Brainstem death: A comprehensive review in Indian perspective
Dhanwate, Anant Dattatray
2014-01-01
With the advent of cardiopulmonary resuscitation techniques, the cardiopulmonary definition of death lost its significance in favor of brain death. Brain death is a permanent cessation of all functions of the brain in which though individual organs may function but lack of integrating function of the brain, lack of respiratory drive, consciousness, and cognition confirms to the definition that death is an irreversible cessation of functioning of the organism as a whole. In spite of medical and legal acceptance globally, the concept of brain death and brain-stem death is still unclear to many. Brain death is not promptly declared due to lack of awareness and doubts about the legal procedure of certification. Many brain dead patients are kept on life supporting systems needlessly. In this comprehensive review, an attempt has been made to highlight the history and concept of brain death and brain-stem death; the anatomical and physiological basis of brain-stem death, and criteria to diagnose brain-stem death in India. PMID:25249744
A Response to the Legitimacy of Brain Death in Islam.
Rady, Mohamed Y; Verheijde, Joseph L
2016-08-01
Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria.
Using the brain criterion in organ donation after the circulatory determination of death.
Dalle Ave, Anne L; Bernat, James L
2016-06-01
The UK, France, and Switzerland determine death using the brain criterion even in organ donation after the circulatory determination of death (DCDD), in which the United States and Canada use the circulatory-respiratory criterion. In our analysis of the scientific validity of the brain criterion in DCDD, we concluded that although it may be attractive in theory because it conceptualizes death as a unitary phenomenon, its use in practice is invalid. The preconditions (ie, the absence of reversible causes, such as toxic or metabolic disorders) for determining brain death cannot be met in DCDD. Thus, although brain death tests prove the cessation of tested brain functions, they do not prove that their cessation is irreversible. A stand-off period of 5 to 10 minutes is insufficient to achieve the irreversibility requirement of brain death. Because circulatory cessation inevitably leads to cessation of brain functions, first permanently and then irreversibly, the use of brain criterion is unnecessary to determine death in DCDD. Expanding brain death to permit it to be satisfied by permanent cessation of brain functions is controversial but has been considered as a possible means to declare death in uncontrolled DCDD. Copyright © 2016 Elsevier Inc. All rights reserved.
Donation after brain circulation determination of death.
Dalle Ave, Anne L; Bernat, James L
2017-02-23
The fundamental determinant of death in donation after circulatory determination of death is the cessation of brain circulation and function. We therefore propose the term donation after brain circulation determination of death [DBCDD]. In DBCDD, death is determined when the cessation of circulatory function is permanent but before it is irreversible, consistent with medical standards of death determination outside the context of organ donation. Safeguards to prevent error include that: 1] the possibility of auto-resuscitation has elapsed; 2] no brain circulation may resume after the determination of death; 3] complete circulatory cessation is verified; and 4] the cessation of brain function is permanent and complete. Death should be determined by the confirmation of the cessation of systemic circulation; the use of brain death tests is invalid and unnecessary. Because this concept differs from current standards, consensus should be sought among stakeholders. The patient or surrogate should provide informed consent for organ donation by understanding the basis of the declaration of death. In cases of circulatory cessation, such as occurs in DBCDD, death can be defined as the permanent cessation of brain functions, determined by the permanent cessation of brain circulation.
An educational initiative to improve medical student awareness about brain death.
Lewis, Ariane; Howard, Jonathan; Watsula-Morley, Amanda; Gillespie, Colleen
2018-04-01
Medical student knowledge about brain death determination is limited. We describe an educational initiative to improve medical student awareness about brain death and assess the impact of this initiative. Beginning in July 2016, students at our medical school were required to attend a 90-min brain death didactic and simulation session during their neurology clerkship. Students completed a test immediately before and after participating in the initiative. Of the 145 students who participated in this educational initiative between July 2016 and June 2017, 124 (86%) consented to have their data used for research purposes as part of a medical education registry. Students correctly answered a median of 53% of questions (IQR 47-58%) on the pretest and 86% of questions (IQR 78-89%) on the posttest (p < .001). Comfort with both performing a brain death evaluation and talking to a family about brain death improved significantly after this initiative (18% of students were comfortable performing a brain death evaluation before the initiative and 86% were comfortable doing so after the initiative, p < .001; 18% were comfortable talking to a family about brain death before the initiative and 76% were comfortable doing so after the initiative, p < .001). Incorporation of simulation in undergraduate medical education is high-yield. At our medical school, knowledge about brain death and comfort performing a brain death exam or talking to a family about brain death was limited prior to development of this initiative, but awareness and comfort dealing with brain death improved significantly after this initiative. Copyright © 2018 Elsevier B.V. All rights reserved.
Markert, L; Bockholdt, B; Verhoff, M A; Heinze, S; Parzeller, M
2016-03-01
In the practice of legal medicine in Germany, the assessment of brain death is of minor importance and attracts little attention. However, since several years, international criticism on the concept of brain death has culminated. By reviewing literature and the results of a questionnaire distributed among the participants of the 93rd Annual Congress of the Germany Society of Legal Medicine, the state of knowledge and the current views on brain death were evaluated. Literature search of recent publications regarding brain death was performed (PubMed database, references of legal medicine, Report of the President's Council on Bioethics, USA 2008). A questionnaire was developed and distributed among the participants of the Congress. The assumption that individual and brain death are synonymous is criticized. Internationally, there are trends to harmonize the very different clinical criteria to assess brain death. The diagnostic advantage of novel techniques such as CT angiography is controversially discussed. It becomes apparent that procedures which record the blood flow and perfusion of the brain will be applied more in the future. Regrettably, these developments are not described in the literature of legal medicine. Moreover, among German forensic scientists, different views concerning brain death exist. The majority favors its equivalent treatment with individual death. The thanatological background can be improved concerning certain aspects of brain death as well as its legal implications. Teaching and research in legal medicine should include the subject brain death. Expertise in forensic science may contribute to the interdisciplinary discussion on brain death. The transfer of actual knowledge, also on disputed ethical aspects of thanatology, to physicians of all disciplines is of great importance.
Neuroscience and Brain Death Controversies: The Elephant in the Room.
Verheijde, Joseph L; Rady, Mohamed Y; Potts, Michael
2018-06-21
The conception and the determination of brain death continue to raise scientific, legal, philosophical, and religious controversies. While both the President's Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research in 1981 and the President's Council on Bioethics in 2008 committed to a biological definition of death as the basis for the whole-brain death criteria, contemporary neuroscientific findings augment the concerns about the validity of this biological definition. Neuroscientific evidentiary findings, however, have not yet permeated discussions about brain death. These findings have critical relevance (scientifically, medically, legally, morally, and religiously) because they indicate that some core assumptions about brain death are demonstrably incorrect, while others lack sufficient evidential support. If behavioral unresponsiveness does not equate to unconsciousness, then the philosophical underpinning of the definition based on loss of capacity for consciousness as well as the criteria, and tests in brain death determination are incongruent with empirical evidence. Thus, the primary claim that brain death equates to biological death has then been de facto falsified. This conclusion has profound philosophical, religious, and legal implications that should compel respective authorities to (1) reassess the philosophical rationale for the definition of death, (2) initiate a critical reappraisal of the presumed alignment of brain death with the theological definition of death in Abrahamic faith traditions, and (3) enact new legislation ratifying religious exemption to death determination by neurologic criteria.
Total Brain Death and the Integration of the Body Required of a Human Being
Lee, Patrick
2016-01-01
I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change—the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. PMID:27097647
Yang, Qing; Miller, Geoffrey
2015-06-01
The concept of brain death as equivalent to cardiopulmonary death was initially conceived following developments in neuroscience, critical care, and transplant technology. It is now a routine part of medicine in Western countries, including the United States. In contrast, Eastern countries have been reluctant to incorporate brain death into legislation and medical practice. Several countries, most notably China, still lack laws recognizing brain death and national medical standards for making the diagnosis. The perception is that Asians are less likely to approve of brain death or organ transplant from brain dead donors. Cultural and religious traditions have been referenced to explain this apparent difference. In the West, the status of the brain as home to the soul in Enlightenment philosophy, combined with pragmatism and utilitarianism, supports the concept of brain death. In the East, the integration of body with spirit and nature in Buddhist and folk beliefs, along with the Confucian social structure that builds upon interpersonal relationships, argues against brain death. However, it is unclear whether these reasoning strategies are explicitly used when families and medical providers are faced with acknowledging brain death. Their decisions are more likely to involve a prioritization of values and a rationalization of intuitive responses. Why and whether there might be differences between East and West in the acceptance of the brain death concept requires further empirical testing, which would help inform policy-making and facilitate communication between providers and patients from different cultural and ethnic backgrounds.
Questionnaire on Brain Death and Organ Procurement.
Hammad, Saleh; Alnammourah, Manal; Almahmoud, Farah; Fawzi, Mais; Breizat, Abdel-Hadi
2017-02-01
The subject of organs for transplant after brain death raises many concerns, including definition and timing of death, how to permit human organ transplant, and the idea of paying for organs. Many ethical concerns are raised regarding regulations and procedures for organ transplant in developing countries. These include where and how to obtain organs and the concept of justice in organ distribution. We administered 2682 questionnaires to 628 men and 2054 women over 24 months (range, 18 to 70 years old). We included people from universities, colleges, and the general public and asked questions on the circumstances of death, the conditions of conversations around organ donation, and reasons for acceptance or refusal of donation. The identical questionnaire, consisting of 8 questions, was administered twice: before and after a teaching session on brain death and organ procurement. The study was approved by our Ethical Review Committee and in accordance with the ethical guidelines of the 1975 Helsinki Declaration. Written informed consent was obtained from all participants. We found that 72.1% understood brain death in the prequestionnaire and 88% understood brain death in the postquestionnaire, with 63.8% versus 68% accepting the concept of brain death, 50.6% versus 58.3% thinking that their religion is against brain death, 11.3% versus 11.3% carrying a donor card, 50.7% versus 58.9% wanting to carry a donor card, 46.4% versus 56.4% agreeing to give consent for organ donation if a relative was diagnosed with brain death, 28.3% versus 50% aware of the laws and regulations concerning brain death and organ donation and transplant in Jordan, and 35.4% versus 40% in agreement with the Presumed Consent Law, respectively. In Jordan, along with legal requirements concerning brain death and organ donation and transplant, there is a lack of acceptance of organ donation after brain death, necessitating further work and activities to achieve self-sufficiency from donated organs.
A change of heart and a change of mind? Technology and the redefinition of death in 1968.
Giacomini, M
1997-05-01
In 1968, an ad hoc committee of Harvard faculty publicly redefined death as "brain death". What interests and issues compelled the redefinition of death, and formed the "spirit" of this precedent-setting policy? This paper reports on an historical study of the files of the Harvard ad hoc committee, the proceedings of an international conference on ethical issues in organ transplantation, and a review of the medical literature and media in the decades preceding the redefinition of death. This analysis of the technological and professional forces involved in the redefinition of death in 1968 questions two common theses: that technological "progress", primarily in the areas of life support and electroencephalography, literally created brain-dead bodies and dictated their defining features (respectively), and that Harvard's definition of brain death by committee constituted a net loss of autonomy for medicine. In fact, medical researchers through the 1960s disputed and negotiated many features of the brain death syndrome, and transplantation interests-perhaps more kidney than heart-played a particularly influential role in tailoring the final criteria put forth by Harvard in 1968. It is also doubtful whether Harvard's definition of brain death by multidisciplinary committee undermined medical privilege and autonomy. The Harvard Ad Hoc Committee may not have succeeded in establishing definitive, indisputable brain death criteria and ensuring their consistent application to all clinical cases of brain death. However, it did gain significant ground for transplant and other medical interests by (1) establishing brain death as a technical "fact" and the definition of brain death as an exercise for medical theorists, (2) involving non-medical ethics and humanities experts in supporting the technical redefinition of death, and, (3) successfully involving transplant surgeons in the redefinition of death and attempting (albeit unsuccessfully) not to exclude them from the actual diagnosis of death in individual cases.
Moschella, Melissa
2016-01-01
This article explains the problems with Alan Shewmon’s critique of brain death as a valid sign of human death, beginning with a critical examination of his analogy between brain death and severe spinal cord injury. The article then goes on to assess his broader argument against the necessity of the brain for adult human organismal integration, arguing that he fails to translate correctly from biological to metaphysical claims. Finally, on the basis of a deeper metaphysical analysis, I offer a revised rationale for the validity of the neurological criterion of human death. PMID:27095749
Total brain death: a reply to Alan Shewmon.
Lee, Patrick; GriseZ, Germain
2012-06-01
D. Alan Shewmon has advanced a well-documented challenge to the widely accepted total brain death criterion for death of the human being. We show that Shewmon’s argument against this criterion is unsound, though he does refute the standard argument for that criterion. We advance a distinct argument for the total brain death criterion and answer likely objections. Since human beings are rational animals--sentient organisms of a specific type--the loss of the radical capacity for sentience (the capacity to sense or to develop the capacity to sense) involves a substantial change, the passing away of the human organism. In human beings total brain death involves the complete loss of the radical capacity for sentience, and so in human beings total brain death is death.
Total Brain Death and the Integration of the Body Required of a Human Being.
Lee, Patrick
2016-06-01
I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change-the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Confounding factors in diagnosing brain death: a case report.
Burns, Jeffrey M; Login, Ivan S
2002-06-26
Brain death is strictly defined medically and legally. This diagnosis depends on three cardinal neurological features: coma, absent brainstem reflexes, and apnea. The diagnosis can only be made, however, in the absence of intoxication, hypothermia, or certain medical illnesses. A patient with severe hypoxic-ischemic brain injury met the three cardinal neurological features of brain death but concurrent profound hypothyroidism precluded the diagnosis. Our clinical and ethical decisions were further challenged by another facet of this complex case. Although her brain damage indicated a hopeless prognosis, we could not discontinue care based on futility because the only known surrogate was mentally retarded and unable to participate in medical planning. The presence of certain medical conditions prohibits a diagnosis of brain death, which is a medicolegal diagnosis of death, not a prediction or forecast of future outcome. While prognostication is important in deciding to withdraw care, it is not a component in diagnosing brain death.
Brain death: the challenges of translating medical science into Islamic bioethical discourse.
Padela, Aasim I; Basser, Taha A
2012-09-01
Islamic ethico-legal assessments of brain death are varied and controversial. Some Islamic ethico-legal bodies have concluded that brain death is equivalent to cardiopulmonary death; others regard it as an intermediate state between life and death, and a few opine that it does not meet the standards for legal death according to Islamic law. Yet this translation of the concept of brain death into the Islamic ethico-legal domain has generated multiple ethical complexities that receive insufficient attention within the extant medical and fiqh literature. How do Islamic legists understand brain death as a clinical phenomenon? How does the Islamic ethico-legal system treat medical uncertainty? What Islamic ethico-legal principles should apply to bioethical questions about life and death? In this paper, we analyze the arguments for, and against, the acceptance of brain death within the context of the deliberation of a representative juridical council. In our discussion we focus on areas in which the legists' ethico-legal reasoning hinges upon clinical conceptions of the state of the individual when diagnosed as brain dead. As Islamic ethics continues to engage scientific and technological advancements in these areas, such exploration of internal workings is necessary if we wish to better understand how Islamic ethical principles can contribute to bioethical deliberation.
The Case for Reasonable Accommodation of Conscientious Objections to Declarations of Brain Death.
