Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal
2016-01-01
The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.
Brain CT; Cranial CT; CT scan - skull; CT scan - head; CT scan - orbits; CT scan - sinuses; Computed tomography - cranial; CAT scan - brain ... conditions: Birth (congenital) defect of the head or brain Brain infection Brain tumor Buildup of fluid inside ...
Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime
2017-06-01
This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.
Use of Video Goggles to Distract Patients During PET/CT Studies of School-Aged Children.
Gelfand, Michael J; Harris, Jennifer M; Rich, Amanda C; Kist, Chelsea S
2016-12-01
This study was designed to evaluate the effectiveness of video goggles in distracting children undergoing PET/CT and to determine whether the goggles create CT and PET artifacts. Video goggles with small amounts of internal radioopaque material were used. During whole-body PET/CT imaging, 30 nonsedated patients aged 4-13 y watched videos of their choice using the goggles. Fifteen of the PET/CT studies were performed on a scanner installed in 2006, and the other 15 were performed on a scanner installed in 2013. The fused scans were reviewed for evidence of head movement, and the individual PET and CT scans of the head were reviewed for the presence and severity of streak artifact. The CT exposure settings were recorded for each scan at the anatomic level at which the goggles were worn. Only one of the 30 scans had evidence of significant head motion. Two of the 30 had minor coregistration problems due to motion, and 27 of the 30 had very good to excellent coregistration. For the 2006 scanner, 2 of the 14 evaluable localization CT scans of the head demonstrated no streak artifact in brain tissue, 6 of the 14 had mild streak artifact in brain tissue, and 6 of the 14 had moderate streak artifact in brain tissue. Mild streak artifact in bone was noted in 2 of the 14 studies. For the 2013 scanner, 7 of 15 studies had mild streak artifact in brain tissue and 8 of 15 had no streak artifact in brain tissue, whereas none of the 15 had streak artifact in bone. There were no artifacts attributable to the goggles on the 18 F-FDG PET brain images of any of the 29 evaluable studies. The average CT exposure parameters at the level of the orbits were 36% lower on the 2013 scanner than on the 2006 scanner. Video goggles may be used successfully to distract children undergoing PET with localization CT. The goggles cause no significant degradation of the PET brain images or the CT skull images. The degree of artifact on brain tissue images varies from none to moderate and depends on the CT equipment used. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Jeng, Toh Charng; Haspani, Mohd Saffari Mohd; Adnan, Johari Siregar; Naing, Nyi Nyi
2008-01-01
A repeat Computer Tomographic (CT) brain after 24–48 hours from the 1st scanning is usually practiced in most hospitals in South East Asia where intracranial pressure monitoring (ICP) is routinely not done. This interval for repeat CT would be shortened if there was a deterioration in Glasgow Coma Scale (GCS). Most of the time the prognosis of any intervention may be too late especially in hospitals with high patient-to-doctor ratio causing high mortality and morbidity. The purpose of this study was to determine the important predictors for early detection of Delayed Traumatic Intracranial Haemorrhage (DTICH) and Progressive Traumatic Brain Injury (PTBI) before deterioration of GCS occurred, as well as the most ideal timing of repeated CT brain for patients admitted in Malaysian hospitals. A total of 81 patients were included in this study over a period of six months. The CT scan brain was studied by comparing the first and second CT brain to diagnose the presence of DTICH/PTBI. The predictors tested were categorised into patient factors, CT brain findings and laboratory investigations. The mean age was 33.1 ± 15.7 years with a male preponderance of 6.36:1. Among them, 81.5% were patients from road traffic accidents with Glasgow Coma Scale ranging from 4 – 15 (median of 12) upon admission. The mean time interval delay between trauma and first CT brain was 179.8 ± 121.3 minutes for the PTBI group. The DTICH group, 9.9% of the patients were found to have new intracranial clots. Significant predictors detected were different referral hospitals (p=0.02), total GCS status (p=0.026), motor component of GCS (p=0.043), haemoglobin level (p<0.001), platelet count (p=0.011) and time interval between trauma and first CT brain (p=0.022). In the PTBI group, 42.0% of the patients were found to have new changes (new clot occurrence, old clot expansion and oedema) in the repeat CT brain. Univariate statistical analysis revealed that age (p=0.03), race (p=0.035), types of admission (p=0.024), GCS status (p=0.02), pupillary changes (p=0.014), number of intracranial lesion (p=0.004), haemoglobin level (p=0.038), prothrombin time (p=0.016) as the best predictors of early detection of changes. Multiple logistics regression analysis indicated that age, severity, GCS status (motor component) and GCS during admission were significantly associated with second CT scan with changes. This study showed that 9.9% of the total patients seen in the period of study had DTICH and 42% had PTBI. In the early period after traumatic head injury, the initial CT brain did not reveal the full extent of haemorrhagic injury and associated cerebral oedema. Different referral hospitals of different trauma level, GCS status, motor component of the GCS, haemoglobin level, platelet count and time interval between trauma and the first CT brain were the significant predictors for DTICH. Whereas the key determinants of PTBI were age, race, types of admission, GCS status, pupillary changes, number of intracranial bleed, haemoglobin level, prothrombin time and of course time interval between trauma and first CT brain. Any patients who had traumatic head injury in hospitals with no protocol of repeat CT scan or intracranial pressure monitoring especially in developing countries are advised to have to repeat CT brain at the appropriate quickest time . PMID:22589639
Diagnostic Value of 68Ga PSMA-11 PET/CT Imaging of Brain Tumors-Preliminary Analysis.
Sasikumar, Arun; Joy, Ajith; Pillai, M R A; Nanabala, Raviteja; Anees K, Muhammed; Jayaprakash, P G; Madhavan, Jayaprakash; Nair, Suresh
2017-01-01
To evaluate the feasibility of using Ga PSMA-11 PET/CT for imaging brain lesions and its comparison with F-FDG. Ten patients with brain lesions were included in the study. Five patients were treated cases of glioblastoma with suspected recurrence. F-FDG and Ga PSMA-11 brain scans were done for these patients. Five patients were sent for assessing the nature (primary lesion/metastasis) of space occupying lesion in brain. They underwent whole body F-FDG PET/CT scan and a primary site elsewhere in the body was ruled out. Subsequently they underwent Ga PSMA-11 brain PET/CT imaging. Target to background ratios (TBR) for the brain lesions were calculated using contralateral cerebellar uptake as background. In five treated cases of glioblastoma with suspected recurrence the findings of Ga PSMA-11 PET/CT showed good correlation with that of F-FDG PET/CT scan. Compared to the F-FDG, Ga PSMA-11 PET/CT showed better visualization of the recurrent lesion (presence/absence) owing to its significantly high TBR. Among the five cases evaluated for lesion characterization glioma and atypical meningioma patients showed higher SUVmax in the lesion with Ga PSMA-11 than with F-FDG and converse in cases of lymphoma. TBR was better with Ga PSMA PET/CT in all cases. Ga PSMA-11 PET/CT brain imaging is a potentially useful imaging tool in the evaluation of brain lesions. Absence of physiological uptake of Ga PSMA-11 in the normal brain parenchyma results in high TBR values and consequently better visualization of metabolically active disease in brain.
Brain CT image similarity retrieval method based on uncertain location graph.
Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin
2014-03-01
A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.
Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H
2017-09-01
The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up 18 F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh 18 F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 18 F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up 18 F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up 18 F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each 18 F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the 18 F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up 18 F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up 18 F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
The possibility of application of spiral brain computed tomography to traumatic brain injury.
Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin
2014-09-01
The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Lin; Zhang, Xiangyi; Li, Wuchao; Sun, Haozhen; Lou, Yan; Zhang, Xingguo; Li, Fanzhu
2013-11-01
A novel drug carrier for brain delivery, maleimide-poly(ethyleneglycol)-poly(lactide) (maleimide-PEG-PLA) nanoparticles (NPs) conjugated with mouse-anti-rat monoclonal antibody OX26 (OX26-NPs), was developed and its brain delivery property was evaluated. The diblock copolymers of maleimide-PEG-PLA were synthesized and applied to α-cobrotoxin (αCT)-loaded NPs which were characterized by transmission electron micrograph imaging, Fourier-transform IR, and X-ray diffraction. The NPs encapsulating αCT had a round and vesicle-like shape with a mean diameter around 100 nm, and the OX26 had covalently conjugated to the surface of NPs. MTT studies in brain microvascular endothelial cells (BMEC) revealed a moderate decrease in the cell viability of αCT, when incorporated in OX26-NPs compared to free αCT in solution. A higher affinity of the OX26-αCT-NPs to the BMEC was shown in comparison to αCT-NPs. Then, OX26-αCT-NPs were intranasally (i.n.) administered to rats, and αCT in the periaqueductal gray was monitored for up to 480 min using microdialysis technique in free-moving rats, with i.n. αCT-NPs, i.n. OX26-αCT-NPs, intramuscular injection (i.m.) αCT-NPs, and i.m. OX26-αCT-NPs. The brain transport results showed that the corresponding absolute bioavailability ( F abs) of i.n. OX26-αCT-NPs were about 125 and 155 % with i.n. αCT-NPs and i.m. OX26-αCT-NPs, respectively, and it was found that both the C max and AUC of the four groups were as follows: i.n. OX26-αCT-NPs > i.n. αCT-NPs > i.m. OX26-αCT-NPs > i.m. αCT-NPs, while αCT solution, as control groups, could hardly enter the brain. These results indicated that OX26-NPs are promising carriers for peptide brain delivery.
Vigneron, C; Labeye, V; Cour, M; Hannoun, S; Grember, A; Rampon, F; Cotton, F
2016-01-01
Previous studies have shown that a loss of distinction between gray matter (GM) and white matter (WM) on unenhanced CT scans was predictive of poor outcome after cardiac arrest. The aim of this study was to identify a marker/predictor of imminent brain death. In this retrospective study, 15 brain-dead patients after anoxia and cardiac arrest were included. Patients were paired (1:1) with normal control subjects. Only patients' unenhanced CT scans performed before brain death and during the 24 hours after initial signs were analyzed. WM and GM densities were measured in predefined regions of interest (basal ganglia level, centrum semi-ovale level, high convexity level, brainstem level). At each level, GM and WM density and GM/WM ratio for brain-dead patients and normal control subjects were compared using the Wilcoxon signed-rank test. At each level, a lower GM/WM ratio and decreased GM and WM densities were observed in brain-dead patients' CT scans when compared with normal control subject CT scans. A cut-off value of 1.21 at the basal ganglia level was identified, below which brain death systematically occurred. GM/WM dedifferentiation on unenhanced CT scan is measurable before the occurrence of brain death, highlighting its importance in brain death prediction. The mechanism of GM/WM differentiation loss could be explained by the lack of oxygen caused by ischemia initially affecting the mitochondrial system. Copyright © 2016 Elsevier Inc. All rights reserved.
Meulepas, Johanna M; Ronckers, Cécile M; Merks, Johannes; Weijerman, Michel E; Lubin, Jay H; Hauptmann, Michael
2016-12-01
Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of pediatric CT scans. We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk. Since empirical evidence is lacking in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about patterns of CT scans among CSS patients. We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome and other CSS. Moreover, tuberous sclerosis complex, von Hippel-Lindau disease, neurofibromatosis type 1 and other CSS do not meaningfully confound RRs for brain tumors. Empirical data on the use of CT scans among CSS patients is urgently needed. Our assessment indicates that associations with radiation exposure from pediatric CT scans and leukemia or brain tumors reported in previous studies are unlikely to be substantially confounded by unmeasured CSS.
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-01-01
Aim To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Methods Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Results Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. Conclusion MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema. PMID:23444240
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-02-01
To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema.
Meulepas, Johanna M; Ronckers, Cécile M; Merks, Johannes; Weijerman, Michel E; Lubin, Jay H; Hauptmann, Michael
2016-01-01
Recent studies linking radiation exposure from pediatric computed tomography (CT) to increased risks of leukemia and brain tumors lacked data to control for cancer susceptibility syndromes (CSS). These syndromes might be confounders because they are associated with an increased cancer risk and may increase the likelihood of CT scans performed in children. We identify CSS predisposing to leukemia and brain tumors through a systematic literature search and summarize prevalence and risk estimates. Because there is virtually no empirical evidence in published literature on patterns of CT use for most types of CSS, we estimate confounding bias of relative risks (RR) for categories of radiation exposure based on expert opinion about the current and previous patterns of CT scans among CSS patients. We estimate that radiation-related RRs for leukemia are not meaningfully confounded by Down syndrome, Noonan syndrome, or other CSS. In contrast, RRs for brain tumors may be overestimated due to confounding by tuberous sclerosis complex (TSC) while von Hippel-Lindau disease, neurofibromatosis type 1, or other CSS do not meaningfully confound. Empirical data on the use of CT scans among CSS patients are urgently needed. Our assessment indicates that associations with leukemia reported in previous studies are unlikely to be substantially confounded by unmeasured CSS, whereas brain tumor risks might have been overestimated due to confounding by TSC. Future studies should identify TSC patients in order to avoid overestimation of brain tumor risks due to radiation exposure from CT scans. ©2015 American Association for Cancer Research.
Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J
1993-01-01
Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.
Hageman, G Gerard
2015-01-01
In 2010 the guideline on mild traumatic head/ brain injury for both adults and children was revised under the supervision of the Dutch Neurology Society. The revised guideline endorsed rules for decisions on whether to carry out diagnostic imaging investigations (brain CT scanning) and formulates indications for admission. Unfortunately, 5 years after its introduction, it is clear that the guideline rules result in excessive brain CT scanning, in which no more serious head injury is diagnosed. Brain injury may be present in (small) children even if symptoms are absent at first presentation. Also, clinical signs do not predict intracranial complications. This was nicely demonstrated in a study by Tilma, Bekhof and Brand of 410 children with mTBI: no clinical symptom or sign reliably predicted the risk of intracranial bleeding. They advise hospitalisation for observation instead of brain CT scanning. It may be necessary to review part of the Dutch guideline on mTBI.
Chatzidakis, Emmanuel M; Barlas, George; Condilis, Nicolas; Bouramas, Dimos; Anagnostopoulos, Demetrios; Volikas, Zacharias; Simopoulos, Konstantinos
2008-01-01
The aim of this study is to find out the correlation of the ventricular size of the brain, as it is estimated using brain computed tomography (CT) scan indexes in patients with normal pressure hydrocephalus (NPH), to: a) the clinical symptoms, and b) the results of cerebrospinal fluid (CSF) shunting procedures. We looked for any predictive value in the estimation of brain CT scan indexes, in patients as above, in whom a shunt is going to be placed. It is well known that it is very difficult to decide who is going to improve after shunting. We studied 40 cases of patients with the diagnosis "NPH" in whom the ventricular shunts were placed. Every symptom (motor disturbance, deficit of memory, incontinence) was separately evaluated preoperatively. The outcome of shunting was also evaluated and the patients were graded. The following CT scan indexes were estimated from the preoperative CT scans of the brain in every case: the ventricle-brain ratio (VBR), the bi-caudate and bi-frontal ratios, the third ventricle-Sylvian fissure (3V-SF) ratio, and the four largest cortical gyri. The method we have used for statistics is "one way analysis of variance", correlating the CT scan indexes to the symptoms of the patients preoperatively, and the outcome of them postoperatively. The main conclusion is that the size of the lateral ventricles of the brain preoperatively is not correlated to the outcome after CSF shunting surgery, but it is correlated to the symptoms of NPH preoperatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koivula, Lauri
Purpose: Magnetic resonance imaging (MRI) is increasingly used for radiotherapy target delineation, image guidance, and treatment response monitoring. Recent studies have shown that an entire external x-ray radiotherapy treatment planning (RTP) workflow for brain tumor or prostate cancer patients based only on MRI reference images is feasible. This study aims to show that a MRI-only based RTP workflow is also feasible for proton beam therapy plans generated in MRI-based substitute computed tomography (sCT) images of the head and the pelvis. Methods: The sCTs were constructed for ten prostate cancer and ten brain tumor patients primarily by transforming the intensity valuesmore » of in-phase MR images to Hounsfield units (HUs) with a dual model HU conversion technique to enable heterogeneous tissue representation. HU conversion models for the pelvis were adopted from previous studies, further extended in this study also for head MRI by generating anatomical site-specific conversion models (a new training data set of ten other brain patients). This study also evaluated two other types of simplified sCT: dual bulk density (for bone and water) and homogeneous (water only). For every clinical case, intensity modulated proton therapy (IMPT) plans robustly optimized in standard planning CTs were calculated in sCT for evaluation, and vice versa. Overall dose agreement was evaluated using dose–volume histogram parameters and 3D gamma criteria. Results: In heterogeneous sCTs, the mean absolute errors in HUs were 34 (soft tissues: 13, bones: 92) and 42 (soft tissues: 9, bones: 97) in the head and in the pelvis, respectively. The maximum absolute dose differences relative to CT in the brain tumor clinical target volume (CTV) were 1.4% for heterogeneous sCT, 1.8% for dual bulk sCT, and 8.9% for homogenous sCT. The corresponding maximum differences in the prostate CTV were 0.6%, 1.2%, and 3.6%, respectively. The percentages of dose points in the head and pelvis passing 1% and 1 mm gamma index criteria were over 91%, 85%, and 38% with heterogeneous, dual bulk, and homogeneous sCTs, respectively. There were no significant changes to gamma index pass rates for IMPT plans first optimized in CT and then calculated in heterogeneous sCT versus IMPT plans first optimized in heterogeneous sCT and then calculated on standard CT. Conclusions: This study demonstrates that proton therapy dose calculations on heterogeneous sCTs are in good agreement with plans generated with standard planning CT. An MRI-only based RTP workflow is feasible in IMPT for brain tumors and prostate cancers.« less
Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro
2016-01-01
Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182
Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W
1994-02-01
The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.
Gülşen, İsmail; Ak, Hakan; Karadaş, Sevdegül; Demır, İsmail; Bulut, Mehmet Deniz; Yaycioğlu, Soner
2014-01-01
Objective. To investigate the indications to receive brain computed tomography (CT) scan and to define the pathological findings in children younger than three years of age with minor head trauma in emergency departments. Methods. In this study, hospital case notes of 1350 children attending the emergency department of Bitlis State Hospital between January 2011 and June 2013 were retrospectively reviewed. 508 children under 3 years of age with minor head trauma were included in this study. We also asked 37 physicians about the indications for requiring CT in these children. Results. This study included 508 children, 233 (45,9%) of whom were female and 275 were male. In 476 (93,7%) children, the brain CT was completely normal. 89,2% of physicians asked in the emergency department during that time interval reported that they requested CT scan to protect themselves against malpractice litigation. Conclusion. In infants and children with minor head trauma, most CT scans were unnecessary and the fear of malpractice litigation of physicians was the most common reason for requesting a CT. PMID:24724031
Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Craft, Alan W; Parker, Louise; de González, Amy Berrington
2012-01-01
Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative absolute risks are small: in the 10 years after the first scan for patients younger than 10 years, one excess case of leukaemia and one excess case of brain tumour per 10 000 head CT scans is estimated to occur. Nevertheless, although clinical benefits should outweigh the small absolute risks, radiation doses from CT scans ought to be kept as low as possible and alternative procedures, which do not involve ionising radiation, should be considered if appropriate. Funding US National Cancer Institute and UK Department of Health. PMID:22681860
Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Sir Craft, Alan W; Parker, Louise; Berrington de González, Amy
2012-08-04
Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. During follow-up, 74 of 178,604 patients were diagnosed with leukaemia and 135 of 176,587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005-0·120; p=0·0097) and brain tumours (0·023, 0·010-0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46-6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50-74 mGy (mean dose 60·42 mGy) was 2·82 (1·33-6·03). Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative absolute risks are small: in the 10 years after the first scan for patients younger than 10 years, one excess case of leukaemia and one excess case of brain tumour per 10,000 head CT scans is estimated to occur. Nevertheless, although clinical benefits should outweigh the small absolute risks, radiation doses from CT scans ought to be kept as low as possible and alternative procedures, which do not involve ionising radiation, should be considered if appropriate. US National Cancer Institute and UK Department of Health. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dedicated mobile volumetric cone-beam computed tomography for human brain imaging: A phantom study.
Ryu, Jong-Hyun; Kim, Tae-Hoon; Jeong, Chang-Won; Jun, Hong-Young; Heo, Dong-Woon; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2015-01-01
Mobile computed tomography (CT) with a cone-beam source is increasingly used in the clinical field. Mobile cone-beam CT (CBCT) has great merits; however, its clinical utility for brain imaging has been limited due to problems including scan time and image quality. The aim of this study was to develop a dedicated mobile volumetric CBCT for obtaining brain images, and to optimize the imaging protocol using a brain phantom. The mobile volumetric CBCT system was evaluated with regards to scan time and image quality, measured as signal-to-noise-ratio (SNR), contrast-to-noise-ratio (CNR), spatial resolution (10% MTF), and effective dose. Brain images were obtained using a CT phantom. The CT scan took 5.14 s at 360 projection views. SNR and CNR were 5.67 and 14.5 at 120 kV/10 mA. SNR and CNR values showed slight improvement as the x-ray voltage and current increased (p < 0.001). Effective dose and 10% MTF were 0.92 mSv and 360 μ m at 120 kV/10 mA. Various intracranial structures were clearly visible in the brain phantom images. Using this CBCT under optimal imaging acquisition conditions, it is possible to obtain human brain images with low radiation dose, reproducible image quality, and fast scan time.
A comparison of sequential and spiral scanning techniques in brain CT.
Pace, Ivana; Zarb, Francis
2015-01-01
To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).
Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.
Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J
1996-01-01
Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Richard R.; Brown, Craig E.; Brain Research Center, University of British Columbia, Vancouver, BC, V6T 1Z3
2007-12-21
The cystine/glutamate exchanger (xCT) supplies intracellular cyst(e)ine for the production of glutathione, a major cellular anti-oxidant. xCT is enriched in brain regions associated with neurogenesis. Previous studies have shown that the malfunction of this protein greatly attenuates cell proliferation in vitro and is associated with brain atrophy in vivo. Using mice that are homozygous for a function-blocking deletion in xCT (Sut mice), we examined in vivo the role of xCT in cell proliferation in neurogenic regions of the subventricular zone (SVZ) and denate gyrus (DG) in the adult brain. Our results indicate that a high level of cellular proliferation inmore » the adult brain persists even in the absence of functional xCT. Furthermore, in both young adult and middle-aged mice (3 and 11 months old), rates of SVZ cell proliferation were comparable between Sut and wild-type controls, although there was trend towards reduced proliferation in Sut mice (12% and 9% reduction, respectively). To our surprise, rates of cell proliferation in the DG were elevated in both 3- and 11-month-old Sut mice relative to controls (22% and 28% increase, respectively). These results demonstrate that xCT expression plays a role in regulating cellular proliferation in the DG, but not the SVZ of adult mice. Furthermore, unlike previous in vitro studies, our in vivo observations clearly indicate that xCT is not essential for ongoing cellular proliferation.« less
Tosaka, Masahiko; Tsushima, Yoshito; Watanabe, Saiko; Sakamoto, Kazuya; Yodonawa, Masahiko; Kunimine, Hideo; Fujita, Haruyasu; Fujii, Takashi
2015-07-01
The present study examined the computed tomography (CT) findings after surgery and overnight drainage for chronic subdural hematoma (CSDH) to clear the significance of inner superficial subarachnoid CSF space and outer subdural hematoma cavity between the brain surface and the inner skull. A total of 73 sides in 60 patients were evaluated. Head CT was performed on the day after surgery and overnight drainage (1st CT), within 3 weeks of surgery (2nd CT), and more than 3 weeks after surgery (3rd CT). Subdural and subarachnoid spaces were identified to focus on density of fluid, shape of air collection, and location of silicone drainage tube, etc. Cases with subdural space larger than the subarachnoid CSF space were classified as Group SD between the brain and the skull. Cases with subarachnoid CSF space larger than the subdural space were classified as Group SA. Cases with extremely thin (<3 mm) spaces between the brain and the skull were classified as Group NS. Group SA, SD, and NS accounted for 31.9, 55.6 and 12.5% of cases on the 1st CT. No statistical differences were found between Groups SA, SD, and NS in any clinical factors, including recurrence. Group SA were found significantly more on 1st CT than on 2nd and 3rd CT. Subarachnoid CSF space sometimes expands between the brain and skull on CT after surgical overnight drainage. Expansion of the arachnoid space may be a passive phenomenon induced by overnight drainage and delayed re-expansion of the brain parenchyma.
Schiff, Nicholas D
2013-01-01
This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed. © 2013 Elsevier B.V. All rights reserved.
CT Perfusion in Acute Stroke: "Black Holes" on Time-to-Peak Image Maps Indicate Unsalvageable Brain.
Meagher, Ruairi; Shankar, Jai Jai Shiva
2016-11-01
CT perfusion is becoming important in acute stroke imaging to determine optimal patient-management strategies. The purpose of this study was to examine the predictive value of time-to-peak image maps and, specifically, a phenomenon coined a "black hole" for assessing infarcted brain tissue at the time of scan. Acute stroke patients were screened for the presence of black holes and their follow-up imaging (noncontrast CT or MR) was reviewed to assess for infarcted brain tissue. Of the 23 patients with signs of acute ischemia on CT perfusion, all had black holes. The black holes corresponded with areas of infarcted brain on follow-up imaging (specificity 100%). Black holes demonstrated significantly lower cerebral blood volumes (P < .001) and cerebral blood flow (P < .001) compared to immediately adjacent tissue. Black holes on time-to-peak image maps represent areas of unsalvageable brain. Copyright © 2016 by the American Society of Neuroimaging.
Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W
2018-04-01
The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.
van den Brand, Crispijn L; Rambach, A H J H Annelijn; Postma, Roelie; van de Craats, Victoria L; Lengers, Frank; Bénit, Christa P; Verbree, Femke C; Jellema, Korné
2014-01-01
To evaluate the effect of the revised practice guideline 'Management of patients with mild traumatic head/brain injury' (MHI) in the Netherlands using the number of CT scans of the cerebrum, number of hospital admissions, and the number of intracranial traumatic findings on CT scan. Retrospective before-and-after study. A structured chart review over the 3-month period considerable time after implementation of the MHI guideline (study period) was compared with the 3-month-period before its introduction (control period). Both children and adults were included. Primary outcome measures were the percentage of hospital admissions and percentage of cerebrum CT scans in patients with MHI. Secondary outcome measures were traumatic findings on CT scan, neurosurgical intervention and adherence to the guideline. During the study and control periods, respectively 1063 and 1026 patients with MHI attended the emergency department of the study centre. During the study period a CT scan was carried out in 34.2% of patients, significantly more than in the control period 18.8%; p < 0.01). The percentage of admissions also increased from 13.8% to 18.2% (p = 0.01). The differences between the two periods were mainly in adults and in children aged 6 and older. There was no significant change in traumatic intracranial findings or neurosurgical interventions. Adherence to the guideline in regard to hospitalization (81.7% guideline adherence) and CT brain imaging (88.3% guideline adherence) was reasonably high. After introduction of the current MHI guideline in the Netherlands, percentages of both hospitalization and CT of cerebrum have increased significantly. It was expected that the guideline would result in decreases of this percentages. This increase does not seem to be related to more or serious head/brain injury.
Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast
NASA Astrophysics Data System (ADS)
Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.
2014-11-01
Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.
Prpić, Igor; Ahel, Tea; Rotim, Krešimir; Gajski, Domagoj; Vukelić, Petar; Sasso, Antun
2014-12-01
In daily practice, neuroimaging studies are frequently performed for the management of childhood headache. The aim of this study was to determine whether there is significant discrepancy between clinical practice and clinical practice guidelines on the indications for neuroimaging studies. Medical records of children with chronic headache, aged 2 to 18 years and treated at Rijeka University Hospital Center, Kantrida Department of Pediatrics, were retrospectively reviewed. Indications for brain magnetic resonance imaging and computed tomography (MRI/CT) scanning were reviewed and compared with clinical practice guidelines. Brain imaging was performed in 164 (76.3%) of 215 children, MRI in 93 (56.7%) and CT in 71 (43.3%) children. Indications for brain MRI/CT were as follows: anxiety and/or insistence by the child's family (71.3%), presence of associated features suggesting neurologic dysfunction (13.4%), age under 5 years (12.8%) and abnormal neurologic examination (2.4%). The majority of children (71.4%) had normal neuroimaging findings. In the rest of imaging studies (28.1%), MRI/CT revealed different intracerebral/extracerebral findings not influencing changes in headache management. Only one (0.60%) patient required change in headache management after MRI/CT. Study results proved that, despite available evidence-based clinical guidelines, brain imaging in children with chronic headaches is overused, mostly in order to decrease anxiety of the family/patient.
Clements, Thomas W; Dunham, Michael; Kirkpatrick, Andrew; Rajakumar, Ruphus; Gratton, Carolyn; Lall, Rohan; McBeth, Paul; Ball, Chad G
2018-05-01
Evidence for repeat computed tomography (CT) in minor traumatic brain injury (mTBI) patients with intracranial pathology is scarce. The aim of this study was to investigate the utility of clinical cognitive assessment (COG) in defining the need for repeat imaging. COG performance was compared with findings on subsequent CT, and need for neurosurgery in mTBI patients (GCS 13-15 and positive CT findings). Of 152 patients, 65.8% received a COG (53.0% passed). Patients with passed COG underwent fewer repeat CT (43.4% vs. 78.7%; p = .001) and had shorter LOS (8.7 vs. 19.5; p < .05). Only 1 patient required neurosurgery after a passed COG. The negative predictive value of a normal COG was 90.6% (95%CI = 81.8%-95.4%). mTBI patients with an abnormal index CT who pass COG are less likely to undergo repeat CT head, and rarely require neurosurgery. The COG warrants further investigation to determine its role in omitting repeat head CT. Copyright © 2018 Elsevier Inc. All rights reserved.
Kobe, Isaac O; Qureshi, Mahmoud M; Hassan, Saidi; Oluoch-Olunya, David L
2017-12-01
The decision to order head CT scans to rule out clinically significant traumatic brain injury in mild head injury in children is made on the basis of clinical decision rules of which the Paediatric Emergency Care Applied Research Network (PECARN) CT head rules have been found to be most sensitive. The purpose of this study is to determine the proportion of head CT scans done for children with mild head injury and to determine disposition of patients from casualty after the introduction of PECARN head CT rules compared to the period before. The research question is "will introduction of the PECARN CT head rules reduce the proportion of head CT scans requested for children under 18 years with mild head injury at the AKUHN?" A before and after quasi experimental study with a study population including all children under 18 years presenting to the AKUHN with mild head injury and a Glasgow coma scale of 14 and above on presentation. Sample size was 85. A total of 42 patients files were analysed in the before study while 43 patients were selected for the after study. The median age was 5 years. The proportion of head CT scans reduced from 56% in the before group to 33% in the after group with no missed clinically significant traumatic brain injury. More patients were discharged home after evaluation in the after group (81%) than in the before group (58%). The number of head CT scans ordered reduced without missing any clinically significant traumatic brain injury.
Matsumoto, Hideyuki; Hamaguchi, Hirotoshi; Nakayama, Takahiro; Oda, Tetsuya; Ikagawa, Takashi; Imafuku, Ichiro
2008-02-01
On plain brain computed tomography (CT), it is difficult to evaluate stenosis of internal carotid artery (ICA) because ICA is surrounded by structures, even though we can observe calcification of carotid siphon in some patients by using bone condition. However the pathologic significance has not been well known. We studied the pathologic significance of carotid siphon calcification observed on bone condition of brain CT. A total of 112 patients who were diagnosed or suspected as cerebrovascular diseases were registered. We classified the calcification into four levels (none, mild, moderate, severe) based on the degree of calcification. Then we compared it with the degree of stenosis of carotid siphon seen on brain magnetic resonance angiography (MRA) and with max intima-medial thickness (IMT) from common carotid artery (CCA) to ICA on carotid ultrasonography. The mean +/- standard deviation of max IMT to none, mild, moderate and severe in the degree of calcification were 1.03 +/- 0.64 (0.4-2.8), 1.65 +/- 0.83 (0.5-4.1), 2.03 +/- 0.83 (0.8-4.1) and 2.81 +/- 1.15 (0.7-6.5) mm, respectively. The calcification on brain CT significantly correlated with the degree of stenosis on brain MRA and with max IMT on carotid ultrasonography. The calcification of carotid siphon on bone condition of brain CT correlated with stenosis of the same portion and atherosclerosis of CCA bifurcation. Recently, on DICOM viewer, clinicians can convert plain condition into bone condition on brain CT due to popularization of PACS. We should pay attention to calcification of carotid siphon in patients with ischemic cerebrovascular diseases because we can estimate the atherosclerosis of both carotid siphon and CCA bifurcation easily and immediately.
A combined MR and CT study for precise quantitative analysis of the avian brain
NASA Astrophysics Data System (ADS)
Jirak, Daniel; Janacek, Jiri; Kear, Benjamin P.
2015-10-01
Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds.
Tuning Up the Old Brain with New Tricks: Attention Training via Neurofeedback
Jiang, Yang; Abiri, Reza; Zhao, Xiaopeng
2017-01-01
Neurofeedback (NF) is a form of biofeedback that uses real-time (RT) modulation of brain activity to enhance brain function and behavioral performance. Recent advances in Brain-Computer Interfaces (BCI) and cognitive training (CT) have provided new tools and evidence that NF improves cognitive functions, such as attention and working memory (WM), beyond what is provided by traditional CT. More published studies have demonstrated the efficacy of NF, particularly for treating attention deficit hyperactivity disorder (ADHD) in children. In contrast, there have been fewer studies done in older adults with or without cognitive impairment, with some notable exceptions. The focus of this review is to summarize current success in RT NF training of older brains aiming to match those of younger brains during attention/WM tasks. We also outline potential future advances in RT brainwave-based NF for improving attention training in older populations. The rapid growth in wireless recording of brain activity, machine learning classification and brain network analysis provides new tools for combating cognitive decline and brain aging in older adults. We optimistically conclude that NF, combined with new neuro-markers (event-related potentials and connectivity) and traditional features, promises to provide new hope for brain and CT in the growing older population. PMID:28348527
[Non-operation management of 12 cases with brain abscess demonstrated by CT scan].
Long, J
1990-12-01
This paper reported 12 cases with brain abscess demonstrated by CT scan. Using antibiotic management without surgical intervention, in 10 cases the curative effects were satisfactory. The paper indicated that CT scan was very useful in prompt and correct diagnosis of brain abscess and with sequential CT scan medical therapy was feasible. It is significant in treatment of brain abscess especially for the patients who have a poor general condition, have the brain abscess located in important functional area or have multiple abscesses so that the operation is difficult for them.
Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung
2014-01-01
We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.
NASA Astrophysics Data System (ADS)
Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.
2018-02-01
The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.
Rau, Cheng-Shyuan; Liu, Hang-Tsung; Hsu, Shiun-Yuan; Cho, Tzu-Yu; Hsieh, Ching-Hua
2014-01-01
Objectives To provide an overview of the demographic characteristics of patients with positive blood alcohol concentration (BAC) and to investigate the performance of brain CT scans in these patients. Design Cross-sectional study. Setting Taiwan. Participants 2192 patients who had undergone a test for blood alcohol of 13 233 patients registered in the Trauma Registry System between 1 January 2009 and 31 December 2012. A BAC level of 50 mg/dL was defined as the cut-off value. Detailed information was retrieved from the patients with positive BAC (n=793) and was compared with information from those with a negative BAC (n=1399). Main outcome measures Glasgow Coma Scale (GCS) and Injury Severity Score (ISS) as well as the performance and findings of obtained brain CT scans. Results Patients with positive BAC had a higher rate of face injury, but a lower GCS score, a lower rate of head and neck injury, a lower ISS and New Injury Severity Score. Alcohol use was associated with a shorter length of hospital stay (8.6 vs 11.4 days, p=0.000) in patients with an ISS of <16. Of 496 patients with positive BAC who underwent brain CT, 164 (33.1%) showed positive findings on CT scan. In contrast, of 891 patients with negative BAC who underwent brain CT, 389 (43.7%) had positive findings on CT scan. The lower percentage of positive CT scan findings in patients with positive BAC was particularly evident in patients with an ISS <16 (18.0% vs 28.8%, p=0.001). Conclusions Patients who consumed alcohol tended to have a low GCS score and injuries that were less severe. However, given the significantly low percentage of positive findings, brain CT might be overused in these patients with less severe injuries. PMID:25361838
Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.
Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan
2014-08-01
We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo neuroimaging after minor head trauma. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan
2012-01-01
Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.
Majidi, Shahram; Rahim, Basit; Gilani, Sarwat I; Gilani, Waqas I; Adil, Malik M; Qureshi, Adnan I
2016-05-01
The evolution of intracerebral hematoma and perihematoma edema in the ultra-early period on computed tomographic (CT) scans in patients with intracerebral hemorrhage (ICH) is not well understood. We aimed to investigate hematoma and perihematoma changes in "neutral brain" models of ICH. One human and five goat cadaveric heads were used as "neutral brains" to provide physical properties of brain without any biological activity or new bleeding. ICH was induced by slow injection of 4 ml of fresh human blood into the right basal ganglia of the goat brains. Similarly, 20 ml of fresh blood was injected deep into the white matter of the human cadaver head in each hemisphere. Serial CT scans of the heads were obtained immediately after hematoma induction and then 1, 3, and 5 hours afterward. Analyze software (AnalyzeDirect, Overland Park, KS, USA) was used to measure hematoma and perihematoma hypodensity volumes in the baseline and follow-up CT scans. The initial hematoma volumes of 11.6 ml and 10.5 ml in the right and left hemispheres of the cadaver brains gradually decreased to 6.6 ml and 5.4 ml at 5 hours, showing 43% and 48% retraction of hematoma, respectively. The volume of the perihematoma hypodensity in the right and left hemisphere increased from 2.6 ml and 2.2 ml in the 1-hour follow-up CT scans to 4.9 ml and 4.4 ml in the 5-hour CT scan, respectively. Hematoma retraction was also observed in all five goat brains ICH models with the mean ICH volume decreasing from 1.49 ml at baseline scan to 1.01 ml at the 5-hour follow-up CT scan (29.6% hematoma retraction). Perihematoma hypodensity was visualized in 70% of ICH in goat brains, with an increasing mean hypodensity volume of 0.4 ml in the baseline CT scan to 0.8 ml in the 5-hour follow-up CT scan. Our study demonstrated that substantial hematoma retraction and perihematoma hypodensity occurs in ICH in the absence of any new bleeding or biological activity of surrounding brain. Such observations suggest that active bleeding is underestimated in patients with no or small hematoma expansion and our understanding of perihematoma hypodensity needs to be reconsidered. Copyright © 2015 by the American Society of Neuroimaging.
Effect of emergency department CT on neuroimaging case volume and positive scan rates.
Oguz, Kader Karli; Yousem, David M; Deluca, Tom; Herskovits, Edward H; Beauchamp, Norman J
2002-09-01
The authors performed this study to determine the effect a computed tomographic (CT) scanner in the emergency department (ED) has on neuroimaging case volume and positive scan rates. The total numbers of ED visits and neuroradiology CT scans requested from the ED were recorded for 1998 and 2000, the years before and after the installation of a CT unit in the ED. For each examination type (brain, face, cervical spine), studies were graded for major findings (those that affected patient care), minor findings, and normal findings. The CT utilization rates and positive study rates were compared for each type of study performed for both years. There was a statistically significant increase in the utilization rate after installation of the CT unit (P < .001). The fractions of studies with major findings, minor findings, and normal findings changed significantly after installation of the CT unit for facial examinations (P = .002) but not for brain (P = .12) or cervical spine (P = .24) examinations. In all types of studies, the percentage of normal examinations increased. In toto, there was a significant decrease in the positive scan rate after installation of the CT scanner (P = .004). After installation of a CT scanner in the ED, there was increased utilization and a decreased rate of positive neuroradiologic examinations, the latter primarily due to lower positive rates for facial CT scans.
Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin
2013-12-01
Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.
Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W
1992-01-01
The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.
Öğrenci, Ahmet; Koban, Orkun; Ekşi, Murat; Yaman, Onur; Dalbayrak, Sedat
2017-01-01
AIM: This study aimed to make a retrospective analysis of pediatric patients with head traumas that were admitted to one hospital setting and to make an analysis of the patients for whom follow-up CT scans were obtained. METHODS: Pediatric head trauma cases were retrospectively retrieved from the hospital’s electronic database. Patients’ charts, CT scans and surgical notes were evaluated by one of the authors. Repeat CT scans for operated patients were excluded from the total number of repeat CT scans. RESULTS: One thousand one hundred and thirty-eight pediatric patients were admitted to the clinic due to head traumas. Brain CT scan was requested in 863 patients (76%) in the cohort. Follow-up brain CT scans were obtained in 102 patients. Additional abnormal finding requiring surgical intervention was observed in only one patient (isolated 4th ventricle hematoma) on the control CTs (1% of repeat CT scans), who developed obstructive hydrocephalus. None of the patients with no more than 1 cm epidural hematoma in its widest dimension and repeat CT scans obtained 1.5 hours after the trauma necessitated surgery. CONCLUSION: Follow-up CT scans changed clinical approach in only one patient in the present series. When ordering CT scan in the follow-up of pediatric traumas, benefits and harms should be weighted based upon time interval from trauma onset to initial CT scan and underlying pathology. PMID:29104682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; McMillan, K
2015-06-15
Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimationmore » of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.« less
Serum metabolites associate with CT findings following TBI.
Dickens, Alex Mountfort; Posti, Jussi P; Takala, Riikka Sk; Ala-Seppälä, Henna Maria; Mattila, Ismo; Coles, Jonathan Coles; Frantzén, Janek; Hutchinson, Peter John; Katila, Ari J; Kyllönen, Anna; Maanpää, Henna-Riikka; Newcombe, Virginia; Outtrim, Joanne; Tallus, Jussi; Carpenter, Keri; Menon, David; Hyotylainen, Tuulia; Tenovuo, Olli; Oresic, Matej
2018-06-27
There is a need to rapidly detect patients with traumatic brain injury (TBI) who require head computed tomography (CT). Given the energy crisis in the brain following TBI, we hypothesized that serum metabolomics would be a useful tool for developing a set of biomarkers to determine the need for CT and to distinguish between different types of injuries observed. Logistic regression models using metabolite data from the discovery cohort (n=144, Turku, Finland) were used to distinguish between patients with traumatic intracranial findings and negative findings on head CT. The resultant models were then tested in the validation cohort (n=66, Cambridge, UK). The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 were also quantified in the serum from the same patients. Despite there being significant differences in the protein biomarkers in patients with TBI, the model that determined the need for a CT scan validated poorly (AUC=0.64: Cambridge patients). However, using a combination of six metabolites (two amino acids, three sugar derivatives and one ketoacid) it was possible to discriminate patients with intracranial abnormalities on CT and patients with a normal CT (AUC=0.77 in Turku patients and AUC=0.73 in Cambridge patients). Furthermore, a combination of three metabolites could distinguish between diffuse brain injuries and mass lesions (AUC=0.87 in Turku patients and AUC=0.68 in Cambridge patients). This study identifies a set of validated serum polar metabolites, which associate with the need for a CT scan. Additionally, serum metabolites can also predict the nature of the brain injury. These metabolite markers may prevent unnecessary CT scans, thus reducing the cost of diagnostics and radiation load.
Utility of 68Ga-PSMA-11 PET/CT in Imaging of Glioma-A Pilot Study.
Sasikumar, Arun; Kashyap, Raghava; Joy, Ajith; Charan Patro, Kanhu; Bhattacharya, Parthasarathy; Reddy Pilaka, Venkata Krishna; Oommen, Karuna Elza; Pillai, Maroor Raghavan Ambikalmajan
2018-06-22
Imaging of gliomas remains challenging. The aim of the study was to assess the feasibility of using Ga-PSMA-11 PET/CT for imaging gliomas. Fifteen patients with glioma from 2 centers were included in the study. Ten patients were treated cases of glioblastoma with suspected recurrence. Two patients were sent for assessing the nature (primary lesion/metastasis) of space-occupying lesion in the brain; 3 patients were imaged immediately after surgery and before radiotherapy. Target-to-background ratios (TBR) for the brain lesions were calculated using contralateral cerebellar uptake as background. Among the 10 cases with suspected recurrence, scan was positive in 9, subsequent surgery was done, and histopathology proved it to be true recurrence. In the scan-negative case on follow-up, no evidence of disease could be made clinically or radiologically. Among the other cases the presence or absence of disease could be unequivocally identified on the Ga-PSMA-11 brain scan and correlated with the histopathology or other imaging. Apart from the visual assessment quantitative assessment of the lesions with TBR also showed a significantly high TBR value for those with true disease compared with those with no disease. In the evaluation of gliomas, Ga-PSMA-11 PET/CT brain imaging is a potentially useful imaging tool. The use of Ga-PSMA-11 brain PET/CT in evaluation of recurrent glioma seems promising. Absence of physiological uptake of Ga-PSMA-11 in the normal brain parenchyma results in high TBR values and consequently better visualization of glioma lesions.
Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alva-Sánchez, Héctor, E-mail: halva@ciencias.unam.mx; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka
In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guidemore » provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.« less
Patient dose estimation from CT scans at the Mexican National Neurology and Neurosurgery Institute
NASA Astrophysics Data System (ADS)
Alva-Sánchez, Héctor; Reynoso-Mejía, Alberto; Casares-Cruz, Katiuzka; Taboada-Barajas, Jesús
2014-11-01
In the radiology department of the Mexican National Institute of Neurology and Neurosurgery, a dedicated institute in Mexico City, on average 19.3 computed tomography (CT) examinations are performed daily on hospitalized patients for neurological disease diagnosis, control scans and follow-up imaging. The purpose of this work was to estimate the effective dose received by hospitalized patients who underwent a diagnostic CT scan using typical effective dose values for all CT types and to obtain the estimated effective dose distributions received by surgical and non-surgical patients. Effective patient doses were estimated from values per study type reported in the applications guide provided by the scanner manufacturer. This retrospective study included all hospitalized patients who underwent a diagnostic CT scan between 1 January 2011 and 31 December 2012. A total of 8777 CT scans were performed in this two-year period. Simple brain scan was the CT type performed the most (74.3%) followed by contrasted brain scan (6.1%) and head angiotomography (5.7%). The average number of CT scans per patient was 2.83; the average effective dose per patient was 7.9 mSv; the mean estimated radiation dose was significantly higher for surgical (9.1 mSv) than non-surgical patients (6.0 mSv). Three percent of the patients had 10 or more brain CT scans and exceeded the organ radiation dose threshold set by the International Commission on Radiological Protection for deterministic effects of the eye-lens. Although radiation patient doses from CT scans were in general relatively low, 187 patients received a high effective dose (>20 mSv) and 3% might develop cataract from cumulative doses to the eye lens.
Park, Joon Bum; Choi, Hyuk Joong; Lee, Jeong Hun; Kang, Bo Seung
2013-08-01
We examined the potential of the iPad 2 as a teleradiologic tool for evaluating brain computed tomography (CT) with subtle hemorrhage in the conventional lighting conditions which are common situations in the remote CT reading. The comparison of the clinician's performance was undertaken through detecting hemorrhage by the iPad 2 and the clinical liquid crystal display (LCD) monitor. We selected 100 brain CT exams performed for head trauma or headache. Fifty had subtle radiological signs of intracranial hemorrhage (ICH), while the other 50 showed no significant abnormality. Five emergency medicine physicians reviewed these brain CT scans using the iPad 2 and the LCD monitor, scoring the probability of ICH on each exam on a five-point scale. Result showed high sensitivities and specificities in both devices. We generated receiver operating characteristic curves and calculated the average area under the curve of the iPad 2 and the LCD (0.935 and 0.900). Using the iPad 2 and reliable internet connectivity, clinicians can provide remote evaluation of brain CT with subtle hemorrhage under suboptimal viewing condition. Considering the distinct advantages of the iPad 2, the popular out-of-hospital use of mobile CT teleradiology would be anticipated soon.
Scheel, Christian; Rotarska-Jagiela, Anna; Schilbach, Leonhard; Lehnhardt, Fritz G; Krug, Barbara; Vogeley, Kai; Tepest, Ralf
2011-09-15
Cortical thickness (CT) changes possibly contribute to the complex symptomatology of autism. The aberrant developmental trajectories underlying such differences in certain brain regions and their continuation in adulthood are a matter of intense debate. We studied 28 adults with high-functioning autism (HFA) and 28 control subjects matched for age, gender, IQ and handedness. A surface-based whole brain analysis utilizing FreeSurfer was employed to detect CT differences between the two diagnostic groups and to investigate the time course of age-related changes. Direct comparison with control subjects revealed thinner cortex in HFA in the posterior superior temporal sulcus (pSTS) of the left hemisphere. Considering the time course of CT development we found clusters around the pSTS and cuneus in the left and the paracentral lobule in the right hemisphere to be thinner in HFA with comparable age-related slopes in patients and controls. Conversely, we found clusters around the supramarginal gyrus and inferior parietal lobule (IPL) in the left and the precentral and postcentral gyrus in the right hemisphere to be thinner in HFA, but with different age-related slopes in patients and controls. In the latter regions CT showed a steady decrease in controls but no analogous thinning in HFA. CT analyses contribute in characterizing neuroanatomical correlates of HFA. Reduced CT is present in brain regions involved in social cognition. Furthermore, our results demonstrate that aberrant brain development leading to such differences is proceeding throughout adulthood. Discrepancies in prior morphometric studies may be induced by the complex time course of cortical changes. Copyright © 2011 Elsevier Inc. All rights reserved.
Yang, Xiao-Feng; Meng, Yuan-Yuan; Wen, Liang; Wang, Hao
2017-09-01
Computed tomography (CT) provides the primary diagnostic evidence for traumatic brain injury (TBI), but few positive traumatic findings are discovered in patients with mild TBI. In China, there are no existing criteria for selecting patients with mild TBI to undergo CT, and almost all of these patients undergo cranial CT in the emergency department. This retrospective study was performed to evaluate the necessity of cranial CT among patients with mild TBI, as well as the feasibility of 2 popular criteria (Canadian CT head rule [CCHR] and New Orleans Criteria [NOC]) in China. Patients with mild TBI who underwent cranial CT within 24 hours of the trauma were included in our institute. Two neurosurgeons reviewed the CT images independently to identify positive CT findings. The sensitivity and specificity of CCHR and NOC for positive CT findings related to TBI were analyzed. Finally, this study included 625 patients. Positive CT findings related to TBI were discovered in 13.12% (82/625) of these patients on cranial CT, and 6.88% (43/625) of them were admitted to the hospital for further management. Ultimately, 11 patients (1.76%, 11/625) underwent neurosurgery. In this study, the sensitivities of both the CCHR and NOC were 100%, but the specificity of CCHR was 43.36% and that of NOC was 33.12%. Based on our study, both CCHR and NOC have high sensitivity for the detection of positive CT findings related to head trauma in patients with mild TBI.
Gimbel, Ronald W; Pirrallo, Ronald G; Lowe, Steven C; Wright, David W; Zhang, Lu; Woo, Min-Jae; Fontelo, Paul; Liu, Fang; Connor, Zachary
2018-03-12
The frequency of head computed tomography (CT) imaging for mild head trauma patients has raised safety and cost concerns. Validated clinical decision rules exist in the published literature and on-line sources to guide medical image ordering but are often not used by emergency department (ED) clinicians. Using simulation, we explored whether the presentation of a clinical decision rule (i.e. Canadian CT Head Rule - CCHR), findings from malpractice cases related to clinicians not ordering CT imaging in mild head trauma cases, and estimated patient out-of-pocket cost might influence clinician brain CT ordering. Understanding what type and how information may influence clinical decision making in the ordering advanced medical imaging is important in shaping the optimal design and implementation of related clinical decision support systems. Multi-center, double-blinded simulation-based randomized controlled trial. Following standardized clinical vignette presentation, clinicians made an initial imaging decision for the patient. This was followed by additional information on decision support rules, malpractice outcome review, and patient cost; each with opportunity to modify their initial order. The malpractice and cost information differed by assigned group to test the any temporal relationship. The simulation closed with a second vignette and an imaging decision. One hundred sixteen of the 167 participants (66.9%) initially ordered a brain CT scan. After CCHR presentation, the number of clinicians ordering a CT dropped to 76 (45.8%), representing a 21.1% reduction in CT ordering (P = 0.002). This reduction in CT ordering was maintained, in comparison to initial imaging orders, when presented with malpractice review information (p = 0.002) and patient cost information (p = 0.002). About 57% of clinicians changed their order during study, while 43% never modified their imaging order. This study suggests that ED clinician brain CT imaging decisions may be influenced by clinical decision support rules, patient out-of-pocket cost information and findings from malpractice case review. NCT03449862 , February 27, 2018, Retrospectively registered.
Matsumoto, Hideyuki; Terao, Yasuo; Yugeta, Akihiro; Fukuda, Hideki; Emoto, Masaki; Furubayashi, Toshiaki; Okano, Tomoko; Hanajima, Ritsuko; Ugawa, Yoshikazu
2011-01-01
The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT) images and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects' ocular fixation positions were recorded using an eye-tracking device (Eyelink 1000). Heat maps were created based on the eye-fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI) was likewise compared between the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents. Both neurologists and control subjects used the “bottom-up salience” form of visual attention, although the neurologists more effectively used the “top-down instruction” form. PMID:22174928
Aouadi, Souha; Vasic, Ana; Paloor, Satheesh; Torfeh, Tarraf; McGarry, Maeve; Petric, Primoz; Riyas, Mohamed; Hammoud, Rabih; Al-Hammadi, Noora
2017-10-01
To create a synthetic CT (sCT) from conventional brain MRI using a patch-based method for MRI-only radiotherapy planning and verification. Conventional T1 and T2-weighted MRI and CT datasets from 13 patients who underwent brain radiotherapy were included in a retrospective study whereas 6 patients were tested prospectively. A new contribution to the Non-local Means Patch-Based Method (NMPBM) framework was done with the use of novel multi-scale and dual-contrast patches. Furthermore, the training dataset was improved by pre-selecting the closest database patients to the target patient for computation time/accuracy balance. sCT and derived DRRs were assessed visually and quantitatively. VMAT planning was performed on CT and sCT for hypothetical PTVs in homogeneous and heterogeneous regions. Dosimetric analysis was done by comparing Dose Volume Histogram (DVH) parameters of PTVs and organs at risk (OARs). Positional accuracy of MRI-only image-guided radiation therapy based on CBCT or kV images was evaluated. The retrospective (respectively prospective) evaluation of the proposed Multi-scale and Dual-contrast Patch-Based Method (MDPBM) gave a mean absolute error MAE=99.69±11.07HU (98.95±8.35HU), and a Dice in bones DI bone =83±0.03 (0.82±0.03). Good agreement with conventional planning techniques was obtained; the highest percentage of DVH metric deviations was 0.43% (0.53%) for PTVs and 0.59% (0.75%) for OARs. The accuracy of sCT/CBCT or DRR sCT /kV images registration parameters was <2mm and <2°. Improvements with MDPBM, compared to NMPBM, were significant. We presented a novel method for sCT generation from T1 and T2-weighted MRI potentially suitable for MRI-only external beam radiotherapy in brain sites. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki
2014-01-01
The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.
Effects of anesthetic protocol on normal canine brain uptake of 18F-FDG assessed by PET/CT.
Lee, Min Su; Ko, Jeff; Lee, Ah Ra; Lee, In Hye; Jung, Mi Ae; Austin, Brenda; Chung, Hyunwoo; Nahm, Sangsoep; Eom, Kidong
2010-01-01
The purpose of this study was to assess the effects of four anesthetic protocols on normal canine brain uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) using positron emission tomography/computed tomography (PET/CT). Five clinically normal beagle dogs were anesthetized with (1) propofol/isoflurane, (2) medetomidine/pentobarbital, (3) xylazine/ketamine, and (4) medetomidine/tiletamine-zolazepam in a randomized cross-over design. The standard uptake value (SUV) of FDG was obtained in the frontal, parietal, temporal and occipital lobes, cerebellum, brainstem and whole brain, and compared within and between anesthetic protocols using the Friedman test with significance set at P < 0.05. Significant differences in SUVs were observed in various part of the brain associated with each anesthetic protocol. The SUV for the frontal and occipital lobes was significantly higher than in the brainstem in all dogs. Dogs receiving medetomidine/tiletamine-zolazepam also had significantly higher whole brain SUVs than the propofol/isoflurane group. We concluded that each anesthetic protocol exerted a different regional brain glucose uptake pattern. As a result, when comparing brain glucose uptake using PET/CT, one should consider the effects of anesthetic protocols on different regions of the glucose uptake in the dog's brain.
The role of 99Tcm-HMPAO brain SPET in paediatric traumatic brain injury.
Goshen, E; Zwas, S T; Shahar, E; Tadmor, R
1996-05-01
Twenty-eight paediatric patients suffering from chronic sequelae of traumatic brain injury (TBI) were examined by EEG, radionuclide imaging with 99Tcm-hexamethylpropyleneamine oxime (99Tcm-HMPAO), computed tomography (CT) and, when available, magnetic resonance imaging (MRI), the results of which were evaluated retrospectively. Our findings indicate that neuro-SPET (single photon emission tomography) with 99Tcm-HMPAO is more sensitive than morphological or electrophysiological tests in detecting functional lesions. In our group, 15 of 32 CT scans were normal, compared with 3 of 35 SPET studies. SPET identified approximately 2.5 times more lesions than CT (86 vs 34). SPET was found to be particularly sensitive in detecting organic abnormalities in the basal ganglia and cerebellar regions, with a 3.6:1 detection rate in the basal ganglia and a 5:1 detection rate in the cerebellum compared with CT. In conclusion, neuro-SPET appears to be very useful when evaluating paediatric post-TBI patients in whom other modalities are not successful.
Joseph, Bellal; Friese, Randall S; Sadoun, Moutamn; Aziz, Hassan; Kulvatunyou, Narong; Pandit, Viraj; Wynne, Julie; Tang, Andrew; O'Keeffe, Terence; Rhee, Peter
2014-04-01
It is becoming a standard practice that any "positive" identification of a radiographic intracranial injury requires transfer of the patient to a trauma center for observation and repeat head computed tomography (RHCT). The purpose of this study was to define guidelines-based on each patient's history, physical examination, and initial head CT findings-regarding which patients require a period of observation, RHCT, or neurosurgical consultation. In our retrospective cohort analysis, we reviewed the records of 3,803 blunt traumatic brain injury patients during a 4-year period. We classified patients according to neurologic examination results, use of intoxicants, anticoagulation status, and initial head CT findings. We then developed brain injury guidelines (BIG) based on the individual patient's need for observation or hospitalization, RHCT, or neurosurgical consultation. A total of 1,232 patients had an abnormal head CT finding. In the BIG 1 category, no patients worsened clinically or radiographically or required any intervention. BIG 2 category had radiographic worsening in 2.6% of the patients. All patients who required neurosurgical intervention (13%) were in BIG 3. There was excellent agreement between assigned BIG and verified BIG. κ statistic is equal to 0.98. We have proposed BIG based on patient's history, neurologic examination, and findings of initial head CT scan. These guidelines must be used as supplement to good clinical examination while managing patients with traumatic brain injury. Prospective validation of the BIG is warranted before its widespread implementation. Epidemiologic study, level III.
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
Jain, Tarun Kumar; Karunanithi, Sellam; Sharma, Punit; Vijay, Maneesh Kumar; Ballal, Sanjana; Bal, Chandrasekhar
2014-11-01
Isolated asymptomatic brain metastasis in papillary carcinoma thyroid (PCT) is extremely rare. We here present such a case of a 48-year-old woman with PCT. SPECT/CT localized the 131I radiotracer concentration seen on whole-body scan in this patient to the right posterior parietal cortex, suggesting brain metastasis. Contrast-enhanced MRI and 18F-FDG PET/CT confirmed the diagnosis and the patient was taken for gamma-knife radiosurgery. 131I SPECT/CT in this case accurately restaged the patient by detecting asymptomatic isolated brain metastasis and correctly directed the management strategy.
Calculation of Organ Doses for a Large Number of Patients Undergoing CT Examinations.
Bahadori, Amir; Miglioretti, Diana; Kruger, Randell; Flynn, Michael; Weinmann, Sheila; Smith-Bindman, Rebecca; Lee, Choonsik
2015-10-01
The objective of our study was to develop an automated calculation method to provide organ dose assessment for a large cohort of pediatric and adult patients undergoing CT examinations. We adopted two dose libraries that were previously published: the volume CT dose index-normalized organ dose library and the tube current-exposure time product (100 mAs)-normalized weighted CT dose index library. We developed an algorithm to calculate organ doses using the two dose libraries and the CT parameters available from DICOM data. We calculated organ doses for pediatric (n = 2499) and adult (n = 2043) CT examinations randomly selected from four health care systems in the United States and compared the adult organ doses with the values calculated from the ImPACT calculator. The median brain dose was 20 mGy (pediatric) and 24 mGy (adult), and the brain dose was greater than 40 mGy for 11% (pediatric) and 18% (adult) of the head CT studies. Both the National Cancer Institute (NCI) and ImPACT methods provided similar organ doses (median discrepancy < 20%) for all organs except the organs located close to the scanning boundaries. The visual comparisons of scanning coverage and phantom anatomies revealed that the NCI method, which is based on realistic computational phantoms, provides more accurate organ doses than the ImPACT method. The automated organ dose calculation method developed in this study reduces the time needed to calculate doses for a large number of patients. We have successfully used this method for a variety of CT-related studies including retrospective epidemiologic studies and CT dose trend analysis studies.
... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...
Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.
2016-01-01
The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298
Cattalani, Andrea; Grasso, Vincenzo Maria; Vitali, Matteo; Gallesio, Ivan; Magrassi, Lorenzo; Barbanera, Andrea
2017-11-01
The incidence of chronic Subdural hematoma (cSDH) is increasing and its rate of recurrence varies from 5 to 33%. A postoperative brain midline-shift (MLS) on computed tomography (CT) equal or larger than 5mm is a risk factor for recurrence. Transcranial color-coded duplex sonography (TCCDS) is a noninvasive bedside reproducible technique useful to detect MLS. The aim of our study was to compare in patients affected by cSDH, the values of MLS obtained pre- and post-operatively by TCCDS and brain CT. 32 patients affected by cSDH entered the study between July 2016 and January 2017. MLS values obtained by TCCDS and brain CT were compared using Bland-Altman plot and linear regression analysis. Using the same techniques we also explored if the agreement between the two imaging modes was comparable in pre- and post-operative data pairs. 64 data pairs of MLS values obtained by TCCDS and CT were analysed. Bland-Altman diagrams did not show any systematic bias of the data and linear regression indicated a significant correlation between the two measures both before and after hematoma evacuation. In patients affected by cSDH, MLS values obtained before and after surgery by TCCDS are comparable to those obtained by CT; TCCDS might be considered an alternative to CT scan in the management of patients after cSDH evacuation. We suggest that close clinical bedside examination and TCCDS might be appropriate for the post-operative management of cSDH, reserving CT scan only to patients with overt clinical deterioration and/or increasing MLS. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of routine cerebral CT angiography on treatment decisions in infective endocarditis.
Meshaal, Marwa Sayed; Kassem, Hussein Heshmat; Samir, Ahmad; Zakaria, Ayman; Baghdady, Yasser; Rizk, Hussein Hassan
2015-01-01
Infective endocarditis (IE) is commonly complicated by cerebral embolization and hemorrhage secondary to intracranial mycotic aneurysms (ICMAs). These complications are associated with poor outcome and may require diagnostic and therapeutic plans to be modified. However, routine screening by brain CT and CT angiography (CTA) is not standard practice. We aimed to study the impact of routine cerebral CTA on treatment decisions for patients with IE. From July 2007 to December 2012, we prospectively recruited 81 consecutive patients with definite left-sided IE according to modified Duke's criteria. All patients had routine brain CTA conducted within one week of admission. All patients with ICMA underwent four-vessel conventional angiography. Invasive treatment was performed for ruptured aneurysms, aneurysms ≥ 5 mm, and persistent aneurysms despite appropriate therapy. Surgical clipping was performed for leaking aneurysms if not amenable to intervention. The mean age was 30.43 ± 8.8 years and 60.5% were males. Staph aureus was the most common organism (32.3%). Among the patients, 37% had underlying rheumatic heart disease, 26% had prosthetic valves, 23.5% developed IE on top of a structurally normal heart and 8.6% had underlying congenital heart disease. Brain CT/CTA revealed that 51 patients had evidence of cerebral embolization, of them 17 were clinically silent. Twenty-six patients (32%) had ICMA, of whom 15 were clinically silent. Among the patients with ICMAs, 11 underwent endovascular treatment and 2 underwent neurovascular surgery. The brain CTA findings prompted different treatment choices in 21 patients (25.6%). The choices were aneurysm treatment before cardiac surgery rather than at follow-up, valve replacement by biological valve instead of mechanical valve, and withholding anticoagulation in patients with prosthetic valve endocarditis for fear of aneurysm rupture. Routine brain CT/CTA resulted in changes in the treatment plan in a significant proportion of patients with IE, even those without clinically evident neurological disease. Routine brain CT/CTA may be indicated in all hospitalized patients with IE.
