnson, Rodney W
2016-02-01
Microglia, the resident immune cells of the brain, are at the center of communication between the central nervous system and immune system. While these brain-immune interactions are balanced in healthy adulthood, the ability to maintain homeostasis during aging is impaired. Microglia develop a loss of integrated regulatory networks including aberrant signaling from other brain cells, immune sensors, and epigenetic modifiers. The low-grade chronic neuroinflammation associated with this dysfunctional activity likely contributes to cognitive deficits and susceptibility to age-related pathologies. A better understanding of the underlying mechanisms responsible for neuro-immune dysregulation with age is crucial for providing targeted therapeutic strategies to support brain repair and healthy aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska
2018-05-01
Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.
Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K
2015-12-01
The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.
Banerjee, Soumyabrata; Poddar, Mrinal K
2015-03-01
Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Metabolic drift in the aging brain
Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary
2016-01-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841
Metabolic Signaling and Therapy of Lung Cancer
2013-09-01
this grant is to decipher molecular mechanisms by which glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) promotes lung cancer cell metabolism and...PGAM1 in regulation of lung cancer metabolism; molecular mechanisms underlying PGAM1 activation in lung cancer; PGAM1 inhibitor as novel therapy to...leukemia cells from human patients with minimal toxicity. Therefore, the current funded proposal focuses to decipher molecular mechanisms by which
Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.
Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L
2016-11-01
To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age <28 weeks) underwent brain magnetic resonance imaging (MRI) at around 30 weeks postmenstrual age and again around term equivalent age. MRIs were segmented in 50 different regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.
Roth, William; Morgello, Susan; Goldman, James; Mohr, Jay P; Elkind, Mitchell S V; Marshall, Randolph S; Gutierrez, Jose
2017-03-01
We tested the hypothesis that posterior brain arteries differ pathologically from anterior brain arteries and that this difference varies with age. Brain large arteries from 194 autopsied individuals (mean age 56±17 years, 63% men, 25% nonwhite, 17% with brain infarcts) were analyzed to obtain the areas of arterial layers and lumen as well as the relative content of elastin, collagen, and amyloid. Visual rating was used to determine the prevalence of atheroma, calcification, vasa vasorum , pattern of intima thickening, and internal elastic lamina gaps. We used multilevel models adjusting for age, sex, ethnicity, vascular risk factors, artery type and location, and multiple comparisons. Of 1362 large artery segments, 5% had vasa vasorum, 5% had calcifications, 15% had concentric intimal thickening, and 11% had atheromas. Posterior brain arteries had thinner walls, less elastin, and more concentric intima thickening than anterior brain arteries. Compared to anterior brain arteries, the basilar artery had higher arterial area encircled by the internal elastic lamina, whereas the vertebral arteries had higher prevalence of elastin loss, concentric intima thickening, and nonatherosclerotic stenosis. In younger individuals, vertebral artery calcifications were more likely than calcification in anterior brain arteries, but this difference attenuated with age. Posterior brain arteries differ pathologically from anterior brain arteries in the degree of wall thickening, elastin loss, and concentric intimal thickening. © 2017 American Heart Association, Inc.
Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging
NASA Astrophysics Data System (ADS)
Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai
2017-10-01
Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.
Brain response during the M170 time interval is sensitive to socially relevant information.
Arviv, Oshrit; Goldstein, Abraham; Weeting, Janine C; Becker, Eni S; Lange, Wolf-Gero; Gilboa-Schechtman, Eva
2015-11-01
Deciphering the social meaning of facial displays is a highly complex neurological process. The M170, an event related field component of MEG recording, like its EEG counterpart N170, was repeatedly shown to be associated with structural encoding of faces. However, the scope of information encoded during the M170 time window is still being debated. We investigated the neuronal origin of facial processing of integrated social rank cues (SRCs) and emotional facial expressions (EFEs) during the M170 time interval. Participants viewed integrated facial displays of emotion (happy, angry, neutral) and SRCs (indicated by upward, downward, or straight head tilts). We found that the activity during the M170 time window is sensitive to both EFEs and SRCs. Specifically, highly prominent activation was observed in response to SRC connoting dominance as compared to submissive or egalitarian head cues. Interestingly, the processing of EFEs and SRCs appeared to rely on different circuitry. Our findings suggest that vertical head tilts are processed not only for their sheer structural variance, but as social information. Exploring the temporal unfolding and brain localization of non-verbal cues processing may assist in understanding the functioning of the social rank biobehavioral system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Munia, Tamanna T K; Haider, Ali; Schneider, Charles; Romanick, Mark; Fazel-Rezai, Reza
2017-12-08
The neurocognitive sequelae of a sport-related concussion and its management are poorly defined. Detecting deficits are vital in making a decision about the treatment plan as it can persist one year or more following a brain injury. The reliability of traditional cognitive assessment tools is debatable, and thus attention has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-concussive alterations. In this study, we calculated neurocognitive deficits combining EEG analysis with three standard post-concussive assessment tools. Data were collected for all testing modalities from 21 adolescent athletes (seven concussive and fourteen healthy) in three different trials. For EEG assessment, along with linear frequency-based features, we introduced a set of time-frequency (Hjorth Parameters) and nonlinear features (approximate entropy and Hurst exponent) for the first time to explore post-concussive deficits. Besides traditional frequency-band analysis, we also presented a new individual frequency-based approach for EEG assessment. While EEG analysis exhibited significant discrepancies between the groups, none of the cognitive assessment resulted in significant deficits. Therefore, the evidence from the study highlights that our proposed EEG analysis and markers are more efficient at deciphering post-concussion residual neurocognitive deficits and thus has a potential clinical utility of proper concussion assessment and management.
Pazhamala, Lekha T; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K; Varshney, Rajeev K
2016-01-01
Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety "Asha" (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits.
Pazhamala, Lekha T.; Agarwal, Gaurav; Bajaj, Prasad; Kumar, Vinay; Kulshreshtha, Akanksha; Saxena, Rachit K.; Varshney, Rajeev K.
2016-01-01
Seed development is an important event in plant life cycle that has interested humankind since ages, especially in crops of economic importance. Pigeonpea is an important grain legume of the semi-arid tropics, used mainly for its protein rich seeds. In order to understand the transcriptional programming during the pod and seed development, RNA-seq data was generated from embryo sac from the day of anthesis (0 DAA), seed and pod wall (5, 10, 20 and 30 DAA) of pigeonpea variety “Asha” (ICPL 87119) using Illumina HiSeq 2500. About 684 million sequencing reads have been generated from nine samples, which resulted in the identification of 27,441 expressed genes after sequence analysis. These genes have been studied for their differentially expression, co-expression, temporal and spatial gene expression. We have also used the RNA-seq data to identify important seed-specific transcription factors, biological processes and associated pathways during seed development process in pigeonpea. The comprehensive gene expression study from flowering to mature pod development in pigeonpea would be crucial in identifying candidate genes involved in seed traits directly or indirectly related to yield and quality. The dataset will serve as an important resource for gene discovery and deciphering the molecular mechanisms underlying various seed related traits. PMID:27760186
Di Benedetto, Svetlana; Müller, Ludmila; Wenger, Elisabeth; Düzel, Sandra; Pawelec, Graham
2017-04-01
It is widely accepted that the brain and the immune system continuously interact during normal as well as pathological functioning. Human aging is commonly accompanied by low-grade inflammation in both the immune and central nervous systems, thought to contribute to many age-related diseases. This review of the current literature focuses first on the normal neuroimmune interactions occurring in the brain, which promote learning, memory and neuroplasticity. Further, we discuss the protective and dynamic role of barriers to neuroimmune interactions, which have become clearer with the recent discovery of the meningeal lymphatic system. Next, we consider age-related changes of the immune system and possible deleterious influences of immunosenescence and low-grade inflammation (inflammaging) on neurodegenerative processes in the normally aging brain. We survey the major immunomodulators and neuroregulators in the aging brain and their highly tuned dynamic and reciprocal interactions. Finally, we consider our current understanding of how physical activity, as well as a combination of physical and cognitive interventions, may mediate anti-inflammatory effects and thus positively impact brain aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Metabolic brain networks in aging and preclinical Alzheimer's disease.
Arnemann, Katelyn L; Stöber, Franziska; Narayan, Sharada; Rabinovici, Gil D; Jagust, William J
2018-01-01
Metabolic brain networks can provide insight into the network processes underlying progression from healthy aging to Alzheimer's disease. We explore the effect of two Alzheimer's disease risk factors, amyloid-β and ApoE ε4 genotype, on metabolic brain networks in cognitively normal older adults (N = 64, ages 69-89) compared to young adults (N = 17, ages 20-30) and patients with Alzheimer's disease (N = 22, ages 69-89). Subjects underwent MRI and PET imaging of metabolism (FDG) and amyloid-β (PIB). Normal older adults were divided into four subgroups based on amyloid-β and ApoE genotype. Metabolic brain networks were constructed cross-sectionally by computing pairwise correlations of metabolism across subjects within each group for 80 regions of interest. We found widespread elevated metabolic correlations and desegregation of metabolic brain networks in normal aging compared to youth and Alzheimer's disease, suggesting that normal aging leads to widespread loss of independent metabolic function across the brain. Amyloid-β and the combination of ApoE ε4 led to less extensive elevated metabolic correlations compared to other normal older adults, as well as a metabolic brain network more similar to youth and Alzheimer's disease. This could reflect early progression towards Alzheimer's disease in these individuals. Altered metabolic brain networks of older adults and those at the highest risk for progression to Alzheimer's disease open up novel lines of inquiry into the metabolic and network processes that underlie normal aging and Alzheimer's disease.
Associations between education and brain structure at age 73 years, adjusted for age 11 IQ
Dickie, David Alexander; Ritchie, Stuart J.; Karama, Sherif; Pattie, Alison; Royle, Natalie A.; Corley, Janie; Aribisala, Benjamin S.; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M.; Bastin, Mark E.; Evans, Alan C.; Wardlaw, Joanna M.; Deary, Ian J.
2016-01-01
Objective: To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. Methods: We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. Results: The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. Conclusions: The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. PMID:27664981
Associations between education and brain structure at age 73 years, adjusted for age 11 IQ.
Cox, Simon R; Dickie, David Alexander; Ritchie, Stuart J; Karama, Sherif; Pattie, Alison; Royle, Natalie A; Corley, Janie; Aribisala, Benjamin S; Valdés Hernández, Maria; Muñoz Maniega, Susana; Starr, John M; Bastin, Mark E; Evans, Alan C; Wardlaw, Joanna M; Deary, Ian J
2016-10-25
To investigate how associations between education and brain structure in older age were affected by adjusting for IQ measured at age 11. We analyzed years of full-time education and measures from an MRI brain scan at age 73 in 617 community-dwelling adults born in 1936. In addition to average and vertex-wise cortical thickness, we measured total brain atrophy and white matter tract fractional anisotropy. Associations between brain structure and education were tested, covarying for sex and vascular health; a second model also covaried for age 11 IQ. The significant relationship between education and average cortical thickness (β = 0.124, p = 0.004) was reduced by 23% when age 11 IQ was included (β = 0.096, p = 0.041). Initial associations between longer education and greater vertex-wise cortical thickness were significant in bilateral temporal, medial-frontal, parietal, sensory, and motor cortices. Accounting for childhood intelligence reduced the number of significant vertices by >90%; only bilateral anterior temporal associations remained. Neither education nor age 11 IQ was significantly associated with total brain atrophy or tract-averaged fractional anisotropy. The association between years of education and brain structure ≈60 years later was restricted to cortical thickness in this sample; however, the previously reported associations between longer education and a thicker cortex are likely to be overestimates in terms of both magnitude and distribution. This finding has implications for understanding, and possibly ameliorating, life-course brain health. © 2016 American Academy of Neurology.
Gomes-Osman, Joyce; Indahlastari, Aprinda; Fried, Peter J.; Cabral, Danylo L. F.; Rice, Jordyn; Nissim, Nicole R.; Aksu, Serkan; McLaren, Molly E.; Woods, Adam J.
2018-01-01
The impact of cognitive aging on brain function and structure is complex, and the relationship between aging-related structural changes and cognitive function are not fully understood. Physiological and pathological changes to the aging brain are highly variable, making it difficult to estimate a cognitive trajectory with which to monitor the conversion to cognitive decline. Beyond the information on the structural and functional consequences of cognitive aging gained from brain imaging and neuropsychological studies, non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can enable stimulation of the human brain in vivo, offering useful insights into the functional integrity of intracortical circuits using electrophysiology and neuromodulation. TMS measurements can be used to identify and monitor changes in cortical reactivity, the integrity of inhibitory and excitatory intracortical circuits, the mechanisms of long-term potentiation (LTP)/depression-like plasticity and central cholinergic function. Repetitive TMS and tDCS can be used to modulate neuronal excitability and enhance cortical function, and thus offer a potential means to slow or reverse cognitive decline. This review will summarize and critically appraise relevant literature regarding the use of TMS and tDCS to probe cortical areas affected by the aging brain, and as potential therapeutic tools to improve cognitive function in the aging population. Challenges arising from intra-individual differences, limited reproducibility, and methodological differences will be discussed.
Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.
Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej
2017-01-10
Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Grinberg, Lea Tenenholz; Ferretti, Renata Eloah de Lucena; Farfel, José Marcelo; Leite, Renata; Pasqualucci, Carlos Augusto; Rosemberg, Sérgio; Nitrini, Ricardo; Saldiva, Paulo Hilário Nascimento; Filho, Wilson Jacob
2007-01-01
Brain banking remains a necessity for the study of aging brain processes and related neurodegenerative diseases. In the present paper, we report the methods applied at and the first results of the Brain Bank of the Brazilian Aging Brain Study Group (BBBABSG) which has two main aims: (1) To collect a large number of brains of elderly comprising non-demented subjects and a large spectrum of pathologies related to aging brain processes, (2) To provide quality material to a multidisciplinar research network unraveling multiple aspects of aging brain processes and related neurodegenerative diseases. The subjects are selected from the Sao Paulo Autopsy Service. Brain parts are frozen and fixated. CSF, carotids, kidney, heart and blood are also collected and DNA is extracted. The neuropathological examinations are carried out based on accepted criteria, using immunohistochemistry. Functional status are assessed through a collateral source based on a clinical protocol. Protocols are approved by the local ethics committee and a written informed consent form is obtained. During the first 21 months, 1,602 samples were collected and were classified by Clinical Dementia Rating as CDR0: 65.7%; CDR0.5:12.6%, CDR1:8.2%, CDR2:5.4%, and CDR3:8.1%. On average, the cost for the processing each case stood at 400 US dollars. To date, 14 laboratories have been benefited by the BBBABSG. The high percentage of non- demented subjects and the ethnic diversity of this series may be significantly contributive toward aging brain processes and related neurodegenerative diseases understanding since BBBABSG outcomes may provide investigators the answers to some additional questions.
Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain.
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R; Olah, Marta; Mantingh-Otter, Ietje J; Van Dam, Debby; De Deyn, Peter P; den Dunnen, Wilfred; Eggen, Bart J L; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [ 11 C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Quaternary stratigraphy of Bermuda: A high-resolution pre-Sangamonian rock record
NASA Astrophysics Data System (ADS)
Hearty, Paul J.; Vacher, H. Leonard
Carbonate islands such as Bermuda are created by climatic change. Warm climates and high sea levels stimulate carbonate sediment production that may ultimately result in island growth, while cold glacials expose the platforms to weathering, dissolution and soil formation. Of great importance in Quaternary studies is the ability to decipher this climatic history. Mapping and geochronologic studies have established that Bermuda may have one of the most continuous and detailed Quaternary interglacial depositional records on a carbonate platform. Advances in racemization dating (AAR) have offered a means of deciphering this climatic history and generating a high-resolution stratigraphic and age framework for the Quaternary. Bermudian interglacial units consist predominantly of eolianites, with less voluminous occurrences of beach deposits and calcarenite protosols (Entisols). Glacial or stadial-age terra rossa (aluminous laterite) paleosols, whose degree of development is a function of time of exposure, form boundaries between interglacial units. D-alloiso-leucine/ L-isoleucine ( {A}/{I}) ratios have been determined on marine pelecypods, land snails and whole-rock samples from mapped sections; aminozones have been defined for two Sangamonian and at least five pre-Sangamonian depositional intervals. From kinetic models based on calibration with previously published U-series coral dates, estimated ages of middle Pleistocene and older aminozones are: F = 190,000-265,000 years; G = 300,000-400,000 years; H = 400,000-500,000 years; J = >700,000 years; and K = > 900,000 years. Aminozone G, which is correlated with the upper Town Hill Formation and Isotope Stage 9, is volumetrically the most important depositional event of the middle Pleistocene. The great mass of sediment deposited during this period suggests an interglacial of significant duration and prolonged shelf submergence, during which the island grew to over half its present size. Only the Sangamonian ( sensu lato) rivals Stage 9 in volume of eolianite deposited on the island. Sea-level amplitude, as determined from dated outcrops, appears to correlate well with amplitudinal variations in the oxygen isotope record.
Structural Imaging Measures of Brain Aging
Lockhart, Samuel N.
2014-01-01
During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily “normal” or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer’s disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer’s disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between “Normal” and “Healthy” brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society. PMID:25146995
Structural imaging measures of brain aging.
Lockhart, Samuel N; DeCarli, Charles
2014-09-01
During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.
Aged rats are more vulnerable than adolescents to "ecstasy"-induced toxicity.
Feio-Azevedo, R; Costa, V M; Barbosa, D J; Teixeira-Gomes, A; Pita, I; Gomes, S; Pereira, F C; Duarte-Araújo, M; Duarte, J A; Marques, F; Fernandes, E; Bastos, M L; Carvalho, F; Capela, J P
2018-06-04
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a widespread drug of abuse with known neurotoxic properties. The present study aimed to evaluate the differential toxic effects of MDMA in adolescent and aged Wistar rats, using doses pharmacologically comparable to humans. Adolescent (post-natal day 40) (3 × 5 mg/kg, 2 h apart) and aged (mean 20 months old) (2 × 5 mg/kg, 2 h apart) rats received MDMA intraperitoneally. Animals were killed 7 days later, and the frontal cortex, hippocampus, striatum and cerebellum brain areas were dissected, and heart, liver and kidneys were collected. MDMA caused hyperthermia in both treated groups, but aged rats had a more dramatic temperature elevation. MDMA promoted serotonergic neurotoxicity only in the hippocampus of aged, but not in the adolescents' brain, and did not change the levels of dopamine or serotonin metabolite in the striatum of both groups. Differential responses according to age were also seen regarding brain p-Tau levels, a hallmark of a degenerative brain, since only aged animals had significant increases. MDMA evoked brain oxidative stress in the hippocampus and striatum of aged, and in the hippocampus, frontal cortex, and striatum brain areas of adolescents according to protein carbonylation, but only decreased GSH levels in the hippocampus of aged animals. The brain maturational stage seems crucial for MDMA-evoked serotonergic neurotoxicity. Aged animals were more susceptible to MDMA-induced tissue damage in the heart and kidneys, and both ages had an increase in liver fibrotic tissue content. In conclusion, age is a determinant factor for the toxic events promoted by "ecstasy". This work demonstrated special susceptibility of aged hippocampus to MDMA neurotoxicity, as well as impressive damage to the heart and kidney tissue following "ecstasy".
Molecular mechanisms of aging and immune system regulation in Drosophila.
Eleftherianos, Ioannis; Castillo, Julio Cesar
2012-01-01
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.
Molecular Mechanisms of Aging and Immune System Regulation in Drosophila
Eleftherianos, Ioannis; Castillo, Julio Cesar
2012-01-01
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span. PMID:22949833
Does placental inflammation relate to brain lesions and volume in preterm infants?
Reiman, Milla; Kujari, Harry; Maunu, Jonna; Parkkola, Riitta; Rikalainen, Hellevi; Lapinleimu, Helena; Lehtonen, Liisa; Haataja, Leena
2008-05-01
To evaluate the association between histologic inflammation of placenta and brain findings in ultrasound examinations and regional brain volumes in magnetic resonance imaging in very-low-birth-weight (VLBW) or in very preterm infants. VLBW or very preterm infants (n = 121) were categorized into 3 groups according to the most pathologic brain finding on ultrasound examinations until term. The brain magnetic resonance imaging performed at term was analyzed for regional brain volumes. The placentas were analyzed for histologic inflammatory findings. Histologic chorioamnionitis on the fetal side correlated to brain lesions in univariate but not in multivariate analyses. Low gestational age was the only significant risk factor for brain lesions in multivariate analysis (P < .0001). Histologic chorioamnionitis was not associated with brain volumes in multivariate analyses. Female sex, low gestational age, and low birth weight z score correlated to smaller volumes in total brain tissue (P = .001, P = .0002, P < .0001, respectively) and cerebellum (P = .047, P = .003, P = .001, respectively). In addition, low gestational age and low-birth-weight z score correlated to a smaller combined volume of basal ganglia and thalami (P = .0002). Placental inflammation does not appear to correlate to brain lesions or smaller regional brain volumes in VLBW or in very preterm infants at term age.
Between destiny and disease: genetics and molecular pathways of human central nervous system aging.
Glorioso, Christin; Sibille, Etienne
2011-02-01
Aging of the human brain is associated with "normal" functional, structural, and molecular changes that underlie alterations in cognition, memory, mood and motor function, amongst other processes. Normal aging also imposes a robust constraint on the onset of many neurological diseases, ranging from late onset neurodegenerative diseases, such as Alzheimer's (AD) and Parkinson's diseases (PD), to early onset psychiatric disorders, such as bipolar disorder (BPD) and schizophrenia (SCZ). The molecular mechanisms and genetic underpinnings of age-related changes in the brain are understudied, and, while they share some overlap with peripheral mechanisms of aging, many are unique to the largely non-mitotic brain. Hence, understanding mechanisms of brain aging and identifying associated modulators may have profound consequences for the prevention and treatment of age-related impairments and diseases. Here we review current knowledge on age-related functional and structural changes, their molecular and genetic underpinnings, and discuss how these pathways may contribute to the vulnerability to develop age-related neurological diseases. We highlight recent findings from human post-mortem brain microarray studies, which we hypothesize, point to a potential genetically controlled transcriptional program underlying molecular changes and age-gating of neurological diseases. Finally, we discuss the implications of this model for understanding basic mechanisms of brain aging and for the future investigation of therapeutic approaches. Copyright © 2010 Elsevier Ltd. All rights reserved.
Age-related increase of resting metabolic rate in the human brain
Peng, Shin-Lei; Dumas, Julie A.; Park, Denise C.; Liu, Peiying; Filbey, Francesca M.; McAdams, Carrie J.; Pinkham, Amy E.; Adinoff, Bryon; Zhang, Rong; Lu, Hanzhang
2014-01-01
With age, many aspects of the brain structure undergo a pronounced decline, yet individuals generally function well until advanced old age. There appear to be several compensatory mechanisms in brain aging, but their precise nature is not well characterized. Here we provide evidence that the brain of older adults expends more energy when compared to younger adults, as manifested by an age-related increase (P=0.03) in cerebral metabolic rate of oxygen (CMRO2) (N=118, men=56, ages 18 to 74). We further showed that, before the mean menopausal age of 51 years old, female and male groups have similar rates of CMRO2 increase (P=0.015) and there was no interaction between age and sex effects (P=0.85). However, when using data from the entire age range, women have a slower rate of CMRO2 change when compared to men (P<0.001 for age × sex interaction term). Thus, menopause and estrogen level may have played a role in this sex difference. Our data also revealed a possible circadian rhythm of CMRO2 in that brain metabolic rate is greater at noon than in the morning (P=0.02). This study reveals a potential neurobiological mechanism for age-related compensation in brain function and also suggests a sex-difference in its temporal pattern. PMID:24814209
Malpetti, Maura; Ballarini, Tommaso; Presotto, Luca; Garibotto, Valentina; Tettamanti, Marco; Perani, Daniela
2017-08-01
Cognitive reserve (CR) and brain reserve (BR) are protective factors against age-associated cognitive decline and neurodegenerative disorders. Very limited evidence exists about gender effects on brain aging and on the effect of CR on brain modulation in healthy aging and Alzheimer's Dementia (AD). We investigated gender differences in brain metabolic activity and resting-state network connectivity, as measured by 18 F-FDG-PET, in healthy aging and AD, also considering the effects of education and occupation. The clinical and imaging data were retrieved from large datasets of healthy elderly subjects (HE) (225) and AD patients (282). In HE, males showed more extended age-related reduction of brain metabolism than females in frontal medial cortex. We also found differences in brain modulation as metabolic increases induced by education and occupation, namely in posterior associative cortices in HE males and in the anterior limbic-affective and executive networks in HE females. In AD patients, the correlations between education and occupation levels and brain hypometabolism showed gender differences, namely a posterior temporo-parietal association in males and a frontal and limbic association in females, indicating the involvement of different networks. Finally, the metabolic connectivity in both HE and AD aligned with these results, suggesting greater efficiency in the posterior default mode network for males, and in the anterior frontal executive network for females. The basis of these brain gender differences in both aging and AD, obtained exploring cerebral metabolism, metabolic connectivity and the effects of education and occupation, is likely at the intersection between biological and sociodemographic factors. Hum Brain Mapp 38:4212-4227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Goldstein, Rita Z.; Klein, Nelly; Wong, Christopher; Swanson, James M.; Shumay, Elena
2013-01-01
Aging is associated with reductions in brain glucose metabolism in some cortical and subcortical regions, but the rate of decrease varies significantly between individuals, likely reflecting genetic and environmental factors and their interactions. Here we test the hypothesis that the variant of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3), which has been associated with novelty seeking and sensitivity to environmental stimuli (negative and positive) including the beneficial effects of physical activity on longevity, influence the effects of aging on the human brain. We used positron emission tomography (PET) and [18F]fluoro-D-glucose (18FDG) to measure brain glucose metabolism (marker of brain function) under baseline conditions (no stimulation) in 82 healthy individuals (age range 22–55 years). We determined their DRD4 genotype and found an interaction with age: individuals who did not carry the 7-repeat allele (7R−, n = 53) had a significant (p<0.0001) negative association between age and relative glucose metabolism (normalized to whole brain glucose metabolism) in frontal (r = −0.52), temporal (r = −0.51) and striatal regions (r = −0.47, p<0.001); such that older individuals had lower metabolism than younger ones. In contrast, for carriers of the 7R allele (7R+ n = 29), these correlations with age were not significant and they only showed a positive association with cerebellar glucose metabolism (r = +0.55; p = 0.002). Regression slopes of regional brain glucose metabolism with age differed significantly between the 7R+ and 7R− groups in cerebellum, inferior temporal cortex and striatum. These results provide evidence that the DRD4 genotype might modulate the associations between regional brain glucose metabolism and age and that the carriers of the 7R allele appear to be less sensitive to the effects of age on brain glucose metabolism. PMID:23717434
Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa
2016-01-01
Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.
Heni, Martin; Maetzler, Walter; Fritsche, Andreas; Häring, Hans-Ulrich; Hennige, Anita M.
2015-01-01
Objectives It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity. Methods Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF) samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements. Results In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT) in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved. Conclusions This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system. PMID:25965336
Sleep duration and age-related changes in brain structure and cognitive performance.
Lo, June C; Loh, Kep Kee; Zheng, Hui; Sim, Sam K Y; Chee, Michael W L
2014-07-01
To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Community-based longitudinal brain and cognitive aging study using a convenience sample. Participants were studied in a research laboratory. Relatively healthy adults aged 55 y and older at study commencement. N/A. Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance.
McLaughlin, Paula M; Curtis, Ashley F; Branscombe-Caird, Laura M; Comrie, Janna K; Murtha, Susan J E
2018-02-01
To investigate whether a commercially available brain training program is feasible to use with a middle-aged population and has a potential impact on cognition and emotional well-being (proof of concept). Fourteen participants (ages 46-55) completed two 6-week training conditions using a crossover (counterbalanced) design: (1) experimental brain training condition and (2) active control "find answers to trivia questions online" condition. A comprehensive neurocognitive battery and a self-report measure of depression and anxiety were administered at baseline (first time point, before training) and after completing each training condition (second time point at 6 weeks, and third time point at 12 weeks). Cognitive composite scores were calculated for participants at each time point. Study completion and protocol adherence demonstrated good feasibility of this brain training protocol in healthy middle-aged adults. Exploratory analyses suggested that brain training was associated with neurocognitive improvements related to executive attention, as well as improvements in mood. Overall, our findings suggest that brain training programs are feasible in middle-aged cohorts. We propose that brain training games may be linked to improvements in executive attention and affect by promoting cognitive self-efficacy in middle-aged adults.
Bickford, Paula C; Flowers, Antwoine; Grimmig, Bethany
2017-08-01
Aging is the primary risk factor for many neurodegenerative diseases. Thus, understanding the basic biological changes that take place with aging that lead to the brain being less resilient to disease progression of neurodegenerative diseases such as Parkinson's disease or Alzheimer's disease or insults to the brain such as stroke or traumatic brain injuries. Clearly this will not cure the disease per se, yet increasing the ability of the brain to respond to injury could improve long term outcomes. The focus of this review is examining changes in microglia with age and possible therapeutic interventions involving the use of polyphenol rich dietary supplements. Published by Elsevier Inc.
Brain injury and altered brain growth in preterm infants: predictors and prognosis.
Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E
2014-08-01
To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.
Uemura, Takeshi; Watanabe, Kenta; Ishibashi, Misaki; Saiki, Ryotaro; Kuni, Kyoshiro; Nishimura, Kazuhiro; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei
2016-04-29
We previously reported that tissue damage during brain infarction was mainly caused by inactivation of proteins by acrolein. This time, it was tested why brain infarction increases in parallel with aging. A mouse model of photochemically induced thrombosis (PIT) was studied using 2, 6, and 12 month-old female C57BL/6 mice. The size of brain infarction in the mouse PIT model increased with aging. The volume of brain infarction in 12 month-old mice was approximately 2-fold larger than that in 2 month-old mice. The larger brain infarction in 12 month-old mice was due to an increase in acrolein based on an increase in the activity of spermine oxidase, together with a decrease in glutathione (GSH), a major acrolein-detoxifying compound in cells, based on the decrease in one of the subunits of glutathione biosynthesizing enzymes, γ-glutamylcysteine ligase modifier subunit, with aging. The results indicate that aggravation of brain infarction with aging was mainly due to the increase in acrolein production and the decrease in GSH in brain. Copyright © 2016 Elsevier Inc. All rights reserved.
R2* mapping for brain iron: associations with cognition in normal aging.