Johnson, L Syd M
2016-03-01
Since its inception in 1968, the concept of whole-brain death has been contentious, and four decades on, controversy concerning the validity and coherence of whole-brain death continues unabated. Although whole-brain death is legally recognized and medically entrenched in the United States and elsewhere, there is reasonable disagreement among physicians, philosophers, and the public concerning whether brain death is really equivalent to death as it has been traditionally understood. A handful of states have acknowledged this plurality of viewpoints and enacted "conscience clauses" that require "reasonable accommodation" of religious and moral objections to the determination of death by neurological criteria. This paper argues for the universal adoption of "reasonable accommodation" policies using the New Jersey statute as a model, in light of both the ongoing controversy and the recent case of Jahi McMath, a child whose family raised religious objections to a declaration of brain death. Public policies that accommodate reasonable, divergent viewpoints concerning death provide a practical and compassionate way to resolve those conflicts that are the most urgent, painful, and difficult to reconcile.
A Needs Assessment of Brain Death Education in Pediatric Critical Care Medicine Fellowships.
Ausmus, Andrew M; Simpson, Pippa M; Zhang, Liyun; Petersen, Tara L
2018-04-12
To assess the current training in brain death examination provided during pediatric critical care medicine fellowship. Internet-based survey. United States pediatric critical care medicine fellowship programs. Sixty-four pediatric critical care medicine fellowship program directors and 230 current pediatric critical care medicine fellows/recent graduates were invited to participate. Participants were asked demographic questions related to their fellowship programs, training currently provided at their fellowship programs, previous experience with brain death examinations (fellows/graduates), and perceptions regarding the adequacy of current training. Twenty-nine program directors (45%) and 91 current fellows/graduates (40%) responded. Third-year fellows reported having performed a median of five examinations (interquartile range, 3-6). On a five-point Likert scale, 93% of program directors responded they "agree" or "strongly agree" that their fellows receive enough instruction on performing brain death examinations compared with 67% of fellows and graduates (p = 0.007). The responses were similar when asked about opportunity to practice brain death examinations (90% vs 54%; p < 0.001). In a regression tree analysis, number of brain death examinations performed was the strongest predictor of trainee satisfaction. Both fellows and program directors preferred bedside demonstration or simulation as educational modalities to add to the fellowship curriculum. Pediatric critical care medicine fellows overall perform relatively few brain death examinations during their training. Pediatric critical care medicine fellows and program directors disagree in their perceptions of the current training in brain death examination, with fellows perceiving a need for increased training. Both program directors and fellows prefer additional training using bedside demonstration or simulation. Since clinical exposure to brain death examinations is variable, adding simulated brain death examinations to the pediatric critical care medicine fellowship curriculum could help standardize the experience.
Brain death in Islamic ethico-legal deliberation: challenges for applied Islamic bioethics.
Padela, Aasim I; Arozullah, Ahsan; Moosa, Ebrahim
2013-03-01
Since the 1980s, Islamic scholars and medical experts have used the tools of Islamic law to formulate ethico-legal opinions on brain death. These assessments have varied in their determinations and remain controversial. Some juridical councils such as the Organization of Islamic Conferences' Islamic Fiqh Academy (OIC-IFA) equate brain death with cardiopulmonary death, while others such as the Islamic Organization of Medical Sciences (IOMS) analogize brain death to an intermediate state between life and death. Still other councils have repudiated the notion entirely. Similarly, the ethico-legal assessments are not uniform in their acceptance of brain-stem or whole-brain criteria for death, and consequently their conceptualizations of, brain death. Within the medical literature, and in the statements of Muslim medical professional societies, brain death has been viewed as sanctioned by Islamic law with experts citing the aforementioned rulings. Furthermore, health policies around organ transplantation and end-of-life care within the Muslim world have been crafted with consideration of these representative religious determinations made by transnational, legally-inclusive, and multidisciplinary councils. The determinations of these councils also have bearing upon Muslim clinicians and patients who encounter the challenges of brain death at the bedside. For those searching for 'Islamically-sanctioned' responses that can inform their practice, both the OIC-IFA and IOMS verdicts have palpable gaps in their assessments and remain clinically ambiguous. In this paper we analyze these verdicts from the perspective of applied Islamic bioethics and raise several questions that, if answered by future juridical councils, will better meet the needs of clinicians and bioethicists. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Pan, Boan; Liu, Weichao; Fang, Xiang; Huang, Xiaobo; Li, Ting
2018-02-01
Brain death is defined as permanent loss of the brain functions. The evaluation of it has many meanings, such as the relief of organ transplantation stress and family burden. However, it is hard to be judged precisely. The standard clinical tests are expensive, time consuming and even dangerous, and some auxiliary methods have limitations. Functional near infrared spectroscopy (fNIRS), monitoring cerebral hemodynamic responses noninvasively, evaluate brain death in some papers published, but there is no discussion about which experimental mode can monitor brain death patient more sensitively. Here, we attempt to use our fNIRS to evaluate brain death and find which experimental mode is effective. In order to discuss the problem, we detected eleven brain death patients and twenty normal patients under natural state. They were provided different fraction of inspiration O2 (FIO2) in different phase. We found that the ratio of Δ[HbO2] (the concentration changes in oxyhemoglobin) to Δ[Hb] (the concentration changes in deoxyhemoglobin) in brain death patients is significantly higher than normal patients in FIO2 experiment. Combined with the data analysis result, restore oxygen change process and low-high-low paradigm is more sensitively.
Evaluation and diagnosis of brain death by functional near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Pan, Boan; Zhong, Fulin; Huang, Xiaobo; Pan, Lingai; Lu, Sen; Li, Ting
2017-02-01
Brain death, the irreversible and permanent loss of the brain and brainstem functions, is hard to be judged precisely for some clinical reasons. The traditional diagnostic methods are time consuming, expensive and some are even dangerous. Functional near infrared spectroscopy (FNIRS), using the good scattering properties of major component of blood to NIR, is capable of noninvasive monitoring cerebral hemodynamic responses. Here, we attempt to use portable FNIRS under patients' natural state for brain death diagnosis. Ten brain death patients and seven normal subjects participated in FNIRS measurements. All of them were provided different fractional concentration of inspired oxygen (FIO2) in different time periods. We found that the concentration variation of deoxyhemoglobin concentration (Δ[Hb]) presents the trend of decrease in the both brain death patients and normal subjects with the raise of the FIO2, however, the data in the normal subjects is more significant. And the concentration variation of oxyhemoglobins concentration (Δ[HbO2]) emerges the opposite trends. Thus Δ[HbO2]/Δ[Hb] in brain death patients is significantly higher than normal subjects, and emerges the rising trend as time went on. The findings indicated the potential of FNIRS-measured hemodynamic index in diagnosing brain death.
Serum S100B protein concentration in brain-dead organ donors: a pilot study.
Krzych, Łukasz J; Czempik, Piotr Filip; Saucha, Wojciech; Kokocińska, Danuta; Knapik, Piotr
2015-01-01
Protein S100B is considered to be a marker of brain damage, but there is a paucity of data regarding the utility of its assessment in brain-dead organ donors. The aim of the study was to compare serum protein S100B concentrations between brain-dead organ donors and patients with a confirmed permanent neurological deficit but without signs of brain death. The concentration of serum S100B protein was measured in 12 brain-dead organ donors (including 7 males with a median age of 40 years). All measurements were taken when brain death was confirmed by the commission. Twenty-nine patients (including 13 males with a median age of 63 years) who died in the medical ICU with confirmed permanent brain injury without signs of brain death acted as controls. In these patients, S-100B protein measurements were performed upon ICU admission. In brain-dead organ donors, the median values of serum S100B protein were much higher in comparison to the control group (median and IQR, respectively: 5.04 μg L⁻¹; 1.775-6.765 vs 0.897 μg L⁻¹; 0.324-1.880, P < 0.001). S100B serum values > 1.81 μg L⁻¹ predicted brain death with the highest accuracy (AUROC = 0.83; 95% CI 0.68-0.93; P < 0.001). Concentrations of serum S100B protein in brain-dead organ donors are extremely high and may support the diagnosis of brain death. This fact may be of value when the presence of reflex movements (frequently reported despite brain death) might delay determination of brain death and result in the failure of organ donation.
Confounding factors in diagnosing brain death: a case report
Burns, Jeffrey M; Login, Ivan S
2002-01-01
Background Brain death is strictly defined medically and legally. This diagnosis depends on three cardinal neurological features: coma, absent brainstem reflexes, and apnea. The diagnosis can only be made, however, in the absence of intoxication, hypothermia, or certain medical illnesses. Case presentation A patient with severe hypoxic-ischemic brain injury met the three cardinal neurological features of brain death but concurrent profound hypothyroidism precluded the diagnosis. Our clinical and ethical decisions were further challenged by another facet of this complex case. Although her brain damage indicated a hopeless prognosis, we could not discontinue care based on futility because the only known surrogate was mentally retarded and unable to participate in medical planning. Conclusion The presence of certain medical conditions prohibits a diagnosis of brain death, which is a medicolegal diagnosis of death, not a prediction or forecast of future outcome. While prognostication is important in deciding to withdraw care, it is not a component in diagnosing brain death. PMID:12097152
"Brain Death" and dead donor rule. Discussion and proposals on the thesis of Truog.
Bruzzone, Paolo
2015-01-01
The introduction in 1968 by the "ad hoc" Harvard committee of the concept of "Brain Death" gave birth to the worldwide diffusion of organ transplantation. Recently "Total Brain Failure" has been proposed as preferred term, instead of "Brain Death", by the President's Council on Bioethics. The concepts of "brain death" and of "dead donor rule" remain the ethical and moral support of organ transplantation. However both criteria has been questioned , either separately or all together , by many authors and particularly by Dr. Robert D. Truog.
Johnson, Adam G.; Ruiz, Jimmy; Isom, Scott; Lucas, John T.; Hinson, William H.; Watabe, Kounosuke; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.
2017-01-01
Abstract Background. In this study we attempted to discern the factors predictive of neurologic death in patients with brain metastasis treated with upfront stereotactic radiosurgery (SRS) without whole brain radiation therapy (WBRT) while accounting for the competing risk of nonneurologic death. Methods. We performed a retrospective single-institution analysis of patients with brain metastasis treated with upfront SRS without WBRT. Competing risks analysis was performed to estimate the subdistribution hazard ratios (HRs) for neurologic and nonneurologic death for predictor variables of interest. Results. Of 738 patients treated with upfront SRS alone, neurologic death occurred in 226 (30.6%), while nonneurologic death occurred in 309 (41.9%). Multivariate competing risks analysis identified an increased hazard of neurologic death associated with diagnosis-specific graded prognostic assessment (DS-GPA) ≤ 2 (P = .005), melanoma histology (P = .009), and increased number of brain metastases (P<.001), while there was a decreased hazard associated with higher SRS dose (P = .004). Targeted agents were associated with a decreased HR of neurologic death in the first 1.5 years (P = .04) but not afterwards. An increased hazard of nonneurologic death was seen with increasing age (P =.03), nonmelanoma histology (P<.001), presence of extracranial disease (P<.001), and progressive systemic disease (P =.004). Conclusions. Melanoma, DS-GPA, number of brain metastases, and SRS dose are predictive of neurologic death, while age, nonmelanoma histology, and more advanced systemic disease are predictive of nonneurologic death. Targeted agents appear to delay neurologic death. PMID:27571883
Moschella, Melissa
2016-06-01
This article explains the problems with Alan Shewmon's critique of brain death as a valid sign of human death, beginning with a critical examination of his analogy between brain death and severe spinal cord injury. The article then goes on to assess his broader argument against the necessity of the brain for adult human organismal integration, arguing that he fails to translate correctly from biological to metaphysical claims. Finally, on the basis of a deeper metaphysical analysis, I offer a revised rationale for the validity of the neurological criterion of human death. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Of wholes and parts: A Thomistic refutation of "Brain Death".
Accad, Michel
2015-08-01
I propose a refutation of the two major arguments that support the concept of "brain death" as an ontological equivalent to death of the human organism. I begin with a critique of the notion that a body part, such as the brain, could act as "integrator" of a whole body. I then proceed with a rebuttal of the argument that destruction of a body part essential for rational operations-such as the brain-necessarily entails that the remaining whole is indisposed to accrue a rational soul. Next, I point to the equivocal use of the terms "alive" or "living" as being at the root of conceptual errors about brain death. I appeal to the Thomistic definition of life and to the hylomorphic concept of "virtual presence" to clarify this confusion. Finally, I show how the Thomistic definition of life supports the traditional criterion for the determination of death. Lay summary: By the mid-1960s, medical technology became available that could keep "alive" the bodies of patients who had sustained complete and irreversible brain injury. The concept of "brain death" emerged to describe such states. Physicians, philosophers, and ethicists then proposed that the state of brain death is equivalent to the state of death traditionally identified by the absence of spontaneous pulse and respiration. This article challenges the major philosophical arguments that have been advanced to draw this equivalence.
Keshtkaran, Zahra; Sharif, Farkhondeh; Navab, Elham; Gholamzadeh, Sakineh
2016-01-01
Background: Brain death is a concept in which its criteria have been expressed as documentations in Harvard Committee of Brain Death. The various perceptions of caregiver nurses for brain death patients may have effect on the chance of converting potential donors into actual organ donors. Objective: The present study has been conducted in order to perceive the experiences of nurses in care-giving to the brain death of organ donor patients. Methods: This qualitative study was carried out by means of Heidegger’s hermeneutic phenomenology. Eight nurses who have been working in ICU were interviewed. The semi-structured interviews were recorded by a tape-recorder and the given texts were transcribed and the analyses were done by Van-Mannen methodology and (thematic) analysis. Results: One of the foremost themes extracted from this study included ‘Halo of ambiguity and doubt’ that comprised of two sub-themes of ‘having unreasonable hope’ and ‘Conservative acceptance of brain death’. The unreasonable hope included lack of trust (uncertainty) in diagnosis and verification of brain death, passing through denial wall, and avoidance from explicit and direct disclosure of brain death in patients’ family. In this investigation, the nurses were involved in a type of ambiguity and doubt in care-giving to the potentially brain death of organ donor patients, which were also evident in their interaction with patients’ family and for this reason, they did not definitely announce the brain death and so far they hoped for treatment of the given patient. Such confusion and hesitance both caused annoyance of nurses and strengthening the denial of patients’ family to be exposed to death. Conclusion: The results of this study reveal the fundamental perceived care-giving of brain death in organ donor patients and led to developing some strategies to improve care-giving and achievement in donation of the given organ and necessity for presentation of educational and supportive services for nurses might become more evident than ever. PMID:26925919
Knowledge of the Brain Death Concept Among the Population of Havana, Cuba.
Ríos, A; López-Navas, A I; Sánchez, Á; Martinez-Alarcon, L; Ayala, M A; Garrido, G; Sebastián, M J; Ramis, G; Abdo-Cuza, A; Hernández, A; Ramírez, P; Parrilla, P
2018-03-01
One of the main reasons against organ donation is the fear of apparent death due to ignorance of the brain death concept. Our aim was to assess knowledge about and acceptance of the brain death concept among the population of Havana, Cuba. The population screened, stratified by gender and age, included those >15 years old and living in Havana, Cuba. The appraisal tool utilized was a questionnaire on attitude toward organ donation ("PCID-DTO Ríos"). A random selection of individuals were surveyed according to the stratification. Cuba's census data were used. The participation was anonymized and self-administered. The verbal consent of participants was provided. There were 920 respondents: 31% (n = 282) knew the concept of brain death and accepted it; 57% (n = 529) did not; and 12% (n = 109) had a misperception, or did not accept brain death as a person's death. Those who knew and accepted the concept had a more favorable attitude toward their own organ donation after death (85% vs 61%; P < .001). The psychosocial factors related to the knowledge of brain death concept were: the gender (P = .002), to make up for speaking at a family level about the organ transplant (P < .001), the couple's opinion about the organ donation (P < .001) and the religion (P < .001). The brain death concept is not well understood in the population of Havana, Cuba. Copyright © 2017 Elsevier Inc. All rights reserved.