Study Finds Small Increase in Cancer Risk after Childhood CT Scans
A study published in the June 6, 2012, issue of The Lancet shows that radiation exposure from computed tomography (CT) scans in childhood results in very small but increased risks of leukemia and brain tumors in the first decade after exposure.
Paradis, Eric; Cao, Yue; Lawrence, Theodore S; Tsien, Christina; Feng, Mary; Vineberg, Karen; Balter, James M
2015-12-01
The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dose metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: -0.1 to 0.2%) for D(95%); 0.0% (-0.7 to 0.6%) for D(5%); and -0.2% (-1.0 to 0.2%) for D(max). MRCT plans showed no significant changes in monitor units (-0.4%) compared to CT plans. Organs at risk (OARs) had average D(max) differences of 0.0 Gy (-2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paradis, Eric, E-mail: eparadis@umich.edu; Cao, Yue; Department of Radiology, University of Michigan Hospital and Health Systems, Ann Arbor, Michigan
2015-12-01
Purpose: The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. Methods and Materials: A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dosemore » metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Results: Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: −0.1 to 0.2%) for D{sub 95%}; 0.0% (−0.7 to 0.6%) for D{sub 5%}; and −0.2% (−1.0 to 0.2%) for D{sub max}. MRCT plans showed no significant changes in monitor units (−0.4%) compared to CT plans. Organs at risk (OARs) had average D{sub max} differences of 0.0 Gy (−2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Conclusions: Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions.« less
Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice
2014-06-01
Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P < 0.01) on posterior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P < 0.05) on the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.
Meulepas, Johanna M; Ronckers, Cécile M; Smets, Anne M J B; Nievelstein, Rutger A J; Jahnen, Andreas; Lee, Choonsik; Kieft, Mariëtte; Laméris, Johan S; van Herk, Marcel; Greuter, Marcel J W; Jeukens, Cécile R L P N; van Straten, Marcel; Visser, Otto; van Leeuwen, Flora E; Hauptmann, Michael
2014-04-01
Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
Deep 3D convolution neural network for CT brain hemorrhage classification
NASA Astrophysics Data System (ADS)
Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.
2018-02-01
Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition
Imaging Characteristics of Children with Auditory Neuropathy Spectrum Disorder
Roche, Joseph P.; Huang, Benjamin Y.; Castillo, Mauricio; Bassim, Marc K.; Adunka, Oliver F.; Buchman, Craig A.
2013-01-01
Objective To identify and define the imaging characteristics of children with auditory neuropathy spectrum disorder (ANSD). Design Retrospective medical records review and analysis of both temporal bone computed tomography (CT) and magnetic resonance images (MRI) in from children with the diagnosis of ANSD. Setting Tertiary referral center. Patients 118 children with the electrophysiological characteristics of ANSD with available imaging studies for review. Interventions Two neuroradiologists and a neurotologist reviewed each study and consensus descriptions were established. Main outcome measures The type and number of imaging findings were tabulated. Results Sixty-eight (64%) MRIs revealed at least one imaging abnormality while selective use of CT identified 23 (55%) with anomalies. The most prevalent MRI findings included cochlear nerve deficiency (n=51; 28% of 183 nerves), brain abnormalities (n=42; 40% of 106 brains) and prominent temporal horns (n=33, 16% of 212 temporal lobes). The most prevalent CT finding from selective use of CT was cochlear dysplasia (n=13; 31%). Conclusions MRI will identify many abnormalities in children with ANSD that are not readily discernable on CT. Specifically, both developmental and acquired abnormalities of the brain, posterior cranial fossa, and cochlear nerves are not uncommonly seen in this patient population. Inner ear anomalies are well delineated using either imaging modality. Since many of the central nervous system findings identified in this study using MRI can alter the treatment and prognosis for these children, we believe that MRI should be the initial imaging study of choice for children with ANSD. PMID:20593543
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obeid, L; Esteve, F; Adam, J
2014-06-15
Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0more » and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval.« less
Mapping the stability of human brain asymmetry across five sex-chromosome aneuploidies.
Lin, Amy; Clasen, Liv; Lee, Nancy Raitano; Wallace, Gregory L; Lalonde, Francois; Blumenthal, Jonathan; Giedd, Jay N; Raznahan, Armin
2015-01-07
The human brain displays stereotyped and early emerging patterns of cortical asymmetry in health. It is unclear if these asymmetries are highly sensitive to genetic and environmental variation or fundamental features of the brain that can survive severe developmental perturbations. To address this question, we mapped cortical thickness (CT) asymmetry in a group of genetically defined disorders known to impact CT development. Participants included 137 youth with one of five sex-chromosome aneuploidies [SCAs; XXX (n = 28), XXY (n = 58), XYY (n = 26), XXYY (n = 20), and XXXXY (n = 5)], and 169 age-matched typically developing controls (80 female). In controls, we replicated previously reported rightward inferior frontal and leftward lateral parietal CT asymmetry. These opposing frontoparietal CT asymmetries were broadly preserved in all five SCA groups. However, we also detected foci of shifting CT asymmetry with aneuploidy, which fell almost exclusively within regions of significant CT asymmetry in controls. Specifically, X-chromosome aneuploidy accentuated normative rightward inferior frontal asymmetries, while Y-chromosome aneuploidy reversed normative rightward medial prefrontal and lateral temporal asymmetries. These findings indicate that (1) the stereotyped normative pattern of opposing frontoparietal CT asymmetry arises from developmental mechanisms that can withstand gross chromosomal aneuploidy and (2) X and Y chromosomes can exert focal, nonoverlapping and directionally opposed influences on CT asymmetry within cortical regions of significant asymmetry in health. Our study attests to the resilience of developmental mechanisms that support the global patterning of CT asymmetry in humans, and motivates future research into the molecular bases and functional consequences of sex chromosome dosage effects on CT asymmetry. Copyright © 2015 the authors 0270-6474/15/350140-06$15.00/0.
Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.
Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H
2010-07-20
We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.
Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation.
Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George
2013-01-08
We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a 'false-negative' result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death.
Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation
Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George
2013-01-01
We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a ‘false-negative’ result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death. PMID:23302550
Computed tomography and clinical outcome in patients with severe traumatic brain injury.
Stenberg, Maud; Koskinen, Lars-Owe D; Jonasson, Per; Levi, Richard; Stålnacke, Britt-Marie
2017-01-01
To study: (i) acute computed tomography (CT) characteristics and clinical outcome; (ii) clinical course and (iii) Corticosteroid Randomisation after Significant Head Injury acute calculator protocol (CRASH) model and clinical outcome in patients with severe traumatic brain injury (sTBI). Initial CT (CT i ) and CT 24 hours post-trauma (CT 24 ) were evaluated according to Marshall and Rotterdam classifications. Rancho Los Amigos Cognitive Scale-Revised (RLAS-R) and Glasgow Outcome Scale Extended (GOSE) were assessed at three months and one year post-trauma. The prognostic value of the CRASH model was evaluated. Thirty-seven patients were included. Marshall CT i and CT 24 were significantly correlated with RLAS-R at three months. Rotterdam CT 24 was significantly correlated with GOSE at three months. RLAS-R and the GOSE improved significantly from three months to one year. CRASH predicted unfavourable outcome at six months for 81% of patients with bad outcome and for 85% of patients with favourable outcome according to GOSE at one year. Neither CT nor CRASH yielded clinically useful predictions of outcome at one year post-injury. The study showed encouragingly many instances of significant recovery in this population of sTBI. The combination of lack of reliable prognostic indicators and favourable outcomes supports the case for intensive acute management and rehabilitation as the default protocol in the cases of sTBI.
Fischer, J A; Tobler, P H; Kaufmann, M; Born, W; Henke, H; Cooper, P E; Sagar, S M; Martin, J B
1981-12-01
Immunoreactive calcitonin (CT), indistinguishable from human CT-(1-32) and its sulfoxide, has been identified in extracts of the hypothalamus, the pituitary, and the thyroid obtained from human subjects at autopsy. DCT concentrations were highest in a region encompassing the posterior hypothalamus, the median eminence, and the pituitary; intermediate in the substantia nigra, the anterior hypothalamus, the globus pallidus, and the inferior colliculus; and low in the caudate nucleus, the hippocampus, the amygdala, and the cerebral and cerebellar cortices. Specific CT binding measured with 125I-labeled salmon CT was highest in homogenates of the posterior hypothalamus and the median eminence, shown to contain the highest concentrations of endogenous CT in the brain; CT binding was less than 12% of hypothalamic binding in all of the other regions of the brain examined and was negligible in the pituitary. Half-maximal binding was achieved with 0.1 nM nonradioactive salmon CT-(1-32), and the binding was directed to structural or conformational sites, or both, in the COOH-terminal half of salmon CT. The rank order of the inhibition of the binding by CT from different species and analogues of the human hormone was the same as in receptors on a human lymphoid cell line (Moran, J., Hunziker, W. & Fischer, J. A. (1978) Proc. Natl. Acad. Sci. USA 75, 3984-3988). The functional role of CT and of its binding sites in the brain remains to be elucidated.
Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J
2016-10-01
To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.
Kivisaari, Riku; Svensson, Mikael; Skrifvars, Markus B.
2017-01-01
Background Traumatic brain injury (TBI) is a major contributor to morbidity and mortality. Computerized tomography (CT) scanning of the brain is essential for diagnostic screening of intracranial injuries in need of neurosurgical intervention, but may also provide information concerning patient prognosis and enable baseline risk stratification in clinical trials. Novel CT scoring systems have been developed to improve current prognostic models, including the Stockholm and Helsinki CT scores, but so far have not been extensively validated. The primary aim of this study was to evaluate the Stockholm and Helsinki CT scores for predicting functional outcome, in comparison with the Rotterdam CT score and Marshall CT classification. The secondary aims were to assess which individual components of the CT scores best predict outcome and what additional prognostic value the CT scoring systems contribute to a clinical prognostic model. Methods and findings TBI patients requiring neuro-intensive care and not included in the initial creation of the Stockholm and Helsinki CT scoring systems were retrospectively included from prospectively collected data at the Karolinska University Hospital (n = 720 from 1 January 2005 to 31 December 2014) and Helsinki University Hospital (n = 395 from 1 January 2013 to 31 December 2014), totaling 1,115 patients. The Marshall CT classification and the Rotterdam, Stockholm, and Helsinki CT scores were assessed using the admission CT scans. Known outcome predictors at admission were acquired (age, pupil responsiveness, admission Glasgow Coma Scale, glucose level, and hemoglobin level) and used in univariate, and multivariable, regression models to predict long-term functional outcome (dichotomizations of the Glasgow Outcome Scale [GOS]). In total, 478 patients (43%) had an unfavorable outcome (GOS 1–3). In the combined cohort, overall prognostic performance was more accurate for the Stockholm CT score (Nagelkerke’s pseudo-R2 range 0.24–0.28) and the Helsinki CT score (0.18–0.22) than for the Rotterdam CT score (0.13–0.15) and Marshall CT classification (0.03–0.05). Moreover, the Stockholm and Helsinki CT scores added the most independent prognostic value in the presence of other known clinical outcome predictors in TBI (6% and 4%, respectively). The aggregate traumatic subarachnoid hemorrhage (tSAH) component of the Stockholm CT score was the strongest predictor of unfavorable outcome. The main limitations were the retrospective nature of the study, missing patient information, and the varying follow-up time between the centers. Conclusions The Stockholm and Helsinki CT scores provide more information on the damage sustained, and give a more accurate outcome prediction, than earlier classification systems. The strong independent predictive value of tSAH may reflect an underrated component of TBI pathophysiology. A change to these newer CT scoring systems may be warranted. PMID:28771476
Methionine PET/CT Studies In Patients With Cancer
2018-06-15
Brain Tumors and/or Solid Tumors Including; Brain Stem Glioma; High Grade CNS Tumors; Ependymoma; Medulloblastoma; Craniopharyngioma; Low Grade CNS Tumors; Hodgkin Lymphoma; Non Hodgkin Lymphoma; Ewing Sarcoma; Osteosarcoma; Rhabdomyosarcoma; Neuroblastoma; Other
Larsson, Anne; Johansson, Adam; Axelsson, Jan; Nyholm, Tufve; Asklund, Thomas; Riklund, Katrine; Karlsson, Mikael
2013-02-01
The aim of this study was to evaluate MR-based attenuation correction of PET emission data of the head, based on a previously described technique that calculates substitute CT (sCT) images from a set of MR images. Images from eight patients, examined with (18)F-FLT PET/CT and MRI, were included. sCT images were calculated and co-registered to the corresponding CT images, and transferred to the PET/CT scanner for reconstruction. The new reconstructions were then compared with the originals. The effect of replacing bone with soft tissue in the sCT-images was also evaluated. The average relative difference between the sCT-corrected PET images and the CT-corrected PET images was 1.6% for the head and 1.9% for the brain. The average standard deviations of the relative differences within the head were relatively high, at 13.2%, primarily because of large differences in the nasal septa region. For the brain, the average standard deviation was lower, 4.1%. The global average difference in the head when replacing bone with soft tissue was 11%. The method presented here has a high rate of accuracy, but high-precision quantitative imaging of the nasal septa region is not possible at the moment.
Nasal endoscopy and CT study of Pharaonic and Roman mummies.
Gaafar, H; Abdel-Monem, M H; Elsheikh, S
1999-03-01
In ancient Egypt mummifications were first carried out around 3000 BC. The visceral organs (lungs, stomach, liver and bowel) were removed from the body, cleansed, desiccated and placed in four canopic jars. The brain was removed from the body but was not preserved. Exactly how removal of the brain was accomplished is not clear. This study investigated the route of brain removal during mummification. Nasal endoscopy was carried out on 20 Pharaonic and Roman mummies. CT examination was performed on 2 mummy heads. In all mummies a communication between the cranial and nasal cavities was found passing through the posterior ethmoids and cribriform plates. The cranial cavity was empty. Our results demonstrate that brain removal during mummification was performed endonasally by trained personnel with a good knowledge of anatomy, using special instruments capable of creating a clean-cut endonasal craniotomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan
Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less
Ultra low-dose CT attenuation correction in PET SPM
NASA Astrophysics Data System (ADS)
Wang, Shyh-Jen; Yang, Bang-Hung; Tsai, Chia-Jung; Yang, Ching-Ching; Lee, Jason J. S.; Wu, Tung-Hsin
2010-07-01
The use of CT images for attenuation correction (CTAC) allows significantly shorter scanning time and a high quality noise-free attenuation map compared with conventional germanium-68 transmission scan because at least 10 4 times greater of photon flux would be generated from a CT scan under standard operating condition. However, this CTAC technique would potentially introduce more radiation risk to the patients owing to the higher radiation exposure from CT scan. Statistic parameters mapping (SPM) is a prominent technique in nuclear medicine community for the analysis of brain imaging data. The purpose of this study is to assess the feasibility of low-dose CT (LDCT) and ultra low-dose CT (UDCT) in PET SPM applications. The study was divided into two parts. The first part was to evaluate of tracer uptake distribution pattern and quantity analysis by using the striatal phantom to initially assess the feasibility of AC for clinical purpose. The second part was to examine the group SPM analysis using the Hoffman brain phantom. The phantom study is to simulate the human brain and to reduce the experimental uncertainty of real subjects. The initial studies show that the results of PET SPM analysis have no significant differences between LDCT and UDCT comparing to the current used default CTAC. Moreover, the dose of the LDCT is lower than that of the default CT by a factor of 9, and UDCT can even yield a 42 times dose reduction. We have demonstrated the SPM results while using LDCT and UDCT for PET AC is comparable to those using default CT setting, suggesting their feasibility in PET SPM applications. In addition, the necessity of UDCT in PET SPM studies to avoid excess radiation dose is also evident since most of the subjects involved are non-cancer patients or children and some normal subjects are even served as a comparison group in the experiment. It is our belief that additional attempts to decrease the radiation dose would be valuable, especially for children and normal volunteers, to work towards ALARA (as low as reasonably achievable) concept for PET SPM studies.
Lagerstedt, Linnéa; Egea-Guerrero, Juan José; Bustamante, Alejandro; Montaner, Joan; Rodríguez-Rodríguez, Ana; El Rahal, Amir; Turck, Natacha; Quintana, Manuel; García-Armengol, Roser; Prica, Carmen Melinda; Andereggen, Elisabeth; Rinaldi, Lara; Sarrafzadeh, Asita; Schaller, Karl; Sanchez, Jean-Charles
2017-01-01
The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%–8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient’s risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8–10.7) for S100B and 29% (95% CI 21.4–37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom. PMID:28419114
Lagerstedt, Linnéa; Egea-Guerrero, Juan José; Bustamante, Alejandro; Montaner, Joan; Rodríguez-Rodríguez, Ana; El Rahal, Amir; Turck, Natacha; Quintana, Manuel; García-Armengol, Roser; Prica, Carmen Melinda; Andereggen, Elisabeth; Rinaldi, Lara; Sarrafzadeh, Asita; Schaller, Karl; Sanchez, Jean-Charles
2017-01-01
The majority of patients with mild traumatic brain injury (mTBI) will have normal Glasgow coma scale (GCS) of 15. Furthermore, only 5%-8% of them will be CT-positive for an mTBI. Having a useful biomarker would help clinicians evaluate a patient's risk of developing intracranial lesions. The S100B protein is currently the most studied and promising biomarker for this purpose. Heart fatty-acid binding protein (H-FABP) has been highlighted in brain injury models and investigated as a biomarker for stroke and severe TBI, for example. Here, we evaluate the performances of S100B and H-FABP for differentiating between CT-positive and CT-negative patients. A total of 261 patients with a GCS score of 15 and at least one clinical symptom of mTBI were recruited at three different European sites. Blood samples from 172 of them were collected ≤ 6 h after trauma. Patients underwent a CT scan and were dichotomised into CT-positive and CT-negative groups for statistical analyses. H-FABP and S100B levels were measured using commercial kits, and their capacities to detect all CT-positive scans were evaluated, with sensitivity set to 100%. For patients recruited ≤ 6 h after trauma, the CT-positive group demonstrated significantly higher levels of both H-FABP (p = 0.004) and S100B (p = 0.003) than the CT-negative group. At 100% sensitivity, specificity reached 6% (95% CI 2.8-10.7) for S100B and 29% (95% CI 21.4-37.1) for H-FABP. Similar results were obtained when including all the patients recruited, i.e. hospital arrival within 24 h of trauma onset. H-FABP out-performed S100B and thus seems to be an interesting protein for detecting all CT-positive mTBI patients with a GCS score of 15 and at least one clinical symptom.
Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM
NASA Astrophysics Data System (ADS)
Jiji, G. Wiselin; Dehmeshki, Jamshid
2014-04-01
Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.
Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.
Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C
2018-02-01
To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl
2016-09-01
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.
Gelernter, Renana; Weiser, Giora; Kozer, Eran
2018-01-01
Large studies which developed decision rules for the use of Computed tomography (CT) in children with minor head trauma excluded children with late presentation (more than 24h). To assess the prevalence of significant traumatic brain injury (TBI) on CT in infants with head trauma presenting to the emergency department (ED) more than 24h from the injury. A retrospective chart review of infants less than 24 months old referred for head CT because of traumatic brain injury from January 2004 to December 2014 in Assaf-Harofeh medical center was conducted. We used the PECARN definitions of TBI on CT to define significant CT findings. 344 cases were analyzed, 68 with late presentation. There was no significant difference in the age between children with late and early presentation (mean 11.4 (SD 5.6) month vs 10. 5 (SD 7.0) month, P=0.27). There was no significant difference between the groups in the incidence of significant TBI (22% vs 19%, p=0.61). Any TBI on CT (e.g. fracture) was found in 43 (63%) patients with late presentation compared with 116 (42%) patients with early presentation (p=0.002, OR 2.37, 95% CI 1.37-4.1). A similar rate of CT-identified traumatic brain injury was detected in both groups. There was no significant difference in the incidence of significant TBI on CT between the groups. Young children presenting to the ED more than 24 hours after the injury may have abnormal findings on CT. Copyright © 2017 Elsevier Ltd. All rights reserved.
MR to CT registration of brains using image synthesis
NASA Astrophysics Data System (ADS)
Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon
2014-03-01
Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.
Imaging of Traumatic Brain Injury.
Bodanapally, Uttam K; Sours, Chandler; Zhuo, Jiachen; Shanmuganathan, Kathirkamanathan
2015-07-01
Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome. Copyright © 2015 Elsevier Inc. All rights reserved.
Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V
2014-05-01
To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.
Nanotomography of brain networks
NASA Astrophysics Data System (ADS)
Saiga, Rino; Mizutani, Ryuta; Takekoshi, Susumu; Osawa, Motoki; Arai, Makoto; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Suzuki, Yoshio; de Andrade, Vincent; de Carlo, Francesco
The first step to understanding how the brain functions is to analyze its 3D network. The brain network consists of neurons having micrometer to nanometer sized structures. Therefore, 3D analysis of brain tissue at the relevant resolution is essential for elucidating brain's functional mechanisms. Here, we report 3D structures of human and fly brain networks revealed with synchrotron radiation nanotomography, or nano-CT. Neurons were stained with high-Z elements to visualize their structures with X-rays. Nano-CT experiments were then performed at the 32-ID beamline of the Advanced Photon Source, Argonne National Laboratory and at the BL37XU and BL47XU beamlines of SPring-8. Reconstructed 3D images illustrated precise structures of human neurons, including dendritic spines responsible for synaptic connections. The network of the fly brain hemisphere was traced to build a skeletonized wire model. An article reviewing our study appeared in MIT Technology Review. Movies of the obtained structures can be found in our YouTube channel.
NASA Astrophysics Data System (ADS)
Zhu, Bangshang; Yuan, Falei; Yuan, Xiaoya; Bo, Yang; Wang, Yongting; Yang, Guo-Yuan; Drummen, Gregor P. C.; Zhu, Xinyuan
2014-02-01
Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.
Childhood CT scans linked to leukemia and brain cancer later in life
Children and young adults scanned multiple times by computed tomography (CT), a commonly used diagnostic tool, have a small increased risk of leukemia and brain tumors in the decade following their first scan.
Sidhu, Deepinder S; Ruth, Jeffrey D; Lambert, Gregory; Rossmeisl, John H
2017-07-01
To develop and validate a three-dimensional (3D) brain phantom that can be incorporated into existing stereotactic headframes to simulate stereotactic brain biopsy (SBB) and train veterinary surgeons. Experimental study. Canine brain phantoms were fabricated from osteological skull specimens, agarose brain parenchyma, and cheddar and mozzarella cheese molds (simulating meningiomas and gliomas). The neuroradiologic and viscoelastic properties of phantoms were quantified with computed tomography (CT) and oscillatory compression tests, respectively. Phantoms were validated by experienced and novice operators performing SBB on phantoms containing randomly placed, focal targets. Target yield and needle placement error (NPE) were compared between operators. Phantoms were produced in <4 hours, at an average cost of $92. The CT appearances of the phantom skull, agarose, and cheese components approximated the in vivo features of skull, brain parenchyma, and contrast-enhancing tumors of meningeal and glial origin, respectively. The complex moduli of the agarose and cheeses were comparable to the viscoelastic properties of in vivo brain tissues and brain tumors. The overall diagnostic yield of SBB was 88%. Although NPE did not differ between novice (median 3.68 mm; range, 1.46-14.54 mm) and experienced surgeons (median 1.17 mm, range, 0.78-1.58 mm), our results support the relevance of the learning curve associated with the SBB procedure. This 3D phantom replicates anatomical, CT, and tactile features of brain tissues and tumors and can be used to develop the technical skills required to perform SBB. © 2017 The American College of Veterinary Surgeons.
Hanley, Daniel; Prichep, Leslie S; Bazarian, Jeffrey; Huff, J Stephen; Naunheim, Rosanne; Garrett, John; Jones, Elizabeth B; Wright, David W; O'Neill, John; Badjatia, Neeraj; Gandhi, Dheeraj; Curley, Kenneth C; Chiacchierini, Richard; O'Neil, Brian; Hack, Dallas C
2017-05-01
A brain electrical activity biomarker for identifying traumatic brain injury (TBI) in emergency department (ED) patients presenting with high Glasgow Coma Scale (GCS) after sustaining a head injury has shown promise for objective, rapid triage. The main objective of this study was to prospectively evaluate the efficacy of an automated classification algorithm to determine the likelihood of being computed tomography (CT) positive, in high-functioning TBI patients in the acute state. Adult patients admitted to the ED for evaluation within 72 hours of sustaining a closed head injury with GCS 12 to 15 were candidates for study. A total of 720 patients (18-85 years) meeting inclusion/exclusion criteria were enrolled in this observational, prospective validation trial, at 11 U.S. EDs. GCS was 15 in 97%, with the first and third quartiles being 15 (interquartile range = 0) in the study population at the time of the evaluation. Standard clinical evaluations were conducted and 5 to 10 minutes of electroencephalogram (EEG) was acquired from frontal and frontal-temporal scalp locations. Using an a priori derived EEG-based classification algorithm developed on an independent population and applied to this validation population prospectively, the likelihood of each subject being CT+ was determined, and performance metrics were computed relative to adjudicated CT findings. Sensitivity of the binary classifier (likely CT+ or CT-) was 92.3% (95% confidence interval [CI] = 87.8%-95.5%) for detection of any intracranial injury visible on CT (CT+), with specificity of 51.6% (95% CI = 48.1%-55.1%) and negative predictive value (NPV) of 96.0% (95% CI = 93.2%-97.9%). Using ternary classification (likely CT+, equivocal, likely CT-) demonstrated enhanced sensitivity to traumatic hematomas (≥1 mL of blood), 98.6% (95% CI = 92.6%-100.0%), and NPV of 98.2% (95% CI = 95.5%-99.5%). Using an EEG-based biomarker high accuracy of predicting the likelihood of being CT+ was obtained, with high NPV and sensitivity to any traumatic bleeding and to hematomas. Specificity was significantly higher than standard CT decision rules. The short time to acquire results and the ease of use in the ED environment suggests that EEG-based classifier algorithms have potential to impact triage and clinical management of head-injured patients. © 2017 by the Society for Academic Emergency Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis
Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peakmore » tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. Conclusions: Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.« less
Dynamic contrast-enhanced x-ray CT measurement of cerebral blood volume in a rabbit tumor model
NASA Astrophysics Data System (ADS)
Cenic, Aleksa; Lee, Ting-Yim; Craen, Rosemary A.; Gelb, Adrian W.
1998-07-01
Cerebral blood volume (CBV) is a major determinant of intracranial pressure (ICP). Hyperventilation is commonly employed to reduce raised ICP (e.g. in brain tumour patients) presumably through its effect on CBV. With the advent of slip- ring CT scanners, dynamic contrast-enhanced imaging allows for the measurement of CBV with high spatial resolution. Using a two-compartment model to characterize the distribution of X- ray contrast agent in the brain, we have developed a non- equilibrium CT method to measure CBV in normal and pathological regions. We used our method to investigate the effect of hyperventilation on CBV during propofol anaesthesia in rabbits with implanted brain tumours. Eight New Zealand White rabbits with implanted VX2 carcinoma brain tumours were studied. For each rabbit, regional CBV measurements were initially made at normocapnia (PaCO2 40 mmHg) and then at hyperventilation (PaCO2 25 mmHg) during propofol anaesthesia. The head was positioned such that a coronal image through the brain incorporated a significant cross-section of the brain tumour as well as a radial artery in a forelimb. Images at the rate of 1 per second were acquired for 2 minutes as Omnipaque 300 (1.5 ml/kg rabbit weight) was injected via a peripheral vein. In these CT images, regions of interest in the brain tissue (e.g. tumour, contra-lateral normal, and peri-tumoural) and the radial artery were drawn. For each region, the mean CT number in pre-contrast images was subtracted from the mean CT number in post-contrast images to produce either the tissue contrast concentration curve, or the arterial contrast concentration curve. Using our non- equilibrium analysis method based on a two-compartment model, regional CBV values were determined from the measured contrast concentration curves. From our study, the mean CBV values [+/- SD] in the tumour, peri-tumoural, and contra-lateral normal regions during normocapnia were: 5.47 plus or minus 1.97, 3.28 plus or minus 1.01, and 1.86 plus or minus 0.54 ml/100 g, respectively. Following hyperventilation, we found a significant decrease (p less than 0.025) of 10.4% in CBV in the peri-tumoural region, and no statistically significant change in CBV in the tumour or contra-lateral normal regions. We have developed a convenient method for measuring CBV in normal and pathological tissue using a slip-ring CT scanner. In a brain tumour model, we found that CBV was markedly increased in tumour and peri-tumoural regions compared to normal regions. Our results suggest that the reduction of raised ICP following hyperventilation during propofol anaesthesia may be mainly due to a reduction in CBV in the peri-tumoural tissue rather than in the bulk of the tumour or normal regions. Our method has the potential to provide further knowledge on the cerebral hemodynamics of space- occupying lesions during different anaesthetic interventions or treatment regiments.
Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.
Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B
2018-02-01
Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared with current MR imaging-based AC approaches. © RSNA, 2017 Online supplemental material is available for this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; Bostani, M
Purpose: The aim of this study was to collect CT dose index data from adult head exams to establish benchmarks based on either: (a) values pooled from all head exams or (b) values for specific protocols. One part of this was to investigate differences in scan frequency and CT dose index data for inpatients versus outpatients. Methods: We collected CT dose index data (CTDIvol) from adult head CT examinations performed at our medical facilities from Jan 1st to Dec 31th, 2014. Four of these scanners were used for inpatients, the other five were used for outpatients. All scanners used Tubemore » Current Modulation. We used X-ray dose management software to mine dose index data and evaluate CTDIvol for 15807 inpatients and 4263 outpatients undergoing Routine Brain, Sinus, Facial/Mandible, Temporal Bone, CTA Brain and CTA Brain-Neck protocols, and combined across all protocols. Results: For inpatients, Routine Brain series represented 84% of total scans performed. For outpatients, Sinus scans represented the largest fraction (36%). The CTDIvol (mean ± SD) across all head protocols was 39 ± 30 mGy (min-max: 3.3–540 mGy). The CTDIvol for Routine Brain was 51 ± 6.2 mGy (min-max: 36–84 mGy). The values for Sinus were 24 ± 3.2 mGy (min-max: 13–44 mGy) and for Facial/Mandible were 22 ± 4.3 mGy (min-max: 14–46 mGy). The mean CTDIvol for inpatients and outpatients was similar across protocols with one exception (CTA Brain-Neck). Conclusion: There is substantial dose variation when results from all protocols are pooled together; this is primarily a function of the differences in technical factors of the protocols themselves. When protocols are analyzed separately, there is much less variability. While analyzing pooled data affords some utility, reviewing protocols segregated by clinical indication provides greater opportunity for optimization and establishing useful benchmarks.« less
Gueddari, Widad; Ouardi, Amine; Talbi, Sanaa; Salam, Sihem; Zineddine, Abdelhadi
2017-07-01
Mild head injury (MHI) is very common in children and the problem is a lack of consensus criteria for the indication of a brain CT. To determine predictors of cranio-cerebral lesions (CCL) in the case of MHI in children. Case-control study over a period of 3 years. Included children aged 1 month to 15 years, were those admitted to the department of Pediatric Emergencies for MHI and had performed a brain CT. The principal outcome was the presence of traumatic brain injury. Statistical analysis focused on univariate and multivariate tests was done using SPSS version 16.0. We included 418 children. The median age was 6 years with a sex ratio of 2.24. The main mechanisms of trauma were the traffic accident. Cerebral CT proved to be abnormal in 191 children (45.7%). The main lesions found were the skull fractures, brain contusion and epidural hematoma. Predictors retained after logistic regression were the presence of an initial loss of consciousness regardless of its duration (p = 0.007), hematoma of the scalp (p = < 0.0001) and at least one clinical sign for a fracture of the skull base (p = 0.016). In case of MHI in children, the initial loss of consciousness, the presence of a hematoma of the scalp and the presence of at least one sign in favor of the skull base fracture seem most predictive of cranio-cerebral lesions.
Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung
2015-01-01
Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2–5 years), 23.5 to 44.1 (6–10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2–5 years), 3.9 to 9.3 (6–10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2–5 years), 5.7 to 12.4 (6–10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in certain age groups. PMID:26683922
2015-10-01
tomography images. The CT image densities in Hounsfield units (HU) of the brain were translated into corresponding optical properties (absorption...derived the Hounsfield units and optical properties of brain tissues such as white/gray matter. 13-15 The segmentation software generated an optical map...treatment protocol. Head CT image densities (in Hounsfield Units /HU) are segmented and translated into optical properties of the brain tissue
Rostami, Elham; Engquist, Henrik; Enblad, Per
2014-01-01
Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.
Rostami, Elham; Engquist, Henrik; Enblad, Per
2014-01-01
Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI). A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU) is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF) in the injured brain such as positron emission tomography (PET), single-photon emission computed tomography, xenon computed tomography (Xenon-CT), perfusion-weighted magnetic resonance imaging (MRI), and CT perfusion scan. An ideal imaging technique would enable continuous non-invasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism; however, it is a complex and costly method limited to few TBI centers. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI. PMID:25071702
Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D
2012-07-01
Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI: CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS: We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012 International Neuromodulation Society.
Characterizing the type and location of intracranial abnormalities in mild traumatic brain injury.
Isokuortti, Harri; Iverson, Grant L; Silverberg, Noah D; Kataja, Anneli; Brander, Antti; Öhman, Juha; Luoto, Teemu M
2018-01-12
OBJECTIVE The incidence of intracranial abnormalities after mild traumatic brain injury (TBI) varies widely across studies. This study describes the characteristics of intracranial abnormalities (acute/preexisting) in a large representative sample of head-injured patients who underwent CT imaging in an emergency department. METHODS CT scans were systematically analyzed/coded in the TBI Common Data Elements framework. Logistic regression modeling was used to quantify risk factors for traumatic intracranial abnormalities in patients with mild TBIs. This cohort included all patients who were treated at the emergency department of the Tampere University Hospital (between 2010 and 2012) and who had undergone head CT imaging after suffering a suspected TBI (n = 3023), including 2766 with mild TBI and a reference group with moderate to severe TBI. RESULTS The most common traumatic lesions seen on CT scans obtained in patients with mild TBIs and those with moderate to severe TBIs were subdural hematomas, subarachnoid hemorrhages, and contusions. Every sixth patient (16.1%) with mild TBI had an intracranial lesion compared with 5 of 6 patients (85.6%) in the group with moderate to severe TBI. The distribution of different types of acute traumatic lesions was similar among mild and moderate/severe TBI groups. Preexisting brain lesions were a more common CT finding among patients with mild TBIs than those with moderate to severe TBIs. Having a past traumatic lesion was associated with increased risk for an acute traumatic lesion but neurodegenerative and ischemic lesions were not. A lower Glasgow Coma Scale score, male sex, older age, falls, and chronic alcohol abuse were associated with higher risk of acute intracranial lesion in patients with mild TBI. CONCLUSIONS These findings underscore the heterogeneity of neuropathology associated with the mild TBI classification. Preexisting brain lesions are common in patients with mild TBI, and the incidence of preexisting lesions increases with age. Acute traumatic lesions are fairly common in patients with mild TBI; every sixth patient had a positive CT scan. Older adults (especially men) who fall represent a susceptible group for acute CT-positive TBI.
Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert
2017-12-01
Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.
NASA Astrophysics Data System (ADS)
Choi, Yong-Seok; Cho, Jae-Hwan; Namgung, Jang-Sun; Kim, Hyo-Jin; Yoon, Dae-Young; Lee, Han-Joo
2013-05-01
This study performed a comparative analysis of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), and mean time-to-peak (TTP) obtained by changing the region of interest's (ROI) anatomical positions, during CT brain perfusion. We acquired axial source images of perfusion CT from 20 patients undergoing CT perfusion exams due to brain trauma. Subsequently, the CBV, CBF, MTT, and TTP values were calculated through data-processing of the perfusion CT images. The color scales for the CBV, CBF, MTT, and TTP maps were obtained using the image data. Anterior cerebral artery (ACA) was taken as the standard ROI for the calculations of the perfusion values. Differences in the hemodynamic average values were compared in a quantitative analysis by placing ROI and the dividing axial images into proximal, middle, and distal segments anatomically. By performing the qualitative analysis using a blind test, we observed changes in the sensory characteristics by using the color scales of the CBV, CBF, and MTT maps in the proximal, middle, and distal segments. According to the qualitative analysis, no differences were found in CBV, CBF, MTT, and TTP values of the proximal, middle, and distal segments and no changes were detected in the color scales of the the CBV, CBF, MTT, and TTP maps in the proximal, middle, and distal segments. We anticipate that the results of the study will useful in assessing brain trauma patients using by perfusion imaging.
Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R; Nelson, Linda D; Small, Gary W; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.
Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data
Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng
2014-01-01
Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700
Brain structure in sagittal craniosynostosis
NASA Astrophysics Data System (ADS)
Paniagua, Beatriz; Kim, Sunghyung; Moustapha, Mahmoud; Styner, Martin; Cody-Hazlett, Heather; Gimple-Smith, Rachel; Rumple, Ashley; Piven, Joseph; Gilmore, John; Skolnick, Gary; Patel, Kamlesh
2017-03-01
Craniosynostosis, the premature fusion of one or more cranial sutures, leads to grossly abnormal head shapes and pressure elevations within the brain caused by these deformities. To date, accepted treatments for craniosynostosis involve improving surgical skull shape aesthetics. However, the relationship between improved head shape and brain structure after surgery has not been yet established. Typically, clinical standard care involves the collection of diagnostic medical computed tomography (CT) imaging to evaluate the fused sutures and plan the surgical treatment. CT is known to provide very good reconstructions of the hard tissues in the skull but it fails to acquire good soft brain tissue contrast. This study intends to use magnetic resonance imaging to evaluate brain structure in a small dataset of sagittal craniosynostosis patients and thus quantify the effects of surgical intervention in overall brain structure. Very importantly, these effects are to be contrasted with normative shape, volume and brain structure databases. The work presented here wants to address gaps in clinical knowledge in craniosynostosis focusing on understanding the changes in brain volume and shape secondary to surgery, and compare those with normally developing children. This initial pilot study has the potential to add significant quality to the surgical care of a vulnerable patient population in whom we currently have limited understanding of brain developmental outcomes.
Zhu, Huiping; Gao, Qi; Xia, Xin; Xiang, Joe; Yao, Hongli; Shao, Jianbo
2014-01-01
This study investigated injury patterns and the use of computed tomography (CT) among Chinese children with mild traumatic brain injury (MTBI). We enrolled children with MTBI who were treated within 24 hours of head trauma in the emergency department of Wuhan Medical Care Center for Women and Children in Wuhan, China. Characteristics of MTBIs were analyzed by age and gender. Results of cranial CT scan and clinically-important brain injury (ciTBI) for children were obtained. The definition of ciTBI was: death from TBI, intubation for more than 24 h for TBI, neurosurgery, or hospital admission of 2 nights or more. Of 455 eligible patients with MTBI, ciTBI occurred in two, and no one underwent neurosurgical intervention. CT scans were performed for 441 TBI patients (96.9%), and abnormal findings were reported for 147 patients (33.3%, 95% CI 29.0–37.8). Falls were the leading cause of MTBI (61.5%), followed by blows (18.9%) and traffic collisions (14.1%) for children in the 0–2 group and 10–14 group. For children aged between 3 and 9, the top three causes of TBI were falls, traffic collisions and blows. Leisure activity was the most reported activity when injuries occurred for all age groups. Sleeping/resting and walking ranked in the second and third place for children between 0 and 2 years of age, and walking and riding for the other two groups. The places where the majority injuries occurred were the home for the 0–2 and 3–9 years of age groups, and school for the 10–14 years of age group. There was no statistical difference between boys and girls with regard to the activity that caused the MTBI. This study highlights the important roles that parents and school administrators in the development of preventive measures to reduce the risk of traumatic brain injury in children. Also, identifying children who had a head trauma at very low risk of clinically important TBI for whom CT might be unnecessary is a priority area of research in China. PMID:24675642
Teh, V; Sim, K S; Wong, E K
2016-11-01
According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Interpretation of Brain CT Scans in the Field by Critical Care Physicians in a Mobile Stroke Unit
Zakariassen, Erik; Lindner, Thomas; Nome, Terje; Bache, Kristi G.; Røislien, Jo; Gleditsch, Jostein; Solyga, Volker; Russell, David; Lund, Christian G.
2017-01-01
ABSTRACT BACKGROUND AND PURPOSE In acute stroke, thromboembolism or spontaneous hemorrhage abruptly reduces blood flow to a part of the brain. To limit necrosis, rapid radiological identification of the pathological mechanism must be conducted to allow the initiation of targeted treatment. The aim of the Norwegian Acute Stroke Prehospital Project is to determine if anesthesiologists, trained in prehospital critical care, may accurately assess cerebral computed tomography (CT) scans in a mobile stroke unit (MSU). METHODS In this pilot study, 13 anesthesiologists assessed unselected acute stroke patients with a cerebral CT scan in an MSU. The scans were simultaneously available by teleradiology at the receiving hospital and the on‐call radiologist. CT scan interpretation was focused on the radiological diagnosis of acute stroke and contraindications for thrombolysis. The aim of this study was to find inter‐rater agreement between the pre‐ and in‐hospital radiological assessments. A neuroradiologist evaluated all CT scans retrospectively. Statistical analysis of inter‐rater agreement was analyzed with Cohen's kappa. RESULTS Fifty‐one cerebral CT scans from the MSU were included. Inter‐rater agreement between prehospital anesthesiologists and the in‐hospital on‐call radiologists was excellent in finding radiological selection for thrombolysis (kappa .87). Prehospital CT scans were conducted in median 10 minutes (7 and 14 minutes) in the MSU, and median 39 minutes (31 and 48 minutes) before arrival at the receiving hospital. CONCLUSION This pilot study shows that anesthesiologists trained in prehospital critical care may effectively assess cerebral CT scans in an MSU, and determine if there are radiological contraindications for thrombolysis. PMID:28766306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Kuan-Hao; Hu, Lingzhi; Traughber, Melanie
Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spreadmore » functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2{sup ∗} images (1/T2{sup ∗}) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2{sup ∗}, were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT numbers of voxels (−22 ± 29 HU and 130 ± 16 HU) when compared to low-dose CT. Conclusions: The MR features generated by the proposed acquisition, correction, and processing methods may provide representative clustering information and could thus be used for clinical pseudo-CT generation.« less
Girard, Romuald; Zeineddine, Hussein A; Orsbon, Courtney; Tan, Huan; Moore, Thomas; Hobson, Nick; Shenkar, Robert; Lightle, Rhonda; Shi, Changbin; Fam, Maged D; Cao, Ying; Shen, Le; Neander, April I; Rorrer, Autumn; Gallione, Carol; Tang, Alan T; Kahn, Mark L; Marchuk, Douglas A; Luo, Zhe-Xi; Awad, Issam A
2016-09-15
Cerebral cavernous malformations (CCMs) are hemorrhagic brain lesions, where murine models allow major mechanistic discoveries, ushering genetic manipulations and preclinical assessment of therapies. Histology for lesion counting and morphometry is essential yet tedious and time consuming. We herein describe the application and validations of X-ray micro-computed tomography (micro-CT), a non-destructive technique allowing three-dimensional CCM lesion count and volumetric measurements, in transgenic murine brains. We hereby describe a new contrast soaking technique not previously applied to murine models of CCM disease. Volumetric segmentation and image processing paradigm allowed for histologic correlations and quantitative validations not previously reported with the micro-CT technique in brain vascular disease. Twenty-two hyper-dense areas on micro-CT images, identified as CCM lesions, were matched by histology. The inter-rater reliability analysis showed strong consistency in the CCM lesion identification and staging (K=0.89, p<0.0001) between the two techniques. Micro-CT revealed a 29% greater CCM lesion detection efficiency, and 80% improved time efficiency. Serial integrated lesional area by histology showed a strong positive correlation with micro-CT estimated volume (r(2)=0.84, p<0.0001). Micro-CT allows high throughput assessment of lesion count and volume in pre-clinical murine models of CCM. This approach complements histology with improved accuracy and efficiency, and can be applied for lesion burden assessment in other brain diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weili; Kim, Joshua P.; Kadbi, Mo
2015-11-01
Purpose: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Methods and Materials: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessedmore » by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. Results: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone–air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. Conclusions: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain.« less
Zheng, Weili; Kim, Joshua P; Kadbi, Mo; Movsas, Benjamin; Chetty, Indrin J; Glide-Hurst, Carri K
2015-11-01
To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone-air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated into our synCT pipeline for brain, and results agreed well with clinical CTs, thereby supporting MR-only radiation therapy treatment planning in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.
Sekine, Tetsuro; Buck, Alfred; Delso, Gaspar; Ter Voert, Edwin E G W; Huellner, Martin; Veit-Haibach, Patrick; Warnock, Geoffrey
2016-02-01
Attenuation correction (AC) for integrated PET/MR imaging in the human brain is still an open problem. In this study, we evaluated a simplified atlas-based AC (Atlas-AC) by comparing (18)F-FDG PET data corrected using either Atlas-AC or true CT data (CT-AC). We enrolled 8 patients (median age, 63 y). All patients underwent clinically indicated whole-body (18)F-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MR of the head (additional tracer was not injected). For each patient, 2 AC maps were generated: an Atlas-AC map registered to a patient-specific liver accelerated volume acquisition-Flex MR sequence and using a vendor-provided head atlas generated from multiple CT head images and a CT-based AC map. For comparative AC, the CT-AC map generated from PET/CT was superimposed on the Atlas-AC map. PET images were reconstructed from the list-mode raw data from the PET/MR imaging scanner using each AC map. All PET images were normalized to the SPM5 PET template, and (18)F-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative difference (%diff) between images based on Atlas-AC and CT-AC was calculated, and averaged difference images were generated. (18)F-FDG uptake in all VOIs was compared using Bland-Altman analysis. The range of error in all 536 VOIs was -3.0%-7.3%. Whole-brain (18)F-FDG uptake based on Atlas-AC was slightly underestimated (%diff = 2.19% ± 1.40%). The underestimation was most pronounced in the regions below the anterior/posterior commissure line, such as the cerebellum, temporal lobe, and central structures (%diff = 3.69% ± 1.43%, 3.25% ± 1.42%, and 3.05% ± 1.18%), suggesting that Atlas-AC tends to underestimate the attenuation values of the skull base bone. When compared with the gold-standard CT-AC, errors introduced using Atlas-AC did not exceed 8% in any brain region investigated. Underestimation of (18)F-FDG uptake was minor (<4%) but significant in regions near the skull base. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Yi, Chin A; Lee, Kyung Soo; Lee, Ho Yun; Kim, Seonwoo; Kwon, O Jung; Kim, Hojoong; Choi, Joon Young; Kim, Byung-Tae; Hwang, Hye Sun; Shim, Young Mog
2013-05-15
The objective of this study was to assess whether coregistered whole brain (WB) magnetic resonance imaging-positron emission tomography (MRI-PET) would increase the number of correctly upstaged patients compared with WB PET-computed tomography (PET-CT) plus dedicated brain MRI in patients with nonsmall cell lung cancer (NSCLC). From January 2010 through November 2011, patients with NSCLC who had resectable disease based on conventional staging were assigned randomly either to coregistered MRI-PET or WB PET-CT plus brain MRI (ClinicalTrials.gov trial NCT01065415). The primary endpoint was correct upstaging (the identification of lesions with higher tumor, lymph node, or metastasis classification, verified with biopsy or other diagnostic test) to have the advantage of avoiding unnecessary thoracotomy, to determine appropriate treatment, and to accurately predict patient prognosis. The secondary endpoints were over staging and under staging compared with pathologic staging. Lung cancer was correctly upstaged in 37 of 143 patients (25.9%) in the MRI-PET group and in 26 of 120 patients (21.7%) in the PET-CT plus brain MRI group (4.2% difference; 95% confidence interval, -6.1% to 14.5%; P = .426). Lung cancer was over staged in 26 of 143 patients (18.2%) in the MRI-PET group and in 7 of 120 patients (5.8%) in the PET-CT plus brain MRI group (12.4% difference; 95% confidence interval, 4.8%-20%; P = .003), whereas lung cancer was under staged in 18 of 143 patients (12.6%) and in 28 of 120 patients (23.3%), respectively (-10.7% difference; 95% confidence interval, -20.1% to -1.4%; P = .022). Although both staging tools allowed greater than 20% correct upstaging compared with conventional staging methods, coregistered MRI-PET did not appear to help identify significantly more correctly upstaged patients than PET-CT plus brain MRI in patients with NSCLC. Copyright © 2013 American Cancer Society.
Mediterranean diet and brain structure in a multiethnic elderly cohort
Brickman, Adam M.; Stern, Yaakov; Habeck, Christian G.; Razlighi, Qolamreza R.; Luchsinger, José A.; Manly, Jennifer J.; Schupf, Nicole; Mayeux, Richard; Scarmeas, Nikolaos
2015-01-01
Objective: To determine whether higher adherence to a Mediterranean-type diet (MeDi) is related with larger MRI-measured brain volume or cortical thickness. Methods: In this cross-sectional study, high-resolution structural MRI was collected on 674 elderly (mean age 80.1 years) adults without dementia who participated in a community-based, multiethnic cohort. Dietary information was collected via a food frequency questionnaire. Total brain volume (TBV), total gray matter volume (TGMV), total white matter volume (TWMV), mean cortical thickness (mCT), and regional volume or CT were derived from MRI scans using FreeSurfer program. We examined the association of MeDi (scored as 0–9) and individual food groups with brain volume and thickness using regression models adjusted for age, sex, ethnicity, education, body mass index, diabetes, and cognition. Results: Compared to lower MeDi adherence (0–4), higher adherence (5–9) was associated with 13.11 (p = 0.007), 5.00 (p = 0.05), and 6.41 (p = 0.05) milliliter larger TBV, TGMV, and TWMV, respectively. Higher fish (b = 7.06, p = 0.006) and lower meat (b = 8.42, p = 0.002) intakes were associated with larger TGMV. Lower meat intake was also associated with larger TBV (b = 12.20, p = 0.02). Higher fish intake was associated with 0.019 mm (p = 0.03) larger mCT. Volumes of cingulate cortex, parietal lobe, temporal lobe, and hippocampus and CT of the superior-frontal region were associated with the dietary factors. Conclusions: Among older adults, MeDi adherence was associated with less brain atrophy, with an effect similar to 5 years of aging. Higher fish and lower meat intake might be the 2 key food elements that contribute to the benefits of MeDi on brain structure. PMID:26491085
Amrhein, Timothy J; Mostertz, William; Matheus, Maria Gisele; Maass-Bolles, Genevieve; Sharma, Komal; Collins, Heather R; Kranz, Peter G
2017-02-01
Subdural hematomas (SDHs) comprise a significant percentage of missed intracranial hemorrhage on axial brain CT. SDH detection rates could be improved with the addition of reformatted images. Though performed at some centers, the potential additional diagnostic sensitivity of reformatted images has not yet been investigated. The purpose of our study is to determine if the addition of coronal and sagittal reformatted images to an axial brain CT increases the sensitivity and specificity for detection of acute traumatic SDH. We retrospectively reviewed consecutive brain CTs acquired for acute trauma that contained new SDHs. An equivalent number of normal brain CTs served as control. Paired sets of images were created for each case: (1) axial images only ("axial only") and (2) axial, coronal, sagittal images ("reformat added"). Three readers interpreted both the axial only and companion reformat added for each case, separated by 1 month. Reading times and SDH detection rates were compared. One hundred SDH and 100 negative examinations were collected. Sensitivity and specificity for the axial-only scans were 75.7 and 94.3 %, respectively, compared with 88.3 and 98.3 % for reformat added. There was a 24.3 % false negative (missed SDH) rate with axial-only scans versus 11.7 % with reformat added (p = <0.001). Median reader interpretation times were longer with the addition of reformatted images (125 versus 89 s), but this difference was not significant (p = 0.23). The addition of coronal and sagittal images in trauma brain CT resulted in improved sensitivity and specificity as well as a reduction in SDH false negatives by greater than 50 %. Reformatted images substantially reduce the number of missed SDHs compared with axial images alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, S; Dewhirst, M; Oldham, M
2016-06-15
Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm{sup 3}) ex vivo tissue samples at a resolution of 12.9µm{sup 3} per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10,more » 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied to study metastasis and immunologic responses via fluorescence staining.« less
Qualls, David; Leonard, Jeffrey R; Keller, Martin; Pineda, Jose; Leonard, Julie C
2015-06-01
Evaluation of children for cervical spine injuries (CSIs) after blunt trauma is complicated, particularly if the patient is unresponsive because of severe traumatic brain injury. Plain radiography and computed tomography (CT) are commonly used, but CT combined with magnetic resonance imaging (MRI) is still considered the gold standard in CSI detection. However, MRI is expensive and can delay cervical clearance. The purpose of this study is to determine the added benefit of MRI as an adjunct to CT in the clearance of children with severe head trauma. We performed a retrospective chart review of pediatric head trauma patients admitted to the pediatric intensive care unit at St. Louis Children's Hospital from 2002 to 2012. Patients who received both cervical spine CT and MRI and presented with a Glasgow Coma Scale score of 8 or lower were included in the study. Imaging was analyzed by two pediatric trauma subspecialists and classified as demonstrating "no injury," "stable injury," or "unstable injury." Results were compared, and discrepancies between CT and MRI findings were noted. A total of 1,196 head-injured children were admitted to the pediatric intensive care unit between January 2002 and December 2012. Sixty-three children underwent CT and MRI and met Glasgow Coma Scale criteria. Seven children were identified with negative CT and positive MRI findings, but none of these injuries were considered unstable by our criteria. Five children were determined to have unstable injuries, and all were detected on CT. The results of this study suggest that MRI does not detect unstable CSIs in the setting of negative CT imaging. Given the limited patient population for this study, further and more extensive studies investigating the utility of MRI in the head-injured pediatric patient are warranted. Diagnostic and care management study, level IV.
Ferrara, Pietro; Basile, Maria Cristina; Dell'Aquila, Livia; Vena, Flaminia; Coppo, Elena; Chiaretti, Antonio; Verrotti, Alberto; Paolini, Fabrizio; Caldarelli, Massimo
2016-01-01
Cranial computed tomography (CT) is considered the gold standard for the diagnosis of traumatic brain injury (TBI). The aim of this study was to evaluate if the clinical decision rules proposed by the Pediatric Emergency Care Applied Research Network (CDRs-PECARN) are really able to identify the patients who do not need cranial CT. This study investigates the neuropsychiatric outcome after TBI according to a pediatric version of the Glasgow Outcome Scale-Extended (GOS-E Peds). We calculated the sensitivity, specificity, negative predictive value (NPV) and positive predictive value of the CDRs-PECARN in 2 age groups. Sensitivity was very high in both groups, and the NPV was very useful for predicting which subjects, of those who presented without CDRs- PECARN, would have a negative cranial CT. We also evaluated the correlations between the GOS-E Peds and Glasgow Coma Scale and between the GOS-E Peds and cranial CT scan. Our study confirms the validation of the PECARN TBI prediction rules as a clinical instrument which can play a significant role in CT decision-making for children with TBI. It also demonstrates that the GOS-E Peds is a valid pediatric outcome scale for children with TBI, despite some important limitations. © 2016 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, M.J.D.; Chan, J.C.; Hensley, G.T.
1983-05-01
The clinical data, histologic findings, and computed tomographic (CT) abnormalities in eight adult Haitians with toxoplasma encephalitis were analyzed retrospectively. Diagnosis was established by identification of Toxoplasma gondii on autopsy in five and brain biopsy in three specimens and subsequently confirmed by the immunoperoxidase method. All these patiens, six of whom had been in the United States for 24 months or less, had severe idiopathic immunodeficiency syndrome. All were lymphopenic and six were on treatment for tuberculosis when the toxoplasma encephalitis developed. All patients were studied with CT when they developed an altered mental status and fever associated with seizuresmore » and/or focal neurologic deficits. Scans before treatment showed multiple intraparenchymal lesions in seven and a single lesion in the thalamus in one. Ring and/or nodular enhancement of the lesions was found in six and hypodense areas in two. Progressions of abnormalities occurred on serial studies. These CT findings that were best shown on axial and coronal thin-section double-dose contrast studies were useful but not diagnostically pathognomonic. In patients with similar clinical presentation CT is recommended to identify focal areas of involvement and to guide brain biopsy or excision so that prompt medical thereapy of this often lethal infection can be instituted.« less
Alali, Aziz S; Burton, Kirsteen; Fowler, Robert A; Naimark, David M J; Scales, Damon C; Mainprize, Todd G; Nathens, Avery B
2015-07-01
Economic evaluations provide a unique opportunity to identify the optimal strategies for the diagnosis and management of traumatic brain injury (TBI), for which uncertainty is common and the economic burden is substantial. The objective of this study was to systematically review and examine the quality of contemporary economic evaluations in the diagnosis and management of TBI. Two reviewers independently searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, NHS Economic Evaluation Database, Health Technology Assessment Database, EconLit, and the Tufts CEA Registry for comparative economic evaluations published from 2000 onward (last updated on August 30, 2013). Data on methods, results, and quality were abstracted in duplicate. The results were summarized quantitatively and qualitatively. Of 3539 citations, 24 economic evaluations met our inclusion criteria. Nine were cost-utility, five were cost-effectiveness, three were cost-minimization, and seven were cost-consequences analyses. Only six studies were of high quality. Current evidence from high-quality studies suggests the economic attractiveness of the following strategies: a low medical threshold for computed tomography (CT) scanning of asymptomatic infants with possible inflicted TBI, selective CT scanning of adults with mild TBI as per the Canadian CT Head Rule, management of severe TBI according to the Brain Trauma Foundation guidelines, management of TBI in dedicated neurocritical care units, and early transfer of patients with TBI with nonsurgical lesions to neuroscience centers. Threshold-guided CT scanning, adherence to Brain Trauma Foundation guidelines, and care for patients with TBI, including those with nonsurgical lesions, in specialized settings appear to be economically attractive strategies. Copyright © 2015 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika
2015-01-01
The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.
Diamond, Keri; Mowszowski, Loren; Cockayne, Nicole; Norrie, Louisa; Paradise, Matthew; Hermens, Daniel F; Lewis, Simon J G; Hickie, Ian B; Naismith, Sharon L
2015-01-01
With the rise in the ageing population and absence of a cure for dementia, cost-effective prevention strategies for those 'at risk' of dementia including those with depression and/or mild cognitive impairment are urgently required. This study evaluated the efficacy of a multifaceted Healthy Brain Ageing Cognitive Training (HBA-CT) program for older adults 'at risk' of dementia. Using a single-blinded design, 64 participants (mean age = 66.5 years, SD = 8.6) were randomized to an immediate treatment (HBA-CT) or treatment-as-usual control arm. The HBA-CT intervention was conducted twice-weekly for seven weeks and comprised group-based psychoeducation about cognitive strategies and modifiable lifestyle factors pertaining to healthy brain ageing, and computerized cognitive training. In comparison to the treatment-as-usual control arm, the HBA-CT program was associated with improvements in verbal memory (p = 0.03), self-reported memory (p = 0.03), mood (p = 0.01), and sleep (p = 0.01). While the improvements in memory (p = 0.03) and sleep (p = 0.02) remained after controlling for improvements in mood, only a trend in verbal memory improvement was apparent after controlling for sleep. The HBA-CT program improves cognitive, mood, and sleep functions in older adults 'at risk' of dementia, and therefore offers promise as a secondary prevention strategy.
The effect of brain tomography findings on mortality in sniper shot head injuries.
Can, Çağdaş; Bolatkale, M; Sarıhan, A; Savran, Y; Acara, A Ç; Bulut, M
2017-06-01
Penetrating gunshot head injuries have a poor prognosis and require prompt care. Brain CT is a routine component of the standard evaluation of head wounds and suspected brain injury. We aimed to investigate the effect of brain CT findings on mortality in gunshot head injury patients who were admitted to our emergency department (ED) from the Syrian Civil War. The study group comprised patients who were admitted to the ED with gunshot brain injury. Patients' GCS scores, prehospital intubations and brain CT findings were examined. 104 patients were included (92% male, mean age 25 years). Pneumocephalus, midline shift, penetrating head injury, patients with GCS scores ≤6 and patients who had to be intubated in the prehospital period were associated with higher mortality (p<0.05). The results of this study demonstrated that pneumocephalus, midline shift, a penetrating head injury, GCS scores ≤6 and prehospital intubation are associated with high mortality, whereas patients with temporal bone fracture, perforating or single cerebral lobe head injury had a higher survival rates. The temporal bone has a relatively thin and smooth shape compared with the other skull bones so a bullet is less fragmented when it has penetrated the temporal bone, which could be a reason for the reduced cavitation effect. In perforating head injury, the bullet makes a second hole and so will have deposited less energy than a retained bullet with a consequent reduction in intracranial injury and mortality. Further studies are required to reach definitive conclusions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Ross, Stephen R.; Wang, Yunzhi; Wu, Dee H.; Cornwell, Benjamin O.; Ray, Bappaditya; Zheng, Bin
2017-03-01
Aneurysmal subarachnoid hemorrhage (aSAH) is a form of hemorrhagic stroke that affects middle-aged individuals and associated with significant morbidity and/or mortality especially those presenting with higher clinical and radiologic grades at the time of admission. Previous studies suggested that blood extravasated after aneurysmal rupture was a potentially clinical prognosis factor. But all such studies used qualitative scales to predict prognosis. The purpose of this study is to develop and test a new interactive computer-aided detection (CAD) tool to detect, segment and quantify brain hemorrhage and ventricular cerebrospinal fluid on non-contrasted brain CT images. First, CAD segments brain skull using a multilayer region growing algorithm with adaptively adjusted thresholds. Second, CAD assigns pixels inside the segmented brain region into one of three classes namely, normal brain tissue, blood and fluid. Third, to avoid "black-box" approach and increase accuracy in quantification of these two image markers using CT images with large noise variation in different cases, a graphic User Interface (GUI) was implemented and allows users to visually examine segmentation results. If a user likes to correct any errors (i.e., deleting clinically irrelevant blood or fluid regions, or fill in the holes inside the relevant blood or fluid regions), he/she can manually define the region and select a corresponding correction function. CAD will automatically perform correction and update the computed data. The new CAD tool is now being used in clinical and research settings to estimate various quantitatively radiological parameters/markers to determine radiological severity of aSAH at presentation and correlate the estimations with various homeostatic/metabolic derangements and predict clinical outcome.
NASA Astrophysics Data System (ADS)
Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.
2011-03-01
A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.
Nguyen, Ha Son; Patel, Mohit; Li, Luyuan; Kurpad, Shekar; Mueller, Wade
2017-02-01
Background Diminishing volume of intracranial cerebrospinal fluid (CSF) in patients with space-occupying masses have been attributed to unfavorable outcome associated with reduction of cerebral perfusion pressure and subsequent brain ischemia. Objective The objective of this article is to employ a ratio of CSF volume to brain volume for longitudinal assessment of space-volume relationships in patients with extra-axial hematoma and to determine variability of the ratio among patients with different types and stages of hematoma. Patients and methods In our retrospective study, we reviewed 113 patients with surgical extra-axial hematomas. We included 28 patients (age 61.7 +/- 17.7 years; 19 males, nine females) with an acute epidural hematoma (EDH) ( n = 5) and subacute/chronic subdural hematoma (SDH) ( n = 23). We excluded 85 patients, in order, due to acute SDH ( n = 76), concurrent intraparenchymal pathology ( n = 6), and bilateral pathology ( n = 3). Noncontrast CT images of the head were obtained using a CT scanner (2004 GE LightSpeed VCT CT system, tube voltage 140 kVp, tube current 310 mA, 5 mm section thickness) preoperatively, postoperatively (3.8 ± 5.8 hours from surgery), and at follow-up clinic visit (48.2 ± 27.7 days after surgery). Each CT scan was loaded into an OsiriX (Pixmeo, Switzerland) workstation to segment pixels based on radiodensity properties measured in Hounsfield units (HU). Based on HU values from -30 to 100, brain, CSF spaces, vascular structures, hematoma, and/or postsurgical fluid were segregated from bony structures, and subsequently hematoma and/or postsurgical fluid were manually selected and removed from the images. The remaining images represented overall brain volume-containing only CSF spaces, vascular structures, and brain parenchyma. Thereafter, the ratio between the total number of voxels representing CSF volume (based on values between 0 and 15 HU) to the total number of voxels representing overall brain volume was calculated. Results CSF/brain volume ratio varied significantly during the course of the disease, being the lowest preoperatively, 0.051 ± 0.032; higher after surgical evacuation of hematoma, 0.067 ± 0.040; and highest at follow-up visit, 0.083 ± 0.040 ( p < 0.01). Using a repeated regression analysis, we found a significant association ( p < 0.01) of the ratio with age (odds ratio, 1.019; 95% CI, 1.009-1.029) and type of hematoma (odds ratio, 0.405; 95% CI, 0.303-0.540). Conclusion CSF/brain volume ratio calculated from CT images has potential to reflect dynamics of intracranial volume changes in patients with space-occupying mass.
Is the routine CT head scan justified for psychiatric patients? A prospective study.