Ghadery, Christine; Pirpamer, Lukas; Hofer, Edith; Langkammer, Christian; Petrovic, Katja; Loitfelder, Marisa; Schwingenschuh, Petra; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Schmidt, Helena; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold
2015-02-01
Brain iron accumulates during aging and has been associated with neurodegenerative disorders including Alzheimer's disease. Magnetic resonance (MR)-based R2* mapping enables the in vivo detection of iron content in brain tissue. We investigated if during normal brain aging iron load relates to cognitive impairment in region-specific patterns in a community-dwelling cohort of 336 healthy, middle aged, and older adults from the Austrian Stroke Prevention Family Study. MR imaging and R2* mapping in the basal ganglia and neocortex were done at 3T. Comprehensive neuropsychological testing assessed memory, executive function, and psychomotor speed. We found the highest iron concentration in the globus pallidus, and pallidal and putaminal iron was significantly and inversely associated with cognitive performance in all cognitive domains, except memory. These associations were iron load dependent. Vascular brain lesions and brain volume did not mediate the relationship between iron and cognitive performance. We conclude that higher R2*-determined iron in the basal ganglia correlates with cognitive impairment during brain aging independent of concomitant brain abnormalities. The prognostic significance of this finding needs to be determined. Copyright © 2015 Elsevier Inc. All rights reserved.
Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair
Zárate, Sandra; Stevnsner, Tinna; Gredilla, Ricardo
2017-01-01
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer’s disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain. PMID:29311911
Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults
Liang, Peipeng; Shi, Lin; Chen, Nan; Luo, Yishan; Wang, Xing; Liu, Kai; Mok, Vincent CT; Chu, Winnie CW; Wang, Defeng; Li, Kuncheng
2015-01-01
Despite the known morphological differences (e.g., brain shape and size) in the brains of populations of different origins (e.g., age and race), the Chinese brain atlas is less studied. In the current study, we developed a statistical brain atlas based on a multi-center high quality magnetic resonance imaging (MRI) dataset of 2020 Chinese adults (18–76 years old). We constructed 12 Chinese brain atlas from the age 20 year to the age 75 at a 5 years interval. New Chinese brain standard space, coordinates, and brain area labels were further defined. The new Chinese brain atlas was validated in brain registration and segmentation. It was found that, as contrast to the MNI152 template, the proposed Chinese atlas showed higher accuracy in hippocampus segmentation and relatively smaller shape deformations during registration. These results indicate that a population-specific time varying brain atlas may be more appropriate for studies involving Chinese populations. PMID:26678304
Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.
Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y
2017-08-01
Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rudolph, Marc D; Miranda-Domínguez, Oscar; Cohen, Alexandra O; Breiner, Kaitlyn; Steinberg, Laurence; Bonnie, Richard J; Scott, Elizabeth S; Taylor-Thompson, Kim; Chein, Jason; Fettich, Karla C; Richeson, Jennifer A; Dellarco, Danielle V; Galván, Adriana; Casey, B J; Fair, Damien A
2017-04-01
Developmental differences regarding decision making are often reported in the absence of emotional stimuli and without context, failing to explain why some individuals are more likely to have a greater inclination toward risk. The current study (N=212; 10-25y) examined the influence of emotional context on underlying functional brain connectivity over development and its impact on risk preference. Using functional imaging data in a neutral brain-state we first identify the "brain age" of a given individual then validate it with an independent measure of cortical thickness. We then show, on average, that "brain age" across the group during the teen years has the propensity to look younger in emotional contexts. Further, we show this phenotype (i.e. a younger brain age in emotional contexts) relates to a group mean difference in risk perception - a pattern exemplified greatest in young-adults (ages 18-21). The results are suggestive of a specified functional brain phenotype that relates to being at "risk to be risky." Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology
Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie
2014-01-01
Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490
Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI
Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen
2012-01-01
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990
Ziebell, Jenna M; Rowe, Rachel K; Muccigrosso, Megan M; Reddaway, Jack T; Adelson, P David; Godbout, Jonathan P; Lifshitz, Jonathan
2017-01-01
A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health. Copyright © 2016 Elsevier Inc. All rights reserved.
Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto
2013-01-01
Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes. PMID:24478697
Continuum of neurobehaviour and its associations with brain MRI in infants born preterm
Eeles, Abbey L; Walsh, Jennifer M; Olsen, Joy E; Cuzzilla, Rocco; Thompson, Deanne K; Anderson, Peter J; Doyle, Lex W; Cheong, Jeanie L Y; Spittle, Alicia J
2017-01-01
Background Infants born very preterm (VPT) and moderate-to-late preterm (MLPT) are at increased risk of long-term neurodevelopmental deficits, but how these deficits relate to early neurobehaviour in MLPT children is unclear. The aims of this study were to compare the neurobehavioural performance of infants born across three different gestational age groups: preterm <30 weeks’ gestational age (PT<30); MLPT (32–36 weeks’ gestational age) and term age (≥37 weeks’ gestational age), and explore the relationships between MRI brain abnormalities and neurobehaviour at term-equivalent age. Methods Neurobehaviour was assessed at term-equivalent age in 149 PT<30, 200 MLPT and 200 term-born infants using the Neonatal Intensive Care UnitNetwork Neurobehavioral Scale (NNNS), the Hammersmith Neonatal Neurological Examination (HNNE) and Prechtl’s Qualitative Assessment of General Movements (GMA). A subset of 110 PT<30 and 198 MLPT infants had concurrent brain MRI. Results Proportions with abnormal neurobehaviour on the NNNS and the HNNE, and abnormal GMA all increased with decreasing gestational age. Higher brain MRI abnormality scores in some regions were associated with suboptimal neurobehaviour on the NNNS and HNNE. The relationships between brain MRI abnormality scores and suboptimal neurobehaviour were similar in both PT<30 and MLPT infants. The relationship between brain MRI abnormality scores and abnormal GMA was stronger in PT<30 infants. Conclusions There was a continuum of neurobehaviour across gestational ages. The relationships between brain abnormality scores and suboptimal neurobehaviour provide evidence that neurobehavioural assessments offer insight into the integrity of the developing brain, and may be useful in earlier identification of the highest-risk infants. PMID:29637152
Mainardi, Marco; Di Garbo, Angelo; Caleo, Matteo; Berardi, Nicoletta; Sale, Alessandro; Maffei, Lamberto
2014-01-01
Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ) oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE), a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP) recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.
Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo
2003-03-14
Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.
Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena
2011-08-01
Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.
Alterations in Normal Aging Revealed by Cortical Brain Network Constructed Using IBASPM.
Li, Wan; Yang, Chunlan; Shi, Feng; Wang, Qun; Wu, Shuicai; Lu, Wangsheng; Li, Shaowu; Nie, Yingnan; Zhang, Xin
2018-04-16
Normal aging has been linked with the decline of cognitive functions, such as memory and executive skills. One of the prominent approaches to investigate the age-related alterations in the brain is by examining the cortical brain connectome. IBASPM is a toolkit to realize individual atlas-based volume measurement. Hence, this study seeks to determine what further alterations can be revealed by cortical brain networks formed by IBASPM-extracted regional gray matter volumes. We found the reduced strength of connections between the superior temporal pole and middle temporal pole in the right hemisphere, global hubs as the left fusiform gyrus and right Rolandic operculum in the young and aging groups, respectively, and significantly reduced inter-module connection of one module in the aging group. These new findings are consistent with the phenomenon of normal aging mentioned in previous studies and suggest that brain network built with the IBASPM could provide supplementary information to some extent. The individualization of morphometric features extraction deserved to be given more attention in future cortical brain network research.
Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L
2015-12-01
Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua
2018-04-01
Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.
Denis, I; Potier, B; Vancassel, S; Heberden, C; Lavialle, M
2013-03-01
The increasing life expectancy in the populations of rich countries raises the pressing question of how the elderly can maintain their cognitive function. Cognitive decline is characterised by the loss of short-term memory due to a progressive impairment of the underlying brain cell processes. Age-related brain damage has many causes, some of which may be influenced by diet. An optimal diet may therefore be a practical way of delaying the onset of age-related cognitive decline. Nutritional investigations indicate that the ω-3 poyunsaturated fatty acid (PUFA) content of western diets is too low to provide the brain with an optimal supply of docosahexaenoic acid (DHA), the main ω-3 PUFA in cell membranes. Insufficient brain DHA has been associated with memory impairment, emotional disturbances and altered brain processes in rodents. Human studies suggest that an adequate dietary intake of ω-3 PUFA can slow the age-related cognitive decline and may also protect against the risk of senile dementia. However, despite the many studies in this domain, the beneficial impact of ω-3 PUFA on brain function has only recently been linked to specific mechanisms. This review examines the hypothesis that an optimal brain DHA status, conferred by an adequate ω-3 PUFA intake, limits age-related brain damage by optimizing endogenous brain repair mechanisms. Our analysis of the abundant literature indicates that an adequate amount of DHA in the brain may limit the impact of stress, an important age-aggravating factor, and influences the neuronal and astroglial functions that govern and protect synaptic transmission. This transmission, particularly glutamatergic neurotransmission in the hippocampus, underlies memory formation. The brain DHA status also influences neurogenesis, nested in the hippocampus, which helps maintain cognitive function throughout life. Although there are still gaps in our knowledge of the way ω-3 PUFA act, the mechanistic studies reviewed here indicate that ω-3 PUFA may be a promising tool for preventing age-related brain deterioration. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhao, Liqin; Mao, Zisu; Woody, Sarah K; Brinton, Roberta D
2016-06-01
Despite recent advances in the understanding of clinical aspects of sex differences in Alzheimer's disease (AD), the underlying mechanisms, for instance, how sex modifies AD risk and why the female brain is more susceptible to AD, are not clear. The purpose of this study is to elucidate sex disparities in brain aging profiles focusing on 2 major areas-energy and amyloid metabolism-that are most significantly affected in preclinical development of AD. Total RNA isolated from hippocampal tissues of both female and male 129/C57BL/6 mice at ages of 6, 9, 12, or 15 months were comparatively analyzed by custom-designed Taqman low-density arrays for quantitative real-time polymerase chain reaction detection of a total of 182 genes involved in a broad spectrum of biological processes modulating energy production and amyloid homeostasis. Gene expression profiles revealed substantial differences in the trajectory of aging changes between female and male brains. In female brains, 44.2% of genes were significantly changed from 6 months to 9 months and two-thirds showed downregulation. In contrast, in male brains, only 5.4% of genes were significantly altered at this age transition. Subsequent changes in female brains were at a much smaller magnitude, including 10.9% from 9 months to 12 months and 6.1% from 12 months to 15 months. In male brains, most changes occurred from 12 months to 15 months and the majority were upregulated. Furthermore, gene network analysis revealed that clusterin appeared to serve as a link between the overall decreased bioenergetic metabolism and increased amyloid dyshomeostasis associated with the earliest transition in female brains. Together, results from this study indicate that: (1) female and male brains follow profoundly dissimilar trajectories as they age; (2) female brains undergo age-related changes much earlier than male brains; (3) early changes in female brains signal the onset of a hypometabolic phenotype at risk for AD. These findings provide a mechanistic rationale for female susceptibility to AD and suggest a potential window of opportunity for AD prevention and risk reduction in women. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.
Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M
2006-01-01
Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.
Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome
Hoffman, Jared D.; Parikh, Ishita; Green, Stefan J.; Chlipala, George; Mohney, Robert P.; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M. S.; Lin, Ai-Ling
2017-01-01
Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age) and compared those to old mice (18–20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD. PMID:28993728
Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R
2016-07-01
Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats
Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups.This dataset is associated with the following publication:Pandya, J.D., J. Royland , R.C. McPhail, P.G. Sullivan, and P. Kodavanti. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. NEUROBIOLOGY OF AGING. Elsevier Science Ltd, New York, NY, USA, 42: 25-34, (2016).
An age-related change in susceptibility of rat brain to encephalomyocarditis virus infection
IKEGAMI, HISASHI; TAKEDA, MAKIO; DOI, KUNIO
1997-01-01
Rats were inoculated intraperitoneally (i.p.) or intracerebrally (i.c.) with 1 × 104 plaque forming units (PFU)/animal of the D variant of encephalomyocarditis virus (EMC-D) at 2, 4, 7, 14, 28 or 56 days of age for virological and histopathological examination. In the i.p.-inoculation study, neither viral replication nor lesions were detected in the animals inoculated at 28 and 56 days of age. In the animals inoculated when younger than 14 days of age, lesions were restricted to the brain although viral replication was detected in the brain, heart and pancreas. The brain lesions were characterized by acute meningoencephalitis with neuronal necrosis in the cerebral cortex, hippocampus and thalamus, and viral RNA was detected in degenerated and/or intact neurons. In the i.c.-inoculation study, similar age-related changes in susceptibility of rat brain to EMC-D infection were observed, but a minor difference was that viral replication and lesions were still detected in the hippocampus of some animals inoculated at 28 days of age. These results suggest that an age-related decrease in the susceptibility of rat brain to EMC virus infection may reflect an age-related change in the susceptibility of neurons themselves as well as in maturation of the immune system. PMID:9203984
Nutrients, Microglia Aging, and Brain Aging.
Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi
2016-01-01
As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of "microglia aging." This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.
Nutrients, Microglia Aging, and Brain Aging
Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi
2016-01-01
As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging. PMID:26941889
Poon, H Fai; Farr, Susan A; Thongboonkerd, Visith; Lynn, Bert C; Banks, William A; Morley, John E; Klein, Jon B; Butterfield, D Allan
2005-01-01
Free radical-mediated damage to neuronal membrane components has been implicated in the etiology of Alzheimer's disease (AD) and aging. The senescence accelerated prone mouse strain 8 (SAMP8) exhibits age-related deterioration in memory and learning along with increased oxidative markers. Therefore, SAMP8 is a suitable model to study brain aging and, since aging is the major risk factor for AD and SAMP8 exhibits many of the biochemical findings of AD, perhaps as a model for and the early phase of AD. Our previous studies reported higher oxidative stress markers in brains of 12-month-old SAMP8 mice when compared to that of 4-month-old SAMP8 mice. Further, we have previously shown that injecting the mice with alpha-lipoic acid (LA) reversed brain lipid peroxidation, protein oxidation, as well as the learning and memory impairments in SAMP8 mice. Recently, we reported the use of proteomics to identify proteins that are expressed differently and/or modified oxidatively in aged SAMP8 brains. In order to understand how LA reverses the learning and memory deficits of aged SAMP8 mice, in the current study, we used proteomics to compare the expression levels and specific carbonyl levels of proteins in brains from 12-month-old SAMP8 mice treated or not treated with LA. We found that the expressions of the three brain proteins (neurofilament triplet L protein, alpha-enolase, and ubiquitous mitochondrial creatine kinase) were increased significantly and that the specific carbonyl levels of the three brain proteins (lactate dehydrogenase B, dihydropyrimidinase-like protein 2, and alpha-enolase) were significantly decreased in the aged SAMP8 mice treated with LA. These findings suggest that the improved learning and memory observed in LA-injected SAMP8 mice may be related to the restoration of the normal condition of specific proteins in aged SAMP8 mouse brain. Moreover, our current study implicates neurofilament triplet L protein, alpha-enolase, ubiquitous mitochondrial creatine kinase, lactate dehydrogenase B, and dihydropyrimidinase-like protein 2 in process associated with learning and memory of SAMP8 mice.
Dørum, Erlend S; Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Lund, Martina J; Tønnesen, Siren; Sneve, Markus H; Mathiesen, Nina C; Rustan, Øyvind G; Gjertsen, Øivind; Vatn, Sigurd; Fure, Brynjar; Andreassen, Ole A; Nordvik, Jan Egil; Westlye, Lars T
2016-11-01
Multiple object tracking (MOT) is a powerful paradigm for measuring sustained attention. Although previous fMRI studies have delineated the brain activation patterns associated with tracking and documented reduced tracking performance in aging, age-related effects on brain activation during MOT have not been characterized. In particular, it is unclear if the task-related activation of different brain networks is correlated, and also if this coordination between activations within brain networks shows differential effects of age. We obtained fMRI data during MOT at two load conditions from a group of younger ( n = 25, mean age = 24.4 ± 5.1 years) and older ( n = 21, mean age = 64.7 ± 7.4 years) healthy adults. Using a combination of voxel-wise and independent component analysis, we investigated age-related differences in the brain network activation. In order to explore to which degree activation of the various brain networks reflect unique and common mechanisms, we assessed the correlations between the brain networks' activations. Behavioral performance revealed an age-related reduction in MOT accuracy. Voxel and brain network level analyses converged on decreased load-dependent activations of the dorsal attention network (DAN) and decreased load-dependent deactivations of the default mode networks (DMN) in the old group. Lastly, we found stronger correlations in the task-related activations within DAN and within DMN components for younger adults, and stronger correlations between DAN and DMN components for older adults. Using MOT as means for measuring attentional performance, we have demonstrated an age-related attentional decline. Network-level analysis revealed age-related alterations in network recruitment consisting of diminished activations of DAN and diminished deactivations of DMN in older relative to younger adults. We found stronger correlations within DMN and within DAN components for younger adults and stronger correlations between DAN and DMN components for older adults, indicating age-related alterations in the coordinated network-level activation during attentional processing.
[The blood-brain barrier in ageing persons].
Haaning, Nina; Damsgaard, Else Marie; Moos, Torben
2018-03-26
Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.
Aging Shapes the Population-Mean and -Dispersion of Gene Expression in Human Brains
Brinkmeyer-Langford, Candice L.; Guan, Jinting; Ji, Guoli; Cai, James J.
2016-01-01
Human aging is associated with cognitive decline and an increased risk of neurodegenerative disease. Our objective for this study was to evaluate potential relationships between age and variation in gene expression across different regions of the brain. We analyzed the Genotype-Tissue Expression (GTEx) data from 54 to 101 tissue samples across 13 brain regions in post-mortem donors of European descent aged between 20 and 70 years at death. After accounting for the effects of covariates and hidden confounding factors, we identified 1446 protein-coding genes whose expression in one or more brain regions is correlated with chronological age at a false discovery rate of 5%. These genes are involved in various biological processes including apoptosis, mRNA splicing, amino acid biosynthesis, and neurotransmitter transport. The distribution of these genes among brain regions is uneven, suggesting variable regional responses to aging. We also found that the aging response of many genes, e.g., TP37 and C1QA, depends on individuals' genotypic backgrounds. Finally, using dispersion-specific analysis, we identified genes such as IL7R, MS4A4E, and TERF1/TERF2 whose expressions are differentially dispersed by aging, i.e., variances differ between age groups. Our results demonstrate that age-related gene expression is brain region-specific, genotype-dependent, and associated with both mean and dispersion changes. Our findings provide a foundation for more sophisticated gene expression modeling in the studies of age-related neurodegenerative diseases. PMID:27536236
Epigenetic Age Acceleration Assessed with Human White-Matter Images.
Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald H H; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C
2017-05-03
The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample ( n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρ pheno = -0.119, p = 0.028), with evidence of shared genetic (ρ gene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging. SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age, relative to chronological age. The white matter tracts within the brain are also highly sensitive to aging processes. We show that increased biological aging (measured using epigenetic data from blood samples) is correlated with reduced integrity of white matter tracts within the human brain (measured using diffusion tensor imaging) with data from a large sample of Mexican-American families. Given the family design of the sample, we are also able to demonstrate that epigenetic aging and white matter tract integrity also share common genetic influences. Therefore, epigenetic age may be a potential, and accessible, biomarker of brain aging. Copyright © 2017 the authors 0270-6474/17/374735-09$15.00/0.
Evaluating Air Force Civil Engineer’s Current Automated Information Systems
2002-03-26
started with identifying specific processes that needed to be accomplished. These processes were flowcharted and relationships were developed (31:1...Roofs) - Critical 1. Process not defined well enough per Ron Stoner to rework a. WPAFB to flowchart and decipher ACES process for SSG/AFCESA b...Ron Stoner to rework a. WPAFB to flowchart and decipher ACES process for SSG/AFCESA b. Investigate usage of ACES as is and define Needs 2. EEIC
Phillips, Cristy
2017-01-01
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors-including physical activity, cognitive engagement, and diet-are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging.
2017-01-01
The number of the elderly across the globe will approximate 2.1 billion by 2050. Juxtaposed against this burgeoning segment of the population is evidence that nonpathological aging is associated with an increased risk for cognitive decline in a variety of domains, changes that can cause mild disability even before the onset of dementia. Given that pharmacological treatments that mitigate dementia are still outstanding, alternative therapeutic options are being investigated increasingly. The results from translational studies have shown that modifiable lifestyle factors—including physical activity, cognitive engagement, and diet—are a key strategy for maintaining brain health during aging. Indeed, a multiplicity of studies has demonstrated relationships between lifestyle factors, brain structure and function, and cognitive function in aging adults. For example, physical activity and diet modulate common neuroplasticity substrates (neurotrophic signaling, neurogenesis, inflammation, stress response, and antioxidant defense) in the brain whereas cognitive engagement enhances brain and cognitive reserve. The aims of this review are to evaluate the relationship between modifiable lifestyle factors, neuroplasticity, and optimal brain health during aging; to identify putative mechanisms that contribute positive brain aging; and to highlight future directions for scientists and clinicians. Undoubtedly, the translation of cutting-edge knowledge derived from the field of cognitive neuroscience will advance our understanding and enhance clinical treatment interventions as we endeavor to promote brain health during aging. PMID:28695017
Sleep Duration and Age-Related Changes in Brain Structure and Cognitive Performance
Lo, June C.; Loh, Kep Kee; Zheng, Hui; Sim, Sam K.Y.; Chee, Michael W.L.
2014-01-01
Study Objectives: To investigate the contribution of sleep duration and quality to age-related changes in brain structure and cognitive performance in relatively healthy older adults. Design: Community-based longitudinal brain and cognitive aging study using a convenience sample. Setting: Participants were studied in a research laboratory. Participants: Relatively healthy adults aged 55 y and older at study commencement. Interventions: N/A. Measurements and Results: Participants underwent magnetic resonance imaging and neuropsychological assessment every 2 y. Subjective assessments of sleep duration and quality and blood samples were obtained. Each hour of reduced sleep duration at baseline augmented the annual expansion rate of the ventricles by 0.59% (P = 0.007) and the annual decline rate in global cognitive performance by 0.67% (P = 0.050) in the subsequent 2 y after controlling for the effects of age, sex, education, and body mass index. In contrast, global sleep quality at baseline did not modulate either brain or cognitive aging. High-sensitivity C-reactive protein, a marker of systemic inflammation, showed no correlation with baseline sleep duration, brain structure, or cognitive performance. Conclusions: In healthy older adults, short sleep duration is associated with greater age-related brain atrophy and cognitive decline. These associations are not associated with elevated inflammatory responses among short sleepers. Citation: Lo JC, Loh KK, Zheng H, Sim SK, Chee MW. Sleep duration and age-related changes in brain structure and cognitive performance. SLEEP 2014;37(7):1171-1178. PMID:25061245
Determinants of iron accumulation in the normal aging brain.
Pirpamer, Lukas; Hofer, Edith; Gesierich, Benno; De Guio, François; Freudenberger, Paul; Seiler, Stephan; Duering, Marco; Jouvent, Eric; Duchesnay, Edouard; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold
2016-07-01
In a recent postmortem study, R2* relaxometry in gray matter (GM) of the brain has been validated as a noninvasive measure for iron content in brain tissue. Iron accumulation in the normal aging brain is a common finding and relates to brain maturation and degeneration. The goal of this study was to assess the determinants of iron accumulation during brain aging. The study cohort consisted of 314 healthy community-dwelling participants of the Austrian Stroke Prevention Study. Their age ranged from 38-82 years. Quantitative magnetic resonance imaging was performed on 3T and included R2* mapping, based on a 3D multi-echo gradient echo sequence. The median of R2* values was measured in all GM regions, which were segmented automatically using FreeSurfer. We investigated 25 possible determinants for cerebral iron deposition. These included demographics, brain volume, lifestyle factors, cerebrovascular risk factors, serum levels of iron, and single nucleotide polymorphisms related to iron regulating genes (rs1800562, rs3811647, rs1799945, and rs1049296). The body mass index (BMI) was significantly related to R2* in 15/32 analyzed brain regions with the strongest correlations found in the amygdala (p = 0.0091), medial temporal lobe (p = 0.0002), and hippocampus (p ≤ 0.0001). Further associations to R2* values were found in deep GM for age and smoking. No significant associations were found for gender, GM volume, serum levels of iron, or iron-associated genetic polymorphisms. In conclusion, besides age, the BMI and smoking are the only significant determinants of brain iron accumulation in normally aging subjects. Smoking relates to iron deposition in the basal ganglia, whereas higher BMI is associated with iron content in the neocortex following an Alzheimer-like distribution. Copyright © 2016 Elsevier Inc. All rights reserved.
Preston, Chet; Wang, Louis; Yi, Jae Kyo; Lin, Chih-Li; Sun, Wei; Spyropoulos, Demetri D.; Rhee, Soyoung; Li, Mingsong; Zhou, Jie; Ge, Shaoyu; Zhang, Guofeng; Snider, Ashley J.; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui
2015-01-01
Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. PMID:26474409
Gene expression changes with age in skin, adipose tissue, blood and brain.
Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D
2013-07-26
Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
Ueno, Hiroki; Kobatake, Keitaro; Matsumoto, Masayasu; Morino, Hiroyuki; Maruyama, Hirofumi; Kawakami, Hideshi
2011-12-12
Previous studies have shown widespread multisystem degeneration in patients with sporadic amyotrophic lateral sclerosis who develop a total locked-in state and survive under mechanical ventilation for a prolonged period of time. However, the disease progressions reported in these studies were several years after disease onset. There have been no reports of long-term follow-up with brain imaging of patients with familial amyotrophic lateral sclerosis at an advanced stage of the disease. We report the cases of siblings with amyotrophic lateral sclerosis with homozygous deletions of the exon 5 mutation of the gene encoding optineurin, in whom brain computed tomography scans were followed up for more than 20 years. The patients were a Japanese brother and sister. The elder sister was 33 years of age at the onset of disease, which began with muscle weakness of her left lower limb. Two years later she required mechanical ventilation. She became bedridden at the age of 34, and died at the age of 57. A computed tomography scan of her brain at the age of 36 revealed no abnormality. Atrophy of her brain gradually progressed. Ten years after the onset of mechanical ventilation, atrophy of her whole brain, including the cerebral cortex, brain stem and cerebellum, markedly progressed. Her younger brother was 36 years of age at the onset of disease, which presented as muscle weakness of his left upper limb. One year later, he showed dysphagia and dysarthria, and tracheostomy ventilation was performed. He became bedridden at the age of 37 and died at the age of 55. There were no abnormal intracranial findings on brain computed tomography scans obtained at the age of 37 years. At the age of 48 years, computed tomography scans showed marked brain atrophy with ventricular dilatation. Subsequently, atrophy of the whole brain rapidly progressed as in his elder sister. We conclude that a homozygous deletion-type mutation in the optineurin gene may be associated with widespread multisystem degeneration in amyotrophic lateral sclerosis.
2012-01-01
Using a population-based sampling strategy, the National Institutes of Health (NIH) Magnetic Resonance Imaging Study of Normal Brain Development compiled a longitudinal normative reference database of neuroimaging and correlated clinical/behavioral data from a demographically representative sample of healthy children and adolescents aged newborn through early adulthood. The present paper reports brain volume data for 325 children, ages 4.5-18 years, from the first cross-sectional time point. Measures included volumes of whole-brain gray matter (GM) and white matter (WM), left and right lateral ventricles, frontal, temporal, parietal and occipital lobe GM and WM, subcortical GM (thalamus, caudate, putamen, and globus pallidus), cerebellum, and brainstem. Associations with cross-sectional age, sex, family income, parental education, and body mass index (BMI) were evaluated. Key observations are: 1) age-related decreases in lobar GM most prominent in parietal and occipital cortex; 2) age-related increases in lobar WM, greatest in occipital, followed by the temporal lobe; 3) age-related trajectories predominantly curvilinear in females, but linear in males; and 4) small systematic associations of brain tissue volumes with BMI but not with IQ, family income, or parental education. These findings constitute a normative reference on regional brain volumes in children and adolescents.
Curtis, Ashley F.; Branscombe-Caird, Laura M.; Comrie, Janna K.; Murtha, Susan J.E.
2018-01-01
Abstract Objectives:To investigate whether a commercially available brain training program is feasible to use with a middle-aged population and has a potential impact on cognition and emotional well-being (proof of concept). Method: Fourteen participants (ages 46–55) completed two 6-week training conditions using a crossover (counterbalanced) design: (1) experimental brain training condition and (2) active control “find answers to trivia questions online” condition. A comprehensive neurocognitive battery and a self-report measure of depression and anxiety were administered at baseline (first time point, before training) and after completing each training condition (second time point at 6 weeks, and third time point at 12 weeks). Cognitive composite scores were calculated for participants at each time point. Results: Study completion and protocol adherence demonstrated good feasibility of this brain training protocol in healthy middle-aged adults. Exploratory analyses suggested that brain training was associated with neurocognitive improvements related to executive attention, as well as improvements in mood. Conclusion: Overall, our findings suggest that brain training programs are feasible in middle-aged cohorts. We propose that brain training games may be linked to improvements in executive attention and affect by promoting cognitive self-efficacy in middle-aged adults. PMID:29189046
Digital atlas of fetal brain MRI.
Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I
2010-02-01
Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.
Among High School Seniors, Driving After Marijuana Use Surpasses Drunk Driving
... Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain ... Brain College-Age and Young Adults Comorbidity Criminal Justice Drug Testing Drugged Driving Evidence-Based Practices Genetics ...
ERIC Educational Resources Information Center
Fishback, Sarah Jane
1999-01-01
Reviews research on the brain and memory, emotions, aging, and learning. Outlines practice implications: connect new learning to personal experiences, make sure learners are paying attention, recognize the role of emotions, and be aware that stimulation influences the aging brain. (SK)
Quantile rank maps: a new tool for understanding individual brain development.
Chen, Huaihou; Kelly, Clare; Castellanos, F Xavier; He, Ye; Zuo, Xi-Nian; Reiss, Philip T
2015-05-01
We propose a novel method for neurodevelopmental brain mapping that displays how an individual's values for a quantity of interest compare with age-specific norms. By estimating smoothly age-varying distributions at a set of brain regions of interest, we derive age-dependent region-wise quantile ranks for a given individual, which can be presented in the form of a brain map. Such quantile rank maps could potentially be used for clinical screening. Bootstrap-based confidence intervals are proposed for the quantile rank estimates. We also propose a recalibrated Kolmogorov-Smirnov test for detecting group differences in the age-varying distribution. This test is shown to be more robust to model misspecification than a linear regression-based test. The proposed methods are applied to brain imaging data from the Nathan Kline Institute Rockland Sample and from the Autism Brain Imaging Data Exchange (ABIDE) sample. Copyright © 2015 Elsevier Inc. All rights reserved.
Towards child versus adult brain mechanical properties.