Public education and misinformation on brain death in mainstream media.
Lewis, Ariane; Lord, Aaron S; Czeisler, Barry M; Caplan, Arthur
2016-09-01
We sought to evaluate the caliber of education mainstream media provides the public about brain death. We reviewed articles published prior to July 31, 2015, on the most shared/heavily trafficked mainstream media websites of 2014 using the names of patients from two highly publicized brain death cases, "Jahi McMath" and "Marlise Muñoz." We reviewed 208 unique articles. The subject was referred to as being "alive" or on "life support" in 72% (149) of the articles, 97% (144) of which also described the subject as being brain dead. A definition of brain death was provided in 4% (9) of the articles. Only 7% (14) of the articles noted that organ support should be discontinued after brain death declaration unless a family has agreed to organ donation. Reference was made to well-known cases of patients in persistent vegetative states in 16% (34) of articles and 47% (16) of these implied both patients were in the same clinical state. Mainstream media provides poor education to the public on brain death. Because public understanding of brain death impacts organ and tissue donation, it is important for physicians, organ procurement organizations, and transplant coordinators to improve public education on this topic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
McTyre, Emory R; Johnson, Adam G; Ruiz, Jimmy; Isom, Scott; Lucas, John T; Hinson, William H; Watabe, Kounosuke; Laxton, Adrian W; Tatter, Stephen B; Chan, Michael D
2017-04-01
In this study we attempted to discern the factors predictive of neurologic death in patients with brain metastasis treated with upfront stereotactic radiosurgery (SRS) without whole brain radiation therapy (WBRT) while accounting for the competing risk of nonneurologic death. We performed a retrospective single-institution analysis of patients with brain metastasis treated with upfront SRS without WBRT. Competing risks analysis was performed to estimate the subdistribution hazard ratios (HRs) for neurologic and nonneurologic death for predictor variables of interest. Of 738 patients treated with upfront SRS alone, neurologic death occurred in 226 (30.6%), while nonneurologic death occurred in 309 (41.9%). Multivariate competing risks analysis identified an increased hazard of neurologic death associated with diagnosis-specific graded prognostic assessment (DS-GPA) ≤ 2 (P = .005), melanoma histology (P = .009), and increased number of brain metastases (P<.001), while there was a decreased hazard associated with higher SRS dose (P = .004). Targeted agents were associated with a decreased HR of neurologic death in the first 1.5 years (P = .04) but not afterwards. An increased hazard of nonneurologic death was seen with increasing age (P =.03), nonmelanoma histology (P<.001), presence of extracranial disease (P<.001), and progressive systemic disease (P =.004). Melanoma, DS-GPA, number of brain metastases, and SRS dose are predictive of neurologic death, while age, nonmelanoma histology, and more advanced systemic disease are predictive of nonneurologic death. Targeted agents appear to delay neurologic death. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Rady, Mohamed Y; Verheijde, Joseph L
2018-04-01
Death is defined in the Quran with a single criterion of irreversible separation of the ruh (soul) from the body. The Quran is a revelation from God to man, and the primary source of Islamic knowledge. The secular concept of death by neurological criteria, or brain death, is at odds with the Quranic definition of death. The validity of this secular concept has been contested scientifically and philosophically. To legitimize brain death for the purpose of organ donation and transplantation in Muslim communities, Chamsi-Pasha and Albar (concurring with the US President's Council on Bioethics) have argued that irreversible loss of capacity for consciousness and breathing (apneic coma) in brain death defines true death in accordance with Islamic sources. They have postulated that the absence of nafs (personhood) and nafas (breath) in apneic coma constitutes true death because of departure of the soul (ruh) from the body. They have also asserted that general anesthesia is routine in brain death before surgical procurement. Their argument is open to criticism because: (1) the ruh is described as the essence of life, whereas the nafs and nafas are merely human attributes; (2) unlike true death, the ruh is still present even with absent nafs and nafas in apneic coma; and (3) the routine use of general anesthesia indicates the potential harm to brain-dead donors from surgical procurement. Postmortem general anesthesia is not required for autopsy. Therefore, the conclusion must be that legislative enforcement of nonconsensual determination of neurological (brain) death and termination of life-support and medical treatment violates the religious rights of observant Muslims.
Informed consent for the diagnosis of brain death: a conceptual argument.
Muramoto, Osamu
2016-10-13
This essay provides an ethical and conceptual argument for the use of informed consent prior to the diagnosis of brain death. It is meant to enable the family to make critical end-of-life decisions, particularly withdrawal of life support system and organ donation, before brain death is diagnosed, as opposed to the current practice of making such decisions after the diagnosis of death. The recent tragic case of a 13-year-old brain-dead patient in California who was maintained on a ventilator for over 2 years illustrates how such a consent would have made a crucial difference. Conceptual, philosophical, and ethical analysis. I first consider a conceptual justification for the use of consent for certain non-beneficial and unwanted medical diagnoses. I suggest that the diagnosis of brain death falls into this category for some patients. Because the diagnostic process of brain death lacks the transparency of traditional death determination, has a unique epistemic structure and a complex risk-benefit profile which differs markedly from case to case, and presents conflicts of interest for physicians and society, I argue that pre-diagnostic counseling and informed consent should be part of the diagnostic process. This approach can be termed as "allow cardiac death", whose parallel logic with "allow natural death" is discussed. I also discuss potential negative impacts on organ donation and health care cost from this proposal and offer possible mitigation. I show that the pre-diagnostic counseling can improve the possibility for well-thought-out decisions regarding organ donation and terminating life-support system in cases of hopeless prognosis. This approach differs conceptually from the pluralism of the definition of death, such as those in New Jersey and Japan, and it upholds the Uniform Determination of Death Act. My intention is not to provide an instant panacea for the ongoing impasse of the brain death debate, but to point to a novel conceptual ground for a more pragmatic, and more patient- and family-centered approach. By enabling the family to consent to or decline the diagnostic process of brain death, but not to choose the definition of death, it upholds the current legal definition of death.
Harmanci Seren, A K; Yavuz, H
2017-04-01
Turkey is one of the countries facing a serious organ shortage problem, with thousands of patients with end-stage organ failure. The Social Security Institution started to increase the reimbursement for transplantation operations in 2007 to solve this problem, and this policy has continued since then. Although the number of transplantation centers and operations in Turkey increased in this term, according to organ donation and transplantation statistics from the Ministry of Health, the rate of organ retrieval from deceased organ donors has decreased. This study was performed with the purpose of retrospectively analyzing (between the years 2005 and 2015) the number of brain deaths and donors after brain death in hospitals that are affiliated with the Istanbul Regional Coordination Office and have transplantation units. Data were collected via the website of the Ministry of Health. Hospitals were categorized as those directly affiliated with the Ministry of Health, university hospitals, and private hospitals. This study found that the number of transplantation centers has increased >3 times since 2005, and the number of private transplantation centers has increased 9 times for the same period. We also found that the number of brain deaths, donors after brain death in hospitals, and number of brain deaths and donors after brain death per hospital had varied throughout the study years. Although the number of transplantation centers has increased since 2005, the number of brain deaths and donors after brain death has not increased to the same extent for this period in these hospitals that have transplantation units. Copyright © 2017 Elsevier Inc. All rights reserved.
Gopčević, A; Rode, B; Vučić, M; Horvat, A; Širanović, M; Gavranović, Ž; Košec, V; Košec, A
2017-11-01
Maternal brain death during pregnancy remains an exceedingly complex situation that requires not only a well-considered medical management plan, but also careful decision-making in a legally and ethically delicate situation. Management of brain dead pregnant patients needs to adhere to special strategies that support the mother in a way that she can deliver a viable and healthy child. Brain death in pregnant women is very rare, with only a few published cases. We present a case of a pregnant woman with previously diagnosed multiple brain cavernomas that led to intracranial hemorrhage and brain stem death during the 21st week of pregnancy. The condition that can be proven unequivocally, using tests that do not endanger viability of the fetus, is brain stem death, diagnosed through absence of cranial reflexes. The patient was successfully treated until delivery of a healthy female child at 29weeks of gestation. The patient received continuous hormone substitution therapy, fetal monitoring and extrinsic regulation of maternal homeostasis over 64days. After delivery, the final diagnosis of brain death was established through multi-slice computerized tomography pan-angiography. This challenging case discusses ethical and medical circumstances arising from a diagnosis of maternal brain death, while showing that prolongation of somatic life support in a multidisciplinary setting can result in a successful pregnancy outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brain death revisited: it is not 'complete death' according to Islamic sources.
Bedir, Ahmet; Aksoy, Sahin
2011-05-01
Concepts, such as death, life and spirit cannot be known in their quintessential nature, but can be defined in accordance with their effects. In fact, those who think within the mode of pragmatism and Cartesian logic have ignored the metaphysical aspects of these terms. According to Islam, the entity that moves the body is named the soul. And the aliment of the soul is air. Cessation of breathing means leaving of the soul from the body. Those who agree on the diagnosis of brain death may not able to agree unanimously on the rules that lay down such diagnosis. That is to say, there are a heap of suspicions regarding the diagnosis of brain death, and these suspicions are on the increase. In fact, Islamic jurisprudence does not put provisions, decisions on suspicious grounds. By virtue of these facts, it can be asserted that brain death is not absolute death according to Islamic sources; for in the patients diagnosed with brain death the soul still has not abandoned the body. Therefore, these patients suffer in every operation performed on them.
Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation.
Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George
2013-01-08
We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a 'false-negative' result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death.
Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation
Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George
2013-01-01
We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a ‘false-negative’ result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death. PMID:23302550
Portrayal of Brain Death in Film and Television.
Lewis, A; Weaver, J; Caplan, A
2017-03-01
We sought to evaluate whether television and cinematic coverage of brain death is educational or misleading. We identified 24 accessible productions that addressed brain death using the archives of the Paley Center for Media (160 000 titles) and the Internet Movie Database (3.7 million titles). Productions were reviewed by two board-certified neurologists. Although 19 characters were pronounced brain dead, no productions demonstrated a complete examination to assess for brain death (6 included an assessment for coma, 9 included an evaluation of at least 1 brainstem reflex, but none included an assessment of every brainstem reflex, and 2 included an apnea test). Subjectively, both authors believed only a small fraction of productions (13% A.L., 13% J.W.) provided the public a complete and accurate understanding of brain death. Organ donation was addressed in 17 productions (71%), but both reviewers felt that the discussions about organ donation were professional in a paucity of productions (9% for A.L., 27% for J.W.). Because television and movies serve as a key source for public education, the quality of productions that feature brain death must be improved. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Is donation after cardiac death reducing the brain-dead donor pool in Australia?
Sampson, Brett G; O'Callaghan, Gerry P; Russ, Graeme R
2013-03-01
Donation after cardiac death (DCD) has increased faster than donation after brain death (DBD) in Australia. However, DBD is the preferred pathway because it provides more organs per donor, the donation process is simpler and transplant outcomes are optimised. To determine if the increase in DCD has reduced the brain-dead donor pool in Australia. Retrospective analysis of records of organ donors (intended and actual) with brain injury as the cause of death from 2001 to 2011 in Australian intensive care units. Change in median ventilation period, over time, before brain-death determination in DBD donors (as DCD increased); a decreased median ventilation period in DBD donors being consistent with the conversion of DBD to DCD. As DCD (n = 311) increased, the median ventilation period in DBD donors (n = 2218) did not fall overall (P = 0.83), in all jurisdictions (P > 0.25) and for all causes of death (P > 0.3). The proportion of patients ventilated for less than 2 days was unchanged over time in both DBD (P = 1) and DCD (P = 0.99). The overall ventilation period in DCD donors (3.8 days; interquartile range [IQR], 2.1-6.3 days), exceeded the ventilation period in DBD donors (1.3 days; IQR, 1.0-2.4 days; P < 0.0001). DCD ventilation period was significantly longer in all jurisdictions, for all causes of death and annually (P < 0.05). In Australia, brain-injured donors appear to be ventilated long enough to allow progression to brain death before proceeding to DCD. Therefore, DCD is unlikely to have reduced the brain-dead donor pool.
Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model
2012-01-01
Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222
Vigneron, C; Labeye, V; Cour, M; Hannoun, S; Grember, A; Rampon, F; Cotton, F
2016-01-01
Previous studies have shown that a loss of distinction between gray matter (GM) and white matter (WM) on unenhanced CT scans was predictive of poor outcome after cardiac arrest. The aim of this study was to identify a marker/predictor of imminent brain death. In this retrospective study, 15 brain-dead patients after anoxia and cardiac arrest were included. Patients were paired (1:1) with normal control subjects. Only patients' unenhanced CT scans performed before brain death and during the 24 hours after initial signs were analyzed. WM and GM densities were measured in predefined regions of interest (basal ganglia level, centrum semi-ovale level, high convexity level, brainstem level). At each level, GM and WM density and GM/WM ratio for brain-dead patients and normal control subjects were compared using the Wilcoxon signed-rank test. At each level, a lower GM/WM ratio and decreased GM and WM densities were observed in brain-dead patients' CT scans when compared with normal control subject CT scans. A cut-off value of 1.21 at the basal ganglia level was identified, below which brain death systematically occurred. GM/WM dedifferentiation on unenhanced CT scan is measurable before the occurrence of brain death, highlighting its importance in brain death prediction. The mechanism of GM/WM differentiation loss could be explained by the lack of oxygen caused by ischemia initially affecting the mitochondrial system. Copyright © 2016 Elsevier Inc. All rights reserved.
Shah, Seema K; Kasper, Kenneth; Miller, Franklin G
2015-04-01
Vital organ transplantation is premised on 'the dead donor rule': donors must be declared dead according to medical and legal criteria prior to donation. However, it is controversial whether individuals diagnosed as 'brain dead' are really dead in accordance with the established biological conception of death-the irreversible cessation of the functioning of the organism as a whole. A basic understanding of brain death is also relevant for giving valid, informed consent to serve as an organ donor. There is therefore a need for reliable empirical data on public understanding of brain death and vital organ transplantation. We conducted a review of the empirical literature that identified 43 articles with approximately 18,603 study participants. These data demonstrate that participants generally do not understand three key issues: (1) uncontested biological facts about brain death, (2) the legal status of brain death and (3) that organs are procured from brain dead patients while their hearts are still beating and before their removal from ventilators. These data suggest that, despite scholarly claims of widespread public support for organ donation from brain dead patients, the existing data on public attitudes regarding brain death and organ transplantation reflect substantial public confusion. Our review raises questions about the validity of consent for vital organ transplantation and suggests that existing data are of little assistance in developing policy proposals for organ transplantation from brain dead patients. New approaches to rigorous empirical research with educational components and evaluations of understanding are urgently needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Brain death and marginal grafts in liver transplantation.
Jiménez-Castro, M B; Gracia-Sancho, J; Peralta, C
2015-06-04
It is well known that most organs for transplantation are currently procured from brain-dead donors; however, the presence of brain death is an important risk factor in liver transplantation. In addition, one of the mechanisms to avoid the shortage of liver grafts for transplant is the use of marginal livers, which may show higher risk of primary non-function or initial poor function. To our knowledge, very few reviews have focused in the field of liver transplantation using brain-dead donors; moreover, reviews that focused on both brain death and marginal grafts in liver transplantation, both being key risk factors in clinical practice, have not been published elsewhere. The present review aims to describe the recent findings and the state-of-the-art knowledge regarding the pathophysiological changes occurring during brain death, their effects on marginal liver grafts and summarize the more controversial topics of this pathology. We also review the therapeutic strategies designed to date to reduce the detrimental effects of brain death in both marginal and optimal livers, attempting to explain why such strategies have not solved the clinical problem of liver transplantation.