Ananth, J; Gamal, R; Miller, M; Wohl, M; Vandewater, S
1993-01-01
Thirty-four psychiatric patients, assessed for a physical illness that was missed during diagnosis, underwent a CT scan. After investigation, the diagnosis of 14 patients changed from a functional to an organic illness. In nine patients, the CT scan was reported to be abnormal, and yet only two were diagnosed as having an organic syndrome. In seven patients, the CT scan was normal but the patients had an undisputed organic brain syndrome. These findings indicate that the use of CT scans should be restricted to cases in which the diagnosis is seriously in question. The clinical findings should dictate the use of CT scans either to clarify or to complement them. PMID:8461285
Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long
2008-01-01
Background Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor β1 (TGF-β1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), β-amyloid precursor proteins (AβPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. Methods BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-β1, S100B, NF-L, tTG, AβPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Conclusion Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AβPP and phosphorylated tau emerged in the brain. PMID:18573219
Liao, Chien-Wei; Fan, Chia-Kwung; Kao, Ting-Chang; Ji, Dar-Der; Su, Kua-Eyre; Lin, Yun-Ho; Cho, Wen-Long
2008-06-24
Because the outcomes and sequelae after different types of brain injury (BI) are variable and difficult to predict, investigations on whether enhanced expressions of BI-associated biomarkers (BIABs), including transforming growth factor beta1 (TGF-beta1), S100B, glial fibrillary acidic protein (GFAP), neurofilament light chain (NF-L), tissue transglutaminases (tTGs), beta-amyloid precursor proteins (AbetaPP), and tau are present as well as whether impairment of the ubiquitin-proteasome system (UPS) is present have been widely used to help delineate pathophysiological mechanisms in various BIs. Larvae of Toxocara canis can invade the brain and cause BI in humans and mice, leading to cerebral toxocariasis (CT). Because the parasitic burden is light in CT, it may be too cryptic to be detected in humans, making it difficult to clearly understand the pathogenesis of subtle BI in CT. Since the pathogenesis of murine toxocariasis is very similar to that in humans, it appears appropriate to use a murine model to investigate the pathogenesis of CT. BIAB expressions and UPS function in the brains of mice inoculated with a single dose of 250 T. canis embryonated eggs was investigated from 3 days (dpi) to 8 weeks post-infection (wpi) by Western blotting and RT-PCR. Results revealed that at 4 and 8 wpi, T. canis larvae were found to have invaded areas around the choroid plexus but without eliciting leukocyte infiltration in brains of infected mice; nevertheless, astrogliosis, an indicator of BI, with 78.9~142.0-fold increases in GFAP expression was present. Meanwhile, markedly increased levels of other BIAB proteins including TGF-beta1, S100B, NF-L, tTG, AbetaPP, and tau, with increases ranging 2.0~12.0-fold were found, although their corresponding mRNA expressions were not found to be present at 8 wpi. Concomitantly, UPS impairment was evidenced by the overexpression of conjugated ubiquitin and ubiquitin in the brain. Further studies are needed to determine whether there is an increased risk of CT progression into neurodegenerative disease because neurodegeneration-associated AbetaPP and phosphorylated tau emerged in the brain.
Small Vessel Disease/White Matter Disease of the Brain and Its Association With Osteoporosis
Alagiakrishnan, Kannayiram; Hsueh, Jenny; Zhang, Edwin; Khan, Khurshid; Senthilselvan, Ambikaipakan
2015-01-01
Background Evidence now suggests the role of neural effect on bone mass control. The effect of small vessel disease of the brain on osteoporosis has not been studied. The aim of this study was to investigate the association of white matter disease (WMD) of the brain with osteoporosis in the elderly. Methods In this retrospective cross-sectional study, 780 consecutive patient charts between 2010 and 2011 were reviewed in the Senior’s Outpatient Clinic at the University of Alberta Hospital. Subjects with brain computerized tomography (CT) were included in the study. Subjects with incomplete information, intracranial hemorrhage, acute stroke, cerebral edema, and/or normal pressure hydrocephalus on the CT were excluded. WMD was quantified on CT using Wahlund’s scoring protocol. Osteoporosis information was obtained from the chart, which has been diagnosed based on bone mineral density (BMD) information. Logistic regression analysis was done to determine the association of WMD severity with osteoporosis after controlling for confounding vascular risk factors. Results Of the 505 subjects who were included in the study, 188 (37%) had osteoporosis and 171 (91%) of these osteoporotic subjects were females. The mean age was 79.8 ± 7.04 years. The prevalence of WMD in osteoporosis subjects was 73%. In the unadjusted logistic regression analysis, there was a significant association between WMD severity and osteoporosis (odds ratio (OR): 1.10; 95% confidence interval (CI): 1.05 - 1.14; P < 0.001) and the significance remained in the adjusted model, after correcting for age, sex and all vascular risk factors (OR: 1.11; 95% CI: 1.05 - 1.18; P < 0.001). Conclusion WMD severity of the brain was associated with osteoporosis in the elderly. PMID:25780476
Intrahospital Transfer of Patients with Traumatic Brain Injury: Increase in Intracranial Pressure.
Trofimov, Alex; Kalentiev, George; Yuriev, Michail; Pavlov, Vladislav; Grigoryeva, Vera
2016-01-01
To assess the dynamic of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and dynamic pressure reactivity index (PRx) during intrahospital transport. There were 33 comatose patients with severe traumatic brain injury (TBI). The mean age was 36.3 ± 4.8 years (range 19-45 years), and there were 17 men and 16 women. The median Glasgow Coma Scale score at admission was 6.2 ± 0.7. Computed tomography (CT) included native CT, perfusion CT, and CT angiography. The mean CPPs before and after the CT scans were 95.9 ± 10.7 and 81.5 ± 12.5 mmHg respectively. The mean ICP before transport was 19.98 ± 5.3 mmHg (minimum 11.7; maximum 51.7). It was statistically significantly lower (p < 0.001) than during the transfer (26.1 ± 13.5 mmHg). During the period described all patients had increased ICP, especially during vertical movement in an elevator. During horizontal movement on the floor ICP remained higher (p < 0.05). The mean dynamic PRx before and after intrahospital transport was 0.23 ± 0.14 and 0.52 ± 0.04, respectively (p < 0.001). Average duration of the transfer and CT study was 15.3 ± 3.4 min. Intrahospital transport of patients with TBI may lead to a significant increase in ICP, dynamic PRx, and decreased CPP. The results suppose that the decision to perform brain CT in comatose patients with TBI should be carefully considered by clinicians.
Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and duodenum.
Burdo, Joseph; Dargusch, Richard; Schubert, David
2006-05-01
System x(c)(-), one of the main transporters responsible for central nervous system cystine transport, is comprised of two subunits, xCT and 4F2hc. The transport of cystine into cells is rate limiting for glutathione synthesis, the major antioxidant and redox cofactor in the brain. Alterations in glutathione status are prevalent in numerous neurodegenerative diseases, emphasizing the importance of proper cystine homeostasis. However, the distribution of xCT and 4F2hc within the brain and other areas has not been described. Using specific antibodies, both xCT and 4F2hc were localized predominantly to neurons in the mouse and human brain, but some glial cells were labeled as well. Border areas between the brain proper and periphery including the vascular endothelial cells, ependymal cells, choroid plexus, and leptomeninges were also highly positive for the system x(c)(-) components. xCT and 4F2hc are also present at the brush border membranes in the kidney and duodenum. These results indicate that system x(c)(-) is likely to play a role in cellular health throughout many areas of the brain as well as other organs by maintaining intracellular cystine levels, thereby resulting in low levels of oxidative stress.
Does head CT scan pathology predict outcome after mild traumatic brain injury?
Lannsjö, M; Backheden, M; Johansson, U; Af Geijerstam, J L; Borg, J
2013-01-01
More evidence is needed to forward our understanding of the key determinants of poor outcome after mild traumatic brain injury (MTBI). A large, prospective, national cohort of patients was studied to analyse the effect of head CT scan pathology on the outcome. One-thousand two-hundred and sixty-two patients with MTBI (Glasgow Coma Scale score 15) at 39 emergency departments completed a study protocol including acute head CT scan examination and follow-up by the Rivermead Post Concussion Symptoms Questionnaire and the Glasgow Outcome Scale Extended (GOSE) at 3 months after MTBI. Binary logistic regression was used for the assessment of prediction ability. In 751 men (60%) and 511 women (40%), with a mean age of 30 years (median 21, range 6-94), we observed relevant or suspect relevant pathologic findings on acute CT scan in 52 patients (4%). Patients aged below 30 years reported better outcome both with respect to symptoms and GOSE as compared to patients in older age groups. Men reported better outcome than women as regards symptoms (OR 0.64, CI 0.49-0.85 for ≥3 symptoms) and global function (OR 0.60, CI 0.39-0.92 for GOSE 1-6). Pathology on acute CT scan examination had no effect on self-reported symptoms or global function at 3 months after MTBI. Female gender and older age predicted a less favourable outcome. The findings support the view that other factors than brain injury deserve attention to minimize long-term complaints after MTBI. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plets, C.; Baert, A.L.; Nijs, G.L.
1986-01-01
It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less
Boris, P; Bundgaard, F; Olsen, A
1987-01-01
It is difficult to correlate CT Hounsfield unit (H. U.) numbers from one CT investigation to another and from one CT scanner to another, especially when dealing with small changes in the brain substance, as in degenerative brain diseases in children. By subtracting the mean value of cerebrospinal fluid (CSF) from the mean value of grey and white matter, it is possible to remove most of the errors due, for example, to maladjustments, short and long-term drift, X-ray fan, and detector asymmetry. Measurements of white and grey matter using these methods showed CT H. U. numbers changing from 15 H. U. to 22 H. U. in white matter and 23 H. U. to 30 H. U. in grey matter in 86 healthy infants aged 0-5 years. In all measurements, the difference between grey and white matter was exactly 8 H. U. The method has proven to be highly accurate and reproducible.
Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D'Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K; Dwarakanath, Bilikere S
2015-12-01
There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and carefully weigh the risk-benefit ratios prior to every 18FDG whole body PET/CT scan.
PET/CT in a Patient Diagnosed With Dandy-Walker Syndrome.
Infante, Jose R; Garcia, Lucia; Rayo, Juan I; Serrano, Justo; Dominguez, Maria L; Moreno, Manuel
2016-01-01
The Dandy-Walker syndrome (DWS) is a rare congenital posterior fossa malformation characterized by aplasia or hypoplasia of the cerebellar vermis, cystic dilatation of the fourth ventricle, and enlargement of the posterior fossa. We present a 52-year-old Caucasian man diagnosed with gastrointestinal stromal tumor and submitted to 18F-FDG PET/CT as a staging procedure. The patient was previously diagnosed with DWS in brain CT scan. PET/CT images revealed an ametabolic large cyst in the posterior fossa and hypoplasia of cerebellar vermis. The case is presented with the aim to show the appearance of this syndrome on PET/CT study.
Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi
2017-01-01
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development.
Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi
2017-01-01
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34–40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development. PMID:29163000
TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury
NASA Astrophysics Data System (ADS)
Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo
2010-03-01
Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.
The costs and utility of imaging in evaluating dizzy patients in the emergency room.
Ahsan, Syed F; Syamal, Mausumi N; Yaremchuk, Kathleen; Peterson, Edward; Seidman, Michael
2013-09-01
To determine the usefulness and the costs of computed tomography (CT) and magnetic resonance imaging (MRI) in the evaluation of patients with dizziness in the emergency department (ED). Retrospective chart review. Charts of patients with a specific health maintenance insurance plan presenting with dizziness and vertigo to a large health system's ED between January 2008 and January 2011 were reviewed. Patient demographics, signs/symptoms, and CT and MRI results were assessed. CT and MRI charges were determined based on positive versus unremarkable findings. Data analysis included stepwise logistic regressions. Of 1681 patients identified, 810 (48%) received CT brain/head scan totaling $988,200 in charges. Of these, only 0.74% yielded clinically significant pathology requiring intervention. However, 12.2% of MRI studies yielded discovery of significant abnormalities. Logistic regression analysis revealed that older patients (P = .001) were more likely to receive a CT scan. In the 3-year period studied, CT scans for ED patients with dizziness and vertigo yielded a low predictive value for significant pathology. These data reveal a great opportunity for cost savings by developing stricter guidelines for ordering CT scans for this set of ED patients. The use of MRI in all cases of dizziness was found to be neither practical nor useful. However, appropriately directed MRI of the brain is recommended in patients with dizziness and other neurological signs or symptoms. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Gennatas, Efstathios D; Avants, Brian B; Wolf, Daniel H; Satterthwaite, Theodore D; Ruparel, Kosha; Ciric, Rastko; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C
2017-05-17
Developmental structural neuroimaging studies in humans have long described decreases in gray matter volume (GMV) and cortical thickness (CT) during adolescence. Gray matter density (GMD), a measure often assumed to be highly related to volume, has not been systematically investigated in development. We used T1 imaging data collected on the Philadelphia Neurodevelopmental Cohort to study age-related effects and sex differences in four regional gray matter measures in 1189 youths ranging in age from 8 to 23 years. Custom T1 segmentation and a novel high-resolution gray matter parcellation were used to extract GMD, GMV, gray matter mass (GMM; defined as GMD × GMV), and CT from 1625 brain regions. Nonlinear models revealed that each modality exhibits unique age-related effects and sex differences. While GMV and CT generally decrease with age, GMD increases and shows the strongest age-related effects, while GMM shows a slight decline overall. Females have lower GMV but higher GMD than males throughout the brain. Our findings suggest that GMD is a prime phenotype for the assessment of brain development and likely cognition and that periadolescent gray matter loss may be less pronounced than previously thought. This work highlights the need for combined quantitative histological MRI studies. SIGNIFICANCE STATEMENT This study demonstrates that different MRI-derived gray matter measures show distinct age and sex effects and should not be considered equivalent but complementary. It is shown for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. A clear understanding of normal structural brain development is essential for the examination of brain-behavior relationships, the study of brain disease, and, ultimately, clinical applications of neuroimaging. Copyright © 2017 the authors 0270-6474/17/375065-09$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliwal, B; Asprey, W; Yan, Y
Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less
Dosimetry in small-animal CT using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.
2016-01-01
Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.
Weng, Jian-Feng; Chen, Jun; Hong, Wei-Cong; Luo, Li-Feng; Yu, Wei; Luo, Shi-Da
2013-02-01
Visfatin is a newly identified pro-inflammatory adipokine and a genetic polymorphism -1535 C>T located in the visfatin gene promoter has been suggested to be associated with the regulation of visfatin expression in some inflammatory illness. However, there were some conflicting results regarding whether this variant is functional or not. This study aimed to examine the relations of the -1535 C>T single nucleotide polymorphism (SNP) of visfatin gene to the plasma visfatin and C-reactive protein concentrations in traumatic brain injury (TBI). 318 Chinese Han patients with TBI were recruited in this study. Plasma visfatin and C-reactive protein levels were significantly different between the genotypes in the SNP-1535 C>T even after adjustment for age, sex and body mass index. The genotype C-C had the highest plasma visfatin and C-reactive protein concentrations. The plasma visfatin and C-reactive protein concentrations between the variant genotypes C-T and T-T did not differ significantly. Plasma visfatin level was significantly associated with plasma C-reactive protein level using multivariate linear regression. Thus, the SNP-1535 C>T of visfatin gene seemed to be potentially involved in the inflammatory component of TBI through a decreased production of visfatin. Copyright © 2012 Elsevier Inc. All rights reserved.
Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies
NASA Astrophysics Data System (ADS)
Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.
2017-04-01
Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4% ± 3.1% for CBAC and 3.5% ± 3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a crucial step in order to obtain improved activity estimates. Presence of local errors in both MLACF and CBAC based reconstructions would require the use of a normal database for clinical assessment. However, further work is required in order to assess the clinical advantage of MLACF over CBAC based method.
Mansor, Syahir; Pfaehler, Elisabeth; Heijtel, Dennis; Lodge, Martin A; Boellaard, Ronald; Yaqub, Maqsood
2017-12-01
In longitudinal oncological and brain PET/CT studies, it is important to understand the repeatability of quantitative PET metrics in order to assess change in tracer uptake. The present studies were performed in order to assess precision as function of PET/CT system, reconstruction protocol, analysis method, scan duration (or image noise), and repositioning in the field of view. Multiple (repeated) scans have been performed using a NEMA image quality (IQ) phantom and a 3D Hoffman brain phantom filled with 18 F solutions on two systems. Studies were performed with and without randomly (< 2 cm) repositioning the phantom and all scans (12 replicates for IQ phantom and 10 replicates for Hoffman brain phantom) were performed at equal count statistics. For the NEMA IQ phantom, we studied the recovery coefficients (RC) of the maximum (SUV max ), peak (SUV peak ), and mean (SUV mean ) uptake in each sphere as a function of experimental conditions (noise level, reconstruction settings, and phantom repositioning). For the 3D Hoffman phantom, the mean activity concentration was determined within several volumes of interest and activity recovery and its precision was studied as function of experimental conditions. The impact of phantom repositioning on RC precision was mainly seen on the Philips Ingenuity PET/CT, especially in the case of smaller spheres (< 17 mm diameter, P < 0.05). This effect was much smaller for the Siemens Biograph system. When exploring SUV max , SUV peak , or SUV mean of the spheres in the NEMA IQ phantom, it was observed that precision depended on phantom repositioning, reconstruction algorithm, and scan duration, with SUV max being most and SUV peak least sensitive to phantom repositioning. For the brain phantom, regional averaged SUVs were only minimally affected by phantom repositioning (< 2 cm). The precision of quantitative PET metrics depends on the combination of reconstruction protocol, data analysis methods and scan duration (scan statistics). Moreover, precision was also affected by phantom repositioning but its impact depended on the data analysis method in combination with the reconstructed voxel size (tissue fraction effect). This study suggests that for oncological PET studies the use of SUV peak may be preferred over SUV max because SUV peak is less sensitive to patient repositioning/tumor sampling. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Ebadi, Ashkan; Dalboni da Rocha, Josué L.; Nagaraju, Dushyanth B.; Tovar-Moll, Fernanda; Bramati, Ivanei; Coutinho, Gabriel; Sitaram, Ranganatha; Rashidi, Parisa
2017-01-01
The human brain is a complex network of interacting regions. The gray matter regions of brain are interconnected by white matter tracts, together forming one integrative complex network. In this article, we report our investigation about the potential of applying brain connectivity patterns as an aid in diagnosing Alzheimer's disease and Mild Cognitive Impairment (MCI). We performed pattern analysis of graph theoretical measures derived from Diffusion Tensor Imaging (DTI) data representing structural brain networks of 45 subjects, consisting of 15 patients of Alzheimer's disease (AD), 15 patients of MCI, and 15 healthy subjects (CT). We considered pair-wise class combinations of subjects, defining three separate classification tasks, i.e., AD-CT, AD-MCI, and CT-MCI, and used an ensemble classification module to perform the classification tasks. Our ensemble framework with feature selection shows a promising performance with classification accuracy of 83.3% for AD vs. MCI, 80% for AD vs. CT, and 70% for MCI vs. CT. Moreover, our findings suggest that AD can be related to graph measures abnormalities at Brodmann areas in the sensorimotor cortex and piriform cortex. In this way, node redundancy coefficient and load centrality in the primary motor cortex were recognized as good indicators of AD in contrast to MCI. In general, load centrality, betweenness centrality, and closeness centrality were found to be the most relevant network measures, as they were the top identified features at different nodes. The present study can be regarded as a “proof of concept” about a procedure for the classification of MRI markers between AD dementia, MCI, and normal old individuals, due to the small and not well-defined groups of AD and MCI patients. Future studies with larger samples of subjects and more sophisticated patient exclusion criteria are necessary toward the development of a more precise technique for clinical diagnosis. PMID:28293162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Lee, Y; Ruschin, M
2015-06-15
Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution.more » Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of tissues and similarity of electron density assignment. This method can allow MR-only treatment planning.« less
Abdullah, Ariz Chong; Adnan, Johari Siregar; Rahman, Noor Azman A; Palur, Ravikant
2017-03-01
Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom). This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9. HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 ( Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 ( Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 ( Z = -5.32) at the basal ganglia and 8.79 versus 8.06 ( Z = -4.93) at the middle cerebellar peduncles. All results were significant with P -value < 0.01. Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR.
Decreased occipital lobe metabolism by FDG-PET/CT
Solnes, Lilja; Nalluri, Abhinav; Cohen, Jesse; Jones, Krystyna M.; Zan, Elcin; Javadi, Mehrbod S.; Venkatesan, Arun
2017-01-01
Objective: To compare brain metabolism patterns on fluorodeoxyglucose (FDG)-PET/CT in anti–NMDA receptor and other definite autoimmune encephalitis (AE) and to assess how these patterns differ between anti–NMDA receptor neurologic disability groups. Methods: Retrospective review of clinical data and initial dedicated brain FDG-PET/CT studies for neurology inpatients with definite AE, per published consensus criteria, treated at a single academic medical center over a 10-year period. Z-score maps of FDG-PET/CT were made using 3-dimensional stereotactic surface projections in comparison to age group–matched controls. Brain region mean Z scores with magnitudes ≥2.00 were interpreted as significant. Comparisons were made between anti–NMDA receptor and other definite AE patients as well as among patients with anti–NMDA receptor based on modified Rankin Scale (mRS) scores at the time of FDG-PET/CT. Results: The medial occipital lobes were markedly hypometabolic in 6 of 8 patients with anti–NMDA receptor encephalitis and as a group (Z = −4.02, interquartile range [IQR] 2.14) relative to those with definite AE (Z = −2.32, 1.46; p = 0.004). Among patients with anti–NMDA receptor encephalitis, the lateral and medial occipital lobes were markedly hypometabolic for patients with mRS 4–5 (lateral occipital lobe Z = −3.69, IQR 1; medial occipital lobe Z = −4.08, 1) compared with those with mRS 0–3 (lateral occipital lobe Z = −0.83, 2; p < 0.0005; medial occipital lobe Z = −1.07, 2; p = 0.001). Conclusions: Marked medial occipital lobe hypometabolism by dedicated brain FDG-PET/CT may serve as an early biomarker for discriminating anti–NMDA receptor encephalitis from other AE. Resolution of lateral and medial occipital hypometabolism may correlate with improved neurologic status in anti–NMDA receptor encephalitis. PMID:29159205
NASA Astrophysics Data System (ADS)
Liao, Chun-Chih; Xiao, Furen; Wong, Jau-Min; Chiang, I.-Jen
Computed tomography (CT) of the brain is preferred study on neurological emergencies. Physicians use CT to diagnose various types of intracranial hematomas, including epidural, subdural and intracerebral hematomas according to their locations and shapes. We propose a novel method that can automatically diagnose intracranial hematomas by combining machine vision and knowledge discovery techniques. The skull on the CT slice is located and the depth of each intracranial pixel is labeled. After normalization of the pixel intensities by their depth, the hyperdense area of intracranial hematoma is segmented with multi-resolution thresholding and region-growing. We then apply C4.5 algorithm to construct a decision tree using the features of the segmented hematoma and the diagnoses made by physicians. The algorithm was evaluated on 48 pathological images treated in a single institute. The two discovered rules closely resemble those used by human experts, and are able to make correct diagnoses in all cases.
Sibbitt, W L; Sibbitt, R R; Griffey, R H; Eckel, C; Bankhurst, A D
1989-01-01
Magnetic resonance (MR) imaging and computed tomography (CT) are useful for the evaluation of central nervous system (CNS) lupus. This report describes the use of cranial MR and CT in 21 patients with systemic lupus erythematosus (SLE) with acute neuropsychiatric symptoms manifested by headache, seizures, focal neurological deficits, psychosis, or organic brain syndrome. Computed tomography was found to be insensitive and detected only diffuse atrophy (two cases), cerebral infarct (one case), and intracerebral haemorrhage (one case) in the 21 patients. Cranial MR images obtained with a General Electric 1.5 tesla Signa unit detected labile and fixed areas of increased proton intensity interpreted as focal oedema (eight cases), infarct (10 cases), haemorrhage (one), atrophy (seven), and acute sinusitis (two). Focal oedema was characterised by labile, high intensity lesions in the gray or white matter of the cerebellum, cerebrum, or brain stem, which completely resolved after aggressive corticosteroid treatment. Most high intensity reversible or fixed lesions evident on MR were not apparent on cranial CT images. In several patients sequential MR images were valuable in monitoring the efforts of treatment. Although histological confirmation of the high intensity brain lesions apparent on MR is desirable, prior necropsy studies suggest that pathological confirmation may be difficult owing to the paucity of recognisable brain lesions in patients with CNS lupus. It is concluded that for the evaluation of acute neuropsychiatric SLE MR is useful and provides more information than cranial CT. Images PMID:2619353
Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model.
Sun, Chang-Jin; Li, Chao; Lv, Hai-Bo; Zhao, Cong; Yu, Jin-Ming; Wang, Guang-Hui; Luo, Yun-Xiu; Li, Yan; Xiao, Mingyong; Yin, Jun; Lang, Jin-Yi
2014-01-01
The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3-127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2-53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7-124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2-62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14-47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice.
White matter disease severity of the brain and its association with geriatric syndromes.
Alagiakrishnan, Kannayiram; Hsueh, Jenny; Zhang, Edwin; Khan, Khurshid; Senthilselvan, Ambikaipakan
2013-11-01
White matter disease (WMD) of the brain is considered to be secondary to small vessel ischemia and can be a single unifying risk factor for the development of geriatric syndromes. The aim of our study was to investigate the association of the global and regional severity of WMD in the brain with geriatric syndromes burden. In our retrospective study, consecutive outpatient charts from patients seen between January 2010 and June 2011 at University of Alberta Hospital Seniors Clinic were reviewed. Subjects with brain computed tomography (CT) scans were included in the study. Subjects with incomplete information or with diseases that confounded WMD assessment on CT were excluded. White matter disease was quantified on CT using Wahlund scoring. A multiple linear regression analysis was conducted to determine the association of WMD severity with geriatric syndromes burden after controlling for confounding vascular risk factors. Of the 505 subjects, 326 (64.6%) were women. Mean age of the study patients was 79.8 years (SD ± 7.04), prevalence of WMD disease was 79.4%, and mean WMD score was 5.1 (SD ± 4.4). In subjects aged < and > 80 years, the mean number of geriatric syndromes was 2.83 (standard error of the mean [SE] 0.08) and 3.22 (SE 0.08), respectively. In the adjusted regression analysis, there was a significant association between WMD severity, globally (regression coefficient (β) = 0.457, SE 0.155; P = 0.003), as well as WMD in specific regions: frontal (P < 0.001), parieto-occipital (P = 0.004), and infratentorial regions (P = 0.04) with geriatric syndromes burden. The association remains even after correcting for age, sex, and all vascular risk factors. In our study, there was a significant association between the severity of global and selected regional WMD of the brain with geriatric syndromes burden, thus raising the possibility of a shared biologic association through vascular pathology of the brain.
Solnes, Lilja B; Jones, Krystyna M; Rowe, Steven P; Pattanayak, Puskar; Nalluri, Abhinav; Venkatesan, Arun; Probasco, John C; Javadi, Mehrbod S
2017-08-01
Diagnosis of autoimmune encephalitis presents some challenges in the clinical setting because of varied clinical presentations and delay in obtaining antibody panel results. We examined the role of neuroimaging in the setting of autoimmune encephalitides, comparing the utility of 18 F-FDG PET/CT versus conventional brain imaging with MRI. Methods: A retrospective study was performed assessing the positivity rate of MRI versus 18 F-FDG PET/CT during the initial workup of 23 patients proven to have antibody-positive autoimmune encephalitis. 18 F-FDG PET/CT studies were analyzed both qualitatively and semiquantitatively. Areas of cortical lobar hypo (hyper)-metabolism in the cerebrum that were 2 SDx from the mean were recorded as abnormal. Results: On visual inspection, all patients were identified as having an abnormal pattern of 18 F-FDG uptake. In semiquantitative analysis, at least 1 region of interest with metabolic change was identified in 22 of 23 (95.6%) patients using a discriminating z score of 2. Overall, 18 F-FDG PET/CT was more often abnormal during the diagnostic period than MRI (10/23, 43% of patients). The predominant finding on brain 18 F-FDG PET/CT imaging was lobar hypometabolism, being observed in 21 of 23 (91.3%) patients. Hypometabolism was most commonly observed in the parietal lobe followed by the occipital lobe. An entire subset of antibody-positive patients, anti- N -methyl-d-aspartate receptor (5 patients), had normal MRI results and abnormal 18 F-FDG PET/CT findings whereas the other subsets demonstrated a greater heterogeneity. Conclusion: Brain 18 F-FDG PET/CT may play a significant role in the initial evaluation of patients with clinically suspected antibody-mediated autoimmune encephalitis. Given that it is more often abnormal when compared with MRI in the acute setting, this molecular imaging technique may be better positioned as an early biomarker of disease so that treatment may be initiated earlier, resulting in improved patient outcomes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
SU-F-303-12: Implementation of MR-Only Simulation for Brain Cancer: A Virtual Clinical Trial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glide-Hurst, C; Zheng, W; Kim, J
2015-06-15
Purpose: To perform a retrospective virtual clinical trial using an MR-only workflow for a variety of brain cancer cases by incorporating novel imaging sequences, tissue segmentation using phase images, and an innovative synthetic CT (synCT) solution. Methods: Ten patients (16 lesions) were evaluated using a 1.0T MR-SIM including UTE-DIXON imaging (TE = 0.144/3.4/6.9ms). Bone-enhanced images were generated from DIXON-water/fat and inverted UTE. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating intersection and Dice similarity coefficients (DSC) using CT-SIM as ground truth. SynCTs were generated using voxel-based weighted summation incorporating T2, FLAIR, UTE1,more » and bone-enhanced images. Mean absolute error (MAE) characterized HU differences between synCT and CT-SIM. Dose was recalculated on synCTs; differences were quantified using planar gamma analysis (2%/2 mm dose difference/distance to agreement) at isocenter. Digitally reconstructed radiographs (DRRs) were compared. Results: On average, air maps intersected 80.8 ±5.5% (range: 71.8–88.8%) between MR-SIM and CT-SIM yielding DSCs of 0.78 ± 0.04 (range: 0.70–0.83). Whole-brain MAE between synCT and CT-SIM was 160.7±8.8 HU, with the largest uncertainty arising from bone (MAE = 423.3±33.2 HU). Gamma analysis revealed pass rates of 99.4 ± 0.04% between synCT and CT-SIM for the cohort. Dose volume histogram analysis revealed that synCT tended to yield slightly higher doses. Organs at risk such as the chiasm and optic nerves were most sensitive due to their proximities to air/bone interfaces. DRRs generated via synCT and CT-SIM were within clinical tolerances. Conclusion: Our approach for MR-only simulation for brain cancer treatment planning yielded clinically acceptable results relative to the CT-based benchmark. While slight dose differences were observed, reoptimization of treatment plans and improved image registration can address this limitation. Future work will incorporate automated registration between setup images (cone-beam CT and kilovoltage images) for synCT and CT-SIM. Submitting institution holds research agreements with Philips HealthCare, Best, Netherlands and Varian Medical Systems, Palo Alto, CA. Research partially sponsored via an Internal Mentored Research Grant.« less
Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.
Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S
2013-12-15
This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipton, C; Lamba, M; Qi, Z
Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) ormore » 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.« less
[Clinical decision to perform cranial computed tomography in children with non-severe head injury].
Franco-Koehrlen, Celine Alicia; Iglesias-Leboreiro, José; Bernárdez-Zapata, Isabel; Rendón-Macías, Mario Enrique
The main goal of this article was to evaluate if the decision to perform cranial computed tomography (CT) in children with minor head injury is determined by the presence or absence of the physician during assessment in the emergency room. Clinical files of 92 patients from 8 months to 4 years of age were selected. Those children were evaluated at the emergency department of the Spanish Hospital of Mexico due to non-severe traumatic brain injury. Glasgow Coma Scale (GCS) score was determined in all patients. Groups of patients were compared: 1) patients having CT, 2) patients with a physician who attended the initial assessment, 3) patients whose attending physician did not arrive to assess the patient and 4) patients assessed by the emergency room staff. 38% of patients with non-severe brain injury underwent CT, 8.6% had a brain injury visible on the CT. Moderate intensity impacts were greater in patients with CT. Regarding the ECG, it was found that most children scored 15 points (p=0.03). In patients without a physician, a greater trend was demonstrated for performing CT. Patients with minor head injury but without neurological signs should undergo a detailed clinical evaluation in order to avoid unwarranted CT. Copyright © 2015. Publicado por Masson Doyma México S.A.
Watanabe, Shota; Sakaguchi, Kenta; Hosono, Makoto; Ishii, Kazunari; Murakami, Takamichi; Ichikawa, Katsuhiro
The purpose of this study was to evaluate the effect of a hybrid-type iterative reconstruction method on Z-score mapping of hyperacute stroke in unenhanced computed tomography (CT) images. We used a hybrid-type iterative reconstruction [adaptive statistical iterative reconstruction (ASiR)] implemented in a CT system (Optima CT660 Pro advance, GE Healthcare). With 15 normal brain cases, we reconstructed CT images with a filtered back projection (FBP) and ASiR with a blending factor of 100% (ASiR100%). Two standardized normal brain data were created from normal databases of FBP images (FBP-NDB) and ASiR100% images (ASiR-NDB), and standard deviation (SD) values in basal ganglia were measured. The Z-score mapping was performed for 12 hyperacute stroke cases by using FBP-NDB and ASiR-NDB, and compared Z-score value on hyperacute stroke area and normal area between FBP-NDB and ASiR-NDB. By using ASiR-NDB, the SD value of standardized brain was decreased by 16%. The Z-score value of ASiR-NDB on hyperacute stroke area was significantly higher than FBP-NDB (p<0.05). Therefore, the use of images reconstructed with ASiR100% for Z-score mapping had potential to improve the accuracy of Z-score mapping.
Maxfield, Mark W; Schuster, Kevin M; McGillicuddy, Edward A; Young, Calvin J; Ghita, Monica; Bokhari, S A Jamal; Oliva, Isabel B; Brink, James A; Davis, Kimberly A
2012-12-01
A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP) reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol (17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol (61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. Therapeutic study, level IV.
CT and MRI imaging of the brain in MELAS syndrome.
Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna
2013-07-01
MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques.
Mehta, Bijal K; Mustafa, Ghulam; McMurtray, Aaron; Masud, Mohammed W; Gunukula, Sameer K; Kamal, Haris; Kandel, Amit; Beltagy, Abdelrahman; Li, Ping
2014-01-01
Transient ischemic attacks (TIA) are cerebral ischemic events without infarction. The uses of CT perfusion (CTP) techniques such as cerebral blood volume (CBV), time to peak (TTP), mean transit time (MTT) and cerebral blood flow (CBF) provide real time data about ischemia. It has been shown that CTP changes occur in less sensitive CTP scanners in patients with TIA. Larger detector row CTP (whole brain perfusion studies) may show that CTP abnormalities are more prevalent than previously noted. It is also unclear if these changes are associated with TIA severity. To demonstrate that TIA patients are associated with perfusion deficits using whole brain 320-detector-row CT perfusion, and to determine an association between ABCD2 score and perfusion deficit using whole brain perfusion. We retrospectively reviewed all TIA patients for CTP deficits from 2008-2010. Perfusion imaging was reviewed at admission; and it was determined if a perfusion deficit was present along with vascular territory involved. Of 364 TIA patients, 62 patients had CTP deficits. The largest group of patients had MCA territory involved with 48 of 62 patients (77.42%). The most common perfusion abnormality was increased TTP with 46 patients (74.19%). The ABCD2 score was reviewed in association with perfusion deficit. Increased age >60, severe hypertension (>180/100 mmHg), patients with speech abnormalities, and duration of symptoms >10 min were associated with a perfusion deficit but history of diabetes or minimal/moderate hypertension (140/90-179/99 mmHg) was not. There was no association between motor deficit and perfusion abnormality. Perfusion deficits are found in TIA patients using whole brain CTP and associated with components of the ABCD2 score.
NASA Astrophysics Data System (ADS)
Keshavamurthy, Krishna N.; Leary, Owen P.; Merck, Lisa H.; Kimia, Benjamin; Collins, Scott; Wright, David W.; Allen, Jason W.; Brock, Jeffrey F.; Merck, Derek
2017-03-01
Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. These steps often occur in series, adding more time to the process and potentially delaying time-dependent management decisions for patients with traumatic brain injury. Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios.
Brain medical image diagnosis based on corners with importance-values.
Gao, Linlin; Pan, Haiwei; Li, Qing; Xie, Xiaoqin; Zhang, Zhiqiang; Han, Jinming; Zhai, Xiao
2017-11-21
Brain disorders are one of the top causes of human death. Generally, neurologists analyze brain medical images for diagnosis. In the image analysis field, corners are one of the most important features, which makes corner detection and matching studies essential. However, existing corner detection studies do not consider the domain information of brain. This leads to many useless corners and the loss of significant information. Regarding corner matching, the uncertainty and structure of brain are not employed in existing methods. Moreover, most corner matching studies are used for 3D image registration. They are inapplicable for 2D brain image diagnosis because of the different mechanisms. To address these problems, we propose a novel corner-based brain medical image classification method. Specifically, we automatically extract multilayer texture images (MTIs) which embody diagnostic information from neurologists. Moreover, we present a corner matching method utilizing the uncertainty and structure of brain medical images and a bipartite graph model. Finally, we propose a similarity calculation method for diagnosis. Brain CT and MRI image sets are utilized to evaluate the proposed method. First, classifiers are trained in N-fold cross-validation analysis to produce the best θ and K. Then independent brain image sets are tested to evaluate the classifiers. Moreover, the classifiers are also compared with advanced brain image classification studies. For the brain CT image set, the proposed classifier outperforms the comparison methods by at least 8% on accuracy and 2.4% on F1-score. Regarding the brain MRI image set, the proposed classifier is superior to the comparison methods by more than 7.3% on accuracy and 4.9% on F1-score. Results also demonstrate that the proposed method is robust to different intensity ranges of brain medical image. In this study, we develop a robust corner-based brain medical image classifier. Specifically, we propose a corner detection method utilizing the diagnostic information from neurologists and a corner matching method based on the uncertainty and structure of brain medical images. Additionally, we present a similarity calculation method for brain image classification. Experimental results on two brain image sets show the proposed corner-based brain medical image classifier outperforms the state-of-the-art studies.
Dynamic perfusion CT in brain tumors.
Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim
2015-12-01
Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented. Copyright © 2015. Published by Elsevier Ireland Ltd.
Computed tomographic findings of cerebral fat embolism following multiple bone fractures.
Law, Huong Ling; Wong, Siong Lung; Tan, Suzet
2013-02-01
Fat embolism to the lungs and brain is an uncommon complication following fractures. Few reports with descriptions of computed tomographic (CT) findings of emboli to the brain or cerebral fat embolism are available. We report a case of cerebral fat embolism following multiple skeletal fractures and present its CT findings here.
Kakooza-Mwesige, Angelina; Byanyima, Rosemary K; Tumwine, James K; Eliasson, Ann-Christin; Forssberg, Hans; Flodmark, Olof
2016-06-01
There is limited literature on brain imaging studies of children with cerebral palsy (CP) in low and middle income countries. We investigated neuroimaging patterns of children with CP attending a tertiary referral centre in Uganda to determine how they differed from studies reported from high income countries and their relationship with prenatal and postnatal factors. Precontrast and postcontrast computed tomography (CT) scans of 78 CP children aged 2-12 years were conducted using a Philips MX 16-slice CT scanner. Two radiologists, blinded to the patient's clinical status, independently reviewed the scans. Abnormal CT scans were detected in 69% of the children sampled, with very few having primary white matter injuries (4%). Primary grey matter injuries (PGMI) (44%) and normal scans (31%) were most frequent. Children with a history of hospital admission following birth were three times more likely to have PGMI (odds ratio [OR] 2.8; 95% CI 1.1-7.1), suggesting a perinatal period with medical complications. Brain imaging patterns in this group of CP children differed markedly from imaging studies reported from high income countries, suggesting a perinatal aetiology in full-term infants and reduced survival in preterm infants. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Estimation of skull table thickness with clinical CT and validation with microCT.
Lillie, Elizabeth M; Urban, Jillian E; Weaver, Ashley A; Powers, Alexander K; Stitzel, Joel D
2015-01-01
Brain injuries resulting from motor vehicle crashes (MVC) are extremely common yet the details of the mechanism of injury remain to be well characterized. Skull deformation is believed to be a contributing factor to some types of traumatic brain injury (TBI). Understanding biomechanical contributors to skull deformation would provide further insight into the mechanism of head injury resulting from blunt trauma. In particular, skull thickness is thought be a very important factor governing deformation of the skull and its propensity for fracture. Current computed tomography (CT) technology is limited in its ability to accurately measure cortical thickness using standard techniques. A method to evaluate cortical thickness using cortical density measured from CT data has been developed previously. This effort validates this technique for measurement of skull table thickness in clinical head CT scans using two postmortem human specimens. Bone samples were harvested from the skulls of two cadavers and scanned with microCT to evaluate the accuracy of the estimated cortical thickness measured from clinical CT. Clinical scans were collected at 0.488 and 0.625 mm in plane resolution with 0.625 mm thickness. The overall cortical thickness error was determined to be 0.078 ± 0.58 mm for cortical samples thinner than 4 mm. It was determined that 91.3% of these differences fell within the scanner resolution. Color maps of clinical CT thickness estimations are comparable to color maps of microCT thickness measurements, indicating good quantitative agreement. These data confirm that the cortical density algorithm successfully estimates skull table thickness from clinical CT scans. The application of this technique to clinical CT scans enables evaluation of cortical thickness in population-based studies. © 2014 Anatomical Society.
Xie, Fang; Xi, Yin; Pascual, Juan M.; Muzik, Otto; Peng, Fangyu
2017-01-01
Copper is a nutritional metal required for brain development and function. Wilson’s disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by mutation of ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study is to explore feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependence changes of cerebral copper metabolism in WD using an Atp7b−/− knockout mouse model of WD and a positron emission tomography/computed tomography (PET/CT) scanner. Continuing from recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b−/− knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b−/− knockout mice at 7th week of age, compared with the 64Cu radioactivity in the brains of age and gender-matched wild type C57BL/6 mice, at 24 hour (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b−/− knockout mice from 13th to 21th week of age, using the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b−/− knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support the use of [64Cu]CuCl2-PET/CT as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms. PMID:28130615
Xie, Fang; Xi, Yin; Pascual, Juan M; Muzik, Otto; Peng, Fangyu
2017-06-01
Copper is a nutritional metal required for brain development and function. Wilson's disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([ 64 C]CuCl 2 ) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b -/- knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [ 64 C]CuCl 2 in Atp7b -/- knockout mice, PET quantitative analysis revealed low 64 Cu radioactivity in the brains of Atp7b -/- knockout mice at 7th weeks of age, compared with 64 Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [ 64 C]CuCl 2 as a tracer. Furthermore, age-dependent increase of 64 Cu radioactivity was detected in the brains of Atp7b -/- knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [ 64 C]CuCl 2 -PET/CT study of Atp7b -/- knockout mice with orally administered [ 64 Cu]CuCl 2 as a tracer. The findings of this study support clinical use of [ 64 Cu]CuCl 2 -PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.
Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo
2017-01-01
Objective To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Background Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. Methods DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Results Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Conclusion Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. PMID:28601874
Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo
2017-01-01
To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. © 2017 The Author(s) Published by S. Karger AG, Basel.
Craciunescu, Corneliu N; Johnson, Amy R; Zeisel, Steven H
2010-06-01
In mice, maternal dietary folate, a cofactor in 1-carbon metabolism, modulates neurogenesis and apoptosis in the fetal brain. Similarly, maternal dietary choline, an important methyl-donor, also influences these processes. Choline and folate are metabolically interrelated, and we determined whether choline supplementation could reverse the effects of folate deficiency on brain development. Timed-pregnant mice were fed control (CT), folate-deficient (FD), or folate-deficient, choline-supplemented (FDCS) AIN-76 diets from d 11 to 17 (E11-17) of pregnancy, and on E17, fetal brains were collected for analysis. Compared with the CT group, the FD group had fewer neural progenitor cells undergoing mitosis in the ventricular zones of the developing mouse brain septum (47%; P < 0.01), hippocampus (29%; P < 0.01), striatum (34%; P < 0.01), and anterior and mid-posterior neocortex (33% in both areas; P < 0.01). In addition, compared with CT, the FD diet almost doubled the rate of apoptosis in the fetal septum and hippocampus (P < 0.01). In the FDCS group, the mitosis rates generally were intermediate between those of the CT and FD groups; mitosis rates in the septum and striatum were significantly greater compared with the FD group and were significantly lower than in the CT group only in the septum and neocortex. In the FDCS group, the hippocampal apoptosis rate was significantly lower than in the FD group (P < 0.01) and was the same as in the CT group. In the septum, the apotosis rate in the FDCS group was intermediate between the CT and FD groups' rates. These results suggest that neural progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation and that choline supplementation can modify some, but not all, of these effects.
Gustafson, E. L.; Durkin, M. M.; Bard, J. A.; Zgombick, J.; Branchek, T. A.
1996-01-01
1. Receptor autoradiography and in situ hybridization histochemistry have been used to delineate the distribution of the 5-ht7 receptor and its mRNA in rat brain. Receptor autoradiographic studies were performed using [3H]-5-carboxamidotryptamine (5-CT) as the radioligand. The binding characteristics of the masking compounds were determined in Cos-7 cells transfected with a panel of 5-HT receptor subtype cDNAs, including the rat 5-ht7 cDNA. In situ hybridization studies were carried out with 35S-labelled oligonucleotide probes to the rat 5-ht7 mRNA. 2. Specific binding of [3H]-5-CT was observed in many areas of the rat brain. Following co-incubation with 1 microM ergotamine, this binding was completely eliminated. After addition of the masking ligands, [3H]-5-CT binding remained in layers 1-3 of cortex, septum, globus pallidus, thalamus, hypothalamus, centromedial amygdala, substantia nigra, periaquaductal gray, and superior colliculus. Addition of the antagonist, methiothepin, to the incubation regimen eliminated most of the remaining [3H]-5-CT binding in the brain, with the exception of the globus pallidus and substantia nigra. 3. The 5-ht7 mRNA was discretely localized in rat brain. The most intense hybridization signals were observed over the thalamus, the anterior hippocampal rudiment, and over the CA3 region of the hippocampus. Other regions containing hybridization signals included the septum, the hypothalamus, the centromedial amygdala and the periaquaductal gray. The regions exhibiting a modest receptor binding signal after methiothepin incubation, the globus pallidus and the substantia nigra, contained no 5-ht7 hybridization signals, suggesting a non-5-ht7 subtype in these two related structures. 4. The distribution of the 5-ht7 receptor and its mRNA is suggestive of multiple roles for this novel 5-HT receptor, within several brain systems. The limbic system (centromedial amygdala, anterior hippocampal rudiment, hypothalamus) is particularly well-represented, indicating a potential role for the 5-ht7 receptor in affective processes. Images Figure 2 Figure 3 Figure 4 PMID:8646411
Evaluation of Oral Anticoagulant-Associated Intracranial Parenchymal Hematomas Using CT Findings.
Gökçe, E; Beyhan, M; Acu, B
2015-06-01
Intracranial hemorrhage (ICH) is one of the most serious and lethal complications of anticoagulants with a reported incidence of 5-18.5 %. Computed tomographic (CT) findings, should be carefully studied because early diagnosis and treatment of oral anticoagulant use-associated hematomas are vitally important. In the present study, CT findings of intraparenchymal hematomas associated with anticoagulant and antihypertensive use are presented. This study included 45 patients (25 men, 20 women) under anticoagulant (21 patients) or antihypertensive (24 patients) treatment who had brain CT examinations due to complaints and findings suggesting cerebrovascular disease during July 2010-October 2013 period. CT examinations were performed to determine hematoma volumes and presence of swirl sign, hematocrit effect, mid-line shift effect, and intraventricular extension. The patients were 40-89 years of age. In four cases, a total of 51 intraparenchymal hematomas (42 cerebral, 7 cerebellar and 2 brain stem) were detected in multiple foci. Hematoma volumes varied from 0.09 to 284.00 ml. Swirl sign was observed in 87.5 and 63.0 % of OAC-associated ICHs and non-OAC-associated ICHs, respectively. In addition, hematocrit effect was observed in 41.6 % of OAC-associated and in 3.7 % of non-OAC-associated ICHs. Volume increases were observed in all 19 hematomas where swirl sign was detected, and follow-up CT scanning was conducted. Mortality of OAC-associated ICHs was correlated with initial volumes of hematoma, mid-line shift amount, and intraventricular extension. Detection of hematocrit effect by CT scanning of intracranial hematomas should be cautionary in oral anticoagulant use, while detection of swirl sign should be suggestive of active hemorrhage.
NASA Astrophysics Data System (ADS)
Thompson, Joseph R.; M oore, Robert J.; Hinshaw, David B.; Hasso, Anton N.
1982-12-01
Density resolution the accuracy of CT numbers) is generally recognized by radiologists w'ao interpret Children's, CT to be very poor. A CT scanning phantom was made. in order to document the brain attenuation inaccuracies which do occur and also to derive normal brain attenuation values for varying sized heads, given. the skull diameters and thicknesses. In scanning' this phantom, other factors, some of equal importance, to small head size, were found to affect the Hounsfield numbers of brain. The phantom was scanned in order to determine the magnitude of these specific factors, using the GE 8800 model scanner. After head size (412 to 25, H), the variables of the head support (up to 15 H) and centering within the field of view (6-23 H) were of similar importance, for small heads. Kilovoltage, software, and machine drift were less, important, although only kVp settings, of 105 and 120 were employed. Manufacturers may improve CT number accuracy if they recognize the relative, magnitude of the various factors which alter measured attenuation.
Classification of stroke disease using convolutional neural network
NASA Astrophysics Data System (ADS)
Marbun, J. T.; Seniman; Andayani, U.
2018-03-01
Stroke is a condition that occurs when the blood supply stop flowing to the brain because of a blockage or a broken blood vessel. A symptoms that happen when experiencing stroke, some of them is a dropped consciousness, disrupted vision and paralyzed body. The general examination is being done to get a picture of the brain part that have stroke using Computerized Tomography (CT) Scan. The image produced from CT will be manually checked and need a proper lighting by doctor to get a type of stroke. That is why it needs a method to classify stroke from CT image automatically. A method proposed in this research is Convolutional Neural Network. CT image of the brain is used as the input for image processing. The stage before classification are image processing (Grayscaling, Scaling, Contrast Limited Adaptive Histogram Equalization, then the image being classified with Convolutional Neural Network. The result then showed that the method significantly conducted was able to be used as a tool to classify stroke disease in order to distinguish the type of stroke from CT image.
Diagnostic role of magnetic resonance imaging in assessing orofacial pain and paresthesia.
Ohba, Seigo; Yoshimura, Hitoshi; Matsuda, Shinpei; Kobayashi, Junichi; Kimura, Takashi; Aiki, Minako; Sano, Kazuo
2014-09-01
The aim of this study was to compare the efficacy of CT and MRI in evaluating orofacial pain and paresthesia. A total of 96 patients with orofacial pain and/or paresthesia were included in this study. The patients who underwent CT and/or MRI examinations were assessed, and the efficacy of CT and/or MRI examinations in detecting the causative disease of the orofacial pain and paresthesia was evaluated. Seventy (72.9%) of 96 patients underwent CT and/or MRI examinations. Whereas CT examinations detected 2 diseases (4.5%) in 44 tests, 13 diseases (37.1%) were detected in 35 MRI examinations. Seven (53.8%) of 13 diseases, which were detected by MRI, were found in elderly patients. A high percentage of patients, who claimed orofacial pain and paresthesia, have other diseases in their brain, especially in elderly patients, and MRI is more useful than CT for evaluating these patients.
Cost-effectiveness of the PECARN rules in children with minor head trauma.
Nishijima, Daniel K; Yang, Zhuo; Urbich, Michael; Holmes, James F; Zwienenberg-Lee, Marike; Melnikow, Joy; Kuppermann, Nathan
2015-01-01
To improve the efficiency and appropriateness of computed tomography (CT) use in children with minor head trauma, clinical prediction rules were derived and validated by the Pediatric Emergency Care Applied Research Network (PECARN). The objective of this study was to conduct a cost-effectiveness analysis comparing the PECARN traumatic brain injury prediction rules to usual care for selective CT use. We used decision analytic modeling to project the outcomes, costs, and cost-effectiveness of applying the PECARN rules compared with usual care in a hypothetical cohort of 1,000 children with minor blunt head trauma. Clinical management was directed by level of risk as specified by the presence or absence of variables in the PECARN traumatic brain injury prediction rules. Immediate costs of care (diagnostic testing, treatment [not including clinician time], and hospital stay) were derived on single-center data. Quality-adjusted life-year losses related to the sequelae of clinically important traumatic brain injuries and to radiation-induced cancers, number of CT scans, number of radiation-induced cancers, number of missed clinically important traumatic brain injury, and total costs were evaluated. Compared with the usual care strategy, the PECARN strategy was projected to miss slightly more children with clinically important traumatic brain injuries (0.26 versus 0.02 per 1,000 children) but used fewer cranial CT scans (274 versus 353), resulted in fewer radiation-induced cancers (0.34 versus 0.45), cost less ($904,940 versus $954,420), and had lower net quality-adjusted life-year loss (-4.64 versus -5.79). Because the PECARN strategy was more effective (less quality-adjusted life-year loss) and less costly, it dominated the usual care strategy. Results were robust under sensitivity analyses. Application of the PECARN traumatic brain injury prediction rules for children with minor head trauma would lead to beneficial outcomes and more cost-effective care. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Automated brain computed tomographic densitometry of early ischemic changes in acute stroke
Stoel, Berend C.; Marquering, Henk A.; Staring, Marius; Beenen, Ludo F.; Slump, Cornelis H.; Roos, Yvo B.; Majoie, Charles B.
2015-01-01
Abstract. The Alberta Stroke Program Early CT score (ASPECTS) scoring method is frequently used for quantifying early ischemic changes (EICs) in patients with acute ischemic stroke in clinical studies. Varying interobserver agreement has been reported, however, with limited agreement. Therefore, our goal was to develop and evaluate an automated brain densitometric method. It divides CT scans of the brain into ASPECTS regions using atlas-based segmentation. EICs are quantified by comparing the brain density between contralateral sides. This method was optimized and validated using CT data from 10 and 63 patients, respectively. The automated method was validated against manual ASPECTS, stroke severity at baseline and clinical outcome after 7 to 10 days (NIH Stroke Scale, NIHSS) and 3 months (modified Rankin Scale). Manual and automated ASPECTS showed similar and statistically significant correlations with baseline NIHSS (R=−0.399 and −0.277, respectively) and with follow-up mRS (R=−0.256 and −0.272), except for the follow-up NIHSS. Agreement between automated and consensus ASPECTS reading was similar to the interobserver agreement of manual ASPECTS (differences <1 point in 73% of cases). The automated ASPECTS method could, therefore, be used as a supplementary tool to assist manual scoring. PMID:26158082
High precision localization of intracerebral hemorrhage based on 3D MPR on head CT images
NASA Astrophysics Data System (ADS)
Sun, Jianyong; Hou, Xiaoshuai; Sun, Shujie; Zhang, Jianguo
2017-03-01
The key step for minimally invasive intracerebral hemorrhage surgery is precisely positioning the hematoma location in the brain before and during the hematoma surgery, which can significantly improves the success rate of puncture hematoma. We designed a 3D computerized surgical plan (CSP) workstation precisely to locate brain hematoma based on Multi-Planar Reconstruction (MPR) visualization technique. We used ten patients' CT/MR studies to verify our designed CSP intracerebral hemorrhage localization method. With the doctor's assessment and comparing with the results of manual measurements, the output of CSP WS for hematoma surgery is more precise and reliable than manual procedure.
García Vicente, Ana María; Jiménez Aragón, Fátima; Villena Martín, Maikal; Jiménez Londoño, German Andrés; Borrás Moreno, Jose María
2017-06-01
High-grade glioma is a very aggressive and infiltrative tumor in which complete resection is a chance for a better outcome. We present the case of a 57-year-old man with a brain lesion suggestive of high-grade glioma. Brain MRI and F-fluorocholine PET/CT were performed previously to plan the surgery. Surgery was microscope assisted after the administration of 5-aminolevulinic acid. Postsurgery brain MRI and PET were blind evaluated to the surgery results and reported as probably gross total resection.
Kar, Subrata; Majumder, D Dutta
2017-08-01
Investigation of brain cancer can detect the abnormal growth of tissue in the brain using computed tomography (CT) scans and magnetic resonance (MR) images of patients. The proposed method classifies brain cancer on shape-based feature extraction as either benign or malignant. The authors used input variables such as shape distance (SD) and shape similarity measure (SSM) in fuzzy tools, and used fuzzy rules to evaluate the risk status as an output variable. We presented a classifier neural network system (NNS), namely Levenberg-Marquardt (LM), which is a feed-forward back-propagation learning algorithm used to train the NN for the status of brain cancer, if any, and which achieved satisfactory performance with 100% accuracy. The proposed methodology is divided into three phases. First, we find the region of interest (ROI) in the brain to detect the tumors using CT and MR images. Second, we extract the shape-based features, like SD and SSM, and grade the brain tumors as benign or malignant with the concept of SD function and SSM as shape-based parameters. Third, we classify the brain cancers using neuro-fuzzy tools. In this experiment, we used a 16-sample database with SSM (μ) values and classified the benignancy or malignancy of the brain tumor lesions using the neuro-fuzzy system (NFS). We have developed a fuzzy expert system (FES) and NFS for early detection of brain cancer from CT and MR images. In this experiment, shape-based features, such as SD and SSM, were extracted from the ROI of brain tumor lesions. These shape-based features were considered as input variables and, using fuzzy rules, we were able to evaluate brain cancer risk values for each case. We used an NNS with LM, a feed-forward back-propagation learning algorithm, as a classifier for the diagnosis of brain cancer and achieved satisfactory performance with 100% accuracy. The proposed network was trained with MR image datasets of 16 cases. The 16 cases were fed to the ANN with 2 input neurons, one hidden layer of 10 neurons and 2 output neurons. Of the 16-sample database, 10 datasets for training, 3 datasets for validation, and 3 datasets for testing were used in the ANN classification system. From the SSM (µ) confusion matrix, the number of output datasets of true positive, false positive, true negative and false negative was 6, 0, 10, and 0, respectively. The sensitivity, specificity and accuracy were each equal to 100%. The method of diagnosing brain cancer presented in this study is a successful model to assist doctors in the screening and treatment of brain cancer patients. The presented FES successfully identified the presence of brain cancer in CT and MR images using the extracted shape-based features and the use of NFS for the identification of brain cancer in the early stages. From the analysis and diagnosis of the disease, the doctors can decide the stage of cancer and take the necessary steps for more accurate treatment. Here, we have presented an investigation and comparison study of the shape-based feature extraction method with the use of NFS for classifying brain tumors as showing normal or abnormal patterns. The results have proved that the shape-based features with the use of NFS can achieve a satisfactory performance with 100% accuracy. We intend to extend this methodology for the early detection of cancer in other regions such as the prostate region and human cervix.
Radiologic advantages of potential use of polymer plastic clips in neurosurgery.
Delibegović, Samir
2014-01-01
Plastic clips are made of diamagnetic material and may result in fewer computed tomography (CT) and magnetic resonance artifacts than titanium clips. Considering that polymer plastic clips are increasingly being used in endoscopic surgery, our study examined the CT and magnetic resonance imaging (MRI) characteristics of plastic clips after application in the neurocranium and compared them with titanium clips. Craniotomy was performed on the heads of domestic pigs (Sus scrofa domestica), and, at an angle of 90°, a permanent Yasargil FT 746 T clip was placed in a frontobasal, interhemispheric position. A plastic polymer medium-large Hem-o-lok clip was placed in the same position into another animal. After this procedure, CT of the brain was performed using Siemens 16 slice, followed by an MRI scan, on Philips MRI, 1.5 Tesla. The CT and magnetic resonance scans were analyzed. On axial CT sections through the site of placement of titanium clips, dotted hyperdensity with a high value of Hounsfield units (HUI) of about 2800-3000 could be clearly seen. At the site where the plastic polymer clips were placed, discrete hyperdensity was observed, measuring 130-140 HUI. MRI of the brain in which titanium clips were used revealed a hypointensive T1W signal in the interhemispheric fissure, with a hypointensive T2W signal. On the other hand, upon examination of the MRI of the brain in which plastic clips were used, the T1W signal described above did not occur, and there was also no T2W signal, and no artifacts observed. The plastic clips are made of a diamagnetic, nonconductive material that results in fewer CT and MRI artifacts than titanium clips. Copyright © 2014 Elsevier Inc. All rights reserved.
Olszewska, D A; Costello, D J
2014-12-01
Magnetic Resonance Imaging (MRI) is increasingly available as a tool for assessment of patients presenting to acute services with seizures. We set out to prospectively determine the usefulness of early MRI brain in a cohort of patients presenting with acute seizures. We examined the MR imaging studies performed in patients admitted solely because of acute seizures to Cork University Hospital over a 12-month period. The main aim of the study was to determine if the MRI established the proximate cause for the patient's recent seizure. We identified 91 patients who underwent MRI brain within 48 h of admission for seizures. Of the 91 studies, 51 were normal (56 %). The remaining 40 studies were abnormal as follows: microvascular disease (usually moderate/severe) (n = 19), post-traumatic gliosis (n = 7), remote symptomatic lesion (n = 6), primary brain tumour (n = 5), venous sinus thrombosis (n = 3), developmental lesion (n = 3), post-surgical gliosis (n = 3) and single cases of demyelination, unilateral hippocampal sclerosis, lobar haemorrhage and metastatic malignant melanoma. Abnormalities in diffusion-weighted sequences that were attributable to prolonged ictal activity were seen in nine patients, all of who had significant ongoing clinical deficits, most commonly delirium. Of the 40 patients with abnormal MRI studies, seven patients had unremarkable CT brain. MR brain imaging revealed the underlying cause for acute seizures in 44 % of patients. CT brain imaging failed to detect the cause of the acute seizures in 19 % of patients in whom subsequent MRI established the cause. This study emphasises the importance of obtaining optimal imaging in people admitted with acute seizures.
Zhang, Weishan; Ning, Ning; Li, Xianjun; Niu, Gang; Bai, Lijun; Guo, Youmin; Yang, Jian
2016-01-01
The tumor-to-brain communication has been emphasized by recent converging evidences. This study aimed to compare the difference of brain glucose metabolism between patients with non-small cell lung cancer (NSCLC) and control subjects. NSCLC patients prior to oncotherapy and control subjects without malignancy confirmed by 6 months follow-up were collected and underwent the resting state 18F-fluoro-D-glucose (FDG) PET/CT. Normalized FDG metabolism was calculated by a signal intensity ratio of each brain region to whole brain. Brain glucose metabolism was compared between NSCLC patients and control group using two samples t-test and multivariate test by statistical parametric maps (SPM) software. Compared with the control subjects (n = 76), both brain glucose hyper- and hypometabolism regions with significant statistical differences (P<0.01) were found in the NSCLC patients (n = 83). The hypermetabolism regions (bilateral insula, putamen, pallidum, thalamus, hippocampus and amygdala, the right side of cerebellum, orbital part of right inferior frontal gyrus and vermis) were component parts of visceral to brain signal transduction pathways, and the hypometabolism regions (the left superior parietal lobule, bilateral inferior parietal lobule and left fusiform gyrus) lied in dorsal attention network and visuospatial function areas. The changes of brain glucose metabolism exist in NSCLC patients prior to oncotherapy, which might be attributed to lung-cancer related visceral sympathetic activation and decrease of dorsal attention network function.
Mild brain injury and anticoagulants: Less is enough.
Campiglio, Laura; Bianchi, Francesca; Cattalini, Claudio; Belvedere, Daniela; Rosci, Chiara Emilia; Casellato, Chiara Livia; Secchi, Manuela; Saetti, Maria Cristina; Baratelli, Elena; Innocenti, Alessandro; Cova, Ilaria; Gambini, Chiara; Romano, Luca; Oggioni, Gaia; Pagani, Rossella; Gardinali, Marco; Priori, Alberto
2017-08-01
Despite the higher theoretical risk of traumatic intracranial hemorrhage (ICH) in anticoagulated patients with mild head injury, the value of sequential head CT scans to identify bleeding remains controversial. This study evaluated the utility of 2 sequential CT scans at a 48-hour interval (CT1 and CT2) in patients with mild head trauma (Glasgow Coma Scale 13-15) taking oral anticoagulants. We retrospectively evaluated the clinical records of all patients on chronic anticoagulation treatment admitted to the emergency department for mild head injury. A total of 344 patients were included, and 337 (97.9%) had a negative CT1. CT2 was performed on 284 of the 337 patients with a negative CT1 and was positive in 4 patients (1.4%), but none of the patients developed concomitant neurologic worsening or required neurosurgery. Systematic routine use of a second CT scan in mild head trauma in patients taking anticoagulants is expensive and clinically unnecessary.
Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography
Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.