Chatelin, S; Vappou, J; Roth, S; Raul, J S; Willinger, R
2012-02-01
The characterization of brain tissue mechanical properties is of crucial importance in the development of realistic numerical models of the human head. While the mechanical behavior of the adult brain has been extensively investigated in several studies, there is a considerable paucity of data concerning the influence of age on mechanical properties of the brain. Therefore, the implementation of child and infant head models often involves restrictive assumptions like properties scaling from adult or animal data. The present study presents a step towards the investigation of the effects of age on viscoelastic properties of human brain tissue from a first set of dynamic oscillatory shear experiments. Tests were also performed on three different locations of brain (corona radiata, thalamus and brainstem) in order to investigate regional differences. Despite the limited number of child brain samples a significant increase in both storage and loss moduli occurring between the age of 5 months and the age of 22 months was found, confirmed by statistical Student's t-tests (p=0.104,0.038 and 0.054 for respectively corona radiata, thalamus and brain stem samples locations respectively). The adult brain appears to be 3-4 times stiffer than the young child one. Moreover, the brainstem was found to be approximately 2-3 times stiffer than both gray and white matter from corona radiata and thalamus. As a tentative conclusion, this study provides the first rheological data on the human brain at different ages and brain regions. This data could be implemented in numerical models of the human head, especially in models concerning pediatric population. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lind, Annika; Haataja, Leena; Rautava, Liisi; Väliaho, Anniina; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Korkman, Marit
2010-05-01
The objective of this study is to assess the relationship between brain volumes at term equivalent age and neuropsychological functions at 5 years of age in very low birth weight (VLBW) children, and to compare the results from a neuropsychological assessment and a parental questionnaire at 5 years of age. The study group included a regional cohort of 97 VLBW children and a control group of 161 children born at term. At term equivalent age, brain magnetic resonance imaging (MRI) was performed on the VLBW children, and analysed for total and regional brain volumes. At 5 years of age, a psychologist assessed the neuropsychological performance with NEPSY II, and parents completed the Five to fifteen (FTF) questionnaire on development and behaviour. The results of the control group were used to give the age-specific reference values. No significant associations were found between the brain volumes and the NEPSY II domains. As for the FTF, significant associations were found between a smaller total brain tissue volume and poorer executive functions, between a smaller cerebellar volume and both poorer executive functions and motor skills, and, surprisingly, between a larger volume of brainstem and poorer language functions. Even after adjustment for total brain tissue volume, the two associations between the cerebellar volume and the FTF domains remained borderline significant (P = 0.05). The NEPSY II domains Executive Functioning, Language and Motor Skills were significantly associated with the corresponding FTF domains. In conclusion, altered brain volumes at term equivalent age appear to affect development still at 5 years of age. The FTF seems to be a good instrument when used in combination with other neuropsychological assessment.
Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation.
Feinberg, Irwin; Campbell, Ian G
2013-02-15
New longitudinal sleep data spanning ages 6-10 yr are presented and combined with previous data to analyze maturational trajectories of delta and theta EEG across ages 6-18 yr in non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM delta power (DP) increased from age 6 to age 8 yr and then declined. Its highest rate of decline occurred between ages 12 and 16.5 yr. We attribute the delta EEG trajectories to changes in synaptic density. Whatever their neuronal underpinnings, these age curves can guide research into the molecular-genetic mechanisms that underlie adolescent brain development. The DP trajectories in NREM and REM sleep differed strikingly. DP in REM did not initially increase but declined steadily from age 6 to age 16 yr. We hypothesize that the DP decline in REM reflects maturation of the same brain arousal systems that eliminate delta waves in waking EEG. Whereas the DP age curves differed in NREM and REM sleep, theta age curves were similar in both, roughly paralleling the age trajectory of REM DP. The different maturational curves for NREM delta and theta indicate that they serve different brain functions despite having similar within-sleep dynamics and responses to sleep loss. Period-amplitude analysis of NREM and REM delta waveforms revealed that the age trends in DP were driven more by changes in wave amplitude rather than incidence. These data further document the powerful and complex link between sleep and brain maturation. Understanding this relationship would shed light on both brain development and the function of sleep.
Brain growth across the life span in autism: age-specific changes in anatomical pathology.
Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie
2011-03-22
Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has led to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism, there may also be age-specific changes in gene expression, molecular, synaptic, cellular, and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation, and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. Copyright © 2010 Elsevier B.V. All rights reserved.
Brain volumetric changes and cognitive ageing during the eighth decade of life
Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.
2015-01-01
Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551
Age-Related Gray and White Matter Changes in Normal Adult Brains
Farokhian, Farnaz; Yang, Chunlan; Beheshti, Iman; Matsuda, Hiroshi; Wu, Shuicai
2017-01-01
Normal aging is associated with both structural changes in many brain regions and functional declines in several cognitive domains with advancing age. Advanced neuroimaging techniques enable explorative analyses of structural alterations that can be used as assessments of such age-related changes. Here we used voxel-based morphometry (VBM) to investigate regional and global brain volume differences among four groups of healthy adults from the IXI Dataset: older females (OF, mean age 68.35 yrs; n=69), older males (OM, 68.43 yrs; n=66), young females (YF, 27.09 yrs; n=71), and young males (YM, 27.91 yrs; n=71), using 3D T1-weighted MRI data. At the global level, we investigated the influence of age and gender on brain volumes using a two-way analysis of variance. With respect to gender, we used the Pearson correlation to investigate global brain volume alterations due to age in the older and young groups. At the regional level, we used a flexible factorial statistical test to compare the means of gray matter (GM) and white matter (WM) volume alterations among the four groups. We observed different patterns in both the global and regional GM and WM alterations in the young and older groups with respect to gender. At the global level, we observed significant influences of age and gender on global brain volumes. At the regional level, the older subjects showed a widespread reduction in GM volume in regions of the frontal, insular, and cingulate cortices compared to the young subjects in both genders. Compared to the young subjects, the older subjects showed a widespread WM decline prominently in the thalamic radiations, in addition to increased WM in pericentral and occipital areas. Knowledge of these observed brain volume differences and changes may contribute to the elucidation of mechanisms underlying aging as well as age-related brain atrophy and disease. PMID:29344423
Increased White Matter Inflammation in Aging- and Alzheimer’s Disease Brain
Raj, Divya; Yin, Zhuoran; Breur, Marjolein; Doorduin, Janine; Holtman, Inge R.; Olah, Marta; Mantingh-Otter, Ietje J.; Van Dam, Debby; De Deyn, Peter P.; den Dunnen, Wilfred; Eggen, Bart J. L.; Amor, Sandra; Boddeke, Erik
2017-01-01
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer’s disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration. PMID:28713239
Modeling the brain morphology distribution in the general aging population
NASA Astrophysics Data System (ADS)
Huizinga, W.; Poot, D. H. J.; Roshchupkin, G.; Bron, E. E.; Ikram, M. A.; Vernooij, M. W.; Rueckert, D.; Niessen, W. J.; Klein, S.
2016-03-01
Both normal aging and neurodegenerative diseases such as Alzheimer's disease cause morphological changes of the brain. To better distinguish between normal and abnormal cases, it is necessary to model changes in brain morphology owing to normal aging. To this end, we developed a method for analyzing and visualizing these changes for the entire brain morphology distribution in the general aging population. The method is applied to 1000 subjects from a large population imaging study in the elderly, from which 900 were used to train the model and 100 were used for testing. The results of the 100 test subjects show that the model generalizes to subjects outside the model population. Smooth percentile curves showing the brain morphology changes as a function of age and spatiotemporal atlases derived from the model population are publicly available via an interactive web application at agingbrain.bigr.nl.
Christov, Mario; Dushanova, Juliana
2016-01-01
The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.
Nutritional strategies to optimise cognitive function in the aging brain.
Wahl, Devin; Cogger, Victoria C; Solon-Biet, Samantha M; Waern, Rosilene V R; Gokarn, Rahul; Pulpitel, Tamara; Cabo, Rafael de; Mattson, Mark P; Raubenheimer, David; Simpson, Stephen J; Le Couteur, David G
2016-11-01
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people. Copyright © 2016 Elsevier B.V. All rights reserved.
Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.
Betz, A L; Goldstein, G W
1981-03-01
1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.
Steffener, Jason; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza; Bherer, Louis; Stern, Yaakov
2016-04-01
This study investigated the relationship between education and physical activity and the difference between a physiological prediction of age and chronological age (CA). Cortical and subcortical gray matter regional volumes were calculated from 331 healthy adults (range: 19-79 years). Multivariate analyses identified a covariance pattern of brain volumes best predicting CA (R(2) = 47%). Individual expression of this brain pattern served as a physiologic measure of brain age (BA). The difference between CA and BA was predicted by education and self-report measures of physical activity. Education and the daily number of flights of stairs climbed (FOSC) were the only 2 significant predictors of decreased BA. Effect sizes demonstrated that BA decreased by 0.95 years for each year of education and by 0.58 years for 1 additional FOSC daily. Effects of education and FOSC on regional brain volume were largely driven by temporal and subcortical volumes. These results demonstrate that higher levels of education and daily FOSC are related to larger brain volume than predicted by CA which supports the utility of regional gray matter volume as a biomarker of healthy brain aging. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca; Aoyama, Hidefumi; Kocher, Martin
Purpose: To perform an individual patient data (IPD) meta-analysis of randomized controlled trials evaluating stereotactic radiosurgery (SRS) with or without whole-brain radiation therapy (WBRT) for patients presenting with 1 to 4 brain metastases. Method and Materials: Three trials were identified through a literature search, and IPD were obtained. Outcomes of interest were survival, local failure, and distant brain failure. The treatment effect was estimated after adjustments for age, recursive partitioning analysis (RPA) score, number of brain metastases, and treatment arm. Results: A total of 364 of the pooled 389 patients met eligibility criteria, of whom 51% were treated with SRSmore » alone and 49% were treated with SRS plus WBRT. For survival, age was a significant effect modifier (P=.04) favoring SRS alone in patients ≤50 years of age, and no significant differences were observed in older patients. Hazard ratios (HRs) for patients 35, 40, 45, and 50 years of age were 0.46 (95% confidence interval [CI] = 0.24-0.90), 0.52 (95% CI = 0.29-0.92), 0.58 (95% CI = 0.35-0.95), and 0.64 (95% CI = 0.42-0.99), respectively. Patients with a single metastasis had significantly better survival than those who had 2 to 4 metastases. For distant brain failure, age was a significant effect modifier (P=.043), with similar rates in the 2 arms for patients ≤50 of age; otherwise, the risk was reduced with WBRT for patients >50 years of age. Patients with a single metastasis also had a significantly lower risk of distant brain failure than patients who had 2 to 4 metastases. Local control significantly favored additional WBRT in all age groups. Conclusions: For patients ≤50 years of age, SRS alone favored survival, in addition, the initial omission of WBRT did not impact distant brain relapse rates. SRS alone may be the preferred treatment for this age group.« less
Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning
2017-01-01
Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
50-Ma Initiation of Hawaiian-Emperor Bend Records Major Change in Pacific Plate Motion
NASA Astrophysics Data System (ADS)
Sharp, Warren D.; Clague, David A.
2006-09-01
The Hawaiian-Emperor bend has played a prominent yet controversial role in deciphering past Pacific plate motions and the tempo of plate motion change. New ages for volcanoes of the central and southern Emperor chain define large changes in volcanic migration rate with little associated change in the chain's trend, which suggests that the bend did not form by slowing of the Hawaiian hot spot. Initiation of the bend near Kimmei seamount about 50 million years ago (MA) was coincident with realignment of Pacific spreading centers and early magmatism in western Pacific arcs, consistent with formation of the bend by changed Pacific plate motion.
Impact of aging immune system on neurodegeneration and potential immunotherapies.
Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong
2017-10-01
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-01-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer’s disease. As important cellular sources of H2O2, mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer’s disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer’s disease. Interactions of these systems is reviewed based on basic research and clinical studies. PMID:27154981
de Sá-Nakanishi, Anacharis B; Soares, Andréia A; Natali, Maria R M; Comar, Jurandir Fernando; Peralta, Rosane M; Bracht, Adelar
2014-11-13
An investigation of the effects of an aqueous extract of Agaricus blazei, a medicinal mushroom, on the oxidative state of the brain and liver of rats during aging (7 to 23 months) was conducted. The treatment consisted in the daily intragastric administration of 50 mg/kg of the extract. The A. blazei treatment tended to maintain the ROS contents of the brain and liver at lower levels, but a significant difference was found only at the age of 23 months and in the brain. The TBARS levels in the brain were maintained at lower levels by the A. blazei treatment during the whole aging process with a specially pronounced difference at the age of 12 months. The total antioxidant capacity in the brain was higher in treated rats only at the age of 12 months. Compared with previous studies in which old rats (21 months) were treated during a short period of 21 days with 200 mg/kg, the effects of the A. blazei extract in the present study tended to be less pronounced. The results also indicate that the long and constant treatment presented a tendency of becoming less effective at ages above 12 months.
Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.
Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas
2013-04-01
More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.
Genome instability: Linking ageing and brain degeneration.
Barzilai, Ari; Schumacher, Björn; Shiloh, Yosef
2017-01-01
Ageing is a multifactorial process affected by cumulative physiological changes resulting from stochastic processes combined with genetic factors, which together alter metabolic homeostasis. Genetic variation in maintenance of genome stability is emerging as an important determinant of ageing pace. Genome instability is also closely associated with a broad spectrum of conditions involving brain degeneration. Similarities and differences can be found between ageing-associated decline of brain functionality and the detrimental effect of genome instability on brain functionality and development. This review discusses these similarities and differences and highlights cell classes whose role in these processes might have been underestimated-glia and microglia. Copyright © 2016. Published by Elsevier B.V.
Kaur, Jaspreet; Tuor, Ursula I; Zhao, Zonghang; Barber, Philip A
2011-01-01
Great uncertainty exists as to whether aging enhances the detrimental effects of tissue plasminogen activator (tPA) on vascular integrity of the ischemic brain. We hypothesized that tPA treatment would augment ischemic injury by causing increased blood–brain barrier (BBB) breakdown as determined by quantitative serial T1 and T2 magnetic resonance imaging (MRI), and the transfer constant for gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) from blood to brain in aged (18 to 20 months) compared with young (3 to 4 months) Wistar rats after middle cerebral artery occlusion, mediated through the acute disassembly of claudin 5 and occludin. Increased T2 values over the first hour of postreperfusion were independently augmented following treatment with tPA (P<0.001) and aging (P<0.01), supporting a synergistic effect of tPA on the aged ischemic brain. Blood–brain barrier permeability for Gd-DTPA (KGd) was substantial following reperfusion in all animal groups and was exacerbated by tPA treatment in the elderly rat (P<0.001). The frequency of hematoma formation was proportionately increased in the elderly ischemic brain (P<0.05). Both tPA and age independently increased claudin 5 and occludin phosphorylation during ischemia. Early BBB permeability detected by quantitative MRI following ischemic stroke is enhanced by increased age and tPA and is related to claudin 5 and occludin phosphorylation. PMID:21610723
Zhou, Jian; Lin, Shiyi; Liu, Shijue
2014-11-01
Yi lin kou pu liu zhi mi shu (A Secret Medical Book of Six Therapies in Rhymes of Medical Professionals) was additionally compiled, supplemented and annotated by Zhou Sheng, a famous doctor of the Qing Dynasty, based on Yi lin kou pu (Rhymes of Medical Professionals) which was composed by Lu Qi. The book contains four volumes in total, dealing mainly with the miscellaneous diseases of internal medicine, as well as external medicine, gynecology, and pediatrics etc. The syndrome differentiation and treatment, prescriptions and medications in this book has its own characteristic with rather high academic value and practical significance. There were 20 drug names were deciphered by the argots, for instance, "you che" was the argot of golden thread, and "wu yue (May)" was the argot of medicinal evodia fruit, etc. In addition, the argots were often used to decipher numerals and quantifiers, for example, "su, qi, zi, qi, man" referring to 1, 2, 3, 4, 5 respectively, and "huo, pu, xiang, feng, lai" referring to 6, 7, 8, 9, 10 respectively, and "qing","zhong","xi" referring to qian, liang and fen respectively. Hence, deciphering of these argots could help to understand and apply these prescriptions correctly.
Influences of brain development and ageing on cortical interactive networks.
Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao
2011-02-01
To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Deak, Ferenc; Freeman, Willard M.; Ungvari, Zoltan; Csiszar, Anna
2016-01-01
As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer’s disease. PMID:26590911
[Research of anti-aging mechanism of ginsenoside Rg1 on brain].
Li, Cheng-peng; Zhang, Meng-si; Liu, Jun; Geng, Shan; Li, Jing; Zhu, Jia-hong; Zhang, Yan-yan; Jia, Yan-yan; Wang, Lu; Wang, Shun-he; Wang, Ya-ping
2014-11-01
Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus. Rats of Rg1 brain aging group had their spatial learning and memory capacities enhanced, SA-beta-Gal positive granules in section of brain tissue decreased, the activity of antioxidant enzyme SOD and the contents of GSH increased in hippocampus, the level of IL-1 and IL-6 in hippocampus decreased, the length contraction of telomere suppressed while the change of telomerase activity increased in hippocampus. Compared with that of normal group, the spatial learning and memory capacities were enhanced in Rg1 normal group, SA-beta-Gal positive granules in section of brain tissue decreased in Rg1 normal group, the level of IL-1 and IL-6 in hippocampus decreased in Rg1 normal group. The results indicated that improvement of antioxidant ability, regulating the level of proinflammatory cytokines and regulation of telomerase system may be the underlying anti-aging mechanism of Ginsenoside Rg1.
de Mooij, Susanne M M; Henson, Richard N A; Waldorp, Lourens J; Kievit, Rogier A
2018-06-20
It is well established that brain structures and cognitive functions change across the life span. A long-standing hypothesis called "age differentiation" additionally posits that the relations between cognitive functions also change with age. To date, however, evidence for age-related differentiation is mixed, and no study has examined differentiation of the relationship between brain and cognition. Here we use multigroup structural equation models (SEMs) and SEM trees to study differences within and between brain and cognition across the adult life span (18-88 years) in a large ( N > 646, closely matched across sexes), population-derived sample of healthy human adults from the Cambridge Centre for Ageing and Neuroscience (www.cam-can.org). After factor analyses of gray matter volume (from T1- and T2-weighted MRI) and white matter organization (fractional anisotropy from diffusion-weighted MRI), we found evidence for the differentiation of gray and white matter, such that the covariance between brain factors decreased with age. However, we found no evidence for age differentiation among fluid intelligence, language, and memory, suggesting a relatively stable covariance pattern among cognitive factors. Finally, we observed a specific pattern of age differentiation between brain and cognitive factors, such that a white matter factor, which loaded most strongly on the hippocampal cingulum, became less correlated with memory performance in later life. These patterns are compatible with the reorganization of cognitive functions in the face of neural decline, and/or with the emergence of specific subpopulations in old age. SIGNIFICANCE STATEMENT The theory of age differentiation posits age-related changes in the relationships among cognitive domains, either weakening (differentiation) or strengthening (dedifferentiation), but evidence for this hypothesis is mixed. Using age-varying covariance models in a large cross-sectional adult life span sample, we found age-related reductions in the covariance among both brain measures (neural differentiation), but no covariance change among cognitive factors of fluid intelligence, language, and memory. We also observed evidence of uncoupling (differentiation) between a white matter factor and cognitive factors in older age, most strongly for memory. Together, our findings support age-related differentiation as a complex, multifaceted pattern that differs for brain and cognition, and discuss several mechanisms that might explain the changing relationship between brain and cognition. Copyright © 2018 de Mooij et al.
Aging exacerbates intracerebral hemorrhage-induced brain injury.
Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki
2009-09-01
Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.
Ross, Jaime M; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J; Olson, Lars
2010-11-16
At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes.
Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain
Rana, Mohit; Varan, Andrew Q.; Davoudi, Anis; Cohen, Ronald A.; Sitaram, Ranganatha; Ebner, Natalie C.
2016-01-01
Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging. PMID:27803662
Upregulation of Aβ42 in the Brain and Bodily Fluids of Rhesus Monkeys with Aging.
Zhao, Qiao; Lu, Jing; Yao, Zitong; Wang, Shubo; Zhu, Liming; Wang, Ju; Chen, Baian
2017-01-01
The cerebral accumulation of amyloid beta (Aβ) is one of the key pathological hallmarks of Alzheimer's disease (AD). Aβ is also found in bodily fluids such as the cerebrospinal fluid (CSF) and plasma. However, the significance of Aβ accumulation in the brain and different bodily pools, as well as its correlation with aging and cerebral amyloid pathology, is not completely understood. To better understand this question, we selected the rhesus monkey, which is phylogenetically and physiologically highly similar to the human, as a model to study. We quantified the levels of the two main Aβ isoforms (Aβ42 and Aβ40) in different sections of the brain (frontal cortex, temporal cortex, and hippocampus) and bodily fluids (CSF and plasma) of rhesus monkeys at different developmental phases (young, 5-9 years of age; mature, 10-19 years of age; and old, 21-24 years of age). We found that the levels of neuronal and insoluble Aβ42 increased significantly in the brain with aging, suggesting that this specific isoform might be directly involved in aging and AD-like pathophysiology. There was no significant change in the Aβ40 level in the brain with aging. In addition, the Aβ42 level, but not the Aβ40 level, in both the CSF and plasma increased with aging. We also identified a positive correlation between Aβ42 in the CSF and plasma and Aβ42 in the brain. Taken collectively, our results indicate that there is an association between Aβ accumulation and age. These results support the increased incidence of AD with aging.
2017-05-05
The death rate for brain cancer, the most common cancer cause of death for children and teens aged 1-19 years, was 24% higher in males (0.73 per 100,000) than females (0.59) aged 1-19 years during 2013-2015. Death rates were higher for males than females for all age groups, but the difference did not reach statistical significance for the age group 5-9 years. Death rates caused by brain cancer were highest at ages 5-9 years (0.98 for males and 0.85 for females).
Zhang, Huiwei; Wu, Ping; Ziegler, Sibylle I; Guan, Yihui; Wang, Yuetao; Ge, Jingjie; Schwaiger, Markus; Huang, Sung-Cheng; Zuo, Chuantao; Förster, Stefan; Shi, Kuangyu
2017-02-01
In brain 18 F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. 127 female and 128 male healthy subjects (age: 20 to 79) with brain 18 F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18 F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R 2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both analysis strategies (subject-based and age-cohort averaging). In addition, the proposed new intensity normalization method using the paracentral lobule generates significantly higher differentiation from the age-associated changes than other intensity normalization methods. Proper intensity normalization can enhance the longitudinal coherency of normal brain glucose metabolism. The paracentral lobule followed by the cerebellar tonsil are shown to be the two most stable intensity normalization regions concerning age-dependent brain metabolism. This may provide the potential to better differentiate disease-related changes from age-related changes in brain metabolism, which is of relevance in the diagnosis of neurodegenerative disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten
2013-01-01
Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665
Li, Hui-Jie; Hou, Xiao-Hui; Liu, Han-Hui; Yue, Chun-Lin; Lu, Guang-Ming; Zuo, Xi-Nian
2015-10-01
Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Circulatory miR-34a as an RNA-based, noninvasive biomarker for brain aging
Li, Xiaoli; Khanna, Amit; Li, Na; Wang, Eugenia
2011-01-01
MicroRNAs in blood samples have been identified as an important class of biomarkers, which can reflect physiological changes from cancer to brain dysfunction. In this report we identify concordant increases in levels of expression of miR-34a in brain and two components of mouse blood samples, peripheral blood mononuclear cells (PBMCs) and plasma, from 2 day old neonates through young adulthood and mid-life to old age at 25 months. Levels of this microRNA's prime target, silent information regulator 1 (SIRT1), in brain and the two blood-derived specimens decrease with age inversely to miR-34a, starting as early as 4 months old, when appreciable tissue aging has not yet begun. Our results suggest that: 1. Increased miR-34a and the reciprocal decrease of its target, SIRT1, in blood specimens are the accessible biomarkers for age-dependent changes in brain; and 2. these changes are predictors of impending decline in brain function, as early as in young adult mice. PMID:22064828
Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition.
Franke, Katja; Clarke, Geoffrey D; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W
2017-01-01
Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4-7 years; human equivalent 14-24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years ( p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans.
Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition
Franke, Katja; Clarke, Geoffrey D.; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H.; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W.
2017-01-01
Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4–7 years; human equivalent 14–24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years (p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans. PMID:28443017
Fernández Viadero, Carlos; Verduga Vélez, Rosario; Crespo Santiago, Dámaso
2017-06-01
Neuroplasticity lends the brain a strong ability to adapt to changes in the environment that occur during ageing. Animal models have shown alterations in neurotransmission and imbalances in the expression of neural growth factor. Changes at the morphometric level are not constant. Volume loss is related to alterations in neuroplasticity and involvement of the cerebral neuropil. Although there are no conclusive data, physical exercise improves the molecular, biological, functional and behavioural-cognitive changes associated with brain ageing. The aged human brain has been described as showing weight and volume loss and increased ventricular size. However, neuroimaging shows significant variation and many healthy elderly individuals show no significant macroscopic changes. In most brain regions, the number of neurons remains stable throughout life. Neuroplasticity does not disappear with ageing, and changes in dendritic arborization and the density of spines and synapses are more closely related to brain activity than to age. At the molecular level, although the presence of altered Tau and β-amyloid proteins is used as a biomarker of neurodegenerative disease, postmortem studies show that these abnormal proteins are common in the brains of elderly people without dementia. Finally, due to the relationship between neurodegenerative diseases and metabolic alterations, this article analyses the influence of insulin-like growth factor and ageing, both in animal models and in humans, and the possible neuroprotective effect of insulin. Copyright © 2017 Sociedad Española de Geriatría y Gerontología. Publicado por Elsevier España, S.L.U. All rights reserved.
Networks of myelin covariance.
Melie-Garcia, Lester; Slater, David; Ruef, Anne; Sanabria-Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine
2018-04-01
Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, ). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these "networks of myelin covariance" (Myelin-Nets). The Myelin-Nets were built from quantitative Magnetization Transfer data-an in-vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin-Nets. We therefore selected two age groups: Young-Age (20-31 years old) and Old-Age (60-71 years old) and a pool of participants from 48 to 87 years old for a Myelin-Nets aging trajectory study. We found that the topological organization of the Myelin-Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin-Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Jain, S K
1992-05-01
"The paper examines the post-1971 reduction in Australian mortality in light of data on causes of death. Multiple-decrement life tables for eleven leading causes of death by sex are calculated and the incidence of each cause of death is presented in terms of the values of the life table functions. The study found that in the overall decline in mortality over the last 20 years significant changes occurred in the contribution of the various causes to total mortality.... The sex-age-cause-specific incidence of mortality changed and the median age at death increased for all causes except for deaths due to motor-vehicle accidents for both sexes and suicide for males. The paper also deciphers the gains in the expectation of life at birth over various time periods and the sex-differentials in the expectation of life at birth at a point in time in terms of the contributions made by the various sex-age-cause-specific mortality rates." excerpt
Ling, Daijun; Salvaterra, Paul M
2011-02-01
Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.
Job, Dominic E; Dickie, David Alexander; Rodriguez, David; Robson, Andrew; Danso, Sammy; Pernet, Cyril; Bastin, Mark E; Boardman, James P; Murray, Alison D; Ahearn, Trevor; Waiter, Gordon D; Staff, Roger T; Deary, Ian J; Shenkin, Susan D; Wardlaw, Joanna M
2017-01-01
The Brain Images of Normal Subjects (BRAINS) Imagebank (http://www.brainsimagebank.ac.uk) is an integrated repository project hosted by the University of Edinburgh and sponsored by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaborators. BRAINS provide sharing and archiving of detailed normal human brain imaging and relevant phenotypic data already collected in studies of healthy volunteers across the life-course. It particularly focusses on the extremes of age (currently older age, and in future perinatal) where variability is largest, and which are under-represented in existing databanks. BRAINS is a living imagebank where new data will be added when available. Currently BRAINS contains data from 808 healthy volunteers, from 15 to 81years of age, from 7 projects in 3 centres. Additional completed and ongoing studies of normal individuals from 1st to 10th decades are in preparation and will be included as they become available. BRAINS holds several MRI structural sequences, including T1, T2, T2* and fluid attenuated inversion recovery (FLAIR), available in DICOM (http://dicom.nema.org/); in future Diffusion Tensor Imaging (DTI) will be added where available. Images are linked to a wide range of 'textual data', such as age, medical history, physiological measures (e.g. blood pressure), medication use, cognitive ability, and perinatal information for pre/post-natal subjects. The imagebank can be searched to include or exclude ranges of these variables to create better estimates of 'what is normal' at different ages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Primiani, Christopher T.; Ryan, Veronica H.; Rao, Jagadeesh S.; Cam, Margaret C.; Ahn, Kwangmi; Modi, Hiren R.; Rapoport, Stanley I.
2014-01-01
Background Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Hypothesis Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. Methods We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Results Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Conclusions Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate throughout the lifespan underlie different phenotypic processes during Aging compared to Development. PMID:25329999
Primiani, Christopher T; Ryan, Veronica H; Rao, Jagadeesh S; Cam, Margaret C; Ahn, Kwangmi; Modi, Hiren R; Rapoport, Stanley I
2014-01-01
Age changes in expression of inflammatory, synaptic, and neurotrophic genes are not well characterized during human brain development and senescence. Knowing these changes may elucidate structural, metabolic, and functional brain processes over the lifespan, as well vulnerability to neurodevelopmental or neurodegenerative diseases. Expression levels of inflammatory, synaptic, and neurotrophic genes in the human brain are coordinated over the lifespan and underlie changes in phenotypic networks or cascades. We used a large-scale microarray dataset from human prefrontal cortex, BrainCloud, to quantify age changes over the lifespan, divided into Development (0 to 21 years, 87 brains) and Aging (22 to 78 years, 144 brains) intervals, in transcription levels of 39 genes. Gene expression levels followed different trajectories over the lifespan. Many changes were intercorrelated within three similar groups or clusters of genes during both Development and Aging, despite different roles of the gene products in the two intervals. During Development, changes were related to reported neuronal loss, dendritic growth and pruning, and microglial events; TLR4, IL1R1, NFKB1, MOBP, PLA2G4A, and PTGS2 expression increased in the first years of life, while expression of synaptic genes GAP43 and DBN1 decreased, before reaching plateaus. During Aging, expression was upregulated for potentially pro-inflammatory genes such as NFKB1, TRAF6, TLR4, IL1R1, TSPO, and GFAP, but downregulated for neurotrophic and synaptic integrity genes such as BDNF, NGF, PDGFA, SYN, and DBN1. Coordinated changes in gene transcription cascades underlie changes in synaptic, neurotrophic, and inflammatory phenotypic networks during brain Development and Aging. Early postnatal expression changes relate to neuronal, glial, and myelin growth and synaptic pruning events, while late Aging is associated with pro-inflammatory and synaptic loss changes. Thus, comparable transcriptional regulatory networks that operate throughout the lifespan underlie different phenotypic processes during Aging compared to Development.