[Revised act on organ transplantation: a pediatrician's viewpoint].
Mizuguchi, Masashi
2010-06-01
In Japan, from July 2010, an infant or a child with brain death will be legally regarded as a candidate of donor for organ transplantation under the consent of his or her family members. Official diagnostic criteria of brain death in children are currently under compilation. The causes and incidence of brain death remarkably differ among individuals belonging to different age groups. Secondary brain damages resulting from asphyxia, drowning, hypoxemia, and cardiopulmonary arrest more commonly occur in childhood than in adulthood. Child abuse or neglect is suspected to be involved in many of the cases of brain death. The current Japanese diagnostic criteria hitherto used for adults require several modifications before these can be applied to infants and children. According to the requirements of the new act, abused or neglected infants and children must be excluded from the category of donor candidates. Neonates and young infants below 12 weeks of corrected age will also be excluded, because neurological diagnosis of brain death is difficult in these individuals.
Wu, Carol H. Y.; Chan, Julie Y. H.; Chan, Samuel H. H.; Chang, Alice Y. W.
2011-01-01
Background Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. Methodology/Principal Findings In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. Conclusions/Significance We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality. PMID:22110641
Ziad-Miller, Amna; Elamin, Elamin M.
2014-01-01
How one defines death may vary. It is important for clinicians to recognize those aspects of a patient’s religious beliefs that may directly influence medical care and how such practices may interface with local laws governing the determination of death. Debate continues about the validity and certainty of brain death criteria within Islamic traditions. A search of PubMed, Scopus, EMBASE, Web of Science, PsycNet, Sociological Abstracts, DIALOGUE ProQuest, Lexus Nexus, Google, and applicable religious texts was conducted to address the question of whether brain death is accepted as true death among Islamic scholars and clinicians and to discuss how divergent opinions may affect clinical care. The results of the literature review inform this discussion. Brain death has been acknowledged as representing true death by many Muslim scholars and medical organizations, including the Islamic Fiqh Academies of the Organization of the Islamic Conference and the Muslim World League, the Islamic Medical Association of North America, and other faith-based medical organizations as well as legal rulings by multiple Islamic nations. However, consensus in the Muslim world is not unanimous, and a sizable minority accepts death by cardiopulmonary criteria only. PMID:25287999
Olgun, Gokhan; Newey, Christopher R; Ardelt, Agnieszka
2015-11-01
The determination of brain death in neonates, infants, children and adults relies on a clinical diagnosis based on the absence of neurological function with a known irreversible cause of brain injury. Evaluation of pupil size and non-reactivity is a requisite for determination of brain death. There are no studies in the literature that quantitatively assess pupil size in brain dead children and adults. Infants, children and adults diagnosed with brain death were included in the study. Pupils were measured with a quantitative pupillometer (Forsite; Neuroptics, Irvine, CA, USA). Median, minimum and maximum pupil sizes were documented and the results were adjudicated for age, vasopressor use and temperature. Median right and left pupil sizes were 5.01 ± 0.85 mm and 5.12 ± 0.87 mm, respectively, with a range between 3.69 and 7.34 mm. Paediatric pupils were larger than adult pupils (right pupil 5.53 vs 4.73 mm p: 0.018; left pupil 5.87 vs 4.77 mm P: 0.03), and there was no correlation of pupil size with temperature or increasing number of vasopressors. This is the first study in the literature objectively evaluating pupil sizes in infants, children and adults diagnosed with brain death. We observed variation between observed pupil size and that expected based on brain death determination guidelines.
Segura, T; Jiménez, P; Jerez, P; García, F; Córcoles, V
2002-04-01
Throughout the world, is fully accepted that a person is dead when brain death exists. In most situations, neurological criteria permit the diagnosis of brain death, but in some instances, as when high-dose barbiturate therapy has been used, confirmatory testing are required by law. We report the case of a 17 year-old women who suffered high-dose barbiturate therapy due to post traumatic intracranial hypertension. During the period of the barbiturate infusion and until six days after the suppression of this therapy, neurological exploration and EEG findings seem to confirm brain death, while transcranial Doppler (TCD) study remained normal. TCD is a fast, simple and accurate confirmatory testing in the determination of brain death and its findings are not affected by high-dose barbiturate therapy. We think that TCD must be present in all hospitals where mechanical ventilation and support of patients are carried out.
Use of Ancillary Tests When Determining Brain Death in Pediatric Patients in the United States.
Lewis, Ariane; Adams, Nellie; Chopra, Arun; Kirschen, Matthew P
2017-10-01
Although pediatric brain death guidelines stipulate when ancillary testing should be used during brain death determination, little is known about the way these recommendations are implemented in clinical practice. We conducted a survey of pediatric intensivists and neurologists in the United States on the use of ancillary testing. Although most respondents noted they only performed an ancillary test if the clinical examination and apnea test could not be completed, 20% of 195 respondents performed an ancillary test for other reasons, including (1) to convince a family that objected to the brain death determination that a patient is truly dead (n = 21), (2) personal preference (n = 14), and (3) institutional requirement (n = 5). Our findings suggest that pediatricians use ancillary tests for a variety of reasons during brain death determination. Medical societies and governmental regulatory bodies must reinforce the need for homogeneity in practice.
Buchner, H; Ferbert, A
2016-02-01
Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome.
Asai, Atsushi; Kadooka, Yasuhiro; Aizawa, Kuniko
2012-05-01
As of 2009, the number of donors in Japan is the lowest among developed countries. On July 13, 2009, Japan's Organ Transplant Law was revised for the first time in 12 years. The revised and old laws differ greatly on four primary points: the definition of death, age requirements for donors, requirements for brain-death determination and organ extraction, and the appropriateness of priority transplants for relatives. In the four months of deliberations in the National Diet before the new law was established, various arguments regarding brain death and organ transplantation were offered. An amazing variety of opinions continue to be offered, even after more than 40 years have elapsed since the first heart organ transplant in Japan. Some are of the opinion that with the passage of the revised law, Japan will finally become capable of performing transplants according to global standards. Contrarily, there are assertions that organ transplants from brain-dead donors are unacceptable because they result in organs being taken from living human beings. Considering the current conditions, we will organize and introduce the arguments for and against organ transplants from brain-dead donors in contemporary Japan. Subsequently, we will discuss the primary arguments against organ transplants from brain-dead donors from the perspective of contemporary Japanese views on life and death. After introducing the recent view that brain death should not be regarded as equivalent to the death of a human being, we would like to probe the deeply-rooted views on life and death upon which it is based. © 2010 Blackwell Publishing Ltd.
Brain stem death and organ donation.
Davies, C
1996-01-01
Our understanding of the concept and definition of death has changed over time. The British contribution to the body of knowledge on the diagnosis of brain steam death was the publication by the medical royal colleges (1976) of diagnostic criteria. Most literature and research which explores the knowledge and attitudes of nurses towards the concept of brain stem death is from the USA. Several issues which arise from the literature are discussed in relation to organ donation. Further UK-based research is required.
Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.
Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun
2015-08-01
Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.
Determination of Death and the Dead Donor Rule: A Survey of the Current Law on Brain Death
Nikas, Nikolas T.; Bordlee, Dorinda C.; Moreira, Madeline
2016-01-01
Despite seeming uniformity in the law, end-of-life controversies have highlighted variations among state brain death laws and their interpretation by courts. This article provides a survey of the current legal landscape regarding brain death in the United States, for the purpose of assisting professionals who seek to formulate or assess proposals for changes in current law and hospital policy. As we note, the public is increasingly wary of the role of organ transplantation in determinations of death, and of the variability of brain death diagnosing criteria. We urge that any attempt to alter current state statutes or to adopt a national standard must balance the need for medical accuracy with sound ethical principles which reject the utilitarian use of human beings and are consistent with the dignity of the human person. Only in this way can public trust be rebuilt. PMID:27097648
Causes of organ donation failure in Brazil.
Dell Agnolo, C M; de Freitas, R A; Toffolo, V J O; de Oliveira, M L F; de Almeida, D F; Carvalho, M D B; Pelloso, S M
2012-10-01
There has been a great improvement in transplantation medicine in Brazil in the last 2 decades. However, there remain several barriers regarding notification of brain and cardiac death as well as completion of the donation process. This retrospective study was performed between January 2008 and December 2010. We reviewed all deaths in a University Hospital, observing the causes of non-notification to the State Transplantation Authority and non-donations. There were 41 notifications of brain death resulting in donation in only 19.5% of those cases. Cardiac death was diagnosed in 21 patients, resulting in 52.4% donations. The main cause for non-donation were family refusal (37.2%), infectious diseases (30.2%), and clinical contraindications (32.6%). Most of the missed possible donors occurred during the night (54.8%) and in the emergency room (80.9%). There is an urgent need for better education of the Brazilian population about organ donation and brain death definitions. Other identified problems include lack of uniformity in brain death determinations among hospitals, rigid contraindications to donation in the State of Parana, physician unawareness or disbelief about brain death diagnostic criteria, and lack of structure of our Hospital. Copyright © 2012. Published by Elsevier Inc.
Progress in legal definition of brain death and consent to remove cadaver organs.
Stuart, F P
1977-01-01
The availability of cadaver kidneys for transplantation falls far short of the needs of a rapidly expanding population of patients on chronic hemodialysis. Kidneys with the least ischemic injury come from donors with fatal head injury or stroke; such kidneys can be removed from a "beating-heart" cadaver after declaring death on the basis of brain death. To clarify the legal status of brain death and to encourage salvage of transplantable kidneys with minimal ischemic injury, 12 states already have codified the concept of brain death. Although the first few laws were lengthy and included medical terms, six of the last seven laws have used one or two models proposed by the American Bar Association (ABA) and the Institute of Society, Ethics and Life Sciences, Hastings-on-Hudson, N. Y. The ABA proposal is the simpler of the two models and should provide the basis for future state laws. In addition, the National Conference of Commissioners on Uniform State Laws plans to present a model law to define death and the liabilities of a physician who declares death on the basis of brain death by mid 1977. While state legislatures have written laws that establish the legality of the concept of brain death, medical groups have sought to define the medical criteria for its determination. The most recent list of criteria comes from a National Institutes of Health-supported Collaborative Study on Cerebral Survival, as follows: (1) unresponsivity, (2) apnea, (3) dilated pupils and absent cephalic reflexes, (4) electrocerebral silence, (5) a confirmatory test of absent cerebral blood flow (angiography, isotope bolus curve, retinoscopy, or echoencephalography).
Donatelli, Luke A; Geocadin, Romergryko G; Williams, Michael A
2006-09-01
Cardiac arrest results in global hypoxic-ischemic brain injury from which there is a range of possible neurological outcomes. In most cases, patients may require a surrogate to make decisions regarding end-of-life care, including the withdrawal of life-sustaining therapies. This article reviews ethical considerations that arise in the clinical care of patients following cardiac arrest, including decisions to continue or withdraw life-sustaining therapies; brain death determination; and organ donation in the context of brain death and cardiac death (so-called non-heart-beating donation). This article also discusses ethical concerns pertaining to the design and conduct of resuscitation research that is necessary for the development of effective therapies to prevent anoxic brain injury or promote neurological recovery.
Never Declared Brain Dead Potential Organ Donors-An Additional Source of Donor Organs?
Webster, Patricia A; Markham, Lori E
2018-03-01
Patients never declared brain dead may represent an additional source of donor organs. To determine the number of likely brain dead potential donors who are never declared brain dead and to compare them with brain dead and donation after cardiac death potential organ donors. This study was a retrospective chart review of all catastrophically brain-injured patients referred to a single-organ procurement organization (OPO) over a 4-year period. This study identified 159 likely brain dead potential organ donors, 902 brain dead potential organ donors, and 357 potential donation after circulatory death donors over a 4-year period. None. This study did not predetermine outcome measures before data collection because the study group, likely brain dead potential organ donors, had not previously been described. Likely brain dead potential donors were significantly older than brain dead potential donors ( P < .0001) but were otherwise not different demographically. They were more likely to be a late referral to the OPO ( P < .0001) and less likely to be in the donor registry ( P < .0001). The most commonly identified factors associated with a failure to declare brain death were an unwillingness to continue supportive care by the family, premention of donation, a nontimely imminent death referral, known prior objection to donation, terminal instability, and a lack of cooperation with the OPO.
Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury.
Shi, Guodong; Liu, Yang; Liu, Tielong; Yan, Wangjun; Liu, Xiaowei; Wang, Yuan; Shi, Jiangang; Jia, Lianshun
2012-01-01
It is increasingly clear that microRNAs (miRNAs) play an important role in controlling cell survival. However, the functional significance of miRNAs in ischemic brain injury remains poorly understood. In the present study, we assayed the expression levels of miR-29b after ischemic brain injury, and defined the target genes and biological functions of miR-29b. We found that the miR-29b levels were significantly increased in rat brain after transient middle cerebral artery occlusion and neurons after oxygen-glucose deprivation. Moreover, ectopic expression of miR-29b promoted neuronal cell death, whereas its repression decreased cell death. Furthermore, we verified that miR-29b directly targeted and inhibited Bcl2L2 gene expression, and then increased neuronal cell death. Importantly, Bcl2L2 overexpression rescued neuronal cell death induced by miR-29b. These results suggest an important role of miR-29b in regulating neuronal cell death, thus offering a new target for the development of therapeutic agents against ischemic brain injury.
Nair-Collins, Michael
2017-01-01
The majority of transplantable human organs are retrieved from patients declared dead by neurological criteria, or "brain-dead." Since brain death is considered to be sufficient for death, the procurement of vital organs is not considered to harm or wrong such patients. In this essay I argue that this is not the case. After distinguishing welfare, experiential, and investment interests, and defining precedent autonomy and surviving interests, I argue that brain-dead patients can be, and many are, harmed and wronged by organ procurement as currently practiced. Indeed, with respect to precedent autonomy and surviving investment interests, the brain-dead are morally equivalent to patients with severe dementia, and thus can be harmed and wronged if and only if, and to the extent that, patients with severe dementia can. The "bright line" that separates brain death from all other conditions for clinical and legal purposes is not justified by any morally relevant distinctions.
A Thomistic defense of whole-brain death
Eberl, Jason T.
2015-01-01
Michel Accad critiques the currently accepted whole-brain criterion for determining the death of a human being from a Thomistic metaphysical perspective and, in so doing, raises objections to a particular argument defending the whole-brain criterion by Patrick Lee and Germain Grisez. In this paper, I will respond to Accad's critique of the whole-brain criterion and defend its continued validity as a criterion for determining when a human being's death has occurred in accord with Thomistic metaphysical principles. I will, however, join Accad in criticizing Lee and Grisez's proposed defense of the whole-brain criterion as potentially leading to erroneous conclusions regarding the determination of human death. Lay summary: Catholic physicians and bioethicists currently debate the legally accepted clinical standard for determining when a human being has died—known as the “wholebrain criterion”—which has also been morally affirmed by the Magisterium. This paper responds to physician Michel Accad’s critique of the whole-brain criterion based upon St. Thomas Aquinas’s metaphysical account of human nature as a union of a rational soul and a material body. I defend the whole-brain criterion from the same Thomistic philosophical perspective, while agreeing with Accad’s objection to an alternative Thomistic defense of whole-brain death by philosophers Patrick Lee and Germain Grisez. PMID:26912933
A Thomistic defense of whole-brain death.