2017-01-01
Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899
Maxfield, Mark W.; Schuster, Kevin M.; McGillicuddy, Edward A.; Young, Calvin J.; Ghita, Monica; Bokhari, S.A. Jamal; Oliva, Isabel B.; Brink, James A.; Davis, Kimberly A.
2013-01-01
BACKGROUND A recent study showed that computed tomographic (CT) scans contributed 93% of radiation exposure of 177 patients admitted to our Level I trauma center. Adaptive statistical iterative reconstruction (ASIR) is an algorithm that reduces the noise level in reconstructed images and therefore allows the use of less ionizing radiation during CT scans without significantly affecting image quality. ASIR was instituted on all CT scans performed on trauma patients in June 2009. Our objective was to determine if implementation of ASIR reduced radiation dose without compromising patient outcomes. METHODS We identified 300 patients activating the trauma system before and after the implementation of ASIR imaging. After applying inclusion criteria, 245 charts were reviewed. Baseline demographics, presenting characteristics, number of delayed diagnoses, and missed injuries were recorded. The postexamination volume CT dose index (CTDIvol) and dose-length product (DLP)reported by the scanner for CT scans of the chest, abdomen, and pelvis and CT scans of the brain and cervical spine were recorded. Subjective image quality was compared between the two groups. RESULTS For CT scans of the chest, abdomen, and pelvis, the mean CTDIvol(17.1 mGy vs. 14.2 mGy; p < 0.001) and DLP (1,165 mGy·cm vs. 1,004 mGy·cm; p < 0.001) was lower for studies performed with ASIR. For CT scans of the brain and cervical spine, the mean CTDIvol(61.7 mGy vs. 49.6 mGy; p < 0.001) and DLP (1,327 mGy·cm vs. 1,067 mGy·cm; p < 0.001) was lower for studies performed with ASIR. There was no subjective difference in image quality between ASIR and non-ASIR scans. All CT scans were deemed of good or excellent image quality. There were no delayed diagnoses or missed injuries related to CT scanning identified in either group. CONCLUSION Implementation of ASIR imaging for CT scans performed on trauma patients led to a nearly 20% reduction in ionizing radiation without compromising outcomes or image quality. PMID:23147183
NASA Astrophysics Data System (ADS)
Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi
2016-03-01
Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.
Alharthy, Nesrin; Al Queflie, Sulaiman; Alyousef, Khalid; Yunus, Faisel
2015-01-01
Computed tomography (CT) used in pediatric pediatrics brain injury (TBI) to ascertain neurological manifestations. Nevertheless, this practice is associated with adverse effects. Reports in the literature suggest incidents of morbidity and mortality in children due to exposure to radiation. Hence, it is found imperative to search for a reliable alternative. The aim of this study is to find a reliable clinical alternative to detect an intracranial injury without resorting to the CT. Retrospective cross-sectional study was undertaken in patients (1-14 years) with blunt head injury and having a Glasgow Coma Scale (GCS) of 13-15 who had CT performed on them. Using statistical analysis, the correlation between clinical examination and positive CT manifestation is analyzed for different age-groups and various mechanisms of injury. No statistically significant association between parameteres such as Loss of Consciousness, 'fall' as mechanism of injury, motor vehicle accidents (MVA), more than two discrete episodes of vomiting and the CT finding of intracranial injury could be noted. Analyzed data have led to believe that GCS of 13 at presentation is the only important clinical predictor of intracranial injury. Retrospective data, small sample size and limited number of factors for assessing clinical manifestation might present constraints on the predictive rule that was derived from this review. Such limitations notwithstanding, the decision to determine which patients should undergo neuroimaging is encouraged to be based on clinical judgments. Further analysis with higher sample sizes may be required to authenticate and validate findings.
CT and MRI imaging of the brain in MELAS syndrome
Pauli, Wojciech; Zarzycki, Artur; Krzyształowski, Adam; Walecka, Anna
2013-01-01
Summary Background: MELAS syndrome (mitochondrial myopathy, encephalopathy, lactic acidosis, stroke-like episodes) is a rare, multisystem disorder which belongs to a group of mitochondrial metabolic diseases. As other diseases in this group, it is inherited in the maternal line. Case Report: In this report, we discussed a case of a 10-year-old girl with clinical and radiological picture of MELAS syndrome. We would like to describe characteristic radiological features of MELAS syndrome in CT, MRI and MR spectroscopy of the brain and differential diagnosis. Conclusions: The rarity of this disorder and the complexity of its clinical presentation make MELAS patients among the most difficult to diagnose. Brain imaging studies require a wide differential diagnosis, primarily to distinguish between MELAS and ischemic stroke. Particularly helpful are the MRI and MR spectroscopy techniques. PMID:24115962
MicroCT and microMRI imaging of a prenatal mouse model of increased brain size
NASA Astrophysics Data System (ADS)
López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.
2008-08-01
There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.
Shang, Hanbing; Cui, Derong; Yang, Dehua; Liang, Sheng; Zhang, Weifeng; Zhao, Weiguo
2015-01-01
Oxidative injury caused by reactive oxygen species plays an important role in the progression of intracerebral hemorrhage (ICH)-induced secondary brain injury. Previous studies have demonstrated that the free radical scavenger edaravone may prevent neuronal injury and brain edema after ICH. However, the influence of edaravone on cerebral metabolism in the early stages after ICH and the underlying mechanism have not been fully investigated. In the present study, we investigated the effect of edaravone on perihematomal glucose metabolism using (18)F-fluorordeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Additionally, the neurologic deficits, brain edemas, and cell death that followed ICH were quantitatively analyzed. After blood infusion, the rats treated with edaravone showed significant improvement in both forelimb placing and corner turn tests compared with those treated with vehicle. Moreover, the brain water content of the edaravone-treated group was significantly decreased compared with that of the vehicle group on day 3 after ICH. PET/CT images of ICH rats exhibited obvious decreases in FDG standardized uptake values in perihematomal region on day 3, and the lesion-to-normal ratio of the edaravone-treated ICH rats was significantly increased compared with that of the control rats. Calculation of the brain injury volumes from the PET/CT images revealed that the volumes of the blood-induced injuries were significantly smaller in the edaravone group compared with the vehicle group. Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assays performed 3 days after ICH revealed that the numbers of apoptotic cells in perihematomal region of edaravone-treated ICH rats were decreased relative to the vehicle group. Thus, the present study demonstrates that edaravone has scavenging properties that attenuate neurologic behavioral deficits and brain edema in the early period of ICH. Additionally, edaravone may improve cerebral metabolism around the hematoma by attenuating apoptotic cell death after ICH. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.; Beck, R.N.
1992-06-01
This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.
[Computed tomography as a tool to detect potential brain-dead donors].
Revuelto-Rey, Jaume; Aldabó-Pallás, Teresa; Egea-Guerrero, Juan José; Vilches-Arenas, Ángel; Lara, Enrique Javier; Gordillo-Escobar, Elena
2015-06-22
To assess the ability of urgent head computed tomography (CT) scan screening to detect patients who can evolve to brain death (BD). Patients who underwent urgent head CT scan and meet the following criteria: midline shift greater than 5mm and/or decrease or absence of basal cisterns. A follow-up for 28 days of each patient was made. Epidemiological data (sex, age, cause of brain injury), clinical data (level of consciousness, severity index in the CT) and patient outcomes (death, BD, discharge or transfer) were recorded. This was a prospective observational study. One hundred and sixty-six patients were selected for study, with mean age 60.08 (SD 21.8) years. A percentage of 49.4 were men and the rest women. In the follow-up, 20,5% (n=34) had BD. In univariate analysis, intracerebral hemorrhage, Glasgow Coma Scale score less than 8 and alteration of basal cisterns were statistically significant in predicting BD (P<.05). Multivariate analysis showed that patients with compression of basal cisterns were 20 (95% confidence interval [95% CI] 2.61 to 153.78; P=.004] times more likely to progress to brain death, while the absence there of 62.6 (95% CI 13.1 to 738.8; P<.001] times more. Our work shows that data as easy to interpret as compression/absence of basal cisterns can be a powerful tool for screening patients at risk for progression to BD. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Demuyser, Thomas; Deneyer, Lauren; Bentea, Eduard; Albertini, Giulia; Femenia, Teresa; Walrave, Laura; Sato, Hideyo; Danbolt, Niels C; De Bundel, Dimitri; Michotte, Alex; Lindskog, Maria; Massie, Ann; Smolders, Ilse
2017-09-27
The cystine/glutamate antiporter (system xc-) is believed to contribute to nonvesicular glutamate release from glial cells in various brain areas. Although recent investigations implicate system xc- in mood disorders, unambiguous evidence has not yet been established. Therefore, we evaluated the possible role of system xc- in the depressive state. We conducted a protein expression analysis of the specific subunit of system xc- (xCT) in brain regions of the corticosterone mouse model, Flinders Sensitive Line rat model and post-mortem tissue of depressed patients. We next subjected system xc- deficient mice to the corticosterone model and analysed their behaviour in several tests. Lastly, we subjected additional cohorts of xCT-deficient and wild-type mice to N-acetylcysteine treatment to unveil whether the previously reported antidepressant-like effects are dependent upon system xc-. We did not detect any changes in xCT expression levels in the animal models or patients compared to proper controls. Furthermore, loss of system xc- had no effect on depression- and anxiety-like behaviour. Finally, the antidepressant-like effects of N-acetylcysteine are not mediated via system xc-. xCT protein expression is not altered in the depressed brain and system xc- deficiency does not affect depression-associated behaviour in the corticosterone mouse model.
Neuroimaging findings in children with retinopathy-confirmed cerebral malaria.
Potchen, Michael J; Birbeck, Gretchen L; Demarco, J Kevin; Kampondeni, Sam D; Beare, Nicholas; Molyneux, Malcolm E; Taylor, Terrie E
2010-04-01
To describe brain CT findings in retinopathy-confirmed, paediatric cerebral malaria. In this outcomes study of paediatric cerebral malaria, a subset of children with protracted coma during initial presentation was scanned acutely. Survivors experiencing adverse neurological outcomes also underwent a head CT. All children had ophthalmological examination to confirm the presence of the retinopathy specific for cerebral malaria. Independent interpretation of CT images was provided by two neuroradiologists. Acute brain CT findings in three children included diffuse oedema with obstructive hydrocephalus (2), acute cerebral infarctions in multiple large vessel distributions with secondary oedema and herniation (1), and oedema of thalamic grey matter (1). One child who was reportedly normal prior to admission had parenchymal atrophy suggestive of pre-existing CNS injury. Among 56 survivors (9-84 months old), 15 had adverse neurologic outcomes-11/15 had a follow-up head CT, 3/15 died and 1/15 refused CT. Follow-up head CTs obtained 7-18 months after the acute infection revealed focal and multifocal lobar atrophy correlating to regions affected by focal seizures during the acute infection (5/11). Other findings were communicating hydrocephalus (2/11), vermian atrophy (1/11) and normal studies (3/11). The identification of pre-existing imaging abnormalities in acute cerebral malaria suggests that population-based studies are required to establish the rate and nature of incidental imaging abnormalities in Malawi. Children with focal seizures during acute cerebral malaria developed focal cortical atrophy in these regions at follow-up. Longitudinal studies are needed to further elucidate mechanisms of CNS injury and death in this common fatal disease. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Abdullah, Ariz Chong; Adnan, Johari Siregar; Rahman, Noor Azman A.; Palur, Ravikant
2017-01-01
Introduction Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. Aim To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom). Methods This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey–white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9. Results HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 (Z = −5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey–white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 (Z = −4.24) at the centrum semiovale, 8.93 versus 8.18 (Z = −5.32) at the basal ganglia and 8.79 versus 8.06 (Z = −4.93) at the middle cerebellar peduncles. All results were significant with P-value < 0.01. Conclusions Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR. PMID:28381933
Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe
2018-01-01
With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588
Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.
Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang
2016-07-22
Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Hakami, Alqassem Y.; Alshehri, Fahad S.; Althobaiti, Yusuf S.; Sari, Youssef
2016-01-01
Alcohol dependence is associated with deficits in glutamate uptake and impairment of glutamate homeostasis in different brain reward regions. Glutamate transporter subtype 1 (GLT-1), cystine-glutamate exchanger (xCT) and glutamate/aspartate transporter (GLAST) are the key players in regulating extracellular glutamate concentration in the brain. Parenteral treatment with ceftriaxone, β-lactam antibiotic, has been reported to attenuate ethanol consumption and reinstatement to cocaine-seeking behavior, in part, by restoring the expression of GLT-1 and xCT in mesocorticolimbic brain regions in rats. In this study, we focus to test Augmentin (amoxicillin/clavulanate), which can be administered orally to subjects. Therefore, we examined the effects of orally administered Augmentin on ethanol intake as well as GLT-1, xCT and GLAST expression in alcohol-preferring (P) rats. We found that orally administered Augmentin significantly attenuated ethanol consumption in P rats as compared to the vehicle-treated group. Importantly, the attenuation in ethanol consumption was associated with a significant upregulation of GLT-1 and xCT expression in nucleus accumbens (NAc) and prefrontal cortex (PFC). There was no effect of oral Augmentin on GLAST expression in either NAc or PFC. These findings present strong evidence that oral administration of Augmentin can be used as an alternative to parenteral administration. PMID:27993695
Hakami, Alqassem Y; Alshehri, Fahad S; Althobaiti, Yusuf S; Sari, Youssef
2017-03-01
Alcohol dependence is associated with deficits in glutamate uptake and impairment of glutamate homeostasis in different brain reward regions. Glutamate transporter subtype 1 (GLT-1), cystine-glutamate exchanger (xCT) and glutamate/aspartate transporter (GLAST) are one of the key players in regulating extracellular glutamate concentration in the brain. Parenteral treatment with ceftriaxone, β-lactam antibiotic, has been reported to attenuate ethanol consumption and reinstatement to cocaine-seeking behavior, in part, by restoring the expression of GLT-1 and xCT in mesocorticolimbic brain regions in rats. In this study, we focused to test Augmentin (amoxicillin/clavulanate), which can be administered orally to subjects. Therefore, we examined the effects of orally administered Augmentin on ethanol intake as well as GLT-1, xCT and GLAST expression in male alcohol-preferring (P) rats. We found that orally administered Augmentin significantly attenuated ethanol consumption in P rats as compared to the vehicle-treated group. Importantly, the attenuation in ethanol consumption was associated with a significant upregulation of GLT-1 and xCT expression in nucleus accumbens (NAc) and prefrontal cortex (PFC). There was no effect of orally administered Augmentin on GLAST expression in either NAc or PFC. These findings present strong evidence that oral administration of Augmentin can be used as an alternative to parenteral treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnetic resonance imaging in central nervous system sarcoidosis.
Miller, D H; Kendall, B E; Barter, S; Johnson, G; MacManus, D G; Logsdail, S J; Ormerod, I E; McDonald, W I
1988-03-01
We performed brain MRIs on 21 patients with CNS sarcoidosis. Brain CTs were performed in 18 of these. Parenchymal lesions were seen in 17 of 21 with MRI, compared with 9 of 18 with CT. MRI detected a greater number of parenchymal lesions in cases where both CT and MRI were positive, and some lesions appeared more extensive with MRI than with CT. The most common MRI pattern was one of periventricular and multifocal white matter lesions (14 cases). Such a pattern is not specific, and other recognized causes for it were identified in four cases. It is likely, however, that sarcoid tissue causes this pattern in some cases, and confirmation was obtained from cerebral biopsy in one. In six patients, the white matter changes were indistinguishable from those seen in multiple sclerosis. Contrast-enhanced CT in two patients showed diffuse meningeal involvement not seen with MRI. MRI is the investigation of choice in detecting parenchymal changes in the brain of patients with CNS sarcoidosis and may prove useful in monitoring treatment in such cases.
Is the Brain Stuff Still the Right (or Left) Stuff?
ERIC Educational Resources Information Center
Lynch, Dudley
1986-01-01
The author presents evidence that supports the argument for the validity of right brain-left brain theories. Discusses the brain's "sense of the future," what the brain does with new information, and altering the brain's ability to process change. A bibliography of further readings is included. (CT)
SU-G-JeP2-08: Image-Guided Radiation Therapy Using Synthetic CTs in Brain Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, R.G.; Glide-Hurst, C.; Henry Ford Health System, Detroit, MI
Purpose: Synthetic-CTs(synCTs) are essential for MR-only treatment planning. However, the performance of synCT for IGRT must be carefully assessed. This work evaluated the accuracy of synCT and synCT-generated DRRs and determined their performance for IGRT in brain cancer radiation therapy. Methods: MR-SIM and CT-SIM images were acquired of a novel anthropomorphic phantom and a cohort of 12 patients. SynCTs were generated by combining an ultra-short echo time (UTE) sequence with other MRI datasets using voxel-based weighted summation. For the phantom, DRRs from synCT and CT were compared via bounding box and landmark analysis. Planar (MV/KV) and volumetric (CBCT) IGRT performancemore » were evaluated across several platforms. In patients, retrospective analysis was conducted to register CBCTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system using whole brain and local registration techniques. A semi-automatic registration program was developed and validated to rigidly register planar MV/KV images (n=37) to synCT and CT DRRs. Registration reproducibility was assessed and margin differences were characterized using the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1mm of CT DRRs. Absolute 2D/2D registration shift differences ranged from 0.0–0.7mm for phantom DRRs on all treatment platforms and 0.0–0.4mm for volumetric registrations. For patient planar registrations, mean shift differences were 0.4±0.5mm (range: −0.6–1.6mm), 0.0±0.5mm, (range: −0.9–1.2mm), and 0.1±0.3mm (range: −0.7–0.6mm) for the superior-inferior(S-I), left-right(L–R), and anterior-posterior(A-P) axes, respectively. Mean shift differences in volumetric registrations were 0.6±0.4mm (range: −0.2–1.6mm), 0.2±0.4mm (range: −0.3–1.2mm), and 0.2±0.3mm (range: −0.2–1.2mm) for S-I, L–R, and A–P axes, respectively. CT-SIM and synCT derived margins were within 0.3mm. Conclusion: DRRs generated via synCT agreed well with CT-SIM. Planar and volumetric registrations to synCT-derived targets were comparable to CT. This validation is the next step toward clinical implementation of MR-only planning for the brain. The submitting institution has research agreements with Philips Healthcare. Research sponsored by a Henry Ford Health System Internal Mentored Grant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coolens, Catherine, E-mail: catherine.coolens@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario
2015-01-01
Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from amore » 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions: Parametric voxel-based analysis of 4D DCE CT data resulted in greater accuracy and reliability in measuring changes in perfusion CT-based kinetic metrics, which have the potential to be used as biomarkers in patients with metastatic brain cancer.« less
Ecker, Christine; Ginestet, Cedric; Feng, Yue; Johnston, Patrick; Lombardo, Michael V; Lai, Meng-Chuan; Suckling, John; Palaniyappan, Lena; Daly, Eileen; Murphy, Clodagh M; Williams, Steven C; Bullmore, Edward T; Baron-Cohen, Simon; Brammer, Michael; Murphy, Declan G M
2013-01-01
Neuroimaging studies of brain anatomy in autism spectrum disorder (ASD) have mostly been based on measures of cortical volume (CV). However, CV is a product of 2 distinct parameters, cortical thickness (CT) and surface area (SA), that in turn have distinct genetic and developmental origins. To investigate regional differences in CV, SA, and CT as well as their relationship in a large and well-characterized sample of men with ASD and matched controls. Multicenter case-control design using quantitative magnetic resonance imaging. Medical Research Council UK Autism Imaging Multicentre Study. A total of 168 men, 84 diagnosed as having ASD and 84 controls who did not differ significantly in mean (SD) age (26 [7] years vs 28 [6] years, respectively) or full-scale IQ (110 [14] vs 114 [12], respectively). Between-group differences in CV, SA, and CT investigated using a spatially unbiased vertex-based approach; the degree of spatial overlap between the differences in CT and SA; and their relative contribution to differences in regional CV. Individuals with ASD differed from controls in all 3 parameters. These mainly consisted of significantly increased CT within frontal lobe regions and reduced SA in the orbitofrontal cortex and posterior cingulum. These differences in CT and SA were paralleled by commensurate differences in CV. The spatially distributed patterns for CT and SA were largely nonoverlapping and shared only about 3% of all significantly different locations on the cerebral surface. Individuals with ASD have significant differences in CV, but these may be underpinned by (separable) variations in its 2 components, CT and SA. This is of importance because both measures result from distinct developmental pathways that are likely modulated by different neurobiological mechanisms. This finding may provide novel targets for future studies into the etiology of the condition and a new way to fractionate the disorder.
Corral, Luisa; Herrero, José Ignacio; Monfort, José Luis; Ventura, José Luis; Javierre, Casimiro F; Juncadella, Montserrat; García-Huete, Lucía; Bartolomé, Carlos; Gabarrós, Andreu
2009-05-01
To analyse the association between individual initial computerized tomography (CT) scan characteristics and Glasgow Outcome Scale (GOS) and Extended Glasgow Outcome Scale (GOSE) improvement between 6 months and 1 year. Two hundred and twenty-four adult patients with severe traumatic brain injury and Glasgow Coma Scale (GCS) score of 8 or less who were admitted to an intensive care unit were studied. GOS and GOSE scores were obtained 6 and 12 months after injury in 203 subjects. Patients were predominantly male (84%) and median age was 35 years. Traumatic Coma Data Bank (TCDB) CT classification was associated with GOS/GOSE improvement between 6 months and 1 year, with diffuse injury type I, type II and evacuated mass improving more than diffuse injury type III, type IV and non-evacuated mass; for GOS 43/155 (28%) vs 3/48 (6%) (chi(2) = 9.66, p < 0.01) and for GOSE 71/155 (46%) vs 7/48 (15%) (chi(2) = 15.1, p < 0.01). CT individual abnormalities were not associated with GOS/GOSE improvement, with the exception of subarachnoid haemorrhage, which showed a negative association with GOSE improvement (chi(2) = 4.08, p < 0.05). TCDB CT scan classification and subarachnoid haemorrhage were associated with GOS/GOSE improvement from 6-12 months, but individual CT abnormalities were not associated.
Ulaner, Gary A; Lyashchenko, Serge K; Riedl, Christopher; Ruan, Shutian; Zanzonico, Pat B; Lake, Diana; Jhaveri, Komal; Zeglis, Brian; Lewis, Jason S; O'Donoghue, Joseph A
2018-06-01
In what we believe to be a first-in-human study, we evaluated the safety and dosimetry of 89 Zr-pertuzumab PET/CT for human epidermal growth factor receptor 2 (HER2)-targeted imaging in patients with HER2-positive breast cancer. Methods: Patients with HER2-positive breast cancer and evidence of distant metastases were enrolled in an institutional review board-approved prospective clinical trial. Pertuzumab was conjugated with deferoxamine and radiolabeled with 89 Zr. Patients underwent PET/CT with 74 MBq of 89 Zr-pertuzumab in a total antibody mass of 20-50 mg of pertuzumab. PET/CT, whole-body probe counts, and blood drawing were performed over 8 d to assess pharmacokinetics, biodistribution, and dosimetry. PET/CT images were evaluated for the ability to visualize HER2-positive metastases. Results: Six patients with HER2-positive metastatic breast cancer were enrolled and administered 89 Zr-pertuzumab. No toxicities occurred. Dosimetry estimates from OLINDA demonstrated that the organs receiving the highest doses (mean ± SD) were the liver (1.75 ± 0.21 mGy/MBq), the kidneys (1.27 ± 0.28 mGy/MBq), and the heart wall (1.22 ± 0.16 mGy/MBq), with an average effective dose of 0.54 ± 0.07 mSv/MBq. PET/CT demonstrated optimal imaging 5-8 d after administration. 89 Zr-pertuzumab was able to image multiple sites of malignancy and suggested that they were HER2-positive. In 2 patients with both known HER2-positive and HER2-negative primary breast cancers and brain metastases, 89 Zr-pertuzumab PET/CT suggested that the brain metastases were HER2-positive. In 1 of the 2 patients, subsequent resection of a brain metastasis proved HER2-positive disease, confirming that the 89 Zr-pertuzumab avidity was a true-positive result for HER2-positive malignancy. Conclusion: This first-in-human study demonstrated safety, dosimetry, biodistribution, and successful HER2-targeted imaging with 89 Zr-pertuzumab PET/CT. Potential clinical applications include assessment of the HER2 status of lesions that may not be accessible to biopsy and assessment of HER2 heterogeneity. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
SU-G-IeP2-10: Lens Dose Reduction by Patient Position Modification During Neck CT Exams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, E; Lee, C; Butman, J
Purpose: Irradiation of the lens during a neck CT may increase a patient’s risk of developing cataracts later in life. Radiologists and technologists at the National Institutes of Health Clinical Center (NIHCC) have developed new CT imaging protocols that include a reduction in scan range and modifying neck positioning using a head tilt. This study will evaluate the efficacy of this protocol in the reduction of lens dose. Methods: We retrieved CT images of five male patients who had two sets of CT images: before and after the implementation of the new protocol. The lens doses before the new protocolmore » were calculated using an in-house CT dose calculator, National Cancer Institute dosimetry system for CT (NCICT), where computational human phantoms with no head tilt are included. We also calculated the lens dose for the patient CT conducted after the new protocol by using an adult male computational phantom with the neck position deformed to match the angle of the head tilt. We also calculated the doses to other radiosensitive organs including the globes of the eye, brain, pituitary gland and salivary glands before and after head tilt. Results: Our dose calculations demonstrated that modifying neck position reduced dose to the lens by 89% on average (range: 86–96%). Globe, brain, pituitary and salivary gland doses also decreased by an average of 65% (51–95%), 38% (−8–66%), 34% (−43–84%) and 14% (13–14%), respectively. The new protocol resulted in a nearly ten-fold decrease in lens dose. Conclusion: The use of a head tilt and scan range reduction is an easy and effective method to reduce radiation exposure to the lens and other radiosensitive organs, while still allowing for the inclusion of critical neck structures in the CT image. We are expanding our study to a total of 10 males and 10 females.« less
A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.
Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming
2014-01-01
To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.
Siravegna, Giulia; Geuna, Elena; Mussolin, Benedetta; Crisafulli, Giovanni; Bartolini, Alice; Galizia, Danilo; Casorzo, Laura; Sarotto, Ivana; Scaltriti, Maurizio; Sapino, Anna; Bardelli, Alberto; Montemurro, Filippo
2017-01-01
Background Central nervous system (CNS) involvement contributes to significant morbidity and mortality in patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) and represents a major challenge for clinicians. Liquid biopsy of cerebrospinal fluid (CSF)-derived circulating tumour DNA (ctDNA) harbours clinically relevant genomic alterations in patients with CNS metastases and could be effective in tracking tumour evolution. Methods In a HER2-positive mBC patient with brain metastases, we applied droplet digital PCR (ddPCR) and next-generation whole exome sequencing (WES) analysis to measure ctDNA dynamic changes in CSF and plasma collected during treatment. Results Baseline CSF-derived ctDNA analysis revealed TP53 and PIK3CA mutations as well as ERBB2 and cMYC amplification. Post-treatment ctDNA analysis showed decreased markers level in plasma, consistent with extra-CNS disease control, while increased in the CSF, confirming poor treatment benefit in the CNS. Discussion Analysis of ctDNA in the CSF of HER2-positive mBC is feasible and could represent a useful companion for clinical management of brain metastases. PMID:29067216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirkovic, D; Peeler, C; Grosshans, D
Purpose: To develop a model of the relative biological effectiveness (RBE) of protons as a function of dose and linear energy transfer (LET) for induction of brain necrosis using clinical data. Methods: In this study, treatment planning information was exported from a clinical treatment planning system (TPS) and used to construct a detailed Monte Carlo model of the patient and the beam delivery system. The physical proton dose and LET were computed in each voxel of the patient volume using Monte Carlo particle transport. A follow-up magnetic resonance imaging (MRI) study registered to the treatment planning CT was used tomore » determine the region of the necrosis in the brain volume. Both, the whole brain and the necrosis volumes were segmented from the computed tomography (CT) dataset using the contours drawn by a physician and the corresponding voxels were binned with respect to dose and LET. The brain necrosis probability was computed as a function of dose and LET by dividing the total volume of all necrosis voxels with a given dose and LET with the corresponding total brain volume resulting in a set of NTCP-like curves (probability as a function of dose parameterized by LET). Results: The resulting model shows dependence on both dose and LET indicating the weakness of the constant RBE model for describing the brain toxicity. To the best of our knowledge the constant RBE model is currently used in all clinical applications which may Result in increased rate of brain toxicities in patients treated with protons. Conclusion: Further studies are needed to develop more accurate brain toxicity models for patients treated with protons and other heavy ions.« less
Alzheimer and vascular dementia in the elderly patients.
Seetlani, Naresh Kumar; Kumar, Narindar; Imran, Khalid; Ali, Asif; Shams, Nadia; Sheikh, Taha
2016-01-01
To find out the frequency of Alzheimer's and Vascular dementia in the elderly patients. This cross sectional descriptive study was conducted in Department of Medicine, Ziauddin Hospital Karachi from 1 st October 2013 to 31 st March 2014. Patients with symptoms of dementia for more than 6 months duration, and Mini Mental State Examination score <24 were included in this study. Patients who fell in category of dementia were assessed for duration of symptoms. Patients underwent CT scan of brain. Patients with generalized atrophy of brain on CT scanning of brain were labeled as Alzheimer's dementia, while patients with ischemic or hemorrhagic stroke on CT scan of brain were labeled as vascular dementia. Four hundred twenty two patients were included in this study. There were 232 (54.98 %) male and 190 (45.02 %) were female. The mean age ± SD of the patients was 72.58±5.34 years (95% CI: 72.07 to 73.09), similarly average duration of symptoms was 10.14±2.85 months. About 18.96% of patients were illiterate, 32.23% were matric, 28.44% were intermediate and 20.33% were graduate and post graduate. Hypertension and diabetes were the commonest co-morbid i.e. 81.3% and 73.7%, hyperlipedimia and smoking were 38.2% and 45% respectively. Frequency of Alzheimer's disease and vascular dementia in the elderly was observed in 3.79% (16/422) and 2.61% (11/422) cases. A good number of patients, 27 out of 422, in this hospital based study were suffering from Alzheimer's disease and vascular dementia. Early detection and prompt treatment can reduce the burden of the disease in our population.
Mechanistic Links between PARP, NAD, and Brain Inflammation after TBI
2014-10-01
metabolite which we have in prior studies shown to also suppress poly(ADP-ribose) polymerase activity and inflammatory responses) and ketogenic diet . CtBP1/2...knockout mice will be generated to test a specific mechanisms by which ketogenic diet can have anti-inflammatory effects. For all studies, outcome...inflammatory responses. (3) Ketogenic diet , begun 12 hours after TBI. CtBP1/2 knockout mice will be generated to test a specific mechanisms by which
Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haksoo; Welford, Scott; Fabien, Jeffrey
2014-02-15
Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less
High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study.
Schiltz, Kolja; Witzel, Joachim G; Bausch-Hölterhoff, Josef; Bogerts, Bernhard
2013-10-01
The aim of this study was to determine the frequency and extent of brain anomalies in a large sample of incarcerated violent offenders not previously considered neuropsychiatrically ill, in comparison with non-violent offenders and non-offending controls. MRI and CT brain scans from 287 male prison inmates (162 violent and 125 non-violent) not diagnosed as mentally ill before that were obtained due to headache, vertigo or psychological complaints during imprisonment were assessed and compared to 52 non-criminal controls. Brain scans were rated qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1) or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex and medial temporal structures bilaterally as well as third ventricle. Overall, offenders displayed a significantly higher rate of morphological abnormality, with the violent offenders scoring significantly higher than non-violent offenders and controls. This difference was statistically detectable for frontal/parietal cortex, medial temporal structures, third ventricle and the left but not the right lateral ventricle. The remarkable prevalence of brain pathology in convicted violent prisoners detectable by neuroradiological routine assessment not only highlights the importance of frontal and temporal structures in the control of social, and specifically of violent behaviour, but also raises questions on the legal culpability of violent offenders with brain abnormalities. The high proportion of undetected presence of structural brain damage emphasizes the need that in violent criminals, the comprehensive routine neuropsychiatric assessment usually performed in routine forensic psychiatric expertises should be complemented with brain imaging.
Neuroanatomical Predictors of Awakening in Acutely Comatose Patients
Kowalski, Robert G.; Buitrago, Manuel M.; Duckworth, Josh; Chonka, Zachary D.; Puttgen, H. Adrian; Stevens, Robert D.; Geocadin, Romergryko G.
2016-01-01
Objective Lateral brain displacement has been associated with loss of consciousness and poor outcome in a range of acute neurologic disorders. We studied the association between lateral brain displacement and awakening from acute coma. Methods This prospective observational study included all new onset coma patients admitted to the Neurosciences Critical Care Unit (NCCU) over 12 consecutive months. Head computed tomography (CT) scans were analyzed independently at coma onset, after awakening, and at follow-up. Primary outcome measure was awakening, defined as the ability to follow commands before hospital discharge. Secondary outcome measures were discharge Glasgow Coma Scale (GCS), modified Rankin Scale, Glasgow Outcome Scale, and hospital and NCCU lengths of stay. Results Of the 85 patients studied, the mean age was 58 ± 16 years, 51% were female, and 78% had cerebrovascular etiology of coma. Fifty-one percent of patients had midline shift on head CT at coma onset and 43 (51%) patients awakened. In a multivariate analysis, independent predictors of awakening were younger age (odds ratio [OR] = 1.039, 95% confidence interval [CI] = 1.002–1.079, p = 0.040), higher GCS score at coma onset (OR = 1.455, 95% CI = 1.157–1.831, p = 0.001), nontraumatic coma etiology (OR = 4.464, 95% CI = 1.011–19.608, p = 0.048), lesser pineal shift on follow-up CT (OR = 1.316, 95% CI = 1.073–1.615, p = 0.009), and reduction or no increase in pineal shift on follow-up CT (OR = 11.628, 95% CI = 2.207–62.500, p = 0.004). Interpretation Reversal and/or limitation of lateral brain displacement are associated with acute awakening in comatose patients. These findings suggest objective parameters to guide prognosis and treatment in patients with acute onset of coma. PMID:25628166
The Biomarker S100B and Mild Traumatic Brain Injury: A Meta-analysis.
Oris, Charlotte; Pereira, Bruno; Durif, Julie; Simon-Pimmel, Jeanne; Castellani, Christoph; Manzano, Sergio; Sapin, Vincent; Bouvier, Damien
2018-05-01
The usefulness of S100B has been noted as a biomarker in the management of mild traumatic brain injury (mTBI) in adults. However, S100B efficacy as a biomarker in children has previously been relatively unclear. A meta-analysis is conducted to assess the prognostic value of S100B in predicting intracerebral lesions in children after mTBI. Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, Scopus, and Google Scholar. Studies including children suffering mTBI who underwent S100B measurement and computed tomography (CT) scans were included. Of 1030 articles screened, 8 studies met the inclusion criteria. The overall pooled sensitivity and specificity were 100% (95% confidence interval [CI]: 98%-100%) and 34% (95% CI: 30%-38%), respectively. A second analysis was based on the collection of 373 individual data points from 4 studies. Sensitivity and specificity results, obtained from reference ranges in children with a sampling time <3 hours posttrauma, were 97% (95% CI: 84.2%-99.9%) and 37.5% (95% CI: 28.8%-46.8%), respectively. Only 1 child had a low S100B level and a positive CT scan result without clinically important traumatic brain injury. Only patients undergoing both a CT scan and S100B testing were selected for evaluation. S100B serum analysis as a part of the clinical routine could significantly reduce the number of CT scans performed on children with mTBI. Sampling should take place within 3 hours of trauma. Cutoff levels should be based on pediatric reference ranges. Copyright © 2018 by the American Academy of Pediatrics.
Akhilesh, Philomina; Kulkarni, Arti R; Jamhale, Shramika H; Sharma, S D; Kumar, Rajesh; Datta, D
2017-04-25
The purpose of this study was to estimate eye lens dose during brain scans in 16-, 64-, 128- and 256-slice multidetector computed tomography (CT) scanners in helical acquisition mode and to test the feasibility of using radiochromic film as eye lens dosemeter during CT scanning. Eye lens dose measurements were performed using Gafchromic XR-QA2 film on a polystyrene head phantom designed with outer dimensions equivalent to the head size of a reference Indian man. The response accuracy of XR-QA2 film was validated by using thermoluminescence dosemeters. The eye lens dose measured using XR-QA2 film on head phantom for plain brain scanning in helical mode ranged from 43.8 to 45.8 mGy. The XR-QA2 film measured dose values were in agreement with TLD measured dose values within a maximum variation of 8.9%. The good correlation between the two data sets confirms the viability of using XR-QA2 film for eye lens dosimetry. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Use of radiologic modalities in coccidioidal meningitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadalnik, R.C.; Goldstein, E.; Hoeprich, P.D.
1981-01-01
The diagnostic utility of pentetate indium trisodium CSF studies, technetium Tc 99m brain scans, and computerized tomographic (CT) scans was evaluated in eight patients in whom coccidioidal meningitis developed following a dust storm in the Central Valley of California. The 111In flow studies and the CT scans demonstrated hydrocephalus in five patients with clinical findings suggesting this complication. Ventriculitis has not previously been diagnosed before death in patients with coccidioidal meningitis; however, it was demonstrated in two patients by the technetium Tc 99m brain scan. The finding that communicating hydrocephalus occurs early in meningitis and interferes with CSF flow intomore » infected basilar regions has important therapeutic implications in that antifungal agents injected into the lumbar subarachnoid space may not reach these regions.« less
The role of marshall and rotterdam score in predicting 30-day outcome of traumatic brain injury
NASA Astrophysics Data System (ADS)
Siahaan, A. M. P.; Akbar, T. Y. M.; Nasution, M. D.
2018-03-01
Traumatic brain injury (TBI) remains one of the leading causes of mortality and morbidity, especially in the young population. To predict the outcome of TBI, Marshall, and Rotterdam–CT Scan based scoring was mostly used. As many studies showed conflicting results regarding of the usage of both scoring, this study aims to determine the correlation between Rotterdam and Marshall scoring system with outcome in 30 days and found correlation among them. In 120 subjects with TBI that admitted to Adam Malik General Hospital, we found a significant association of both scorings with the 30-day Glasgow Outcome Score. Therefore, we recommend the use of Marshall and Rotterdam CT Score in initial assessment as a good predictor for patients with TBI.
Brain single-photon emission CT physics principles.
Accorsi, R
2008-08-01
The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less
Abnormal Structure–Function Relationship in Spasmodic Dysphonia
Ludlow, Christy L.
2012-01-01
Spasmodic dysphonia (SD) is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. Although recent studies have found abnormal brain function and white matter organization in SD, the extent of gray matter alterations, their structure–function relationships, and correlations with symptoms remain unknown. We compared gray matter volume (GMV) and cortical thickness (CT) in 40 SD patients and 40 controls using voxel-based morphometry and cortical distance estimates. These measures were examined for relationships with blood oxygen level–dependent signal change during symptomatic syllable production in 15 of the same patients. SD patients had increased GMV, CT, and brain activation in key structures of the speech control system, including the laryngeal sensorimotor cortex, inferior frontal gyrus (IFG), superior/middle temporal and supramarginal gyri, and in a structure commonly abnormal in other primary dystonias, the cerebellum. Among these regions, GMV, CT and activation of the IFG and cerebellum showed positive relationships with SD severity, while CT of the IFG correlated with SD duration. The left anterior insula was the only region with decreased CT, which also correlated with SD symptom severity. These findings provide evidence for coupling between structural and functional abnormalities at different levels within the speech production system in SD. PMID:21666131
NASA Astrophysics Data System (ADS)
Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.
2015-09-01
This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.
Mandlik, Satish K; Ranpise, Nisharani S; Mohanty, Bhabani S; Chaudhari, Pradip R
2018-06-01
The present investigation deals with preparation and characterization of anti-migraine zolmitriptan (ZMT) nanostructured polymeric carriers for nose to brain drug targeting. The drug-loaded colloidal nanocarriers of ZMT were prepared by modified ionic gelation of cationic chitosan with anionic sodium tripolyphosphate and characterized for particle size, zeta potential, and entrapment efficiency. Further, in order to investigate nose to brain drug targeting, biodistribution, and brain kinetics studies were performed using 99m technetium radiolabeled nanocarriers ( 99m Tc-ZMTNP) in Swiss albino mice. The results were compared with intranasal pure drug solution ( 99m Tc-ZMT) and intravenous nanocarriers ( 99m Tc-ZMTNP). A single photon emission computerized tomography (SPECT) radioimaging studies were also carried out to visualize and confirm brain uptake of nanocarriers. The optimized nanocarriers showed particle size of 161 nm, entrapment efficiency of 80.6%, and zeta potential of + 23.7 mV. The pharmacokinetic parameters, C max , and AUC 0-∞ values for ZMT concentration in the brain expressed as percent radioactivity per gram of brain in intranasal and intravenous route of administration were calculated. The brain C max and AUC 0-∞ values found in three groups, intranasal 99m Tc-ZMTNP, intranasal 99m Tc-ZMT, and intravenous 99m Tc-ZMTNP were (0.427 and 1.889), (0.272 and 0.7157), and (0.204 and 0.9333), respectively. The higher C max values of intranasal 99m Tc-ZMTNP suggests better brain uptake as compared to other routes of administration. The significant higher values of nose to brain targeting parameters namely, drug targeting index (5.57), drug targeting efficiency (557.08%), and nose to brain drug direct transport (82.05%) confirmed drug targeting to brain via nasal route. The coupled bimodal SPECT-CT scintigrams confirm the brain uptake of intranasal 99m Tc-ZMTNP demonstrating major radioactivity accumulation in brain. This study conclusively demonstrated the greater uptake of ZMT-loaded nanocarriers by nose to brain drug targeting, which proves promising drug delivery system.
Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron
2010-04-01
Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek
Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting amore » barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.« less
Tomura, Noriaki; Saginoya, Toshiyuki; Goto, Hiromi
2018-04-02
The aim of this study was to determine the assessment of positron emission tomography-computed tomography using C-methionine (MET PET/CT) for World Health Organization (WHO) grades II and III meningiomas; MET PET/CT was compared with PET/CT using F-fluorodeoxy glucose (FDG PET/CT). This study was performed in 17 cases with residual and/or recurrent WHO grades II and III meningiomas. Two neuroradiologists reviewed both PET/CT scans. For agreement, the κ coefficient was measured. Difference in tumor-to-normal brain uptake ratios (T/N ratios) between 2 PET/CT scans was analyzed. Correlation between the maximum tumor size and T/N ratio in PET/CT was studied. For agreement by both reviewers, the κ coefficient was 0.51 (P < 0.05). The T/N ratio was significantly higher for MET PET/CT (3.24 ± 1.36) than for FDG PET/CT (0.93 ± 0.44) (P < 0.01). C-methionine ratio significantly correlated with tumor size (y = 8.1x + 16.3, n = 22, P < 0.05), but FDG ratio did not CONCLUSIONS: C-methionine PET/CT has superior potential for imaging of WHO grades II and III meningiomas with residual or recurrent tumors compared with FDG PET/CT.
Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan
2016-10-01
Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR. This study presents a patch-based method for CT prediction from MR images, generating attenuation maps for PET reconstruction. Because no global relation exists between MR and CT intensities, we propose local diffeomorphic mapping (LDM) for CT prediction. In LDM, we assume that MR and CT patches are located on 2 nonlinear manifolds, and the mapping from the MR manifold to the CT manifold approximates a diffeomorphism under a local constraint. Locality is important in LDM and is constrained by the following techniques. The first is local dictionary construction, wherein, for each patch in the testing MR image, a local search window is used to extract patches from training MR/CT pairs to construct MR and CT dictionaries. The k-nearest neighbors and an outlier detection strategy are then used to constrain the locality in MR and CT dictionaries. Second is local linear representation, wherein, local anchor embedding is used to solve MR dictionary coefficients when representing the MR testing sample. Under these local constraints, dictionary coefficients are linearly transferred from the MR manifold to the CT manifold and used to combine CT training samples to generate CT predictions. Our dataset contains 13 healthy subjects, each with T1- and T2-weighted MR and CT brain images. This method provides CT predictions with a mean absolute error of 110.1 Hounsfield units, Pearson linear correlation of 0.82, peak signal-to-noise ratio of 24.81 dB, and Dice in bone regions of 0.84 as compared with real CTs. CT substitute-based PET reconstruction has a regression slope of 1.0084 and R 2 of 0.9903 compared with real CT-based PET. In this method, no image segmentation or accurate registration is required. Our method demonstrates superior performance in CT prediction and PET reconstruction compared with competing methods. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Bouso, José Carlos; Palhano-Fontes, Fernanda; Rodríguez-Fornells, Antoni; Ribeiro, Sidarta; Sanches, Rafael; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Riba, Jordi
2015-04-01
Psychedelic agents have a long history of use by humans for their capacity to induce profound modifications in perception, emotion and cognitive processes. Despite increasing knowledge of the neural mechanisms involved in the acute effects of these drugs, the impact of sustained psychedelic use on the human brain remains largely unknown. Molecular pharmacology studies have shown that psychedelic 5-hydroxytryptamine (5HT)2A agonists stimulate neurotrophic and transcription factors associated with synaptic plasticity. These data suggest that psychedelics could potentially induce structural changes in brain tissue. Here we looked for differences in cortical thickness (CT) in regular users of psychedelics. We obtained magnetic resonance imaging (MRI) images of the brains of 22 regular users of ayahuasca (a preparation whose active principle is the psychedelic 5HT2A agonist N,N-dimethyltryptamine (DMT)) and 22 controls matched for age, sex, years of education, verbal IQ and fluid IQ. Ayahuasca users showed significant CT differences in midline structures of the brain, with thinning in the posterior cingulate cortex (PCC), a key node of the default mode network. CT values in the PCC were inversely correlated with the intensity and duration of prior use of ayahuasca and with scores on self-transcendence, a personality trait measuring religiousness, transpersonal feelings and spirituality. Although direct causation cannot be established, these data suggest that regular use of psychedelic drugs could potentially lead to structural changes in brain areas supporting attentional processes, self-referential thought, and internal mentation. These changes could underlie the previously reported personality changes in long-term users and highlight the involvement of the PCC in the effects of psychedelics. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Diagnostic Performance of Ultrafast Brain MRI for Evaluation of Abusive Head Trauma.
Kralik, S F; Yasrebi, M; Supakul, N; Lin, C; Netter, L G; Hicks, R A; Hibbard, R A; Ackerman, L L; Harris, M L; Ho, C Y
2017-04-01
MR imaging with sedation is commonly used to detect intracranial traumatic pathology in the pediatric population. Our purpose was to compare nonsedated ultrafast MR imaging, noncontrast head CT, and standard MR imaging for the detection of intracranial trauma in patients with potential abusive head trauma. A prospective study was performed in 24 pediatric patients who were evaluated for potential abusive head trauma. All patients received noncontrast head CT, ultrafast brain MR imaging without sedation, and standard MR imaging with general anesthesia or an immobilizer, sequentially. Two pediatric neuroradiologists independently reviewed each technique blinded to other modalities for intracranial trauma. We performed interreader agreement and consensus interpretation for standard MR imaging as the criterion standard. Diagnostic accuracy was calculated for ultrafast MR imaging, noncontrast head CT, and combined ultrafast MR imaging and noncontrast head CT. Interreader agreement was moderate for ultrafast MR imaging (κ = 0.42), substantial for noncontrast head CT (κ = 0.63), and nearly perfect for standard MR imaging (κ = 0.86). Forty-two percent of patients had discrepancies between ultrafast MR imaging and standard MR imaging, which included detection of subarachnoid hemorrhage and subdural hemorrhage. Sensitivity, specificity, and positive and negative predictive values were obtained for any traumatic pathology for each examination: ultrafast MR imaging (50%, 100%, 100%, 31%), noncontrast head CT (25%, 100%, 100%, 21%), and a combination of ultrafast MR imaging and noncontrast head CT (60%, 100%, 100%, 33%). Ultrafast MR imaging was more sensitive than noncontrast head CT for the detection of intraparenchymal hemorrhage ( P = .03), and the combination of ultrafast MR imaging and noncontrast head CT was more sensitive than noncontrast head CT alone for intracranial trauma ( P = .02). In abusive head trauma, ultrafast MR imaging, even combined with noncontrast head CT, demonstrated low sensitivity compared with standard MR imaging for intracranial traumatic pathology, which may limit its utility in this patient population. © 2017 by American Journal of Neuroradiology.
Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.
Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H
2007-04-01
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.
Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells
Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.
2008-01-01
Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582
Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques.
Hofmann, Matthias; Pichler, Bernd; Schölkopf, Bernhard; Beyer, Thomas
2009-03-01
Positron emission tomography (PET) is a fully quantitative technology for imaging metabolic pathways and dynamic processes in vivo. Attenuation correction of raw PET data is a prerequisite for quantification and is typically based on separate transmission measurements. In PET/CT attenuation correction, however, is performed routinely based on the available CT transmission data. Recently, combined PET/magnetic resonance (MR) has been proposed as a viable alternative to PET/CT. Current concepts of PET/MRI do not include CT-like transmission sources and, therefore, alternative methods of PET attenuation correction must be found. This article reviews existing approaches to MR-based attenuation correction (MR-AC). Most groups have proposed MR-AC algorithms for brain PET studies and more recently also for torso PET/MR imaging. Most MR-AC strategies require the use of complementary MR and transmission images, or morphology templates generated from transmission images. We review and discuss these algorithms and point out challenges for using MR-AC in clinical routine. MR-AC is work-in-progress with potentially promising results from a template-based approach applicable to both brain and torso imaging. While efforts are ongoing in making clinically viable MR-AC fully automatic, further studies are required to realize the potential benefits of MR-based motion compensation and partial volume correction of the PET data.
Buhk, J-H; Groth, M; Sehner, S; Fiehler, J; Schmidt, N O; Grzyska, U
2013-09-01
To evaluate a novel algorithm for correcting beam hardening artifacts caused by metal implants in computed tomography performed on a C-arm angiography system equipped with a flat panel (FP-CT). 16 datasets of cerebral FP-CT acquisitions after coil embolization of brain aneurysms in the context of acute subarachnoid hemorrhage have been reconstructed by applying a soft tissue kernel with and without a novel reconstruction filter for metal artifact correction. Image reading was performed in multiplanar reformations (MPR) in average mode on a dedicated radiological workplace in comparison to the preinterventional native multisection CT (MS-CT) scan serving as the anatomic gold standard. Two independent radiologists performed image scoring following a defined scale in direct comparison of the image data with and without artifact correction. For statistical analysis, a random intercept model was calculated. The inter-rater agreement was very high (ICC = 86.3 %). The soft tissue image quality and visualization of the CSF spaces at the level of the implants was substantially improved. The additional metal artifact correction algorithm did not induce impairment of the subjective image quality in any other brain regions. Adding metal artifact correction to FP-CT in an acute postinterventional setting helps to visualize the close vicinity of the aneurysm at a generally consistent image quality. © Georg Thieme Verlag KG Stuttgart · New York.
Rawashdeh, Oliver; Hudson, Randall L.; Stepien, Iwona; Dubocovich, Margarita L.
2016-01-01
Ramelteon, an MT1/MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/ HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/ HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8–CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (−3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: −1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro. PMID:21182402
NASA Astrophysics Data System (ADS)
Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena
2018-04-01
Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.
Diaz, Mauricio E; Debowski, Maciej; Hukins, Craig; Fielding, David; Fong, Kwun M; Bettington, Catherine S
2018-05-10
Several clinical guidelines indicate that brain metastasis screening (BMS) should be guided by disease stage in non-small cell lung cancer (NSCLC). We estimate that screening is performed more broadly in practice, and patients undergo brain imaging at considerable cost with questionable benefit. Our aim was to quantify the use and detection rate of BMS in a contemporary cohort staged with 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (PET-CT). We conducted a retrospective review of prospectively collected data from three major lung cancer referral centres in Brisbane between January 2011 and December 2015. Patients included had a new diagnosis of NSCLC and had undergone a PET-CT to stage extra-cranial disease. BMS was defined as dedicated brain imaging with contrast-enhanced computed tomography (CE-CT) or magnetic resonance (MR), in the absence of clinically apparent neurological deficits. A total of 1751 eligible cases were identified and of these 718 (41%) underwent BMS. The majority had CE-CT imaging (n = 703). Asymptomatic brain metastases (BM) were detected in 18 patients (2.5%). Of these patients, 12 had concurrent non-brain metastases. Only six patients (0.8%) had BM alone. The rate of detection increased with N-stage (P = 0.02) and overall stage (P < 0.001). It was 0.5%, 1%, 1.6% and 7.3% for stage I, II, III and IV respectively. The overall screening rate increased with T-stage (P = 0.001), N-Stage (P < 0.001) and overall stage (P < 0.001). Non-small cell lung cancer BMS practices remain at odds with published guidelines. The low number of occult BMs detected supports the existing international recommendations. Rationalising BMS would minimise the burden on patients and the health care system. © 2018 The Royal Australian and New Zealand College of Radiologists.
Soluble Klotho and Brain Atrophy in Alcoholism.
González-Reimers, Emilio; Romero-Acevedo, Lucía; Espelosín-Ortega, Elisa; Martín-González, M Candelaria; Quintero-Platt, Geraldine; Abreu-González, Pedro; José de-la-Vega-Prieto, María; Martínez-Martínez, Daniel; Santolaria-Fernández, Francisco
2018-05-26
Fibroblast growth factor (FGF-23) and α-Klotho (Klotho) levels may be altered in inflammatory conditions, possibly as compensatory mechanisms. Klotho exerts a protective effect on neurodegeneration and improves learning and cognition. No data exist about the association of Klotho and FGF-23 levels with brain atrophy observed in alcoholics. The aim of this study is to explore these relationships. FGF-23 and Klotho levels are altered in inflammation, possibly as compensatory mechanisms. Klotho enhances learning, but its role in ethanol-mediated brain atrophy is unknown. We found higher FGF-23 and lower Klotho levels in 131 alcoholics compared with 41 controls. Among cirrhotics, Klotho was higher and inversely related to brain atrophy. The study was performed on 131 alcoholic patients (54 cirrhotics) and 41 age- and sex-matched controls, in whom a brain computed tomography (CT) was performed and several indices were calculated. Marked brain atrophy was observed among patients when compared with controls. Patients also showed higher FGF-23 and lower Klotho values. However, among cirrhotics, Klotho values were higher. Klotho was inversely related to brain atrophy (for instance, ventricular index (ρ = -0.23, P = 0.008)), especially in cirrhotics. Klotho was also directly related to tumor necrosis factor (TNF) alpha (ρ = 0.22; P = 0.026) and inversely to transforming growth factor (TGF)-β (ρ = -0.34; P = 0.002), but not to C-reactive protein (CRP) or malondialdehyde levels. FGF-23 was also higher among cirrhotics but showed no association with CT indices. Klotho showed higher values among cirrhotics, and was inversely related to brain atrophy. FGF-23, although high among patients, especially cirrhotics, did not show any association with brain atrophy. Some inflammatory markers or cytokines, such as CRP or TGF-β were related to brain atrophy.
Validated Automatic Brain Extraction of Head CT Images
Muschelli, John; Ullman, Natalie L.; Mould, W. Andrew; Vespa, Paul; Hanley, Daniel F.; Crainiceanu, Ciprian M.
2015-01-01
Background X-ray Computed Tomography (CT) imaging of the brain is commonly used in diagnostic settings. Although CT scans are primarily used in clinical practice, they are increasingly used in research. A fundamental processing step in brain imaging research is brain extraction – the process of separating the brain tissue from all other tissues. Methods for brain extraction have either been 1) validated but not fully automated, or 2) fully automated and informally proposed, but never formally validated. Aim To systematically analyze and validate the performance of FSL's brain extraction tool (BET) on head CT images of patients with intracranial hemorrhage. This was done by comparing the manual gold standard with the results of several versions of automatic brain extraction and by estimating the reliability of automated segmentation of longitudinal scans. The effects of the choice of BET parameters and data smoothing is studied and reported. Methods All images were thresholded using a 0 – 100 Hounsfield units (HU) range. In one variant of the pipeline, data were smoothed using a 3-dimensional Gaussian kernel (σ = 1mm3) and re-thresholded to 0 – 100 HU; in the other, data were not smoothed. BET was applied using 1 of 3 fractional intensity (FI) thresholds: 0.01, 0.1, or 0.35 and any holes in the brain mask were filled. For validation against a manual segmentation, 36 images from patients with intracranial hemorrhage were selected from 19 different centers from the MISTIE (Minimally Invasive Surgery plus recombinant-tissue plasminogen activator for Intracerebral Evacuation) stroke trial. Intracranial masks of the brain were manually created by one expert CT reader. The resulting brain tissue masks were quantitatively compared to the manual segmentations using sensitivity, specificity, accuracy, and the Dice Similarity Index (DSI). Brain extraction performance across smoothing and FI thresholds was compared using the Wilcoxon signed-rank test. The intracranial volume (ICV) of each scan was estimated by multiplying the number of voxels in the brain mask by the dimensions of each voxel for that scan. From this, we calculated the ICV ratio comparing manual and automated segmentation: ICVautomatedICVmanual. To estimate the performance in a large number of scans, brain masks were generated from the 6 BET pipelines for 1095 longitudinal scans from 129 patients. Failure rates were estimated from visual inspection. ICV of each scan was estimated and and an intraclass correlation (ICC) was estimated using a one-way ANOVA. Results Smoothing images improves brain extraction results using BET for all measures except specificity (all p < 0.01, uncorrected), irrespective of the FI threshold. Using an FI of 0.01 or 0.1 performed better than 0.35. Thus, all reported results refer only to smoothed data using an FI of 0.01 or 0.1. Using an FI of 0.01 had a higher median sensitivity (0.9901) than an FI of 0.1 (0.9884, median difference: 0.0014, p < 0.001), accuracy (0.9971 vs. 0.9971; median difference: 0.0001, p < 0.001), and DSI (0.9895 vs. 0.9894; median difference: 0.0004, p < 0.001) and lower specificity (0.9981 vs. 0.9982; median difference: −0.0001, p < 0.001). These measures are all very high indicating that a range of FI values may produce visually indistinguishable brain extractions. Using smoothed data and an FI of 0.01, the mean (SD) ICV ratio was 1.002 (0.008); the mean being close to 1 indicates the ICV estimates are similar for automated and manual segmentation. In the 1095 longitudinal scans, this pipeline had a low failure rate (5.2%) and the ICC estimate was high (0.929, 95% CI: 0.91, 0.945) for successfully extracted brains. Conclusion BET performs well at brain extraction on thresholded, 1mm3 smoothed CT images with an FI of 0.01 or 0.1. Smoothing before applying BET is an important step not previously discussed in the literature. Analysis code is provided. PMID:25862260
Normalized power transmission between ABP and ICP in TBI.
Shahsavari, S; Hallen, T; McKelvey, T; Ritzen, C; Rydenhag, B
2009-01-01
A new approach to study the pulse transmission between the cerebrovascular bed and the intracranial space is presented. In the proposed approach, the normalized power transmission between ABP and ICP has got the main attention rather than the actual power transmission. Evaluating the gain of the proposed transfer function at any single frequency can reveal how the percentage of contribution of that specific frequency component has been changed through the cerebrospinal system. The gain of the new transfer function at the fundamental cardiac frequency was utilized to evaluate the state of the brain in three TBI patients. Results were assessed using the reference evaluations achieved by a novel CT scan-based scoring scheme. In all three study cases, the gain of the transfer function showed a good capability to follow the trend of the CT scores and describe the brain state. Comparing the new transfer function with the traditional one and also the index of compensatory reserve, the proposed transfer function was found more informative about the state of the brain in the patients under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.; Beck, R.N.
1992-06-01
This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of [F18]fluorinated benzamides (dopamine D-2 receptor tracers), [F18]fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of [F18]-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.
Pan, Min-Liang; Mukherjee, Meenakshi T; Patel, Himika H; Patel, Bhavin; Constantinescu, Cristian C; Mirbolooki, M Reza; Liang, Christopher; Mukherjee, Jogeshwar
2016-04-01
Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques in the brain. The aim of this study was to evaluate the effectiveness of a novel radiotracer, 4-[(11) C]methylamino-4'-N,N-dimethylaminoazobenzene ([(11)C]TAZA), for binding to Aβ plaques in postmortem human brain (AD and normal control (NC)). Radiosyntheses of [(11)C]TAZA, related [(11)C]Dalene ((11)C-methylamino-4'-dimethylaminostyrylbenzene), and reference [(11)C]PIB were carried out using [(11)C]methyltriflate prepared from [(11) C]CO(2) and purified using HPLC. In vitro binding affinities were carried out in human AD brain homogenate with Aβ plaques labeled with [(3) H]PIB. In vitro autoradiography studies with the three radiotracers were performed on hippocampus of AD and NC brains. PET/CT studies were carried out in normal rats to study brain and whole body distribution. The three radiotracers were produced in high radiochemical yields (>40%) and had specific activities >37 GBq/μmol. TAZA had an affinity, K(i) = 0.84 nM and was five times more potent than PIB. [(11)C]TAZA bound specifically to Aβ plaques present in AD brains with gray matter to white matter ratios >20. [(11)C]TAZA was displaced by PIB (>90%), suggesting similar binding site for [(11)C]TAZA and [(11)C]PIB. [(11)C]TAZA exhibited slow kinetics of uptake in the rat brain and whole body images showed uptake in interscapular brown adipose tissue (IBAT). Binding in brain and IBAT were affected by preinjection of atomoxetine, a norepinephrine transporter blocker. [(11)C]TAZA exhibited high binding to Aβ plaques in human AD hippocampus. Rat brain kinetics was slow and peripheral binding to IBAT needs to be further evaluated. © 2016 Wiley Periodicals, Inc.
Radionecrosis versus disease progression in brain metastasis. Value of (18)F-DOPA PET/CT/MRI.
Hernández Pinzón, J; Mena, D; Aguilar, M; Biafore, F; Recondo, G; Bastianello, M
2016-01-01
The use of (18)F-DOPA PET/CT with magnetic resonance imaging fusion and the use of visual methods and quantitative analysis helps to differentiate between changes post-radiosurgery vs. suspicion of disease progression in a patient with brain metastases from melanoma, thus facilitating taking early surgical action. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Nuechterlein, Keith H.; Ventura, Joseph; McEwen, Sarah C.; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L.
2016-01-01
Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. PMID:27460618
Wardlaw, Joanna; Brazzelli, Miriam; Miranda, Hector; Chappell, Francesca; McNamee, Paul; Scotland, Graham; Quayyum, Zahid; Martin, Duncan; Shuler, Kirsten; Sandercock, Peter; Dennis, Martin
2014-04-01
Patients with transient ischaemic attack (TIA) or minor stroke need rapid treatment of risk factors to prevent recurrent stroke. ABCD2 score or magnetic resonance diffusion-weighted brain imaging (MR DWI) may help assessment and treatment. Is MR with DWI cost-effective in stroke prevention compared with computed tomography (CT) brain scanning in all patients, in specific subgroups or as 'one-stop' brain-carotid imaging? What is the current UK availability of services for stroke prevention? Published literature; stroke registries, audit and randomised clinical trials; national databases; survey of UK clinical and imaging services for stroke; expert opinion. Systematic reviews and meta-analyses of published/unpublished data. Decision-analytic model of stroke prevention including on a 20-year time horizon including nine representative imaging scenarios. The pooled recurrent stroke rate after TIA (53 studies, 30,558 patients) is 5.2% [95% confidence interval (CI) 3.9% to 5.9%] by 7 days, and 6.7% (5.2% to 8.7%) at 90 days. ABCD2 score does not identify patients with key stroke causes or identify mimics: 66% of specialist-diagnosed true TIAs and 35-41% of mimics had an ABCD2 score of ≥ 4; 20% of true TIAs with ABCD2 score of < 4 had key risk factors. MR DWI (45 studies, 9078 patients) showed an acute ischaemic lesion in 34.3% (95% CI 30.5% to 38.4%) of TIA, 69% of minor stroke patients, i.e. two-thirds of TIA patients are DWI negative. TIA mimics (16 studies, 14,542 patients) make up 40-45% of patients attending clinics. UK survey (45% response) showed most secondary prevention started prior to clinic, 85% of primary brain imaging was same-day CT; 51-54% of patients had MR, mostly additional to CT, on average 1 week later; 55% omitted blood-sensitive MR sequences. Compared with 'CT scan all patients' MR was more expensive and no more cost-effective, except for patients presenting at > 1 week after symptoms to diagnose haemorrhage; strategies that triaged patients with low ABCD2 scores for slow investigation or treated DWI-negative patients as non-TIA/minor stroke prevented fewer strokes and increased costs. 'One-stop' CT/MR angiographic-plus-brain imaging was not cost-effective. Data on sensitivity/specificity of MR in TIA/minor stroke, stroke costs, prognosis of TIA mimics and accuracy of ABCD2 score by non-specialists are sparse or absent; all analysis had substantial heterogeneity. Magnetic resonance with DWI is not cost-effective for secondary stroke prevention. MR was most helpful in patients presenting at > 1 week after symptoms if blood-sensitive sequences were used. ABCD2 score is unlikely to facilitate patient triage by non-stroke specialists. Rapid specialist assessment, CT brain scanning and identification of serious underlying stroke causes is the most cost-effective stroke prevention strategy. The National Institute for Health Research Health Technology Assessment programme.