Wilker, Elissa H; Preis, Sarah R; Beiser, Alexa S; Wolf, Philip A; Au, Rhoda; Kloog, Itai; Li, Wenyuan; Schwartz, Joel; Koutrakis, Petros; DeCarli, Charles; Seshadri, Sudha; Mittleman, Murray A
2015-05-01
Long-term exposure to ambient air pollution is associated with cerebrovascular disease and cognitive impairment, but whether it is related to structural changes in the brain is not clear. We examined the associations between residential long-term exposure to ambient air pollution and markers of brain aging using magnetic resonance imaging. Framingham Offspring Study participants who attended the seventh examination were at least 60 years old and free of dementia and stroke were included. We evaluated associations between exposures (fine particulate matter [PM2.5] and residential proximity to major roadways) and measures of total cerebral brain volume, hippocampal volume, white matter hyperintensity volume (log-transformed and extensive white matter hyperintensity volume for age), and covert brain infarcts. Models were adjusted for age, clinical covariates, indicators of socioeconomic position, and temporal trends. A 2-μg/m(3) increase in PM2.5 was associated with -0.32% (95% confidence interval, -0.59 to -0.05) smaller total cerebral brain volume and 1.46 (95% confidence interval, 1.10 to 1.94) higher odds of covert brain infarcts. Living further away from a major roadway was associated with 0.10 (95% confidence interval, 0.01 to 0.19) greater log-transformed white matter hyperintensity volume for an interquartile range difference in distance, but no clear pattern of association was observed for extensive white matter. Exposure to elevated levels of PM2.5 was associated with smaller total cerebral brain volume, a marker of age-associated brain atrophy, and with higher odds of covert brain infarcts. These findings suggest that air pollution is associated with insidious effects on structural brain aging even in dementia- and stroke-free persons. © 2015 American Heart Association, Inc.
Hsu, Yuan-Man; Yin, Mei-Chin
2016-06-01
Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. These findings suggest that these two PUFAs have toxic effects toward aging brain.
Hazlett, Heather Cody; Poe, Michele D.; Lightbody, Amy A.; Styner, Martin; MacFall, James R.; Reiss, Allan L.; Piven, Joseph
2012-01-01
Objective To examine patterns of early brain growth in young children with fragile X syndrome (FXS) compared to a comparison group (controls) and a group with idiopathic autism. Method The study included 53 boys between 18–42 months of age with FXS, 68 boys with idiopathic autism (ASD), and a comparison group of 50 typically-developing and developmentally-delayed controls. We examined structural brain volumes using magnetic resonance imaging (MRI) across two timepoints between ages 2–3 and 4–5 years and examined total brain volumes and regional (lobar) tissue volumes. Additionally, we studied a selected group of subcortical structures implicated in the behavioral features of FXS (e.g., basal ganglia, hippocampus, amygdala). Results Children with FXS had greater global brain volumes compared to controls, but were not different than children with idiopathic autism, and the rate of brain growth between ages 2 and 5 paralleled that seen in controls. In contrast to the children with idiopathic autism who had generalized cortical lobe enlargement, the children with FXS showed a specific enlargement in temporal lobe white matter, cerebellar gray matter, and caudate nucleus, but significantly smaller amygdala. Conclusions This structural longitudinal MRI study of preschoolers with FXS observed generalized brain overgrowth in FXS compared to controls, evident at age 2 and maintained across ages 4–5. We also find different patterns of brain growth that distinguishes boys with FXS from children with idiopathic autism. PMID:22917205
Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.
Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena
2018-03-01
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.
James, Lisa M; Christova, Peka; Lewis, Scott M; Engdahl, Brian E; Georgopoulos, Angeliki; Georgopoulos, Apostolos P
2018-03-01
Reduction of brain volume (brain atrophy) during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA) allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017). Seventy-one cognitively healthy women (32-69years old) underwent a structural Magnetic Resonance Imaging (sMRI) scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N=60) or carried the DRB1*13:02 allele (N=11). We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume) was the dependent variable and age was the independent variable. In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain aging (Wendt et al., 2008). Of course, other factors covarying with the presence of DRB1*13:02 could be involved. Published by Elsevier B.V.
Etiology of sporadic Alzheimer's disease: somatostatin, neprilysin, and amyloid beta peptide.
Hama, E; Saido, T C
2005-01-01
We recently demonstrated that amyloid beta peptide (Abeta) is catabolized primarily by a neutral endopeptidase, neprilysin, in the brain and that a neuropeptide, somatostatin (SST), regulates brain Abeta level via modulation of neprilysin activity. Because SST expression in the brain declines upon aging in various mammals including rodents, apes and humans, we hypothesize that the aging-dependent reduction of SST triggers accumulation of Abeta in the brain by suppressing neprilysin action. This hypothesis accounts for the fact that aging is the predominant risk factor for Sporadic Alzheimer's disease.
Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010.
Kim, Stella J-H; Ioannides, Sally J; Elwood, J Mark
2015-04-01
Case-control studies have linked mobile phone use to an increased risk of glioma in the most exposed brain areas, the temporal and parietal lobes, although inconsistently. We examined time trends in the incidence rates of brain malignancies in New Zealand from 1995 to 2010. Data from the New Zealand Cancer Registry was used to calculate incidence rates of primary brain cancer, by age, gender, morphology and anatomical site. Log-linear regression analysis was used to assess trends in the annual incidence of primary brain cancer; annual percentage changes and their 95% confidence intervals were estimated. No consistent increases in all primary brain cancer, glioma, or temporal or parietal lobe glioma were seen. At ages 10-69, the incidence of all brain cancers declined significantly. Incidence of glioma increased at ages over 70. In New Zealand, there has been no consistent increase in incidence rates of primary brain cancers. An increase in glioma at ages over 70 is likely to be due to improvements in diagnosis. As with any such studies, a small effect, or one with a latent period of more than 10 to 15 years, cannot be excluded. © 2015 Public Health Association of Australia.
Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J
2010-01-01
The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.
DNA methylation age is not accelerated in brain or blood of subjects with schizophrenia.
McKinney, Brandon C; Lin, Huang; Ding, Ying; Lewis, David A; Sweet, Robert A
2017-10-05
Individuals with schizophrenia (SZ) exhibit multiple premature age-related phenotypes and die ~20years prematurely. The accelerated aging hypothesis of SZ has been advanced to explain these observations, it posits that SZ-associated factors accelerate the progressive biological changes associated with normal aging. Testing the hypothesis has been limited by the absence of robust, meaningful, and multi-tissue measures of biological age. Recently, a method was described in which DNA methylation (DNAm) levels at 353 genomic sites are used to produce "DNAm age", an estimate of biological age with advantages over existing measures. We used this method and 3 publicly-available DNAm datasets, 1 from brain and 2 from blood, to test the hypothesis. The brain dataset was composed of data from the dorsolateral prefrontal cortex of 232 non-psychiatric control (NPC) and 195 SZ subjects. Blood dataset #1 was composed of data from whole blood of 304 NPC and 332 SZ subjects, and blood dataset #2 was composed of data from whole blood of 405 NPC and 260 SZ subjects. DNAm age and chronological age correlated strongly (r=0.92-0.95, p<0.0001) in both NPC and SZ subjects in all 3 datasets. DNAm age acceleration did not differ between NPC and SZ subjects in the brain dataset (t=0.52, p=0.60), blood dataset #1 (t=1.51, p=0.13), or blood dataset #2 (t=0.93, p=0.35). Consistent with our previous findings from a smaller study of postmortem brains, our findings suggest there is no acceleration of brain or blood aging in SZ and, thus, do not support the accelerated aging hypothesis of SZ. Copyright © 2017 Elsevier B.V. All rights reserved.
Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice
2014-06-01
Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P < 0.01) on posterior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P < 0.05) on the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.
Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O
2013-04-01
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Relations of arterial stiffness and endothelial function to brain aging in the community.
Tsao, Connie W; Seshadri, Sudha; Beiser, Alexa S; Westwood, Andrew J; Decarli, Charles; Au, Rhoda; Himali, Jayandra J; Hamburg, Naomi M; Vita, Joseph A; Levy, Daniel; Larson, Martin G; Benjamin, Emelia J; Wolf, Philip A; Vasan, Ramachandran S; Mitchell, Gary F
2013-09-10
To determine the association of arterial stiffness and pressure pulsatility, which can damage small vessels in the brain, with vascular and Alzheimer-type brain aging. Stroke- and dementia-free Framingham Offspring Study participants (n = 1,587, 61 ± 9 years, 45% male) underwent study of tonometric arterial stiffness and endothelial function (1998-2001) and brain MRI and cognition (1999-2002). We related carotid-femoral pulse wave velocity (CFPWV), mean arterial and central pulse pressure, and endothelial function to vascular brain aging by MRI (total cerebral brain volume [TCBV], white matter hyperintensity volume, silent cerebral infarcts) and vascular and Alzheimer-type cognitive aging (Trails B minus Trails A and logical memory-delayed recall, respectively). Higher CFPWV was associated with lower TCBV, greater white matter hyperintensity volume, and greater prevalence of silent cerebral infarcts (all p < 0.05). Each SD greater CFPWV was associated with lower TCBV equivalent to 1.2 years of brain aging. Mean arterial and central pulse pressure were associated with greater white matter hyperintensity volume (p = 0.005) and lower TCBV (p = 0.02), respectively, and worse verbal memory (both p < 0.05). Associations of tonometry variables with TCBV and white matter hyperintensity volume were stronger among those aged 65 years and older vs those younger than 65 years (p < 0.10 for interaction). Brachial artery endothelial function was unrelated to MRI measures (all p > 0.05). Greater arterial stiffness and pressure pulsatility are associated with brain aging, MRI vascular insults, and memory deficits typically seen in Alzheimer dementia. Future investigations are warranted to evaluate the potential impact of prevention and treatment of unfavorable arterial hemodynamics on neurocognitive outcomes.
Structural MRI markers of brain aging early after ischemic stroke.
Werden, Emilio; Cumming, Toby; Li, Qi; Bird, Laura; Veldsman, Michele; Pardoe, Heath R; Jackson, Graeme; Donnan, Geoffrey A; Brodtmann, Amy
2017-07-11
To examine associations between ischemic stroke, vascular risk factors, and MRI markers of brain aging. Eighty-one patients (mean age 67.5 ± 13.1 years, 31 left-sided, 61 men) with confirmed first-ever (n = 66) or recurrent (n = 15) ischemic stroke underwent 3T MRI scanning within 6 weeks of symptom onset (mean 26 ± 9 days). Age-matched controls (n = 40) completed identical testing. Multivariate regression analyses examined associations between group membership and MRI markers of brain aging (cortical thickness, total brain volume, white matter hyperintensity [WMH] volume, hippocampal volume), normalized against intracranial volume, and the effects of vascular risk factors on these relationships. First-ever stroke was associated with smaller hippocampal volume ( p = 0.025) and greater WMH volume ( p = 0.004) relative to controls. Recurrent stroke was in turn associated with smaller hippocampal volume relative to both first-ever stroke ( p = 0.017) and controls ( p = 0.001). These associations remained significant after adjustment for age, sex, education, and, in stroke patients, infarct volume. Total brain volume was not significantly smaller in first-ever stroke patients than in controls ( p = 0.056), but the association became significant after further adjustment for atrial fibrillation ( p = 0.036). Cortical thickness and brain volumes did not differ as a function of stroke type, infarct volume, or etiology. Brain structure is likely to be compromised before ischemic stroke by vascular risk factors. Smaller hippocampal and total brain volumes and increased WMH load represent proxies for underlying vascular brain injury. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
N-terminal pro-brain natriuretic peptide and abnormal brain aging: The AGES-Reykjavik Study.
Sabayan, Behnam; van Buchem, Mark A; de Craen, Anton J M; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J
2015-09-01
To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p < 0.001), gray matter (p < 0.001), and white matter (p = 0.001) brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p < 0.001), and more depressive symptoms (p = 0.002). In the substudy, the associations of higher NT-proBNP with lower brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. © 2015 American Academy of Neurology.
Geerlings, M I; Sigurdsson, S; Eiriksdottir, G; Garcia, M E; Harris, T B; Sigurdsson, T; Gudnason, V; Launer, L J
2013-02-01
To examine whether lifetime DSM-IV diagnosis of major depressive disorder (MDD), including age at onset and number of episodes, is associated with brain atrophy in older persons without dementia. Within the population-based Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study, 4354 persons (mean age 76 ± 5 years, 58% women) without dementia had a 1.5-T brain magnetic resonance imaging (MRI) scan. Automated brain segmentation total and regional brain volumes were calculated. History of MDD, including age at onset and number of episodes, and MDD in the past 2 weeks was diagnosed according to DSM-IV criteria using the Mini-International Neuropsychiatric Interview (MINI). Of the total sample, 4.5% reported a lifetime history of MDD; 1.5% had a current diagnosis of MDD (including 75% with a prior history of depression) and 3.0% had a past but no current diagnosis (remission). After adjusting for multiple covariates, compared to participants never depressed, those with current MDD (irrespective of past) had more global brain atrophy [B = -1.25%, 95% confidence interval (CI) -2.05 to -0.44], including more gray- and white-matter atrophy in most lobes, and also more atrophy of the hippocampus and thalamus. Participants with current, first-onset MDD also had more brain atrophy (B = -1.62%, 95% CI -3.30 to 0.05) whereas those remitted did not (B = 0.06%, 95% CI -0.54 to 0.66). In older persons without dementia, current MDD, irrespective of prior history, but not remitted MDD was associated with widespread gray- and white-matter brain atrophy. Prospective studies should examine whether MDD is a consequence of, or contributes to, brain volume loss and development of dementia.
Grachev, I D; Apkarian, A V
2000-12-01
We recently presented results in an in vivo study of human brain chemistry in 'physiologic' anxiety, i.e., the anxiety of normal everyday life. Normal subjects with high anxiety demonstrated increased concentration of chemicals in orbital frontal cortex (OFC) as compared to lower anxiety. In a separate study of aging we demonstrated a decrease of total chemical concentration in OFC of middle-aged subjects, as compared with younger age. This brain region also showed gender dependence; men demonstrating decreased chemical concentration compared to women. We hypothesized that these sex- and age-dependent differences in OFC chemistry changes are a result of anxiety effects on this brain region. In the present study we examined these sex- and age-differential regional brain chemistry changes (as identified by localized in vivo proton magnetic resonance spectroscopy [1H-MRS]) in relation to the state-trait-anxiety (as measured by the State-Trait Anxiety Inventory) in 35 healthy subjects. The concentrations for all nine chemicals of 1H-MRS spectra were measured relative to creatine across multiple brain regions, including OFC in the left hemisphere. Analysis of variance showed anxiety-specific effects on chemical concentration changes in OFC, which were different for both sexes and age groups. Male subjects showed larger effect of anxiety on OFC chemistry as compared to females when the same sex high-anxiety subjects were compared to lower anxiety. Similarly, middle-aged subjects showed larger effect of anxiety on OFC chemistry as compared to younger age when the same age subjects with high anxiety were compared to lower anxiety. Largest effect of anxiety on OFC chemistry was due to changes of N-Acetyl aspartate. The results indicate that the state-trait anxiety has sex- and age-differential patterns on OFC chemistry in healthy humans, providing new information about the neurobiological roots of anxiety.
Alvarim, Larissa T; Nucci, Leopoldo P; Mamani, Javier B; Marti, Luciana C; Aguiar, Marina F; Silva, Helio R; Silva, Gisele S; Nucci-da-Silva, Mariana P; DelBel, Elaine A; Gamarra, Lionel F
2014-01-01
The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.
Deciphering the structural framework of glycine receptor anchoring by gephyrin
Kim, Eun Young; Schrader, Nils; Smolinsky, Birthe; Bedet, Cécile; Vannier, Christian; Schwarz, Günter; Schindelin, Hermann
2006-01-01
Glycine is the major inhibitory neurotransmitter in the spinal cord and brain stem. Gephyrin is required to achieve a high concentration of glycine receptors (GlyRs) in the postsynaptic membrane, which is crucial for efficient glycinergic signal transduction. The interaction between gephyrin and the GlyR involves the E-domain of gephyrin and a cytoplasmic loop located between transmembrane segments three and four of the GlyR β subunit. Here, we present crystal structures of the gephyrin E-domain with and without the GlyR β-loop at 2.4 and 2.7 Å resolutions, respectively. The GlyR β-loop is bound in a symmetric ‘key and lock' fashion to each E-domain monomer in a pocket adjacent to the dimer interface. Structure-guided mutagenesis followed by in vitro binding and in vivo colocalization assays demonstrate that a hydrophobic interaction formed by Phe 330 of gephyrin and Phe 398 and Ile 400 of the GlyR β-loop is crucial for binding. PMID:16511563
Rahmati, Negah; Hoebeek, Freek E; Peter, Saša; De Zeeuw, Chris I
2018-01-01
The intraneuronal ionic composition is an important determinant of brain functioning. There is growing evidence that aberrant homeostasis of the intracellular concentration of Cl - ([Cl - ] i ) evokes, in addition to that of Na + and Ca 2+ , robust impairments of neuronal excitability and neurotransmission and thereby neurological conditions. More specifically, understanding the mechanisms underlying regulation of [Cl - ] i is crucial for deciphering the variability in GABAergic and glycinergic signaling of neurons, in both health and disease. The homeostatic level of [Cl - ] i is determined by various regulatory mechanisms, including those mediated by plasma membrane Cl - channels and transporters. This review focuses on the latest advances in identification, regulation and characterization of Cl - channels and transporters that modulate neuronal excitability and cell volume. By putting special emphasis on neurons of the olivocerebellar system, we establish that Cl - channels and transporters play an indispensable role in determining their [Cl - ] i and thereby their function in sensorimotor coordination.
Altered Neuronal and Circuit Excitability in Fragile X Syndrome.
Contractor, Anis; Klyachko, Vitaly A; Portera-Cailliau, Carlos
2015-08-19
Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.
Booly: a new data integration platform.
Do, Long H; Esteves, Francisco F; Karten, Harvey J; Bier, Ethan
2010-10-13
Data integration is an escalating problem in bioinformatics. We have developed a web tool and warehousing system, Booly, that features a simple yet flexible data model coupled with the ability to perform powerful comparative analysis, including the use of Boolean logic to merge datasets together, and an integrated aliasing system to decipher differing names of the same gene or protein. Furthermore, Booly features a collaborative sharing system and a public repository so that users can retrieve new datasets while contributors can easily disseminate new content. We illustrate the uses of Booly with several examples including: the versatile creation of homebrew datasets, the integration of heterogeneous data to identify genes useful for comparing avian and mammalian brain architecture, and generation of a list of Food and Drug Administration (FDA) approved drugs with possible alternative disease targets. The Booly paradigm for data storage and analysis should facilitate integration between disparate biological and medical fields and result in novel discoveries that can then be validated experimentally. Booly can be accessed at http://booly.ucsd.edu.
Booly: a new data integration platform
2010-01-01
Background Data integration is an escalating problem in bioinformatics. We have developed a web tool and warehousing system, Booly, that features a simple yet flexible data model coupled with the ability to perform powerful comparative analysis, including the use of Boolean logic to merge datasets together, and an integrated aliasing system to decipher differing names of the same gene or protein. Furthermore, Booly features a collaborative sharing system and a public repository so that users can retrieve new datasets while contributors can easily disseminate new content. Results We illustrate the uses of Booly with several examples including: the versatile creation of homebrew datasets, the integration of heterogeneous data to identify genes useful for comparing avian and mammalian brain architecture, and generation of a list of Food and Drug Administration (FDA) approved drugs with possible alternative disease targets. Conclusions The Booly paradigm for data storage and analysis should facilitate integration between disparate biological and medical fields and result in novel discoveries that can then be validated experimentally. Booly can be accessed at http://booly.ucsd.edu. PMID:20942966
Arani, Arvin; Murphy, Matthew C; Glaser, Kevin J; Manduca, Armando; Lake, David S; Kruse, Scott; Jack, Clifford R; Ehman, Richard; Huston, John
2015-01-01
Changes in tissue composition and cellular architecture have been associated with neurological disease, and these in turn can affect biomechanical properties. Natural biological factors such as aging and an individual’s sex also affect underlying tissue biomechanics in different brain regions. Understanding the normal changes is necessary before determining the efficacy of stiffness imaging for neurological disease diagnosis and therapy monitoring. The objective of this study was to evaluate global and regional changes in brain stiffness as a function of age and sex, using improved MRE acquisition and processing that has been shown to provide median stiffness values that are typically reproducible to within 1% in global measurements and within 2% for regional measurements. Furthermore, this is the first study to report the effects of age and sex over the entire cerebrum volume and over the full frontal, occipital, parietal, temporal, deep gray matter/white matter (insula, deep gray nuclei and white matter tracts), and cerebellum volumes. In 45 volunteers, we observed a significant linear correlation between age and brain stiffness in the cerebrum (P<.0001), frontal lobes (P<.0001), occipital lobes (P=.0005), parietal lobes (P=.0002), and the temporal lobes (P<.0001) of the brain. No significant linear correlation between brain stiffness and age was observed in the cerebellum (P=.74), and the sensory-motor regions (P=.32) of the brain, and a weak linear trend was observed in the deep gray matter/white matter (P=.075). A multiple linear regression model predicted an annual decline of 0.011±0.002 kPa in cerebrum stiffness with a theoretical median age value (76 years old) of 2.56±0.08 kPa. Sexual dimorphism was observed in the temporal (P=.03) and occipital (P=.001) lobes of the brain, but no significant difference was observed in any of the other brain regions (P>.20 for all other regions). The model predicted female occipital and temporal lobes to be 0.23 kPa and 0.09 kPa stiffer than males of the same age, respectively. This study confirms that as the brain ages, there is softening; however, the changes are dependent on region. In addition, stiffness effects due to sex exist in the occipital and temporal lobes. PMID:25698157
Exploration of genetically encoded voltage indicators based on a chimeric voltage sensing domain.
Mishina, Yukiko; Mutoh, Hiroki; Song, Chenchen; Knöpfel, Thomas
2014-01-01
Deciphering how the brain generates cognitive function from patterns of electrical signals is one of the ultimate challenges in neuroscience. To this end, it would be highly desirable to monitor the activities of very large numbers of neurons while an animal engages in complex behaviors. Optical imaging of electrical activity using genetically encoded voltage indicators (GEVIs) has the potential to meet this challenge. Currently prevalent GEVIs are based on the voltage-sensitive fluorescent protein (VSFP) prototypical design or on the voltage-dependent state transitions of microbial opsins. We recently introduced a new VSFP design in which the voltage-sensing domain (VSD) is sandwiched between a fluorescence resonance energy transfer pair of fluorescent proteins (termed VSFP-Butterflies) and also demonstrated a series of chimeric VSD in which portions of the VSD of Ciona intestinalis voltage-sensitive phosphatase are substituted by homologous portions of a voltage-gated potassium channel subunit. These chimeric VSD had faster sensing kinetics than that of the native Ci-VSD. Here, we describe a new set of VSFPs that combine chimeric VSD with the Butterfly structure. We show that these chimeric VSFP-Butterflies can report membrane voltage oscillations of up to 200 Hz in cultured cells and report sensory evoked cortical population responses in living mice. This class of GEVIs may be suitable for imaging of brain rhythms in behaving mammalians.
The Impact of Traumatic Brain Injury on the Aging Brain.
Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E
2016-09-01
Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.
Buoli, Massimiliano; Serati, Marta; Caldiroli, Alice; Cremaschi, Laura; Altamura, Alfredo Carlo
2017-03-01
Available data support a contribution of both neurodevelopmental and neurodegenerative factors in the etiology of schizophrenia (SCH) and bipolar disorder (BD). Of note, one of the most important issue of the current psychiatric research is to identify the specific factors that contribute to impaired brain development and neurodegeneration in SCH and BD, and especially how these factors alter normal brain development and physiological aging process. Our hypothesis is that only specific damages, taking place in precise brain development stages, are associated with future SCH /BD onset and that neurodegeneration consists of an acceleration of brain aging after SCH /BD onset. In support of our hypothesis, the results of the present narrative mini-review shows as neurodevelopmental damages generally contribute to neuropsychiatric syndromes (e.g. hypothyroidism or treponema pallidum), but only some of them are specifically associated with adult SCH and BD (e.g. toxoplasma or substance abuse), particularly if they happen in specific stages of brain development. On the other hand, cognitive impairment and brain changes, associated with long duration of SCH /BD, look like what happens during aging: memory, executive domains and prefrontal cortex are implicated both in aging and in SCH /BD progression. Future research will explore possible validity of this etiological model for SCH and BD.
Searching for the philosopher's stone: promising links between meditation and brain preservation.
Luders, Eileen; Cherbuin, Nicolas
2016-06-01
In the context of an aging population and increased prevalence of dementia and other neurodegenerative diseases, developing strategies to decrease the negative effects of aging is imperative. The scientific study of meditation as a potential tool to downregulate processes implicated in brain aging is an emerging field, and a growing body of research suggests that mindfulness practices are beneficial for cerebral resilience. Adding further evidence to this notion, an increasing number of imaging studies report effects of meditation on brain structure that are consistent with our understanding of neuroprotection. Here, we review the published findings in this field of research addressing the question of whether meditation diminishes age-related brain degeneration. Altogether, although analyses are still sparse and based on cross-sectional data, study outcomes suggest that meditation might be beneficial for brain preservation-both with respect to gray and white matter-possibly by slowing down the natural (age-related) decrease of brain tissue. Nevertheless, it should also be recognized that, until robust longitudinal data become available, there is no evidence for causation between meditation and brain preservation. This review includes a comprehensive commentary on limitations of the existing research and concludes with implications and directions for future studies. © 2016 New York Academy of Sciences.
Xu, Xiaojun; Wang, Qidong; Zhang, Minming
2008-03-01
It is well known that iron accumulates in the brains of patients with various neurodegenerative diseases. To better understand disease-related iron changes, it is necessary to know the physiological distribution and accumulation of iron in the human brain. Studies have shown that brain iron levels increase with aging. However, the effects of gender and hemispheric laterality on iron accumulation and distribution are not well established. In this study, we estimated the brain iron levels in vivo in 78 healthy adults ranging in age 22 to 78 years using magnetic susceptibility-weighted phase imaging. The effects of age, gender, and hemispheric location on brain iron levels were evaluated within the framework of a general linear model. We found that the left hemisphere had higher iron levels than the right in the putamen, globus pallidus, substantia nigra, thalamus, and frontal white matter. We argue that the hemispheric asymmetry of iron content may underlie that of the dopaminergic system and may be related to motor lateralization in humans. In addition, significant age-related iron accumulation occurred in the putamen, red nucleus, and frontal white matter, but no gender-related differences in iron levels were detected. The results of this study extend our knowledge of the physiological distribution and accumulation of iron in the human brain.
One life ends, another begins: Management of a brain-dead pregnant mother-A systematic review-
2010-01-01
Background An accident or a catastrophic disease may occasionally lead to brain death (BD) during pregnancy. Management of brain-dead pregnant patients needs to follow special strategies to support the mother in a way that she can deliver a viable and healthy child and, whenever possible, also be an organ donor. This review discusses the management of brain-dead mothers and gives an overview of recommendations concerning the organ supporting therapy. Methods To obtain information on brain-dead pregnant women, we performed a systematic review of Medline, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). The collected data included the age of the mother, the cause of brain death, maternal medical complications, gestational age at BD, duration of extended life support, gestational age at delivery, indication of delivery, neonatal outcome, organ donation of the mothers and patient and graft outcome. Results In our search of the literature, we found 30 cases reported between1982 and 2010. A nontraumatic brain injury was the cause of BD in 26 of 30 mothers. The maternal mean age at the time of BD was 26.5 years. The mean gestational age at the time of BD and the mean gestational age at delivery were 22 and 29.5 weeks, respectively. Twelve viable infants were born and survived the neonatal period. Conclusion The management of a brain-dead pregnant woman requires a multidisciplinary team which should follow available standards, guidelines and recommendations both for a nontraumatic therapy of the fetus and for an organ-preserving treatment of the potential donor. PMID:21087498
Catena, Andrés; Martínez-Zaldívar, Cristina; Diaz-Piedra, Carolina; Torres-Espínola, Francisco J; Brandi, Pilar; Pérez-García, Miguel; Decsi, Tamás; Koletzko, Berthold; Campoy, Cristina
2017-03-29
Head circumference in infants has been reported to predict brain size, total grey matter volume (GMV) and neurocognitive development. However, it is unknown whether it has predictive value on regional and subcortical brain volumes. We aimed to explore the relationship between several head circumference measurements since birth and distributions of GMV and subcortical volumes at later childhood. We examined seventy-four, Caucasian, singleton, term-born infants born to mothers randomised to receive fish oil and/or 5-methyltetrahydrofolate or placebo prenatal supplementation. We assessed head circumference at birth and at 4 and 10 years of age and cognitive abilities at 7 years of age. We obtained brain MRI at 10 years of age, on which we performed voxel-based morphometry, cortical surface extraction and subcortical segmentation. Analyses were controlled for sex, age, height, weight, family status, laterality and total intracranial volume. Prenatal supplementation did not affect head circumference at any age, cognitive abilities or total brain volumes. Head circumference at 4 years presented the highest correlation with total GMV, white matter volume and brain surface area, and was also strongly associated with GMV of frontal, temporal and occipital areas, as well as with caudate nucleus, globus pallidus, putamen and thalamus volumes. As relationships between brain volumes in childhood and several outcomes extend into adulthood, we have found that ages between 0 and 4 years as the optimal time for brain growth; postnatal factors might have the most relevant impact on structural maturation of certain cortical areas and subcortical nuclei, independent of prenatal supplementation.
Fractal Interfaces for Stimulating and Recording Neural Implants
NASA Astrophysics Data System (ADS)
Watterson, William James
From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the cochlear implant restoring hearing due to the relatively simple anatomy of the auditory nerves, but are failing to restore vision to the blind due to poor signal fidelity and transmission in stimulating the more complex anatomy of the visual nerves. The critically important research needed to improve the resolution of these implants is to optimize the neuron-electrode interface. This thesis explores geometrical and material modifications to both stimulating and recording electrodes which can improve the neuron-electrode interface. First, we introduce a fractal electrode geometry which radically improves the restored visual acuity achieved by retinal implants and leads to safe, long-term operation of the implant. Next, we demonstrate excellent neuron survival and neurite outgrowth on carbon nanotube electrodes, thus providing a safe biomaterial which forms a strong connection between the electrode and neurons. Additional preliminary evidence suggests carbon nanotubes patterned into a fractal geometry will provide further benefits in improving the electrode-neuron interface. Finally, we propose a novel implant based off field effect transistor technology which utilizes an interconnecting fractal network of semiconducting carbon nanotubes to record from thousands of neurons simutaneously at an individual neuron resolution. Taken together, these improvements have the potential to radically improve our understanding of the brain and our ability to restore function to patients of neural diseases.