Eberl, Jason T
2015-08-01
Michel Accad critiques the currently accepted whole-brain criterion for determining the death of a human being from a Thomistic metaphysical perspective and, in so doing, raises objections to a particular argument defending the whole-brain criterion by Patrick Lee and Germain Grisez. In this paper, I will respond to Accad's critique of the whole-brain criterion and defend its continued validity as a criterion for determining when a human being's death has occurred in accord with Thomistic metaphysical principles. I will, however, join Accad in criticizing Lee and Grisez's proposed defense of the whole-brain criterion as potentially leading to erroneous conclusions regarding the determination of human death. Lay summary: Catholic physicians and bioethicists currently debate the legally accepted clinical standard for determining when a human being has died-known as the "wholebrain criterion"-which has also been morally affirmed by the Magisterium. This paper responds to physician Michel Accad's critique of the whole-brain criterion based upon St. Thomas Aquinas's metaphysical account of human nature as a union of a rational soul and a material body. I defend the whole-brain criterion from the same Thomistic philosophical perspective, while agreeing with Accad's objection to an alternative Thomistic defense of whole-brain death by philosophers Patrick Lee and Germain Grisez.
Brain death and true patient care
2016-01-01
The “brain death” standard as a criterion of death is closely associated with the need for transplantable organs from heart-beating donors. Are all of these potential donors really dead, or does the documented evidence of patients destined for organ harvesting who improve, or even recover to live normal lives, call into question the premise underlying “brain death”? The aim of this paper is to re-examine the notion of “brain death,” especially its clinical test-criteria, in light of a broad framework, including medical knowledge in the field of neuro-intensive care and the traditional ethics of the medical profession. I will argue that both the empirical medical evidence and the ethics of the doctor–patient relationship point to an alternative approach toward the severely comatose patient (potential brain-dead donor). Lay Summary: Though legally accepted and widely practiced, the “brain death” standard for the determination of death has remained a controversial issue, especially in view of the occurrence of “chronic brain death” survivors. This paper critically re-evaluates the clinical test-criteria for “brain death,” taking into account what is known about the neuro-critical care of severe brain injury. The medical evidence, together with the understanding of the moral role of the physician toward the patient present before him or her, indicate that an alternative approach should be offered to the deeply comatose patient. PMID:27833207
Brain death and Islam: the interface of religion, culture, history, law, and modern medicine.
Miller, Andrew C; Ziad-Miller, Amna; Elamin, Elamin M
2014-10-01
How one defines death may vary. It is important for clinicians to recognize those aspects of a patient's religious beliefs that may directly influence medical care and how such practices may interface with local laws governing the determination of death. Debate continues about the validity and certainty of brain death criteria within Islamic traditions. A search of PubMed, Scopus, EMBASE, Web of Science, PsycNet, Sociological Abstracts, DIALOGUE ProQuest, Lexus Nexus, Google, and applicable religious texts was conducted to address the question of whether brain death is accepted as true death among Islamic scholars and clinicians and to discuss how divergent opinions may affect clinical care. The results of the literature review inform this discussion. Brain death has been acknowledged as representing true death by many Muslim scholars and medical organizations, including the Islamic Fiqh Academies of the Organization of the Islamic Conference and the Muslim World League, the Islamic Medical Association of North America, and other faith-based medical organizations as well as legal rulings by multiple Islamic nations. However, consensus in the Muslim world is not unanimous, and a sizable minority accepts death by cardiopulmonary criteria only.
2017-05-05
The death rate for brain cancer, the most common cancer cause of death for children and teens aged 1-19 years, was 24% higher in males (0.73 per 100,000) than females (0.59) aged 1-19 years during 2013-2015. Death rates were higher for males than females for all age groups, but the difference did not reach statistical significance for the age group 5-9 years. Death rates caused by brain cancer were highest at ages 5-9 years (0.98 for males and 0.85 for females).
DuBois, James M; Anderson, Emily E
2006-03-01
To examine attitudes toward death criteria and their relation to attitudes and behaviors regarding organ donation. This article reviews empirical studies on the attitudes of healthcare personnel and the general public regarding death criteria and organ donation. The review was restricted to studies that had as a primary focus attitudes toward 1 or more of the following 3 specific criteria for determining death: (1) brain death, the irreversible loss of all functions of the entire brain; (2) higher brain death, the loss of cerebral cortex function alone; and (3) the circulatory-respiratory criteria commonly used in donation after cardiac death. Studies consistently show that the general public and some medical personnel are inadequately familiar with the legal and medical status of brain death; attitudes toward the dead donor rule are strong predictors of willingness to donate organs using controversial criteria; concerns about donation after cardiac death surround the withdrawal of life support more than the actual death criteria used; and concerns about death criteria correlate with less favorable attitudes toward organ donation. Both general and ethical education may serve to guide policy and facilitate family member requests and informed consent dialogues. Furthermore, helping families to understand and accept not only medical and legal criteria for determining death, but also ethical criteria for withdrawing life support may help them be more comfortable with their decisions.
Culture, brain death, and transplantation.
Bowman, Kerry W; Richard, Shawn A
2003-09-01
From the social sciences, we know the space between life and death is historically and culturally constructed, fluid and open to dispute. The definition of death has cultural, legal, and political dimensions. As healthcare becomes more culturally diverse, the interface between culture and the delivery of healthcare will increase. In our increasingly pluralistic, interdependent society, there is a growing demand to integrate healthcare, including transplantation, into a broader context that respects both individual and cultural diversity. It is important that we first consider and explore what elements of Western healthcare practices including definitions and advances, such as brain death and organ donation, are culturally influenced. This article highlights some of the cultural influences on brain death by focusing on Western and Japanese perspectives on the permissibility of organ procurement from brain-dead persons. It also offers 4 recommendations for healthcare workers working cross-culturally.
Brain Death and Transplant in Islamic Countries.
Altınörs, Nur; Haberal, Mehmet
2016-11-01
The aim of this study was to investigate the present status regarding brain death, its consequences, and transplant activities in Islamic countries. A thorough literature survey was conducted about transplant activities in Islamic countries, and the Turkish Ministry of Health Web site was analyzed. Expert opinions about the issue were obtained. The present status of brain death and transplant activities has shown a heterogeneous appearance in the Islamic world. Our literature survey clearly revealed that transplant is still in its early stages in many Islamic states. The legislative framework, infrastructure, and related education needs radical improvements in these states. The concept of death has to be redefined and a consensus should be reached about brain death. The pioneer countries like Turkey, Iran, and Saudi Arabia. which already have considerable experience in transplant, should share their expertise and knowledge with the countries that need guidance.
Where's Waldo? The 'decapitation gambit' and the definition of death.
Lizza, John P
2011-12-01
The 'decapitation gambit' holds that, if physical decapitation normally entails the death of the human being, then physiological decapitation, evident in cases of total brain failure, entails the death of the human being. This argument has been challenged by Franklin Miller and Robert Truog, who argue that physical decapitation does not necessarily entail the death of human beings and that therefore, by analogy, artificially sustained human bodies with total brain failure are living human beings. They thus challenge the current neurological criterion for determining death and argue for a return to the traditional criterion of the irreversible loss of circulation and respiration. In this paper, I defend the decapitation gambit and total brain failure as a criterion for determining death against Miller and Truog's criticism.
Kara, I; Pampal, H K; Yildirim, F; Dilekoz, E; Emmez, G; U, F P; Kocabiyik, M; Demirel, C B
Increased intracranial pressure following trauma and subsequent possible development of brain death are important factors for morbidity and mortality due to ischemic changes. We aimed to establish the role of ischemic modified albumin (IMA) in the early diagnosis of the process, starting with increased intracranial pressure and ending with brain death. Eighteen Wistar-Albino rats were divided into three groups; control (CG, n = 6), increased intracranial pressure (ICPG, n = 6), and brain death (BDG, n = 6). Intracranial pressure elevation and brain death were constituted with the inflation of a balloon of a Fogarty catheter in the epidural space. In all three groups, blood samples were drawn before the procedure, and at minutes 150 and 240 for IMA and malondialdehyde (MDA) analysis. Serum IMA levels at 150 and 240 minutes were higher in ICPG than in CG (p < 0.05). IMA levels were similar in ICPG and BDG. Serum MDA levels at 150 and 240 minutes increased in ICPG and BDG groups compared to CG (p < 0.05). MDA levels were similar in ICP and BD groups. IMA should be considered as a biochemical parameter in the process starting from increased intracranial pressure elevation and ending at brain death (Tab. 3, Fig. 5, Ref. 31).
Death revisited: rethinking death and the dead donor rule.
Iltis, Ana Smith; Cherry, Mark J
2010-06-01
Traditionally, people were recognized as being dead using cardio-respiratory criteria: individuals who had permanently stopped breathing and whose heart had permanently stopped beating were dead. Technological developments in the middle of the twentieth century and the advent of the intensive care unit made it possible to sustain cardio-respiratory and other functions in patients with severe brain injury who previously would have lost such functions permanently shortly after sustaining a brain injury. What could and should physicians caring for such patients do? Significant advances in human organ transplantation also played direct and indirect roles in discussions regarding the care of such patients. Because successful transplantation requires that organs be removed from cadavers shortly after death to avoid organ damage due to loss of oxygen, there has been keen interest in knowing precisely when people are dead so that organs could be removed. Criteria for declaring death using neurological criteria developed, and today a whole brain definition of death is widely used and recognized by all 50 states in the United States as an acceptable way to determine death. We explore the ongoing debate over definitions of death, particularly over brain death or death determined using neurological criteria, and the relationship between definitions of death and organ transplantation.
The degree of certainty in brain death: probability in clinical and Islamic legal discourse.
Qazi, Faisal; Ewell, Joshua C; Munawar, Ayla; Asrar, Usman; Khan, Nadir
2013-04-01
The University of Michigan conference "Where Religion, Policy, and Bioethics Meet: An Interdisciplinary Conference on Islamic Bioethics and End-of-Life Care" in April 2011 addressed the issue of brain death as the prototype for a discourse that would reflect the emergence of Islamic bioethics as a formal field of study. In considering the issue of brain death, various Muslim legal experts have raised concerns over the lack of certainty in the scientific criteria as applied to the definition and diagnosis of brain death by the medical community. In contrast, the medical community at large has not required absolute certainty in its process, but has sought to eliminate doubt through cumulative diagnostic modalities and supportive scientific evidence. This has recently become a principal model, with increased interest in data analysis and evidence-based medicine with the intent to analyze and ultimately improve outcomes. Islamic law has also long employed a systematic methodology with the goal of eliminating doubt from rulings regarding the question of certainty. While ample criticism of the scientific criteria of brain death (Harvard criteria) by traditional legal sources now exists, an analysis of the legal process in assessing brain death, geared toward informing the clinician's perspective on the issue, is lacking. In this article, we explore the role of certainty in the diagnostic modalities used to establish diagnoses of brain death in current medical practice. We further examine the Islamic jurisprudential approach vis-à-vis the concept of certainty (yaqīn). Finally, we contrast the two at times divergent philosophies and consider what each perspective may contribute to the global discourse on brain death, understanding that the interdependence that exists between the theological, juridical, ethical, and medical/scientific fields necessitates an open discussion and active collaboration between all parties. We hope that this article serves to continue the discourse that was successfully begun by this initial interdisciplinary endeavor at the University of Michigan.
Do not resuscitate, brain death, and organ transplantation: Islamic perspective
Chamsi-Pasha, Hassan; Albar, Mohammed Ali
2017-01-01
Muslim patients and families are often reluctant to discuss and accept fatal diagnoses and prognoses. In many instances, aggressive therapy is requested by a patient's family, prolonging the life of the patient at all costs. Islamic law permits the withdrawal of futile treatment, including life support, from terminally ill patients allowing death to take its natural course. “Do not resuscitate” is permitted in Islamic law in certain situations. Debate continues about the certainty of brain death criteria within Islamic scholars. Although brain death is accepted as true death by the majority of Muslim scholars and medical organizations, the consensus in the Muslim world is not unanimous, and some scholars still accept death only by cardiopulmonary criteria. Organ transplantation has been accepted in Islamic countries (with some resistance from some jurists). Many fatwas (decrees) of Islamic Jurisprudence Councils have been issued and allowed organs to be donated from living competent adult donor; and from deceased (cadavers), provided that they have agreed to donate or their families have agreed to donate after their death (usually these are brain-dead cases). A clear and well-defined policy from the ministry of health regarding do not resuscitate, brain death, and other end-of-life issues is urgently needed for all hospitals and health providers in most (if not all) Muslim and Arab countries. PMID:28469984
Weaver, Jessica Lee; Matheson, Paul J; Matheson, Amy; Graham, Victoria S; Downard, Cynthia; Garrison, Richard Neal; Smith, Jason W
2018-04-18
Brain death is associated with significant inflammation within the kidneys, which may contribute to reduced graft survival. Direct peritoneal resuscitation (DPR) has been shown to reduce systemic inflammation after brain death. To determine its effects, brain dead rats were resuscitated with normal saline (targeted intravenous fluid, TIVF) to maintain a mean arterial pressure of 80 mmHg and DPR animals also received 30cc of intraperitoneal peritoneal dialysis solution. Rats were euthanized at zero, two, four, and six hours after brain death. Pro-inflammatory cytokines were measured using ELISA. Levels of IL-1β, TNF-α, and IL-6 in the kidney were significantly increased as early as two hours after brain death and significantly decreased with DPR. Levels of leukocyte adhesion molecules ICAM and VCAM increased after brain death and were decreased with DPR (ICAM 2.33{plus minus}0.14 v 0.42{plus minus}0.04 p=0.002, VCAM 82.6{plus minus}5.8 v 37.3{plus minus}1.9 p=0.002 at four hours) as were E-selectin and P-selectin (E-selectin 25605 v 16144 p=0.005, P-selectin 82.5{plus minus}3.3 v 71.0{plus minus}2.3 p=0.009 at four hours). Use of DPR reduces inflammation and adhesion molecule expression in the kidneys, and is associated with reduced macrophages and neutrophils on immunohistochemistry. Using DPR in brain dead donors has the potential to reduce the immunologic activity of transplanted kidneys and could improve graft survival.
Wijdicks, Eelco F M; Varelas, Panayiotis N; Gronseth, Gary S; Greer, David M
2010-06-08
To provide an update of the 1995 American Academy of Neurology guideline with regard to the following questions: Are there patients who fulfill the clinical criteria of brain death who recover neurologic function? What is an adequate observation period to ensure that cessation of neurologic function is permanent? Are complex motor movements that falsely suggest retained brain function sometimes observed in brain death? What is the comparative safety of techniques for determining apnea? Are there new ancillary tests that accurately identify patients with brain death? A systematic literature search was conducted and included a review of MEDLINE and EMBASE from January 1996 to May 2009. Studies were limited to adults. In adults, there are no published reports of recovery of neurologic function after a diagnosis of brain death using the criteria reviewed in the 1995 American Academy of Neurology practice parameter. Complex-spontaneous motor movements and false-positive triggering of the ventilator may occur in patients who are brain dead. There is insufficient evidence to determine the minimally acceptable observation period to ensure that neurologic functions have ceased irreversibly. Apneic oxygenation diffusion to determine apnea is safe, but there is insufficient evidence to determine the comparative safety of techniques used for apnea testing. There is insufficient evidence to determine if newer ancillary tests accurately confirm the cessation of function of the entire brain.