Khoshnevis, Mehrdad; Carozzo, Claude; Bonnefont-Rebeix, Catherine; Belluco, Sara; Leveneur, Olivia; Chuzel, Thomas; Pillet-Michelland, Elodie; Dreyfus, Matthieu; Roger, Thierry; Berger, François; Ponce, Frédérique
2017-04-15
Glioblastoma is the most common and deadliest primary brain tumor for humans. Despite many efforts toward the improvement of therapeutic methods, prognosis is poor and the disease remains incurable with a median survival of 12-14.5 months after an optimal treatment. To develop novel treatment modalities for this fatal disease, new devices must be tested on an ideal animal model before performing clinical trials in humans. A new model of induced glioblastoma in Yucatan minipigs was developed. Nine immunosuppressed minipigs were implanted with the U87 human glioblastoma cell line in both the left and right hemispheres. Computed tomography (CT) acquisitions were performed once a week to monitor tumor growth. Among the 9 implanted animals, 8 minipigs showed significant macroscopic tumors on CT acquisitions. Histological examination of the brain after euthanasia confirmed the CT imaging findings with the presence of an undifferentiated glioma. Yucatan minipig, given its brain size and anatomy (gyrencephalic structure) which are comparable to humans, provides a reliable brain tumor model for preclinical studies of different therapeutic METHODS: in realistic conditions. Moreover, the short development time, the lower cyclosporine and caring cost and the compatibility with the size of commercialized stereotactic frames make it an affordable and practical animal model, especially in comparison with large breed pigs. This reproducible glioma model could simulate human anatomical conditions in preclinical studies and facilitate the improvement of novel therapeutic devices, designed at the human scale from the outset. Copyright © 2017 Elsevier B.V. All rights reserved.
Imaging characteristics of hemophagocytic lymphohistiocytosis.
Fitzgerald, Nancy E; MacClain, Kenneth L
2003-06-01
Hemophagocytic lymphohistiocytosis (HLH) is a nonmalignant disorder of immune regulation, with overproduction of cytokines and diminished immune surveillance. Symptoms are nonspecific and may affect multiple organs, including the central nervous system. Neuroimaging findings have been described in case reports and small series; body imaging findings have not been described extensively. OBJECTIVE. To summarize findings of the most frequently performed imaging studies of the brain, chest and abdomen in patients with HLH. Retrospective review of chest radiographs and CT, abdominal ultrasound and CT, brain CT and MRI, skeletal surveys, and autopsy data. Twenty-five patients were diagnosed and treated for HLH at our institution over an 11-year period; 15 patients (60%) died. Common chest radiograph findings included alveolar-interstitial opacities with pleural effusions, often with rapid evolution and resolution. Hepatosplenomegaly, gallbladder wall thickening, hyperechoic kidneys and ascites were common abdominal findings, which resolved after therapy in some cases. Brain-imaging studies revealed nonspecific periventricular white-matter abnormalities, brain-volume loss and enlargement of extra-axial fluid spaces. Three infant cases, one with intracranial hemorrhage, one with multiple pathologic rib fractures and one with diaphyseal periosteal reaction involving multiple long bones on skeletal survey, raised suspicion of child abuse at presentation. Abuse was not substantiated in any case. Clinicians and radiologists should be aware of the radiographic manifestations of HLH, which are nonspecific and overlap with infectious, inflammatory and neoplastic disorders. Findings in the chest (similar to acute respiratory distress syndrome) and abdomen may progress rapidly and then regress with institution of appropriate anti-HLH therapy. CNS findings may be progressive. In some infants, initial imaging findings may mimic nonaccidental trauma.
Amidi, Ali; Agerbæk, Mads; Wu, Lisa M; Pedersen, Anders D; Mehlsen, Mimi; Clausen, Cecilie R; Demontis, Ditte; Børglum, Anders D; Harbøll, Anja; Zachariae, Robert
2017-06-01
Evidence suggests that testicular cancer (TC) and its treatment are associated with cognitive impairment. However, the underlying neural substrate and biological mechanisms are poorly understood. This study aimed to investigate changes in cognition and brain grey matter (GM) morphology in TC patients undergoing treatment, and to explore associations with immune markers, endocrine markers, and genotype. Sixty-five patients with stage I-III TC underwent assessment after surgery but prior to further treatment and again 6 months after. Twenty-two patients received chemotherapy (+CT), while 43 did not (-CT). Assessments included neuropsychological testing, whole-brain magnetic resonance imaging, and blood samples. Twenty-five healthy controls (HCs) underwent neuropsychological testing with a matching time interval. A regression-based approach was used to determine cognitive changes and longitudinal voxel-based morphometry (VBM) was performed to investigate changes in GM density in the TC groups. Compared with the HCs, both TC groups showed higher rates of cognitive decline (p < 0.05). A trend towards greater decline was observed in + CT (63.6 %) compared with -CT patients (39.5 %) (p = 0.07). VBM revealed widespread GM reductions in both TC groups, but a group-by-time interaction analysis revealed prefrontal reductions specific to the + CT group (p = 0.02), which were associated with poorer cognitive performance. Poorer cognitive performance was also associated with an increase in tumor necrosis factor alpha in + CT patients. Furthermore, an interaction effect was found between the APOE ε4 genotype and chemotherapy on cognitive performance with ε4 carriers performing significantly worse. These findings provide novel evidence of changes in cognition and brain morphology in TC patients undergoing treatment.
Accuracy of UTE-MRI-based patient setup for brain cancer radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yingli; Cao, Minsong; Kaprealian, Tania
2016-01-15
Purpose: Radiation therapy simulations solely based on MRI have advantages compared to CT-based approaches. One feature readily available from computed tomography (CT) that would need to be reproduced with MR is the ability to compute digitally reconstructed radiographs (DRRs) for comparison against on-board radiographs commonly used for patient positioning. In this study, the authors generate MR-based bone images using a single ultrashort echo time (UTE) pulse sequence and quantify their 3D and 2D image registration accuracy to CT and radiographic images for treatments in the cranium. Methods: Seven brain cancer patients were scanned at 1.5 T using a radial UTEmore » sequence. The sequence acquired two images at two different echo times. The two images were processed using an in-house software to generate the UTE bone images. The resultant bone images were rigidly registered to simulation CT data and the registration error was determined using manually annotated landmarks as references. DRRs were created based on UTE-MRI and registered to simulated on-board images (OBIs) and actual clinical 2D oblique images from ExacTrac™. Results: UTE-MRI resulted in well visualized cranial, facial, and vertebral bones that quantitatively matched the bones in the CT images with geometric measurement errors of less than 1 mm. The registration error between DRRs generated from 3D UTE-MRI and the simulated 2D OBIs or the clinical oblique x-ray images was also less than 1 mm for all patients. Conclusions: UTE-MRI-based DRRs appear to be promising for daily patient setup of brain cancer radiotherapy with kV on-board imaging.« less
Lovelock, Caroline E; Anslow, Philip; Molyneux, Andrew J; Byrne, James V; Kuker, Wilhelm; Pretorius, Pieter M; Coull, Andrew; Rothwell, Peter M
2009-12-01
CT remains the most commonly used imaging technique in acute stroke but is often delayed after minor stroke. Interobserver reliability in distinguishing hemorrhagic transformation of infarction from intracerebral hemorrhage may depend on delays to CT but has not been reported previously despite the clinical importance of this distinction. Initial CT scans with intraparenchymal hematoma from the first 1000 patients with stroke in the Oxford Vascular Study were independently categorized as intracerebral hemorrhage or hemorrhagic transformation of infarction by 5 neuroradiologists, both blinded and unblinded to clinical history. Thirty scans were reviewed twice. Agreement was quantified by the kappa statistic. Seventy-eight scans showed intraparenchymal hematoma. Blinded pairwise interrater agreements for a diagnosis of intracerebral hemorrhage ranged from kappa=0.15 to 0.48 with poor overall agreement (kappa=0.35; 95% CI, 0.15 to 0.54) even after unblinding (kappa=0.41; 0.21 to 0.60). Blinded intrarater agreements ranged from kappa=0.21 to 0.92. Lack of consensus after unblinding was greatest in patients scanned >or=24 hours after stroke onset (67% versus 25%, P=0.001) and in minor stroke (National Institutes of Health Stroke Scale
Turkin, A M; Oshorov, A V; Pogosbekyan, E L; Smirnov, A S; Dmitrieva, A S
Noninvasive techniques to evaluate intracranial pressure (ICP) are important for everyday practice in intensive care and neurosurgery departments. CT data can be used to evaluate the optic nerve sheath diameter (ONSD) and, indirectly, the ICP value. The ONSD value is an additional criterion in deciding on invasive monitoring of ICP. To analyze a correlation between CT-based ONSD and the results of invasive measurements of ICP in patients with severe traumatic brain injury. The study evaluated 41 patients with severe traumatic brain injury within the first 48 h after injury. Invasive monitoring of ICP (Codman & Shurtlett, MA, USA) was performed during 7±1.7 days. ONSD was measured using axial CT scans (CereTom, Neurologica Danvers, MA, USA) with a slice thickness of 2.5 mm. The ONSD value was measured at a distance of 3 mm from the posterior eyeball contour. The patients were allocated in a group with normal ICP (10 patients) and a group with high ICP (31 patients). ONSD served as an ICP classifier. The data were processed using ROC analysis. According to the CT data, the optimal threshold ONSD value was 6.35 mm in patients in the acute TBI period. The sensitivity was 0.93 (95% СI 0.84-1.00), the specificity was 0.80 (95% СI 0.50-1.00), and AUC was 0.87 (95% СI 0.69-1.00). We found a correlation between the CT-based ONSD and the median ICP (R=0.32, p<0.05). An ONSD value of 6.35 mm and more is one of the signs of previous or existing ICP.
Contribution of brain CT in the diagnosis of tuberculous meningitis: a case report from Djibouti.
Garetier, M; Roche, N C; Longin, C; Clapson, P; Benois, A; Rousset, J
2017-08-01
Tuberculous meningitis, a serious disease with high mortality and morbidity, remains frequent in countries with endemic tuberculosis. Its non-specific presentation often delays the introduction of appropriate treatment. Its definitive diagnosis requires isolation of Mycobacterium tuberculosis from cerebrospinal fluid, although this test may be negative without conclusively ruling out this diagnosis. A presumptive diagnosis should be reached as soon as possible through a body of clinical evidence, including the lumbar puncture findings. Brain computed tomography (CT) with and without contrast medium injection is helpful for the diagnosis of tuberculous meningitis and its complications. We discuss the features of CT and their value in relation to a case of tuberculous meningitis in Djibouti, as well as the role of CT in managing this disease.
Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study
Aragao, Maria de Fatima Vasco; van der Linden, Vanessa; Parizel, Paul; Jungmann, Patricia; Araújo, Luziany; Abath, Marília; Fernandes, Andrezza; Brainer-Lima, Alessandra; Holanda, Arthur; Mello, Roberto; Sarteschi, Camila; Duarte, Maria do Carmo Menezes Bezerra
2017-01-01
Objective To compare initial brain computed tomography (CT) scans with follow-up CT scans at one year in children with congenital Zika syndrome, focusing on cerebral calcifications. Design Case series study. Setting Barão de Lucena Hospital, Pernambuco state, Brazil. Participants 37 children with probable or confirmed congenital Zika syndrome during the microcephaly outbreak in 2015 who underwent brain CT shortly after birth and at one year follow-up. Main outcome measure Differences in cerebral calcification patterns between initial and follow-up scans. Results 37 children were evaluated. All presented cerebral calcifications on the initial scan, predominantly at cortical-white matter junction. At follow-up the calcifications had diminished in number, size, or density, or a combination in 34 of the children (92%, 95% confidence interval 79% to 97%), were no longer visible in one child, and remained unchanged in two children. No child showed an increase in calcifications. The calcifications at the cortical-white matter junction which were no longer visible at follow-up occurred predominately in the parietal and occipital lobes. These imaging changes were not associated with any clear clinical improvements. Conclusion The detection of cerebral calcifications should not be considered a major criterion for late diagnosis of congenital Zika syndrome, nor should the absence of calcifications be used to exclude the diagnosis. PMID:29030384
Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain
Ford, E. C.; Achanta, P.; Purger, D.; Armour, M.; Reyes, J.; Fong, J.; Kleinberg, L.; Redmond, K.; Wong, J.; Jang, M. H.; Jun, H.; Song, H-J.; Quinones-Hinojosa, A.
2011-01-01
Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis. PMID:21449714
Left Brain/Right Brain Learning for Adult Education.
ERIC Educational Resources Information Center
Garvin, Barbara
1986-01-01
Contrasts and compares the theory and practice of adult education as it relates to the issue of right brain/left brain learning. The author stresses the need for a whole-brain approach to teaching and suggests that adult educators, given their philosophical directions, are the perfect potential users of this integrated system. (Editor/CT)
Schad, L R; Boesecke, R; Schlegel, W; Hartmann, G H; Sturm, V; Strauss, L G; Lorenz, W J
1987-01-01
A treatment planning system for stereotactic convergent beam irradiation of deeply localized brain tumors is reported. The treatment technique consists of several moving field irradiations in noncoplanar planes at a linear accelerator facility. Using collimated narrow beams, a high concentration of dose within small volumes with a dose gradient of 10-15%/mm was obtained. The dose calculation was based on geometrical information of multiplanar CT or magnetic resonance (MR) imaging data. The patient's head was fixed in a stereotactic localization system, which is usable at CT, MR, and positron emission tomography (PET) installations. Special computer programs for correction of the geometrical MR distortions allowed a precise correlation of the different imaging modalities. The therapist can use combinations of CT, MR, and PET data for defining target volume. For instance, the superior soft tissue contrast of MR coupled with the metabolic features of PET may be a useful addition in the radiation treatment planning process. Furthermore, other features such as calculated dose distribution to critical structures can also be transferred from one set of imaging data to another and can be displayed as three-dimensional shaded structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carranza, C; Lipnharski, I; Quails, N
Purpose: This retrospective study analyzes the exposure history of emergency department (ED) patients undergoing head and cervical spine trauma computed tomography (CT) studies. This study investigated dose levels received by trauma patients and addressed any potential concerns regarding radiation dose issues. Methods: Under proper IRB approval, a cohort of 300 trauma cases of head and cervical spine trauma CT scans received in the ED was studied. The radiological image viewing software of the hospital was used to view patient images and image data. The following parameters were extracted: the imaging history of patients, the reported dose metrics from the scannermore » including the volumetric CT Dose Index (CTDIvol) and Dose Length Product (DLP). A postmortem subject was scanned using the same scan techniques utilized in a standard clinical head and cervical spine trauma CT protocol with 120 kVp and 280 mAs. The CTDIvol was recorded for the subject and the organ doses were measured using optically stimulated luminescent (OSL) dosimeters. Typical organ doses to the brain, thyroid, lens, salivary glands, and skin, based on the cadaver studies, were then calculated and reported for the cohort. Results: The CTDIvol reported by the CT scanner was 25.5 mGy for the postmortem subject. The average CTDIvol from the patient cohort was 34.1 mGy. From these metrics, typical average organ doses in mGy were found to be: Brain (44.57), Thyroid (33.40), Lens (82.45), Salivary Glands (61.29), Skin (47.50). The imaging history of the cohort showed that on average trauma patients received 26.1 scans over a lifetime. Conclusion: The average number of scans received on average by trauma ED patients shows that radiation doses in trauma patients may be a concern. Available dose tracking software would be helpful to track doses in trauma ED patients, highlighting the importance of minimizing unnecessary scans and keeping doses ALARA.« less
Todd, A W; Anderson, E M
2009-05-01
National audit data allow crude comparison between centres and indicate that most Scottish hospitals fail to meet current guidelines for CT scanning of the brain in stroke patients. This study identifies some of the reasons for delay in performing CT scans in a largely rural population. This audit study assesses the delays from onset of symptoms, time of admission and request received to CT scan in stroke patients for three different in-patient groups as well as those managed in the community. The reasons for delay in CT scanning varied between different patient groups but for one group of in-patients, changes in booking procedure and introduction of a second CT scanner increased the proportion scanned within 48 hours of request from 65% to 96%. Further developments including the introduction of Saturday and Sunday routine CT scanning, radiologist reporting from home and additional CT scanners placed in remote hospitals may be expected to improve these figures further. Target times of three hours from onset of symptoms to scan to allow thrombolysis may however be impossible to meet for all stroke patients in rural areas.
Kamran, Mudassar; Byrne, James V
2015-09-01
C-arm flat detector computed tomography (FDCT) parenchymal blood volume (PBV) measurements allow assessment of cerebral haemodynamics in the neurointerventional suite. This paper explores the feasibility of C-arm computed tomography (CT) PBV imaging and the relationship between the C-arm CT PBV and the MR-PWI-derived cerebral blood volume (CBV) and cerebral blood flow (CBF) parameters in aneurysmal subarachnoid haemorrhage (SAH) patients developing delayed cerebral ischemia (DCI). Twenty-six patients with DCI following aneurysmal SAH underwent a research C-arm CT PBV scan using a biplane angiography system and contemporaneous MR-PWI scan as part of a prospective study. Quantitative whole-brain atlas-based volume-of-interest analysis in conjunction with Pearson correlation and Bland-Altman tests was performed to explore the agreement between C-arm CT PBV and MR-derived CBV and CBF measurements. All patients received medical management, while eight patients (31%) underwent selective intra-arterial chemical angioplasty. Colour-coded C-arm CT PBV maps were 91% sensitive and 100% specific in detecting the perfusion abnormalities. C-arm CT rPBV demonstrated good agreement and strong correlation with both MR-rCBV and MR-rCBF measurements; the agreement and correlation were stronger for MR-rCBF relative to MR-rCBV and improved for C-arm CT PBV versus the geometric mean of MR-rCBV and MR-rCBF. Analysis of weighted means showed that the C-arm CT PBV has a preferential blood flow weighting (≈ 60% blood flow and ≈ 40% blood volume weighting). C-arm CT PBV imaging is feasible in DCI following aneurysmal SAH. PBV is a composite perfusion parameter incorporating both blood flow and blood volume weightings. That PBV has preferential (≈ 60%) blood flow weighting is an important finding, which is of clinical significance when interpreting the C-arm CT PBV maps, particularly in the setting of acute brain ischemia.
Radiological Features of Brain Metastases from Non-small Cell Lung Cancer Harboring EGFR Mutation.
Takamori, Shinkichi; Toyokawa, Gouji; Shimokawa, Mototsugu; Kinoshita, Fumihiko; Kozuma, Yuka; Matsubara, Taichi; Haratake, Naoki; Akamine, Takaki; Mukae, Nobutaka; Hirai, Fumihiko; Tagawa, Tetsuzo; Oda, Yoshinao; Iwaki, Toru; Iihara, Koji; Honda, Hiroshi; Maehara, Yoshihiko
2018-06-01
To investigate the radiological features on computed tomography (CT) of brain metastasis (BM) from epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). Thirty-four patients with NSCLC with BMs who underwent surgical resection of the BMs at the Department of Neurosurgery, Kyushu University from 2005 to 2016 were enrolled in the study. The EGFR statuses of the 34 BMs were investigated. Radiological features, including the number, size, and location of the tumor, were delineated by CT. Patients with EGFR-mutated BMs had significantly higher frequencies of multiple metastases than those with the non-EGFR-mutated type (p=0.042). BMs harboring mutations in EGFR were more frequently observed in the central area of the brain compared to those without mutations in EGFR (p=0.037). Careful follow-up of patients with EGFR-mutated NSCLC may be necessary given the high frequencies of multiple BMs and their location in the central area of the brain. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, N.; Odano, I.; Ohkubo, M.
1994-05-01
We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minutemore » period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.« less
Recent technological advances in pediatric brain tumor surgery.
Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor
2017-01-01
X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.
Residual aneurysm after metal coils treatment detected by spectral CT
Wang, Yang; Gao, Xiaolei; Lu, Aixun; Zhou, Zhengyang; Li, Baoxin
2012-01-01
Digital subtraction angiography (DSA) is currently the gold standard for diagnosing the residue or recurrence of aneurysm after treatment, especially in the presence of metal coils. However, DSA is an invasive procedure which may cause additional trauma and economic burden to patients. Spectral CT imaging, as a newly introduced CT imaging mode, produces monochromatic image sets that is able to reduce beam-hardening and other metal-related artifacts, and has found its use in several clinical applications including brain imaging to reduce beam-hardening artifacts. In this study, we describe a case of spectral CT imaging in follow-up of the metal coils treatment and detection of a small leaf of residual aneurysm after metal coils treatment. PMID:23256074
Validation of Siriraj Stroke Score in southeast Nigeria.
Chukwuonye, Innocent Ijezie; Ohagwu, Kenneth Arinze; Uche, Enoch Ogbonnaya; Chuku, Abali; Nwanke, Rowland Ihezuo; Ohagwu, Christopher Chukwuemeka; Ezeani, Ignatius U; Nwabuko, Collins Ogbonna; Nnoli, Martin Anazodo; Oviasu, Efosa; Ogah, Okechukwu Samuel
2015-01-01
The aim of the study is to validate the use of Siriraj Stroke Score (SSS) in the diagnosis of acute hemorrhagic and acute ischemic stroke in southeast Nigeria. This was a prospective study on validity of SSS in the diagnosis of stroke types in southeast Nigeria. Subjects diagnosed with stroke for whom brain computerized tomography (CT) scan was performed on admission were recruited during the study period. SSS was calculated for each subject, and the SSS diagnosis was compared with brain CT scan-based diagnosis. A total of 2,307 patients were admitted in the hospital medical wards during the study period, of whom 360 (15.6%) were stroke patients and of these, 113 (31.4%) adult subjects met the inclusion criteria. The mean age of the subjects was 66.5±2.6 years. The mean interval between ictus and presentation was 2.5±0.4 days. Ischemic stroke was confirmed by CT in 74 subjects; however, SSS predicted 60 (81.1%) of these subjects correctly (P<0.05). Hemorrhagic stroke was confirmed by CT in 39 subjects, and SSS predicted 36 (92.3%) of them correctly (P<0.05). In acute ischemic stroke, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of SSS were 92%, 94%, 97%, 86%, and 93%, respectively, while in patients with hemorrhagic stroke, the corresponding percentages were 94%, 92%, 86%, 97%, and 93%, respectively. SSS is not reliable enough to clinically differentiate stroke types in southeast Nigeria to warrant interventions like thrombolysis in acute ischemic stroke.
Seiger, Rene; Ganger, Sebastian; Kranz, Georg S; Hahn, Andreas; Lanzenberger, Rupert
2018-05-15
Automated cortical thickness (CT) measurements are often used to assess gray matter changes in the healthy and diseased human brain. The FreeSurfer software is frequently applied for this type of analysis. The computational anatomy toolbox (CAT12) for SPM, which offers a fast and easy-to-use alternative approach, was recently made available. In this study, we compared region of interest (ROI)-wise CT estimations of the surface-based FreeSurfer 6 (FS6) software and the volume-based CAT12 toolbox for SPM using 44 elderly healthy female control subjects (HC). In addition, these 44 HCs from the cross-sectional analysis and 34 age- and sex-matched patients with Alzheimer's disease (AD) were used to assess the potential of detecting group differences for each method. Finally, a test-retest analysis was conducted using 19 HC subjects. All data were taken from the OASIS database and MRI scans were recorded at 1.5 Tesla. A strong correlation was observed between both methods in terms of ROI mean CT estimates (R 2 = .83). However, CAT12 delivered significantly higher CT estimations in 32 of the 34 ROIs, indicating a systematic difference between both approaches. Furthermore, both methods were able to reliably detect atrophic brain areas in AD subjects, with the highest decreases in temporal areas. Finally, FS6 as well as CAT12 showed excellent test-retest variability scores. Although CT estimations were systematically higher for CAT12, this study provides evidence that this new toolbox delivers accurate and robust CT estimates and can be considered a fast and reliable alternative to FreeSurfer. © 2018 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.
Keijzers, Gerben; Sithirasenan, Vasugi
2012-02-01
To assess the chest computed tomography (CT) imaging interpreting skills of emergency department (ED) doctors and to study the effect of a CT chest imaging interpretation lecture on these skills. Sixty doctors in two EDs were randomized, using computerized randomization, to either attend a chest CT interpretation lecture or not to attend this lecture. Within 2 weeks of the lecture, the participants completed a questionnaire on demographic variables, anatomical knowledge, and diagnostic interpretation of 10 chest CT studies. Outcome measures included anatomical knowledge score, diagnosis score, and the combined overall score, all expressed as a percentage of correctly answered questions (0-100). Data on 58 doctors were analyzed, of which 27 were randomized to attend the lecture. The CT interpretation lecture did not have an effect on anatomy knowledge scores (72.9 vs. 70.2%), diagnosis scores (71.2 vs. 69.2%), or overall scores (71.4 vs. 69.5%). Twenty-nine percent of doctors stated that they had a systematic approach to chest CT interpretation. Overall self-perceived competency for interpreting CT imaging (brain, chest, abdomen) was low (between 3.2 and 5.2 on a 10-point Visual Analogue Scale). A single chest CT interpretation lecture did not improve chest CT interpretation by ED doctors. Less than one-third of doctors had a systematic approach to chest CT interpretation. A standardized systematic approach may improve interpretation skills.
de Fatima Vasco Aragao, Maria; van der Linden, Vanessa; Brainer-Lima, Alessandra Mertens; Coeli, Regina Ramos; Rocha, Maria Angela; Sobral da Silva, Paula; Durce Costa Gomes de Carvalho, Maria; van der Linden, Ana; Cesario de Holanda, Arthur; Valenca, Marcelo Moraes
2016-04-13
To report radiological findings observed in computed tomography (CT) and magnetic resonance imaging (MRI) scans of the first cases of congenital infection and microcephaly presumably associated with the Zika virus in the current Brazilian epidemic. Retrospective study with a case series. Association for Assistance of Disabled Children (AACD), Pernambuco state, Brazil. 23 children with a diagnosis of congenital infection presumably associated with the Zika virus during the Brazilian microcephaly epidemic. Types of abnormalities and the radiological pattern of lesions identified on CT and MRI brain scans. Six of the 23 children tested positive for IgM antibodies to Zika virus in cerebrospinal fluid. The other 17 children met the protocol criteria for congenital infection presumably associated with the Zika virus, even without being tested for IgM antibodies to the virus--the test was not yet available on a routine basis. Of the 23 children, 15 underwent CT, seven underwent both CT and MRI, and one underwent MRI. Of the 22 children who underwent CT, all had calcifications in the junction between cortical and subcortical white matter, 21 (95%) had malformations of cortical development, 20 (91%) had a decreased brain volume, 19 (86%) had ventriculomegaly, and 11 (50%) had hypoplasia of the cerebellum or brainstem. Of the eight children who underwent MRI, all had calcifications in the junction between cortical and subcortical white matter, malformations of cortical development occurring predominantly in the frontal lobes, and ventriculomegaly. Seven of the eight (88%) children had enlarged cisterna magna, seven (88%) delayed myelination, and six each (75%) a moderate to severe decrease in brain volume, simplified gyral pattern, and abnormalities of the corpus callosum (38% hypogenesis and 38% hypoplasia). Malformations were symmetrical in 75% of the cases. Severe cerebral damage was found on imaging in most of the children in this case series with congenital infection presumably associated with the Zika virus. The features most commonly found were brain calcifications in the junction between cortical and subcortical white matter associated with malformations of cortical development, often with a simplified gyral pattern and predominance of pachygyria or polymicrogyria in the frontal lobes. Additional findings were enlarged cisterna magna, abnormalities of corpus callosum (hypoplasia or hypogenesis), ventriculomegaly, delayed myelination, and hypoplasia of the cerebellum and the brainstem. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
van der Linden, Vanessa; Brainer-Lima, Alessandra Mertens; Coeli, Regina Ramos; Rocha, Maria Angela; Sobral da Silva, Paula; Durce Costa Gomes de Carvalho, Maria; van der Linden, Ana; Cesario de Holanda, Arthur; Valenca, Marcelo Moraes
2016-01-01
Objective To report radiological findings observed in computed tomography (CT) and magnetic resonance imaging (MRI) scans of the first cases of congenital infection and microcephaly presumably associated with the Zika virus in the current Brazilian epidemic. Design Retrospective study with a case series. Setting Association for Assistance of Disabled Children (AACD), Pernambuco state, Brazil. Participants 23 children with a diagnosis of congenital infection presumably associated with the Zika virus during the Brazilian microcephaly epidemic. Main outcome measures Types of abnormalities and the radiological pattern of lesions identified on CT and MRI brain scans. Results Six of the 23 children tested positive for IgM antibodies to Zika virus in cerebrospinal fluid. The other 17 children met the protocol criteria for congenital infection presumably associated with the Zika virus, even without being tested for IgM antibodies to the virus—the test was not yet available on a routine basis. Of the 23 children, 15 underwent CT, seven underwent both CT and MRI, and one underwent MRI. Of the 22 children who underwent CT, all had calcifications in the junction between cortical and subcortical white matter, 21 (95%) had malformations of cortical development, 20 (91%) had a decreased brain volume, 19 (86%) had ventriculomegaly, and 11 (50%) had hypoplasia of the cerebellum or brainstem. Of the eight children who underwent MRI, all had calcifications in the junction between cortical and subcortical white matter, malformations of cortical development occurring predominantly in the frontal lobes, and ventriculomegaly. Seven of the eight (88%) children had enlarged cisterna magna, seven (88%) delayed myelination, and six each (75%) a moderate to severe decrease in brain volume, simplified gyral pattern, and abnormalities of the corpus callosum (38% hypogenesis and 38% hypoplasia). Malformations were symmetrical in 75% of the cases. Conclusion Severe cerebral damage was found on imaging in most of the children in this case series with congenital infection presumably associated with the Zika virus. The features most commonly found were brain calcifications in the junction between cortical and subcortical white matter associated with malformations of cortical development, often with a simplified gyral pattern and predominance of pachygyria or polymicrogyria in the frontal lobes. Additional findings were enlarged cisterna magna, abnormalities of corpus callosum (hypoplasia or hypogenesis), ventriculomegaly, delayed myelination, and hypoplasia of the cerebellum and the brainstem. PMID:27075009
NASA Astrophysics Data System (ADS)
Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A.; Costes, Nicolas; Hammers, Alexander
2017-04-01
In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.
Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A; Costes, Nicolas; Hammers, Alexander
2017-04-07
In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [ 18 F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [ 18 F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BP ND ). On static [ 18 F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [ 18 F]MPPF, most regional errors on BP ND ranged from -1 to +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.
Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap
2003-10-01
Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.
Portable head computed tomography scanner--technology and applications: experience with 3421 scans.
Carlson, Andrew P; Yonas, Howard
2012-10-01
The use of head computed tomography (CT) is standard in the management of acute brain injury; however, there are inherent risks of transport of critically ill patients. Portable CT can be brought to the patient at any location. We describe the clinical use of a portable head CT scanner (CereTom: NeuroLogica: Danvers, MA) that can be brought to the patient's bedside or to other locations such as the operating room or angiography suite. Between June of 2006 and December of 2009, a total of 3421 portable CTs were performed. A total of 3278 (95.8%) were performed in the neuroscience intensive care unit (ICU) for an average of 2.6 neuroscience ICU CT scans per day. Other locations where CTs were performed included other ICUs (n = 97), the operating room (n = 53), the emergency department (n = 1), and the angiography suite (n = 2). Most studies were non-contrasted head CT, though other modalities including xenon/CT, contrasted CT, and CT angiography were performed. Portable head CT can reliably and consistently be performed at the patient's bedside. This should lead to decreased transportation-related morbidity and improved rapid decision making in the ICU, OR, and other locations. Further studies to confirm this clinical advantage are needed. Copyright © 2011 by the American Society of Neuroimaging.
Computational Analysis of the CB1 Carboxyl-terminus in the Receptor-G Protein Complex
Shim, Joong-Youn; Khurana, Leepakshi; Kendall, Debra A.
2016-01-01
Despite the important role of the carboxyl-terminus (Ct) of the activated brain cannabinoid receptor one (CB1) in the regulation of G protein signaling, a structural understanding of interactions with G proteins is lacking. This is largely due to the highly flexible nature of the CB1 Ct that dynamically adapts its conformation to the presence of G proteins. In the present study, we explored how the CB1 Ct can interact with the G protein by building on our prior modeling of the CB1-Gi complex (Shim J-Y, Ahn KH, Kendall DA. The Journal of Biological Chemistry 2013;288:32449-32465) to incorporate a complete CB1 Ct (Glu416Ct–Leu472Ct). Based upon the structural constraints from NMR studies, we employed ROSETTA to predict tertiary folds, ZDOCK to predict docking orientation, and molecular dynamics (MD) simulations to obtain two distinct plausible models of CB1 Ct in the CB1-Gi complex. The resulting models were consistent with the NMR-determined helical structure (H9) in the middle region of the CB1 Ct. The CB1 Ct directly interacted with both Gα and Gβ and stabilized the receptor at the Gi interface. The results of site-directed mutagenesis studies of Glu416Ct, Asp423Ct, Asp428Ct, and Arg444Ct of CB1 Ct suggested that the CB1 Ct can influence receptor-G protein coupling by stabilizing the receptor at the Gi interface. This research provided, for the first time, models of the CB1 Ct in contact with the G protein. PMID:26994549
Nuechterlein, Keith H; Ventura, Joseph; McEwen, Sarah C; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L
2016-07-01
Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Witzel, Joachim G; Bogerts, Bernhard; Schiltz, Kolja
2016-09-01
This study aimed to assess whether brain pathology might be more abundant in forensic inpatients in a high-security setting than in non-criminal individuals. By using a previously used reliable approach, we explored the frequency and extent of brain pathology in a large group of institutionalized offenders who had not previously been considered to be suffering from structural brain damage and compare it to healthy, non-offending subjects. MRI and CT brain scans from 148 male inpatients of a high-security mental health institution (offense type: 51 sex, 80 violent, 9 arson, and 8 nonviolent) that were obtained due to headache, vertigo, or psychological complaints during imprisonment were assessed and compared to 52 non-criminal healthy controls. Brain scans were assessed qualitatively with respect to evidence of structural brain damage. Each case received a semiquantitative rating of "normal" (=0), "questionably abnormal" (=1), or "definitely abnormal" (=2) for the lateral ventricles, frontal/parietal cortex, and medial temporal structures bilaterally as well as third ventricle. Forensic inpatients displayed signs of brain damage to a significantly higher degree than healthy controls (p < 0.001). Even after adjustment for age, in the patients, being younger than the controls (p < 0.05), every offender type group displayed a higher proportion of subjects with brain regions categorized as definitely abnormal than the non-criminal controls. Within the forensic inpatients, offense type groups did not significantly differ in brain pathology. The astonishingly high prevalence of brain pathology in institutionalized inmates of a high-security mental health institution who previously had not been considered to be suffering from an organic brain syndrome raises questions on whether such neuroradiological assessment might be considered as a routine procedure in newly admitted patients. Furthermore, it highlights that organic changes, detectable under clinical routine conditions, may play a role in the development of legally relevant behavioral disturbances which might be underestimated.
Onwuchekwa, Chinwe Regina; Alazigha, Nengi S.
2017-01-01
Background and Purpose: Traumatic head injury has a high mortality and morbidity in low- and middle-income countries. Brain injury following trauma is the cause of death in about one-third of patients that die after trauma. The aim of the study was to assess the pattern of computed tomography (CT) findings in head trauma at the tertiary health institutions serving the Niger Delta region of Nigeria. Patients and Methods: The CT scans of the head of 310 consecutive patients referred specifically for evaluation of head injury were prospectively reviewed. The images acquired were analyzed by the radiologists. The radiological features and anatomical distribution of the lesions on the CT Images were assessed and documented. Patients with congenital abnormalities of the head and those whose fall or injury were secondary to stroke were excluded from the study. The Ethical Committee of our institutions gave approval for the study. Results: There were 225 (72.58%) males and 85 (27.42%) females. About 44.84% of the patients were in the third and fourth decades of life. The major causes of head injury were road traffic accidents in 67.74%, falls in 14.84%, and assaults in 7.42%. Most of the patients 102 (33.0%) presented within the 1st week of injury. Cranial fractures were found in 87 (28.06%) patients. In this series, 111 (35.81%) had normal CT findings while 199 (64.19%) had abnormal CT findings. Intra-axial lesions were the most common, constituting 131 (42.26%) cases. Conclusion: This study had demonstrated that majority of head trauma evaluated by CT were associated with cranial and brain injuries. Intra-axial injuries are more prevalent. Poor health facilities and bad road networks in addition to being risk factors for head injury also hamper the management of head-injured patients as shown by the long duration of injury before health facilities are accessed. PMID:28971028
al-Rifaie, Mohammad Majid; Aber, Ahmed; Hemanth, Duraiswamy Jude
2015-12-01
This study proposes an umbrella deployment of swarm intelligence algorithm, such as stochastic diffusion search for medical imaging applications. After summarising the results of some previous works which shows how the algorithm assists in the identification of metastasis in bone scans and microcalcifications on mammographs, for the first time, the use of the algorithm in assessing the CT images of the aorta is demonstrated along with its performance in detecting the nasogastric tube in chest X-ray. The swarm intelligence algorithm presented in this study is adapted to address these particular tasks and its functionality is investigated by running the swarms on sample CT images and X-rays whose status have been determined by senior radiologists. In addition, a hybrid swarm intelligence-learning vector quantisation (LVQ) approach is proposed in the context of magnetic resonance (MR) brain image segmentation. The particle swarm optimisation is used to train the LVQ which eliminates the iteration-dependent nature of LVQ. The proposed methodology is used to detect the tumour regions in the abnormal MR brain images.
Rehak, Z; Vasina, J; Ptacek, J; Kazda, T; Fojtik, Z; Nemec, P
18 F-FDG PET/CT imaging is useful in patients with fever of unknown origin and can detect giant cell arteritis in extracranial large arteries. However, it is usually assumed that temporal arteries cannot be visualized with a PET/CT scanner due to their small diameter. Three patients with clinical symptoms of temporal arteritis were examined using a standard whole body PET/CT protocol (skull base - mid thighs) followed by a head PET/CT scan using the brain protocol. High 18 F-FDG uptake in the aorta and some arterial branches were detected in all 3 patients with the whole body protocol. Using the brain protocol, head imaging led to detection of high 18 F-FDG uptake in temporal arteries as well as in their branches (3 patients), in occipital arteries (2 patients) and also in vertebral arteries (3 patients). Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Reduction in radiation dose with reconstruction technique in the brain perfusion CT
NASA Astrophysics Data System (ADS)
Kim, H. J.; Lee, H. K.; Song, H.; Ju, M. S.; Dong, K. R.; Chung, W. K.; Cho, M. S.; Cho, J. H.
2011-12-01
The principal objective of this study was to verify the utility of the reconstruction imaging technique in the brain perfusion computed tomography (PCT) scan by assessing reductions in the radiation dose and analyzing the generated images. The setting used for image acquisition had a detector coverage of 40 mm, a helical thickness of 0.625 mm, a helical shuttle mode scan type and a rotation time of 0.5 s as the image parameters used for the brain PCT scan. Additionally, a phantom experiment and an animal experiment were carried out. In the phantom and animal experiments, noise was measured in the scanning with the tube voltage fixed at 80 kVp (kilovolt peak) and the level of the adaptive statistical iterative reconstruction (ASIR) was changed from 0% to 100% at 10% intervals. The standard deviation of the CT coefficient was measured three times to calculate the mean value. In the phantom and animal experiments, the absorbed dose was measured 10 times under the same conditions as the ones for noise measurement before the mean value was calculated. In the animal experiment, pencil-type and CT-dedicated ionization chambers were inserted into the central portion of pig heads for measurement. In the phantom study, as the level of the ASIR changed from 0% to 100% under identical scanning conditions, the noise value and dose were proportionally reduced. In our animal experiment, the noise value was lowest when the ASIR level was 50%, unlike in the phantom study. The dose was reduced as in the phantom study.
Badakhshi, Harun; Graf, Reinhold; Prasad, Vikas; Budach, Volker
2014-06-25
18 F-fluoro-ethyl-tyrosine PET is gaining more indications in the field of oncology. We investigated the potentials of usage of FET-PET/CT in addition to MRI for definition of gross tumor volume (GTV) in stereotactic radiotherapy of lesions of skull base. We included in a prospective setting 21 cases. An MRI was performed, completed by FET PET/CT. Different GTV's were defined based on respective imaging tools: 1. GTVMRI, 2. GTV MRI /CT, 3. GTV composit (1 + 2), and GTVPET = GTV Boost. Lesions could be visualised by MRI and FET-PET/CT in all patients. FET tracer enhancement was found in all cases. Skull base infiltration by these lesions was observed by MRI, CT (PET/CT) and FET-PET (PET/CT) in all patients. Totally, brain tissue infiltration was seen in 10 patients. While, in 7 (out 10) cases, MRI and CT (from PET/CT) were indicating brain infiltration, FET-PET could add additional information regarding infiltrative behaviour: in 3 (out 10) patients, infiltration of the brain was displayed merely in FET-PET. An enlargement of GTVMRI/CT due to the FET-PET driven information, which revealed GTVcomposite , was necessary in 7 cases,. This enlargement was significant by definition (> 10% of GTVMRI/CT). The mean PET-effect on GTV counted for 1 ± 4 cm3. The restricted boost fields were based mainly on the GTVPET volume. In mean, about 8.5 cm3 of GTVMRI/CT, which showed no FET uptake, were excluded from target volume. GTV boost driven by only-PET-activity, was in mean by 33% smaller than the initial large treatment field, GTV composite, for those cases received boost treatment. FET-PET lead to significant (>10%) changes in the initial treatment fields in 11/21 patients and showed additional tumour volume relevant for radiation planning in 6/21 cases, and led to a subsequent decrease of more than 10% of the initial volumes for the boost fields. The implementation of FET PET into the planning procedures showed a benefit in terms of accurate definition of skull base lesions as targets for Image-guided stereotactic Radiotherapy. This has to be investigated prospectively in larger cohorts.
Rădoi, A; Poca, M A; Cañas, V; Cevallos, J M; Membrado, L; Saavedra, M C; Vidal, M; Martínez-Ricarte, F; Sahuquillo, J
2016-12-19
Mild traumatic brain injury (mTBI) has traditionally been considered to cause no significant brain damage since symptoms spontaneously remit after a few days. However, this idea is facing increasing scrutiny. The purpose of this study is to demonstrate the presence of early cognitive alterations in a series of patients with mTBI and to link these findings to different markers of brain damage. We conducted a prospective study of a consecutive series of patients with mTBI who were evaluated over a 12-month period. Forty-one (3.7%) of the 1144 included patients had experienced a concussion. Patients underwent a routine clinical evaluation and a brain computed tomography (CT) scan, and were also administered a standardised test for post-concussion symptoms within the first 24hours of mTBI and also 1 to 2 weeks later. The second assessment also included a neuropsychological test battery. The results of these studies were compared to those of a control group of 28 healthy volunteers with similar characteristics. Twenty patients underwent an MRI scan. Verbal memory and learning were the cognitive functions most affected by mTBI. Seven out of the 20 patients with normal CT findings displayed structural alterations on MR images, which were compatible with diffuse axonal injury in 2 cases. Results from this pilot study suggest that early cognitive alterations and structural brain lesions affect a considerable percentage of patients with post-concussion syndrome following mTBI. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Rehm, C G; Ross, S E
1995-05-01
This article assessed the value of routine head computerized axial tomographic (CT) scans for diagnosis of unsuspected facial fractures and its clinical implications in the multiply injured patient who is intubated, unconscious, or sedated at the time of initial assessment and requires a head CT scan to assess for brain injury. At a level I trauma center from June 1, 1992 to June 1, 1993 all intubated blunt trauma patients who required routine CT scan evaluation at initial assessment were studied prospectively. Routine scanning started at the foramen magnum and included the maxilla. Patients who died within the first 24 hours were excluded. The study population included 116 patients (85 male, 21 female) aged 12 to 85 years (mean, 28 years) with injury severity scores ranging from 1 to 50 (mean, 23). The mechanism of injury was: motor vehicle accidents (n = 74), motorcycling (n = 5), pedestrians accidents (n = 13), falls (n = 10), bicycling (n = 5), assaults (n = 8), and boating accident (n = 1). There were 19 suspected facial fractures; 18 required surgical repair. There were 27 unsuspected facial fractures; 13 required surgical care. Three suspected fractures were ruled out. Routine head CT scans to assess for brain injury in the multiply injured patient are also very useful in the diagnosis of unsuspected facial fractures, almost half of which will require surgical intervention.
NASA Astrophysics Data System (ADS)
Ladefoged, Claes N.; Benoit, Didier; Law, Ian; Holm, Søren; Kjær, Andreas; Højgaard, Liselotte; Hansen, Adam E.; Andersen, Flemming L.
2015-10-01
The reconstruction of PET brain data in a PET/MR hybrid scanner is challenging in the absence of transmission sources, where MR images are used for MR-based attenuation correction (MR-AC). The main challenge of MR-AC is to separate bone and air, as neither have a signal in traditional MR images, and to assign the correct linear attenuation coefficient to bone. The ultra-short echo time (UTE) MR sequence was proposed as a basis for MR-AC as this sequence shows a small signal in bone. The purpose of this study was to develop a new clinically feasible MR-AC method with patient specific continuous-valued linear attenuation coefficients in bone that provides accurate reconstructed PET image data. A total of 164 [18F]FDG PET/MR patients were included in this study, of which 10 were used for training. MR-AC was based on either standard CT (reference), UTE or our method (RESOLUTE). The reconstructed PET images were evaluated in the whole brain, as well as regionally in the brain using a ROI-based analysis. Our method segments air, brain, cerebral spinal fluid, and soft tissue voxels on the unprocessed UTE TE images, and uses a mapping of R2* values to CT Hounsfield Units (HU) to measure the density in bone voxels. The average error of our method in the brain was 0.1% and less than 1.2% in any region of the brain. On average 95% of the brain was within ±10% of PETCT, compared to 72% when using UTE. The proposed method is clinically feasible, reducing both the global and local errors on the reconstructed PET images, as well as limiting the number and extent of the outliers.
Ju, Min-Wook; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun
2015-01-01
Objective Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. Methods A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Results Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (p<0.0001). Conclusion Subdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI. PMID:27169071
Ju, Min-Wook; Kim, Seon-Hwan; Kwon, Hyon-Jo; Choi, Seung-Won; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun
2015-10-01
Brain atrophy and subdural hygroma were well known factors that enlarge the subdural space, which induced formation of chronic subdural hematoma (CSDH). Thus, we identified the subdural volume that could be used to predict the rate of future CSDH after head trauma using a computed tomography (CT) volumetric analysis. A single institution case-control study was conducted involving 1,186 patients who visited our hospital after head trauma from January 1, 2010 to December 31, 2014. Fifty-one patients with delayed CSDH were identified, and 50 patients with age and sex matched for control. Intracranial volume (ICV), the brain parenchyme, and the subdural space were segmented using CT image-based software. To adjust for variations in head size, volume ratios were assessed as a percentage of ICV [brain volume index (BVI), subdural volume index (SVI)]. The maximum depth of the subdural space on both sides was used to estimate the SVI. Before adjusting for cranium size, brain volume tended to be smaller, and subdural space volume was significantly larger in the CSDH group (p=0.138, p=0.021, respectively). The BVI and SVI were significantly different (p=0.003, p=0.001, respectively). SVI [area under the curve (AUC), 77.3%; p=0.008] was a more reliable technique for predicting CSDH than BVI (AUC, 68.1%; p=0.001). Bilateral subdural depth (sum of subdural depth on both sides) increased linearly with SVI (p<0.0001). Subdural space volume was significantly larger in CSDH groups. SVI was a more reliable technique for predicting CSDH. Bilateral subdural depth was useful to measure SVI.
Lee, Dong Hun; Lee, Byung Kook; Jeung, Kyung Woon; Jung, Yong Hun; Cho, Yong Soo; Cho, In Soo; Youn, Chun Song; Kim, Jin Woong; Park, Jung Soo; Min, Yong Il
2018-06-11
Brain swelling after cardiac arrest may affect the ventricles. We aimed to investigate the prognostic performance of ventricular characteristics on brain computed tomography (CT) in cardiac arrest survivors who underwent targeted temperature management (TTM). This retrospective cohort study included adult comatose cardiac arrest survivors who underwent brain CT scan within 24 h after resuscitation and underwent TTM from 2014 to 2016. The ventricular areas (lateral, third, and fourth ventricle), distances between the anterior horns of the lateral ventricle (LV) and the posterior horns of the LV, and maximal internal diameter of the skull were measured. Grey-to-white matter ratio (GWR), Evans' index, and relative LV area were calculated. The primary outcome was a 6-month neurologic outcome. Of 258 patients, 176 (68.2%) had an unfavourable neurologic outcome. GWR, LV area, third ventricle area, distance between the anterior horns of the LV, distance between the posterior horns of the LV, Evans' index, and relative LV area were different between neurologic outcome groups. Evans' index (0.683; 95% confidence interval [CI], 0.623-0.739) and relative LV area (0.670; 95% CI, 0.609-0.727) had higher value of area under the curve than the other ventricular characteristics and showed prognostic performance comparable with GWR (0.600; 95% CI, 0.538-0.661). All ventricular characteristics and GWR were not independently associated with neurologic outcome after adjusting for covariates. Ventricular characteristics on brain CT were associated with 6 months neurologic outcome in cardiac arrest survivors. Ventricular characteristics were objective measures that had comparable prognostic performance with GWR. Copyright © 2018 Elsevier B.V. All rights reserved.
Update in mild traumatic brain injury.
Freire-Aragón, María Dolores; Rodríguez-Rodríguez, Ana; Egea-Guerrero, Juan José
2017-08-10
There has been concern for many years regarding the identification of patients with mild traumatic brain injury (TBI) at high risk of developing an intracranial lesion (IL) that would require neurosurgical intervention. The small percentage of patients with these characteristics and the exceptional mortality associated with mild TBI with IL have led to the high use of resources such as computerised tomography (CT) being reconsidered. The various protocols developed for the management of mild TBI are based on the identification of risk factors for IL, which ultimately allows more selective indication or discarding both the CT application and the hospital stay for neurological monitoring. Finally, progress in the study of brain injury biomarkers with prognostic utility in different clinical categories of TBI has recently been incorporated by several clinical practice guidelines, which has allowed, together with clinical assessment, a more accurate prognostic approach for these patients to be established. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Solbakk, Anne-Kristin; Reinvang, Ivar; Svebak, Sven; Nielsen, Christopher S; Sundet, Kjetil
2005-02-01
We examined whether closed head injury patients show altered patterns of selective attention to stimulus categories that naturally evoke differential responses in healthy people. Self-reported rating and electrophysiological (event-related potentials [ERPs], heart rate [HR]) responses to affective pictures were studied in patients with mild head injury (n = 20; CT/MRI negative), in patients with predominantly frontal brain lesions (n = 12; CT/MRI confirmed), and in healthy controls (n = 20). Affective valence similarly modulated HR and ERP responses in all groups, but group differences occurred that were independent of picture valence. The attenuation of P3-slow wave amplitudes in the mild head injury group indicates a reduction in the engagement of attentional resources to the task. In contrast, the general enhancement of ERP amplitudes at occipital sites in the group with primarily frontal brain injury may reflect disinhibition of input at sensory receptive areas, possibly due to a deficit in top-down modulation performed by anterior control systems.
Wang, Xuhui; Xu, Minhui; Liang, Hong; Xu, Lunshan
2011-01-01
Background Multiple basilar skull fracture and cerebrospinal leak are common complications of traumatic brain injury, which required a surgical repair. But due to the complexity of basilar skull fracture after severe trauma, preoperatively an exact radiological location is always difficult. Multi-row spiral CT and MRI are currently widely applied in the clinical diagnosis. The present study was performed to compare the accuracy of cisternography by multi-row spiral CT and MRI in the diagnosis of cerebrospinal leak. Methods A total of 23 patients with multiple basilar skull fracture after traumatic brain injury were included. The radiological and surgical data were retrospectively analyzed. 64-row CT (mm/row) scan and three-dimensional reconstruction were performed in 12 patients, while MR plain scan and cisternography were performed in another 11 patients. The location of cerebrospinal leak was diagnosed by 2 experienced physicians majoring neurological radiology. Surgery was performed in all patients. The cerebrospinal leak location was confirmed and repaired during surgery. The result was considered as accurate when cerebrospinal leak was absent after surgery. Results According to the surgical exploration, the preoperative diagnosis of the active cerebrospinal leak location was accurate in 9 out of 12 patients with CT scan. The location could not be confirmed by CT because of multiple fractures in 2 patients and the missed diagnosis occurred in 1 patient. The preoperative diagnosis was accurate in 10 out of 11 patients with MRI examination. Conclusions MRI cisternography is more advanced than multi-row CT scan in multiple basilar skull fracture. The combination of the two examinations may increase the diagnostic ratio of active cerebrospinal leak. PMID:22933941
Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van der Lugt, Aad; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M
2014-12-01
In current clinical practice, head and neck (H&N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors' study is to investigate the relevance of using MRI in addition to CT for patient modeling in H&N HTP. CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreous humor, and the optical nerve. For these tissues that are used for patient modeling in H&N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRIdb). To quantify the relevance of MRI based segmentation for H&N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (Tmax) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRIdb. In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (Tmax: 38.0 °C) and CT and MRI (Tmax: 38.1 °C) result in similar simulated temperatures, while CT and MRIdb (Tmax: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Leszczynski, K; Lee, Y
Purpose: To evaluate MR-only treatment planning for brain Stereotactic Ablative Radiotherapy (SABR) based on pseudo-CT (pCT) generation using one set of T1-weighted MRI. Methods: T1-weighted MR and CT images from 12 patients who were eligible for brain SABR were retrospectively acquired for this study. MR-based pCT was generated by using a newly in-house developed algorithm based on MR tissue segmentation and voxel-based electron density (ED) assignment (pCTv). pCTs using bulk density assignment (pCTb where bone and soft tissue were assigned 800HU and 0HU,respectively), and water density assignment (pCTw where all tissues were assigned 0HU) were generated for comparison of EDmore » assignment techniques. The pCTs were registered with CTs and contours of radiation targets and Organs-at-Risk (OARs) from clinical CT-based plans were copied to co-registered pCTs. Volumetric-Modulated-Arc-Therapy(VMAT) plans were independently created for pCTv and CT using the same optimization settings and a prescription (50Gy/10 fractions) to planning-target-volume (PTV) mean dose. pCTv-based plans and CT-based plans were compared with dosimetry parameters and monitor units (MUs). Beam fluence maps of CT-based plans were transferred to co-registered pCTs, and dose was recalculated on pCTs. Dose distribution agreement between pCTs and CT plans were quantified using Gamma analysis (2%/2mm, 1%/1mm with a 10% cut-off threshold) in axial, coronal and sagittal planes across PTV. Results: The average differences of PTV mean and maximum doses, and monitor units between independently created pCTv-based and CT-based plans were 0.5%, 1.5% and 1.1%, respectively. Gamma analysis of dose distributions of the pCTs and the CT calculated using the same fluence map resulted in average agreements of 92.6%/79.1%/52.6% with 1%/1mm criterion, and 98.7%/97.4%/71.5% with 2%/2mm criterion, for pCTv/CT, pCTb/CT and pCTw/CT, respectively. Conclusion: Plans produced on Voxel-based pCT is dosimetrically more similar to CT plans than bulk assignment-based pCTs. MR-only treatment planning using voxel-based pCT generated from T1-wieghted MRI may be feasible.« less
Clinical Decision Rules for Paediatric Minor Head Injury: Are CT Scans a Necessary Evil?
Thiam, Desmond Wei; Yap, Si Hui; Chong, Shu Ling
2015-09-01
High performing clinical decision rules (CDRs) have been derived to predict which head-injured child requires a computed tomography (CT) of the brain. We set out to evaluate the performance of these rules in the Singapore population. This is a prospective observational cohort study of children aged less than 16 who presented to the emergency department (ED) from April 2014 to June 2014 with a history of head injury. Predictor variables used in the Canadian Assessment of Tomography for Childhood Head Injury (CATCH), Children's Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) and Pediatric Emergency Care Applied Research Network (PECARN) CDRs were collected. Decisions on CT imaging and disposition were made at the physician's discretion. The performance of the CDRs were assessed and compared to current practices. A total of 1179 children were included in this study. Twelve (1%) CT scans were ordered; 6 (0.5%) of them had positive findings. The application of the CDRs would have resulted in a significant increase in the number of children being subjected to CT (as follows): CATCH 237 (20.1%), CHALICE 282 (23.9%), PECARN high- and intermediate-risk 456 (38.7%), PECARN high-risk only 45 (3.8%). The CDRs demonstrated sensitivities of: CATCH 100% (54.1 to 100), CHALICE 83.3% (35.9 to 99.6), PECARN 100% (54.1 to 100), and specificities of: CATCH 80.3% (77.9 to 82.5), CHALICE 76.4% (73.8 to 78.8), PECARN high- and intermediate-risk 61.6% (58.8 to 64.4) and PECARN high-risk only 96.7% (95.5 to 97.6). The CDRs demonstrated high accuracy in detecting children with positive CT findings but direct application in areas with low rates of significant traumatic brain injury (TBI) is likely to increase unnecessary CT scans ordered. Clinical observation in most cases may be a better alternative.
Bonatti, M; Lombardo, F; Zamboni, G A; Vittadello, F; Currò Dossi, R; Bonetti, B; Pozzi Mucelli, R; Bonatti, G
2018-01-18
Intracerebral hemorrhage represents a potentially severe complication of revascularization of acute ischemic stroke. The aim of our study was to assess the capability of iodine extravasation quantification on dual-energy CT performed immediately after mechanical thrombectomy to predict hemorrhagic complications. Because this was a retrospective study, the need for informed consent was waived. Eighty-five consecutive patients who underwent brain dual-energy CT immediately after mechanical thrombectomy for acute ischemic stroke between August 2013 and January 2017 were included. Two radiologists independently evaluated dual-energy CT images for the presence of parenchymal hyperdensity, iodine extravasation, and hemorrhage. Maximum iodine concentration was measured. Follow-up CT examinations performed until patient discharge were reviewed for intracerebral hemorrhage development. The correlation between dual-energy CT parameters and intracerebral hemorrhage development was analyzed by the Mann-Whitney U test and Fisher exact test. Receiver operating characteristic curves were generated for continuous variables. Thirteen of 85 patients (15.3%) developed hemorrhage. On postoperative dual-energy CT, parenchymal hyperdensities and iodine extravasation were present in 100% of the patients who developed intracerebral hemorrhage and in 56.3% of the patients who did not ( P = .002 for both). Signs of bleeding were present in 35.7% of the patients who developed intracerebral hemorrhage and in none of the patients who did not ( P < .001). Median maximum iodine concentration was 2.63 mg/mL in the patients who developed intracerebral hemorrhage and 1.4 mg/mL in the patients who did not ( P < .001). Maximum iodine concentration showed an area under the curve of 0.89 for identifying patients developing intracerebral hemorrhage. The presence of parenchymal hyperdensity with a maximum iodine concentration of >1.35 mg/mL may identify patients developing intracerebral hemorrhage with 100% sensitivity and 67.6% specificity. © 2018 by American Journal of Neuroradiology.
Divrik Gökçe, Senem; Coşkun, Melek
2012-01-01
Objective Imaging methods that use ionizing radiation have been more frequent in various medical fields with advances in imaging technology. The aim of our study was to make residents be aware of the radiation dose they are subjected to when they conduct radiological imaging methods, and of cancer risk. Materials and Methods A total of 364 residents participated in this descriptive study which was conducted during the period between October, 2008 and January, 2009. The questionnaires were completed under strict control on a one-to-one basis from each department. A χ2-test was used for the evaluation of data obtained. Results Only 7% of residents correctly answered to the question about the ionizing radiation dose of a posteroanterior (PA) chest X-ray. The question asking about the equivalent number of PA chest X-rays to the ionizing dose of a brain CT was answered correctly by 24% of residents; the same question regarding abdominal CT was answered correctly by 16% of residents, thorax CT by 16%, thyroid scintigraphy by 15%, intravenous pyelography by 9%, and lumbar spine radiography by 2%. The risk of developing a cancer throughout lifetime by a brain and abdominal CT were 33% and 28%, respectively. Conclusion Radiologic residents should have updated knowledge about radiation dose content and attendant cancer risks of various radiological imaging methods during both basic medical training period and following practice period. PMID:22438688
Hepatocellular carcinoma metastasizing to the skull base involving multiple cranial nerves.
Kim, Soo Ryang; Kanda, Fumio; Kobessho, Hiroshi; Sugimoto, Koji; Matsuoka, Toshiyuki; Kudo, Masatoshi; Hayashi, Yoshitake
2006-11-07
We describe a rare case of HCV-related recurrent multiple hepatocellular carcinoma (HCC) metastasizing to the skull base involving multiple cranial nerves in a 50-year-old woman. The patient presented with symptoms of ptosis, fixation of the right eyeball, and left abducens palsy, indicating disturbances of the right oculomotor and trochlear nerves and bilateral abducens nerves. Brain contrast-enhanced computed tomography (CT) revealed an ill-defined mass with abnormal enhancement around the sella turcica. Brain magnetic resonance imaging (MRI) disclosed that the mass involved the clivus, cavernous sinus, and petrous apex. On contrast-enhanced MRI with gadolinium-chelated contrast medium, the mass showed inhomogeneous intermediate enhancement. The diagnosis of metastatic HCC to the skull base was made on the basis of neurological findings and imaging studies including CT and MRI, without histological examinations. Further studies may provide insights into various methods for diagnosing HCC metastasizing to the craniospinal area.
Newson, Penny; Lynch-Frame, Ann; Roach, Rebecca; Bennett, Sarah; Carr, Vaughan; Chahl, Loris A
2005-01-01
Schizophrenia is considered to be a neurodevelopmental disorder with origins in the prenatal or neonatal period. Brains from subjects with schizophrenia have enlarged ventricles, reduced cortical thickness (CT) and increased neuronal density in the prefrontal cortex compared with those from normal subjects. Subjects with schizophrenia have reduced pain sensitivity and niacin skin flare responses, suggesting that capsaicin-sensitive primary afferent neurons might be abnormal in schizophrenia. This study tested the hypothesis that intrinsic somatosensory deprivation, induced by neonatal capsaicin treatment, causes changes in the brains of rats similar to those found in schizophrenia. Wistar rats were treated with capsaicin, 50 mg kg−1 subcutaneously, or vehicle (control) at 24–36 h of life. At 5–7 weeks behavioural observations were made, and brains removed, fixed and sectioned. The mean body weight of capsaicin-treated rats was not significantly different from control, but the mean brain weight of male, but not female, rats, was significantly lower than control. Capsaicin-treated rats were hyperactive compared with controls. The hyperactivity was abolished by haloperidol. Coronal brain sections of capsaicin-treated rats had smaller cross-sectional areas, reduced CT, larger ventricles and aqueduct, smaller hippocampal area and reduced corpus callosum thickness, than brain sections from control rats. Neuronal density was increased in several cortical areas and the caudate putamen, but not in the visual cortex. It is concluded that neonatal capsaicin treatment of rats produces brain changes that are similar to those found in brains of subjects with schizophrenia. PMID:16041396
Cernoch, Z; Sercl, M; Parízek, J; Lichý, J
1990-01-01
CT findings are evaluated in 103 children with vascular lesions (aged up to 15 years), and in 59 children with congenital cerebral and cerebellar malformations. Their maximum has been stated to occur perinatally due to hypoxic and ischemic brain affections. Therefore most of diagnostical problems were related to the differentiation of hypodense immature brain from ischemic changes. Mentioned findings were always correlated with clinical course. Similar confrontations along with earlier CT control examination may be helpful in distinguishing milder transitory postischemic oedema from serious necrotic and malatic changes. In more aged children, vascular lesions are of rare occurrence being different in etiology. More unambiguous CT patterns are obtained in vascular changes with hemorrhagies. Of special importance in their onset is a hypoxic attack with subsequent venous bleeding mainly into the germinative matrix. While well tolerated in premature newborns, the extensive hemorrhagies in on-term ones have worser prognosis, resulting in significant changes on control examination, predominantly hydrocephalus and porencephalia. Atrophies of various extent were the most common consequence of all encephalopathies of vascular origine. In almost a half of congenital brain and cerebellar anomalies, unsignificant findings of smaller middle line cavities were obtained predominantly in pellucide septum. From the serious findings, most frequent were different varieties of dysgenesis, hypogenesis up to agenesis of corpus callosum combined sometimes with either the lipomas or cysts. Another findings consisted in Dandy-Walker's cerebellar malformation, holoprosencephalia and only two patients manifested hydrencephalia and basal meningoencephalocele. Most of diagnostical effort has been made in mainly anomalies associated with ventriculomegalia and/or cystic formations in order to elucidate the eventual communication between the structures mentioned. In addition, CT ventriculo-cysto-orcisternography has also been performed using smaller amount of nonionic contrast. At present, an important portion of CT examinations may be replaced with sonography which is more simple as used in both newborns and toddlers.