Ross, Jaime M.; Öberg, Johanna; Brené, Stefan; Coppotelli, Giuseppe; Terzioglu, Mügen; Pernold, Karin; Goiny, Michel; Sitnikov, Rouslan; Kehr, Jan; Trifunovic, Aleksandra; Larsson, Nils-Göran; Hoffer, Barry J.; Olson, Lars
2010-01-01
At present, there are few means to track symptomatic stages of CNS aging. Thus, although metabolic changes are implicated in mtDNA mutation-driven aging, the manifestations remain unclear. Here, we used normally aging and prematurely aging mtDNA mutator mice to establish a molecular link between mitochondrial dysfunction and abnormal metabolism in the aging process. Using proton magnetic resonance spectroscopy and HPLC, we found that brain lactate levels were increased twofold in both normally and prematurely aging mice during aging. To correlate the striking increase in lactate with tissue pathology, we investigated the respiratory chain enzymes and detected mitochondrial failure in key brain areas from both normally and prematurely aging mice. We used in situ hybridization to show that increased brain lactate levels were caused by a shift in transcriptional activities of the lactate dehydrogenases to promote pyruvate to lactate conversion. Separation of the five tetrameric lactate dehydrogenase (LDH) isoenzymes revealed an increase of those dominated by the Ldh-A product and a decrease of those rich in the Ldh-B product, which, in turn, increases pyruvate to lactate conversion. Spectrophotometric assays measuring LDH activity from the pyruvate and lactate sides of the reaction showed a higher pyruvate → lactate activity in the brain. We argue for the use of lactate proton magnetic resonance spectroscopy as a noninvasive strategy for monitoring this hallmark of the aging process. The mtDNA mutator mouse allows us to conclude that the increased LDH-A/LDH-B ratio causes high brain lactate levels, which, in turn, are predictive of aging phenotypes. PMID:21041631
Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.
Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M
2006-08-25
Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement does not develop gradually since youth, but appears characterized by relatively late onset.
Two hands, one brain, and aging.
Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P
2017-04-01
Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wei, Shu; Hua, Hai-Rong; Chen, Qian-Quan; Zhang, Ying; Chen, Fei; Li, Shu-Qing; Li, Fan; Li, Jia-Li
2017-03-18
Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews ( Tupaia belangeri chinensis ). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.
Digit ratio (2D:4D) in primary brain tumor patients: A case-control study.
Bunevicius, Adomas; Tamasauskas, Sarunas; Deltuva, Vytenis Pranas; Tamasauskas, Arimantas; Sliauzys, Albertas; Bunevicius, Robertas
2016-12-01
The second-to-fourth digit ratio (2D:4D) reflects prenatal estrogen and testosterone exposure, and is established in utero. Sex steroids are implicated in development and progression of primary brain tumors. To investigate whether there is a link between 2D:4D ratio and primary brain tumors, and age at presentation. Digital images of the right and left palms of 85 primary brain tumor patients (age 56.96±13.68years; 71% women) and 106 (age 54.31±13.68years; 68% women) gender and age matched controls were obtained. The most common brain tumor diagnoses were meningioma (41%), glioblastoma (20%) and pituitary adenoma (16%). Right and left 2D:4D ratios, and right minus left 2D:4D (D r-l ) were compared between patients and controls, and were correlated with age. Right and left 2D:4D ratios were significantly lower in primary brain tumor patients relative to controls (t=-4.28, p<0.001 and t=-3.69, p<0.001, respectively). The D r-l was not different between brain tumor patients and controls (p=0.27). In meningioma and glioma patients, age at presentation correlated negatively with left 2D:4D ratio (rho=-0.42, p=0.01 and rho=-0.36, p=0.02, respectively) and positively with D r-l (rho=0.45, p=0.009 and rho=0.65, p=0.04, respectively). Right and left hand 2D:4D ratios are lower in primary brain tumor patients relative to healthy individuals suggesting greater prenatal testosterone and lower prenatal estrogen exposure in brain tumor patients. Greater age at presentation is associated with greater D r-l and with lower left 2D:4D ratio of meningioma and glioma patients. Due to small sample size our results should be considered preliminary and interpreted with caution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain.
CircRNAs in the tree shrew (Tupaia belangeri) brain during postnatal development and aging.
Lu, CaiXia; Sun, XiaoMei; Li, Na; Wang, WenGuang; Kuang, DeXuan; Tong, PinFen; Han, YuanYuan; Dai, JieJie
2018-04-30
Circular RNAs (circRNAs) are a novel type of non-coding RNA expressed across different species and tissues. At present, little is known about the expression and function of circRNAs in the tree shrew brain. In this study, we used RNA-seq to identify 35,007 circRNAs in hippocampus and cerebellum samples from infant (aged 47-52 days), young (aged 15-18 months), and old (aged 78-86 months) tree shrews. We observed no significant changes in the total circRNA expression profiles in different brain regions over time. However, circRNA tended to be downregulated in the cerebellum over time. Real-time RT-PCR analysis verified the presence of circRNAs. KEGG analysis indicated the occurrence of ubiquitin-mediated proteolysis, the MAPK signaling pathway, phosphatidylinositol signaling system, long-term depression, the rap1 signaling pathway, and long-term potentiation in both brain regions. We also observed that 29,087 (83.1%) tree shrew circRNAs shared homology with human circRNAs. The competing endogenous RNA networks suggested novel_circRNA_007362 potential functions as a 24-miRNAs sponge to regulate UBE4B expression. Thus, we obtained comprehensive circRNA expression profiles in the tree shrew brain during postnatal development and aging, which might help to elucidate the functions of circRNAs during brain aging and in age-related diseases.
Energy metabolism and inflammation in brain aging and Alzheimer's disease.
Yin, Fei; Sancheti, Harsh; Patil, Ishan; Cadenas, Enrique
2016-11-01
The high energy demand of the brain renders it sensitive to changes in energy fuel supply and mitochondrial function. Deficits in glucose availability and mitochondrial function are well-known hallmarks of brain aging and are particularly accentuated in neurodegenerative disorders such as Alzheimer's disease. As important cellular sources of H 2 O 2 , mitochondrial dysfunction is usually associated with altered redox status. Bioenergetic deficits and chronic oxidative stress are both major contributors to cognitive decline associated with brain aging and Alzheimer's disease. Neuroinflammatory changes, including microglial activation and production of inflammatory cytokines, are observed in neurodegenerative diseases and normal aging. The bioenergetic hypothesis advocates for sequential events from metabolic deficits to propagation of neuronal dysfunction, to aging, and to neurodegeneration, while the inflammatory hypothesis supports microglia activation as the driving force for neuroinflammation. Nevertheless, growing evidence suggests that these diverse mechanisms have redox dysregulation as a common denominator and connector. An independent view of the mechanisms underlying brain aging and neurodegeneration is being replaced by one that entails multiple mechanisms coordinating and interacting with each other. This review focuses on the alterations in energy metabolism and inflammatory responses and their connection via redox regulation in normal brain aging and Alzheimer's disease. Interaction of these systems is reviewed based on basic research and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Advanced age negatively impacts survival in an experimental brain tumor model.
Ladomersky, Erik; Zhai, Lijie; Gritsina, Galina; Genet, Matthew; Lauing, Kristen L; Wu, Meijing; James, C David; Wainwright, Derek A
2016-09-06
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, with an average age of 64 years at the time of diagnosis. To study GBM, a number of mouse brain tumor models have been utilized. In these animal models, subjects tend to range from 6 to 12 weeks of age, which is analogous to that of a human teenager. Here, we examined the impact of age on host immunity and the gene expression associated with immune evasion in immunocompetent mice engrafted with syngeneic intracranial GL261. The data indicate that, in mice with brain tumors, youth conveys an advantage to survival. While age did not affect the tumor-infiltrating T cell phenotype or quantity, we discovered that old mice express higher levels of the immunoevasion enzyme, IDO1, which was decreased by the presence of brain tumor. Interestingly, other genes associated with promoting immunosuppression including CTLA-4, PD-L1 and FoxP3, were unaffected by age. These data highlight the possibility that IDO1 contributes to faster GBM outgrowth with advanced age, providing rationale for future investigation into immunotherapeutic targeting in the future. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pollard, Amelia; Shephard, Freya; Freed, James; Liddell, Susan; Chakrabarti, Lisa
2016-10-10
Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondrial fractions from young adult and middle aged mouse brain and skeletal muscle. We find an increase of tissue specific carbonic anhydrases in mitochondria from middle-aged brain and skeletal muscle. Mitochondrial carbonic anhydrase II was measured in the Purkinje cell degeneration ( pcd 5J ) mouse model. In pcd 5J we find mitochondrial carbonic anhydrase II is also elevated in brain from young adults undergoing a process of neurodegeneration. We show C.elegans exposed to carbonic anhydrase II have a dose related shorter lifespan suggesting that high CAII levels are in themselves life limiting. We show for the first time that the mitochondrial content of brain and skeletal tissue are exposed to significantly higher levels of active carbonic anhydrases as early as in middle-age. Carbonic anhydrases associated with mitochondria could be targeted to specifically modulate age related impairments and disease.
Kamali, Mahsa; Bahmanpour, Soghra
2016-05-01
One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.
Microglia Priming with Aging and Stress.
Niraula, Anzela; Sheridan, John F; Godbout, Jonathan P
2017-01-01
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a 'sensitized' or 'primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits.
Microglia Priming with Aging and Stress
Niraula, Anzela; Sheridan, John F; Godbout, Jonathan P
2017-01-01
The population of aged individuals is increasing worldwide and this has significant health and socio-economic implications. Clinical and experimental studies on aging have discovered myriad changes in the brain, including reduced neurogenesis, increased synaptic aberrations, higher metabolic stress, and augmented inflammation. In rodent models of aging, these alterations are associated with cognitive decline, neurobehavioral deficits, and increased reactivity to immune challenges. In rodents, caloric restriction and young blood-induced revitalization reverses the behavioral effects of aging. The increased inflammation in the aged brain is attributed, in part, to the resident population of microglia. For example, microglia of the aged brain are marked by dystrophic morphology, elevated expression of inflammatory markers, and diminished expression of neuroprotective factors. Importantly, the heightened inflammatory profile of microglia in aging is associated with a ‘sensitized' or ‘primed' phenotype. Mounting evidence points to a causal link between the primed profile of the aged brain and vulnerability to secondary insults, including infections and psychological stress. Conversely, psychological stress may also induce aging-like sensitization of microglia and increase reactivity to secondary challenges. This review delves into the characteristics of neuroinflammatory signaling and microglial sensitization in aging, its implications in psychological stress, and interventions that reverse aging-associated deficits. PMID:27604565
Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.
Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari
2013-10-01
Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.
Estimation of the brain stem volume by stereological method on magnetic resonance imaging.
Erbagci, Hulya; Keser, Munevver; Kervancioglu, Selim; Kizilkan, Nese
2012-11-01
Neuron loss that occurs in some neurodegenerative diseases can lead to volume alterations by causing atrophy in the brain stem. The aim of this study was to determine the brain stem volume and the volume ratio of the brain stem to total brain volume related to gender and age using new Stereo Investigator system in normal subjects. For this purpose, MR images of 72 individuals who have no pathologic condition were evaluated. The total brain volumes of female and male were calculated as 966.81 ± 77.44 and 1,074.06 ± 111.75 cm3, respectively. Brain stem volumes of female and male were determined as 18.99 ± 2.36 and 22.05 ± 4.01 cm3, respectively. The ratios of brain stem volume to total brain volume were 1.96 ± 0.17 in female and 2.05 ± 0.29 in male. The total brain and brain stem volumes were observed smaller in female and it is statistically significant. Among the individuals whose ages are between 20 and 40, total brain and brain stem volume measurements with aging were not statistically significant. As a result, we believe that the measurement of brain stem volume with an objective and efficient calculation method will contribute to the early diagnosis of neurodegenerative diseases, as well as to determine the rate of disease progression, and the outcomes of treatment.
Male criminals with organic brain syndrome: two distinct types based on age at first arrest.
Grekin, E R; Brennan, P A; Hodgins, S; Mednick, S A
2001-07-01
This study examined whether criminals with organic brain syndrome could be divided into two distinct types. The authors proposed that early starters (onset of criminal activity by age 18) would display a persistent, long-lasting pattern of deviance that was largely independent of their brain disorder, whereas late starters (onset at age 19 or after) would exhibit deviant behaviors that began late in life and were more directly related to their brain disorder. Subjects were 1,130 male criminal offenders drawn from a birth cohort of all individuals born between January 1, 1944, and December 31, 1947, in Denmark. The main study group included all men with both a history of criminal arrest and a hospitalization for organic brain syndrome (N=565). In addition, for a subset of analyses, the authors examined a randomly selected, same-size comparison group of men with a history of criminal arrest who were not hospitalized for organic brain syndrome. Data were available on all arrests and all psychiatric hospitalizations for individuals in this cohort through the age of 44. Among those with organic brain syndrome, early starters were significantly more likely than late starters to 1) be arrested before the onset of organic brain syndrome, 2) show a higher rate of offending before but not after the onset of organic brain syndrome, 3) be both recidivists and violent recidivists, and 4) have a diagnosis of antisocial personality disorder. Male criminals with organic brain syndrome can be meaningfully divided into two distinct types on the basis of age at first arrest. Early starters show a more global, persistent, and stable pattern of offending than late starters. These results have implications for treatment and risk assessment.
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Akitsuki, Yuko; Shigemune, Yayoi; Sekiguchi, Atsushi; Kotozaki, Yuka; Tsukiura, Takashi; Yomogida, Yukihito; Kawashima, Ryuta
2012-01-01
The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly. Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. UMIN Clinical Trial Registry 000002825.
Human brain mass: similar body composition associations as observed across mammals.
Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei
2012-01-01
A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P < 0.001) while liver mass/FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P < 0.001) in men than in women, even after controlling for age and FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.
Slater, David; Ruef, Anne; Sanabria‐Diaz, Gretel; Preisig, Martin; Kherif, Ferath; Draganski, Bogdan; Lutti, Antoine
2017-01-01
Abstract Networks of anatomical covariance have been widely used to study connectivity patterns in both normal and pathological brains based on the concurrent changes of morphometric measures (i.e., cortical thickness) between brain structures across subjects (Evans, 2013). However, the existence of networks of microstructural changes within brain tissue has been largely unexplored so far. In this article, we studied in vivo the concurrent myelination processes among brain anatomical structures that gathered together emerge to form nonrandom networks. We name these “networks of myelin covariance” (Myelin‐Nets). The Myelin‐Nets were built from quantitative Magnetization Transfer data—an in‐vivo magnetic resonance imaging (MRI) marker of myelin content. The synchronicity of the variations in myelin content between anatomical regions was measured by computing the Pearson's correlation coefficient. We were especially interested in elucidating the effect of age on the topological organization of the Myelin‐Nets. We therefore selected two age groups: Young‐Age (20–31 years old) and Old‐Age (60–71 years old) and a pool of participants from 48 to 87 years old for a Myelin‐Nets aging trajectory study. We found that the topological organization of the Myelin‐Nets is strongly shaped by aging processes. The global myelin correlation strength, between homologous regions and locally in different brain lobes, showed a significant dependence on age. Interestingly, we also showed that the aging process modulates the resilience of the Myelin‐Nets to damage of principal network structures. In summary, this work sheds light on the organizational principles driving myelination and myelin degeneration in brain gray matter and how such patterns are modulated by aging. PMID:29271053
[Cognitive advantages of the third age: a neural network model of brain aging].
Karpenko, M P; Kachalova, L M; Budilova, E V; Terekhin, A T
2009-01-01
We consider a neural network model of age-related cognitive changes in aging brain based on Hopfield network with a sigmoid function of neuron activation. Age is included in the activation function as a parameter in the form of exponential rate denominator, which makes it possible to take into account the weakening of interneuronal links really observed in the aging brain. Analysis of properties of the Lyapunov function associated with the network shows that, with increasing parameter of age, its relief becomes smoother and the number of local minima (network attractors) decreases. As a result, the network gets less frequently stuck in the nearest local minima of the Lyapunov function and reaches a global minimum corresponding to the most effective solution of the cognitive task. It is reasonable to assume that similar changes really occur in the aging brain. Phenomenologically, these changes can be manifested as emergence in aged people of a cognitive quality such as wisdom i.e. ability to find optimal decisions in difficult controversial situations, to distract from secondary aspects and to see the problem as a whole.
Forever Young(er): potential age-defying effects of long-term meditation on gray matter atrophy
Luders, Eileen; Cherbuin, Nicolas; Kurth, Florian
2015-01-01
While overall life expectancy has been increasing, the human brain still begins deteriorating after the first two decades of life and continues degrading further with increasing age. Thus, techniques that diminish the negative impact of aging on the brain are desirable. Existing research, although scarce, suggests meditation to be an attractive candidate in the quest for an accessible and inexpensive, efficacious remedy. Here, we examined the link between age and cerebral gray matter re-analyzing a large sample (n = 100) of long-term meditators and control subjects aged between 24 and 77 years. When correlating global and local gray matter with age, we detected negative correlations within both controls and meditators, suggesting a decline over time. However, the slopes of the regression lines were steeper and the correlation coefficients were stronger in controls than in meditators. Moreover, the age-affected brain regions were much more extended in controls than in meditators, with significant group-by-age interactions in numerous clusters throughout the brain. Altogether, these findings seem to suggest less age-related gray matter atrophy in long-term meditation practitioners. PMID:25653628
Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.
Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D
2017-09-01
Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi; Sherazi, Niloofar; Fakouri, Nima Borhan; Desler, Claus; Regnell, Christine Elisabeth; Larsen, Steen; Rasmussen, Lene Juel; Dela, Flemming; Bergersen, Linda Hildegard; Lauritzen, Martin
2018-01-01
Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSB m/m ) and C57Bl/6 (WT) controls and comparing young (2-5 months) to middle-aged mice (13-14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSB m/m hippocampus, but not in CSB m/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably, an inverse correlation between heterogeneity and CI was found in both genotypes, indicating that heterogeneity reflects mitochondrial dysfunction. The ratio between fission and fusion gene expression reflected age-related alterations in mitochondrial morphology but not heterogeneity. Mitochondrial DNA content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSB m/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain
Giannini, Carolin; Kloß, Alexander; Gohlke, Sabrina; Mishto, Michele; Nicholson, Thomas P.; Sheppard, Paul W.; Kloetzel, Peter-Michael; Dahlmann, Burkhardt
2013-01-01
Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process. PMID:23667697
N-terminal pro–brain natriuretic peptide and abnormal brain aging
Sabayan, Behnam; van Buchem, Mark A.; de Craen, Anton J.M.; Sigurdsson, Sigurdur; Zhang, Qian; Harris, Tamara B.; Gudnason, Vilmundur; Arai, Andrew E.
2015-01-01
Objective: To investigate the independent association of serum N-terminal fragment of the prohormone natriuretic peptide (NT-proBNP) with structural and functional features of abnormal brain aging in older individuals. Methods: In this cross-sectional study based on the Age, Gene/Environment Susceptibility (AGES)–Reykjavik Study, we included 4,029 older community-dwelling individuals (born 1907 to 1935) with a measured serum level of NT-proBNP. Outcomes included parenchymal brain volumes estimated from brain MRI, cognitive function measured by tests of memory, processing speed, and executive functioning, and presence of depressive symptoms measured using the Geriatric Depression Scale. In a substudy, cardiac output of 857 participants was assessed using cardiac MRI. Results: In multivariate analyses, adjusted for sociodemographic and cardiovascular factors, higher levels of NT-proBNP were independently associated with lower total (p < 0.001), gray matter (p < 0.001), and white matter (p = 0.001) brain volumes. Likewise, in multivariate analyses, higher levels of NT-proBNP were associated with worse scores in memory (p = 0.005), processing speed (p = 0.001), executive functioning (p < 0.001), and more depressive symptoms (p = 0.002). In the substudy, the associations of higher NT-proBNP with lower brain parenchymal volumes, impaired executive function and processing speed, and higher depressive symptoms were independent of the level of cardiac output. Conclusions: Higher serum levels of NT-proBNP, independent of cardiovascular risk factors and a measure of cardiac function, are linked with alterations in brain structure and function. Roles of natriuretic peptides in the process of brain aging need to be further elucidated. PMID:26231259
Thompson, John W; Sorum, Alexander W; Hsieh-Wilson, Linda C
2018-06-23
The dynamic posttranslational modification O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is present on thousands of intracellular proteins in the brain. Like phosphorylation, O-GlcNAcylation is inducible and plays important functional roles in both physiology and disease. Recent advances in mass spectrometry (MS) and bioconjugation methods are now enabling the mapping of O-GlcNAcylation events to individual sites in proteins. However, our understanding of which glycosylation events are necessary for regulating protein function and controlling specific processes, phenotypes, or diseases remains in its infancy. Given the sheer number of O-GlcNAc sites, methods are greatly needed to identify promising sites and prioritize them for time- and resource-intensive functional studies. Revealing sites that are dynamically altered by different stimuli or disease states will likely to go a long way in this regard. Here, we describe advanced methods for identifying O-GlcNAc sites on individual proteins and across the proteome, and for determining their stoichiometry in vivo. We also highlight emerging technologies for quantitative, site-specific MS-based O-GlcNAc proteomics (O-GlcNAcomics), which allow proteome-wide tracking of O-GlcNAcylation dynamics at individual sites. These cutting-edge technologies are beginning to bridge the gap between the high-throughput cataloging of O-GlcNAcylated proteins and the relatively low-throughput study of individual proteins. By uncovering the O-GlcNAcylation events that change in specific physiological and disease contexts, these new approaches are providing key insights into the regulatory functions of O-GlcNAc in the brain, including their roles in neuroprotection, neuronal signaling, learning and memory, and neurodegenerative diseases.
Lim, Stephanie M.; van den Ham, Henk-Jan; Oduber, Minoushka; Martina, Eurydice; Zaaraoui-Boutahar, Fatiha; Roose, Jeroen M.; van IJcken, Wilfred F. J.; Osterhaus, Albert D. M. E.; Andeweg, Arno C.; Koraka, Penelope; Martina, Byron E. E.
2017-01-01
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases. PMID:28861067
Lim, Stephanie M; van den Ham, Henk-Jan; Oduber, Minoushka; Martina, Eurydice; Zaaraoui-Boutahar, Fatiha; Roose, Jeroen M; van IJcken, Wilfred F J; Osterhaus, Albert D M E; Andeweg, Arno C; Koraka, Penelope; Martina, Byron E E
2017-01-01
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.
A biometric analysis of brain size in micrencephalics.
Hofman, M A
1984-01-01
Brain weight and head circumference in micrencephalic patients were analysed as a function of age, height and sex in relation to normal human standards. A quantitative definition of micrencephaly is proposed, which is based on these analyses. Evidence is presented, furthermore, that micrencephalics have a significantly lower brain weight in adolescence than in early childhood, and that this cerebral dystrophy continues throughout adulthood, leading to death in more than 85% of the males and 78% of the females before they reach the age of 30 years. Since this decline in brain weight after approximately 3-5 years of age is not accompanied by a similar reduction in head circumference, the brains of elderly micrencephalic patients no longer occupy the entire cranial cavity. It is evident, therefore, that head circumference in the case of micrencephaly is an unsuitable parameter for estimating brain size.
Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons
Custer, T.W.; Ohlendorf, H.M.
1989-01-01
Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.
Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons
Custer, T.W.; Ohlendorf, H.M.
1989-01-01
Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.
Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.
Esopenko, Carrie; Levine, Brian
2015-02-15
Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.
Geriatric neuro-oncology: from mythology to biology.
Weller, Michael; Platten, Michael; Roth, Patrick; Wick, Wolfgang
2011-12-01
Age has remained one of the most important determinants of risk for the development of certain brain tumors, of benefit from and tolerance of brain tumor treatment, and overall outcome. Regarding these three aspects, there are major differences across the spectrum of primary brain tumors depending on specific histology. Here, we review recent advances in understanding the biological basis of the prognostic marker 'age' in neuro-oncology. Contemporary population-based studies confirm the strong prognostic impact of age in many brain tumors. Elderly patients continue to be treated less aggressively than younger patients with the same tumors. However, biological factors may contribute to the negative prognostic impact of age. For instance, among gliomas, mutations of the isocitrate dehydrogenase genes, which are prognostically favorable, are much more common in younger patients. Moreover, complete responses defined by neuroimaging were much less durable in elderly as opposed to younger patients with primary central nervous system lymphoma in the German Primary Central Nervous System Lymphoma Study Group trial. A combination of age-adapted patterns of care and treatment-independent, tumor-intrinsic factors contributes to the poorer outcome of elderly patients with brain tumors. These factors need to be better distinguished and understood in order to improve outcome in elderly brain tumor patients.
Islam, Farhana; Mulsant, Benoit H; Voineskos, Aristotle N; Rajji, Tarek K
2017-07-01
Schizophrenia has been hypothesized to be a syndrome of accelerated aging. Brain plasticity is vulnerable to the normal aging process and affected in schizophrenia: brain-derived neurotrophic factor (BDNF) is an important neuroplasticity molecule. The present review explores the accelerated aging hypothesis of schizophrenia by comparing changes in BDNF expression in schizophrenia with aging-associated changes. Individuals with schizophrenia show patterns of increased overall mortality, metabolic abnormalities, and cognitive decline normally observed later in life in the healthy population. An overall decrease is observed in BDNF expression in schizophrenia compared to healthy controls and in older individuals compared to a younger cohort. There is a marked decrease in BDNF levels in the frontal regions and in the periphery among older individuals and those with schizophrenia; however, data for BDNF expression in the occipital, parietal, and temporal cortices and the hippocampus is inconclusive. Accelerated aging hypothesis is supported based on frontal regions and peripheral studies; however, further studies are needed in other brain regions.
ERIC Educational Resources Information Center
Bigler, Erin D.; And Others
1995-01-01
Whether cross-sectional rates of decline for brain volume and the Performance Intellectual Quotient of the Wechsler Adult Intelligence Scale-Revised were equivalent over the years 16 to 65 was studied with 196 volunteers. Results indicate remarkably similar rates of decline in perceptual-motor functions and aging brain volume loss. (SLD)
Investigation of brain structure in the 1-month infant.
Dean, Douglas C; Planalp, E M; Wooten, W; Schmidt, C K; Kecskemeti, S R; Frye, C; Schmidt, N L; Goldsmith, H H; Alexander, A L; Davidson, R J
2018-05-01
The developing brain undergoes systematic changes that occur at successive stages of maturation. Deviations from the typical neurodevelopmental trajectory are hypothesized to underlie many early childhood disorders; thus, characterizing the earliest patterns of normative brain development is essential. Recent neuroimaging research provides insight into brain structure during late childhood and adolescence; however, few studies have examined the infant brain, particularly in infants under 3 months of age. Using high-resolution structural MRI, we measured subcortical gray and white matter brain volumes in a cohort (N = 143) of 1-month infants and examined characteristics of these volumetric measures throughout this early period of neurodevelopment. We show that brain volumes undergo age-related changes during the first month of life, with the corresponding patterns of regional asymmetry and sexual dimorphism. Specifically, males have larger total brain volume and volumes differ by sex in regionally specific brain regions, after correcting for total brain volume. Consistent with findings from studies of later childhood and adolescence, subcortical regions appear more rightward asymmetric. Neither sex differences nor regional asymmetries changed with gestation-corrected age. Our results complement a growing body of work investigating the earliest neurobiological changes associated with development and suggest that asymmetry and sexual dimorphism are present at birth.
Brain morphology in school-aged children with prenatal opioid exposure: A structural MRI study.
Sirnes, Eivind; Oltedal, Leif; Bartsch, Hauke; Eide, Geir Egil; Elgen, Irene B; Aukland, Stein Magnus
Both animal and human studies have suggested that prenatal opioid exposure may be detrimental to the developing fetal brain. However, results are somewhat conflicting. Structural brain changes in children with prenatal opioid exposure have been reported in a few studies, and such changes may contribute to neuropsychological impairments observed in exposed children. To investigate the association between prenatal opioid exposure and brain morphology in school-aged children. A cross-sectional magnetic resonance imaging (MRI) study of prenatally opioid-exposed children and matched controls. A hospital-based sample (n=16) of children aged 10-14years with prenatal exposure to opioids and 1:1 sex- and age-matched unexposed controls. Automated brain volume measures obtained from T1-weighted MRI scans using FreeSurfer. Volumes of the basal ganglia, thalamus, and cerebellar white matter were reduced in the opioid-exposed group, whereas there were no statistically significant differences in global brain measures (total brain, cerebral cortex, and cerebral white matter volumes). In line with the limited findings reported in the literature to date, our study showed an association between prenatal opioid exposure and reduced regional brain volumes. Adverse effects of opioids on the developing fetal brain may explain this association. However, further research is needed to explore the causal nature and functional consequences of these findings. Copyright © 2017 Elsevier B.V. All rights reserved.
Aging and unusual catecholamine-containing structures in the mouse brain.
Masuoka, D T; Jonsson, G; Finch, C E
1979-06-22
Brains of C57BL/6J mice, aged 4, 8 and 20--29 months, were examined by the Falck-Hillarp histochemical fluorescence technique. Numerous large, intensely fluorescent green to yellow-green spots (LIFS) were observed in the brains of senescent mice. LIFS were generally round to ovoid in shape and ranged in size from about 10 micrometer to about 30 micrometer. Histochemical and pharmacological procedures and spectral analysis indicated that the formaldehyde-induced fluorescence of the LIFS was due to the presence of catecholamines (CA) rather than aging pigment. Their distribution in the brain suggests an association with nerve axons or terminals rather than cell bodies. The number of LIFS in the hypothalamus increased progressively during aging. It is proposed that LIFS may represent age-related, unusual CA accumulation in enlargements proximal to axonal or terminal portions undergoing spontaneous degeneration.
Brain aging: Evaluation of pH using phosphorus magnetic resonance spectroscopy.
Cichocka, Monika; Kozub, Justyna; Urbanik, Andrzej
2018-02-02
Very important aspects of aging include age-related changes occurring in the brain. The aim of the present study was to identify the standard pH value in the entire brain volume using phosphorus magnetic resonance spectroscopy in healthy individuals of both sexes in different age groups, and then to determine whether there are differences in these values. A total of 65 individuals aged 20-32 years (mean age 24.5 ± 2.1 years, 31 women and 34 men) and 31 individuals aged 60-81 years (mean age 64.9 ± 5.5 years, 17 women and 14 men) were studied. The phosphorus magnetic resonance spectroscopy examination was carried out using a 1.5-T magnetic resonance system. The signal was acquired from the volume of interest that covered the whole brain. A vast majority of the examined individuals had slightly alkaline brain pH regardless of age. In the ≥20 years group, pH was 7.09 ± 0.11, and in the ≥60 years group, the average pH was 7.03 ± 0.05. This comparison of the pH identified in all the tested individuals shows a negative correlation of pH with age. The present findings might provide a valuable basis for further research into "healthy aging" as well as pathology in older adults. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.
Self-efficacy is independently associated with brain volume in older women.