Vanatta, Jason M; Dean, Amanda G; Hathaway, Donna K; Nair, Satheesh; Modanlou, Kian A; Campos, Luis; Nezakatgoo, Nosratollah; Satapathy, Sanjaya K; Eason, James D
2013-04-01
Organ donation after cardiac death remains an available resource to meet the demand for transplant. However, concern persists that outcomes associated with donation after cardiac death liver allografts are not equivalent to those obtained with organ donation after brain death. The aim of this matched case control study was to determine if outcomes of liver transplants with donation after cardiac death donors is equivalent to outcomes with donation after brain death donors by controlling for careful donor and recipient selection, surgical technique, and preservation solution. A retrospective, matched case control study of adult liver transplant recipients at the University of Tennessee/Methodist University Hospital Transplant Institute, Memphis, Tennessee was performed. Thirty-eight donation after cardiac death recipients were matched 1:2, with 76 donation after brain death recipients by recipient age, recipient laboratory Model for End Stage Liver Disease score, and donor age to form the 2 groups. A comprehensive approach that controlled for careful donor and recipient matching, surgical technique, and preservation solution was used to minimize warm ischemia time, cold ischemia time, and ischemia-reperfusion injury. Patient and graft survival rates were similar in both groups at 1 and 3 years (P = .444 and P = .295). There was no statistically significant difference in primary nonfunction, vascular complications, or biliary complications. In particular, there was no statistically significant difference in ischemic-type diffuse intrahepatic strictures (P = .107). These findings provide further evidence that excellent patient and graft survival rates expected with liver transplants using organ donation after brain death donors can be achieved with organ donation after cardiac death donors without statistically higher rates of morbidity or mortality when a comprehensive approach that controls for careful donor and recipient matching, surgical technique, and preservation solution is used.
Police Officers' Knowledge and Attitudes Toward Brain Death and Organ Donation in Korea.
Kim, H S; Yoo, Y S; Cho, O-H; Lee, C E; Choi, Y-H; Kim, H J; Park, J Y; Park, H S; Kwon, Y J
2018-05-01
Administrative processing by the police may affect the process involved in organ donation in the event of an accidental brain injury. The purpose of this study was to evaluate the knowledge and attitude of police toward brain-dead donors and organ donation. This was a descriptive research study using a 41-item questionnaire. As of July 19, 2017, 11 police stations in Seoul had collected questionnaires completed by 115 police officers. Data were analyzed using SAS (version 9.4) software. There were statistically significant differences in the scores on knowledge about brain death/donation according to religion (P = .022). Attitude was significantly positively correlated with the knowledge about brain-death organ donation (P = .029). It is necessary to understand and cooperate with the police when processing brain death organs from accidents. Education about organ donation can enhance the information and knowledge of the police and can also help to establish a positive attitude about organ donation. Copyright © 2018 Elsevier Inc. All rights reserved.
Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh
2011-01-01
The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was <0.38 ppm, the adjusted OR (95% CI) for brain cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.
Somatic survival and organ donation among brain-dead patients in the state of Qatar.
George, Saibu; Thomas, Merlin; Ibrahim, Wanis H; Abdussalam, Ahmed; Chandra, Prem; Ali, Husain Shabbir; Raza, Tasleem
2016-10-31
The Qatari law, as in many other countries, uses brain death as the main criteria for organ donation and cessation of medical support. By contrast, most of the public in Qatar do not agree with the limitation or withdrawal of medical care until the time of cardiac death. The current study aims to examine the duration of somatic survival after brain death, organ donation rate in brain-dead patients as well as review the underlying etiologies and level of support provided in the state of Qatar. This is a retrospective study of all patients diagnosed with brain death over a 10-year period conducted at the largest tertiary center in Qatar (Hamad General Hospital). Among the 53 patients who were diagnosed with brain death during the study period, the median and mean somatic survivals of brain-dead patients in the current study were 3 and 4.5 days respectively. The most common etiology was intracranial hemorrhage (45.3 %) followed by ischemic stroke (17 %). Ischemic stroke patients had a median survival of 11 days. Organ donation was accepted by only two families (6.6 %) of the 30 brain dead patients deemed suitable for organ donation. The average somatic survival of brain-dead patients is less than one week irrespective of supportive measures provided. Organ donation rate was extremely low among brain-dead patients in Qatar. Improved public education may lead to significant improvement in resource utilization as well as organ transplant donors and should be a major target area of future health care policies.
Medical and ethical dilemma in brain death.
Streba, Irina; Damian, Simona; Ioan, Beatrice
2012-01-01
For centuries, death has been defined, medically speaking, as the irreversible cessation of breathing and of nervous and cardiac activity. What radically changed this definition was the introduction of the concept "brain death" in 1968, by the "Ad Hoc Committee of the Harvard Medical School". According to it, the irreversible coma was associated with brain death and considered to be a criterion for the diagnosis of the deceased individual. The evergrowing need for transplant organs (provided this respects the dead honor rule, stipulating that organs can't be harvested unless someone is deceased) lead to making arbitrary decisions regarding the establishment of the exact time of death during the process of "losing life". What actually triggers the controversy related to the concept of brain death is the dilemma of associating this concept with that of biologic death or death of the person, the difference between the two being made by whether the mental characteristics are accepted or not in defining and individualizing the death of the human being. Given these circumstances, a dilemma appears--that of defining the death of the individual: we define death, as it has been for centuries, as the moment when the cardio-respiratory function no longer exists, which leads to the loss of tens of thousands of lives that might have been saved through transplant. Yet, this may lead to manipulating the border between life and death, with the risk of trespassing each individual's right to life.
Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.
Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2015-07-01
Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.
Ruder, Avima M.; Hein, Misty J.; Nilsen, Nancy; Waters, Martha A.; Laber, Patricia; Davis-King, Karen; Prince, Mary M.; Whelan, Elizabeth
2006-01-01
An Indiana capacitor-manufacturing cohort (n = 3,569) was exposed to polychlorinated biphenyls (PCBs) from 1957 to 1977. The original study of mortality through 1984 found excess melanoma and brain cancer; other studies of PCB-exposed individuals have found excess non-Hodgkin lymphoma and rectal, liver, biliary tract, and gallbladder cancer. Mortality was updated through 1998. Analyses have included standardized mortality ratios (SMRs) and 95% confidence intervals (CIs) using rates for Indiana and the United States, standardized rate ratios (SRRs), and Poisson regression rate ratios (RRs). Estimated cumulative exposure calculations used a new job–exposure matrix. Mortality overall was reduced (547 deaths; SMR, 0.81; 95% CI, 0.7–0.9). Non-Hodgkin lymphoma mortality was elevated (9 deaths; SMR, 1.23; 95% CI, 0.6–2.3). Melanoma remained in excess (9 deaths; SMR, 2.43; 95% CI, 1.1–4.6), especially in the lowest tertile of estimated cumulative exposure (5 deaths; SMR, 3.72; 95% CI, 1.2–8.7). Seven of the 12 brain cancer deaths (SMR, 1.91; 95% CI, 1.0–3.3) occurred after the original study. Brain cancer mortality increased with exposure (in the highest tertile, 5 deaths; SMR, 2.71; 95% CI, 0.9–6.3); the SRR dose–response trend was significant (p = 0.016). Among those working ≥90 days, both melanoma (8 deaths; SMR, 2.66; 95% CI, 1.1–5.2) and brain cancer (11 deaths; SMR, 2.12; 95% CI, 1.1–3.8) were elevated, especially for women: melanoma, 3 deaths (SMR, 5.99; 95% CI, 1.2–17.5); brain cancer, 3 deaths (SMR, 2.87; 95% CI, 0.6–8.4). These findings of excess melanoma and brain cancer mortality confirm results of the original study. Melanoma mortality was not associated with estimated cumulative exposure. Brain cancer mortality did not demonstrate a clear dose–response relationship with estimated cumulative exposure. PMID:16393652
Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro
2004-04-01
The expression of oxygen regulated protein 150-kDa (ORP-150) was strongly induced in human brain under the hypoxic conditions. We examined the expression of ORP-150 in the brain samples, and discussed its significance in forensic practice. The cerebral cortexes of 31 cases (asphyxia: 9 cases, hypothermia: 4, exsanguinations: 5, CO intoxication (CO): 6, sudden cardiac death (SCD): 7) were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibody and the number of ORP-150 positive cells were counted. In the multiple linear regression method, the estimated regression coefficient of ORP-150 on age was significant (P=0.039) thus, we could find that the ORP-150 expression level depended on age. Using analysis of covariance, we compared the means of ORP-150, LSMEAN, which means hypothetic average value excluding influence of age, for each cause of death. The LSMEAN+/-SE was 84.74+/-9.03 in hypothermia, 57.52+/-6.34 in asphyxia, 46.68+/-6.70 in CO, 24.84+/-8.05 in exsanguinations, and 16.24+/-7.35 in SCD. As a result of the analysis, the LSMEAN of the ORP-150 expression level was related to the cause of death. There might be differences in the duration of brain ischemia before death. For example, SCD is presumed to be instant death, while brain ischemia continues for several minutes in asphyxia, CO and exsanguinations, and for several hours in hypothermia cases. Therefore, the immunohistochemical and morphometrical analysis of ORP-150 in the brain may be very useful to determine the duration of brain ischemia before death in forensic autopsy cases.
Transplanting hearts after death measured by cardiac criteria: the challenge to the dead donor rule.
Veatch, Robert M
2010-06-01
The current definition of death used for donation after cardiac death relies on a determination of the irreversible cessation of the cardiac function. Although this criterion can be compatible with transplantation of most organs, it is not compatible with heart transplantation since heart transplants by definition involve the resuscitation of the supposedly "irreversibly" stopped heart. Subsequently, the definition of "irreversible" has been altered so as to permit heart transplantation in some circumstances, but this is unsatisfactory. There are three available strategies for solving this "irreversibility problem": altering the definition of death so as to rely on circulatory irreversibility, rather than cardiac; defining death strictly on the basis of brain death (either whole-brain or more pragmatically some higher brain criteria); or redefining death in traditional terms and simultaneously legalizing some limited instances of medical killing to procure viable hearts. The first two strategies are the most ethically justifiable and practical.
Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury
Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian
2016-01-01
ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396
Kim, Eun A; Choi, So Eun
2015-12-01
The purpose of this study was to test and validate a model to predict living and brain death organ donation intention in nursing students. The conceptual model was based on the theory planned behavior. Quota sampling methodology was used to recruit 921 nursing students from all over the country and data collection was done from October 1 to December 20, 2013. The model fit indices for the hypothetical model were suitable for the recommended level. Knowledge, attitude, subjective norm and perceived behavioral control explained 40.2% and 40.1% respectively for both living and brain death organ donation intention. Subjective norm was the most direct influential factor for organ donation intention. Knowledge had significant direct effect on attitude and indirect effect on subjective norm and perceived behavioral control. These effects were higher in brain death organ donation intention than in living donation intention. The overall findings of this study suggest the need to develop systematic education programs to increases knowledge about brain death organ donation. The development, application, and evaluation of intervention programs are required to improve subjective norm.
Domínguez-Gil, B; Coll, E; Pont, T; Lebrón, M; Miñambres, E; Coronil, A; Quindós, B; Herrero, J E; Liébanas, C; Marcelo, B; Sanmartín, A M; Matesanz, R
2017-04-01
To describe end-of-life care practices relevant to organ donation in patients with devastating brain injury in Spain. A multicenter prospective study of a retrospective cohort. 1 November 2014 to 30 April 2015. Sixty-eight hospitals authorized for organ procurement. Patients dying from devastating brain injury (possible donors). Age: 1 month-85 years. Type of care, donation after brain death, donation after circulatory death, intubation/ventilation, referral to the donor coordinator. A total of 1,970 possible donors were identified, of which half received active treatment in an Intensive Care Unit (ICU) until brain death (27%), cardiac arrest (5%) or the withdrawal of life-sustaining therapy (19%). Of the rest, 10% were admitted to the ICU to facilitate organ donation, while 39% were not admitted to the ICU. Of those patients who evolved to a brain death condition (n=695), most transitioned to actual donation (n=446; 64%). Of those who died following the withdrawal of life-sustaining therapy (n=537), 45 (8%) were converted into actual donation after circulatory death donors. The lack of a dedicated donation after circulatory death program was the main reason for non-donation. Thirty-seven percent of the possible donors were not intubated/ventilated at death, mainly because the professional in charge did not consider donation alter discarding therapeutic intubation. Thirty-six percent of the possible donors were never referred to the donor coordinator. Although deceased donation is optimized in Spain, there are still opportunities for improvement in the identification of possible donors outside the ICU and in the consideration of donation after circulatory death in patients who die following the withdrawal of life-sustaining therapy. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Jeon, K O; Kim, B N; Kim, H S; Byeon, N-I; Hong, J J; Bae, S H; Son, S Y
2012-05-01
The practice of retrieving vital organs from brain-dead donors is legally and medically accepted in Korea, but health care professionals' beliefs and opinions regarding these matters have not been sufficiently explored. The purpose of this study was to evaluate the knowledge and attitudes of health care professionals to the concepts of brain death and organ retrieval. Data were collected using a 41-item questionnaire during a week in June 2011. Sixty-one doctors and 109 nurses from five hospitals with more than 2000 beds in Seoul, Korea, participated in the survey. The data was analyzed using SPSS version 17.0 (SPSS Inc. Chicago, Illinois, USA). There were statistically significant differences in the scores on knowledge according to marital status (P = .001) education level (P = .019), whether the participants were informed about organ donation from a brain-dead donor (P = .002), and the participant's experience managing potential brain-dead patients (P = .037). There were statistically significant differences in the scores on the attitude according to gender (P < .001), age (P < .001), marital status (P < .001), education level (P = .003), job position (P < .001), and the participant's experience referring brain-dead patients to the hospital-based organ procurement organization (P = .001). Significantly, attitude's positively correlated with knowledge about brain-dead organ donation (P < .001). Compared with previous studies, the knowledge and attitudes of health care professionals' regarding brain death and organ retrieval were not improved. There are passive attitudes to brain death and organ retrieval. More research must be performed to promote knowledge and understanding toward brain death and organ retrieval among health care professionals. Copyright © 2012 Elsevier Inc. All rights reserved.
Determination of Death and the Dead Donor Rule: A Survey of the Current Law on Brain Death.
Nikas, Nikolas T; Bordlee, Dorinda C; Moreira, Madeline
2016-06-01
Despite seeming uniformity in the law, end-of-life controversies have highlighted variations among state brain death laws and their interpretation by courts. This article provides a survey of the current legal landscape regarding brain death in the United States, for the purpose of assisting professionals who seek to formulate or assess proposals for changes in current law and hospital policy. As we note, the public is increasingly wary of the role of organ transplantation in determinations of death, and of the variability of brain death diagnosing criteria. We urge that any attempt to alter current state statutes or to adopt a national standard must balance the need for medical accuracy with sound ethical principles which reject the utilitarian use of human beings and are consistent with the dignity of the human person. Only in this way can public trust be rebuilt. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Schmidt, Matthew Q; Schraml, Frank V
2017-12-01
A 55-year old woman presented in an obtunded state and was found to have a subarachnoid hemorrhage. After endovascular repair, her condition deteriorated, and brain death was suspected. A Tc bicisate brain blood flow study was performed, which showed a complete absence of blood flow to the cerebellum despite intact circulation to the cerebral hemispheres. These atypical findings are likely a result of a transient intracranial pressure differential and the timing of the study. A timely and accurate declaration of brain death has important psychosocial and ethical implications, particularly when organ donation is being considered.
Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator
Xie, B-W; Park, D; Van Beek, E R; Blankevoort, V; Orabi, Y; Que, I; Kaijzel, E L; Chan, A; Hogg, P J; Löwik, C W G M
2013-01-01
Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions. PMID:23348587
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-12-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-01-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination. PMID:3069052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwinska, Anna, E-mail: alphaonetau@poczta.onet.p; Tacikowska, Malgorzata; Murawska, Magdalena
2010-07-15
Purpose: The aim of the study is to evaluate disease-free survival, survival from the detection of brain metastases, overall survival, and cause of death in patients with occult brain metastases (Group I) vs. patients with symptomatic brain metastases (Group II). Methods and Materials: In 80 HER2-positive breast cancer patients, treated with trastuzumab and cytostatic agents for metastatic disease, magnetic resonance imaging screening of the brain was performed, and in 29 patients (36%) occult brain metastasis was detected (Group I). Whole-brain radiotherapy was delivered to Group I. This first group was compared with 52 patients who had symptomatic brain metastases (Groupmore » II) and was treated the same way, at the same clinic, during the same time period. Results: Median disease-free survival was 17 months in Group I and 19.9 months in Group II (p = 0.58). The median time interval between the dissemination of the disease and the detection of occult or symptomatic brain metastases was 9 and 15 months, respectively (p = 0.11). When the brain metastases were detected, the median survival was 9 and 8.78 months, respectively (p = 0.80). The median overall survival was 53 and 51 months, respectively (p = 0.94). In the group with occult brain metastases (Group I) 16% of patients died because of progression within the brain. In the group with symptomatic brain metastases (Group II) the rate of cerebral death was 48% (p = 0.009). Conclusions: Whole-brain radiotherapy of occult brain metastases in HER2-positive breast cancer patients with visceral dissemination produces a three-fold decrease in cerebral deaths but does not prolong survival.« less
Farrell, M M; Levin, D L
1993-12-01
To detail the origins of the definition of death, the development of the criterion of whole brain death as fulfilling the definition of death, and the tests used to fulfill that criterion. A review of the literature was performed. No Institutional Review Board approval was necessary. In 1959, patients were described as being in "coma dépassé" or beyond coma. In 1967, the first successful heart transplantation took place, with the organ coming from a brain-dead, beating-heart donor. However, anxiety over the definitions of death did not begin with the modern, technological era, and death itself has never been definable in objective terms. It has always been a subjective and value-based construct. During ancient times, most people agreed that death occurred when a person's heartbeat and breathing stopped. For the Greeks, the heart was the center of life; for the ancient Hebrews and Christians, the breath was the center of life. In the 12th century, Maimonides pointed toward the head, and the loss thereof, as the reason for lack of central guidance of the soul. Physicians neither diagnosed nor certified death. During the Enlightenment, the necessity of heartbeat, breath, and consciousness for the definition of life was questioned, leading to questioning regarding the definition of death. Tests to fulfill the criteria of death, and tests to determine the absence of integration between functions of respiration, circulation, and neurology were introduced. Sensorimotor potential was becoming recognized as defining life, rather than heartbeat and respiration. As new tests were devised to fulfill criteria of death, the physician developed a professional monopoly on meeting the criteria of brain death. In the modern era, the boundary between life and death has been blurred, but the intensive care unit straddles this boundary. We may have situations where the patient is alive but in a coma, without functioning heart, lungs, kidneys, or gastrointestinal tract, with a transplanted liver, a reversed coagulation system, a blocked immune system, and a paralyzed musculoskeletal system. A human being is a man, woman, or child who is a composite of two intricately related but conceptually distinguishable components: the biological entity and the person. Therefore, human beings can suffer more than one death: a biological death and decay, and another death. Biological death is a cessation of processes of biological synthesis and replication, and is an irreversible loss of integration of the biological units. The reasons for having criteria for death are to diagnose death and pronounce a person dead. Society can then begin to engage in grief, religious rites, funerals, and burials, and accept biological death. Wills can be read, property distributed, insurance claimed, individuals can remarry, succession can take place, and legal proceedings can begin. Also, organ donation can take place, which entails difficult ethical decisions. The Harvard criteria of 1968 were devised to set forth brain-death criteria with whole brain death in mind. Currently, there are several controversies regarding these criteria: a) whether they apply to infants and children; b) whether ancillary tests are necessary; c) what the intervals of observation and testing are; and d) are there exceptions to the whole brain death criteria. Concerning the use of the adult criteria for infants and children, most researchers now agree that the adult criteria apply to infants and children who are full term and > 7 days of age. Concerning ancillary tests, there has been, in our machine- and technology-oriented profession, a great deal of emphasis on the different tests and their ability to fulfill the criteria of whole brain death. However, clinical examination and the apnea test are usually sufficient to fulfill the criteria. Ancillary tests may be desired in some cases, and a variety of these tests is available. (ABSTRACT TR
... or brain. If not treated, TB disease can cause death. HIV weakens the immune system , increasing the risk ... spine, or brain. If not treated, TB can cause death. How does TB spread from person to person? ...
Care pathways for organ donation after brain death: guidance from available literature?
Hoste, Pieter; Vanhaecht, Kris; Ferdinande, Patrick; Rogiers, Xavier; Eeckloo, Kristof; Blot, Stijn; Hoste, Eric; Vogelaers, Dirk; Vandewoude, Koenraad
2016-10-01
A discussion of the literature concerning the impact of care pathways in the complex and by definition multidisciplinary process of organ donation following brain death. Enhancing the quality and safety of organs for transplantation has become a central concern for governmental and professional organizations. At the local hospital level, a donor coordinator can use a range of interventions to improve the donation and procurement process. Care pathways have been proven to represent an effective intervention in several settings for optimizing processes and outcomes. A discussion paper. A systematic review of the Medline, CINAHL, EMBASE and The Cochrane Library databases was conducted for articles published until June 2015, using the keywords donation after brain death and care pathways. Each paper was reviewed to investigate the effects of existing care pathways for donation after brain death. An additional search for unpublished information was conducted. Although literature supports care pathways as an effective intervention in several settings, few studies have explored its use and effectiveness for complex care processes such as donation after brain death. Nurses should be aware of their role in the donation process. Care pathways have the potential to support them, but their effectiveness has been insufficiently explored. Further research should focus on the development and standardization of the clinical content of a care pathway for donation after brain death and the identification of quality indicators. These should be used in a prospective effectiveness assessment of the proposed pathway. © 2016 John Wiley & Sons Ltd.
Time trends in organ donation after neurologic determination of death: a cohort study
Kramer, Andreas H.; Baht, Ryan; Doig, Christopher J.
2017-01-01
Background: The cause of brain injury may influence the number of organs that can be procured and transplanted with donation following neurologic determination of death. We investigated whether the distribution of causes responsible for neurologic death has changed over time and, if so, whether this has had an impact on organ quality, transplantation rates and recipient outcomes. Methods: We performed a cohort study involving consecutive brain-dead organ donors in southern Alberta between 2003 and 2014. For each donor, we determined last available measures of organ injury and number of organs transplanted, and compared these variables for various causes of neurologic death. We compared trends to national Canadian data for 2000-2013 (2000-2011 for Quebec). Results: There were 226 brain-dead organ donors over the study period, of whom 100 (44.2%) had anoxic brain injury, 63 (27.9%) had stroke, and 51 (22.6%) had traumatic brain injury. The relative proportion of donors with traumatic brain injury decreased over time (> 30% in 2003-2005 v. 6%-23% in 2012-2014) (p = 0.004), whereas that with anoxic brain injury increased (14%-37% v. 46%-80%, respectively) (p < 0.001). Nationally, the annual number of brain-dead donors with traumatic brain injury decreased from 4.4 to less than 3 per million population between 2000 and 2013, and that with anoxic brain injury increased from 1.1 to 3.1 per million. Donors with anoxic brain injury had higher concentrations of creatinine, alanine aminotransferase and troponin T, and lower PaO2/FIO2 and urine output than donors with other diagnoses. The average number of organs transplanted per donor was 3.6 with anoxic brain injury versus 4.5 with traumatic brain injury or stroke (p = 0.002). Interpretation: Anoxic brain injury has become a leading cause of organ donation after neurologic determination of death in Canada. Organs from donors with anoxic brain injury have a greater degree of injury, and fewer are transplanted. These findings have implications for availability of organs for transplantation in patients with end-stage organ failure. PMID:28401114
Brain death and the historical understanding of bioethics.
Belkin, Gary S
2003-07-01
In a 1968 Report, the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death promulgated influential criteria for the idea and practice known as "brain death." Before and since the Committee met, brain death has been a focal point of visions and nightmares of medical progress, purpose, and moral authority. Critics of the Committee felt it was deaf to apparently central moral considerations and focused on the self-serving purpose of expanding transplantation. Historical characterizations of the uses and meanings of brain death and the work of the Committee have tended to echo these themes, which means also generally repeating a widely held bioethical self-understanding of how the field appeared-that is, as a necessary antidote of moral expertise. This paper looks at the Committee and finds that historical depictions of it have been skewed by such a bioethical agenda. Entertaining different possibilities as to the motives and historical circumstances behind the Report it famously produced may point to not only different histories of the Committee, but also different perspectives on the historical legacy and role of bioethics as a discourse for addressing anxieties about medicine.
Ha, Mahnjeong; Kim, Byung Chul; Choi, Seonuoo; Cho, Won Ho; Choi, Hyuk Jin
2016-10-01
Preventable and potentially preventable traumatic death rates is a method to evaluate the preventability of the traumatic deaths in emergency medical department. To evaluate the preventability of the traumatic deaths in patients who were admitted to neurosurgery department, we performed this study. A retrospective review identified 52 patients who admitted to neurosurgery department with severe traumatic brain injuries between 2013 and 2014. Based on radiologic and clinical state at emergency room, each preventability of death was estimated by professional panel discussion. And the final death rates were calculated. The preventable and potentially preventable traumatic death rates was 19.2% in this study. This result is lower than that of the research of 2012, Korean preventable and potentially preventable traumatic death rates. The rate of preventable and potentially preventable traumatic death of operation group is lower than that of conservative treatment group. Also, we confirmed that direct transfer and the time to operation are important to reduce the preventability. We report the preventable and potentially preventable traumatic death rates of our institute for evaluation of preventability in severe traumatic brain injuries during the last 2 years. For decrease of preventable death, we suggest that continuous survey of the death rate of traumatic brain injury patients is required.
Ha, Mahnjeong; Kim, Byung Chul; Choi, Seonuoo; Cho, Won Ho
2016-01-01
Objective Preventable and potentially preventable traumatic death rates is a method to evaluate the preventability of the traumatic deaths in emergency medical department. To evaluate the preventability of the traumatic deaths in patients who were admitted to neurosurgery department, we performed this study. Methods A retrospective review identified 52 patients who admitted to neurosurgery department with severe traumatic brain injuries between 2013 and 2014. Based on radiologic and clinical state at emergency room, each preventability of death was estimated by professional panel discussion. And the final death rates were calculated. Results The preventable and potentially preventable traumatic death rates was 19.2% in this study. This result is lower than that of the research of 2012, Korean preventable and potentially preventable traumatic death rates. The rate of preventable and potentially preventable traumatic death of operation group is lower than that of conservative treatment group. Also, we confirmed that direct transfer and the time to operation are important to reduce the preventability. Conclusion We report the preventable and potentially preventable traumatic death rates of our institute for evaluation of preventability in severe traumatic brain injuries during the last 2 years. For decrease of preventable death, we suggest that continuous survey of the death rate of traumatic brain injury patients is required. PMID:27857910
Near-death experience: arising from the borderlands of consciousness in crisis.
Nelson, Kevin R
2014-11-01
Brain activity explains the essential features of near-death experience, including the perceptions of envelopment by light, out-of-body, and meeting deceased loved ones or spiritual beings. To achieve their fullest expression, such near-death experiences require a confluence of events and draw upon more than a single physiological or biochemical system, or one anatomical structure. During impaired cerebral blood flow from syncope or cardiac arrest that commonly precedes near-death, the boundary between consciousness and unconsciousness is often indistinct and a person may enter a borderland and be far more aware than is appreciated by others. Consciousness can also come and go if blood flow rises and falls across a crucial threshold. During crisis the brain's prime biologic purpose to keep itself alive lies at the heart of many spiritual experiences and inextricably binds them to the primal brain. Brain ischemia can disrupt the physiological balance between conscious states by leading the brainstem to blend rapid eye movement (REM) and waking into another borderland of consciousness during near-death. Evidence converges from many points to support this notion, including the observation that the majority of people with a near-death experience possess brains predisposed to fusing REM and waking consciousness into an unfamiliar reality, and are as likely to have out-of-body experience while blending REM and waking consciousness as they are to have out-of-body experience during near-death. © 2014 New York Academy of Sciences.
Radin, Dean
2014-01-01
With one exception, near-death experiences (NDEs) may be interpreted as unusual forms of hallucinations associated with the injured or dying brain. The exception involves perceptions described from vantage points outside the body that are later confirmed to be correct and could not have been inferred. Over a century of laboratory studies have investigated whether it is possible in principle for the mind to transcend the physical boundaries of the brain. The cumulative experimental database strongly indicates that it can. It is not clear that this implies the mind is separate from the brain, but it does suggest that a comprehensive explanation for NDEs will require revisions to present scientific assumptions about the brain-mind relationship.
Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi
2013-09-01
Brain edema is believed to be linked to high mortality incidence after severe burns. The present study investigated the molecular pathology of brain damage and responses involving brain edema in forensic autopsy cases of fire fatality (n = 55) compared with sudden cardiac death (n = 11), mechanical asphyxia (n = 13), and non-brain injury cases (n = 22). Postmortem mRNA and immunohistochemical expressions of aquaporins (AQPs), claudin5 (CLDN5), and matrix metalloproteinases (MMPs) were examined. Prolonged deaths due to severe burns showed an increase in brain water content, but relative mRNA quantification, using different normalization methods, showed inconsistent results: in prolonged deaths due to severe burns, higher expression levels were detected for all markers when three previously validated reference genes, PES1, POLR2A, and IPO8, were used for normalization, higher for AQP1 and MMP9 when GAPDH alone was used for normalization and higher for MMP9, but lower for MMP2 when B2M alone was used for normalization. Additionally, when B2M alone was used for normalization, higher expression of AQP4 was detected in acute fire deaths. Furthermore, the expression stability values of these five reference genes calculated by geNorm demonstrated that B2M was the least stable one, followed by GAPDH. In immunostaining, only AQP1 and MMP9 showed differences among the causes of death: they were evident in most prolonged deaths due to severe burns. These findings suggest that systematic analysis of gene expressions using real-time PCR might be a useful procedure in forensic death investigation, and validation of reference genes is crucial.
Acute brain herniation from lead toxicity.
Berkowitz, Sheldon; Tarrago, Rod
2006-12-01
A 4-year-old black boy was admitted to the hospital with vomiting, low-grade fever, and dehydration that were thought to be caused by viral gastroenteritis. He proceeded over the next 12 hours to rapidly deteriorate with brain herniation leading to brain death. The ultimate cause of death was found to be acute lead intoxication from a swallowed foreign body.