Relationship of brain imaging with radionuclides and with x-ray computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, D.E.
1981-03-03
Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings aremore » inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.« less
Brain and lung metastasis of alveolar echinococcosis in a refugee from a hyperendemic area.
Tappe, Dennis; Weise, David; Ziegler, Uwe; Müller, Andreas; Müllges, Wolfgang; Stich, August
2008-11-01
Alveolar echinococcosis (AE) of the liver with cerebral and pulmonary metastasis was diagnosed in a Tibetan monk who initially presented with severe headache to an emergency department in Germany. Multiple lesions with perifocal oedema and severe compression of the third ventricle were seen with computed tomography (CT) of the brain. Glioma or cerebral metastasis of a hitherto undiagnosed abdominal or pulmonary malignancy was suspected. CT scans of the lung and liver demonstrated further tumorous masses. Magnetic resonance imaging of the brain revealed the cystic nature of the cerebral lesions and the patient had a highly positive serology for AE. The echinococcal aetiology of the brain lesions was confirmed by PCR for this refugee from an area where two disease entities, AE and cystic echinococcosis, are hyperendemic.
Brain MRI volumetry in a single patient with mild traumatic brain injury.
Ross, David E; Castelvecchi, Cody; Ochs, Alfred L
2013-01-01
This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.
Cognitive Reserve in Dementia: Implications for Cognitive Training
Mondini, Sara; Madella, Ileana; Zangrossi, Andrea; Bigolin, Angela; Tomasi, Claudia; Michieletto, Marta; Villani, Daniele; Di Giovanni, Giuseppina; Mapelli, Daniela
2016-01-01
Cognitive reserve (CR) is a potential mechanism to cope with brain damage. The aim of this study was to evaluate the effect of CR on a cognitive training (CT) in a group of patients with dementia. Eighty six participants with mild to moderate dementia were identified by their level of CR quantified by the CR Index questionnaire (CRIq) and underwent a cycle of CT. A global measure of cognition mini mental state examination (MMSE) was obtained before (T0) and after (T1) the training. Multiple linear regression analyses highlighted CR as a significant factor able to predict changes in cognitive performance after the CT. In particular, patients with lower CR benefited from a CT program more than those with high CR. These data show that CR can modulate the outcome of a CT program and that it should be considered as a predictive factor of neuropsychological rehabilitation training efficacy in people with dementia. PMID:27199734
Comparison of SNOMED CT versus Medcin Terminology Concept Coverage for Mild Traumatic Brain Injury
Montella, Diane; Brown, Steven H.; Elkin, Peter L.; Jackson, James C.; Rosenbloom, S. Trent; Wahner-Roedler, Dietlind; Welsh, Gail; Cotton, Bryan; Guillamondegui, Oscar D.; Lew, Henry; Taber, Katherine H.; Tupler, Larry A.; Vanderploeg, Rodney; Speroff, Theodore
2011-01-01
Background: Traumatic Brain Injury (TBI) is a “signature” injury of the current wars in Iraq and Afghanistan. Structured electronic data regarding TBI findings is important for research, population health and other secondary uses but requires appropriate underlying standard terminologies to ensure interoperability and reuse. Currently the U.S. Department of Veterans Affairs (VA) uses the terminology SNOMED CT and the Department of Defense (DOD) uses Medcin. Methods: We developed a comprehensive case definition of mild TBI composed of 68 clinical terms. Using automated and manual techniques, we evaluated how well the mild TBI case definition terms could be represented by SNOMED CT and Medcin, and compared the results. We performed additional analysis stratified by whether the concepts were rated by a TBI expert panel as having High, Medium, or Low importance to the definition of mild TBI. Results: SNOMED CT sensitivity (recall) was 90% overall for coverage of mild TBI concepts, and Medcin sensitivity was 49%, p < 0.001 (using McNemar’s chi square). Positive predictive value (precision) for each was 100%. SNOMED CT outperformed Medcin for concept coverage independent of import rating by our TBI experts. Discussion: SNOMED CT was significantly better able to represent mild TBI concepts than Medcin. This finding may inform data gathering, management and sharing, and data exchange strategies between the VA and DOD for active duty soldiers and veterans with mild TBI. Since mild TBI is an important condition in the civilian population as well, the current study results may be useful also for the general medical setting. PMID:22195156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haksoo; Welford, Scott; Fabien, Jeffrey
Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less
Endocranial Morphology of the Extinct North American Lion (Panthera atrox).
Cuff, Andrew R; Stockey, Christopher; Goswami, Anjali
2016-01-01
The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and it is known from a plethora of incredibly well-preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner-ear morphology. Results show that its gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead showing a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of the expected brain mass for a given body mass) is also larger than that of extant lions but similar to that of the other pantherines. The advent of CT scans has allowed nondestructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to a more accurate reconstruction of endocranial morphology and its evolution. © 2017 S. Karger AG, Basel.
Gökharman, Fatma Dilek; Aydın, Sonay; Fatihoğlu, Erdem; Koşar, Pınar Nercis
2017-12-19
Background/aim: Head injuries are commonly seen in the pediatric population. Noncontrast enhanced cranial CT is the method of choice to detect possible traumatic brain injury (TBI). Concerns about ionizing radiation exposure make the evaluation more challenging. The aim of this study was to evaluate the effectiveness of the Pediatric Emergency Care Applied Research Network (PECARN) rules in predicting clinically important TBI and to determine the amount of medical resource waste and unnecessary radiation exposure.Materials and methods: This retrospective study included 1041 pediatric patients presented to the emergency department. The patients were divided into subgroups of "appropriate for cranial CT", "not appropriate for cranial CT" and "cranial CT/observation of patient; both are appropriate". To determine the effectiveness of the PECARN rules, data were analyzed according to the presence of pathological findings Results: "Appropriate for cranial CT" results can predict pathology presence 118,056-fold compared to the "not appropriate for cranial CT" results. With "cranial CT/observation of patient; both are appropriate" results, pathology presence was predicted 11,457-fold compared to "not appropriate for cranial CT" results.Conclusion: PECARN rules can predict pathology presence successfully in pediatric TBI. Using PECARN can decrease resource waste and exposure to ionizing radiation.
Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin
2017-05-01
Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose.
Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One
2018-04-01
The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.
Bajaj, Sahil; Dailey, Natalie S; Rosso, Isabelle M; Rauch, Scott L; Killgore, William D S
2018-05-01
There is currently a critical need to establish an improved understanding of time-dependent differences in brain structure following mild traumatic brain injury (mTBI). We compared differences in brain structure, specifically cortical thickness (CT), cortical volume (CV), and cortical surface area (CSA) in 54 individuals who sustained a recent mTBI and 33 healthy controls (HCs). Individuals with mTBI were split into three groups, depending on their time since injury. By comparing structural measures between mTBI and HC groups, differences in CT reflected cortical thickening within several areas following 0-3 (time-point, TP1) and 3-6 months (TP2) post-mTBI. Compared with the HC group, the mTBI group at TP2 showed lower CSA within several areas. Compared with the mTBI group at TP2, the mTBI group during the most chronic stage (TP3: 6-18 months post-mTBI) showed significantly higher CSA in several areas. All the above reported differences in CT and CSA were significant at a cluster-forming p < .01 (corrected for multiple comparisons). We also found that in the mTBI group at TP2, CT within two clusters (i.e., the left rostral middle frontal gyrus (L. RMFG) and the right postcentral gyrus (R. PostCG)) was negatively correlated with basic attention abilities (L. RMFG: r = -.41, p = .05 and R. PostCG: r = -.44, p = .03). Our findings suggest that alterations in CT and associated neuropsychological assessments may be more prominent during the early stages of mTBI. However, alterations in CSA may reflect compensatory structural recovery during the chronic stages of mTBI. © 2018 Wiley Periodicals, Inc.
Non-Invasive Transcranial Brain Therapy Guided by CT Scans: an In Vivo Monkey Study
NASA Astrophysics Data System (ADS)
Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Tanter, M.; Boch, A.-L.; Kujas, M.; Seilhean, D.; Fink, M.
2007-05-01
Brain therapy using focused ultrasound remains very limited due to the strong aberrations induced by the skull. A minimally invasive technique using time-reversal was validated recently in-vivo on 20 sheeps. But such a technique requires a hydrophone at the focal point for the first step of the time-reversal procedure. A completely noninvasive therapy requires a reliable model of the acoustic properties of the skull in order to simulate this first step. 3-D simulations based on high-resolution CT images of a skull have been successfully performed with a finite differences code developed in our Laboratory. Thanks to the skull porosity, directly extracted from the CT images, we reconstructed acoustic speed, density and absorption maps and performed the computation. Computed wavefronts are in good agreement with experimental wavefronts acquired through the same part of the skull and this technique was validated in-vitro in the laboratory. A stereotactic frame has been designed and built in order to perform non invasive transcranial focusing in vivo. Here we describe all the steps of our new protocol, from the CT-scans to the therapy treatment and the first in vivo results on a monkey will be presented. This protocol is based on protocols already existing in radiotherapy.
Strickland, Corinne D; Eberhardt, Steven C; Bartlett, Mary R; Nelson, Jeffrey; Kim, Helen; Morrison, Leslie A; Hart, Blaine L
2017-08-01
Purpose To determine if adrenal calcifications seen at computed tomography (CT) are associated with familial cerebral cavernous malformations (fCCMs) in carriers of the CCM1 Common Hispanic Mutation. Materials and Methods This study was approved by the institutional review board. The authors retrospectively reviewed abdominal CT scans in 38 patients with fCCM, 38 unaffected age- and sex-matched control subjects, and 13 patients with sporadic, nonfamilial cerebral cavernous malformation (CCM). The size, number, and laterality of calcifications and the morphologic characteristics of the adrenal gland were recorded. Brain lesion count was recorded from brain magnetic resonance (MR) imaging in patients with fCCM. The prevalence of adrenal calcifications in patients with fCCM was compared with that in unaffected control subjects and those with sporadic CCM by using the Fisher exact test. Additional analyses were performed to determine whether age and brain lesion count were associated with adrenal findings in patients with fCCM. Results Small focal calcifications (SFCs) (≤5 mm) were seen in one or both adrenal glands in 19 of the 38 patients with fCCM (50%), compared with 0 of the 38 unaffected control subjects (P < .001) and 0 of the 13 subjects with sporadic CCM (P = .001). Adrenal calcifications in patients with fCCM were more frequently left sided, with 17 of 19 patients having more SFCs in the left adrenal gland than the right adrenal gland and 50 of the 61 observed SFCs (82%) found in the left adrenal gland. No subjects had SFCs on the right side only. In patients with fCCM, the presence of SFCs showed a positive correlation with age (P < .001) and number of brain lesions (P < .001). Conclusion Adrenal calcifications identified on CT scans are common in patients with fCCM and may be a clinically silent manifestation of disease. © RSNA, 2017.
Computed Tomography (CT) -- Head
MedlinePlus Videos and Cool Tools
... membranes covering the brain. top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Brain ... Send us your feedback Did you find the information you were looking for? Yes No Please type ...
Ottestad-Hansen, Sigrid; Hu, Qiu Xiang; Follin-Arbelet, Virgine Veronique; Bentea, Eduard; Sato, Hideyo; Massie, Ann; Zhou, Yun; Danbolt, Niels Christian
2018-05-01
The cystine-glutamate exchanger (xCT) promotes glutathione synthesis by catalyzing cystine uptake and glutamate release. The released glutamate may modulate normal neural signaling and contribute to excitotoxicity in pathological situations. Uncertainty, however, remains as neither the expression levels nor the distribution of xCT have been unambiguously determined. In fact, xCT has been reported in astrocytes, neurons, oligodendrocytes and microglia, but most of the information derives from cell cultures. Here, we show by immunohistochemistry and by Western blotting that xCT is widely expressed in the central nervous system of both sexes. The labeling specificity was validated using tissue from xCT knockout mice as controls. Astrocytes were selectively labeled, but showed greatly varying labeling intensities. This astroglial heterogeneity resulted in an astrocyte domain-like labeling pattern. Strong xCT labeling was also found in the leptomeninges, along some blood vessels, in selected circumventricular organs and in a subpopulation of tanycytes residing the lateral walls of the ventral third ventricle. Neurons, oligodendrocytes and resting microglia, as well as reactive microglia induced by glutamine synthetase deficiency, were unlabeled. The concentration of xCT protein in hippocampus was compared with that of the EAAT3 glutamate transporter by immunoblotting using a chimeric xCT-EAAT3 protein to normalize xCT and EAAT3 labeling intensities. The immunoblots suggested an xCT/EAAT3 ratio close to one (0.75 ± 0.07; average ± SEM; n = 4) in adult C57BL6 mice. xCT is present in select blood/brain/CSF interface areas and in an astrocyte subpopulation, in sufficient quantities to support the notion that system xc- provides physiologically relevant transport activity. © 2018 Wiley Periodicals, Inc.
Yang, Feng-Yi; Wang, Hsin-Ell; Lin, Guan-Liang; Teng, Ming-Che; Lin, Hui-Hsien; Wong, Tai-Tong; Liu, Ren-Shyan
2011-03-01
This study evaluated the pharmacokinetics of (99m)Tc-diethylenetriamine pentaacetate acid ((99m)Tc-DTPA) after intravenous administration in healthy and F98 glioma-bearing F344 rats in the presence of blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). The pharmacokinetics of the healthy and tumor-containing brains after BBB-D were compared to identify the optimal time period for combined treatment. Healthy and F98 glioma-bearing rats were injected intravenously with Evans blue (EB) and (99m)Tc-DTPA; these treatments took place with or without BBB-D induced by transcranial FUS of 1 hemisphere of the brain. The permeability of the BBB was quantified by EB extravasation. Twelve rats were scanned for 2 h to estimate uptake of (99m)Tc radioactivity with respect to time for the pharmacokinetic analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was performed to examine tissue damage. The accumulations of EB and (99m)Tc-DTPA in normal brains or brains with a tumor were significantly elevated after the intravenous injection when BBB-D was induced. The disruption-to-nondisruption ratio of the brains and the tumor-to-ipsilateral brain ratio of the tumors in terms of radioactivity reached a peak at 45 and 60 min, respectively. EB injection followed by sonication showed that there was an increase of about 2-fold in the tumor-to-ipsilateral brain EB ratio of the target tumors (7.36), compared with the control tumors (3.73). TUNEL staining showed no significant differences between the sonicated tumors and control tumors. This study demonstrates that (99m)Tc-DTPA micro-SPECT/CT can be used for the pharmacokinetic analysis of BBB-D induced by FUS. This method should be able to provide important information that will help with establishing an optimal treatment protocol for drug administration after FUS-induced BBB-D in clinical brain disease therapy.
Crosbie, Robin A; Nairn, Jonathan; Kubba, Haytham
2016-08-01
Paediatric periorbital cellulitis is a common condition. Accurate assessment can be challenging and appropriate use of CT imaging is essential. We audited admissions to our unit over a four year period, with reference to CT scanning and adherence to our protocol. Retrospective audit of paediatric patients admitted with periorbital cellulitis, 2012-2015. Total of 243 patients included, mean age 4.7 years with slight male predominance, the median length of admission was 2 days. 48/243 (20%) underwent CT during admission, 25 (52%) of these underwent surgical drainage. As per protocol, CT brain performed with all orbital scans; no positive intracranial findings on any initial scan. Three children developed intracranial complications subsequently; all treated with antibiotics. Our re-admission rate within 30 days was 2.5%. Our audit demonstrates benefit of standardising practice and the low CT rate, with high percentage taken to theatre and no missed abscesses, supports the protocol. There may be an argument to avoid CT brain routinely in all initial imaging sequences in those children without neurological signs or symptoms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Broocks, Gabriel; Flottmann, Fabian; Ernst, Marielle; Faizy, Tobias Djamsched; Minnerup, Jens; Siemonsen, Susanne; Fiehler, Jens; Kemmling, Andre
2018-04-01
Net water uptake per volume of brain tissue may be calculated by computed tomography (CT) density, and this imaging biomarker has recently been investigated as a predictor of lesion age in acute stroke. However, the hypothesis that measurements of CT density may be used to quantify net water uptake per volume of infarct lesion has not been validated by direct volumetric measurements so far. The purpose of this study was to (1) develop a theoretical relationship between CT density reduction and net water uptake per volume of ischemic lesions and (2) confirm this relationship by quantitative in vitro and in vivo CT image analysis using direct volumetric measurements. We developed a theoretical rationale for a linear relationship between net water uptake per volume of ischemic lesions and CT attenuation. The derived relationship between water uptake and CT density was tested in vitro in a set of increasingly diluted iodine solutions with successive CT measurements. Furthermore, the consistency of this relationship was evaluated using human in vivo CT images in a retrospective multicentric cohort. In 50 edematous infarct lesions, net water uptake was determined by direct measurement of the volumetric difference between the ischemic and normal hemisphere and was correlated with net water uptake calculated by ischemic density measurements. With regard to in vitro data, water uptake by density measurement was equivalent to direct volumetric measurement (r = 0.99, P < 0.0001; mean ± SD difference, -0.29% ± 0.39%, not different from 0, P < 0.0001). In the study cohort, the mean ± SD uptake of water within infarct measured by volumetry was 44.7 ± 26.8 mL and the mean percent water uptake per lesion volume was 22.7% ± 7.4%. This was equivalent to percent water uptake obtained from density measurements: 21.4% ± 6.4%. The mean difference between percent water uptake by direct volumetry and percent water uptake by CT density was -1.79% ± 3.40%, which was not significantly different from 0 (P < 0.0001). Volume of water uptake in infarct lesions can be calculated quantitatively by relative CT density measurements. Voxel-wise imaging of water uptake depicts lesion pathophysiology and could serve as a quantitative imaging biomarker of acute infarct lesions.
Iofetamine hydrochloride I 123: a new radiopharmaceutical for cerebral perfusion imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druckenbrod, R.W.; Williams, C.C.; Gelfand, M.J.
1989-01-01
Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). SPECT is more widely available than positron emission tomography, and complements anatomic visualization with X-ray computed tomography (CT) or magnetic resonance imaging. Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, withmore » negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. 36 references.« less
Rapid reduction of acute subdural hematoma and redistribution of hematoma: case report.
Watanabe, Arata; Omata, Tomohiro; Kinouchi, Hiroyuki
2010-01-01
An 88-year-old woman presented with acute subdural hematoma (ASDH) which showed rapid resolution on computed tomography (CT) and magnetic resonance (MR) imaging. She was transferred to our hospital after falling out of bed. On admission, she was comatose with Japan Coma Scale score of 200 and Glasgow Coma Scale score of E1V1M2. Brain CT showed a thick left frontotemporal ASDH. Conservative treatment consisted of 200 ml of glycerol administered intravenously twice a day, and maintenance in the approximately 20 degree head-up position to reduce intracranial pressure. Three days later, her consciousness recovered to Japan Coma Scale score of 30 and Glasgow Coma Scale score of E2V4M5. CT showed obvious reduction of the hematoma without brain or scalp swelling. Spinal MR imaging detected no redistribution of hematoma to the spine. The present case illustrates that rapid spontaneous reduction of ASDH may occur by redistribution of hematoma, mainly to the supratentorial subdural space because of brain atrophy.
[A case of pulmonary malignant melanoma mimicking lung abscess].
Mochizuki, Hideaki; Chikui, Emiko; Tokumaru, Aya; Kato, Takayuki; Arai, Tomio; Takahashi, Hideki
2011-06-01
An 84-year-old man was admitted with paresis of the right lower limb. Hemorrhagic lesions were demonstrated in the left frontoparietal lobe and cerebellum by cranial computed tomography (CT) and magnetic resonance imaging (MRI). Chest CT revealed an ill-defined mass measuring 4 x 6 cm in the left lower lobe of the lung, although bronchoscopic examination failed to obtain pathological diagnosis. Clinical diagnosis of primary lung cancer with multiple brain metastases was made, and he underwent whole brain radiotherapy. The pulmonary and cerebral lesions mimicked abscesses during his clinical course, and he died of respiratory failure due to bilateral pneumonia three months after admission. Autopsy revealed that both the pulmonary and brain lesions were malignant melanomas, but no other melanoma lesions could be identified despite meticulous investigation. Although malignant melanoma with an unknown primary site is rare in Japan, careful evaluation of the CT and MRI findings might be the key to correct diagnosis in this case.
Goltzman, D; Tannenbaum, G S
1987-07-21
Calcitonin (CT), when administered peripherally, is a potent hypocalcemic agent. This peptide can also exert a variety of profound effects through brain receptors after central injection. We examined the capacity of CT to alter plasma calcium of freely moving conscious rats after intracerebroventricular (i.c.v.) injection. A dose-dependent decrease in plasma calcium was seen after administration of 25 ng, 250 ng or 2500 ng of salmon calcitonin (sCT). The extent and duration of hypocalcemia after central injection was equal to, or greater than, that seen after giving the same doses of peptide intravenously (i.v.). Calcitonin gene-related peptide (CGRP), when administered centrally at a 50-fold molar excess, produced only a transient decrease in plasma calcium. No increase in plasma levels of sCT could be detected by RIA after i.c.v. injection, although measurable levels were obtained by i.v. injection. Centrally administered sCT did not appear to produce hypocalcemia by enhancing the release of endogenous rat CT. In contrast to the rise in rat immunoreactive parathyroid hormone (PTH) seen after i.v. injection of sCT, no significant elevation occurred after central administration of the peptide despite induction of comparable levels of hypocalcemia. Consequently, reduced PTH release may contribute to the central hypocalcemic action of CT. The results indicate that peptides acting through the brain CT receptor may modulate peripheral blood calcium.
Grey matter volume and thickness abnormalities in young people with a history of childhood abuse.
Lim, L; Hart, H; Mehta, M; Worker, A; Simmons, A; Mirza, K; Rubia, K
2018-04-01
Childhood abuse is associated with abnormalities in brain structure and function. Few studies have investigated abuse-related brain abnormalities in medication-naïve, drug-free youth that also controlled for psychiatric comorbidities by inclusion of a psychiatric control group, which is crucial to disentangle the effects of abuse from those associated with the psychiatric conditions. Cortical volume (CV), cortical thickness (CT) and surface area (SA) were measured in 22 age- and gender-matched medication-naïve youth (aged 13-20) exposed to childhood abuse, 19 psychiatric controls matched for psychiatric diagnoses and 27 healthy controls. Both region-of-interest (ROI) and whole-brain analyses were conducted. For the ROI analysis, the childhood abuse group compared with healthy controls only, had significantly reduced CV in bilateral cerebellum and reduced CT in left insula and right lateral orbitofrontal cortex (OFC). At the whole-brain level, relative to healthy controls, the childhood abuse group showed significantly reduced CV in left lingual, pericalcarine, precuneus and superior parietal gyri, and reduced CT in left pre-/postcentral and paracentral regions, which furthermore correlated with greater abuse severity. They also had increased CV in left inferior and middle temporal gyri relative to healthy controls. Abnormalities in the precuneus, temporal and precentral regions were abuse-specific relative to psychiatric controls, albeit at a more lenient level. Groups did not differ in SA. Childhood abuse is associated with widespread structural abnormalities in OFC-insular, cerebellar, occipital, parietal and temporal regions, which likely underlie the abnormal affective, motivational and cognitive functions typically observed in this population.
Balardin, Joana Bisol; Sato, João Ricardo; Vieira, Gilson; Feng, Yeu; Daly, Eileen; Murphy, Clodagh; Murphy, Declan; Ecker, Christine
2015-10-01
Autism spectrum disorders (ASD) are a group of conditions that show abnormalities in the neuroanatomy of multiple brain regions. The variability in the development of intelligence and language among individuals on the autism spectrum has long been acknowledged, but it remains unknown whether these differences impact on the neuropathology of ASD. In this study, we aimed to compare associations between surface-based regional brain measures and general intelligence (IQ) scores in ASD individuals with and without a history of language delay. We included 64 ASD adults of normal intelligence (37 without a history of language delay and 27 with a history of language delay and 80 neurotypicals). Regions with a significant association between verbal and nonverbal IQ and measures of cortical thickness (CT), surface area, and cortical volume were first identified in the combined sample of individuals with ASD and controls. Thicker dorsal frontal and temporal cortices, and thinner lateral orbital frontal and parieto-occipital cortices were associated with greater and lower verbal IQ scores, respectively. Correlations between cortical volume and verbal IQ were observed in similar regions as revealed by the CT analysis. A significant difference between ASD individuals with and without a history of language delay in the association between CT and verbal IQ was evident in the parieto-occipital region. These results indicate that ASD subgroups defined on the basis of differential language trajectories in childhood can have different associations between verbal IQ and brain measures in adulthood despite achieving similar levels of cognitive performance. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom
2015-04-01
Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.
Routine repeat head CT may not be necessary for patients with mild TBI
Rosen, Claire B; Luy, Diego D; Deane, Molly R; Scalea, Thomas M; Stein, Deborah M
2018-01-01
Background Routine repeat cranial CT (RHCT) is standard of care for CT-verified traumatic brain injury (TBI). Despite mixed evidence, those with mild TBI are subject to radiation and expense from serial CT scans. Thus, we investigated the necessity and utility of RHCT for patients with mild TBI. We hypothesized that repeat head CT in these patients would not alter patient care or outcomes. Methods We retrospectively studied patients suffering from mild TBI (Glasgow Coma Scale (GCS) score 13–15) and treated at the R Adams Cowley Shock Trauma Center from November 2014 through January 2015. The primary outcome was the need for surgical intervention. Outcomes were compared using paired Student’s t-test, and stratified by injury on initial CT, GCS change, demographics, and presenting vital signs (mean ± SD). Results Eighty-five patients met inclusion criteria with an average initial GCS score=14.6±0.57. Our center sees about 2800 patients with TBI per year, or about 230 per month. This includes patients with concussions. This sample represents about 30% of patients with TBI seen during the study period. Ten patients required operation (four based on initial CT and others for worsening GCS, headaches, large unresolving injury). There was progression of injury on repeat CT scan in only two patients that required operation, and this accompanied clinical deterioration. The mean brain Abbreviated Injury Scale (AIS) score was 4.8±0.3 for surgical patients on initial CT scan compared with 3.4±0.6 (P<0.001) for non-surgical patients. Initial CT subdural hematoma size was 1.1±0.6 cm for surgical patients compared with 0.49±0.3 cm (P=0.05) for non-surgical patients. There was no significant difference between intervention groups in terms of other intracranial injuries, demographics, vital signs, or change in GCS. Overall, 75 patients that did not require surgical intervention received RHCT. At $340 per CT, $51 000 was spent on unnecessary imaging ($367 000/year, extrapolated). Discussion In an environment of increased scrutiny on healthcare expenditures, it is necessary to question dogma and eliminate unnecessary cost. Our data questions the use of routine repeat head CT scans in every patient with anatomic TBI and suggests that clinically stable patients with small injury can simply be followed clinically. Level of evidence Level III. PMID:29766124
Spontaneous rapid reduction of a large acute subdural hematoma.
Lee, Chul-Hee; Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo
2009-12-01
The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy.
Spontaneous Rapid Reduction of a Large Acute Subdural Hematoma
Kang, Dong Ho; Hwang, Soo Hyun; Park, In Sung; Jung, Jin-Myung; Han, Jong Woo
2009-01-01
The majority of acute post-traumatic subdural hematomas (ASDH) require urgent surgical evacuation. Spontaneous resolution of ASDH has been reported in some cases. We report here on a case of a patient with a large amount of ASDH that was rapidly reduced. A 61-yr-old man was found unconscious following a high speed motor vehicle accident. On initial examination, his Glasgow Coma Score scale was 4/15. His pupils were fully dilated and non-reactive to bright light. Brain computed tomography (CT) showed a massive right-sided ASDH. The decision was made to treat him conservatively because of his poor clinical condition. Another brain CT approximately 14 hr after the initial scan demonstrated a remarkable reduction of the previous ASDH and there was the new appearance of high density in the subdural space adjacent to the falx and the tentorium. Thirty days after his admission, brain CT revealed chronic SDH and the patient underwent surgery. The patient is currently able to obey simple commands. In conclusion, spontaneous rapid resolution/reduction of ASDH may occur in some patients. The mechanisms are most likely the result of dilution by cerebrospinal fluid and the redistribution of hematoma especially in patients with brain atrophy. PMID:19949689
Sodhi, Kushaljit S; Krishna, Satheesh; Saxena, Akshay K; Sinha, Anindita; Khandelwal, Niranjan; Lee, Edward Y
2015-09-01
Practice of ALARA (as low as reasonably achievable) principle in the developed world is currently well established. However, there is striking lack of published data regarding such experience in the developing countries. Therefore, the goal of this study is to prospectively evaluate CT request forms to assess how many children could be protected from harmful radiation exposure if 'Justification' and 'Optimization' principles of ALARA are applied before obtaining CT imaging in a developing country. This can save children from potential radiation risks including development of brain cancer and leukemia. Consecutive CT request forms over a six month study period (May 16, 2013 to November 15, 2013) in a tertiary pediatric children's hospital in India were prospectively reviewed by two pediatric radiologists before obtaining CT imaging. First, 'Justification' of CT was evaluated and then 'Optimization' was applied for evaluation of appropriateness of the requested CT studies. The number (and percentage) of CT studies avoided by applying 'Justification' and 'Optimization' principle of ALARA were calculated. The difference in number of declined and optimized CT requests between CT requests from inpatient and outpatient departments was compared using Chi-Square test. A total of 1302 consecutive CT request forms were received during the study period. Some of the request forms (n=86; 6.61%) had requests for more than one (multiple) anatomical regions, hence, a total of 1392 different anatomical CT requests were received. Based on evaluation of the CT request forms for 'Justification' and 'Optimization' principle of ALARA by pediatric radiology reviewers, 111 individual anatomic part CT requests from 105 pediatric patients were avoided. Therefore, 8.06% (105 out of 1302 pediatric patients) were protected from unnecessary or additional radiation exposure.The rates of declined or optimized CT requests from inpatient department was significantly higher than that from outpatient departments (p<0.05). A substantial number of pediatric patients, particularly coming from outpatient departments, can be protected from unnecessary or additional radiation exposure from CT imaging when 'Justification' and 'Optimization' principle of ALARA are applied before obtaining CT imaging in a developing country. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Classification of CT brain images based on deep learning networks.
Gao, Xiaohong W; Hui, Rui; Tian, Zengmin
2017-01-01
While computerised tomography (CT) may have been the first imaging tool to study human brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer's disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT does present diagnostic features of AD to a great extent. This study explores the significance and impact on the application of the burgeoning deep learning techniques to the task of classification of CT brain images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary information for the early diagnosis of Alzheimer's disease. Towards this end, three categories of CT images (N = 285) are clustered into three groups, which are AD, lesion (e.g. tumour) and normal ageing. In addition, considering the characteristics of this collection with larger thickness along the direction of depth (z) (~3-5 mm), an advanced CNN architecture is established integrating both 2D and 3D CNN networks. The fusion of the two CNN networks is subsequently coordinated based on the average of Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, lesion and normal respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform the others when in comparison with 2D version only of CNN network as well as a number of state of the art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE respectively. The two major contributions of the paper constitute a new 3-D approach while applying deep learning technique to extract signature information rooted in both 2D slices and 3D blocks of CT images and an elaborated hand-crated approach of 3D KAZE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Physician Risk Tolerance and Head Computed Tomography Use for Patients with Isolated Headaches.
Huang, Yi-Syun; Syue, Yuan-Jhen; Yen, Yung-Lin; Wu, Chien-Hung; Ho, Yu-Ni; Cheng, Fu-Jen
2016-11-01
Headaches are one of the most common afflictions in adults and reasons for emergency department (ED) visits. We sought to determine the association between physician risk tolerance and head computed tomography (CT) use in patients with headaches in the ED. We performed a retrospective study of patients with nontraumatic isolated headaches in the ED and then administered two instruments (Risk-Taking subscale [RTS] of the Jackson Personality Index and a Malpractice Fear Scale [MFS]) to attending physicians who had evaluated these patients and made decisions regarding head CT scans. Outcomes were head CT use during ED evaluation and hospital admission. A hierarchical logistic regression was used to determine the effect of risk scales on head CT use. Of the 1328 patients with headaches, 521 (39.2%) received brain CTs and 83 (6.9%) were admitted; 33 (2.5%) patients received a final diagnosis that the central nervous system was the origin of the disease. Among the 17 emergency physicians (EPs), the median of the MFS and RTS was 23 (interquartile range [IQR] 19-25) and 21 (IQR 20-23), respectively. EPs who were relatively risk-averse and those who possessed a higher level of malpractice fear were not more likely to order brain CTs for patients with isolated headaches. Individual EP risk tolerance, as measured by RTS, and malpractice concerns, measured by MFS, were not predictive of CT use in patients with isolated headaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Tao; Gong, Yi; Shi, Yibing; Hua, Rong; Zhang, Qingshan
2017-07-01
The feasibility of application of low-concentration contrast agent and low tube voltage combined with iterative reconstruction in whole brain computed tomography perfusion (CTP) imaging of patients with acute cerebral infarction was investigated. Fifty-nine patients who underwent whole brain CTP examination and diagnosed with acute cerebral infarction from September 2014 to March 2016 were selected. Patients were randomly divided into groups A and B. There were 28 cases in group A [tube voltage, 100 kV; contrast agent, iohexol (350 mg I/ml), reconstructed by filtered back projection] and 31 cases in group B [tube voltage, 80 kV; contrast agent, iodixanol (270 mg I/ml), reconstructed by algebraic reconstruction technique]. The artery CT value, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), dose length product, effective dose (ED) of radiation and brain iodine intake of both groups were measured and statistically analyzed. Two physicians carried out kappa (κ) analysis on the consistency of image quality evaluation. The difference in subjective image quality evaluation between the groups was tested by χ 2 . The differences in CT value, SNR, CNR, CTP and CT angiography subjective image quality evaluation between both groups were not statistically significant (P>0.05); the diagnosis rate of the acute infarcts between the two groups was not significantly different; while the ED and iodine intake in group B (dual low-dose group) were lower than group A. In conclusion, combination of low tube voltage and iterative reconstruction technique, and application of low-concentration contrast agent (270 mg I/ml) in whole brain CTP examination reduced ED and iodine intake without compromising image quality, thereby reducing the risk of contrast-induced nephropathy.
SU-E-J-90: MRI-Based Treatment Simulation and Patient Setup for Radiation Therapy of Brain Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y; Cao, M; Han, F
2014-06-01
Purpose: Traditional radiation therapy of cancer is heavily dependent on CT. CT provides excellent depiction of the bones but lacks good soft tissue contrast, which makes contouring difficult. Often, MRIs are fused with CT to take advantage of its superior soft tissue contrast. Such an approach has drawbacks. It is desirable to perform treatment simulation entirely based on MRI. To achieve MR-based simulation for radiation therapy, bone imaging is an important challenge because of the low MR signal intensity from bone due to its ultra-short T2 and T1, which presents difficulty for both dose calculation and patient setup in termsmore » of digitally reconstructed radiograph (DRR) generation. Current solutions will either require manual bone contouring or multiple MR scans. We present a technique to generate DRR using MRI with an Ultra Short Echo Time (UTE) sequence which is applicable to both OBI and ExacTrac 2D patient setup. Methods: Seven brain cancer patients were scanned at 1.5 Tesla using a radial UTE sequence. The sequence acquires two images at two different echo times. The two images were processed using in-house software. The resultant bone images were subsequently loaded into commercial systems to generate DRRs. Simulation and patient clinical on-board images were used to evaluate 2D patient setup with MRI-DRRs. Results: The majority bones are well visualized in all patients. The fused image of patient CT with the MR bone image demonstrates the accuracy of automatic bone identification using our technique. The generated DRR is of good quality. Accuracy of 2D patient setup by using MRI-DRR is comparable to CT-based 2D patient setup. Conclusion: This study shows the potential of DRR generation with single MR sequence. Further work will be needed on MR sequence development and post-processing procedure to achieve robust MR bone imaging for other human sites in addition to brain.« less
Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Ryan G.; Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan; Kim, Joshua P.
Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantommore » synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0.3 mm (range, −0.2 to 1.2 mm) for the S-I, L-R, and A-P axes, respectively. The CT-SIM and synCT derived margins were <0.3 mm different. Conclusion: DRRs generated by synCT were in close agreement with CT-SIM. Planar and volumetric image registrations to synCT-derived targets were comparable with CT for phantom and patients. This validation is the next step toward MR-only planning for the brain.« less
Development of a realistic, dynamic digital brain phantom for CT perfusion validation
NASA Astrophysics Data System (ADS)
Divel, Sarah E.; Segars, W. Paul; Christensen, Soren; Wintermark, Max; Lansberg, Maarten G.; Pelc, Norbert J.
2016-03-01
Physicians rely on CT Perfusion (CTP) images and quantitative image data, including cerebral blood flow, cerebral blood volume, and bolus arrival delay, to diagnose and treat stroke patients. However, the quantification of these metrics may vary depending on the computational method used. Therefore, we have developed a dynamic and realistic digital brain phantom upon which CTP scans can be simulated based on a set of ground truth scenarios. Building upon the previously developed 4D extended cardiac-torso (XCAT) phantom containing a highly detailed brain model, this work consisted of expanding the intricate vasculature by semi-automatically segmenting existing MRA data and fitting nonuniform rational B-spline surfaces to the new vessels. Using time attenuation curves input by the user as reference, the contrast enhancement in the vessels changes dynamically. At each time point, the iodine concentration in the arteries and veins is calculated from the curves and the material composition of the blood changes to reflect the expected values. CatSim, a CT system simulator, generates simulated data sets of this dynamic digital phantom which can be further analyzed to validate CTP studies and post-processing methods. The development of this dynamic and realistic digital phantom provides a valuable resource with which current uncertainties and controversies surrounding the quantitative computations generated from CTP data can be examined and resolved.
Li, Yuxin; Tafti, Bashir A; Shaba, Wisam; Berenji, Gholam R
2011-07-01
A 68-year-old man with history of heavy smoking was admitted for increasing falls during the past 4 weeks. Chest x-ray revealed a right upper lobe mass. Biopsy demonstrated poorly differentiated non-small-cell carcinoma. F-18 fluoride positron emission tomography/computer tomography (PET/CT) was performed to evaluate bone metastasis. Review of the sectional PET images demonstrated extraosseous fluoride uptake in the primary lung mass, as well as ring-shaped fluoride uptake in the cerebral metastatic lesion. Neither of these lesions demonstrated calcifications on CT images. The patient received radiation treatment of the brain metastasis after F-18 fluoride PET/CT study.
Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi
2018-06-01
Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p < 0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable to that of the NDB without correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.
Chiaravalloti, Agostino; Fiorentini, Alessandro; Ursini, Francesco; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Toniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio
2016-09-01
The aim of this study was to investigate the relationships between blood-brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(F) fluoro-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects.
Cortical and diencephalic lesions in Korsakoff's syndrome: a clinical and CT scan study.
Jacobson, R R; Lishman, W A
1990-02-01
Twenty-five male alcoholic Korsakoff patients were compared with age and sex-matched non-Korsakoff chronic alcoholics and healthy volunteers on clinical and CT brain scan parameters. The scans were assessed by planimetry, visual grading procedures and computerized analysis. Reliable measures of third ventricular size were developed. The Korsakoff patients had wider third ventricles, larger lateral ventricles and wider interhemispheric fissures than the comparison groups; but sulcal and Sylvian fissure widths were equivalent in Korsakoff and non-Korsakoff alcoholics. The results suggest that, in addition to their well-established diencephalic lesions, many Korsakoff patients have sustained widespread cerebral damage. Shrinkage in the frontal brain regions appears to be especially pronounced. The implications for a dual aetiology of alcoholic Korsakoff's syndrome involving thiamine deficiency and features associated with alcoholism, probably direct alcohol neurotoxicity, are discussed.
Belcaro, G; Cesarone, M R; Steigerwalt, R J; Di Renzo, A; Grossi, M G; Ricci, A; Stuard, S; Ledda, A; Dugall, M; Cornelli, U; Cacchio, M
2008-10-01
This study was conducted with the aim of showing the effects of Pycnogenol on controlling jet-lag symptoms. Oral Pycnogenol, 50 mg tablets 3 times/die, for 7 days starting 2 days prior to the flight was used. The study was divided into two separate parts. In study 1 the most common complaints of patients with jet-lag were evaluated with a rating scale consisting in of a scoring system. In study 2 a brain CT scan was performed after the flight in order to assess minimal brain edema (MBE) in association with typical signs and symptoms, observed in previous published flight studies. Study one included 38 subjects treated with Pycnogenol and 30 controls. The symptomatic jet-lag related total score was significantly lower (indicating a lower level of jet-lag) in the Pycnogenol group. The average duration of any jet lag symptom following the flight was significantly reduced from 39.3 (SD=0.8) hours in controls to an average of 18.2 (SD=3.3) hours in the Pycnogenol group (P<0.05). Study 2 included 34 subjects treated with Pycnogenol and 31 controls. The main observation was the brain CT scan performed within 28 hours after the end of the flight. The difference between the Pycnogenol and the control groups was statistically significant (P<0.05) for all items assessed including the cerebral edema score obtained by CT scan. The short-term memory was significantly altered in the control group and associated to edema and swelling of the lower limbs. The score (and the level of edema) was comparatively higher in a subgroup of hypertensive subjects in the control group. Minor alterations of cardiac function were observed in association with de-stabilisation of blood pressure. Fatigue was also significantly higher in the control group in comparison with the Pycnogenol group. A number of spontaneously reported symptoms was also scored and there was a statistically significant difference (P<0.05) between the Pycnogenol and control groups. In conlusion, Pycnogenol was useful to control jet-lag and minimal brain edema.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verhaart, René F., E-mail: r.f.verhaart@erasmusmc.nl; Paulides, Margarethus M.; Fortunati, Valerio
Purpose: In current clinical practice, head and neck (H and N) hyperthermia treatment planning (HTP) is solely based on computed tomography (CT) images. Magnetic resonance imaging (MRI) provides superior soft-tissue contrast over CT. The purpose of the authors’ study is to investigate the relevance of using MRI in addition to CT for patient modeling in H and N HTP. Methods: CT and MRI scans were acquired for 11 patients in an immobilization mask. Three observers manually segmented on CT, MRI T1 weighted (MRI-T1w), and MRI T2 weighted (MRI-T2w) images the following thermo-sensitive tissues: cerebrum, cerebellum, brainstem, myelum, sclera, lens, vitreousmore » humor, and the optical nerve. For these tissues that are used for patient modeling in H and N HTP, the interobserver variation of manual tissue segmentation in CT and MRI was quantified with the mean surface distance (MSD). Next, the authors compared the impact of CT and CT and MRI based patient models on the predicted temperatures. For each tissue, the modality was selected that led to the lowest observer variation and inserted this in the combined CT and MRI based patient model (CT and MRI), after a deformable image registration. In addition, a patient model with a detailed segmentation of brain tissues (including white matter, gray matter, and cerebrospinal fluid) was created (CT and MRI{sub db}). To quantify the relevance of MRI based segmentation for H and N HTP, the authors compared the predicted maximum temperatures in the segmented tissues (T{sub max}) and the corresponding specific absorption rate (SAR) of the patient models based on (1) CT, (2) CT and MRI, and (3) CT and MRI{sub db}. Results: In MRI, a similar or reduced interobserver variation was found compared to CT (maximum of median MSD in CT: 0.93 mm, MRI-T1w: 0.72 mm, MRI-T2w: 0.66 mm). Only for the optical nerve the interobserver variation is significantly lower in CT compared to MRI (median MSD in CT: 0.58 mm, MRI-T1w: 1.27 mm, MRI-T2w: 1.40 mm). Patient models based on CT (T{sub max}: 38.0 °C) and CT and MRI (T{sub max}: 38.1 °C) result in similar simulated temperatures, while CT and MRI{sub db} (T{sub max}: 38.5 °C) resulted in significantly higher temperatures. The SAR corresponding to these temperatures did not differ significantly. Conclusions: Although MR imaging reduces the interobserver variation in most tissues, it does not affect simulated local tissue temperatures. However, the improved soft-tissue contrast provided by MRI allows generating a detailed brain segmentation, which has a strong impact on the predicted local temperatures and hence may improve simulation guided hyperthermia.« less
Kim, Hakseung; Kim, Gwang-dong; Yoon, Byung C; Kim, Keewon; Kim, Byung-Jo; Choi, Young Hun; Czosnyka, Marek; Oh, Byung-Mo; Kim, Dong-Joo
2014-10-22
The purpose of this study was to identify whether the distribution of Hounsfield Unit (HU) values across the intracranial area in computed tomography (CT) images can be used as an effective diagnostic tool for determining the severity of cerebral edema in pediatric traumatic brain injury (TBI) patients. CT images, medical records and radiology reports on 70 pediatric patients were collected. Based on radiology reports and the Marshall classification, the patients were grouped as mild edema patients (n=37) or severe edema patients (n=33). Automated quantitative analysis using unenhanced CT images was applied to eliminate artifacts and identify the difference in HU value distribution across the intracranial area between these groups. The proportion of pixels with HU=17 to 24 was highly correlated with the existence of severe cerebral edema (P<0.01). This proportion was also able to differentiate patients who developed delayed cerebral edema from mild TBI patients. A significant difference between deceased patients and surviving patients in terms of the HU distribution came from the proportion of pixels with HU=19 to HU=23 (P<0.01). The proportion of pixels with an HU value of 17 to 24 in the entire cerebral area of a non-enhanced CT image can be an effective basis for evaluating the severity of cerebral edema. Based on this result, we propose a novel approach for the early detection of severe cerebral edema.
NASA Astrophysics Data System (ADS)
Cross, Nathan; Sharma, Rahul; Varghai, Davood; Spring-Robinson, Chandra; Oleinick, Nancy L.; Muzic, Raymond F., Jr.; Dean, David
2007-02-01
Small animal imaging devices are now commonly used to study gene activation and model the effects of potential therapies. We are attempting to develop a protocol that non-invasively tracks the affect of Pc 4-mediated photodynamic therapy (PDT) in a human glioma model using structural image data from micro-CT and/or micro-MR scanning and functional data from 18F-fluorodeoxy-glucose (18F-FDG) micro-PET imaging. Methods: Athymic nude rat U87-derived glioma was imaged by micro-PET and either micro-CT or micro-MR prior to Pc 4-PDT. Difficulty insuring animal anesthesia and anatomic position during the micro-PET, micro-CT, and micro-MR scans required adaptation of the scanning bed hardware. Following Pc 4-PDT the animals were again 18F-FDG micro-PET scanned, euthanized one day later, and their brains were explanted and prepared for H&E histology. Histology provided the gold standard for tumor location and necrosis. The tumor and surrounding brain functional and structural image data were then isolated and coregistered. Results: Surprisingly, both the non-PDT and PDT groups showed an increase in tumor functional activity when we expected this signal to disappear in the group receiving PDT. Co-registration of the functional and structural image data was done manually. Discussion: As expected, micro-MR imaging provided better structural discrimination of the brain tumor than micro-CT. Contrary to expectations, in our preliminary analysis 18F-FDG micro-PET imaging does not readily discriminate the U87 tumors that received Pc 4-PDT. We continue to investigate the utility of micro-PET and other methods of functional imaging to remotely detect the specificity and sensitivity of Pc 4-PDT in deeply placed tumors.
NASA Astrophysics Data System (ADS)
Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong
2014-01-01
This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.
Bazarian, Jeffrey J; Beck, Christopher; Blyth, Brian; von Ahsen, Nicolas; Hasselblatt, Martin
2006-01-01
To validate a correction factor for the extracranial release of the astroglial protein, S-100B, based on concomitant creatine kinase (CK) levels. The CK- S-100B relationship in non-head injured marathon runners was used to derive a correction factor for the extracranial release of S-100B. This factor was then applied to a separate cohort of 96 mild traumatic brain injury (TBI) patients in whom both CK and S-100B levels were measured. Corrected S-100B was compared to uncorrected S-100B for the prediction of initial head CT, three-month headache and three-month post concussive syndrome (PCS). Corrected S-100B resulted in a statistically significant improvement in the prediction of 3-month headache (area under curve [AUC] 0.46 vs 0.52, p=0.02), but not PCS or initial head CT. Using a cutoff that maximizes sensitivity (> or = 90%), corrected S-100B improved the prediction of initial head CT scan (negative predictive value from 75% [95% CI, 2.6%, 67.0%] to 96% [95% CI: 83.5%, 99.8%]). Although S-100B is overall poorly predictive of outcome, a correction factor using CK is a valid means of accounting for extracranial release. By increasing the proportion of mild TBI patients correctly categorized as low risk for abnormal head CT, CK-corrected S100-B can further reduce the number of unnecessary brain CT scans performed after this injury.
Olerud, Hilde M; Toft, Benthe; Flatabø, Silje; Jahnen, Andreas; Lee, Choonsik; Thierry-Chef, Isabelle
2016-09-01
To assess the range of doses in paediatric CT scans conducted in the 1990s in Norway as input to an international epidemiology study: the EPI-CT study, http://epi-ct.iarc.fr/ . National Cancer Institute dosimetry system for Computed Tomography (NCICT) program based on pre-calculated organ dose conversion coefficients was used to convert CT Dose Index to organ doses in paediatric CT in the 1990s. Protocols reported from local hospitals in a previous Norwegian CT survey were used as input, presuming these were used without optimization for paediatric patients. Large variations in doses between different scanner models and local scan parameter settings are demonstrated. Small children will receive a factor of 2-3 times higher doses compared with adults if the protocols are not optimized for them. For common CT examinations, the doses to the active bone marrow, breast tissue and brain may have exceeded 30 mGy, 60 mGy and 100 mGy respectively, for the youngest children in the 1990s. The doses children received from non-optimised CT examinations during the 1990s are of such magnitude that they may provide statistically significant effects in the EPI-CT study, but probably do not reflect current practice. • Some organ doses from paediatric CT in the 1990s may have exceeded 100 mGy. • Small children may have received doses 2-3 times higher compared with adults. • Different scanner models varied by a factor of 2-3 in dose to patients. • Different local scan parameter settings gave dose variations of a factor 2-3. • Modern CTs and age-adjusted protocols will give much lower paediatric doses.
Nanthagopal, A Padma; Rajamony, R Sukanesh
2012-07-01
The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.
Cipriano, Alessandro; Pecori, Alessio; Bionda, Alessandra Eugenia; Bardini, Michele; Frassi, Francesca; Leoli, Francesco; Lami, Valentina; Ghiadoni, Lorenzo; Santini, Massimo
2018-03-08
Prognosis after mild traumatic brain injury (MTBI) on oral anticoagulant therapy (OAT) is uncertain. We evaluated the rate of immediate and delayed traumatic intracranial hemorrhage (ICH) comparing vitamin K antagonists (VKAs) to direct oral anticoagulants (DOACs) and the safety of a clinical management protocol. In this single-center prospective observational study, we enrolled 220 patients on OAT with MTBI. After a first negative CT scan, asymptomatic patients underwent a close neurological observation; if neurologically stable, they were discharged without a second CT scan and followed up for 1 month. Out of the 220 patients, 206 met the inclusion criteria. 23 of them (11.2%) had a positive first CT scan for ICH. Only 1 (0.5%, 95% CI 0.0-1.4%) died because of ICH; no one required neurosurgical intervention. The observed prevalence rate of immediate ICH resulted statistically higher in VKAs-treated patients compared to those treated with DOACs (15.7 vs. 4.7%, RR 3.34, 95% CI 1.18-9.46, P < 0.05). In the 1-month follow-up, 5 out of the 183 patients with a negative CT scan were lost. Out of the remaining 178 patients, only 3 showed a delayed ICH (1.7%, 95% CI 0.0-3.6%), 1 of them died (0.6%, 95% CI 0.5-1.7%) and the others did not require neurosurgical intervention. DOACs resulted safer than VKAs also in the setting of MTBI. In our observation, the rate of delayed hemorrhage was relatively low. Patients presenting with a negative first CT scan and without neurological deterioration could be safely discharged after a short period of in-ward observation with a low rate of complications and without a second CT scan.
NASA Astrophysics Data System (ADS)
Takahashi, Noriyuki; Kinoshita, Toshibumi; Ohmura, Tomomi; Matsuyama, Eri; Toyoshima, Hideto
2017-03-01
The early diagnosis of idiopathic normal pressure hydrocephalus (iNPH) considered as a treatable dementia is important. The iNPH causes enlargement of lateral ventricles (LVs). The degree of the enlargement of the LVs on CT or MR images is evaluated by using a diagnostic imaging criterion, Evans index. Evans index is defined as the ratio of the maximal width of frontal horns (FH) of the LVs to the maximal width of the inner skull (IS). Evans index is the most commonly used parameter for the evaluation of ventricular enlargement. However, manual measurement of Evans index is a time-consuming process. In this study, we present an automated method to compute Evans index on brain CT images. The algorithm of the method consisted of five major steps: standardization of CT data to an atlas, extraction of FH and IS regions, the search for the outmost points of bilateral FH regions, determination of the maximal widths of both the FH and the IS, and calculation of Evans index. The standardization to the atlas was performed by using linear affine transformation and non-linear wrapping techniques. The FH regions were segmented by using a three dimensional region growing technique. This scheme was applied to CT scans from 44 subjects, including 13 iNPH patients. The average difference in Evans index between the proposed method and manual measurement was 0.01 (1.6%), and the correlation coefficient of these data for the Evans index was 0.98. Therefore, this computerized method may have the potential to accurately compute Evans index for the diagnosis of iNPH on CT images.
Huang, Miao; Xiong, Chiyi; Lu, Wei; Zhang, Rui; Zhou, Min; Huang, Qian; Weinberg, Jeffrey; Li, Chun
2014-02-01
In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both (64)Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N',N″,N‴-tetraacetic acid. The conjugate was then labeled with (64)Cu for in vitro binding and in vivo dual μPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. μPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells.
Huang, Miao; Xiong, Chiyi; Lu, Wei; Zhang, Rui; Zhou, Min; Huang, Qian; Weinberg, Jeffrey; Li, Chun
2013-01-01
Purpose In glioblastoma, EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are overexpressed in both tumor cells and angiogenic blood vessels. The purpose of this study was to examine whether the EphB4-binding peptide TNYL-RAW labeled with both 64Cu and near-infrared fluorescence dye Cy5.5 could be used as a molecular imaging agent for dual-modality positron emission tomography/computed tomography [PET/CT] and optical imaging of human glioblastoma in orthotopic brain tumor models. Materials and Methods TNYL-RAW was conjugated to Cy5.5 and the radiometal chelator 1,4,7,10-tetraazadodecane-N,N′,N″,N‴ -tetraacetic acid. The conjugate was then labeled with 64Cu for in vitro binding and in vivo dual μPET/CT and optical imaging studies in nude mice implanted with EphB4-expressing U251 and EphB4-negative U87 human glioblastoma cells. Tumors and brains were removed at the end of the imaging sessions for immunohistochemical staining and fluorescence microscopic examinations. Results μPET/CT and near-infrared optical imaging clearly showed specific uptake of the dual-labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of the nude mice after intravenous injection of the peptide. In U251 tumors, the Cy5.5-labeled peptide colocalized with both tumor blood vessels and tumor cells; in U87 tumors, the tracer colocalized only with tumor blood vessels, not with tumor cells. Conclusions Dual-labeled EphB4-specific peptide could be used as a noninvasive molecular imaging agent for PET/CT and optical imaging of glioblastoma owing to its ability to bind to both EphB4-expressing angiogenic blood vessels and EphB4-expressing tumor cells. PMID:23918654
Brain tissue segmentation in 4D CT using voxel classification
NASA Astrophysics Data System (ADS)
van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.
2012-02-01
A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.
[Pulmonary arteriovenous fistula with Rendu-Osler-Weber disease].
Segawa, Masataka; Touge, Masayoshi; Seki, Kouji; Kusajima, Yoshinori; Saito, Katsuhiko
2012-09-01
A 36-year-old man was admitted to our hospital for examination of a nodular shadow in the left lung. Chest 3-dimensional computed tomography (3D-CT) revealed a pulmonary arteriovenous fistula (PAVF) of 21 mm in diameter composed of the feeding artery (A4) and the draining vein (V4) in the left S4. Abdominal enhanced CT revealed multiple hepatic arteriovenous fistula. Brain CT revealed a cavernous hemangioma in right occipital cerebrum. He had a family history, habitual epistaxis, and oral telangiectasia and was diagnosed as Rendu-Osler-Weber disease (hereditary hemorrhagic telangiectasia:HHT). According to his family history, PAVF was likely to be a risk factor of brain infarction and abscess, and the wedge resection of the lingual lobe was performed to remove PAVF.
Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study.
Petribu, Natacha Calheiros de Lima; Aragao, Maria de Fatima Vasco; van der Linden, Vanessa; Parizel, Paul; Jungmann, Patricia; Araújo, Luziany; Abath, Marília; Fernandes, Andrezza; Brainer-Lima, Alessandra; Holanda, Arthur; Mello, Roberto; Sarteschi, Camila; Duarte, Maria do Carmo Menezes Bezerra
2017-10-13
Objective To compare initial brain computed tomography (CT) scans with follow-up CT scans at one year in children with congenital Zika syndrome, focusing on cerebral calcifications. Design Case series study. Setting Barão de Lucena Hospital, Pernambuco state, Brazil. Participants 37 children with probable or confirmed congenital Zika syndrome during the microcephaly outbreak in 2015 who underwent brain CT shortly after birth and at one year follow-up. Main outcome measure Differences in cerebral calcification patterns between initial and follow-up scans. Results 37 children were evaluated. All presented cerebral calcifications on the initial scan, predominantly at cortical-white matter junction. At follow-up the calcifications had diminished in number, size, or density, or a combination in 34 of the children (92%, 95% confidence interval 79% to 97%), were no longer visible in one child, and remained unchanged in two children. No child showed an increase in calcifications. The calcifications at the cortical-white matter junction which were no longer visible at follow-up occurred predominately in the parietal and occipital lobes. These imaging changes were not associated with any clear clinical improvements. Conclusion The detection of cerebral calcifications should not be considered a major criterion for late diagnosis of congenital Zika syndrome, nor should the absence of calcifications be used to exclude the diagnosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Del Brutto, Oscar H; Arroyo, Gianfranco; Del Brutto, Victor J; Zambrano, Mauricio; García, Héctor H
2017-11-01
Using a large-scale population-based study, we aimed to assess prevalence and patterns of presentation of neurocysticercosis (NCC) and its relationship with epilepsy in community-dwellers aged ≥20 years living in Atahualpa (rural Ecuador). In a three-phase epidemiological study, individuals with suspected seizures were identified during a door-to-door survey and an interview (phase I). Then, neurologists evaluated suspected cases and randomly selected negative persons to estimate epilepsy prevalence (phase II). In phase III, all participants were offered noncontrast computed tomography (CT) for identifying NCC cases. The independent association between NCC (exposure) and epilepsy (outcome) was assessed by the use of multivariate logistic regression models adjusted for age, sex, level of education, and alcohol intake. CT findings were subsequently compared to archived brain magnetic resonance imaging in a sizable subgroup of participants. Of 1,604 villagers aged ≥20 years, 1,462 (91%) were enrolled. Forty-one persons with epilepsy (PWE) were identified, for a crude prevalence of epilepsy of 28 per 1,000 population (95% confidence interval [CI] = 20.7-38.2). A head CT was performed in 1,228 (84%) of 1,462 participants, including 39 of 41 PWE. CT showed lesions consistent with calcified parenchymal brain cysticerci in 118 (9.6%) cases (95% CI = 8.1-11.4%). No patient had other forms of NCC. Nine of 39 PWE, as opposed to 109 of 1,189 participants without epilepsy, had NCC (23.1% vs. 9.2%, p = 0.004). This difference persisted in the adjusted logistic regression model (odds ratio = 3.04, 95% CI = 1.35-6.81, p = 0.007). This large CT-based study demonstrates that PWE had three times the odds of having NCC than those without epilepsy, providing robust epidemiological evidence favoring the relationship between NCC and epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Mata-Mbemba, Daddy; Mugikura, Shunji; Nakagawa, Atsuhiro; Murata, Takaki; Kato, Yumiko; Tatewaki, Yasuko; Takase, Kei; Kushimoto, Shigeki; Tominaga, Teiji; Takahashi, Shoki
2016-01-01
We compared Canadian computed tomography (CT) head rule (CCHR) and New Orleans Criteria (NOC) in predicting important CT findings in patients with mild traumatic brain injury (TBI). We included 142 consecutive patients with mild TBI [Glasgow coma scale (GCS) 13-15] who showed at least one of the risk factors stated in the CCHR or the NOC. We introduced two scores: a Canadian from the CCHR and a New Orleans from the NOC. A patient's score represented a sum of the number of positive items. We examined the relationship between scores or items and the presence of important CT findings. Only the Canadian was significantly associated with important CT findings in multivariate analyses and showed higher area under the receiver operating characteristic curve (AUC) either in all 142 patients (GCS 13-15: P = 0.0130; AUC = 0.69) or in the 67 with a GCS = 15 (P = 0.0128, AUC = 0.73). Of items, ">60 years" or "≥65 years" included in either guideline was the strongest predictor of important CT finding, followed by "GCS < 15 after 2 h" included only in the CCHR. In a tertiary referral hospital in Japan, CCHR had higher performance than the NOC in predicting important CT findings.
Dual energy computed tomography for the head.
Naruto, Norihito; Itoh, Toshihide; Noguchi, Kyo
2018-02-01
Dual energy CT (DECT) is a promising technology that provides better diagnostic accuracy in several brain diseases. DECT can generate various types of CT images from a single acquisition data set at high kV and low kV based on material decomposition algorithms. The two-material decomposition algorithm can separate bone/calcification from iodine accurately. The three-material decomposition algorithm can generate a virtual non-contrast image, which helps to identify conditions such as brain hemorrhage. A virtual monochromatic image has the potential to eliminate metal artifacts by reducing beam-hardening effects. DECT also enables exploration of advanced imaging to make diagnosis easier. One such novel application of DECT is the X-Map, which helps to visualize ischemic stroke in the brain without using iodine contrast medium.
Wojtłowska-Wiechetek, D; Tworus, R; Dziuk, M; Petrovic, A; Szymańska, S; Zbyszewski, M; Ilnicki, S; Krzesiński, P
2013-01-01
The aim of this study was to evaluate the possibility of using PET both in assessing the susceptibility to stress and in the diagnosis of post-traumatic stress disorders. Mentally and somatically healthy soldiers were subjected to PET-CT head scan examinations before and after virtual reality stimulation with warfare scenarios. Despite stimulation of peripheral nervous system after 10 minutes, VR exposure in any of the examined soldiers simulation did not cause changes in any brain structure that was visualized in PET. PET-CT head scan was also performed in patients with typical symptoms of acute PTSD according to the criteria of DSM IV TR. In those patients no changes in any brain structure was found. Initially it was found that VR exposure techniques like clinically typical acute symptoms of PTSD do not leave changes in CNS, which could be visualized in PET. The preliminary hypothesis was put forward that exposure to stimuli like symptoms of PTSD must remain long enough to induce permanent damage of brain structure.
Positron emission tomography imaging of braintumors with Cobalt-55 and L-[1-C11]-tyrosine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, H.M.L.; Pruim J.; Willemsen, A.T.M.
1994-05-01
The applicability of positron emission tomography (PET) with [C-11] tyrosine (TYR) and Cobalt-55 (Co) in patients with known primary brain tumors is reported. We used Co as a Calcium (Ca) marker to study Ca influx in degenerating neural tissue and TYR to indicate incorporation of amino acids into protein. Four patients showing a primary brain tumor with central necrosis on CT/MRI were studied with Co-PET. Additionally, 2 of these patients were consecutively studied with TYR-PET. Diagnostic confirmation was obtained by means of histology and/or cytology shortly after PET. Thirty-seven MBq Co was administered iv. approximately 24 hours before acquisition. Themore » Co-scan was acquired for I hour. Immediately following Co-PET, 2 patients received 370 MBq TYR iv. TYR-PET acquisition was done dynamically for 55 minutes starting from the time of injection. The necrotic center of the tumor revealed no uptake of either Co or TYR. Vital tumor tissue showed intense uptake of TYR, indicating a high protein synthesis rate (PSR). The circumferent zone between necrotic and tumor tissue showed evident uptake of Co, suggesting cell-decay. In conclusion, TYR and Co are both suitable tracers for visualization of different aspects of brain malignancies, ie. PSR and cell-decay. Combining Co and TYR enables differentiation of necrosis vs. tumor growth with clear marking of the border zone. We think these complementary PET-techniques in conjunction with CT and/or MRI allow the visualization of different aspects of tumor tissue: central necrosis (CT/MRI), cell-decay (Co-PET) and vital tumor tissue (TYR-PET).« less
NASA Astrophysics Data System (ADS)
Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.
2013-02-01
We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.
Utility of CT-compatible EEG electrodes in critically ill children.