Davis, Jennifer C; Nagamatsu, Lindsay S; Hsu, Chun Liang; Beattie, B Lynn; Liu-Ambrose, Teresa
2012-07-01
ageing is highly associated with neurodegeneration and atrophy of the brain. Evidence suggests that personality variables are risk factors for reduced brain volume. We examine whether falls-related self-efficacy is independently associated with brain volume. a cross-sectional analysis of whether falls-related self-efficacy is independently associated with brain volumes (total, grey and white matter). Three multivariate regression models were constructed. Covariates included in the models were age, global cognition, systolic blood pressure, functional comorbidity index and current physical activity level. MRI scans were acquired from 79 community-dwelling senior women aged 65-75 years old. Falls-related self-efficacy was assessed by the activities-specific balance confidence (ABC) scale. after accounting for covariates, falls-related self-efficacy was independently associated with both total brain volume and total grey matter volume. The final model for total brain volume accounted for 17% of the variance, with the ABC score accounting for 8%. For total grey matter volume, the final model accounted for 24% of the variance, with the ABC score accounting for 10%. we provide novel evidence that falls-related self-efficacy, a modifiable risk factor for healthy ageing, is positively associated with total brain volume and total grey matter volume. ClinicalTrials.gov Identifier: NCT00426881.
Self-efficacy is independently associated with brain volume in older women
Davis, Jennifer C.; Nagamatsu, Lindsay S.; Hsu, Chun Liang; Beattie, B. Lynn; Liu-Ambrose, Teresa
2015-01-01
Background Aging is highly associated with neurodegeneration and atrophy of the brain. Evidence suggests that personality variables are risk factors for reduced brain volume. We examine whether falls-related self-efficacy is independently associated with brain volume. Method A cross-sectional analysis of whether falls-related self-efficacy is independently associated with brain volumes (total, grey, and white matter). Three multivariate regression models were constructed. Covariates included in the models were age, global cognition, systolic blood pressure, functional comorbidity index, and current physical activity level. MRI scans were acquired from 79 community-dwelling senior women aged 65 to 75 years old. Falls-related self-efficacy was assessed by the Activities Specific Balance Confidence (ABC) Scale. Results After accounting for covariates, falls-related self-efficacy was independently associated with both total brain volume and total grey matter volume. The final model for total brain volume accounted for 17% of the variance, with the ABC score accounting for 8%. For total grey matter volume, the final model accounted for 24% of the variance, with the ABC score accounting for 10%. Conclusion We provide novel evidence that falls-related self-efficacy, a modifiable risk factor for healthy aging, is positively associated with total brain volume and total grey matter volume. Trial Registration ClinicalTrials.gov Identifier: NCT00426881. PMID:22436405
The Affective Neuroscience of Aging
Mather, Mara
2018-01-01
While aging is associated with clear declines in physical and cognitive processes, emotional functioning fares relatively well. Consistent with this behavioral profile, two core emotional brain regions, the amygdala and ventromedial prefrontal cortex, show little structural and functional decline in aging, compared with other regions. However, emotional processes depend on interacting systems of neurotransmitters and brain regions that go beyond these structures. This review examines how age-related brain changes influence processes such as attending to and remembering emotional stimuli, regulating emotion, recognizing emotional expressions, empathy, risk taking, impulsivity, behavior change and attentional focus. PMID:26436717
The Affective Neuroscience of Aging.
Mather, Mara
2016-01-01
Although aging is associated with clear declines in physical and cognitive processes, emotional functioning fares relatively well. Consistent with this behavioral profile, two core emotional brain regions, the amygdala and ventromedial prefrontal cortex, show little structural and functional decline in aging, compared with other regions. However, emotional processes depend on interacting systems of neurotransmitters and brain regions that go beyond these structures. This review examines how age-related brain changes influence processes such as attending to and remembering emotional stimuli, regulating emotion, and recognizing emotional expressions, as well as empathy, risk taking, impulsivity, behavior change, and attentional focus.
Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio
2012-01-01
Brain development during early life in healthy individuals is rapid and dynamic, indicating that this period plays a very important role in neural and functional development. The frontal and temporal lobes are known to play a particularly important role in cognition. The study of healthy frontal and temporal lobe development in children is therefore of considerable importance. A better understanding of how these brain regions develop could also aid in the diagnosis and treatment of neurodevelopmental disorders. Some developmental studies have used magnetic resonance imaging (MRI) to examine infant brains, but it remains the case that relatively little is known about cortical brain development in the first few years of life. In the present study we examined whole brain, temporal lobe and frontal lobe developmental trajectories from infancy to early adulthood in healthy individuals, considering gender and brain hemisphere differences. We performed a cross-sectional, longitudinal morphometric MRI study of 114 healthy individuals (54 females and 60 males) aged 1 month to 25 years old (mean age ± SD 8.8 ± 6.9). We measured whole brain, temporal and frontal lobe gray matter (GM)/white matter (WM) volumes, following previously used protocols. There were significant non-linear age-related volume changes in all regions. Peak ages of whole brain, temporal lobe and frontal lobe development occurred around pre-adolescence (9-12 years old). GM volumes for all regions increased significantly as a function of age. Peak age was nevertheless lobe specific, with a pattern of earlier peak ages for females in both temporal and frontal lobes. Growth change in whole brain GM volume was larger in males than in females. However, GM volume growth changes for the temporal and frontal lobes showed a somewhat different pattern. GM volume for both temporal and frontal lobes showed a greater increase in females until around 5-6 years old, at which point this tendency reversed (GM volume changes in males became greater), with male GM volume increasing for a longer time than that of females. WM volume growth changes were similar across regions, all increasing rapidly until early childhood but slowing down thereafter. All regions displayed significant rightward volumetric asymmetry regardless of sex. Furthermore, the right temporal and frontal lobes showed a greater volumetric increase than the left for the first several years, with this tendency reversing at around 6 years of age. In addition, the left frontal and temporal lobes increased in volume for a longer period of time. Taken together, these findings indicated that brain developmental trajectories differ depending on brain region, sex and brain hemisphere. Gender-related factors such as sex hormones and functional laterality may affect brain development. Copyright © 2012 S. Karger AG, Basel.
X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.
Chia, L S; Thompson, J E; Moscarello, M A
1984-09-05
Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.
Dickie, David Alexander; Job, Dominic E.; Gonzalez, David Rodriguez; Shenkin, Susan D.; Wardlaw, Joanna M.
2015-01-01
Introduction Neurodegenerative disease diagnoses may be supported by the comparison of an individual patient’s brain magnetic resonance image (MRI) with a voxel-based atlas of normal brain MRI. Most current brain MRI atlases are of young to middle-aged adults and parametric, e.g., mean ±standard deviation (SD); these atlases require data to be Gaussian. Brain MRI data, e.g., grey matter (GM) proportion images, from normal older subjects are apparently not Gaussian. We created a nonparametric and a parametric atlas of the normal limits of GM proportions in older subjects and compared their classifications of GM proportions in Alzheimer’s disease (AD) patients. Methods Using publicly available brain MRI from 138 normal subjects and 138 subjects diagnosed with AD (all 55–90 years), we created: a mean ±SD atlas to estimate parametrically the percentile ranks and limits of normal ageing GM; and, separately, a nonparametric, rank order-based GM atlas from the same normal ageing subjects. GM images from AD patients were then classified with respect to each atlas to determine the effect statistical distributions had on classifications of proportions of GM in AD patients. Results The parametric atlas often defined the lower normal limit of the proportion of GM to be negative (which does not make sense physiologically as the lowest possible proportion is zero). Because of this, for approximately half of the AD subjects, 25–45% of voxels were classified as normal when compared to the parametric atlas; but were classified as abnormal when compared to the nonparametric atlas. These voxels were mainly concentrated in the frontal and occipital lobes. Discussion To our knowledge, we have presented the first nonparametric brain MRI atlas. In conditions where there is increasing variability in brain structure, such as in old age, nonparametric brain MRI atlases may represent the limits of normal brain structure more accurately than parametric approaches. Therefore, we conclude that the statistical method used for construction of brain MRI atlases should be selected taking into account the population and aim under study. Parametric methods are generally robust for defining central tendencies, e.g., means, of brain structure. Nonparametric methods are advisable when studying the limits of brain structure in ageing and neurodegenerative disease. PMID:26023913
Pharmacologic approaches to cerebral aging and neuroplasticity: insights from the stroke model.
Chollet, François
2013-03-01
Brain plasticity is an intrinsic characteristic of the nervous system that allows continuous remodeling of brain functions in pathophysiological conditions. Although normal aging is associated with morphological modifications and decline of cerebral functions, brain plasticity is at least partially preserved in elderly individuals. A growing body of evidence supports the notion that cognitive enrichment and aerobic training induce a dynamic reorganization of higher cerebral functions, thereby helping to maintain operational skills in the elderly and reducing the incidence of dementia. The stroke model clearly shows that spontaneous brain plasticity exists after a lesion, even in old patients, and that it can be modulated through external factors like rehabilitation and drugs. Whether drugs can be used with the aim of modulating the effects of physical training or cognitive stimulation in healthy aged people has not been addressed until now. The risk:benefit ratio will be the key question with regard to the ethical aspect of this challenge. We review in this article the main aspects of human brain plasticity as shown in patients with stroke, the drug modulation of brain plasticity and its consequences on recovery, and finally we address the question of the influence of aging on brain plasticity.
Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing.
Neltner, Janna H; Abner, Erin L; Baker, Steven; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Smith, Charles D; Hammack, Eleanor; Kukull, Walter A; Brenowitz, Willa D; Van Eldik, Linda J; Nelson, Peter T
2014-01-01
Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P < 0.001). This enables informative evaluation of anatomical regions outside of the hippocampus. To assess the morphology of brain microvasculature far more rigorously than what is possible using semi-quantitative pathological scoring, we applied digital pathological (Aperio ScanScope) methods on a subsample of frontal cortex sections from hippocampal sclerosis of ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0.03), and larger vessel areas (P < 0.03) than controls. Unlike the arterioles, CD34-immunoreactive capillaries had dimensions that were unchanged in cases with hippocampal sclerosis of ageing versus controls. Arteriolosclerosis appears specific to hippocampal sclerosis of ageing brains, because brains with Alzheimer's disease pathology did not show the same morphological alterations. We conclude that there may be a pathogenetic change in aged human brain arterioles that impacts multiple brain areas and contributes to hippocampal sclerosis of ageing.
Arteriolosclerosis that affects multiple brain regions is linked to hippocampal sclerosis of ageing
Neltner, Janna H.; Abner, Erin L.; Baker, Steven; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Hammack, Eleanor; Kukull, Walter A.; Brenowitz, Willa D.; Van Eldik, Linda J.
2014-01-01
Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer’s Disease Centre, Nun Study, and National Alzheimer’s Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case–control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P < 0.001). This enables informative evaluation of anatomical regions outside of the hippocampus. To assess the morphology of brain microvasculature far more rigorously than what is possible using semi-quantitative pathological scoring, we applied digital pathological (Aperio ScanScope) methods on a subsample of frontal cortex sections from hippocampal sclerosis of ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0.03), and larger vessel areas (P < 0.03) than controls. Unlike the arterioles, CD34-immunoreactive capillaries had dimensions that were unchanged in cases with hippocampal sclerosis of ageing versus controls. Arteriolosclerosis appears specific to hippocampal sclerosis of ageing brains, because brains with Alzheimer’s disease pathology did not show the same morphological alterations. We conclude that there may be a pathogenetic change in aged human brain arterioles that impacts multiple brain areas and contributes to hippocampal sclerosis of ageing. PMID:24271328
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta
2013-01-01
Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. UMIN Clinical Trial Registry 000005618.
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Nozawa, Takayuki; Kambara, Toshimune; Sekiguchi, Atsushi; Miyauchi, Carlos Makoto; Kotozaki, Yuka; Nouchi, Haruka; Kawashima, Ryuta
2013-01-01
Background Do brain training games work? The beneficial effects of brain training games are expected to transfer to other cognitive functions. Yet in all honesty, beneficial transfer effects of the commercial brain training games in young adults have little scientific basis. Here we investigated the impact of the brain training game (Brain Age) on a wide range of cognitive functions in young adults. Methods We conducted a double-blind (de facto masking) randomized controlled trial using a popular brain training game (Brain Age) and a popular puzzle game (Tetris). Thirty-two volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into eight categories (fluid intelligence, executive function, working memory, short-term memory, attention, processing speed, visual ability, and reading ability). Results and Discussion Our results showed that commercial brain training game improves executive functions, working memory, and processing speed in young adults. Moreover, the popular puzzle game can engender improvement attention and visuo-spatial ability compared to playing the brain training game. The present study showed the scientific evidence which the brain training game had the beneficial effects on cognitive functions (executive functions, working memory and processing speed) in the healthy young adults. Conclusions Our results do not indicate that everyone should play brain training games. However, the commercial brain training game might be a simple and convenient means to improve some cognitive functions. We believe that our findings are highly relevant to applications in educational and clinical fields. Trial Registration UMIN Clinical Trial Registry 000005618. PMID:23405164
Lipidomics of human brain aging and Alzheimer's disease pathology.
Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald
2015-01-01
Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.
Peng, Fei; Wang, Lixin; Geng, Zuojun; Zhu, Qingfeng; Song, Zhenhu
2016-01-01
The aim of the study was to carry out a cross-sectional study of 124 cognitively normal Chinese adults using the voxel-based morphometry approach to delineate age-related changes in the gray matter volume of regions of interest (ROI) in the brain and further analyze their correlation with age. One hundred twenty-four cognitively normal adults were divided into the young age group, the middle age group, and the old age group. Conventional magnetic resonance imaging was performed with the Achieva 3.0 T system. Structural images were processed using VBM8 and SPM8. Regions of interest were obtained by WFU PickAtlas and all realigned images were spatially normalized. Females showed significantly greater total gray matter volume than males (t = 4.81, P = 0.0000, false discovery rate corrected). Compared with young subjects, old-aged subjects showed extensive reduction in gray matter volumes in all ROIs examined except the occipital lobe. In young- and middle-aged subjects, female and male subjects showed significant difference in the right middle temporal gyrus, right superior temporal gyrus, left angular gyrus, right middle occipital lobe, left middle cingulate gyrus, and the pars triangularis of the right inferior frontal gyrus, suggesting an interaction between age and sex (P < 0.001, uncorrected). Logistic regression analysis revealed linear negative correlation between the total gray matter volume and age (R = 0.529, P < 0.001). Significant age-related differences are present in gray matter volume across multiple brain regions during aging. The VPM approach may provide an emerging paradigm in the normal aging brain that may help differentiate underlying normal neurobiological aging changes of specific brain regions from neurodegenerative impairments.
USDA-ARS?s Scientific Manuscript database
A demographic shift towards an aging population and the incidence of age-related brain disorders are on the rise worldwide. A rapid decline in brain health with aging is primarily caused by the brain’s exceptionally high demand for energy which drives high oxygen consumption, leading to a subsequent...
Ashraf, Azhaar; Clark, Maryam; So, Po-Wah
2018-01-01
Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases. PMID:29593525
Neuroanatomical and Cognitive Mediators of Age-Related Differences in Episodic Memory
Head, Denise; Rodrigue, Karen M.; Kennedy, Kristen M.; Raz, Naftali
2009-01-01
Aging is associated with declines in episodic memory. In this study, the authors used a path analysis framework to explore the mediating role of differences in brain structure, executive functions, and processing speed in age-related differences in episodic memory. Measures of regional brain volume (prefrontal gray and white matter, caudate, hippocampus, visual cortex), executive functions (working memory, inhibitory control, task switching, temporal processing), processing speed, and episodic memory were obtained in a sample of young and older adults. As expected, age was linked to reduction in regional brain volumes and cognitive performance. Moreover, neural and cognitive factors completely mediated age differences in episodic memory. Whereas hippocampal shrinkage directly affected episodic memory, prefrontal volumetric reductions influenced episodic memory via limitations in working memory and inhibitory control. Age-related slowing predicted reduced efficiency in temporal processing, working memory, and inhibitory control. Lastly, poorer temporal processing directly affected episodic memory. No direct effects of age on episodic memory remained once these factors were taken into account. These analyses highlight the value of a multivariate approach with the understanding of complex relationships in cognitive and brain aging. PMID:18590361
Lessard-Beaudoin, Mélissa; Laroche, Mélissa; Demers, Marie-Josée; Grenier, Guillaume; Graham, Rona K
2015-03-01
In order to further understand age-related physiological changes and to have in depth reference values for C57BL/6 mice, we undertook a study to assess the effects of aging on peripheral organ weights, and brain region weights in wild type C57BL/6 male mice. Peripheral organs, body and brain region weights were collected from young (3-4 months), mid (12 months), old (23-28 months) and very old (>30 months) mice. Significant increases are observed with aging in body, liver, heart, kidney and spleen organ weights. A decrease in organ weight is observed with aging in liver and kidney only in the very old mice. In contrast, testes weight decreases with age. Within the brain, hippocampi, striata and olfactory bulbs weight decreases with age. These data further our knowledge of the anatomical and biological changes that occur with aging and provide reference values for physiological-based pharmacokinetic studies in C57BL/6 mice. Copyright © 2015 Elsevier Inc. All rights reserved.
Romine, Jennifer; Gao, Xiang; Xu, Xiao-Ming; So, Kwok Fai; Chen, Jinhui
2015-04-01
A decrease in neurogenesis in the aged brain has been correlated with cognitive decline. The molecular signaling that regulates age-related decline in neurogenesis is still not fully understood. We found that different subtypes of neural stem cells (NSCs) in the hippocampus were differentially impaired by aging. The quiescent NSCs decreased slowly, although the active NSCs exhibited a sharp and dramatic decline from the ages of 6-9 months and became more quiescent at an early stage during the aging process. The activity of the mammalian target of rapamycin (mTOR) signal pathway is compromised in the NSCs of the aged brain. Activating the mTOR signaling pathway increased NSC proliferation and promoted neurogenesis in aged mice. In contrast, inhibiting the mTOR signaling pathway decreased NSCs proliferation. These results indicate that an age-associated decline in neurogenesis is mainly because of the reduction in proliferation of active NSCs, at least partially because of the compromise in the mTOR signaling activity. Stimulating the mTOR signaling revitalizes the NSCs, restores their proliferation, and enhances neurogenesis in the hippocampus of the aged brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Staffaroni, Adam M; Brown, Jesse A; Casaletto, Kaitlin B; Elahi, Fanny M; Deng, Jersey; Neuhaus, John; Cobigo, Yann; Mumford, Paige S; Walters, Samantha; Saloner, Rowan; Karydas, Anna; Coppola, Giovanni; Rosen, Howie J; Miller, Bruce L; Seeley, William W; Kramer, Joel H
2018-03-14
The default mode network (DMN) supports memory functioning and may be sensitive to preclinical Alzheimer's pathology. Little is known, however, about the longitudinal trajectory of this network's intrinsic functional connectivity (FC). In this study, we evaluated longitudinal FC in 111 cognitively normal older human adults (ages 49-87, 46 women/65 men), 92 of whom had at least three task-free fMRI scans ( n = 353 total scans). Whole-brain FC and three DMN subnetworks were assessed: (1) within-DMN, (2) between anterior and posterior DMN, and (3) between medial temporal lobe network and posterior DMN. Linear mixed-effects models demonstrated significant baseline age × time interactions, indicating a nonlinear trajectory. There was a trend toward increasing FC between ages 50-66 and significantly accelerating declines after age 74. A similar interaction was observed for whole-brain FC. APOE status did not predict baseline connectivity or change in connectivity. After adjusting for network volume, changes in within-DMN connectivity were specifically associated with changes in episodic memory and processing speed but not working memory or executive functions. The relationship with processing speed was attenuated after covarying for white matter hyperintensities (WMH) and whole-brain FC, whereas within-DMN connectivity remained associated with memory above and beyond WMH and whole-brain FC. Whole-brain and DMN FC exhibit a nonlinear trajectory, with more rapid declines in older age and possibly increases in connectivity early in the aging process. Within-DMN connectivity is a marker of episodic memory performance even among cognitively healthy older adults. SIGNIFICANCE STATEMENT Default mode network and whole-brain connectivity, measured using task-free fMRI, changed nonlinearly as a function of age, with some suggestion of early increases in connectivity. For the first time, longitudinal changes in DMN connectivity were shown to correlate with changes in episodic memory, whereas volume changes in relevant brain regions did not. This relationship was not accounted for by white matter hyperintensities or mean whole-brain connectivity. Functional connectivity may be an early biomarker of changes in aging but should be used with caution given its nonmonotonic nature, which could complicate interpretation. Future studies investigating longitudinal network changes should consider whole-brain changes in connectivity. Copyright © 2018 the authors 0270-6474/18/382810-09$15.00/0.
The construction of MRI brain/head templates for Chinese children from 7 to 16 years of age
Xie, Wanze; Richards, John E.; Lei, Du; Zhu, Hongyan; Lee, Kang; Gong, Qiyong
2015-01-01
Population-specific brain templates that provide detailed brain information are beneficial to both structural and functional neuroimaging research. However, age-specific MRI templates have not been constructed for Chinese or any Asian developmental populations. This study developed novel T1-weighted average brain and head templates for Chinese children from 7 to 16 years of age in two-year increments using high quality magnetic resonance imaging (MRI) and well-validated image analysis techniques. A total of 138 Chinese children (51 F/87 M) were included in this study. The internally and externally validated registrations show that these Chinese age-specific templates fit Chinese children’s MR images significantly better than age-specific templates created from U.S. children, or adult templates based on either Chinese or North American adults. It implies that age-inappropriate (e.g., the Chinese56 template, the US20–24 template) and nationality-inappropriate brain templates (e.g., U.S. children’s templates, the US20–24 template) do not provide optimal reference MRIs for processing MR brain images of Chinese pediatric populations. Thus, our age-specific MRI templates are the first of the kind and should be useful in neuroimaging studies with children from Chinese or other Asian populations. These templates can also serve as the foundations for the construction of more comprehensive sets of nationality-specific templates for Asian developmental populations. These templates are available for use in our database. PMID:26343862
Dennis, Emily L.; Jahanshad, Neda; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Hickie, Ian; Wright, Margaret J.; Thompson, Paul M.
2014-01-01
The ‘rich club’ coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development. PMID:24827471
Autrey, Michelle M; Reamer, Lisa A; Mareno, Mary Catherine; Sherwood, Chet C; Herndon, James G; Preuss, Todd; Schapiro, Steve J; Hopkins, William D
2014-11-01
Among primates, humans exhibit the most profound degree of age-related brain volumetric decline in particular regions, such as the hippocampus and the frontal lobe. Recent studies have shown that our closest living relatives, the chimpanzees, experience little to no volumetric decline in gray and white matter over the adult lifespan. However, these previous studies were limited with a small sample of chimpanzees of the most advanced ages. In the present study, we sought to further test for potential age-related decline in cortical organization in chimpanzees by expanding the sample size of aged chimpanzees. We used the BrainVisa software to measure total brain volume, gray and white matter volumes, gray matter thickness, and gyrification index in a cross-sectional sample of 219 captive chimpanzees (8-53 years old), with 38 subjects being 40 or more years of age. Mean depth and cortical fold opening of 11 major sulci of the chimpanzee brains were also measured. We found that chimpanzees showed increased gyrification with age and a cubic relationship between age and white matter volume. For the association between age and sulcus depth and width, the results were mostly non-significant with the exception of one negative correlation between age and the fronto-orbital sulcus. In short, results showed that chimpanzees exhibit few age-related changes in global cortical organization, sulcus folding and sulcus width. These findings support previous studies and the theory that the age-related changes in the human brain is due to an extended lifespan. Copyright © 2014 Elsevier Inc. All rights reserved.
Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim
2018-01-15
In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Head, Elizabeth; Schmitt, Frederick A.; Davis, Paulina R.; Neltner, Janna H.; Jicha, Gregory A.; Abner, Erin L.; Smith, Charles D.; Van Eldik, Linda J.; Kryscio, Richard J.; Scheff, Stephen W.
2011-01-01
Human studies are reviewed concerning whether “aging”-related mechanisms contribute to Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging. PMID:21516511
ERIC Educational Resources Information Center
Selkoe, Dennis J.
1992-01-01
Discusses the aging process related to physical changes of the human neural structure involved in learning, memory, and reasoning. Presents evidence that indicates such alterations do not necessarily signal the decline in cognitive function. Vignettes provide images of brain structures involved in learning, memory, and reasoning; hippocampal…
Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E
2016-01-01
As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
Dysfunctional autophagy, where accumulation of damaged or complex cellular components in neurons in response to sublethal cell stress has been implicated in an array of brain disorders. This phenomenon plays a pivotal role in aging, because of the increased vulnerability of the aging brain to incre...
Banks, William A; Farr, Susan A; Morley, John E; Wolf, Kathy M; Geylis, Valeria; Steinitz, Michael
2007-08-01
Amyloid beta protein (Abeta) levels are elevated in the brain of Alzheimer's disease patients. Anti-Abeta antibodies can reverse the histologic and cognitive impairments in mice which overexpress Abeta. Passive immunization appears safer than vaccination and treatment of patients will likely require human rather than xenogenic antibodies. Effective treatment will likely require antibody to cross the blood-brain barrier (BBB). Unfortunately, antibodies typically cross the BBB very poorly and accumulate less well in brain than even albumin, a substance nearly totally excluded from the brain. We compared the ability of two anti-Abeta human monoclonal IgM antibodies, L11.3 and HyL5, to cross the BBB of young CD-1 mice to that of young and aged SAMP8 mice. The SAMP8 mouse has a spontaneous mutation that induces an age-related, Abeta-dependent cognitive deficit. There was preferential uptake of intravenously administered L11.3 in comparison to HyL5, albumin, and a control human monoclonal IgM (RF), especially by hippocampus and olfactory bulb in aged SAMP8 mice. Injection of L11.3 into the brains of aged SAMP8 mice reversed both learning and memory impairments in aged SAMP8 mice, whereas IgG and IgM controls were ineffective. Pharmacokinetic analysis predicted that an intravenous dose 1000 times higher than the brain injection dose would reverse cognitive impairments. This predicted intravenous dose reversed the impairment in learning, but not memory, in aged SAMP8 mice. In conclusion, an IgM antibody was produced that crosses the BBB to reverse cognitive impairment in a murine model of Alzheimer's disease.
Mitochondria, Estrogen and Female Brain Aging
Lejri, Imane; Grimm, Amandine; Eckert, Anne
2018-01-01
Mitochondria play an essential role in the generation of steroid hormones including the female sex hormones. These hormones are, in turn, able to modulate mitochondrial activities. Mitochondria possess crucial roles in cell maintenance, survival and well-being, because they are the main source of energy as well as of reactive oxygen species (ROS) within the cell. The impairment of these important organelles is one of the central features of aging. In women’s health, estrogen plays an important role during adulthood not only in the estrous cycle, but also in the brain via neuroprotective, neurotrophic and antioxidant modes of action. The hypestrogenic state in the peri- as well as in the prolonged postmenopause might increase the vulnerability of elderly women to brain degeneration and age-related pathologies. However, the underlying mechanisms that affect these processes are not well elucidated. Understanding the relationship between estrogen and mitochondria might therefore provide better insights into the female aging process. Thus, in this review, we first describe mitochondrial dysfunction in the aging brain. Second, we discuss the estrogen-dependent actions on the mitochondrial activity, including recent evidence of the estrogen—brain-derived neurotrophic factor and estrogen—sirtuin 3 (SIRT3) pathways, as well as their potential implications during female aging. PMID:29755342
Atherosclerosis in epilepsy: its causes and implications.
Hamed, Sherifa A
2014-12-01
Evidence from epidemiological, longitudinal, prospective, double-blinded clinical trials as well as case reports documents age-accelerated atherosclerosis with increased carotid artery intima media thickness (CA-IMT) in patients with epilepsy. These findings raise concern regarding their implications for age-accelerated cognitive and behavioral changes in midlife and risk of later age-related cognitive disorders including neurodegenerative processes such as Alzheimer's disease (AD). Chronic epilepsy, cerebral atherosclerosis, and age-related cognitive disorders including AD share many clinical manifestations (e.g. characteristic cognitive deficits), risk factors, and structural and pathological brain abnormalities. These shared risk factors include increased CA-IMT, hyperhomocysteinemia (HHcy), lipid abnormalities, weight gain and obesity, insulin resistance (IR), and high levels of inflammatory and oxidative stresses. The resulting brain structural and pathological abnormalities include decreased volume of the hippocampus, increased cortical thinning of the frontal lobe, ventricular expansion and increased white matter ischemic disease, total brain atrophy, and β-amyloid protein deposition in the brain. The knowledge that age-accelerated atherosclerosis may contribute to age-accelerated cognitive and behavioral abnormalities and structural brain pathologies in patients with chronic epilepsy represents an important research path to pursue future clinical and management considerations. Copyright © 2014 Elsevier Inc. All rights reserved.
Jiang, Tianyi; Yin, Fei; Yao, Jia; Brinton, Roberta Díaz; Cadenas, Enrique
2013-01-01
Summary This study examines the progress of a hypometabolic state inherent in brain aging with an animal model consisting of Fischer 344 rats of young, middle, and old ages. Dynamic microPET scanning demonstrated a significant decline in brain glucose uptake at old ages, which was associated with a decrease in the expression of insulin-sensitive neuronal glucose transporters GLUT3/4 and of microvascular endothelium GLUT1. Brain aging was associated with an imbalance of the PI3K/Akt pathway of insulin signaling and JNK signaling and a downregulation of the PGC1α – mediated transcriptional pathway of mitochondrial biogenesis that impinged on multiple aspects of energy homeostasis. R-(+)-lipoic acid treatment increased glucose uptake, restored the balance of Akt/JNK signaling, and enhanced mitochondrial bioenergetics and the PGC1α-driven mitochondrial biogenesis. It may be surmised that impairment of a mitochondria-cytosol-nucleus communication is underlying the progression of the age-related hypometabolic state in brain; the effects of lipoic acid are not organelle-limited but reside on the functional and effective coordination of this communication that results in improved energy metabolism. PMID:23815272
Linking brain imaging and genomics in the study of Alzheimer's disease and aging.
Reiman, Eric M
2007-02-01
My colleagues and I have been using positron emission tomography (PET) and magnetic resonance imaging (MRI) to detect and track the brain changes associated with Alzheimer's disease (AD) and normal brain aging in cognitively normal persons with two copies, one copy, and no copies of the apolipoprotein E (APOE) epsilon4 allele, a common AD susceptibility gene. In this review article, I consider how brain imaging techniques could be used to evaluate putative AD prevention therapies in cognitively normal APOE epsilon4 carriers and putative age-modifying therapies in cognitively normal APOE epsilon4 noncarriers, how they could help investigate the individual and aggregate effects of putative AD risk modifiers, and how they could help guide the investigation of a molecular mechanism associated with AD vulnerability and normal neurological aging. I suggest how high-resolution genome-wide genetic and transcriptomic studies could further help in the scientific understanding of AD, aging, and other common and genetically complex phenotypes, such as variation in normal human memory performance, and in the discovery and evaluation of promising treatments for these phenotypes. Finally, I illustrate the push-pull relationship between brain imaging, genomics research, and other neuroscientific research in the study of AD and aging.
Dong, P; Zhao, J; Zhang, Y; Dong, J; Zhang, L; Li, D; Li, L; Zhang, X; Yang, B; Lei, W
2014-09-05
Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Choi, Yeong-Gon; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun
2016-01-01
Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.
Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude
2003-01-01
Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.
Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.
Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria
2017-01-01
Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Mirajkar, Nikita; Pope, Carey N
2008-10-15
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.
Mirajkar, Nikita; Pope, Carey N.
2008-01-01
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328
Koebele, Stephanie V; Bimonte-Nelson, Heather A
2017-08-01
Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory. Copyright © 2017. Published by Elsevier Inc.
Klosinski, Lauren P; Yao, Jia; Yin, Fei; Fonteh, Alfred N; Harrington, Michael G; Christensen, Trace A; Trushina, Eugenia; Brinton, Roberta Diaz
2015-12-01
White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical.
Klosinski, Lauren P.; Yao, Jia; Yin, Fei; Fonteh, Alfred N.; Harrington, Michael G.; Christensen, Trace A.; Trushina, Eugenia; Brinton, Roberta Diaz
2015-01-01
White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline in mitochondrial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2 sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. This mechanistic pathway and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age development of white matter degeneration. The catabolism of myelin lipids to generate ketone bodies can be viewed as a systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential therapeutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting stages of disease and associated mechanisms will be critical. PMID:26844268
Aging alters the immunological response to ischemic stroke.
Ritzel, Rodney M; Lai, Yun-Ju; Crapser, Joshua D; Patel, Anita R; Schrecengost, Anna; Grenier, Jeremy M; Mancini, Nickolas S; Patrizz, Anthony; Jellison, Evan R; Morales-Scheihing, Diego; Venna, Venugopal R; Kofler, Julia K; Liu, Fudong; Verma, Rajkumar; McCullough, Louise D
2018-05-11
The peripheral immune system plays a critical role in aging and in the response to brain injury. Emerging data suggest inflammatory responses are exacerbated in older animals following ischemic stroke; however, our understanding of these age-related changes is poor. In this work, we demonstrate marked differences in the composition of circulating and infiltrating leukocytes recruited to the ischemic brain of old male mice after stroke compared to young male mice. Blood neutrophilia and neutrophil invasion into the brain were increased in aged animals. Relative to infiltrating monocyte populations, brain-invading neutrophils had reduced phagocytic potential, and produced higher levels of reactive oxygen species and extracellular matrix-degrading enzymes (i.e., MMP-9), which were further exacerbated with age. Hemorrhagic transformation was more pronounced in aged versus young mice relative to infarct size. High numbers of myeloperoxidase-positive neutrophils were found in postmortem human brain samples of old (> 71 years) acute ischemic stroke subjects compared to non-ischemic controls. Many of these neutrophils were found in the brain parenchyma. A large proportion of these neutrophils expressed MMP-9 and positively correlated with hemorrhage and hyperemia. MMP-9 expression and hemorrhagic transformation after stroke increased with age. These changes in the myeloid response to stroke with age led us to hypothesize that the bone marrow response to stroke is altered with age, which could be important for the development of effective therapies targeting the immune response. We generated heterochronic bone marrow chimeras as a tool to determine the contribution of peripheral immune senescence to age- and stroke-induced inflammation. Old hosts that received young bone marrow (i.e., Young → Old) had attenuation of age-related reductions in bFGF and VEGF and showed improved locomotor activity and gait dynamics compared to isochronic (Old → Old) controls. Microglia in young heterochronic mice (Old → Young) developed a senescent-like phenotype. After stroke, aged animals reconstituted with young marrow had reduced behavioral deficits compared to isochronic controls, and had significantly fewer brain-infiltrating neutrophils. Increased rates of hemorrhagic transformation were seen in young mice reconstituted with aged bone marrow. This work suggests that age alters the immunological response to stroke, and that this can be reversed by manipulation of the peripheral immune cells in the bone marrow.
Zeppenfeld, Douglas M; Simon, Matthew; Haswell, J Douglas; D'Abreo, Daryl; Murchison, Charles; Quinn, Joseph F; Grafe, Marjorie R; Woltjer, Randall L; Kaye, Jeffrey; Iliff, Jeffrey J
2017-01-01
Cognitive impairment and dementia, including Alzheimer disease (AD), are common within the aging population, yet the factors that render the aging brain vulnerable to these processes are unknown. Perivascular localization of aquaporin-4 (AQP4) facilitates the clearance of interstitial solutes, including amyloid-β, through the brainwide network of perivascular pathways termed the glymphatic system, which may be compromised in the aging brain. To determine whether alterations in AQP4 expression or loss of perivascular AQP4 localization are features of the aging human brain and to define their association with AD pathology. Expression of AQP4 was analyzed in postmortem frontal cortex of cognitively healthy and histopathologically confirmed individuals with AD by Western blot or immunofluorescence for AQP4, amyloid-β 1-42, and glial fibrillary acidic protein. Postmortem tissue and clinical data were provided by the Oregon Health and Science University Layton Aging and Alzheimer Disease Center and Oregon Brain Bank. Postmortem tissue from 79 individuals was evaluated, including cognitively intact "young" individuals aged younger than 60 years (range, 33-57 years), cognitively intact "aged" individuals aged older than 60 years (range, 61-96 years) with no known neurological disease, and individuals older than 60 years (range, 61-105 years) of age with a clinical history of AD confirmed by histopathological evaluation. Forty-eight patient samples (10 young, 20 aged, and 18 with AD) underwent histological analysis. Sixty patient samples underwent Western blot analysis (15 young, 24 aged, and 21 with AD). Expression of AQP4 protein, AQP4 immunoreactivity, and perivascular AQP4 localization in the frontal cortex were evaluated. Expression of AQP4 was associated with advancing age among all individuals (R2 = 0.17; P = .003). Perivascular AQP4 localization was significantly associated with AD status independent of age (OR, 11.7 per 10% increase in localization; z = -2.89; P = .004) and was preserved among eldest individuals older than 85 years of age who remained cognitively intact. When controlling for age, loss of perivascular AQP4 localization was associated with increased amyloid-β burden (R2 = 0.15; P = .003) and increasing Braak stage (R2 = 0.14; P = .006). In this study, altered AQP4 expression was associated with aging brains. Loss of perivascular AQP4 localization may be a factor that renders the aging brain vulnerable to the misaggregation of proteins, such as amyloid-β, in neurodegenerative conditions such as AD.
Forman, S.L.; Bettis, E. Arthur; Kemmis, T.J.; Miller, B.B.
1992-01-01
The loess stratigraphy of the mid-continental U.S. is an important proxy record for the activity of the Laurentide Ice Sheet in North America. One of the most outstanding problems is deciphering the age of loess deposits in this area during the late Pleistocene. Radiocarbon dating of snails and thermoluminescence dating of the fine-silt fraction (4-11 ??m) from loess at the Loveland Loess type section, Loveland, Iowa and a recent excavation at the Pleasant Grove School section. Madison County, Illinois provide new chronologic control on loess deposition in the Mississippi/Missouri River Valley chronology indicates that the Loveland Loess is Illinoian in age (135??20 ka) but is not correlative with the Teneriffe Silt which is dated to 77 ?? 8 ka. Concordant radiocarbon and thermoluminescence age estimates demonstrate that the Roxana Silt and a correlative loess in Iowa, the Pisgah Formation, is probably 40-30 ka old. These age estimates in conjunction with previous results indicate that there were four periods of loess deposition during the last 150 ka at 25-12 ka, 45-30 ka, 85-70 ka and at ca. 135 ?? 20 ka. This chronology of loess deposition supports the presence of both a late Illinoian and early Wisconsinan loess and associated soils. Thus, there may be more than one soil in the loess stratigraphy of the mid-continental U.S. with morphologies similar to the Sangamon Soil. The last three periods of loess deposition may be correlative with periods of elevated dust concentrations recorded in the Dye 3 ice core from southern Greenland. This is particularly significant because both areas possibly had the same source for eolian particles. Reconstructions of atmospheric circulation for glacial periods show a southerly deflected jet stream that could have transported dust from the mid-continental USA to southern Greenland. Lastly, the inferred record of loess deposition is parallel to a chronology for deglaciation of the Laurentide Ice Sheet deciphered from chronologic and stratigraphic studies of raised glacial and marine sediments in the Hudson Bay Lowlands, Canada. These chronologies indicate that the Laurentide Ice Sheet was quite dynamic during the late Pleistocene, advancing and retreating across North America at least four times during the last 150 ka. ?? 1992.
Geerlings, Mirjam I.; Sigurdsson, Sigurdur; Eiriksdottir, Gudny; Garcia, Melissa E.; Harris, Tamara B.; Sigurdsson, Thordur; Gudnason, Vilmundur; Launer, Lenore J.
2014-01-01
Background To examine whether lifetime DSM-IV diagnosis of major depressive disorder (MDD), including age at onset and number of episodes, is associated with brain atrophy in older persons without dementia. Methods Within the population-based AGES-Reykjavik Study 4,354 persons (mean age 76±5 years, 58% women) without dementia had a 1.5Tesla brain MRI. Automated brain segmentation total and regional brain volumes were calculated. History of MDD, including age at onset and number of episodes, and MDD in the past 2 weeks was diagnosed according to DSM-IV criteria using the MINI International Neuropsychiatric Interview. Results Of the total sample, 4.5% reported a lifetime history of MDD; 1.5% had a current diagnosis of MDD (including 75% with a prior history of depression) and 3.0% had a past but no current diagnosis (remission). After adjusting for multiple covariates, compared to participants never depressed, those with current MDD (irrespective of past) had more global brain atrophy (B=−1.25%; 95%CI −2.05 to −0.44%), including more gray and white matter atrophy in most lobes as well as more atrophy of the hippocampus and thalamus. Participants with current, first onset, MDD also had more brain atrophy (B=−1.62%; 95%CI −3.30 to 0.05%), while those remitted did not (B=0.06%; 95%CI −0.54 to 0.66%). Conclusion In older persons without dementia, current MDD, irrespective of prior history, but not remitted MDD, was associated with widespread gray and white matter brain atrophy. Prospective studies should examine whether MDD is a consequence of or contributes to brain volume loss and development of dementia. PMID:22647536
Of Microbes and Minds: A Narrative Review on the Second Brain Aging.
Calvani, Riccardo; Picca, Anna; Lo Monaco, Maria Rita; Landi, Francesco; Bernabei, Roberto; Marzetti, Emanuele
2018-01-01
In recent years, an extensive body of literature focused on the gut-brain axis and the possible role played by the gut microbiota in modulating brain morphology and function from birth to old age. Gut microbiota has been proposed as a relevant player during the early phases of neurodevelopment, with possible long-standing effects in later life. The reduction in gut microbiota diversity has also become one of the hallmarks of aging, and disturbances in its composition are associated with several (age-related) neurological conditions, including depression, Alzheimer's disease, and Parkinson's disease. Several pathways have been evoked for gut microbiota-brain communication, including neural connections (vagus nerve), circulating mediators derived by host-bacteria cometabolism, as well as the influence exerted by gut microbiota on host gut function, metabolism, and immune system. Although the most provoking data emerged from animal studies and despite the huge debate around the possible epiphenomenal nature of those findings, the gut microbiota-brain axis still remains a fascinating target to be exploited to attenuate some of the most burdensome consequences of aging.
Neuroimaging of Cerebrovascular Disease in the Aging Brain
Gupta, Ajay; Nair, Sreejit; Schweitzer, Andrew D.; Kishore, Sirish; Johnson, Carl E.; Comunale, Joseph P.; Tsiouris, Apostolos J.; Sanelli, Pina C.
2012-01-01
Cerebrovascular disease remains a significant public health burden with its greatest impact on the elderly population. Advances in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular disease in the brain parenchyma as well as in the intracranial and extracranial vasculature. These tools continue to contribute to our understanding of the multifactorial processes that occur in the age-dependent development of cerebrovascular disease. Structural abnormalities related to vascular disease in the brain and vessels have been well characterized with CT and MRI based techniques. We review some of the pathophysiologic mechanisms in the aging brain and cerebral vasculature and the related structural abnormalities detectable on neuroimaging, including evaluation of age-related white matter changes, atherosclerosis of the cerebral vasculature, and cerebral infarction. In addition, newer neuroimaging techniques, such as diffusion tensor imaging, perfusion techniques, and assessment of cerebrovascular reserve, are also reviewed, as these techniques can detect physiologic alterations which complement the morphologic changes that cause cerebrovascular disease in the aging brain.Further investigation of these advanced imaging techniques has potential application to the understanding and diagnosis of cerebrovascular disease in the elderly. PMID:23185721
Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q
2016-03-01
Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.
Lifestyle-dependent brain change: a longitudinal cohort MRI study.
Kim, Regina Ey; Yun, Chang-Ho; Thomas, Robert J; Oh, Jang-Hoon; Johnson, Hans J; Kim, Soriul; Lee, Seungku; Seo, Hyung Suk; Shin, Chol
2018-05-07
We investigated both independent and interconnected effects of 3 lifestyle factors on brain volume, measuring yearly changes using large-scale longitudinal magnetic resonance imaging, in middle-aged to older adults. We measured brain volumes in a cohort (n = 984, 49-79 years) from the Korean Genome and Epidemiology Study group, using baseline and follow-up estimates after 4 years. In our analysis, the accelerated brain atrophy in normal aging was observed across regions (e.g., brain tissue: -0.098 ± 0.01 mL/y, p < 0.001). An independent lifestyle-specific trend of brain atrophy across time was also evident in men, where smoking (p = 0.012) and physical activity (p = 0.014) showed the strongest association with the atrophy rate. Linear regression analysis of the interconnected effect revealed that brain atrophy is mitigated by intense physical activity in smoking males. Lifestyle factors did not show any significant effect on brain volume in women. These results provide important information regarding lifestyle factors that affect brain aging in mid-to-late adulthood. Our findings may aid in the identification of preventive measures against dementia. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kousba, Ahmed A.; Poet, Torka S.; Timchalk, Chuck
2007-01-01
Chlorpyrifos and diazinon are two commonly used organophosphorus (OP) insecticides, and their primary mechanism of action involves the inhibition of acetylcholinesterase (AChE) by their metabolites chlorpyrifos-oxon (CPO) and diazinon-oxon (DZO), respectively. The study objectives were to assess the in vitro age-related inhibition kinetics of neonatal rat brain cholinesterase (ChE) by estimating the bimolecular inhibitory rate constant (ki) values for CPO and DZO. Brain ChE inhibition and ki values following CPO and DZO incubation with neonatal Sprague-Dawley rats rat brain homogenates were determined at post natal day (PND) -5, -12 and -17 and compared with the corresponding inhibition and ki valuesmore » obtained in the adult rat. A modified Ellman method was utilized for measuring the ChE activity. Chlorpyrifos-oxon resulted in greater ChE inhibition than DZO consistent with the estimated ki values of both compounds. Neonatal brain ChE inhibition kinetics exhibited a marked age-related sensitivity to CPO, where the order of ChE inhibition was PND-5 > PND-7 > PND-17 with ki values of 0.95, 0.50 and 0.22 nM-1hr-1, respectively. In contrast, DZO did not exhibit an age-related inhibition of neonatal brain ChE, and the estimated ki value at all PND ages was 0.02 nM-1hr-1. These results demonstrated an age- and chemical-related OP-selective inhibition of rat brain ChE which may be critically important in understanding the potential sensitivity of juvenile humans to specific OP exposures.« less
IGF-1: The Jekyll & Hyde of the aging brain.
Gubbi, Sriram; Quipildor, Gabriela Farias; Barzilai, Nir; Huffman, Derek M; Milman, Sofiya
2018-05-08
The IGF-1 signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF-1, its role in the aging brain remains complex and controversial. While IGF-1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF-1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF-1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF-1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF-1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF-1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF-1 in that context. Appreciating the dual, at times opposing "Dr. Jekyll" and "Mr. Hyde" characteristics of IGF-1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF-1-related interventions.
Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan.
Davison, Elizabeth N; Turner, Benjamin O; Schlesinger, Kimberly J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Carlson, Jean M
2016-11-01
Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.
The endocannabinoid system in normal and pathological brain ageing
Bilkei-Gorzo, Andras
2012-01-01
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing. PMID:23108550
Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco
2013-01-01
It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.
Doesburg, Sam M.; Chau, Cecil M.; Cheung, Teresa P.L.; Moiseev, Alexander; Ribary, Urs; Herdman, Anthony T.; Miller, Steven P.; Cepeda, Ivan L.; Synnes, Anne; Grunau, Ruth E.
2013-01-01
Children born very prematurely (≤32 weeks) often exhibit visual-perceptual difficulties at school-age, even in the absence of major neurological impairment. The alterations in functional brain activity that give rise to such problems, as well as the relationship between adverse neonatal experience and neurodevelopment, remain poorly understood. Repeated procedural pain-related stress during neonatal intensive care has been proposed to contribute to altered neurocognitive development in these children. Due to critical periods in the development of thalamocortical systems, the immature brain of infants born at extremely low gestational age (ELGA; ≤28 weeks) may have heightened vulnerability to neonatal pain. In a cohort of school-age children followed since birth we assessed relations between functional brain activity measured using magnetoencephalogragy (MEG), visual-perceptual abilities and cumulative neonatal pain. We demonstrated alterations in the spectral structure of spontaneous cortical oscillatory activity in ELGA children at school-age. Cumulative neonatal pain-related stress was associated with changes in background cortical rhythmicity in these children, and these alterations in spontaneous brain oscillations were negatively correlated with visual-perceptual abilities at school-age, and were not driven by potentially confounding neonatal variables. These findings provide the first evidence linking neonatal painrelated stress, the development of functional brain activity, and school-age cognitive outcome in these vulnerable children. PMID:23711638
The endocannabinoid system in normal and pathological brain ageing.
Bilkei-Gorzo, Andras
2012-12-05
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Cho, Yong Won; Song, Hui-Jin; Lee, Jae Jun; Lee, Joo Hwa; Lee, Hui Joong; Yi, Sang Doe; Chang, Hyuk Won; Berl, Madison M; Gaillard, William D; Chang, Yongmin
2012-03-01
Older adults perform much like younger adults on language. This similar level of performance, however, may come about through different underlying brain processes. In the present study, we evaluated age-related differences in the brain areas outside the typical language areas among adults using a category decision task. Our results showed that similar activation patterns were found in classical language processing areas across the three age groups although regional lateralization indices in Broca's and Wernicke's areas decreased with age. The greatest differences, however, among the three groups were found primarily in the brain areas not associated with core language functioning including the hippocampus, middle frontal gyrus, ventromedial frontal cortex, medial superior parietal cortex and posterior cingulate cortex. Therefore, the non-classical language areas may exhibit an age-related difference between three age groups while the subjects show a similar activation pattern in the core, primary language processing during a semantic decision task. Copyright © 2012 Elsevier Inc. All rights reserved.
Cherubini, Andrea; Caligiuri, Maria Eugenia; Peran, Patrice; Sabatini, Umberto; Cosentino, Carlo; Amato, Francesco
2016-09-01
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.
Chouliaras, Leonidas; Pishva, Ehsan; Haapakoski, Rita; Zsoldos, Eniko; Mahmood, Abda; Filippini, Nicola; Burrage, Joe; Mill, Jonathan; Kivimäki, Mika; Lunnon, Katie; Ebmeier, Klaus P
2018-05-01
The present study investigated the link between peripheral DNA methylation (DNAm), cognitive impairment and brain aging. We tested the association between blood genome-wide DNAm profiles using the Illumina 450K arrays, cognitive dysfunction and brain MRI measures in selected participants of the Whitehall II imaging sub-study. Eight differentially methylated regions were associated with cognitive impairment. Accelerated aging based on the Hannum epigenetic clock was associated with mean diffusivity and global fractional anisotropy. We also identified modules of co-methylated loci associated with white matter hyperintensities. These co-methylation modules were enriched among pathways relevant to β-amyloid processing and glutamatergic signaling. Our data support the notion that blood DNAm changes may have utility as a biomarker for cognitive dysfunction and brain aging.
Non-invasive brain stimulation of the aging brain: State of the art and future perspectives.
Tatti, Elisa; Rossi, Simone; Innocenti, Iglis; Rossi, Alessandro; Santarnecchi, Emiliano
2016-08-01
Favored by increased life expectancy and reduced birth rate, worldwide demography is rapidly shifting to older ages. The golden age of aging is not only an achievement but also a big challenge because of the load of the elderly on social and medical health care systems. Moreover, the impact of age-related decline of attention, memory, reasoning and executive functions on self-sufficiency emphasizes the need of interventions to maintain cognitive abilities at a useful degree in old age. Recently, neuroscientific research explored the chance to apply Non-Invasive Brain Stimulation (NiBS) techniques (as transcranial electrical and magnetic stimulation) to healthy aging population to preserve or enhance physiologically-declining cognitive functions. The present review will update and address the current state of the art on NiBS in healthy aging. Feasibility of NiBS techniques will be discussed in light of recent neuroimaging (either structural or functional) and neurophysiological models proposed to explain neural substrates of the physiologically aging brain. Further, the chance to design multidisciplinary interventions to maximize the efficacy of NiBS techniques will be introduced as a necessary future direction. Copyright © 2016 Elsevier B.V. All rights reserved.
Peplonska, B; Adamczyk, J G; Siewierski, M; Safranow, K; Maruszak, A; Sozanski, H; Gajewski, A K; Zekanowski, C
2017-08-01
The aim of the study was to assess whether selected genetic variants are associated with elite athlete performance in a group of 413 elite athletes and 451 sedentary controls. Polymorphisms in ACE, ACTN3, AGT, NRF-2, PGC1A, PPARG, and TFAM implicated in physical performance traits were analyzed. Additionally, polymorphisms in CHRNB3 and FAAH coding for proteins modulating activity of brain's emotion centers were included. The results of univariate analyses indicated that the elite athletic performance is associated with four polymorphisms: ACE (rs4341, P = 0.0095), NRF-2 (rs12594956, P = 0.011), TFAM (rs2306604, P = 0.049), and FAAH (rs324420, P = 0.0041). The multivariate analysis adjusted for age and gender confirmed this association. The higher number of ACE D alleles (P = 0.0021) and the presence of NRF-2 rs12594956 A allele (P = 0.0067) are positive predictors, whereas TFAM rs2306604 GG genotype (P = 0.031) and FAAH rs324420 AA genotype (P = 0.0084) negatively affect the elite athletic performance. The CHRNB3 variant (rs4950, G allele) is significantly more frequent in the endurance athletes compared with the power ones (P = 0.025). Multivariate analysis demonstrated that the presence of rs4950 G allele contributes to endurance performance (P = 0.0047). Our results suggest that genetic inheritance of psychological traits should be taken into consideration while trying to decipher a genetic profile of top athletic performance. © 2016 The Authors. Scandinavian Journal of Medicine & Science in Sports published by John Wiley & Sons Ltd.
Cardiac index is associated with brain aging: the Framingham Heart Study.
Jefferson, Angela L; Himali, Jayandra J; Beiser, Alexa S; Au, Rhoda; Massaro, Joseph M; Seshadri, Sudha; Gona, Philimon; Salton, Carol J; DeCarli, Charles; O'Donnell, Christopher J; Benjamin, Emelia J; Wolf, Philip A; Manning, Warren J
2010-08-17
Cardiac dysfunction is associated with neuroanatomic and neuropsychological changes in aging adults with prevalent cardiovascular disease, theoretically because systemic hypoperfusion disrupts cerebral perfusion, contributing to subclinical brain injury. We hypothesized that cardiac function, as measured by cardiac index, would be associated with preclinical brain magnetic resonance imaging (MRI) and neuropsychological markers of ischemia and Alzheimer disease in the community. Brain MRI, cardiac MRI, neuropsychological, and laboratory data were collected on 1504 Framingham Offspring Cohort participants free of clinical stroke, transient ischemic attack, or dementia (age, 61+/-9 years; 54% women). Neuropsychological and brain MRI variables were related to cardiac MRI-assessed cardiac index (cardiac output/body surface area). In multivariable-adjusted models, cardiac index was positively related to total brain volume (P=0.03) and information processing speed (P=0.02) and inversely related to lateral ventricular volume (P=0.048). When participants with clinically prevalent cardiovascular disease were excluded, the relation between cardiac index and total brain volume remained (P=0.02). Post hoc comparisons revealed that participants in the bottom cardiac index tertile (values <2.54) and middle cardiac index tertile (values between 2.54 and 2.92) had significantly lower brain volumes (P=0.04) than participants in the top cardiac index tertile (values >2.92). Although observational data cannot establish causality, our findings are consistent with the hypothesis that decreasing cardiac function, even at normal cardiac index levels, is associated with accelerated brain aging.
Evaluation of Disease Lesions in the Developing Canine MPS IIIA Brain.
Winner, Leanne K; Marshall, Neil R; Jolly, Robert D; Trim, Paul J; Duplock, Stephen K; Snel, Marten F; Hemsley, Kim M
2018-06-20
Mucopolysaccharidosis IIIA (MPS IIIA) is an inherited neurodegenerative disease of childhood that results in early death. Post-mortem studies have been carried out on human MPS IIIA brain, but little is known about early disease development. Here, we utilised the Huntaway dog model of MPS IIIA to evaluate disease lesion development from 2 to 24 weeks of age. A significant elevation in primarily stored heparan sulphate was observed in all brain regions assessed in MPS IIIA pups ≤9.5 weeks of age. There was a significant elevation in secondarily stored ganglioside (GM3 36:1) in ≤9.5-week-old MPS IIIA pup cerebellum, and other brain regions also exhibited accumulation of this lipid with time. The number of neural stem cells and neuronal precursor cells was essentially unchanged in MPS IIIA dog brain (c.f. unaffected) over the time course assessed, a finding corroborated by neuron cell counts. We observed early neuroinflammatory changes in young MPS IIIA pup brain, with significantly increased numbers of activated microglia recorded in all but one brain region in MPS IIIA pups ≤9.5 weeks of age (c.f. age-matched unaffected pups). In conclusion, infant-paediatric-stage MPS IIIA canine brain exhibits substantial and progressive primary and secondary substrate accumulation, coupled with early and robust microgliosis. Whilst early initiation of treatment is likely to be required to maintain optimal neurological function, the brain's neurodevelopmental potential appears largely unaffected by the disease process; further investigations confirming this are warranted.
Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei
2017-01-01
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197
Latimer, Caitlin S; Keene, C Dirk; Flanagan, Margaret E; Hemmy, Laura S; Lim, Kelvin O; White, Lon R; Montine, Kathleen S; Montine, Thomas J
2017-06-01
Two population-based studies key to advancing knowledge of brain aging are the Honolulu-Asia Aging Study (HAAS) and the Nun Study. Harmonization of their neuropathologic data allows cross comparison, with findings common to both studies likely generalizable, while distinct observations may point to aging brain changes that are dependent on sex, ethnicity, environment, or lifestyle factors. Here, we expanded the neuropathologic evaluation of these 2 studies using revised NIA-Alzheimer's Association guidelines and compared directly the neuropathologic features of resistance and apparent cognitive resilience. There were significant differences in prevalence of Alzheimer disease neuropathologic change, small vessel vascular brain injury, and Lewy body disease between these 2 studies, suggesting that sex, ethnicity, and lifestyle factors may significantly influence resistance to developing brain injury with age. In contrast, hippocampal sclerosis prevalence was very similar, but skewed to poorer cognitive performance, suggesting that hippocampal sclerosis could act sequentially with other diseases to impair cognitive function. Strikingly, despite these observed differences, the proportion of individuals resistant to all 4 diseases of brain or displaying apparent cognitive resilience was virtually identical between HAAS and Nun Study participants. Future in vivo validation of these results awaits comprehensive biomarkers of these 4 brain diseases. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Granger, Claire; Spittle, Alicia J; Walsh, Jennifer; Pyman, Jan; Anderson, Peter J; Thompson, Deanne K; Lee, Katherine J; Coleman, Lee; Dagia, Charuta; Doyle, Lex W; Cheong, Jeanie
2018-02-15
To explore the associations between histologic chorioamnionitis with brain injury, maturation and size on magnetic resonance imaging (MRI) of preterm infants at term equivalent age. Preterm infants (23-36 weeks' gestational age) were recruited into two longitudinal cohort studies. Presence or absence of chorioamnionitis was obtained from placental histology and clinical data were recorded. MRI at term-equivalent age was assessed for brain injury (intraventricular haemorrhage, cysts, signal abnormalities), maturation (degree of myelination, gyral maturation) and size of cerebral structures (metrics and brain segmentation). Histologic chorioamnionitis was assessed as a predictor of MRI variables using linear and logistic regression, with adjustment for confounding perinatal variables. Two hundred and twelve infants were included in this study, 47 (22%) of whom had histologic chorioamnionitis. Histologic chorioamnionitis was associated with higher odds of intraventricular haemorrhage (odds ratio [OR] (95% confidence interval [CI]) = 7.4 (2.4, 23.1)), less mature gyral maturation (OR (95% CI) = 2.0 (1.0, 3.8)) and larger brain volume (mean difference in cubic centimeter (95% CI) of 14.1 (1.9, 26.2)); but all relationships disappeared following adjustment for perinatal variables. Histologic chorioamnionitis was not independently associated with IVH, less mature gyral maturation or brain volume at term-equivalent age in preterm infants.
Aging reduces the stimulating effect of blue light on cognitive brain functions.
Daneault, Véronique; Hébert, Marc; Albouy, Geneviève; Doyon, Julien; Dumont, Marie; Carrier, Julie; Vandewalle, Gilles
2014-01-01
Light exposure, particularly blue light, is being recognized as a potent mean to stimulate alertness and cognition in young individuals. Aging is associated with changes in alertness regulation and cognition. Whether the effect of light on cognitive brain function changes with aging is unknown, however. Cross-sectional study. Functional Neuroimaging Unit, University of Montreal Geriatric Institute. Sixteen younger (23 ± 4.1 y) and 14 older (61 ± 4.5 y) healthy participants were recruited in the current study. Blue light administration. We used functional magnetic resonance imaging to record brain responses to an auditory working memory task in young and older healthy individuals, alternatively maintained in darkness or exposed to blue light. Results show that the older brain remains capable of showing sustained responses to light in several brain areas. However, compared to young individuals, the effect of blue light is decreased in the pulvinar, amygdala, and tegmentum as well as in the insular, prefrontal, and occipital cortices in elderly individuals. The effect of blue light on brain responses diminishes with aging in areas typically involved in visual functions and in key regions for alertness regulation and higher executive processes. Our findings provide the first indications that the effect of light on cognition may be reduced in healthy aging.