Abend, Nicholas S; Dlugos, Dennis J; Zhu, Xiaowei; Schwartz, Erin S
2015-04-01
Electroencephalographic monitoring is being used with increasing frequency in critically ill children who may require frequent and sometimes urgent brain CT scans. Standard metallic disk EEG electrodes commonly produce substantial imaging artifact, and they must be removed and later reapplied when CT scans are indicated. To determine whether conductive plastic electrodes caused artifact that limited CT interpretation. We describe a retrospective cohort of 13 consecutive critically ill children who underwent 17 CT scans with conductive plastic electrodes during 1 year. CT images were evaluated by a pediatric neuroradiologist for artifact presence, type and severity. All CT scans had excellent quality images without artifact that impaired CT interpretation except for one scan in which improper wire placement resulted in artifact. Conductive plastic electrodes do not cause artifact limiting CT scan interpretation and may be used in critically ill children to permit concurrent electroencephalographic monitoring and CT imaging.
Chiaretti, Antonio; Conti, Giorgio; Falsini, Benedetto; Buonsenso, Danilo; Crasti, Matteo; Manni, Luigi; Soligo, Marzia; Fantacci, Claudia; Genovese, Orazio; Calcagni, Maria Lucia; Di Giuda, Daniela; Mattoli, Maria Vittoria; Cocciolillo, Fabrizio; Ferrara, Pietro; Ruggiero, Antonio; Staccioli, Susanna; Colafati, Giovanna Stefania; Riccardi, Riccardo
2017-01-01
Nerve growth factor (NGF) promotes neural recovery after experimental traumatic brain injury (TBI) supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated protein Doublecortin (DCX). Only a few studies reported NGF administration in paediatric patients with severe TBI. A four-year-old boy in a persistent unresponsive wakefulness syndrome (UWS) was treated with intranasal murine NGF administration 6 months after severe TBI. The patient received four cycles of intranasal NGF (0.1 mg/kg, twice a day for 10 consecutive days). NGF administration improved functional [Positron Emission Tomography/Computed Tomography (PET/CT); Single photon emission/Computed Tomography (SPECT/CT) and Magnetic Resonance Imaging (MRI)] assessment, electrophysiological [Electroencephalogram (EEG) and Visual Evoked Potential (VEP)] studies and clinical conditions. He showed improvements in voluntary movements, facial mimicry, phonation, attention and verbal comprehension, ability to cry, cough reflex, oral motility, feeding capacity, and bowel and urinary functions. After NGF administration, raised levels of both NGF and DCX were found in the cerebrospinal fluid of the patient. No side effects were reported. Although further studies are needed for better understanding the neuroprotective role of this neurotrophin, intranasal NGF administration appears to be a promising and safe rescuing strategy treatment in children with neurological impairment after TBI.
High Prevalence of Asymptomatic Neurocysticercosis in an Endemic Rural Community in Peru.
Moyano, Luz M; O'Neal, Seth E; Ayvar, Viterbo; Gonzalvez, Guillermo; Gamboa, Ricardo; Vilchez, Percy; Rodriguez, Silvia; Reistetter, Joe; Tsang, Victor C W; Gilman, Robert H; Gonzalez, Armando E; Garcia, Hector H
2016-12-01
Neurocysticercosis is a common helminthic infection of the central nervous system and an important cause of adult-onset epilepsy in endemic countries. However, few studies have examined associations between neurologic symptoms, serology and radiographic findings on a community-level. We conducted a population-based study of resident's ≥2 years old in a highly endemic village in Peru (pop. 454). We applied a 14 -question neurologic screening tool and evaluated serum for antibodies against Taenia solium cysticercosis using enzyme-linked immunoelectrotransfer blot (LLGP-EITB). We invited all residents ≥18 years old to have non-contrast computerized tomography (CT) of the head. Of the 385 residents who provided serum samples, 142 (36.9%) were seropositive. Of the 256 residents who underwent CT scan, 48 (18.8%) had brain calcifications consistent with NCC; 8/48 (17.0%) reported a history of headache and/or seizures. Exposure to T. solium is very common in this endemic community where 1 out of 5 residents had brain calcifications. However, the vast majority of people with calcifications were asymptomatic. This study reports a high prevalence of NCC infection in an endemic community in Peru and confirms that a large proportion of apparently asymptomatic residents have brain calcifications that could provoke seizures in the future.
What is Aphasia? | NIH MedlinePlus the Magazine
... of aphasia while treating the patient for a brain injury. To diagnose aphasia, the clinician will usually order ... a computed tomography (CT) scan to locate a brain injury. In addition to the scans, the clinician usually ...
Lin, Kun-Ju; Hsu, Wen-Chuin; Hsiao, Ing-Tsung; Wey, Shiaw-Pyng; Jin, Lee-Way; Skovronsky, Daniel; Wai, Yau-Yau; Chang, Hsiu-Ping; Lo, Chuan-Wei; Yao, Cheng Hsiang; Yen, Tzu-Chen; Kung, Mei-Ping
2010-05-01
The compound (E)-4-(2-(6-(2-(2-(2-(18)F-fluoroethoxy)ethoxy)ethoxy) pyridin-3-yl)vinyl)-N-methylbenzenamine ([(18)F]AV-45) is a novel radiopharmaceutical capable of selectively binding to beta-amyloid (A beta) plaques. This pilot study reports the safety, biodistribution, and radiation dosimetry of [(18)F]AV-45 in human subjects. In vitro autoradiography and fluorescent staining of postmortem brain tissue from patients with Alzheimer's disease (AD) and cognitively healthy subjects were performed to assess the specificity of the tracer. Biodistribution was assessed in three healthy elderly subjects (mean age: 60.0+/-5.2 years) who underwent 3-h whole-body positron emission tomography (PET)/computed tomographic (CT) scans after a bolus injection of 381.9+/-13.9 MBq of [(18)F]AV-45. Another six subjects (three AD patients and three healthy controls, mean age: 67.7+/-13.6 years) underwent brain PET studies. Source organs were delineated on PET/CT. All subjects underwent magnetic resonance imaging (MRI) for obtaining structural information. In vitro autoradiography revealed exquisitely high specific binding of [(18)F]AV-45 to postmortem AD brain sections, but not to the control sections. There were no serious adverse events throughout the study period. The peak uptake of the tracer in the brain was 5.12+/-0.41% of the injected dose. The highest absorbed organ dose was to the gallbladder wall (184.7+/-78.6 microGy/MBq, 4.8 h voiding interval). The effective dose equivalent and effective dose values for [(18)F]AV-45 were 33.8+/-3.4 microSv/MBq and 19.3+/-1.3 microSv/MBq, respectively. [(18)F]AV-45 binds specifically to A beta in vitro, and is a safe PET tracer for studying A beta distribution in human brain. The dosimetry is suitable for clinical and research application. (c) 2010 Elsevier Inc. All rights reserved.
Salazar, Antonio J; Useche, Nicolás; Granja, Manuel; Morillo, Aníbal J; Bermúdez, Sonia
2017-01-01
The aim of this study was to evaluate the equivalence of brain CT interpretations performed using a diagnostic workstation and a mobile tablet computer, in a telestroke service. The ethics committee of our institution approved this retrospective study. A factorial design with 1452 interpretations was used. The assessed variables were the type of stroke classification, the presence of contraindications to the tPA administration, the presence of a hyperdense intracranial artery sign (HMCA), and the Alberta Stroke Program Early CT Score (ASPECTS) score. These variables were evaluated to determine the effect that the reading system had on their magnitudes. The achieved distribution of observed lesions using both the reading systems was not statistically different. The differences between the two reading systems to claim equivalence were 1.6% for hemorrhagic lesions, 4.5% for cases without lesion, and 5.2 for overall ischemic lesion. Equivalence was achieved at 2.1% for ASPECTS ≤ 6, 6.5% for the presence of imaging contraindication to the tPA administration, and 7.2% for the presence of HMCA. The diagnostic performance for detecting acute stroke is likely equivalent whether a tablet computer or a diagnostic workstation is used or not.
Useche, Nicolás; Granja, Manuel; Morillo, Aníbal J.; Bermúdez, Sonia
2017-01-01
Objective The aim of this study was to evaluate the equivalence of brain CT interpretations performed using a diagnostic workstation and a mobile tablet computer, in a telestroke service. Materials and Methods The ethics committee of our institution approved this retrospective study. A factorial design with 1452 interpretations was used. The assessed variables were the type of stroke classification, the presence of contraindications to the tPA administration, the presence of a hyperdense intracranial artery sign (HMCA), and the Alberta Stroke Program Early CT Score (ASPECTS) score. These variables were evaluated to determine the effect that the reading system had on their magnitudes. Results The achieved distribution of observed lesions using both the reading systems was not statistically different. The differences between the two reading systems to claim equivalence were 1.6% for hemorrhagic lesions, 4.5% for cases without lesion, and 5.2 for overall ischemic lesion. Equivalence was achieved at 2.1% for ASPECTS ≤ 6, 6.5% for the presence of imaging contraindication to the tPA administration, and 7.2% for the presence of HMCA. Conclusion The diagnostic performance for detecting acute stroke is likely equivalent whether a tablet computer or a diagnostic workstation is used or not. PMID:29250111
Extracranial bone metastases from recurrent anaplastic astrocytoma on FDG PET/CT
Li, Zu-Gui; Mu, Hai-Yu
2017-01-01
Abstract Objective: Extracranial bone metastases from astrocytoma are rare and frequently detected as part of multiorgan metastases. It is extremely rare for astrocytoma to have extracranial bone metastases alone. The importance of whole-body fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging in evaluating extracranial metastasis (ECMs) has not been described effectively due to the rarity of this event. The purpose of our case report is to emphasize the role of FDG PET/CT in the assessment of tumor recurrence and extracranial bone metastases from anaplastic astrocytoma. Methods and materials: A 25-year-old woman was firstly admitted with a 4-month history of progressive blurred vision, and 2-month history of intermittent headache. Presurgical MRI imaging revealed a large mass in the left trigone of lateral ventricle. Subsequently, she underwent tumor resection, radiotherapy and chemotherapy. A final pathological diagnosis of anaplastic astrocytoma (WHO III) was made. Nearly 12 months after the surgery, the follow-up brain MR imaging revealed a contrast-enhanced lesion in the site of operative region. Whole-body FDG PET/CT imaging was performed to evaluate the situation. Results: Postoperative brain FDG PET/CT showed an abnormal focal FDG uptake corresponding to the contrast-enhanced lesion in the operative area, suggesting a tumor recurrence. Whole-body FDG PET/CT also showed multiple FDG-avid osteosclerotic lesions in the body. It was highly suggestive of extracranial bone metastases. A subsequent open bone biopsy of FDG-avid lesion in right iliac crest was performed. Histopathological and immunohistochemical findings indicated characteristic of glioma. The patient died 1 month later, nearly 13 months after the initial diagnosis. Conclusions: ECMs from anaplastic astrocytoma are extremely rare but they do occur. Whole-body FDG PET/CT imaging with inclusion of brain was valuable in differentiating tumor recurrence from radiation necrosis and in detecting uncommon extracranial bone metastases from anaplastic astrocytoma, which were closely related to prognosis of this disease. PMID:28591062
Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood.
Lyall, Amanda E; Shi, Feng; Geng, Xiujuan; Woolson, Sandra; Li, Gang; Wang, Li; Hamer, Robert M; Shen, Dinggang; Gilmore, John H
2015-08-01
Cortical thickness (CT) and surface area (SA) are altered in many neuropsychiatric disorders and are correlated with cognitive functioning. Little is known about how these components of cortical gray matter develop in the first years of life. We studied the longitudinal development of regional CT and SA expansion in healthy infants from birth to 2 years. CT and SA have distinct and heterogeneous patterns of development that are exceptionally dynamic; overall CT increases by an average of 36.1%, while cortical SA increases 114.6%. By age 2, CT is on average 97% of adult values, compared with SA, which is 69%. This suggests that early identification, prevention, and intervention strategies for neuropsychiatric illness need to be targeted to this period of rapid postnatal brain development, and that SA expansion is the principal driving factor in cortical volume after 2 years of age. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Armour, M.; Ford, E.; Iordachita, I.; Wong, J.
2011-01-01
To study the effects of cranial irradiation, we have constructed an all-plastic mouse bed equipped with an immobilizing head holder. The bed integrates with our in-house Small Animal Radiation Research Platform (SARRP) for precision focal irradiation experiments and cone-beam CT. We assessed the reproducibility of our head holder to determine the need for CT based targeting in cranial irradiation studies. To measure the holder’s reproducibility, a C57BL/6 mouse was positioned and CT scanned nine times. Image sets were loaded into the Pinnacle3 radiation treatment planning system and were registered to one another by one investigator using rigid body alignment of the cranial regions. Rotational and translational offsets were measured. The average vector shift between scans was 0.80 ± 0.49 mm. Such a shift is too large to selectively treat subregions of the mouse brain. In response, we use onboard imaging to guide cranial irradiation applications that require sub-millimeter precision. PMID:20041766
Armour, M; Ford, E; Iordachita, I; Wong, J
2010-01-01
To study the effects of cranial irradiation, we have constructed an all-plastic mouse bed equipped with an immobilizing head holder. The bed integrates with our in-house Small Animal Radiation Research Platform (SARRP) for precision focal irradiation experiments and cone-beam CT. We assessed the reproducibility of our head holder to determine the need for CT-based targeting in cranial irradiation studies. To measure the holder's reproducibility, a C57BL/6 mouse was positioned and CT-scanned nine times. Image sets were loaded into the Pinnacle(3) radiation treatment planning system and were registered to one another by one investigator using rigid body alignment of the cranial regions. Rotational and translational offsets were measured. The average vector shift between scans was 0.80 +/- 0.49 mm. Such a shift is too large to selectively treat subregions of the mouse brain. In response, we use onboard imaging to guide cranial irradiation applications that require sub-millimeter precision.
Niu, Na; Zhu, Zhao-hui; Ma, Yan-ru; Xing, Hai-qun; Li, Fang
2015-10-01
To analyze the imaging features of (18)F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography(PET)/computed tomography (CT) in acquired immune deficiency syndrome-related lymphoma (ARL) patients correlated with their clinical signs, symptoms, and treatments. Five ARL patients underwent ¹⁸F-FDG PET/CT at Peking Union Medical College Hospital from October 2008 to January 2013. Two patients received two additional follow-up studies 6 months later. Among these 5 patients, ¹⁸FDG-PET/CT helped in diagnosis of two patient and changed therapeutic strategy in other two patients. In two patients underwent ¹⁸F-FDG PET/CT brain scans, low-metabolism lesion was newly found in cerebral cortex. Of 4 patients receiving highly active antiretroviral therapy, PET/CT also demonstrated diffusely elevated ¹⁸F-FDG uptake in subcutaneous adipose tissue in two patients. ¹⁸F-FDG PET/CT is a highly useful tool in the diagnosis and treatment of ARL patients, in particular in the identification of associated encephalopathy and lipodystrophy.
Craciunescu, Corneliu N.; Albright, Craig D.; Mar, Mei-Heng; Song, Jiannan; Zeisel, Steven H.
2006-01-01
Previously, we reported that dietary choline influences development of the hippocampus in fetal rat brain. It is important to know whether similar effects of choline occur in developing fetal mouse brain because interesting new experimental approaches are now available using several transgenic mouse models. Timed-pregnant mice were fed choline-supplemented (CS), control (CT) or choline-deficient (CD) AIN-76 diet from embryonic day 12 to 17 (E12–17). Fetuses from CD dams had diminished concentrations of phosphocholine and phosphatidylcholine in their brains compared with CT or CS fetuses (P < 0.05). When we analyzed fetal hippocampus on day E17 for cells with mitotic phase–specific expression of phosphorylated histone H3, we detected fewer labeled cells at the ventricular surface of the ventricular zone in the CD group (14.8 ± 1.9) compared with the CT (30.7 ± 1.9) or CS (36.6 ± 2.6) group (P < 0.05). At the same time, we detected more apoptotic cells in E17 hippocampus using morphology in the CD group (11.8 ± 1.4) than in CT (5.6 ± 0.6) or CS (4.2 ± 0.7) group (P < 0.05). This was confirmed using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin anti-digoxigenin fluorescein conjugate antibody nick end-labeling (TUNEL) and activated caspase-3 immunoreactivity. We conclude that the dietary availability of choline to the mouse dam influences progenitor cell proliferation and apoptosis in the fetal brain. J. Nutr. 133: 3614–3618, 2003. PMID:14608083
Cortical thinness and volume differences associated with marijuana abuse in emerging adults.
Mashhoon, Y; Sava, S; Sneider, J T; Nickerson, L D; Silveri, M M
2015-10-01
The prevalence of marijuana (MJ) use among youth and its legalization for medical or recreational use has intensified public health endeavors of understanding MJ effects on brain structure and function. Studies indicate that MJ use is related to impaired cognitive performance, and altered functional brain activation and chemistry in adolescents and adults, but MJ effects on brain morphology in emerging adults are less understood. Fifteen MJ users (age 21.8±3.6, 2 females) and 15 non-user (NU) participants (age 22.3±3.5, 2 females) were included, demographically matched on age, education and alcohol use. High-resolution structural MR images were acquired at 3Tesla. Cortical thickness (CT) and volumetric analyses were performed using Freesurfer. A priori regions of interest (ROI) included orbitofrontal and cingulate cortices, amygdala, hippocampus and thalamus. Whole brain CT analysis did not result in significant group differences in a priori ROIs but revealed MJ users had significantly less CT (i.e., thinness) in right fusiform gyrus (rFG) compared to NU (p<0.05). Thalamic volume was significantly smaller in MJ users compared to NU (right, p=0.05; left, p=0.01) and associated with greater non-planning (p<0.01) and overall impulsivity (p=0.04). There were no other group differences. RFG cortical thinness and smaller thalamic volume in emerging adults is associated with MJ abuse. Furthermore, smaller thalamic volume associated with greater impulsivity contributes to growing evidence that the thalamus is neurobiologically perturbed by MJ use. Collectively, altered thalamic and rFG structural integrity may interfere with their known roles in regulating visuoperceptual and object information processing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdulbaqi, Hayder Saad; Department of Physics, College of Education, University of Al-Qadisiya, Al-Qadisiya; Jafri, Mohd Zubir Mat
Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introducemore » a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.« less
Samadani, Uzma; Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H; McStay, Christopher; Todd, S Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul
2015-04-15
Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury.
Ritlop, Robert; Reyes, Marleen; Nehrbass, Elena; Li, Meng; Lamm, Elizabeth; Schneider, Julia; Shimunov, David; Sava, Maria; Kolecki, Radek; Burris, Paige; Altomare, Lindsey; Mehmood, Talha; Smith, Theodore; Huang, Jason H.; McStay, Christopher; Todd, S. Rob; Qian, Meng; Kondziolka, Douglas; Wall, Stephen; Huang, Paul
2015-01-01
Abstract Disconjugate eye movements have been associated with traumatic brain injury since ancient times. Ocular motility dysfunction may be present in up to 90% of patients with concussion or blast injury. We developed an algorithm for eye tracking in which the Cartesian coordinates of the right and left pupils are tracked over 200 sec and compared to each other as a subject watches a short film clip moving inside an aperture on a computer screen. We prospectively eye tracked 64 normal healthy noninjured control subjects and compared findings to 75 trauma subjects with either a positive head computed tomography (CT) scan (n=13), negative head CT (n=39), or nonhead injury (n=23) to determine whether eye tracking would reveal the disconjugate gaze associated with both structural brain injury and concussion. Tracking metrics were then correlated to the clinical concussion measure Sport Concussion Assessment Tool 3 (SCAT3) in trauma patients. Five out of five measures of horizontal disconjugacy were increased in positive and negative head CT patients relative to noninjured control subjects. Only one of five vertical disconjugacy measures was significantly increased in brain-injured patients relative to controls. Linear regression analysis of all 75 trauma patients demonstrated that three metrics for horizontal disconjugacy negatively correlated with SCAT3 symptom severity score and positively correlated with total Standardized Assessment of Concussion score. Abnormal eye-tracking metrics improved over time toward baseline in brain-injured subjects observed in follow-up. Eye tracking may help quantify the severity of ocular motility disruption associated with concussion and structural brain injury. PMID:25582436
NASA Robotic Neurosurgery Testbed
NASA Technical Reports Server (NTRS)
Mah, Robert
1997-01-01
The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.
NASA Robotic Neurosurgery Testbed
NASA Technical Reports Server (NTRS)
Mah, Robert
1997-01-01
The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations. In neurosurgery, the needle used in the standard stereotactic CT (Computational Tomography) or MRI (Magnetic Resonance Imaging) guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled 'Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification' is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.
Acute Brain Imaging in Children: Can MRI Replace CT as a Screening Tool?
Wagner, Matthias W; Kontzialis, Marinos; Seeburg, Daniel; Stern, Steven E; Oshmyansky, Alexander; Poretti, Andrea; Huisman, Thierry A G M
2016-01-01
To determine if axial T2-weighted imaging can serve as screening tool for pediatric brain imaging. We retrospectively evaluated consecutive brain magnetic resonance imaging (MRI) data of 161 children (74 girls) with a mean age of 7.44 ± 5.71 years. Standard of reference was the final report of neuroradiology attendings. Three readers with different levels of experience were blinded for clinical diagnoses and study indications. First, readers studied only the axial T2-weighted screening sequence. Second, they studied all available anatomical and functional MRI sequences as performed per standard protocol for each clinical indication. The readings were classified as normal or abnormal. Sensitivity and specificity were measured. Axial T2 screening yielded a sensitivity of 77-88% and a specificity of 92%. The full studies/data sets had a sensitivity of 89-95% and a specificity of 86-93%. Nineteen of 167 studies were acquired for acute and 148 of 167 studies for nonacute clinical indication. Twenty-five false-negative diagnoses paneled in three groups were made by all readers together. Readers misread four of 19 studies with acute and 21 of 148 studies with nonacute clinical indication. Four of 21 misread studies with nonacute indications harbored unexpected findings needing management. Axial T2 screening can detect pediatric brain abnormalities with high sensitivity and specificity and can possibly replace CT as screening tool if the reading physician is aware of possible limitations/pitfalls. The level of experience influences sensitivity and specificity. Adding diffusion-weighted imaging and susceptibility-weighted imaging to a 3-dimensional T2-weighted sequence would most likely further increase sensitivity and specificity. Copyright © 2015 by the American Society of Neuroimaging.
Using CT Data to Improve the Quantitative Analysis of 18F-FBB PET Neuroimages
Segovia, Fermín; Sánchez-Vañó, Raquel; Górriz, Juan M.; Ramírez, Javier; Sopena-Novales, Pablo; Testart Dardel, Nathalie; Rodríguez-Fernández, Antonio; Gómez-Río, Manuel
2018-01-01
18F-FBB PET is a neuroimaging modality that is been increasingly used to assess brain amyloid deposits in potential patients with Alzheimer's disease (AD). In this work, we analyze the usefulness of these data to distinguish between AD and non-AD patients. A dataset with 18F-FBB PET brain images from 94 subjects diagnosed with AD and other disorders was evaluated by means of multiple analyses based on t-test, ANOVA, Fisher Discriminant Analysis and Support Vector Machine (SVM) classification. In addition, we propose to calculate amyloid standardized uptake values (SUVs) using only gray-matter voxels, which can be estimated using Computed Tomography (CT) images. This approach allows assessing potential brain amyloid deposits along with the gray matter loss and takes advantage of the structural information provided by most of the scanners used for PET examination, which allow simultaneous PET and CT data acquisition. The results obtained in this work suggest that SUVs calculated according to the proposed method allow AD and non-AD subjects to be more accurately differentiated than using SUVs calculated with standard approaches. PMID:29930505
Shrawder, S; Lapin, G D; Allen, C V; Vick, N A; Groothuis, D R
1994-01-01
We designed a new head holder for immobilization and repositioning in dynamic CT studies of the brain. A customized thermoplastic face mask and foam head rest were made to restrict movement of the head in all directions, but particularly out of the axial plane (z-movement). This design provided a rigid, detailed mold of the face and back of the head that minimized motion during lengthy CT studies and enabled accurate repositioning of the head for follow-up studies. Markers applied directly to the skin were used to quantify z-movement. When tested on 12 subjects, immobilization was limited to < 2.0 mm under worst-case conditions when the subject was asked to attempt forced movements. Repositioning was accurate to < 1.5 mm when the subject was removed from the head holder and then placed back into it.
Optimization of dose and image quality in adult and pediatric computed tomography scans
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin
2017-11-01
Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.
Shamim, Shamim Ahmed; Tripathy, Sarthak; Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi
2017-01-01
Central nervous system involvement is a rare manifestation of Langerhans cell histiocytosis (LCH), with bone and skin lesions being more frequent. MR remains the investigation of choice for localizing brain lesions. However, due to poor sensitivity of MRI in detecting osseous and pulmonary lesions, it is not used routinely in staging purposes until and unless indicated. We hereby discuss a case of 6-year-old boy of LCH who was referred for 18-F-FDG PET/CT for staging and knowing the extent of the disease, but a lesion in hypothalamus was picked up incidentally on FDG PET-CT study that was confirmed by MRI. PMID:28533655
Shamim, Shamim Ahmed; Tripathy, Sarthak; Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi
2017-01-01
Central nervous system involvement is a rare manifestation of Langerhans cell histiocytosis (LCH), with bone and skin lesions being more frequent. MR remains the investigation of choice for localizing brain lesions. However, due to poor sensitivity of MRI in detecting osseous and pulmonary lesions, it is not used routinely in staging purposes until and unless indicated. We hereby discuss a case of 6-year-old boy of LCH who was referred for 18-F-FDG PET/CT for staging and knowing the extent of the disease, but a lesion in hypothalamus was picked up incidentally on FDG PET-CT study that was confirmed by MRI.
Computed tomography characteristics in pediatric versus adult traumatic brain injury.
Sarkar, Korak; Keachie, Krista; Nguyen, UyenThao; Muizelaar, J Paul; Zwienenberg-Lee, Marike; Shahlaie, Kiarash
2014-03-01
Traumatic brain injury (TBI) is a leading cause of injury, hospitalization, and death among pediatric patients. Admission CT scans play an important role in classifying TBI and directing clinical care, but little is known about the differences in CT findings between pediatric and adult patients. The aim of this study was to determine if radiographic differences exist between adult and pediatric TBI. The authors retrospectively analyzed TBI registry data from 1206 consecutive patients with nonpenetrating TBI treated at a Level 1 adult and pediatric trauma center over a 30-month period. The distribution of sex, race, and Glasgow Coma Scale (GCS) score was not significantly different between the adult and pediatric populations; however, the distribution of CT findings was significantly different. Pediatric patients with TBI were more likely to have skull fractures (OR 3.21, p < 0.01) and epidural hematomas (OR 1.96, p < 0.01). Pediatric TBI was less likely to be associated with contusion, subdural hematoma, subarachnoid hemorrhage, or compression of the basal cisterns (p < 0.05). Rotterdam CT scores were significantly lower in the pediatric population (2.3 vs 2.6, p < 0.001). There are significant differences in the CT findings in pediatric versus adult TBI, despite statistical similarities with regard to clinical severity of injury as measured by the GCS. These differences may be due to anatomical characteristics, the biomechanics of injury, and/or differences in injury mechanisms between pediatric and adult patients. The unique characteristics of pediatric TBI warrant consideration when formulating a clinical trial design or predicting functional outcome using prognostic models developed from adult TBI data.
Managing Brain Skills to Increase Productivity.
ERIC Educational Resources Information Center
Agor, Weston H.
1985-01-01
This article outlines the major components of a brain skill management program that holds the potential for ensuring that input from all sources (i.e., left, right, and integrative) becomes a regular and reliable organizational routine when fully implemented. (Author/CT)
Effect of Hemoconcentration on Dural Sinus Computed Tomography Density in a Pediatric Population.
Yurttutan, Nursel; Kizildag, Betul; Sarica, Mehmet Akif; Baykara, Murat
2016-10-01
Unenhanced brain computed tomography (CT) is inexpensive, easily available, and the first-choice imaging modality for patients presenting with various neurologic symptoms. Venous thrombosis is not rare in childhood, but diagnosis can be difficult. In some cases, only denser vessels can be used to highlight an issue. The aim of this study was to retrospectively evaluate the relationship between X-ray attenuation and hemoconcentration in a pediatric population. This study enrolled 99 pediatric patients who had been referred radiology department for unenhanced brain CT. Images were retrospectively evaluated for measurement of dural sinus densities from four distinct dural sinus locations. Correlation between mean Hounsfield unit (HU) values and hemoglobin/hematocrit (Hb/Htc) levels, as well as age and gender were further analyzed. There was a strong correlation between mean HU and Hb levels (r = 0.411; standard deviation: 0.001) and also between mean HU and Htc levels (r = 0.393; p < 0.001). According to the results of this study, the mean sinus density and H:H (HU:Htc) values were 44.06 HU and 1.19, respectively, in a normal pediatric group. In conclusion, before deciding between a diagnosis of thrombosis and a determination of normal findings during an evaluation of unenhanced CT in a pediatric population, radiologists should consider complete blood count results as well as H:H ratios. Georg Thieme Verlag KG Stuttgart · New York.
Wolpert, Fabian; Weller, Michael; Berghoff, Anna Sophie; Rushing, Elisabeth; Füreder, Lisa Michaela; Petyt, Gregory; Leske, Henning; Andratschke, Nicolaus; Regli, Luca; Neidert, Marian Christoph; Stupp, Roger; Stahel, Rolf; Dummer, Reinhard; Frauenfelder, Thomas; Roth, Patrick; Reyns, Nicolas; Kaufmann, Philipp Antonio; Preusser, Matthias; Le Rhun, Emilie
2018-04-17
In 30% of patients with brain metastasis (BM), neurological symptoms are the first clinical manifestation of systemic malignancy, referred to as BM from cancer of unknown primary site (BM-CUPS). Here, we define the diagnostic value of 18 F-fluordesoxyglucose positron emission tomography (FDG-PET/CT) in the workup of BM-CUPS. We screened 565 patients operated for BM at the University Hospital Zurich and identified 64 patients with BM-CUPS with data on both FDG-PET/CT and contrast-enhanced chest/abdomen computed tomography (CT) available at BM diagnosis. A cohort of 125 patients with BM-CUPS from Lille and Vienna was used for validation. FDG-PET/CT was not superior to chest/abdomen CT in localising the primary lesion in the discovery cohort, presumably because most primary tumours were lung cancers. However, FDG-PET/CT identified additional lesions suspicious of extracranial metastases in 27 of 64 patients (42%). The inclusion of FDG-PET/CT findings shifted the graded prognostic assessment (GPA) score from 3 with CT alone to 2.5 for PET/CT (p = 3.8 × 10 -5 , Wilcoxon's test), resulting in a predicted survival of 5.3 versus 3.8 months (p = 6.1 × 10 -5 ; Wilcoxon's test). All observations were confirmed in the validation cohort. Lung cancers are the most common primary tumour in BM-CUPS; accordingly, CT alone shows similar overall sensitivity for detecting the primary tumour as FDG-PET/CT. Yet, FDG-PET/CT improves the accuracy of staging by detecting more metastases, reflected by decreased GPA scores and decreased predicted survival. Therefore, randomised trials on patients with BM should standardise methods of staging, notably when stratifying for GPA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wakamoto, H; Miyazaki, H; Hayashi, T; Shimamoto, Y; Ishiyama, N
1998-02-01
We report a case of a 17-year-old male who had hit the front of his head in a traffic accident. CT scan revealed contusional hemorrhage and pneumocephalus of the left frontal lobe 10 hours after the accident. A month later he complained of rhinorrhea and CT scan revealed intracerebral pneumocephalus. One day he complained of headache and began to vomit after he sneezed. CT scan revealed that the pneumocephalus had become worse and air had spread throughout the subarachnoid space. Bone CT scan revealed the air communicated from the frontal sinus to the intracerebral air cavity. 3D-CT scan revealed bone defect in the roof of the ethmoid sinus. The intraoperative findings revealed that the intracerebral air cavity communicated with the frontal sinus and ethmoid sinus. Though the brain which dropped into the paranasal sinus, adhered to the dura mater around the bone defect, a part of the brain had come off from the dura mater around the frontal sinus. We suspected that the intracerebral air cavity communicated with the frontal sinus initially. When the air cavity communicated with the ethmoid sinus secondarily, intracranial pressure abated and air came into the subarachnoid space from the frontal sinus.
Moen, Kent G; Brezova, Veronika; Skandsen, Toril; Håberg, Asta K; Folvik, Mari; Vik, Anne
2014-09-01
The aim of this study was to explore the prognostic value of visible traumatic axonal injury (TAI) loads in different MRI sequences from the early phase after adjusting for established prognostic factors. Likewise, we sought to explore the prognostic role of early apparent diffusion coefficient (ADC) values in normal-appearing corpus callosum. In this prospective study, 128 patients (mean age, 33.9 years; range, 11-69) with moderate (n = 64) and severe traumatic brain injury (TBI) were examined with MRI at a median of 8 days (range, 0-28) postinjury. TAI lesions in fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T2*-weighted gradient echo (T2*GRE) sequences were counted and FLAIR lesion volumes estimated. In patients and 47 healthy controls, mean ADC values were computed in 10 regions of interests in the normal-appearing corpus callosum. Outcome measure was the Glasgow Outcome Scale-Extended (GOS-E) at 12 months. In patients with severe TBI, number of DWI lesions and volume of FLAIR lesions in the corpus callosum, brain stem, and thalamus predicted outcome in analyses with adjustment for age, Glasgow Coma Scale score, and pupillary dilation (odds ratio, 1.3-6.9; p = <0.001-0.017). The addition of Rotterdam CT score and DWI lesions in the corpus callosum yielded the highest R2 (0.24), compared to all other MRI variables, including brain stem lesions. For patients with moderate TBI only the number of cortical contusions (p = 0.089) and Rotterdam CT score (p = 0.065) tended to predict outcome. Numbers of T2*GRE lesions did not affect outcome. Mean ADC values in the normal-appearing corpus callosum did not differ from controls. In conclusion, the loads of visible TAI lesions in the corpus callosum, brain stem, and thalamus in DWI and FLAIR were independent prognostic factors in patients with severe TBI. DWI lesions in the corpus callosum were the most important predictive MRI variable. Interestingly, number of cortical contusions in MRI and CT findings seemed more important for patients with moderate TBI.
Sanz de la Torre, J C; Pérez-Ríos, M
1996-06-01
In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-09-21
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units ([Formula: see text]) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into [Formula: see text] was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of [Formula: see text] corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
NASA Astrophysics Data System (ADS)
Khalifé, Maya; Fernandez, Brice; Jaubert, Olivier; Soussan, Michael; Brulon, Vincent; Buvat, Irène; Comtat, Claude
2017-10-01
In brain PET/MR applications, accurate attenuation maps are required for accurate PET image quantification. An implemented attenuation correction (AC) method for brain imaging is the single-atlas approach that estimates an AC map from an averaged CT template. As an alternative, we propose to use a zero echo time (ZTE) pulse sequence to segment bone, air and soft tissue. A linear relationship between histogram normalized ZTE intensity and measured CT density in Hounsfield units (HU ) in bone has been established thanks to a CT-MR database of 16 patients. Continuous AC maps were computed based on the segmented ZTE by setting a fixed linear attenuation coefficient (LAC) to air and soft tissue and by using the linear relationship to generate continuous μ values for the bone. Additionally, for the purpose of comparison, four other AC maps were generated: a ZTE derived AC map with a fixed LAC for the bone, an AC map based on the single-atlas approach as provided by the PET/MR manufacturer, a soft-tissue only AC map and, finally, the CT derived attenuation map used as the gold standard (CTAC). All these AC maps were used with different levels of smoothing for PET image reconstruction with and without time-of-flight (TOF). The subject-specific AC map generated by combining ZTE-based segmentation and linear scaling of the normalized ZTE signal into HU was found to be a good substitute for the measured CTAC map in brain PET/MR when used with a Gaussian smoothing kernel of 4~mm corresponding to the PET scanner intrinsic resolution. As expected TOF reduces AC error regardless of the AC method. The continuous ZTE-AC performed better than the other alternative MR derived AC methods, reducing the quantification error between the MRAC corrected PET image and the reference CTAC corrected PET image.
Komura, Akifumi; Kawasaki, Tomohiro; Yamada, Yuichi; Uzuyama, Shiho; Asano, Yoshitaka; Shinoda, Jun
2018-06-19
The aim of this study is to investigate glucose uptake on FDG-PET in patients with chronic mental and cognitive symptoms following a single blunt mild traumatic brain injury (TBI) and without visible brain lesions on CT/MRI. Eighty-nine consecutive patients (mean age 43.8±10.75) who had a single blunt mild TBI from a traffic accident and suffering from chronic mental and cognitive symptoms without visible brain lesions on CT/MRI were enrolled in the study. Patients underwent FDG-PET imaging, and the mean interval between the TBI and FDG-PET was 50.0 months. The Wechsler Adult Intelligence Scale version III testing was performed within one month of the FDG-PET. A control group consisting of 93 healthy adult volunteers (mean age 42.2±14.3 years) also underwent FDG-PET. The glucose uptake pattern from FDG-PET in the patient group was compared to that from normal controls using statistical parametric mapping. Glucose uptake was significantly decreased in the bilateral prefrontal area and significantly increased around the limbic system in the patient group compared to normal controls. This topographical pattern of glucose uptake is different from that reported previously in patients with diffuse axonal injury (DAI), but may be similar to that seen in patients with major depression disorder. These results suggest that the pathological mechanism causing chronic mental and cognitive symptoms in patients with a single blunt mild TBI and without visible brain lesions might be different from that due to primary axonopathy in patients with DAI.
The Shepherd's Crook Sign: A New Neuroimaging Pareidolia in Joubert Syndrome.
Manley, Andrew T; Maertens, Paul M
2015-01-01
By pareidolically recognizing specific patterns indicative of particular diseases, neuroimagers reinforce their mnemonic strategies and improve their neuroimaging diagnostic skills. Joubert Syndrome (JS) is an autosomal recessive disorder characterized clinically by mental retardation, episodes of abnormal deep and rapid breathing, abnormal eye movements, and ataxia. Many neuroimaging signs characteristic of JS have been reported. In retrospective case study, two consanguineous neonates diagnosed with JS were evaluated with brain magnetic resonance imaging (MRI), computed tomography (CT), and neurosonography. Both cranial ultrasound and MRI of the brain showed the characteristic molar tooth sign. There was a shepherd's crook in the sagittal views of the posterior fossa where the shaft of the crook is made by the brainstem and the pons. The arc of the crook is made by the abnormal superior cerebellar peduncle and cerebellar hemisphere. By ultrasound, the shepherd's crook sign was seen through the posterior fontanelle only. CT imaging also showed the shepherd's crook sign. Neuroimaging diagnosis of JS, which already involves the pareidolical recognition of specific patterns indicative of the disease, can be improved by recognition of the shepherd's crook sign on MRI, CT, and cranial ultrasound. Copyright © 2014 by the American Society of Neuroimaging.
Bolster, F; Ali, Z; Daly, B
2017-12-01
To document the detection of underlying low-attenuation spinal cord or brain stem injuries in the presence of the "pseudo-CT myelogram sign" (PCMS) on post-mortem computed tomography (PMCT). The PCMS was identified on PMCT in 20 decedents (11 male, nine female; age 3-83 years, mean age 35.3 years) following fatal blunt trauma at a single forensic centre. Osseous and ligamentous craniocervical region injuries and brain stem or spinal cord trauma detectable on PMCT were recorded. PMCT findings were compared to conventional autopsy in all cases. PMCT-detected transection of the brain stem or high cervical cord in nine of 10 cases compared to autopsy (90% sensitivity). PMCT was 92.86% sensitive in detection of atlanto-occipital joint injuries (n=14), and 100% sensitive for atlanto-axial joint (n=8) injuries. PMCT detected more cervical spine and skull base fractures (n=22, and n=10, respectively) compared to autopsy (n=13, and n=5, respectively). The PCMS is a novel description of a diagnostic finding, which if present in fatal craniocervical region trauma, is very sensitive for underlying spinal cord and brain stem injuries not ordinarily visible on PMCT. Its presence may also predict major osseous and/or ligamentous injuries in this region when anatomical displacement is not evident on PMCT. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
[Ulcerative colitis in remission with cerebral abscess and septic pulmonary emboli: a case report].
Yamauchi, Takahiro; Katsumura, Hirotoshi; Noguchi, Yoshiyuki; Kikuta, Ken-ichiro
2013-12-01
A 69-year-old man with a 4-year history of ulcerative colitis (UC) presented at our hospital with high fever, dysarthria, and right hemiparesis. Computed tomography (CT) of the head revealed a low-density area in the left temporal lobe. Chest CT exposed multiple pulmonary nodules in his right lung. Gadolinium-enhanced magnetic resonance imaging (MRI) indicated a 3-cm tumor with ring enhancement located in the left temporal lobe. The patient was diagnosed with a brain abscess and septic pulmonary emboli (SPE); antibiotic therapy was initiated. Shrinkage of the brain abscess was not observed in a follow-up MRI;thus, he underwent aspiration and drainage of the abscess 11 days after his hospitalization. Intravenous antibiotic therapy was continued for 6 weeks after the operation. Follow-up chest CT performed 48 days after his hospitalization revealed disappearance of the SPE. Follow-up head MRI conducted 63 days after his hospitalization indicated that the cyst had almost disappeared. Occurrence of a brain abscess in patients with UC has been very rarely reported in Japan. To the best of our knowledge, this is the first report of a case of a brain abscess in conjunction with UC and SPE. It is believed that patients with UC have compromised immunity and exhibit activation of the blood coagulation system. Our report suggests that medical practitioners should consider the possibility of a brain abscess and SPE for patients with UC.
CNS changes in Usher's syndrome with mental disorder: CT, MRI and PET findings.
Koizumi, J; Ofuku, K; Sakuma, K; Shiraishi, H; Iio, M; Nawano, S
1988-01-01
CNS changes in a case of Usher's syndrome associated with schizophrenia-like mental disorder were observed by CT, MRI and PET. The neuro-radiological findings of the case demonstrate the degenerative and metabolic alterations in various regions of cortex, white matter and subcortical areas in the brain. Mental disorder of the case is almost indistinguishable from that of schizophrenia, but the psychotic feature is regarded as an atypical or mixed organic brain syndrome according to the classification in the third edition of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM-III). Images PMID:3264568
Atlas of neuroanatomy with radiologic correlation and pathologic illustration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dublin, A.B.; Dublin, W.B.
1982-01-01
This atlas correlates gross neuroanatomic specimens with radiographs and computed tomographic scans. Pathologic specimens and radiographs are displayed in a similar manner. The first chapter, on embryology, shows the development of the telencephalon, diencephalon, mesencephalon, and metencephalon through a series of overlays. The anatomical section shows the surface of the brain, the ventricles and their adjacent structures, and the vascular system. CT anatomy is demonstrated by correlating CT scans with pathologic brain specimens cut in the axial plane. Pathologic changes associated with congenital malformations, injections, injuries, tumors, and other causes are demonstrated in the last six chapters.
Maier, Daniel; Njoku, Innocent; Schmutzhard, Erich; Dharsee, Jaffer; Doppler, Magdalena; Härtl, Roger; Winkler, Andrea Sylvia
2014-01-01
In a resource-poor environment such as rural East Africa, expensive medical devices such as computed tomographic (CT) scanners are rare. The CT scanner at the rural Haydom Lutheran Hospital (HLH) in Tanzania therefore offers a unique chance to observe possible differences with urban medical centers in the disease pattern of trauma-related cranial pathologies. The purpose of this study was to compare traumatic brain injuries (TBIs) between a rural and an urban area of Tanzania. HLH has 350 beds and one CT scanner. The urban Aga Khan Hospital is a private hospital with 80 beds and one CT scanner. This was a retrospective study. Data of 248 patients at HLH and of 432 patients at Aga Khan Hospital with TBI could be collected. The prevalence of TBI was significantly higher in the rural area compared to the urban area (34.2% vs. 21.9%, P < 0.0001). TBI due to violence was noted to occur more frequently at HLH, whereas road traffic accidents were more frequent at the Aga Khan Hospital. The number of patients showing a normal CT result was significantly higher in the urban area (53.0% vs. 35.9%, P < 0.0001). Bone fractures (35.9% vs. 15.7%, P < 0.0001) and pneumocephalus (6.9% vs. 0.9%, P < 0.0001) were diagnosed significantly more frequently in the rural survey. Soft tissue swelling (11.6% vs. 1.2%, P < 0.0001) and frontal sinus injuries (7.4% vs. 0.4%, P < 0.0001) were observed significantly more often in the urban setting. This study documents the burden of TBI and the differences in TBI-related CT diagnoses and their incidence between urban and rural areas in Eastern Africa. These results are important as they demonstrate that patients with severe TBI are not a primarily urban concern. Management of TBI should be included in the training curricula for health personnel alike irrespective of whether their workplace is primarily urban or rural. Copyright © 2014 Elsevier Inc. All rights reserved.
CAD system for automatic analysis of CT perfusion maps
NASA Astrophysics Data System (ADS)
Hachaj, T.; Ogiela, M. R.
2011-03-01
In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.
Sombke, Andy; Lipke, Elisabeth; Michalik, Peter; Uhl, Gabriele; Harzsch, Steffen
2015-01-01
Classical histology or immunohistochemistry combined with fluorescence or confocal laser scanning microscopy are common techniques in arthropod neuroanatomy, and these methods often require time-consuming and difficult dissections and sample preparations. Moreover, these methods are prone to artifacts due to compression and distortion of tissues, which often result in information loss and especially affect the spatial relationships of the examined parts of the nervous system in their natural anatomical context. Noninvasive approaches such as X-ray micro-computed tomography (micro-CT) can overcome such limitations and have been shown to be a valuable tool for understanding and visualizing internal anatomy and structural complexity. Nevertheless, knowledge about the potential of this method for analyzing the anatomy and organization of nervous systems, especially of taxa with smaller body size (e.g., many arthropods), is limited. This study set out to analyze the brains of selected arthropods with micro-CT, and to compare these results with available histological and immunohistochemical data. Specifically, we explored the influence of different sample preparation procedures. Our study shows that micro-CT is highly suitable for analyzing arthropod neuroarchitecture in situ and allows specific neuropils to be distinguished within the brain to extract quantitative data such as neuropil volumes. Moreover, data acquisition is considerably faster compared with many classical histological techniques. Thus, we conclude that micro-CT is highly suitable for targeting neuroanatomy, as it reduces the risk of artifacts and is faster than classical techniques. J. Comp. Neurol. 523:1281–1295, 2015. © 2015 Wiley Periodicals, Inc. PMID:25728683
Rouchaud, Aymeric; Pistocchi, Silvia; Blanc, Raphaël; Engrand, Nicolas; Bartolini, Bruno; Piotin, Michel
2014-03-01
Haemorrhagic transformations are pejorative for patients with acute ischaemic stroke (AIS). We estimated flat-panel CT performances to detect brain parenchymal hyperdense lesions immediately after mechanical thrombectomy directly on the angiography table in patients with AIS, and its ability to predict haemorrhagic transformation. We also evaluated an easy-reading protocol for post-procedure flat-panel CT evaluation by clinicians to enable them to determine the potential risk of haemorrhage. Two neuroradiologists retrospectively reviewed post-procedural flat-panel CT and 24 h follow-up imaging. We evaluated hyperdense lesions on flat-panel CT to predict the occurrence of haemorrhagic transformation within 24 h detected with conventional imaging. Of 63 patients, 60.3% presented post-procedural parenchymal hyperdensity and 54.0% had haemorrhagic transformation. Significantly more patients with hyperdense lesions on post-thrombectomy flat-panel CT presented haemorrhagic transformation (84.2% vs 8.0%; p<0.0001). No significant haemorrhagic transformations were detected for patients without parenchymal hyperdensity. Sensitivity and specificity of hyperdense lesions on flat-panel CT for the prediction of haemorrhagic transformation were 94.1% (80.3-99.3%) and 79.3% (60.3-92.0%), respectively. The positive and negative predictive values for the occurrence of haemorrhage were 84.2% (68.8-94.0%) and 92.0% (74.0-99.0%), respectively. For significant parenchymal haemorrhage type 2, sensitivity and negative predictive values were 100%. We observed good homogeneity between the different readers. Hyperdensity on post-procedural flat-panel CT was associated with a tendency for higher risk of death and lower risk of good clinical outcome. Flat-panel CT appears to be a good tool to detect brain parenchymal hyperdensities after mechanical thrombectomy in patients with AIS and to predict haemorrhagic transformation.
Liang, Chun-Yang; Yang, Yang; Shen, Chun-Sen; Wang, Hai-Jiang; Liu, Nai-Ming; Wang, Zhi-Wen; Zhu, Feng-Lei; Xu, Ru-Xiang
2018-02-06
Secondary brain injury is the main cause of mortality from traumatic brain injury (TBI). One hallmark of TBI is intracranial hemorrhage, which occurs in 40-50% of severe TBI cases. Early identification of intracranial hematomas in TBI patients allows early surgical evacuation and can reduce the case fatality rate of TBI. As pre-hospital care is the weakest part of Chinese emergency care, there is an urgent need for a capability to detect brain hematomas early. In China, in addition to preventing injuries and diseases in military staff and in enhancing the military armed forces during war, military medicine participates in actions such as emergency public health crises, natural disasters, emerging conflicts, and anti-terrorist campaigns during peacetime. The purpose of this observational study is to evaluate in the Chinese military general hospital the performance of a near-infrared (NIR)-based portable device, developed for US Military, in the detection of traumatic intracranial hematomas. The endpoint of the study was a description of the test characteristics (sensitivity, specificity, and positive and negative predictive values [NPV]) of the portable NIR-based device in identification of hematomas within its detection limits (volume >3.5 mL and depth <2.5 cm) compared with computed tomography (CT) scans as the gold standard. The Infrascanner Model 2000 NIR device (InfraScan, Inc., Philadelphia, PA, USA) was used for hematoma detection in patients sustaining TBI. Data were collected in the People's Liberation Army General Hospital in Beijing using the NIR device at the time of CT scans, which were performed to evaluate suspected TBI. One hundred and twenty seven patients were screened, and 102 patients were included in the per protocol population. Of the 102 patients, 24 were determined by CT scan to have intracranial hemorrhage. The CT scans were read by an independent neuroradiologist who was blinded to the NIR measurements. The NIR device demonstrated sensitivity of 100% (95% confidence intervals [CI] 82.8-100%) and specificity of 93.6% (95%CI 85-97.6%) in detecting intracranial hematomas larger than 3.5 mL in volume and that were less than 2.5 cm from the surface of the brain. Blood contained within scalp hematomas was found to be a major cause of false-positive results with this technology. The study showed that the Infrascanner is a suitable portable device in Chinese population for detecting preoperative intracranial hematomas in remote locations, emergency rooms, and intensive care units. It could aid military medics, physicians, and hospital staff, permitting better triage decisions, earlier treatment, and reducing secondary brain injury caused by acute and delayed hematomas. © Association of Military Surgeons of the United States 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis].
Gierhake, D; Weber, J E; Villringer, K; Ebinger, M; Audebert, H J; Fiebach, J B
2013-01-01
To reduce the time from symptom onset to treatment with tissue plasminogen activator (tPA) in ischemic stroke, an ambulance was equipped with a CT scanner. We analyzed process and image quality of CT scanning during the pilot study regarding image quality and safety issues. The pilot study of a stroke emergency mobile unit (STEMO) ran over a period of 12 weeks on 5 weekdays from 7a.m. to 6:30 p.m. A teleradiological service for the justifying indication and reporting was established. The radiographer was responsible for the performance of the CT scan on the ambulance. 64 cranial CT scans and 1 intracranial CT angiography were performed. We compared times from ambulance alarm to treatment decision (time of last brain scan) with a cohort of 50 consecutive tPA treatments before implementation of STEMO. 62 (95%) of the 65 scans performed had sufficient quality for reading. Technical quality was not optimal in 45 cases (69%) mainly caused by suboptimal positioning of patient or eye lens protection. Motion artefacts were observed in 8 exams (12%). No safety issues occurred for team or patients. 23 patients were treated with thrombolysis. Time from alarm to last CT scan was 18 minutes shorter than in the tPA cohort before STEMO implementation. A teleradiological support for primary stroke imaging by CT on-site is feasible, quality-wise of diagnostic value and has not raised safety issues. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Lavoie, Lindsey K.
The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT imaging has been presented. These measurements are especially important in keeping with the ALARA (as low as reasonably achievable) principle. While diagnostic information from CT imaging is valuable and necessary, the dose to patients is always a consideration. This methodology aids in this important task. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar
2013-01-01
Objective Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET)/ computed tomography (CT) in mice. Methods A β3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine) were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [18F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [18F]FDG PET images. CL 316243 increased the total [18F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [18F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [18F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT hounsfiled unit (HU) (R2=0.55, p<0.001) and between CT HU levels of IBAT and liver (R2=0.69, p<0.006) was observed. Conclusions The three pharmacologic approaches reported here enhanced BAT metabolism by targeting different sites in adrenergic system as measured by [18F]FDG PET/CT. PMID:24090673
Berrington de Gonzalez, Amy; Salotti, Jane A; McHugh, Kieran; Little, Mark P; Harbron, Richard W; Lee, Choonsik; Ntowe, Estelle; Braganza, Melissa Z; Parker, Louise; Rajaraman, Preetha; Stiller, Charles; Stewart, Douglas R; Craft, Alan W; Pearce, Mark S
2016-02-16
We previously reported evidence of a dose-response relationship between ionising-radiation exposure from paediatric computed tomography (CT) scans and the risk of leukaemia and brain tumours in a large UK cohort. Underlying unreported conditions could have introduced bias into these findings. We collected and reviewed additional clinical information from radiology information systems (RIS) databases, underlying cause of death and pathology reports. We conducted sensitivity analyses excluding participants with cancer-predisposing conditions or previous unreported cancers and compared the dose-response analyses with our original results. We obtained information from the RIS and death certificates for about 40% of the cohort (n∼180 000) and found cancer-predisposing conditions in 4 out of 74 leukaemia/myelodysplastic syndrome (MDS) cases and 13 out of 135 brain tumour cases. As these conditions were unrelated to CT exposure, exclusion of these participants did not alter the dose-response relationships. We found evidence of previous unreported cancers in 2 leukaemia/MDS cases, 7 brain tumour cases and 232 in non-cases. These previous cancers were related to increased number of CTs. Exclusion of these cancers reduced the excess relative risk per mGy by 15% from 0.036 to 0.033 for leukaemia/MDS (P-trend=0.02) and by 30% from 0.023 to 0.016 (P-trend<0.0001) for brain tumours. When we included pathology reports we had additional clinical information for 90% of the cases. Additional exclusions from these reports further reduced the risk estimates, but this sensitivity analysis may have underestimated risks as reports were only available for cases. Although there was evidence of some bias in our original risk estimates, re-analysis of the cohort with additional clinical data still showed an increased cancer risk after low-dose radiation exposure from CT scans in young patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreasen, Daniel, E-mail: dana@dtu.dk; Van Leemput, Koen; Hansen, Rasmus H.
Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of amore » patch-based method for creating a pCT based on conventional T{sub 1}-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. Conclusions: We showed that a patch-based method could generate an accurate pCT based on conventional T{sub 1}-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.« less
Huang, Feng-Yun J; Lee, Te-Wei; Kao, Chih-Hao K; Chang, Chih-Hsien; Zhang, Xiaoning; Lee, Wan-Yu; Chen, Wan-Jou; Wang, Shu-Chi; Lo, Jem-Mau
2011-12-01
The (188)Re-labeled pegylated nanoliposome (abbreviated as (188)Re-Liposome) was prepared and evaluated for its potential as a theragnostic agent for glioma. (188)Re-BMEDA complex was loaded into the pegylated liposome core with pH 5.5 ammonium sulfate gradient to produce (188)Re-Liposome. Orthotopic Fischer344/F98 glioma tumor-bearing rats were prepared and intravenously injected with (188)Re-Liposome. Biodistribution, pharmacokinetic study, autoradiography (ARG), histopathology, and nano-SPECT/CT imaging were conducted for the animal model. The result showed that (188)Re-Liposome accumulated in the brain tumor of the animal model from 0.28%±0.09% injected dose (ID)/g (n=3) at 1 hour to a maximum of 1.95%±0.35% ID/g (n=3) at 24 hours postinjection. The tumor-to-normal brain uptake ratio (T/N ratio) increased from 3.5 at 1 hour to 32.5 at 24 hours. Both ARG and histopathological images clearly showed corresponding tumor regions with high T/N ratios. Nano-SPECT/CT detected a very clear tumor image from 4 hours till 48 hours. This study reveals the potential of (188)Re-Liposome as a theragnostic agent for brain glioma.
Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constanzo, Julie; Paquette, Benoit; Charest, Gabriel
2015-05-15
Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brainmore » were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.« less
Dumitrascu, Oana M.; Torbati, Sam; Tighiouart, Mourad; Newman-Toker, David E.; Song, Shlee S.
2016-01-01
Objectives Isolated Acute Vestibular Syndrome (iAVS) presentations to the Emergency Department (ED) pose management challenges given concerns for posterior circulation strokes. False negative brain imaging may erroneously reassure clinicians, while HINTS-plus examination outperforms imaging to screen for strokes in iAVS. We studied the feasibility of implementing HINTS-plus testing in the ED, aiming to reduce neuroimaging in patients with iAVS. Methods We launched an institutional Quality Improvement initiative, using DMAIC methodology. The outcome measures (proportion of iAVS subjects that had HINTS-plus examinations and underwent neuroimaging by CT/MRI) were compared before and after the established intervention. The intervention consisted of formal training for neurologists and emergency physicians on how to perform, document, and interpret HINTS-plus and implementation of novel iAVS management algorithm. Neuroimaging was not recommended if HINTS-plus suggested peripheral vestibular etiology. If a central process was suspected, brain MRI/MR angiogram was performed. Head CT was reserved only for thrombolytic time-window cases. Results In the first 2 months post-implementation, HINTS-plus testing performance by neurologists increased from 0% to 80% (p = 0.007), and by ED providers from 0% to 9.09% (p = 0.367). Head CT scans were reduced from 18.5% to 6. 25%. Brain MRI use was reduced from 51.8% to 31.2%. 60% of the iAVS subjects were discharged from the ED; none were readmitted or had another ED presentation in the ensuing 30 days. Conclusions Implementation of HINTS-plus evaluation in the ED is valuable and feasible for neurologists, but challenging for emergency physicians. Future studies should determine the ‘dose-response’ curve of educational interventions. PMID:28248913
Dumitrascu, Oana M; Torbati, Sam; Tighiouart, Mourad; Newman-Toker, David E; Song, Shlee S
2017-03-01
Isolated acute vestibular syndrome (iAVS) presentations to the emergency department (ED) pose management challenges, given the concerns for posterior circulation strokes. False-negative brain imaging may erroneously reassure clinicians, whereas HINTS-plus examination outperforms imaging to screen for strokes in iAVS. We studied the feasibility of implementing HINTS-plus testing in the ED, aiming to reduce neuroimaging in patients with iAVS. We launched an institutional Quality Improvement initiative, using DMAIC methodology. The outcome measures [proportion of iAVS subjects who had HINTS-plus examinations and underwent neuroimaging by computed tomography/magnetic resonance imaging (CT/MRI)] were compared before and after the established intervention. The intervention consisted of formal training for neurologists and emergency physicians on how to perform, document, and interpret HINTS-plus and implementation of novel iAVS management algorithm. Neuroimaging was not recommended if HINTS-plus suggested peripheral vestibular etiology. If a central process was suspected, brain MRI/MR angiogram was performed. Head CT was reserved only for thrombolytic time-window cases. In the first 2 months postimplementation, HINTS-plus testing performance by neurologists increased from 0% to 80% (P=0.007), and by ED providers from 0% to 9.09% (P=0.367). Head CT scans were reduced from 18.5% to 6.25%. Brain MRI use was reduced from 51.8% to 31.2%. About 60% of the iAVS subjects were discharged from the ED; none were readmitted or had another ED presentation in the ensuing 30 days. Implementation of HINTS-plus evaluation in the ED is valuable and feasible for neurologists, but challenging for emergency physicians. Future studies should determine the "dose-response" curve of educational interventions.
Changes in SWB following injury to different brain lobes.
Hayward, Carrie S; Stokes, Mark A; Taylor, David; Young, Simon; Anderson, Vicki
2011-06-01
A neurological substrate for subjective well-being (SWB) has received little research attention. This study was designed to conduct exploratory investigation into the neuroanatomical correlates of SWB, by monitoring the SWB of a head-injured population over a six-month period. Seventy people with head injury (HI), aged 10-65, were studied. The SWB of each participant was measured, and computed tomography (CT) scans were analysed to obtain regional brain injury location (BIL). SWB was associated with BIL. However, the hypothesis that individuals with left frontal injury would report lower SWB was not supported. Instead, it was observed that participants with injury to their right frontal lobe reported higher SWB than individuals with injury to other regions of the brain. This study provides initial exploration into the neuroanatomical correlates of SWB.
Interval From Imaging to Treatment Delivery in the Radiation Surgery Age: How Long Is Too Long?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seymour, Zachary A., E-mail: seymourz@radonc.ucsf.edu; Fogh, Shannon E.; Westcott, Sarah K.
Purpose: The purpose of this study was to evaluate workflow and patient outcomes related to frameless stereotactic radiation surgery (SRS) for brain metastases. Methods and Materials: We reviewed all treatment demographics, clinical outcomes, and workflow timing, including time from magnetic resonance imaging (MRI), computed tomography (CT) simulation, insurance authorization, and consultation to the start of SRS for brain metastases. Results: A total of 82 patients with 151 brain metastases treated with SRS were evaluated. The median times from consultation, insurance authorization, CT simulation, and MRI for treatment planning were 15, 7, 6, and 11 days to SRS. Local freedom from progressionmore » (LFFP) was lower in metastases with MRI ≥14 days before treatment (P=.0003, log rank). The 6- and 12-month LFFP rate were 95% and 75% for metastasis with interval of <14 days from MRI to treatment compared to 56% and 34% for metastases with MRI ≥14 days before treatment. On multivariate analysis, LFFP remained significantly lower for lesions with MRI ≥14 days at SRS (P=.002, Cox proportional hazards; hazard ratio: 3.4, 95% confidence interval: 1.6-7.3). Conclusions: Delay from MRI to SRS treatment delivery for brain metastases appears to reduce local control. Future studies should monitor the timing from imaging acquisition to treatment delivery. Our experience suggests that the time from MRI to treatment should be <14 days.« less
Fink, Kathleen R; Fink, James R
2013-01-01
Imaging plays a key role in the diagnosis of central nervous system (CNS) metastasis. Imaging is used to detect metastases in patients with known malignancies and new neurological signs or symptoms, as well as to screen for CNS involvement in patients with known cancer. Computed tomography (CT) and magnetic resonance imaging (MRI) are the key imaging modalities used in the diagnosis of brain metastases. In difficult cases, such as newly diagnosed solitary enhancing brain lesions in patients without known malignancy, advanced imaging techniques including proton magnetic resonance spectroscopy (MRS), contrast enhanced magnetic resonance perfusion (MRP), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) may aid in arriving at the correct diagnosis. This image-rich review discusses the imaging evaluation of patients with suspected intracranial involvement and malignancy, describes typical imaging findings of parenchymal brain metastasis on CT and MRI, and provides clues to specific histological diagnoses such as the presence of hemorrhage. Additionally, the role of advanced imaging techniques is reviewed, specifically in the context of differentiating metastasis from high-grade glioma and other solitary enhancing brain lesions. Extra-axial CNS involvement by metastases, including pachymeningeal and leptomeningeal metastases is also briefly reviewed.
Gulsen, Salih
2015-03-15
The first goal in neurosurgery is to protect neural function as long as it is possible. Moreover, while protecting the neural function, a neurosurgeon should extract the maximum amount of tumoral tissue from the tumour region of the brain. So neurosurgery and technological advancement go hand in hand to realize this goal. Using of CT compatible stereotaxy for removing a cranial tumour is to be commended as a cornerstone of these technological advancements. Following CT compatible stereotaxic system applications in neurosurgery, different techniques have taken place in neurosurgical practice. These techniques are magnetic resonance imaging (MRI), MRI compatible stereotaxis, frameless stereotaxy, volumetric stereotaxy, functional MRI, diffusion tensor (DT) imaging techniques (tractography of the white matter), intraoperative MRI and neuronavigation systems. However, to use all of this equipment having these technologies would be impossible because of economic reasons. However, when we correlated this technique with MRI scans of the patients with CT compatible stereotaxy scans, it is possible to provide gross total resection and protect and improve patients' neural functions.
Jo, Jae-Cheol; Yoon, Dok Hyun; Kim, Shin; Lee, Kyoungmin; Kang, Eun Hee; Park, Jung Sun; Ryu, Jin-Sook; Huh, Jooryung; Park, Chan-Sik; Kim, Jong Hoon; Lee, Sang Wook; Suh, Cheolwon
2017-09-01
18 F-fluoro-2-dexoy-D-glucose-positron emission tomography (PET)/computed tomography (CT) is a useful imaging technique for monitoring the treatment response in lymphoma cases. We investigated the value of interim brain PET/CT (I-PET/CT) for monitoring the response to intensive methotrexate-based chemotherapy in primary central nervous system lymphoma (PCNSL) patients with diffuse large B cell lymphoma (DLBCL). Of the 76 PCNSL patients treated with intensive methotrexate and cytarabine chemotherapy between September 2006 and December 2012, 66 patients with DLBCL were included in this study. The patient cohort of 66 individuals comprised 43 men and 23 women with a median age of 59 years (range, 17-75 years). During chemotherapy, 36 patients (54.5%) showed a negative metabolism on I-PET/CT, and 47 (71.2%) were negative on final (F) PET/CT. The baseline characteristics were similar between I-PET/CT-negative (n = 36) and I-PET/CT-positive patients (n = 30) except ECOG performance status. After a median follow-up of 27.5 months, there was no difference in the progression-free survival (PFS; P = 0.701) or overall survival (OS; P = 0.620) between the I-PET/CT-negative and I-PET/CT-positive groups. However, PFS in the F-PET/CT-negative group was significantly longer than that in the F-PET/CT-positive group (P < 0.001) without a significant difference in OS (P = 0.892). I-PET/CT may not predict the survival outcome of PCNSL patients with DLBCL treated with intensive methotrexate and cytarabine chemotherapy. Prospective trials are required to fully evaluate the role of I-PET/CT.
Window classification of brain CT images in biomedical articles.
Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R
2012-01-01
Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.
Image-guided intracranial cannula placement for awake in vivo microdialysis in nonhuman primates
NASA Astrophysics Data System (ADS)
Chen, Antong; Bone, Ashleigh; Hines, Catherine D. G.; Dogdas, Belma; Montgomery, Tamara O.; Michener, Maria; Winkelmann, Christopher T.; Ghafurian, Soheil; Lubbers, Laura S.; Renger, John; Bagchi, Ansuman; Uslaner, Jason M.; Johnson, Colena; Zariwala, Hatim A.
2016-03-01
Intracranial microdialysis is used for sampling neurochemicals and large peptides along with their metabolites from the interstitial fluid (ISF) of the brain. The ability to perform this in nonhuman primates (NHP) e.g., rhesus could improve the prediction of pharmacokinetic (PK) and pharmacodynamics (PD) action of drugs in human. However, microdialysis in rhesus brains is not as routinely performed as in rodents. One challenge is that the precise intracranial probe placement in NHP brains is difficult due to the richness of the anatomical structure and the variability of the size and shape of brains across animals. Also, a repeatable and reproducible ISF sampling from the same animal is highly desirable when combined with cognitive behaviors or other longitudinal study end points. Toward that end, we have developed a semi-automatic flexible neurosurgical method employing MR and CT imaging to (a) derive coordinates for permanent guide cannula placement in mid-brain structures and (b) fabricate a customized recording chamber to implant above the skull for enclosing and safeguarding access to the cannula for repeated experiments. In order to place the intracranial guide cannula in each subject, the entry points in the skull and the depth in the brain were derived using co-registered images acquired from MR and CT scans. The anterior/posterior (A/P) and medial-lateral (M/L) rotation in the pose of the animal was corrected in the 3D image to appropriately represent the pose used in the stereotactic frame. An array of implanted fiducial markers was used to transform stereotactic coordinates to the images. The recording chamber was custom fabricated using computer-aided design (CAD), such that it would fit the contours of the individual skull with minimum error. The chamber also helped in guiding the cannula through the entry points down a trajectory into the depth of the brain. We have validated our method in four animals and our results indicate average placement error of cannula to be 1.20 +/- 0.68 mm of the targeted positions. The approach employed here for derivation of the coordinates, surgical implantation and post implant validation is built using traditional access to surgical and imaging methods without the necessity of intra-operative imaging. The validation of our method lends support to its wider application in most nonhuman primate laboratories with onsite MR and CT imaging capabilities.
Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury
Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan
2016-01-01
Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123
Childhood Psychosis and Computed Tomographic Brain Scan Findings.
ERIC Educational Resources Information Center
Gillberg, Christopher; Svendsen, Pal
1983-01-01
Computerized tomography (CT) of the brain was used to examine 27 infantile autistic children, 9 children with other kinds of childhood psychoses, 23 children with mental retardation, and 16 normal children. Gross abnormalities were seen in 26 percent of the autism cases. (Author/SEW)
Solitary tuberculous brain lesions: 24 new cases and a review of the literature.
Psimaras, D; Bonnet, C; Heinzmann, A; Cárdenas, G; Hernández José Luis, S; Tungaria, A; Behari, S; Lacrois, D; Mokhtari, K; Karantoni, E; Sokrab Tag, E; Idris Mohamed, N; Sönmez, G; Caumes, E; Roze, E
2014-01-01
A solitary tuberculous brain lesion (STBL) can be difficult to distinguish from a glioma, metastasis or other infectious disease, especially from a pyogenic brain abscess. We analyzed the clinical characteristics, diagnostic procedures and outcomes of 24 patients with STBL diagnosed in three centers from France, India and Mexico. We also reviewed 92 STBL cases previously reported in the literature. General symptoms were found in 54% of our patients, including enlarged lymph nodes in 20%. Cerebrospinal fluid was typically abnormal, with lymphocytic pleocytosis and a high protein level. The lung CT scan was abnormal in 56% of patients, showing lymphadenopathy or pachipleuritis. Brain MRI or CT was always abnormal, showing contrast-enhanced lesions. Typically, MRI abnormalities were hypointense on T1-weighted sequences, while T2-weighted sequences showed both a peripheral hypersignal and a central hyposignal. The diagnosis was documented microbiologically or supported histologically in 71% of cases. Clinical outcome was good in 83% of cases. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Incidental findings in children with blunt head trauma evaluated with cranial CT scans.
Rogers, Alexander J; Maher, Cormac O; Schunk, Jeff E; Quayle, Kimberly; Jacobs, Elizabeth; Lichenstein, Richard; Powell, Elizabeth; Miskin, Michelle; Dayan, Peter; Holmes, James F; Kuppermann, Nathan
2013-08-01
Cranial computed tomography (CT) scans are frequently obtained in the evaluation of blunt head trauma in children. These scans may detect unexpected incidental findings. The objectives of this study were to determine the prevalence and significance of incidental findings on cranial CT scans in children evaluated for blunt head trauma. This was a secondary analysis of a multicenter study of pediatric blunt head trauma. Patients <18 years of age with blunt head trauma were eligible, with those undergoing cranial CT scan included in this substudy. Patients with coagulopathies, ventricular shunts, known previous brain surgery or abnormalities were excluded. We abstracted radiology reports for nontraumatic findings. We reviewed and categorized findings by their clinical urgency. Of the 43,904 head-injured children enrolled in the parent study, 15,831 underwent CT scans, and these latter patients serve as the study cohort. On 670 of these scans, nontraumatic findings were identified, with 16 excluded due to previously known abnormalities or surgeries. The remaining 654 represent a 4% prevalence of incidental findings. Of these, 195 (30%), representing 1% of the overall sample, warranted immediate intervention or outpatient follow-up. A small but important number of children evaluated with CT scans after blunt head trauma had incidental findings. Physicians who order cranial CTs must be prepared to interpret incidental findings, communicate with families, and ensure appropriate follow-up. There are ethical implications and potential health impacts of informing patients about incidental findings.
Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore
2014-01-01
Purpose This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). Methods After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. Results We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. Conclusions This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms. PMID:24646878
Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore
2014-01-01
This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.
A Bayesian framework for early risk prediction in traumatic brain injury
NASA Astrophysics Data System (ADS)
Chaganti, Shikha; Plassard, Andrew J.; Wilson, Laura; Smith, Miya A.; Patel, Mayur B.; Landman, Bennett A.
2016-03-01
Early detection of risk is critical in determining the course of treatment in traumatic brain injury (TBI). Computed tomography (CT) acquired at admission has shown latent prognostic value in prior studies; however, no robust clinical risk predictions have been achieved based on the imaging data in large-scale TBI analysis. The major challenge lies in the lack of consistent and complete medical records for patients, and an inherent bias associated with the limited number of patients samples with high-risk outcomes in available TBI datasets. Herein, we propose a Bayesian framework with mutual information-based forward feature selection to handle this type of data. Using multi-atlas segmentation, 154 image-based features (capturing intensity, volume and texture) were computed over 22 ROIs in 1791 CT scans. These features were combined with 14 clinical parameters and converted into risk likelihood scores using Bayes modeling. We explore the prediction power of the image features versus the clinical measures for various risk outcomes. The imaging data alone were more predictive of outcomes than the clinical data (including Marshall CT classification) for discharge disposition with an area under the curve of 0.81 vs. 0.67, but less predictive than clinical data for discharge Glasgow Coma Scale (GCS) score with an area under the curve of 0.65 vs. 0.85. However, in both cases, combining imaging and clinical data increased the combined area under the curve with 0.86 for discharge disposition and 0.88 for discharge GCS score. In conclusion, CT data have meaningful prognostic value for TBI patients beyond what is captured in clinical measures and the Marshall CT classification.
Gray and white matter correlates of the Big Five personality traits.
Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto
2017-05-04
Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Lesko, Mehdi M; Woodford, Maralyn; White, Laura; O'Brien, Sarah J; Childs, Charmaine; Lecky, Fiona E
2010-08-06
The purpose of Abbreviated Injury Scale (AIS) is to code various types of Traumatic Brain Injuries (TBI) based on their anatomical location and severity. The Marshall CT Classification is used to identify those subgroups of brain injured patients at higher risk of deterioration or mortality. The purpose of this study is to determine whether and how AIS coding can be translated to the Marshall Classification Initially, a Marshall Class was allocated to each AIS code through cross-tabulation. This was agreed upon through several discussion meetings with experts from both fields (clinicians and AIS coders). Furthermore, in order to make this translation possible, some necessary assumptions with regards to coding and classification of mass lesions and brain swelling were essential which were all approved and made explicit. The proposed method involves two stages: firstly to determine all possible Marshall Classes which a given patient can attract based on allocated AIS codes; via cross-tabulation and secondly to assign one Marshall Class to each patient through an algorithm. This method can be easily programmed in computer softwares and it would enable future important TBI research programs using trauma registry data.
2010-01-01
Background The purpose of Abbreviated Injury Scale (AIS) is to code various types of Traumatic Brain Injuries (TBI) based on their anatomical location and severity. The Marshall CT Classification is used to identify those subgroups of brain injured patients at higher risk of deterioration or mortality. The purpose of this study is to determine whether and how AIS coding can be translated to the Marshall Classification Methods Initially, a Marshall Class was allocated to each AIS code through cross-tabulation. This was agreed upon through several discussion meetings with experts from both fields (clinicians and AIS coders). Furthermore, in order to make this translation possible, some necessary assumptions with regards to coding and classification of mass lesions and brain swelling were essential which were all approved and made explicit. Results The proposed method involves two stages: firstly to determine all possible Marshall Classes which a given patient can attract based on allocated AIS codes; via cross-tabulation and secondly to assign one Marshall Class to each patient through an algorithm. Conclusion This method can be easily programmed in computer softwares and it would enable future important TBI research programs using trauma registry data. PMID:20691038
SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone.
Sharma, Punit; Sharma, Shekhar; Ballal, Sanjana; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh
2012-09-01
To assess the patient radiation dose during routine clinical single-photon emission computed tomography-computed tomography (SPECT-CT) and measure the increase as compared with SPECT alone. Data pertaining to 357 consecutive patients who had undergone radioisotope imaging along with SPECT-CT of a selected volume were retrospectively evaluated. Dose of the injected radiopharmaceutical (MBq) was noted, and the effective dose (mSv) was calculated as per International Commission on Radiological Protection (ICRP) guidelines. The volume-weighted computed tomography dose index (CTDIvol) and dose length product of the CT were also assessed using standard phantoms. The effective dose (mSv) due to CT was calculated as the product of dose length product and a conversion factor depending on the region of investigation, using ICRP guidelines. The dose due to CT was compared among different investigations. The increase in effective dose was calculated as CT dose expressed as a percentage of radiopharmaceutical dose. The per-patient CT effective dose for different studies varied between 0.06 and 11.9 mSv. The mean CT effective dose was lowest for 99mTc-ethylene cysteine dimer brain SPECT-CT (0.9 ± 0.7) and highest for 99mTc-methylene diphosphonate bone SPECT-CT (4.2 ± 2.8). The increase in radiation dose (SPECT-CT vs. SPECT) varied widely (2.3-666.4% for 99mTc-tracers and 0.02-96.2% for 131I-tracers). However, the effective dose of CT in SPECT-CT was less than the values reported for conventional CT examinations of the same regions. Addition of CT to nuclear medicine imaging in the form of SPECT-CT increases the radiation dose to the patient, with the effective dose due to CT exceeding the effective dose of RP in many instances. Hence, appropriate utilization and optimization of the protocols of SPECT-CT is needed to maximize benefit to patients.
Bodanapally, Uttam K; Saksobhavivat, Nitima; Shanmuganathan, Kathirkamanathan; Aarabi, Bizhan; Roy, Ashis K
2015-01-01
The object of this study was to determine the specific CT findings of the injury profile in penetrating brain injury (PBI) that are risk factors related to intracranial arterial injuries. The authors retrospectively evaluated admission head CTs and accompanying digital subtraction angiography (DSA) studies from patients with penetrating trauma to the head in the period between January 2005 and December 2012. Two authors reviewed the CT images to determine the presence or absence of 30 injury profile variables and quantified selected variables. The CT characteristics in patients with and without arterial injuries were compared using univariate analysis, multivariate analysis, and receiver operating characteristic (ROC) curve analysis to determine the respective risk factors, independent predictors, and optimal threshold values for the continuous variables. Fifty-five patients were eligible for study inclusion. The risk factors for an intracranial arterial injury on univariate analysis were an entry wound over the frontobasal-temporal regions, a bihemispheric wound trajectory, a wound trajectory in proximity to the circle of Willis (COW), a subarachnoid hemorrhage (SAH), a higher SAH score, an intraventricular hemorrhage (IVH), and a higher IVH score. A trajectory in proximity to the COW was the best predictor of injury (OR 6.8 and p = 0.005 for all penetrating brain injuries [PBIs]; OR 13.3 and p = 0.001 for gunshot wounds [GSWs]). Significant quantitative variables were higher SAH and IVH scores. An SAH score of 3 (area under the ROC curve [AUC] for all PBIs 0.72; AUC for GSWs 0.71) and an IVH score of 3 (AUC for all PBIs 0.65; AUC for GSWs 0.65) could be used as threshold values to suggest an arterial injury. The risk factors identified may help radiologists suggest the possibility of arterial injury and prioritize neurointerventional consultation and potential DSA studies.
Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation
NASA Astrophysics Data System (ADS)
Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.
2001-07-01
We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.
What is the best imaging strategy for acute stroke?
Wardlaw, J M; Keir, S L; Seymour, J; Lewis, S; Sandercock, P A G; Dennis, M S; Cairns, J
2004-01-01
To determine the cost-effectiveness of computed tomographic (CT) scanning after acute stroke. To assess the contribution of brain imaging to the diagnosis and management of stroke, and to estimate the costs, benefits and risks of different imaging strategies in order to provide data to inform national and local policy on the use of brain imaging in stroke. A decision-analysis model was developed to represent the pathway of care in acute stroke using 'scan all patients within 48 hours' as the comparator against which to cost 12 alternative scan strategies. Hospitals in Scotland. Subjects were patients admitted to hospital with a first stroke and those managed as outpatients. The effect on functional outcome after ischaemic or haemorrhagic stroke, tumours or infections, of correctly administered antithrombotic or other treatment; of time to scan and stroke severity on diagnosis by CT or MRI; on management, including length of stay, functional outcome, and quality-adjusted life years (QALYs), of the diagnostic information provided by CT scanning; the cost-effectiveness (cost versus QALYs) of different strategies for use of CT after acute stroke. Death and functional outcome at long-term follow-up; accuracy of CT and MRI; cost of CT scanning by time of day and week; effect of CT diagnosis on change in health outcome, length of stay in hospital and QALYs; cost-effectiveness of various scanning strategies. CT is very sensitive and specific for haemorrhage within the first 8 days of stroke only. Suboptimal scanning used in epidemiology studies suggests that the frequency of primary intracerebral haemorrhage (PICH) has been underestimated. Aspirin increases the risk of PICH. There were no reliable data on functional outcome or on the effect of antithrombotic treatment given long term after PICH. In 60% of patients with recurrent stroke after PICH, the cause is another PICH and mortality is high among PICH patients. A specific MR sequence (gradient echo) is required to identify prior PICH reliably. CT scanners were distributed unevenly in Scotland, 65% provided CT scanning within 48 hours of stroke, and 100% within 7 days for hospital-admitted patients, but access out of hours was very variable, and for outpatients was poor. The average cost of a CT brain scan for stroke was pounds 30.23 to pounds 89.56 in normal working hours and pounds 55.05 to pounds 173.46 out of hours. Average length of stay was greatest for severe strokes and those who survived in a dependent state. For a cohort of 1000 patients aged 70-74 years, the policy 'scan all strokes within 48 hours', cost pounds 10,279,728 and achieved 1982.3 QALYS. The most cost-effective strategy was 'scan all immediately' (pounds 9,993,676 and 1982.4 QALYS). The least cost-effective was to 'scan patients on anticoagulants, in a life-threatening condition immediately and the rest within 14 days'. In general, strategies in which most patients were scanned immediately cost least and achieved the most QALYs, as the cost of providing CT (even out of hours) was less than the cost of inpatient care. Increasing independent survival by even a small proportion through early use of aspirin in the majority with ischaemic stroke, avoiding aspirin in those with haemorrhagic stroke, and appropriate early management of those who have not had a stroke, reduced costs and increased QALYs.
Lee, Nyoung Keun; Lee, Byung Hoon; Hwang, Yoon Joon; Kim, Su Young; Lee, Ji Young; Joo, Mee
2011-04-01
Acute hemorrhagic leukoencephalitis (AHL) is a rare and usually fatal disease characterized by an acute onset of neurological abnormalities. We describe the case of a 37-year-old man with biphasic AHL with a focus on the rare involvement of the brain stem and cerebellum. Initial computed tomography (CT) and magnetic resonance imaging revealed two hemorrhagic foci in the left middle cerebellar peduncle. After 15 days multifocal hematomas in the contralateral cerebellar hemisphere were imaged using CT. The pathological diagnosis was AHL. Following high-dose steroid treatment, the patient recovered with minor neurological sequelae.
[Application of SPECT/CT in neurosurgical practice].
Golanov, A V; Kotel'nikova, T M; Melikian, A G; Dolgushin, M B; Sorokin, V S; Soboleva, O I; Khokhlova, E V; Gorlachev, G E; Krasnianskiĭ, S A
2012-01-01
The paper presents the experience of application of single-photon emission computed tomography (SPECT) and CT in neurosurgery. Combination of these two techniques in the single system provides higher precision of both methods. The novel technique allows assessment of tumor spread in the brain, differential diagnosis of tumor regrowth and radiation-induced necrosis, evaluation of cerebral perfusion in epilepsy, traumatic brain injury (TBI), and diagnostics of secondary CNS lesions. Examples of primary diagnosis, dynamic follow-up and differential diagnosis of cerebral neoplasms, localization of epileptogenic foci in planning of surgery, prediction of outcome after TBI and evaluation of spread of metastatic skeletal involvement and further application of acquire data are presented.
Zero echo time MRI-only treatment planning for radiation therapy of brain tumors after resection.
Boydev, C; Demol, B; Pasquier, D; Saint-Jalmes, H; Delpon, G; Reynaert, N
2017-10-01
Using magnetic resonance imaging (MRI) as the sole imaging modality for patient modeling in radiation therapy (RT) is a challenging task due to the need to derive electron density information from MRI and construct a so-called pseudo-computed tomography (pCT) image. We have previously published a new method to derive pCT images from head T1-weighted (T1-w) MR images using a single-atlas propagation scheme followed by a post hoc correction of the mapped CT numbers using local intensity information. The purpose of this study was to investigate the performance of our method with head zero echo time (ZTE) MR images. To evaluate results, the mean absolute error in bins of 20 HU was calculated with respect to the true planning CT scan of the patient. We demonstrated that applying our method using ZTE MR images instead of T1-w improved the correctness of the pCT in case of bone resection surgery prior to RT (that is, an example of large anatomical difference between the atlas and the patient). Copyright © 2017. Published by Elsevier Ltd.
Trotter, Paula Diane; McGlone, Francis; McKie, Shane; McFarquhar, Martyn; Elliott, Rebecca; Walker, Susannah Claire; Deakin, John Francis William
2016-08-01
C-tactile afferents (CTs) are slowly conducting nerve fibres, present only in hairy skin. They are optimally activated by slow, gentle stroking touch, such as those experienced during a caress. CT stimulation activates affective processing brain regions, alluding to their role in affective touch perception. We tested a theory that CT-activating touch engages the pro-social functions of serotonin, by determining whether reducing serotonin, through acute tryptophan depletion, diminishes subjective pleasantness and affective brain responses to gentle touch. A tryptophan depleting amino acid drink was administered to 16 healthy females, with a further 14 receiving a control drink. After 4 h, participants underwent an fMRI scan, during which time CT-innervated forearm skin and CT non-innervated finger skin was stroked with three brushes of differing texture, at CT-optimal force and velocity. Pleasantness ratings were obtained post scanning. The control group showed a greater response in ipsilateral orbitofrontal cortex to CT-activating forearm touch compared to touch to the finger where CTs are absent. This differential response was not present in the tryptophan depleted group. This interaction effect was significant. In addition, control participants showed a differential primary somatosensory cortex response to brush texture applied to the finger, a purely discriminatory touch response, which was not observed in the tryptophan depleted group. This interaction effect was also significant. Pleasantness ratings were similar across treatment groups. These results implicate serotonin in the differentiation between CT-activating and purely discriminatory touch responses. Such effects could contribute to some of the social abnormalities seen in psychiatric disorders associated with abnormal serotonin function. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
MR imaging of adult acute infectious encephalitis.
Bertrand, A; Leclercq, D; Martinez-Almoyna, L; Girard, N; Stahl, J-P; De-Broucker, T
2017-05-01
Imaging is a key tool for the diagnosis of acute encephalitis. Brain CT scan must be urgently performed to rule out a brain lesion with mass effect that would contraindicate lumbar puncture. Brain MRI is less accessible than CT scan, but can provide crucial information with patients presenting with acute encephalitis. We performed a literature review on PubMed on April 1, 2015 with the search terms "MRI" and "encephalitis". We first described the various brain MRI abnormalities associated with each pathogen of acute encephalitis (HSV, VZV, other viral agents targeting immunocompromised patients or travelers; tuberculosis, listeriosis, other less frequent bacterial agents). Then, we identified specific patterns of brain MRI abnomalies that may suggest a particular pathogen. Limbic encephalitis is highly suggestive of HSV; it also occurs less frequently in encephalitis due to HHV6, syphillis, Whipple's disease and HIV primary infection. Rhombencephalitis is suggestive of tuberculosis and listeriosis. Acute ischemic lesions can occur in patients presenting with severe bacterial encephalitis, tuberculosis, VZV encephalitis, syphilis, and fungal infections. Brain MRI plays a crucial role in the diagnosis of acute encephalitis. It detects brain signal changes that reinforce the clinical suspicion of encephalitis, especially when the causative agent is not identified by lumbar puncture; it can suggest a particular pathogen based on the pattern of brain abnormalities and it rules out important differential diagnosis (vascular, tumoral or inflammatory causes). Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connor, D.M.; Miller, L.; Benveniste, H.
Our understanding of early development in Alzheimer's disease (AD) is clouded by the scale at which the disease progresses; amyloid beta (A{beta}) plaques, a hallmark feature of AD, are small ({approx} 50 {micro}m) and low contrast in diagnostic clinical imaging techniques. Diffraction enhanced imaging (DEI), a phase contrast x-ray imaging technique, has greater soft tissue contrast than conventional radiography and generates higher resolution images than magnetic resonance microimaging. Thus, in this proof of principle study, DEI in micro-CT mode was performed on the brains of AD-model mice to determine if DEI can visualize A{beta} plaques. Results revealed small nodules inmore » the cortex and hippocampus of the brain. Histology confirmed that the features seen in the DEI images of the brain were A{beta} plaques. Several anatomical structures, including hippocampal subregions and white matter tracks, were also observed. Thus, DEI has strong promise in early diagnosis of AD, as well as general studies of the mouse brain.« less
Bisdas, S; Yang, X; Lim, C C T; Vogl, T J; Koh, T S
2008-01-01
Dynamic contrast-enhanced (DCE) imaging is a promising approach for in vivo assessment of tissue microcirculation. Twenty patients with clinical and routine computed tomography (CT) evidence of intracerebral neoplasm were examined with DCE-CT imaging. Using a distributed-parameter model for tracer kinetics modeling of DCE-CT data, voxel-level maps of cerebral blood flow (F), intravascular blood volume (vi) and intravascular mean transit time (t1) were generated. Permeability-surface area product (PS), extravascular extracellular blood volume (ve) and extraction ratio (E) maps were also calculated to reveal pathologic locations of tracer extravasation, which are indicative of disruptions in the blood-brain barrier (BBB). All maps were visually assessed for quality of tumor delineation and measurement of tumor extent by two radiologists. Kappa (kappa) coefficients and their 95% confidence intervals (CI) were calculated to determine the interobserver agreement for each DCE-CT map. There was a substantial agreement for the tumor delineation quality in the F, ve and t1 maps. The agreement for the quality of the tumor delineation was excellent for the vi, PS and E maps. Concerning the measurement of tumor extent, excellent and nearly excellent agreement was achieved only for E and PS maps, respectively. According to these results, we performed a segmentation of the cerebral tumors on the base of the E maps. The interobserver agreement for the tumor extent quantification based on manual segmentation of tumor in the E maps vs. the computer-assisted segmentation was excellent (kappa = 0.96, CI: 0.93-0.99). The interobserver agreement for the tumor extent quantification based on computer segmentation in the mean images and the E maps was substantial (kappa = 0.52, CI: 0.42-0.59). This study illustrates the diagnostic usefulness of parametric maps associated with BBB disruption on a physiology-based approach and highlights the feasibility for automatic segmentation of cerebral tumors.
Enhancing Innovation and Underlying Neural Mechanisms Via Cognitive Training in Healthy Older Adults
Chapman, Sandra B.; Spence, Jeffrey S.; Aslan, Sina; Keebler, Molly W.
2017-01-01
Non-invasive interventions, such as cognitive training (CT) and physical exercise, are gaining momentum as ways to augment both cognitive and brain function throughout life. One of the most fundamental yet little studied aspects of human cognition is innovative thinking, especially in older adults. In this study, we utilize a measure of innovative cognition that examines both the quantity and quality of abstracted interpretations. This randomized pilot trial in cognitively normal adults (56–75 years) compared the effect of cognitive reasoning training (SMART) on innovative cognition as measured by Multiple Interpretations Measure (MIM). We also examined brain changes in relation to MIM using two MRI-based measurement of arterial spin labeling (ASL) to measure cerebral blood flow (CBF) and functional connectivity MRI (fcMRI) to measure default mode and central executive network (CEN) synchrony at rest. Participants (N = 58) were randomized to the CT, physical exercise (physical training, PT) or control (CN) group where CT and PT groups received training for 3 h/week over 12 weeks. They were assessed at baseline-, mid- and post-training using innovative cognition and MRI measures. First, the CT group showed significant gains pre- to post-training on the innovation measure whereas the physical exercise and control groups failed to show significant gains. Next, the CT group showed increased CBF in medial orbitofrontal cortex (mOFC) and bilateral posterior cingulate cortex (PCC), two nodes within the Default Mode Network (DMN) compared to physical exercise and control groups. Last, significant correlations were found between innovation performance and connectivity of two major networks: CEN (positive correlation) and DMN (negative correlation). These results support the view that both the CEN and DMN are important for enhancement of innovative cognition. We propose that neural mechanisms in healthy older adults can be modified through reasoning training to better subserve enhanced innovative cognition. PMID:29062276
Jones, Peter G; Kool, Bridget; Dalziel, Stuart; Shepherd, Michael; Le Fevre, James; Harper, Alana; Wells, Susan; Stewart, Joanna; Curtis, Elana; Reid, Papaarangi; Ameratunga, Shanthi
2017-07-01
Timely access to computerised tomography (CT) for acute traumatic brain injuries (TBIs) facilitates rapid diagnosis and surgical intervention. In 2009, New Zealand introduced a mandatory target for emergency department (ED) stay such that 95% of patients should leave ED within 6 h of arrival. This study investigated whether this target influenced the timeliness of cranial CT scanning in children who presented to ED with acute TBI. We retrospectively reviewed a random sample of charts of children <15 years with acute TBI from 2006 to 2012. Cases were identified using International Classification of Disease 10 codes consistent with TBI. General linear models investigated changes in time to CT and other indicators before and after the shorter stays in ED target was introduced in 2009. Among the 190 cases eligible for study (n = 91 pre-target and n = 99 post-target), no significant difference was found in time to CT scan pre- and post-target: least squares mean (LSM) with 95% confidence interval = 68 (56-81) versus 65 (53-78) min, respectively, P = 0.66. Time to neurosurgery (LSM 8.7 (5-15) vs. 5.1 (2.6-9.9) h, P = 0.19, or hospital length of stay (LSM: 4.9 (3.9-6.3) vs. 5.2 (4.1-6.7) days, P = 0.69) did not change significantly. However, ED length of stay decreased by 45 min in the post-target period (LSM = 211 (187-238) vs. 166 (98-160) min, P = 0.006). Implementation of the shorter stays in ED target was not associated with a change in the time to CT for children presenting with acute TBI, but an overall reduction in the time spent in ED was apparent. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
NASA Astrophysics Data System (ADS)
Jochimsen, Thies H.; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama
2015-06-01
This study explores the possibility of using simultaneous positron emission tomography—magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of 18F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41 ± 10% which is comparable to the reduction by the PET-CT method (35 ± 10%). The reduction of the predictive LBM method was 29 ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.
Jochimsen, Thies H; Schulz, Jessica; Busse, Harald; Werner, Peter; Schaudinn, Alexander; Zeisig, Vilia; Kurch, Lars; Seese, Anita; Barthel, Henryk; Sattler, Bernhard; Sabri, Osama
2015-06-21
This study explores the possibility of using simultaneous positron emission tomography--magnetic resonance imaging (PET-MRI) to estimate the lean body mass (LBM) in order to obtain a standardized uptake value (SUV) which is less dependent on the patients' adiposity. This approach is compared to (1) the commonly-used method based on a predictive equation for LBM, and (2) to using an LBM derived from PET-CT data. It is hypothesized that an MRI-based correction of SUV provides a robust method due to the high soft-tissue contrast of MRI. A straightforward approach to calculate an MRI-derived LBM is presented. It is based on the fat and water images computed from the two-point Dixon MRI primarily used for attenuation correction in PET-MRI. From these images, a water fraction was obtained for each voxel. Averaging over the whole body yielded the weight-normalized LBM. Performance of the new approach in terms of reducing variations of (18)F-Fludeoxyglucose SUVs in brain and liver across 19 subjects was compared with results using predictive methods and PET-CT data to estimate the LBM. The MRI-based method reduced the coefficient of variation of SUVs in the brain by 41 ± 10% which is comparable to the reduction by the PET-CT method (35 ± 10%). The reduction of the predictive LBM method was 29 ± 8%. In the liver, the reduction was less clear, presumably due to other sources of variation. In conclusion, employing the Dixon data in simultaneous PET-MRI for calculation of lean body mass provides a brain SUV which is less dependent on patient adiposity. The reduced dependency is comparable to that obtained by CT and predictive equations. Therefore, it is more comparable across patients. The technique does not impose an overhead in measurement time and is straightforward to implement.
Journy, Neige; Ancelet, Sophie; Rehel, Jean-Luc; Mezzarobba, Myriam; Aubert, Bernard; Laurier, Dominique; Bernier, Marie-Odile
2014-03-01
The potential adverse effects associated with exposure to ionizing radiation from computed tomography (CT) in pediatrics must be characterized in relation to their expected clinical benefits. Additional epidemiological data are, however, still awaited for providing a lifelong overview of potential cancer risks. This paper gives predictions of potential lifetime risks of cancer incidence that would be induced by CT examinations during childhood in French routine practices in pediatrics. Organ doses were estimated from standard radiological protocols in 15 hospitals. Excess risks of leukemia, brain/central nervous system, breast and thyroid cancers were predicted from dose-response models estimated in the Japanese atomic bomb survivors' dataset and studies of medical exposures. Uncertainty in predictions was quantified using Monte Carlo simulations. This approach predicts that 100,000 skull/brain scans in 5-year-old children would result in eight (90 % uncertainty interval (UI) 1-55) brain/CNS cancers and four (90 % UI 1-14) cases of leukemia and that 100,000 chest scans would lead to 31 (90 % UI 9-101) thyroid cancers, 55 (90 % UI 20-158) breast cancers, and one (90 % UI <0.1-4) leukemia case (all in excess of risks without exposure). Compared to background risks, radiation-induced risks would be low for individuals throughout life, but relative risks would be highest in the first decades of life. Heterogeneity in the radiological protocols across the hospitals implies that 5-10 % of CT examinations would be related to risks 1.4-3.6 times higher than those for the median doses. Overall excess relative risks in exposed populations would be 1-10 % depending on the site of cancer and the duration of follow-up. The results emphasize the potential risks of cancer specifically from standard CT examinations in pediatrics and underline the necessity of optimization of radiological protocols.
The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study.
Betzer, Oshra; Shilo, Malka; Opochinsky, Renana; Barnoy, Eran; Motiei, Menachem; Okun, Eitan; Yadid, Gal; Popovtzer, Rachela
2017-07-01
Our goal was to develop an efficient nanoparticle-based system that can overcome the restrictive mechanism of the blood-brain barrier (BBB) by targeting insulin receptors and would thus enable drug delivery to the brain. Insulin-coated gold nanoparticles (INS-GNPs) were synthesized to serve as a BBB transport system. The effect of nanoparticle size (20, 50 and 70 nm) on their ability to cross the BBB was quantitatively investigated in Balb/C mice. The most widespread biodistribution and highest accumulation within the brain were observed using 20 nm INS-GNPs, 2 h post injection. In vivo CT imaging revealed that particles migrated to specific brain regions, which are involved in neurodegenerative and neuropsychiatric disorders. These findings promote the optimization of nanovehicles for transport of drugs through the BBB. The insulin coating of the particles enabled targeting of specific brain regions, suggesting the potential use of INS-GNPs for delivery of various treatments for brain-related disorders.
Ghatpande, A S; Rao, S; Sikdar, S K
2001-01-01
Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247
Metabolic brain imaging correlated with clinical features of brain tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alavi, J.; Alavi, A.; Dann, R.
1985-05-01
Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1more » enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.« less
Chowdhury, Vishwajit S; Tomonaga, Shozo; Ikegami, Taro; Erwan, Edi; Ito, Kentaro; Cockrem, John F; Furuse, Mitsuhiro
2014-03-01
High ambient temperatures (HT) reduce food intake and body weight in young chickens, and HT can cause increased expression of hypothalamic neuropeptides. The mechanisms by which HT act, and the effects of HT on cellular homeostasis in the brain, are however not well understood. In the current study lipid peroxidation and amino acid metabolism were measured in the brains of 14 d old chicks exposed to HT (35 °C for 24- or 48-h) or to control thermoneutral temperature (CT; 30 °C). Malondialdehyde (MDA) was measured in the brain to determine the degree of oxidative damage. HT increased body temperature and reduced food intake and body weight gain. HT also increased diencephalic oxidative damage after 48 h, and altered some free amino acid concentrations in the diencephalon. Diencephalic MDA concentrations were increased by HT and time, with the effect of HT more prominent with increasing time. HT altered cystathionine, serine, tyrosine and isoleucine concentrations. Cystathionine was lower in HT birds compared with CT birds at 24h, whilst serine, tyrosine and isoleucine were higher at 48 h in HT birds. An increase in oxidative damage and alterations in amino acid concentrations in the diencephalon may contribute to the physiological, behavioral and thermoregulatory responses of heat-exposed chicks. Copyright © 2013 Elsevier Inc. All rights reserved.
Nogal, Pawel; Pniewska-Siark, Barbara; Lewinski, Andrzej
2008-12-01
In patients with anorexia nervosa (AN), computer tomography (CT) scanning and/or magnetic resonance imaging (MR) are usually applied to visualise trophic changes of the brain, resulting from considerable malnutrition or general cachexia of the organism. The goal of the study was an evaluation attempt of the degree of trophic changes in the central nervous system (CNS) of girls with AN, following CT scanning of the brain, together with an analysis of selected clinical and diagnostic parameters, related to the trophic changes in question. The study involved fifty-five (55) female patients with AN. Following CT of the brain - scanning of the cortical sulci - four (4) groups of the patients were identified. The following classification of lesions was applied: Group I - width of cortical sulci < 1.5 mm - standard; Group II - the presence of cortical sulci of width < 1.5 mm and 1.5-3 mm; Group III - width of cortical sulci 1.5-3 mm; Group IV - the presence of cortical sulci of width at 1.5-3 mm and > 3 mm. We did not observe any patient with AN in whom the width of all the cortical sulci was bigger than 3 mm (Group V). In all the groups, clinical parameters, as well as routine laboratory tests and selected hormonal tests, were analysed. In the performed CT scanning of the head in patients with AN, trophic changes in the CNS (as evaluated by the width of cortical sulci) were revealed in 67.3% of the patients. Among the studied groups, statistically significant differences were found for: body weight loss (BWL), the percent of BWL (BWL%), the BWL to disease duration ratio (BWL/time) and BWL%/time, serum concentrations of potassium, calcium, glucose, total protein and urea, as well as serum concentrations of LH, E2, cortisol, FT3 and FT4. The most pronounced disturbances were observed in Group IV, while the least ones - in Group I. In CT scanning of the head, trophic changes in the CNS were observed in girls with AN, measured by the width of cortical sulci. The higher severity of trophic changes in the CNS was associated with higher BWL/time ratio, higher hypercortisolemia, more enhanced hypogonadotrophic hypogonadism, disorders in the peripheral metabolism of the thyroid hormones and with the obtained values of routine laboratory tests, indicating some tendency towards hypovolemia.
Spoormakers, T J P; Ensink, J M; Goehring, L S; Koeman, J P; Ter Braake, F; van der Vlugt-Meijer, R H; van den Belt, A J M
2003-03-01
The occurrence of unexpectedly high numbers of horses with neurological signs during two outbreaks of strangles required prompt in-depth researching of these cases, including the exploration of magnetic resonance imaging (MRI) as a possible diagnostic technique. To describe the case series and assess the usefulness of MRI as an imaging modality for cases suspected of space-occupying lesions in the cerebral cavity. Four cases suspected of suffering from cerebral damage due to Streptococcus equi subsp. equi infection were examined clinically, pathologically, bacteriologically, by clinical chemistry (3 cases) and MRI (2 cases). In one case, MRI findings were compared to images acquired using computer tomography (CT). In all cases, cerebral abscesses positive for Streptococcus equi subsp. equi were found, which explained the clinical signs. Although the lesions could be visualised with CT, MRI images were superior in representing the exact anatomic reality of the soft tissue lesions. The diagnosis of bastard strangles characterised by metastatic brain abscesses was confirmed. MRI appeared to be an excellent tool for the imaging of cerebral lesions in the horse. The high incidence of neurological complications could not be explained but possibly indicated a change in virulence of certain strains of Streptococcus equi subsp. equi. MRI images were very detailed, permitting visualisation of much smaller lesions than demonstrated in this study and this could allow prompt clinical intervention in less advanced cases with a better prognosis. Further, MRI could assist in the surgical treatment of brain abscesses, as has been described earlier for CT.
Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study
NASA Astrophysics Data System (ADS)
Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans
2015-03-01
Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.
Recent neuroimaging techniques in mild traumatic brain injury.
Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L
2007-01-01
Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.
18F-NaF PET Demonstrating Unusual Focal Tracer Activity in the Brain.
Thenkondar, Anuradha; Jafari, Lida; Sooriash, Robbie; Hajsadeghi, Fereshteh; Berenji, Gholam R; Li, Yuxin
2017-02-01
A 60-year-old man with enlarged prostate, hypertension, and diabetes was referred for F-NaF PET/CT to evaluate possible metastatic lesions. The patient appeared asymptomatic on the day of the study, without any signs indicating stroke. Patient also had no known history of malignancy or cerebrovascular disease. He had mild elevation of the prostate-specific antigen level, and biopsy of his prostate was not performed. Patient had long-standing history of chronic back pain and abdominal pain. The PET bone scan demonstrated a large area of very intense tracer uptake in the brain. A subsequent brain MRI revealed prior stroke in the same area.
The Effect of the Presence of EEG Leads on Image Quality in Cerebral Perfusion SPECT and FDG PET/CT.
Zhang, Lulu; Yen, Stephanie P; Seltzer, Marc A; Thomas, George P; Willis, Kristen; Siegel, Alan
2018-06-08
Rationale: Cerebral perfusion SPECT and 18 F-FDG PET/CT are commonly performed diagnostic procedures for patients suffering from epilepsy. Individuals receiving these tests are often in-patients undergoing examinations with EEG leads. We have routinely removed these leads before these tests due to concerns that they would lead to imaging artifacts. The leads would then be replaced at the conclusion of the scan. The goal of our study was to determine if the EEG leads actually do cause artifacts that could lead to erroneous scan interpretation or make the scan uninterpretable. Methods: PET/CT with 18 F-FDG and SPECT with technetium-99m ECD were performed on a two dimensional brain phantom. The phantom was scanned with standard leads, CT/MR compatible leads and with no leads. The scans were interpreted by three experienced nuclear medicine physicians who were asked to rank the images by quality and then to determine if they could differentiate each of the scans from a scan in which it was indicated that no leads were present. Results: No differences could be detected between SPECT or PET scans performed without leads or with either set of leads. The standard EEG leads did create an artifact in the CT portion of the PET/CT while the CT/MR compatible leads did not. Conclusion: This phantom study suggest that EEG leads, standard or CT/MR compatible do not need to be removed for SPECT or for PET. Further study evaluating the effect on patients scan would be of value to support this conclusion. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Gates, Nicola J; Valenzuela, Michael; Sachdev, Perminder S; Singh, Nalin A; Baune, Bernhard T; Brodaty, Henry; Suo, Chao; Jain, Nidhi; Wilson, Guy C; Wang, Yi; Baker, Michael K; Williamson, Dominique; Foroughi, Nasim; Fiatarone Singh, Maria A
2011-04-21
The extent to which mental and physical exercise may slow cognitive decline in adults with early signs of cognitive impairment is unknown. This article provides the rationale and methodology of the first trial to investigate the isolated and combined effects of cognitive training (CT) and progressive resistance training (PRT) on general cognitive function and functional independence in older adults with early cognitive impairment: Study of Mental and Regular Training (SMART). Our secondary aim is to quantify the differential adaptations to these interventions in terms of brain morphology and function, cardiovascular and metabolic function, exercise capacity, psychological state and body composition, to identify the potential mechanisms of benefit and broader health status effects. SMART is a double-blind randomized, double sham-controlled trial. One hundred and thirty-two community-dwelling volunteers will be recruited. Primary inclusion criteria are: at risk for cognitive decline as defined by neuropsychology assessment, low physical activity levels, stable disease, and age over 55 years. The two active interventions are computerized CT and whole body, high intensity PRT. The two sham interventions are educational videos and seated calisthenics. Participants are randomized into 1 of 4 supervised training groups (2 d/wk×6 mo) in a fully factorial design. Primary outcomes measured at baseline, 6, and 18 months are the Alzheimer's Disease Assessment Scale (ADAS-Cog), neuropsychological test scores, and Bayer Informant Instrumental Activities of Daily Living (B-IADLs). Secondary outcomes are psychological well-being, quality of life, cardiovascular and musculoskeletal function, body composition, insulin resistance, systemic inflammation and anabolic/neurotrophic hormones, and brain morphology and function via Magnetic Resonance Imaging (MRI) and Spectroscopy (fMRS). SMART will provide a novel evaluation of the immediate and long term benefits of CT, PRT, and combined CT and PRT on global cognitive function and brain morphology, as well as potential underlying mechanisms of adaptation in older adults at risk of further cognitive decline. Australia and New Zealand Clinical Trials Register (ANZCTR): ANZCTRN12608000489392.
2011-01-01
Background The extent to which mental and physical exercise may slow cognitive decline in adults with early signs of cognitive impairment is unknown. This article provides the rationale and methodology of the first trial to investigate the isolated and combined effects of cognitive training (CT) and progressive resistance training (PRT) on general cognitive function and functional independence in older adults with early cognitive impairment: Study of Mental and Regular Training (SMART). Our secondary aim is to quantify the differential adaptations to these interventions in terms of brain morphology and function, cardiovascular and metabolic function, exercise capacity, psychological state and body composition, to identify the potential mechanisms of benefit and broader health status effects. Methods SMART is a double-blind randomized, double sham-controlled trial. One hundred and thirty-two community-dwelling volunteers will be recruited. Primary inclusion criteria are: at risk for cognitive decline as defined by neuropsychology assessment, low physical activity levels, stable disease, and age over 55 years. The two active interventions are computerized CT and whole body, high intensity PRT. The two sham interventions are educational videos and seated calisthenics. Participants are randomized into 1 of 4 supervised training groups (2 d/wk × 6 mo) in a fully factorial design. Primary outcomes measured at baseline, 6, and 18 months are the Alzheimer's Disease Assessment Scale (ADAS-Cog), neuropsychological test scores, and Bayer Informant Instrumental Activities of Daily Living (B-IADLs). Secondary outcomes are psychological well-being, quality of life, cardiovascular and musculoskeletal function, body composition, insulin resistance, systemic inflammation and anabolic/neurotrophic hormones, and brain morphology and function via Magnetic Resonance Imaging (MRI) and Spectroscopy (fMRS). Discussion SMART will provide a novel evaluation of the immediate and long term benefits of CT, PRT, and combined CT and PRT on global cognitive function and brain morphology, as well as potential underlying mechanisms of adaptation in older adults at risk of further cognitive decline. Trial Registration Australia and New Zealand Clinical Trials Register (ANZCTR): ANZCTRN12608000489392 PMID:21510896
ERIC Educational Resources Information Center
Pagani, Marco; Manouilenko, Irina; Stone-Elander, Sharon; Odh, Richard; Salmaso, Dario; Hatherly, Robert; Brolin, Fredrik; Jacobsson, Hans; Larsson, Stig A.; Bejerot, Susanne
2012-01-01
Specific biological markers for Autism Spectrum Disorder (ASD) have not yet been established. Functional studies have shown abnormalities in the anatomo-functional connectivity of the limbic-striatal "social" brain. This study aimed to investigate regional cerebral blood flow (rCBF) at rest. Thirteen patients with ASD of normal intelligence and…
Neuropsychological outcome after traumatic temporal lobe damage.
Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F
1991-01-01
The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J.; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A. Gregory
2013-01-01
A number of factors have to be considered for implementing an accurate attenuation correction (AC) in a combined MR-PET scanner. In this work, some of these challenges were investigated and an AC method based entirely on the MR data obtained with a single dedicated sequence was developed and used for neurological studies performed with the MR-PET human brain scanner prototype. Methods The focus was on the bone/air segmentation problem, the bone linear attenuation coefficient selection and the RF coil positioning. The impact of these factors on the PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultra-short echo time (DUTE) MR sequence was proposed for head imaging. Simultaneous MR-PET data were acquired and the PET images reconstructed using the proposed MR-DUTE-based AC method were compared with the PET images reconstructed using a CT-based AC. Results Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm−1 to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. Based on these results, the segmented CT AC method was established as the “silver standard” for the segmented MR-based AC method. Particular to an integrated MR-PET scanner, ignoring the RF coil attenuation can cause large underestimations (i.e. up to 50%) in the reconstructed images. Furthermore, the coil location in the PET field of view has to be accurately known. Good quality bone/air segmentation can be performed using the DUTE data. The PET images obtained using the MR-DUTE- and CT-based AC methods compare favorably in most of the brain structures. Conclusion An MR-DUTE-based AC method was implemented considering all these factors and our preliminary results suggest that this method could potentially be as accurate as the segmented CT method and it could be used for quantitative neurological MR-PET studies. PMID:20810759
Catana, Ciprian; van der Kouwe, Andre; Benner, Thomas; Michel, Christian J; Hamm, Michael; Fenchel, Matthias; Fischl, Bruce; Rosen, Bruce; Schmand, Matthias; Sorensen, A Gregory
2010-09-01
Several factors have to be considered for implementing an accurate attenuation-correction (AC) method in a combined MR-PET scanner. In this work, some of these challenges were investigated, and an AC method based entirely on the MRI data obtained with a single dedicated sequence was developed and used for neurologic studies performed with the MR-PET human brain scanner prototype. The focus was on the problem of bone-air segmentation, selection of the linear attenuation coefficient for bone, and positioning of the radiofrequency coil. The impact of these factors on PET data quantification was studied in simulations and experimental measurements performed on the combined MR-PET scanner. A novel dual-echo ultrashort echo time (DUTE) MRI sequence was proposed for head imaging. Simultaneous MR-PET data were acquired, and the PET images reconstructed using the proposed DUTE MRI-based AC method were compared with the PET images that had been reconstructed using a CT-based AC method. Our data suggest that incorrectly accounting for the bone tissue attenuation can lead to large underestimations (>20%) of the radiotracer concentration in the cortex. Assigning a linear attenuation coefficient of 0.143 or 0.151 cm(-1) to bone tissue appears to give the best trade-off between bias and variability in the resulting images. Not identifying the internal air cavities introduces large overestimations (>20%) in adjacent structures. On the basis of these results, the segmented CT AC method was established as the silver standard for the segmented MRI-based AC method. For an integrated MR-PET scanner, in particular, ignoring the radiofrequency coil attenuation can cause large underestimations (i.e.,
NASA Astrophysics Data System (ADS)
Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro
This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, C; Lee, S; Wessels, B
2016-06-15
Purpose: To compare the difference in Hounsfield unit-relative stopping power and evaluate the dosimetric impact of spectral vs. conventional CT on proton therapy treatment plans. Method: The Philips prototype (IQon), a detector-based, spectral CT system (spectral) was used to scan calibration and Rando phantoms. Data were reconstructed with and without energy decomposition to produce monoenergetic 70 keV, 140 keV, and the Zeff images. Relative stopping power (RSP) in the head and lung regions were evaluated as a function of HU in order to compare spectral and conventional CT. Treatment plans for the Rando phantom were also generated and used tomore » produce DVHs of fictitious target volume and organ-at-risk contoured on the head and lung. Results: Agreement of the Zeff of the tissue-substitute materials determined using spectral CT agrees to within 1 to 5% of the Zeff of the known phantom composition. The discrepancy is primarily attributed to non-uniformity in the phantom. Differences between the HU-RSP curves obtained using spectral and conventional CT were small except for in the lung curve at HU>1000. The large difference in planned doses using Spectral vs. conventional CT occurred in a low-dose brain region (1.7mm between the locations of the 100 cGy lines and 3 mm for 50 cGy lines). Conclusion: Conventionally, a single HU-RSP from CT scanner is used in proton treatment planning. Spectral CT allows site-specific HU-RSP for each patient. Spectral and conventional HU-RSP may result in different distributions as shown here. Additional study is required to evaluate the impact of Spectral CT in proton treatment planning. This study is part of a research agreement between Philips and University Hospitals/Case Medical Center.« less
Personalized technologist dose audit feedback for reducing patient radiation exposure from CT.
Miglioretti, Diana L; Zhang, Yue; Johnson, Eric; Lee, Choonsik; Morin, Richard L; Vanneman, Nicholas; Smith-Bindman, Rebecca
2014-03-01
The aim of this study was to determine whether providing radiologic technologists with audit feedback on doses from CT examinations they conduct and education on dose-reduction strategies reduces patients' radiation exposure. This prospective, controlled pilot study was conducted within an integrated health care system from November 2010 to October 2011. Ten technologists at 2 facilities received personalized dose audit reports and education on dose-reduction strategies; 9 technologists at a control facility received no intervention. Radiation exposure was measured by the dose-length product (DLP) from CT scans performed before (n = 1,630) and after (n = 1,499) the intervention and compared using quantile regression. Technologists were surveyed before and after the intervention. For abdominal CT, DLPs decreased by 3% to 12% at intervention facilities but not at the control facility. For brain CT, DLPs significantly decreased by 7% to 12% at one intervention facility; did not change at the second intervention facility, which had the lowest preintervention DLPs; and increased at the control facility. Technologists were more likely to report always thinking about radiation exposure and associated cancer risk and optimizing settings to reduce exposure after the intervention. Personalized audit feedback and education can change technologists' attitudes about, and awareness of, radiation and can lower patient radiation exposure from CT imaging. Copyright © 2014 American College of Radiology. All rights reserved.
Groth, Michael; Barthe, Käthe Greta; Riemer, Martin; Ernst, Marielle; Herrmann, Jochen; Fiehler, Jens; Buhk, Jan-Hendrik
2018-04-01
To compare the learning benefit of three different teaching strategies on the interpretation of emergency cerebral computed tomography (CT) pathologies by medical students. Three groups of students with different types of teaching (e-learning, interactive teaching, and standard curricular education in neuroradiology) were tested with respect to the detection of seven CT pathologies. The test results of each group were compared for each CT pathology using the chi-square test. A p-value ≤ 0.05 was considered to be significant. Opposed to the results of the comparison group (curricular education), the e-learning group and interactive teaching tutorial group both showed a significantly better performance in detecting hyperdense middle cerebral artery sign (p = 0.001 and p < 0.0001) as well as subarachnoid hemorrhage (p = 0.03 and p = 0.001) on CT. Moreover, an increase in performance for the detection of subdural hematoma and skull fracture could be observed for both the interactive teaching group and the e-learning group, with statistical significance in the latter (p = 0.03 and p < 0.0001, respectively). No statistically significant differences were found for the detection of intracranial and epidural hemorrhage, as well as midline shift, among the groups studied. Our study demonstrates potential learning benefits for both the interactive teaching tutorial and e-learning module group with respect to reading CT scans with slightly different advantages. Thus, the introduction of new learning methods in radiological education might be reasonable at an undergraduate stage but requires learning content-based considerations. · E-learning can offer benefits regarding the reading of cerebral CT scans by students. · Interactive tutorial can offer benefits regarding the reading of cerebral CT scans by students. · E-learning and interactive tutorial feature different strengths for student learning in radiology. · Application of interactive teaching methods in radiology requires learning content-based considerations. · Groth M, Barthe KG, Riemer M et al. Critical Analysis of an e-Learning and Interactive Teaching Module with Respect to the Interpretation of Emergency Computed Tomography of the Brain. Fortschr Röntgenstr 2017; 190: 334 - 340. © Georg Thieme Verlag KG Stuttgart · New York.
Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco
2008-09-01
This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.
Proton range shift analysis on brain pseudo-CT generated from T1 and T2 MR.
Pileggi, Giampaolo; Speier, Christoph; Sharp, Gregory C; Izquierdo Garcia, David; Catana, Ciprian; Pursley, Jennifer; Amato, Francesco; Seco, Joao; Spadea, Maria Francesca
2018-05-29
In radiotherapy, MR imaging is only used because it has significantly better soft tissue contrast than CT, but it lacks electron density information needed for dose calculation. This work assesses the feasibility of using pseudo-CT (pCT) generated from T1w/T2w MR for proton treatment planning, where proton range comparisons are performed between standard CT and pCT. MR and CT data from 14 glioblastoma patients were used in this study. The pCT was generated by using conversion libraries obtained from tissue segmentation and anatomical regioning of the T1w/T2w MR. For each patient, a plan consisting of three 18 Gy beams was designed on the pCT, for a total of 42 analyzed beams. The plan was then transferred onto the CT that represented the ground truth. Range shift (RS) between pCT and CT was computed at R 80 over 10 slices. The acceptance threshold for RS was according to clinical guidelines of two institutions. A γ-index test was also performed on the total dose for each patient. Mean absolute error and bias for the pCT were 124 ± 10 and -16 ± 26 Hounsfield Units (HU), respectively. The median and interquartile range of RS was 0.5 and 1.4 mm, with highest absolute value being 4.4 mm. Of the 42 beams, 40 showed RS less than the clinical range margin. The two beams with larger RS were both in the cranio-caudal direction and had segmentation errors due to the partial volume effect, leading to misassignment of the HU. This study showed the feasibility of using T1w and T2w MRI to generate a pCT for proton therapy treatment, thus avoiding the use of a planning CT and allowing better target definition and possibilities for online adaptive therapies. Further improvements of the methodology are still required to improve the conversion from MRI intensities to HUs.
Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John
2013-04-01
The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. In cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.
Markerless motion estimation for motion-compensated clinical brain imaging
NASA Astrophysics Data System (ADS)
Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.
2018-05-01
Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.
Bonavita, S; Sacco, R; Della Corte, M; Esposito, S; Sparaco, M; d'Ambrosio, A; Docimo, R; Bisecco, A; Lavorgna, L; Corbo, D; Cirillo, S; Gallo, A; Esposito, F; Tedeschi, G
2015-01-01
To better understand the effects of short-term computer-based cognitive rehabilitation (cCR) on cognitive performances and default mode network (DMN) intrinsic functional connectivity (FC) in cognitively impaired relapsing remitting (RR) multiple sclerosis (MS) patients. Eighteen cognitively impaired RRMS patients underwent neuropsychological evaluation by the Rao's brief repeatable battery and resting-state functional magnetic resonance imaging to evaluate FC of the DMN before and after a short-term (8 weeks, twice a week) cCR. A control group of 14 cognitively impaired RRMS patients was assigned to an aspecific cognitive training (aCT), and underwent the same study protocol. Correlations between DMN and cognitive performances were also tested. After cCR, there was a significant improvement of the following tests: SDMT (p < 0.01), PASAT 3" (p < 0.00), PASAT 2" (p < 0.03), SRT-D (p < 0.02), and 10/36 SPART-D (p < 0.04); as well as a significant increase of the FC of the DMN in the posterior cingulate cortex (PCC) and bilateral inferior parietal cortex (IPC). After cCR, a significant negative correlation between Stroop Color-Word Interference Test and FC in the PCC emerged. After aCT, the control group did not show any significant effect either on FC or neuropsychological tests. No significant differences were found in brain volumes and lesion load in both groups when comparing data acquired at baseline and after cCR or aCT. In cognitively impaired RRMS patients, cCR improves cognitive performances (i.e., processing speed and visual and verbal sustained memory), and increases FC in the PCC and IPC of the DMN. This exploratory study suggests that cCR may induce adaptive cortical reorganization favoring better cognitive performances, thus strengthening the value of cognitive exercise in the general perspective of building either cognitive or brain reserve.
Gignac, Paul M; Kley, Nathan J
2014-05-01
The now widespread use of non-destructive X-ray computed tomography (CT) and micro-CT (µCT) has greatly augmented our ability to comprehensively detail and quantify the internal hard-tissue anatomy of vertebrates. However, the utility of X-ray imaging for gaining similar insights into vertebrate soft-tissue anatomy has yet to be fully realized due to the naturally low X-ray absorption of non-mineralized tissues. In this study, we show how a wide diversity of soft-tissue structures within the vertebrate head-including muscles, glands, fat deposits, perichondria, dural venous sinuses, white and gray matter of the brain, as well as cranial nerves and associated ganglia-can be rapidly visualized in their natural relationships with extraordinary levels of detail using iodine-enhanced (i-e) µCT imaging. To date, Lugol's iodine solution (I2 KI) has been used as a contrast agent for µCT imaging of small invertebrates, vertebrate embryos, and certain isolated parts of larger, post-embryonic vertebrates. These previous studies have all yielded promising results, but visualization of soft tissues in smaller invertebrate and embryonic vertebrate specimens has generally been more complete than that for larger, post-embryonic vertebrates. Our research builds on these previous studies by using high-energy µCT together with more highly concentrated I2 KI solutions and longer staining times to optimize the imaging and differentiation of soft tissues within the heads of post-embryonic archosaurs (Alligator mississippiensis and Dromaius novaehollandiae). We systematically quantify the intensities of tissue staining, demonstrate the range of anatomical structures that can be visualized, and generate a partial three-dimensional reconstruction of alligator cephalic soft-tissue anatomy. © 2014 Wiley Periodicals, Inc.
Multicentre imaging measurements for oncology and in the brain
Tofts, P S; Collins, D J
2011-01-01
Multicentre imaging studies of brain tumours (and other tumour and brain studies) can enable a large group of patients to be studied, yet they present challenging technical problems. Differences between centres can be characterised, understood and minimised by use of phantoms (test objects) and normal control subjects. Normal white matter forms an excellent standard for some MRI parameters (e.g. diffusion or magnetisation transfer) because the normal biological range is low (<2–3%) and the measurements will reflect this, provided the acquisition sequence is controlled. MR phantoms have benefits and they are necessary for some parameters (e.g. tumour volume). Techniques for temperature monitoring and control are given. In a multicentre study or treatment trial, between-centre variation should be minimised. In a cross-sectional study, all groups should be represented at each centre and the effect of centre added as a covariate in the statistical analysis. In a serial study of disease progression or treatment effect, individual patients should receive all of their scans at the same centre; the power is then limited by the within-subject reproducibility. Sources of variation that are generic to any imaging method and analysis parameters include MR sequence mismatch, B1 errors, CT effective tube potential, region of interest generation and segmentation procedure. Specific tissue parameters are analysed in detail to identify the major sources of variation and the most appropriate phantoms or normal studies. These include dynamic contrast-enhanced and dynamic susceptibility contrast gadolinium imaging, T1, diffusion, magnetisation transfer, spectroscopy, tumour volume, arterial spin labelling and CT perfusion. PMID:22433831
Big for small: Validating brain injury guidelines in pediatric traumatic brain injury.
Azim, Asad; Jehan, Faisal S; Rhee, Peter; O'Keeffe, Terence; Tang, Andrew; Vercruysse, Gary; Kulvatunyou, Narong; Latifi, Rifat; Joseph, Bellal
2017-12-01
Brain injury guidelines (BIG) were developed to reduce overutilization of neurosurgical consultation (NC) as well as computed tomography (CT) imaging. Currently, BIG have been successfully applied to adult populations, but the value of implementing these guidelines among pediatric patients remains unassessed. Therefore, the aim of this study was to evaluate the established BIG (BIG-1 category) for managing pediatric traumatic brain injury (TBI) patients with intracranial hemorrhage (ICH) without NC (no-NC). We prospectively implemented the BIG-1 category (normal neurologic examination, ICH ≤ 4 mm limited to one location, no skull fracture) to identify pediatric TBI patients (age, ≤ 21 years) that were to be managed no-NC. Propensity score matching was performed to match these no-NC patients to a similar cohort of patients managed with NC before the implementation of BIG in a 1:1 ratio for demographics, severity of injury, and type as well as size of ICH. Our primary outcome measure was need for neurosurgical intervention. A total of 405 pediatric TBI patients were enrolled, of which 160 (NC, 80; no-NC, 80) were propensity score matched. The mean age was 9.03 ± 7.47 years, 62.1% (n = 85) were male, the median Glasgow Coma Scale score was 15 (13-15), and the median head Abbreviated Injury Scale score was 2 (2-3). A subanalysis based on stratifying patients by age groups showed a decreased in the use of repeat head CT (p = 0.02) in the no-NC group, with no difference in progression (p = 0.34) and the need for neurosurgical intervention (p = 0.9) compared with the NC group. The BIG can be safely and effectively implemented in pediatric TBI patients. Reducing repeat head CT in pediatric patients has long-term sequelae. Likewise, adhering to the guidelines helps in reducing radiation exposure across all age groups. Therapeutic/care management, level III.
NASA Astrophysics Data System (ADS)
Mow, M.; Zbijewski, W.; Sisniega, A.; Xu, J.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Koliatsos, V.; Aygun, N.; Siewerdsen, J. H.
2017-03-01
Purpose: To improve the timely detection and treatment of intracranial hemorrhage or ischemic stroke, recent efforts include the development of cone-beam CT (CBCT) systems for perfusion imaging and new approaches to estimate perfusion parameters despite slow rotation speeds compared to multi-detector CT (MDCT) systems. This work describes development of a brain perfusion CBCT method using a reconstruction of difference (RoD) approach to enable perfusion imaging on a newly developed CBCT head scanner prototype. Methods: A new reconstruction approach using RoD with a penalized-likelihood framework was developed to image the temporal dynamics of vascular enhancement. A digital perfusion simulation was developed to give a realistic representation of brain anatomy, artifacts, noise, scanner characteristics, and hemo-dynamic properties. This simulation includes a digital brain phantom, time-attenuation curves and noise parameters, a novel forward projection method for improved computational efficiency, and perfusion parameter calculation. Results: Our results show the feasibility of estimating perfusion parameters from a set of images reconstructed from slow scans, sparse data sets, and arc length scans as short as 60 degrees. The RoD framework significantly reduces noise and time-varying artifacts from inconsistent projections. Proper regularization and the use of overlapping reconstructed arcs can potentially further decrease bias and increase temporal resolution, respectively. Conclusions: A digital brain perfusion simulation with RoD imaging approach has been developed and supports the feasibility of using a CBCT head scanner for perfusion imaging. Future work will include testing with data acquired using a 3D-printed perfusion phantom currently and translation to preclinical and clinical studies.