Ding, Fan; Yao, Jia; Rettberg, Jamaica R.; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain. PMID:24244584
Cohen, B M; Renshaw, P F; Stoll, A L; Wurtman, R J; Yurgelun-Todd, D; Babb, S M
1995-09-20
To test the hypothesis that uptake of circulating choline into the brain decreases with age, because alterations in metabolism of choline may be a factor contributing to age-related degenerative changes in the brain. Cohort comparison in younger and older adults. Subjects were chosen consecutively from lists of healthy volunteers screened by medical and psychiatric interviews and laboratory tests. Younger adults (n = 12) were between the ages of 20 and 40 years (mean age, 32 years), and older adults (n = 16) were between the ages of 60 and 85 years (mean age, 73 years). After fasting overnight, subjects received choline, as the bitartrate, to yield free choline equal to 50 mg/kg of body weight. Blood was drawn for determination of plasma choline concentration by high-performance liquid chromatography, and proton magnetic resonance spectroscopy (1H-MRS) was performed to determine the relative concentration of cytosolic choline-containing compounds in the brain at baseline and after ingestion of choline. Plasma choline and cytosolic choline-containing compounds in the brain, estimated as the ratio of the choline resonance to the creatine resonance on 1H-MRS scans of the basal ganglia, were compared following blinded analyses of data from subject cohorts studied at baseline and 3 hours after choline ingestion. Levels of plasma choline and cytosolic choline-containing compounds in brain were similar at baseline in younger and older subjects. Following ingestion of choline, plasma choline concentration increased by similar proportions (76% and 80%) in both younger and older subjects. Brain cytosolic choline--containing compounds increased substantially in younger subjects (mean increase, 60%; P < .001 vs baseline). Older subjects showed a much smaller increase in brain choline-containing compounds (mean, 16%; P < .001 vs the increase in younger subjects). Uptake of circulating choline into the brain decreases with age. Given the key role of choline in neuronal structure and function, this change may be a contributing factor in onset in late life of neurodegenerative, particularly dementing, illnesses in which cholinergic neurons show particular susceptibility to loss.
Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre
2018-01-01
Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.
Simões, Rui V; Muñoz-Moreno, Emma; Cruz-Lemini, Mónica; Eixarch, Elisenda; Bargalló, Núria; Sanz-Cortés, Magdalena; Gratacós, Eduard
2017-01-01
Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization. Copyright © 2016 Elsevier Inc. All rights reserved.
Ageing diminishes the modulation of human brain responses to visual food cues by meal ingestion.
Cheah, Y S; Lee, S; Ashoor, G; Nathan, Y; Reed, L J; Zelaya, F O; Brammer, M J; Amiel, S A
2014-09-01
Rates of obesity are greatest in middle age. Obesity is associated with altered activity of brain networks sensing food-related stimuli and internal signals of energy balance, which modulate eating behaviour. The impact of healthy mid-life ageing on these processes has not been characterised. We therefore aimed to investigate changes in brain responses to food cues, and the modulatory effect of meal ingestion on such evoked neural activity, from young adulthood to middle age. Twenty-four healthy, right-handed subjects, aged 19.5-52.6 years, were studied on separate days after an overnight fast, randomly receiving 50 ml water or 554 kcal mixed meal before functional brain magnetic resonance imaging while viewing visual food cues. Across the group, meal ingestion reduced food cue-evoked activity of amygdala, putamen, insula and thalamus, and increased activity in precuneus and bilateral parietal cortex. Corrected for body mass index, ageing was associated with decreasing food cue-evoked activation of right dorsolateral prefrontal cortex (DLPFC) and precuneus, and increasing activation of left ventrolateral prefrontal cortex (VLPFC), bilateral temporal lobe and posterior cingulate in the fasted state. Ageing was also positively associated with the difference in food cue-evoked activation between fed and fasted states in the right DLPFC, bilateral amygdala and striatum, and negatively associated with that of the left orbitofrontal cortex and VLPFC, superior frontal gyrus, left middle and temporal gyri, posterior cingulate and precuneus. There was an overall tendency towards decreasing modulatory effects of prior meal ingestion on food cue-evoked regional brain activity with increasing age. Healthy ageing to middle age is associated with diminishing sensitivity to meal ingestion of visual food cue-evoked activity in brain regions that represent the salience of food and direct food-associated behaviour. Reduced satiety sensing may have a role in the greater risk of obesity in middle age.
Braden, B Blair; Smith, Christopher J; Thompson, Amiee; Glaspy, Tyler K; Wood, Emily; Vatsa, Divya; Abbott, Angela E; McGee, Samuel C; Baxter, Leslie C
2017-12-01
There is a rapidly growing group of aging adults with autism spectrum disorder (ASD) who may have unique needs, yet cognitive and brain function in older adults with ASD is understudied. We combined functional and structural neuroimaging and neuropsychological tests to examine differences between middle-aged men with ASD and matched neurotypical (NT) men. Participants (ASD, n = 16; NT, n = 17) aged 40-64 years were well-matched according to age, IQ (range: 83-131), and education (range: 9-20 years). Middle-age adults with ASD made more errors on an executive function task (Wisconsin Card Sorting Test) but performed similarly to NT adults on tests of delayed verbal memory (Rey Auditory Verbal Learning Test) and local visual search (Embedded Figures Task). Independent component analysis of a functional MRI working memory task (n-back) completed by most participants (ASD = 14, NT = 17) showed decreased engagement of a cortico-striatal-thalamic-cortical neural network in older adults with ASD. Structurally, older adults with ASD had reduced bilateral hippocampal volumes, as measured by FreeSurfer. Findings expand our understanding of ASD as a lifelong condition with persistent cognitive and functional and structural brain differences evident at middle-age. Autism Res 2017, 10: 1945-1959. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. We compared cognitive abilities and brain measures between 16 middle-age men with high-functioning autism spectrum disorder (ASD) and 17 typical middle-age men to better understand how aging affects an older group of adults with ASD. Men with ASD made more errors on a test involving flexible thinking, had less activity in a flexible thinking brain network, and had smaller volume of a brain structure related to memory than typical men. We will follow these older adults over time to determine if aging changes are greater for individuals with ASD. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Neuronal glycogen synthesis contributes to physiological aging
Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J
2014-01-01
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora’s disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. PMID:25059425
Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene
2014-01-01
The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.
Parental Concussion Education Assessment: A Quality Improvement Initiative
ERIC Educational Resources Information Center
Best, Melanie
2017-01-01
Background of Problem: Brain injury is a leading cause of death and disability in children and adolescents. According to the Brain Injury Association of America (2015) ages 0-4 and 15-19 are the two age groups at greatest risk for traumatic brain injury (TBI) or concussion. Five out of ten concussions are not reported or go undetected. The…
ERIC Educational Resources Information Center
Raz, Naftali; Lindenberger, Ulman
2011-01-01
Salthouse (2011) critically reviewed cross-sectional and longitudinal relations among adult age, brain structure, and cognition (ABC) and identified problems in interpretation of the extant literature. His review, however, missed several important points. First, there is enough disparity among the measures of brain structure and cognitive…
ERIC Educational Resources Information Center
Westmacott, Robyn; Askalan, Rand; MacGregor, Daune; Anderson, Peter; deVeber, Gabrielle
2010-01-01
Aim: Plasticity in the developing brain is a controversial issue. Although language and motor function often recover remarkably well following early brain injury, recent evidence suggests that damage to the developing brain results in significant long-term neuropsychological impairment. Our aim was to investigate the relationship among age at…
Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain.
Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora
2015-07-01
Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Socialization of prosocial behavior: Gender differences in the mediating role of child brain volume.
Kok, Rianne; Prinzie, Peter; Bakermans-Kranenburg, Marian J; Verhulst, Frank C; White, Tonya; Tiemeier, Henning; van IJzendoorn, Marinus H
2018-08-01
Evidence has been accumulating for the impact of normal variation in caregiving quality on brain morphology in children, but the question remains whether differences in brain volume related to early caregiving translate to behavioral implications. In this longitudinal population-based study (N = 162), moderated mediation was tested for the relation between parental sensitivity and child prosocial behavior via brain volume, in boys and girls. Both maternal and paternal sensitivity were repeatedly observed between 1 and 4 years of age. Brain volume was assessed using magnetic resonance imaging measurements at age 8, and self-reported prosocial behavior of children was assessed at 9 years of age. Parental sensitivity was positively related to child brain volume, and to child prosocial behavior at trend level. Child brain volume was negatively related to child prosocial behavior. A significant gender-by-brain interaction was found, illustrating that daughters of sensitive parents were more prosocial and that less prosocial behavior was reported for girls with a larger total brain volume. Child gender significantly moderated the indirect effect of parental sensitivity on prosocial behavior via total brain volume. A significant indirect pathway was found only in girls. The results warrant replication but indicate the importance of considering gender when studying the behavioral implications of differences in brain volume related to early caregiving experiences.
Semple, Bridgette D.; Blomgren, Klas; Gimlin, Kayleen; Ferriero, Donna M.; Noble-Haeusslein, Linda J.
2013-01-01
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7–10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxicischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development. PMID:23583307
Age-related functional brain changes in young children.
Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine
2017-07-15
Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Wei-Te; Lin, Yu-Jen; Liou, Saou-Hsing; Yang, Chun-Yuh; Cheng, Kuang-Fu; Tsai, Perng-Jy; Wu, Trong-Neng
2012-04-01
In 1981, a Petrol-Lead Phase-Out Program (PLPOP) was launched in Taiwan for the abatement of environmental lead emissions. The present study was intended to examine whether the high Petrol-Lead Emission Areas (PLEA) would result in an increase in the incidence rate of brain cancer based on a national data bank. The national brain cancer incidence data was obtained from the Taiwan National Cancer Registry. Age standardized incidence rates were calculated based on the 2000 WHO world standard population, and gasoline consumption data was obtained from the Bureau of Energy. The differences in the trend tests for age-standardized incidence rates of brain cancer between high, median, low, and small PLEA were analyzed. A significant increase was found from small to high PLEA in age-standardized incidence rates of brain cancer. By taking six possible confounders into account, the age-standardized incidence rates for brain cancer were highly correlated with the median and high PLEA by reference to the small PLEA. After being adjusted for a number of relevant confounders, it could be concluded that high PLEA might result in an increase in the incidence rate of brain cancer resulting from high lead exposures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nouchi, Rui; Taki, Yasuyuki; Takeuchi, Hikaru; Hashizume, Hiroshi; Akitsuki, Yuko; Shigemune, Yayoi; Sekiguchi, Atsushi; Kotozaki, Yuka; Tsukiura, Takashi; Yomogida, Yukihito; Kawashima, Ryuta
2012-01-01
Background The beneficial effects of brain training games are expected to transfer to other cognitive functions, but these beneficial effects are poorly understood. Here we investigate the impact of the brain training game (Brain Age) on cognitive functions in the elderly. Methods and Results Thirty-two elderly volunteers were recruited through an advertisement in the local newspaper and randomly assigned to either of two game groups (Brain Age, Tetris). This study was completed by 14 of the 16 members in the Brain Age group and 14 of the 16 members in the Tetris group. To maximize the benefit of the interventions, all participants were non-gamers who reported playing less than one hour of video games per week over the past 2 years. Participants in both the Brain Age and the Tetris groups played their game for about 15 minutes per day, at least 5 days per week, for 4 weeks. Each group played for a total of about 20 days. Measures of the cognitive functions were conducted before and after training. Measures of the cognitive functions fell into four categories (global cognitive status, executive functions, attention, and processing speed). Results showed that the effects of the brain training game were transferred to executive functions and to processing speed. However, the brain training game showed no transfer effect on any global cognitive status nor attention. Conclusions Our results showed that playing Brain Age for 4 weeks could lead to improve cognitive functions (executive functions and processing speed) in the elderly. This result indicated that there is a possibility which the elderly could improve executive functions and processing speed in short term training. The results need replication in large samples. Long-term effects and relevance for every-day functioning remain uncertain as yet. Trial Registration UMIN Clinical Trial Registry 000002825 PMID:22253758
Sabayan, Behnam; van Buchem, Mark A; Sigurdsson, Sigurdur; Zhang, Qian; Meirelles, Osorio; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J
2016-11-01
Pathologies in the heart-brain axis might, independently or in combination, accelerate the process of brain parenchymal loss. We aimed to investigate the association of serum N-terminal brain natriuretic peptide (NT-proBNP), as a marker of cardiac dysfunction, and carotid intima media thickness (CIMT), as a marker of carotid atherosclerosis burden, with structural brain changes. In the longitudinal population-based AGES-Reykjavik study (Age, Gene/Environment Susceptibility-Reykjavik), we included 2430 subjects (mean age, 74.6 years; 41.4% men) with baseline data on NT-proBNP and CITM (assessed by ultrasound imaging). Participants underwent a high-resolution brain magnetic resonance imaging at baseline and 5 years later to assess total brain (TBV), gray matter, and white matter volumes. Each unit higher log-transformed NT-proBNP was associated with 3.6 mL (95% confidence interval [CI], -6.0 to -1.1) decline in TBV and 3.5 mL (95% CI, -5.7 to -1.3) decline in gray matter volume. Likewise, each millimeter higher CIMT was associated with 10.8 mL (95% CI, -17.3 to -4.2) decline in TBV and 8.6 mL (95% CI, -14.4 to -2.8) decline in gray matter volume. There was no association between NT-proBNP and CIMT and changes in white matter volume. Compared with participants with low NT-proBNP and CIMT, participants with both high NT-proBNP and CIMT had 3.8 mL (95% CI, -6.0 to -1.6) greater decline in their TBV and 4 mL (95% CI, -6.0 to -2.0) greater decline in GMW. These associations were independent of sociodemographic and cardiovascular factors. Older subjects with both cardiac dysfunction and carotid atherosclerosis are at an increased risk for brain parenchymal loss. Accumulated pathologies in the heart-brain axis might accelerate brain atrophy. © 2016 American Heart Association, Inc.
Jasinska, K K; Petitto, L A
2013-10-01
Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.
Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan
2017-02-01
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.
XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua
2016-03-01
The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging.
Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T
2016-01-01
Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.
Nho, Kwangsik; Saykin, Andrew J.; Nelson, Peter T.
2016-01-01
Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer’s disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (~50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer’s disease contribution to atrophy outside of the hippocampus in older adults. PMID:27003218
Genetic mouse models of brain ageing and Alzheimer's disease.
Bilkei-Gorzo, Andras
2014-05-01
Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.
Age-related changes in the ease of dynamical transitions in human brain activity.
Ezaki, Takahiro; Sakaki, Michiko; Watanabe, Takamitsu; Masuda, Naoki
2018-06-01
Executive functions, a set of cognitive processes that enable flexible behavioral control, are known to decay with aging. Because such complex mental functions are considered to rely on the dynamic coordination of functionally different neural systems, the age-related decline in executive functions should be underpinned by alteration of large-scale neural dynamics. However, the effects of age on brain dynamics have not been firmly formulated. Here, we investigate such age-related changes in brain dynamics by applying "energy landscape analysis" to publicly available functional magnetic resonance imaging data from healthy younger and older human adults. We quantified the ease of dynamical transitions between different major patterns of brain activity, and estimated it for the default mode network (DMN) and the cingulo-opercular network (CON) separately. We found that the two age groups shared qualitatively the same trajectories of brain dynamics in both the DMN and CON. However, in both of networks, the ease of transitions was significantly smaller in the older than the younger group. Moreover, the ease of transitions was associated with the performance in executive function tasks in a doubly dissociated manner: for the younger adults, the ability of executive functions was mainly correlated with the ease of transitions in the CON, whereas that for the older adults was specifically associated with the ease of transitions in the DMN. These results provide direct biological evidence for age-related changes in macroscopic brain dynamics and suggest that such neural dynamics play key roles when individuals carry out cognitively demanding tasks. © 2018 Wiley Periodicals, Inc.
Therapeutic potential of systemic brain rejuvenation strategies for neurodegenerative disease
Horowitz, Alana M.; Villeda, Saul A.
2017-01-01
Neurodegenerative diseases are a devastating group of conditions that cause progressive loss of neuronal integrity, affecting cognitive and motor functioning in an ever-increasing number of older individuals. Attempts to slow neurodegenerative disease advancement have met with little success in the clinic; however, a new therapeutic approach may stem from classic interventions, such as caloric restriction, exercise, and parabiosis. For decades, researchers have reported that these systemic-level manipulations can promote major functional changes that extend organismal lifespan and healthspan. Only recently, however, have the functional effects of these interventions on the brain begun to be appreciated at a molecular and cellular level. The potential to counteract the effects of aging in the brain, in effect rejuvenating the aged brain, could offer broad therapeutic potential to combat dementia-related neurodegenerative disease in the elderly. In particular, results from heterochronic parabiosis and young plasma administration studies indicate that pro-aging and rejuvenating factors exist in the circulation that can independently promote or reverse age-related phenotypes. The recent demonstration that human umbilical cord blood similarly functions to rejuvenate the aged brain further advances this work to clinical translation. In this review, we focus on these blood-based rejuvenation strategies and their capacity to delay age-related molecular and functional decline in the aging brain. We discuss new findings that extend the beneficial effects of young blood to neurodegenerative disease models. Lastly, we explore the translational potential of blood-based interventions, highlighting current clinical trials aimed at addressing therapeutic applications for the treatment of dementia-related neurodegenerative disease in humans. PMID:28815019
NASA Astrophysics Data System (ADS)
Ott, Florian; Wulf, Sabine; Serb, Johanna; Słowiński, Michał; Obremska, Milena; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim
2016-04-01
Robust chronological framework is a crucial necessity for palaeoclimate reconstructions and especially for synchronizing records to decipher climatic teleconnections. Volcanic ash deposits (tephra) provide isochronous time marker that can be utilized as tie-lines to synchronize sedimentary archives. Advances in the detection and identification of non-visible (crypto-) tephra, often transported over thousands of kilometers, also allows identifying ash deposits even in distal records. We report the first findings of co-existing early Holocene Hässeldalen and Askja-S cryptotephras in a varved sediment record in Lake Czechowskie (JC, northern Poland). Annual layer counting was used to establish a varve chronology and micro-facies analyses, relative calcium (Ca) and titanium (Ti) concentrations were used to decipher between lake productivity and detrital flux. Here we focus (i) on the determination of the time span between both tephras, (ii) revised age estimates for the Askja-S tephra and (iii) the sedimentological response of the JC record to the Preboreal Oscillation (PBO), a short lived cold episode during the early Holocene. A differential dating approach revealed a time span of 152 +11/-8 varve years counted in the JC sediment record between both tephras. Since the varved interval of the JC sediment record comprising the tephras is floating, we anchored the floating varve chronology to an absolute timescale by using the radiocarbon-dated Hässeldalen Tephra (11,380 ± 216 cal a BP, Wohlfarth et al, 2006). The resulting age for the Askja-S of 11,454-11,002 cal a BP is, even considering the rather large uncertainties, a few decades to several hundred years older than most radiocarbon based age models, but it supports the original age model from Hässseldala port. The sediment response to the PBO cold period is seen only in a slight decrease in titanium, a proxy for detrital matter flux. Varve micro-facies did not change during this interval confirming a weak impact of the PBO on the sedimentation regime in Lake Czechowskie. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analyses - ICLEA - of the Helmholtz Association, grant number VH-VI-415. Wohlfarth, B., Blaauw, M., Davies, S.M., Andersson, M., Wastegård, S., Hormes, A., Possnert, G., 2006. Constraining the age of Lateglacial and early Holocene pollen zones and tephra horizons in southern Sweden with Bayesian probability methods. J. Quat. Sci. 21, 321-334. doi:10.1002/jqs.996
Jing, Y; Fleete, M S; Collie, N D; Zhang, H; Liu, P
2013-11-12
Accumulating evidence suggests that the metabolism of l-arginine, a metabolically versatile amino acid, is critically involved in the aging process. The present study compared the activity and protein expression of nitric oxide synthase (NOS) and arginase, and the levels of l-arginine and its eight down-stream metabolites in the brain stem (pons and medulla) and the cervical spinal cord in 3- (young) and 22- (aged) month-old male Sprague-Dawley rats. Total NOS activity was significantly reduced with age in the spinal cord (but not brain stem), and there were no age-related changes in arginase activity in both regions. Western blot revealed decreased protein expression of endothelial NOS, but not neuronal NOS, with age in both regions. Furthermore, there were significantly decreased l-arginine, glutamate, GABA and spermine levels and increased putrescine and spermidine levels with age in both regions. Although the absolute concentrations of l-arginine and six metabolites were significantly different between the brain stem and spinal cord in both age groups, there were similar clusters between l-arginine and its three main metabolites (l-citrulline, l-ornithine and agmatine) in both regions, which changed as a function of age. These findings, for the first time, demonstrate the regional variations and age-related changes in arginine metabolism in the rat brain stem and spinal cord. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Neuronal glycogen synthesis contributes to physiological aging.
Sinadinos, Christopher; Valles-Ortega, Jordi; Boulan, Laura; Solsona, Estel; Tevy, Maria F; Marquez, Mercedes; Duran, Jordi; Lopez-Iglesias, Carmen; Calbó, Joaquim; Blasco, Ester; Pumarola, Marti; Milán, Marco; Guinovart, Joan J
2014-10-01
Glycogen is a branched polymer of glucose and the carbohydrate energy store for animal cells. In the brain, it is essentially found in glial cells, although it is also present in minute amounts in neurons. In humans, loss-of-function mutations in laforin and malin, proteins involved in suppressing glycogen synthesis, induce the presence of high numbers of insoluble polyglucosan bodies in neuronal cells. Known as Lafora bodies (LBs), these deposits result in the aggressive neurodegeneration seen in Lafora's disease. Polysaccharide-based aggregates, called corpora amylacea (CA), are also present in the neurons of aged human brains. Despite the similarity of CA to LBs, the mechanisms and functional consequences of CA formation are yet unknown. Here, we show that wild-type laboratory mice also accumulate glycogen-based aggregates in the brain as they age. These structures are immunopositive for an array of metabolic and stress-response proteins, some of which were previously shown to aggregate in correlation with age in the human brain and are also present in LBs. Remarkably, these structures and their associated protein aggregates are not present in the aged mouse brain upon genetic ablation of glycogen synthase. Similar genetic intervention in Drosophila prevents the accumulation of glycogen clusters in the neuronal processes of aged flies. Most interestingly, targeted reduction of Drosophila glycogen synthase in neurons improves neurological function with age and extends lifespan. These results demonstrate that neuronal glycogen accumulation contributes to physiological aging and may therefore constitute a key factor regulating age-related neurological decline in humans. © 2014 The Authors. Aging cell published by the Anatomical Society and John Wiley & Sons Ltd.
Gulyás, Balázs; Vas, Adám; Tóth, Miklós; Takano, Akihiro; Varrone, Andrea; Cselényi, Zsolt; Schain, Martin; Mattsson, Patrik; Halldin, Christer
2011-06-01
The main objectives of the present study were (i) to measure density changes of activated microglia and the peripheral benzodiazepine receptor/translocator protein (TSPO) system during normal ageing in the human brain with positron emission tomography (PET) using the TSPO molecular imaging biomarker [(11)C]vinpocetine and (ii) to compare the level and pattern of TSPO in Alzheimer (AD) patients with age matched healthy subjects, in order to assess the biomarker's usefulness as a diagnostic imaging marker in normal (ageing) and pathological (AD) up-regulation of microglia. PET measurements were made in healthy volunteers, aged between 25 and 78 years, and AD patients, aged between 67 and 82 years, using [(11)C]vinpocetine as the tracer. Global and regional quantitative parameters of tracer uptake and binding, including time activity curves (TAC) of standard uptake values (%SUV), binding affinity parameters, intensity spectrum and homogeneity of the uptake distribution were measured and analysed. Both %SUV and binding values increased with age linearly in the whole brain and in all brain regions. There were no significant differences between the %SUV values of the AD patients and age matched control subjects. There were, however, significant differences in %SUV values in a large number of brain regions between young subjects and old subjects, as well as young subjects and AD patients. The intensity spectrum analysis and homogeneity analysis of the voxel data show that the homogeneity of the %SUV values decreases with ageing and during the disease, whereas the centre of the intensity spectrum is shifted to higher %SUV values. These data indicate an inhomogeneous up-regulation of the TSPO system during ageing and AD. These changes were significant between the group of young subjects and old subjects, as well as young subjects and AD patients, but not between old subjects and AD patients. The present data indicate that [(11)C]vinpocetine may serve as a molecular imaging biomarker of the activity of the TSPO system and, consequently, of the up-regulation of microglia during ageing and in neuroinflammatory diseases. However, the global and regional brain %SUV values between AD patients and age matched controls are not different from each other. The disease specific changes, measured with [(11)C]vinpocetine in AD, are significantly different from those measured in age matched controls only if the inhomogeneities in the uptake pattern are explored with advanced mathematical techniques. For this reason, PET studies using [(11)C]vinpocetine, as molecular imaging biomarker, can efficiently visualise the activation of microglia and the up-regulation of TSPO during ageing and in diseased brains with the help of an appropriate inhomogeneity analysis of the radioligand's brain uptake pattern. Copyright © 2011 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...
USDA-ARS?s Scientific Manuscript database
An increase in the aggregation of misfolded/damaged polyubiquitinated proteins has been the hallmark of many age-related neurodegenerative diseases. The accumulation of these potentially toxic proteins in brain increases with age, in part due to increased oxidative and inflammatory stresses. Walnuts...
Evaluating Alzheimer's disease biomarkers as mediators of age-related cognitive decline.
Hohman, Timothy J; Tommet, Doug; Marks, Shawn; Contreras, Joey; Jones, Rich; Mungas, Dan
2017-10-01
Age-related changes in cognition are partially mediated by the presence of neuropathology and neurodegeneration. This manuscript evaluates the degree to which biomarkers of Alzheimer's disease, (AD) neuropathology and longitudinal changes in brain structure, account for age-related differences in cognition. Data from the AD Neuroimaging Initiative (n = 1012) were analyzed, including individuals with normal cognition and mild cognitive impairment. Parallel process mixed effects regression models characterized longitudinal trajectories of cognitive variables and time-varying changes in brain volumes. Baseline age was associated with both memory and executive function at baseline (p's < 0.001) and change in memory and executive function performances over time (p's < 0.05). After adjusting for clinical diagnosis, baseline, and longitudinal changes in brain volume, and baseline levels of cerebrospinal fluid biomarkers, age effects on change in episodic memory and executive function were fully attenuated, age effects on baseline memory were substantially attenuated, but an association remained between age and baseline executive function. Results support previous studies that show that age effects on cognitive decline are fully mediated by disease and neurodegeneration variables but also show domain-specific age effects on baseline cognition, specifically an age pathway to executive function that is independent of brain and disease pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
Julien, Marie-Anne; Rivals, Florent; Serangeli, Jordi; Bocherens, Hervé; Conard, Nicholas J
2015-12-01
It is often difficult to differentiate between archaeological bonebeds formed by one event such as a mass kill of a single herd, and those formed by multiple events that occurred over a longer period of time. The application of high temporal resolution studies such as intra-tooth isotopic profiles on archaeological mammal cohorts offers new possibilities for exploring this issue, allowing investigators to decipher between single and multiple accumulation events. We examined (18)O and (13)C isotopic variations from the enamel carbonate of 23 horse third molars from the Middle Pleistocene archaeological site of Schöningen. We employed a new approach to investigate processes of fossil accumulation that uses both bulk and intra-tooth isotopic variations and takes into account animal behavior, age at death and dental development to test the degree of isotopic affinity of animals from the same fossil assemblage. Oxygen and carbon isotope bulk values indicate that the horses from Schöningen 13 II-4 experienced relatively similar climatic and dietary regimes. Inter-individual differences of the bulk values of the horses sampled in the current study present nevertheless inter-individual variability similar to individuals from multi-layered localities. In addition, the intra-tooth isotopic variation of specimens of the same age at death seems to indicate that the studied cohort corresponds to a mix of individuals that recorded both similar and different isotopic histories. Finally, the conditions recorded in the isotopic signal shortly before death (i.e., for teeth not fully mineralized) varied between sampled individuals, suggesting possible differences in the seasonality of death. Considering those results, we discuss the possibility that the horses from Schöningen 13 II-4 correspond to an accumulation of different death events. Copyright © 2015 Elsevier Ltd. All rights reserved.
Envirotyping for deciphering environmental impacts on crop plants.
Xu, Yunbi
2016-04-01
Global climate change imposes increasing impacts on our environments and crop production. To decipher environmental impacts on crop plants, the concept "envirotyping" is proposed, as a third "typing" technology, complementing with genotyping and phenotyping. Environmental factors can be collected through multiple environmental trials, geographic and soil information systems, measurement of soil and canopy properties, and evaluation of companion organisms. Envirotyping contributes to crop modeling and phenotype prediction through its functional components, including genotype-by-environment interaction (GEI), genes responsive to environmental signals, biotic and abiotic stresses, and integrative phenotyping. Envirotyping, driven by information and support systems, has a wide range of applications, including environmental characterization, GEI analysis, phenotype prediction, near-iso-environment construction, agronomic genomics, precision agriculture and breeding, and development of a four-dimensional profile of crop science involving genotype (G), phenotype (P), envirotype (E) and time (T) (developmental stage). In the future, envirotyping needs to zoom into specific experimental plots and individual plants, along with the development of high-throughput and precision envirotyping platforms, to integrate genotypic, phenotypic and envirotypic information for establishing a high-efficient precision breeding and sustainable crop production system based on deciphered environmental impacts.
Functional neuroimaging of normal aging: Declining brain, adapting brain.
Sugiura, Motoaki
2016-09-01
Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain. Copyright © 2016 Elsevier B.V. All rights reserved.
Brain cortical characteristics of lifetime cognitive ageing.
Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J
2018-01-01
Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r < 0.180, FDR-corrected q < 0.05). There were no significant associations between cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.
White matter hyperintensities and imaging patterns of brain ageing in the general population.
Habes, Mohamad; Erus, Guray; Toledo, Jon B; Zhang, Tianhao; Bryan, Nick; Launer, Lenore J; Rosseel, Yves; Janowitz, Deborah; Doshi, Jimit; Van der Auwera, Sandra; von Sarnowski, Bettina; Hegenscheid, Katrin; Hosten, Norbert; Homuth, Georg; Völzke, Henry; Schminke, Ulf; Hoffmann, Wolfgang; Grabe, Hans J; Davatzikos, Christos
2016-04-01
White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer's disease in a large populatison-based sample (n = 2367) encompassing a wide age range (20-90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer's disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly (P < 0.0001) lower SPARE-BA and higher SPARE-AD values compared to those with low white matter hyperintensities burden, indicating that the former had more patterns of atrophy in brain regions typically affected by ageing and Alzheimer's disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant (P < 0.0001) causal relationship between them. Structural equation modelling showed that the age effect on SPARE-BA was mediated by white matter hyperintensities and cardiovascular risk score each explaining 10.4% and 21.6% of the variance, respectively. The direct age effect explained 70.2% of the SPARE-BA variance. Only white matter hyperintensities significantly mediated the age effect on SPARE-AD explaining 32.8% of the variance. The direct age effect explained 66.0% of the SPARE-AD variance. Multivariable regression showed significant relationship between white matter hyperintensities volume and hypertension (P = 0.001), diabetes mellitus (P = 0.023), smoking (P = 0.002) and education level (P = 0.003). The only significant association with cognitive tests was with the immediate recall of the California verbal and learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer's disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.