Rostron, Anthony J; Avlonitis, Vassilios S; Cork, David M W; Grenade, Danielle S; Kirby, John A; Dark, John H
2008-02-27
The autonomic storm accompanying brain death leads to neurogenic pulmonary edema and triggers development of systemic and pulmonary inflammatory responses. Neurogenic vasoplegia exacerbates the pulmonary injury caused by brain death and primes the lung for ischemia reperfusion injury and primary graft dysfunction in the recipient. Donor resuscitation with norepinephrine ameliorates the inflammatory response to brain death, however norepinephrine has deleterious effects, particularly on the heart. We tested the hypothesis that arginine vasopressin is a suitable alternative to norepinephrine in managing the hypotensive brain dead donor. Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary capillary leak was estimated using radioiodinated albumin. Development of pulmonary edema was assessed by measurement of wet and dry lung weights. Cell surface expression of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1, and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription polymerase chain reaction was used to determine the expression of cytokine mRNA (IL-1beta, CINC-1 and CINC-3) in lung tissue. There was a significant increase in pulmonary capillary permeability, wet/dry lung weight ratios, neutrophil integrin expression and pro-inflammatory cytokines in serum (TNFalpha, IL-1beta, CINC-1 and CINC-3), bronchoalveolar lavage (TNFalpha and IL-1beta) and lung tissue (IL-1beta and CINC-1) in braindead animals compared to controls. Correction of neurogenic hypotension with either arginine vasopressin or norepinephrine limits edema, reduces pulmonary capillary leak, and modulates systemic and pulmonary inflammatory responses to brain death. Arginine vasopressin and norepinephrine are equally effective in treating the hypotensive pulmonary donor in this rodent model.
Of wholes and parts: A Thomistic refutation of “Brain Death”
Accad, Michel
2015-01-01
I propose a refutation of the two major arguments that support the concept of “brain death” as an ontological equivalent to death of the human organism. I begin with a critique of the notion that a body part, such as the brain, could act as “integrator” of a whole body. I then proceed with a rebuttal of the argument that destruction of a body part essential for rational operations—such as the brain—necessarily entails that the remaining whole is indisposed to accrue a rational soul. Next, I point to the equivocal use of the terms “alive” or “living” as being at the root of conceptual errors about brain death. I appeal to the Thomistic definition of life and to the hylomorphic concept of “virtual presence” to clarify this confusion. Finally, I show how the Thomistic definition of life supports the traditional criterion for the determination of death. Lay summary: By the mid-1960s, medical technology became available that could keep “alive” the bodies of patients who had sustained complete and irreversible brain injury. The concept of “brain death” emerged to describe such states. Physicians, philosophers, and ethicists then proposed that the state of brain death is equivalent to the state of death traditionally identified by the absence of spontaneous pulse and respiration. This article challenges the major philosophical arguments that have been advanced to draw this equivalence. PMID:26912932
D. Alan Shewmon and the PCBE's White Paper on Brain Death: are brain-dead patients dead?
Brugger, E Christian
2013-04-01
The December 2008 White Paper (WP) on "Brain Death" published by the President's Council on Bioethics (PCBE) reaffirmed its support for the traditional neurological criteria for human death. It spends considerable time explaining and critiquing what it takes to be the most challenging recent argument opposing the neurological criteria formulated by D. Alan Shewmon, a leading critic of the "whole brain death" standard. The purpose of this essay is to evaluate and critique the PCBE's argument. The essay begins with a brief background on the history of the neurological criteria in the United States and on the preparation of the 2008 WP. After introducing the WP's contents, the essay sets forth Shewmon's challenge to the traditional neurological criteria and the PCBE's reply to Shewmon. The essay concludes by critiquing the WP's novel justification for reaffirming the traditional conclusion, a justification the essay finds wanting.
Death receptors DR6 and TROY regulate brain vascular development.
Tam, Stephen J; Richmond, David L; Kaminker, Joshua S; Modrusan, Zora; Martin-McNulty, Baby; Cao, Tim C; Weimer, Robby M; Carano, Richard A D; van Bruggen, Nick; Watts, Ryan J
2012-02-14
Signaling events that regulate central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation are only beginning to be elucidated. By evaluating the gene expression profile of mouse vasculature, we identified DR6/TNFRSF21 and TROY/TNFRSF19 as regulators of CNS-specific angiogenesis in both zebrafish and mice. Furthermore, these two death receptors interact both genetically and physically and are required for vascular endothelial growth factor (VEGF)-mediated JNK activation and subsequent human brain endothelial sprouting in vitro. Increasing beta-catenin levels in brain endothelium upregulate DR6 and TROY, indicating that these death receptors are downstream target genes of Wnt/beta-catenin signaling, which has been shown to be required for BBB development. These findings define a role for death receptors DR6 and TROY in CNS-specific vascular development. Copyright © 2012 Elsevier Inc. All rights reserved.
Chen, Guodong; Wang, Chang; Ko, Dicken Shiu-Chung; Qiu, Jiang; Yuan, Xiaopeng; Han, Ming; Wang, Changxi; He, Xiaoshun; Chen, Lizhong
2017-11-01
There are three categories of deceased donors of kidney transplantation in China, donation after brain death (DBD), donation after circulatory death (DCD), and donation after brain death followed by circulatory death (DBCD) donors. The aim of this study was to compare the outcomes of kidney transplantation from these three categories of deceased donors. We retrospectively reviewed 469 recipients who received deceased kidney transplantation in our hospital from February 2007 to June 2015. The recipients were divided into three groups according to the source of their donor kidneys: DBD, DCD, or DBCD. The primary endpoints were delayed graft function (DGF), graft loss, and patient death. The warm ischemia time was much longer in DCD group compared to DBCD group (18.4 minutes vs 12.9 minutes, P < .001). DGF rate was higher in DCD group than in DBD and DBCD groups (22.5% vs 10.2% and 13.8%, respectively, P = .021). Urinary leakage was much higher in DCD group (P = .049). Kaplan-Meier analysis showed that 1-, 2-, and 3-year patient survivals were all comparable among the three groups. DBCD kidney transplantation has lower incidences of DGF and urinary leakage than DCD kidney transplant. However, the overall patient and graft survival were comparable among DBD, DCD, and DBCD kidney transplantation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Michalak, Zuzanna; Wright, Gabriella; Dawson, Timothy; Hilton, David; Joshi, Abhijit; Diehl, Beate; Koepp, Matthias; Lhatoo, Samden; Sander, Josemir W.; Sisodiya, Sanjay M.
2015-01-01
Aims Sudden unexpected death in epilepsy (SUDEP) is one of the leading causes of death in people with epilepsy. For classification of definite SUDEP, a post mortem (PM), including anatomical and toxicological examination, is mandatory to exclude other causes of death. We audited PM practice as well as the value of brain examination in SUDEP. Methods We reviewed 145 PM reports in SUDEP cases from four UK neuropathology centres. Data were extracted for clinical epilepsy details, circumstances of death and neuropathological findings. Results Macroscopic brain abnormalities were identified in 52% of cases. Mild brain swelling was present in 28%, and microscopic pathologies relevant to cause or effect of seizures were seen in 89%. Examination based on whole fixed brains (76.6% of all PMs), and systematic regional sampling was associated with higher detection rates of underlying pathology (P < 0.01). Information was more frequently recorded regarding circumstances of death and body position/location than clinical epilepsy history and investigations. Conclusion Our findings support the contribution of examination of the whole fixed brain in SUDEP, with high rates of detection of relevant pathology. Availability of full clinical epilepsy‐related information at the time of PM could potentially further improve detection through targeted tissue sampling. Apart from confirmation of SUDEP, complete neuropathological examination contributes to evaluation of risk factors as well as helping to direct future research into underlying causes. PMID:26300477
Control of adult neurogenesis by programmed cell death in the mammalian brain.
Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon
2016-04-21
The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.
Impact of brain death on ischemia/reperfusion injury in liver transplantation.
Dziodzio, Tomasz; Biebl, Matthias; Pratschke, Johann
2014-04-01
In liver transplantation, the ischemia/reperfusion injury (IRI) is influenced by factors related to graft quality, organ procurement and the transplant procedure itself. However, in brain-dead donors, the process of death itself also thoroughly affects organ damage through breakdown of the autonomous nervous system and subsequent massive cytokine release. This review highlights the actual knowledge on these proinflammatory effects of brain death on IRI in liver transplantation. Brain death affects IRI either through hemodynamical or molecular effects with proinflammatory activation. Immunological effects are mainly mediated through Kupffer cell activation, leading to TNF-α and TLR4 amplification. Proinflammatory cytokines such as interleukin (IL)-6, IL-10, TNF-β and MIP-1α are released, together with activation of the innate immune system via natural killer cells and natural killer T cells, which promote organ damage and activation of fibrosis. Preprocurement treatment regimens attempt to hamper inflammatory response by the application of methylprednisolone or thymoglobulin to the donor. Selective P-selectin antagonism resulted in improved function in marginal liver grafts. Inhaled nitric oxide was found to reduce apoptosis in liver grafts. Other medications like the immunosuppressant tacrolimus produced conflicting results regarding organ protection. Furthermore, improved organ storage after procurement - such as machine perfusion - can diminish effects of IRI in a clinical setting. Brain death plays a fundamental role in the regulation of molecular markers triggering inflammation and IRI-related tissue damage in liver transplants. Although several treatment options have reached clinical application, to date, the effects of brain death during donor conditioning and organ procurement remain relevant for organ function and survival.
Implementation and clinical characteristics of a posttraumatic stress disorder brain collection.
Mighdoll, Michelle I; Deep-Soboslay, Amy; Bharadwaj, Rahul A; Cotoia, John A; Benedek, David M; Hyde, Thomas M; Kleinman, Joel E
2018-01-01
A postmortem human brain collection to study posttraumatic stress disorder (PTSD) is critical for uncovering the molecular mechanisms that contribute to this psychiatric disorder. We describe here the PTSD brain collection at the Lieber Institute for Brain Development in Baltimore, Maryland, consisting of postmortem brain donations acquired between 2012 and 2017. Thus far, 87 brains from individuals meeting DSM-5 criteria for PTSD were collected after consent was obtained from legal next-of-kin, and subsequently clinically characterized for molecular studies. PTSD brain donors had high rates of comorbid diagnoses, including depression (62.1%), substance abuse (74.7%), drug-related death (69.0%), and suicide completion (17.2%). PTSD cases were subdivided into two categories: combat-related PTSD (n = 24) and noncombat/domestic PTSD (n = 63). The major differences between the combat-related and domestic PTSD cohorts were sex, drug-related death, and the prevalence of bipolar disorder (BPD) comorbidity. The combat-related group was entirely male, with only one BPD subject (4.2%), and had significantly fewer drug-related deaths (45.8%) in contrast to the domestic group (31.8% male, 36.5% bipolar, and 77.8% drug-related deaths). Medical examiners' offices, particularly in areas with higher military populations, are an excellent source for PTSD brain donations of both combat-related and domestic PTSD. © 2017 Wiley Periodicals, Inc.
Brain Arterial Diameters as a Risk Factor for Vascular Events.
Gutierrez, Jose; Cheung, Ken; Bagci, Ahmet; Rundek, Tatjana; Alperin, Noam; Sacco, Ralph L; Wright, Clinton B; Elkind, Mitchell S V
2015-08-06
Arterial luminal diameters are routinely used to assess for vascular disease. Although small diameters are typically considered pathological, arterial dilatation has also been associated with disease. We hypothesize that extreme arterial diameters are biomarkers of the risk of vascular events. Participants in the Northern Manhattan Study who had a time-of-flight magnetic resonance angiography were included in this analysis (N=1034). A global arterial Z-score, called the brain arterial remodeling (BAR) score, was obtained by averaging the measured diameters within each individual. Individuals with a BAR score <-2 SDs were considered to have the smallest diameters, individuals with a BAR score >-2 and <2 SDs had average diameters, and individuals with a BAR score >2 SDs had the largest diameters. All vascular events were recorded prospectively after the brain magnetic resonance imaging. Spline curves and incidence rates were used to test our hypothesis. The association of the BAR score with death (P=0.001), vascular death (P=0.02), any vascular event (P=0.05), and myocardial infarction (P=0.10) was U-shaped except for ischemic stroke (P=0.74). Consequently, incidence rates for death, vascular death, myocardial infarction, and any vascular event were higher in individuals with the largest diameters, whereas individuals with the smallest diameters had a higher incidence of death, vascular death, any vascular event, and ischemic stroke compared with individuals with average diameters. The risk of death, vascular death, and any vascular event increased at both extremes of brain arterial diameters. The pathophysiology linking brain arterial remodeling to systemic vascular events needs further research. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kito, Hiroaki; Yamazaki, Daiju; Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto
Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cellmore » turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.« less
Islam, brain death, and transplantation: culture, faith, and jurisprudence.
Arbour, Richard; AlGhamdi, Hanan Mesfer Saad; Peters, Linda
2012-01-01
A significant gap exists between availability of organs for transplant and patients with end-stage organ failure for whom organ transplantation is the last treatment option. Reasons for this mismatch include inadequate approach to potential donor families and donor loss as a result of refractory cardiopulmonary instability during and after brainstem herniation. Other reasons include inadequate cultural competence and sensitivity when communicating with potential donor families. Clinicians may not have an understanding of the cultural and religious perspectives of Muslim families of critically ill patients who may be approached about brain death and organ donation. This review analyzes Islamic cultural and religious perspectives on organ donation, transplantation, and brain death, including faith-based directives from Islamic religious authorities, definitions of death in Islam, and communication strategies when discussing brain death and organ donation with Muslim families. Optimal family care and communication are highlighted using case studies and backgrounds illustrating barriers and approaches with Muslim families in the United States and in the Kingdom of Saudi Arabia that can improve cultural competence and family care as well as increase organ availability within the Muslim population and beyond.
Letter: Can Islamic Jurisprudence Justify Procurement of Transplantable Vital Organs in Brain Death?
Rady, Mohamed Y
2018-01-01
In their article, "An International Legal Review of the Relationship between Brain Death and Organ Transplantation," in The Journal of Clinical Ethics 29, no. 1, Aramesh, Arima, Gardiner, and Shah reported on diverse international legislative approaches for justifying procurement of transplantable vital organs in brain death. They stated, "In Islamic traditions in particular, the notion of unstable life is a way to justify organ donation from brain-dead patients that we believe has not been fully described previously in the literature." This commentary queries the extent to which this concept is valid in accordance with the primary source of Islamic law, that is, the Quran. Copyright 2018 The Journal of Clinical Ethics. All rights reserved.
Pokorná, E
2013-08-01
The key restriction of transplantation medicine globally, as well as in the Czech Republic, concerns the lack of organs. The number of deceased donors, and thus the availability of organ transplants, has been stagnating in our country. The paper describes current legal regulations governing the dia-gnosis of brain death and primary legal and medical criteria for the contraindication of the deceased for organ explantation, gives an overview of the number of liver transplants, age structure, and diagnosis resulting in brain death of the deceased liver donors in the Czech Republic.
Transplantation of donor hearts after circulatory or brain death in a rat model.
Li, Shiliang; Loganathan, Sivakkanan; Korkmaz, Sevil; Radovits, Tamás; Hegedűs, Peter; Zhou, Yan; Karck, Matthias; Szabó, Gábor
2015-05-01
Heart transplantation represents the only curative treatment for end-stage heart failure. Presently, the donor pool is restricted to brain-dead donors. Based on the lack of suitable donors and the increasing number of patients, we investigated some molecular pathomechanisms of the potential use of hearts after circulatory determination of death (DCDD) in transplantation. Rats were either maintained brain death for 5 h by inflation of a subdurally placed balloon catheter (n = 6) or subjected to cardiac arrest by exsanguinations (n = 6). Additionally, a control group was used (n = 9). Then the hearts were perfused with a cold preservation solution (Custodiol), explanted, stored at 4°C in Custodiol, and heterotopically transplanted. Brain death was associated with decreased left-ventricular contractility (dP/dtmax: 4895 ± 505 versus 8037 ± 565 mm Hg/s; ejection fraction: 27 ± 5 versus 44 ± 5%; Emax: 2.2 ± 0.3 versus 4.2 ± 0.3 mm Hg/μL; preload recruitable stroke work: 59 ± 5 versus 96 ± 6 mm Hg; 5 h after brain death versus before brain death; P < 0.05) and impaired cardiac relaxation (dP/dtmin: -4734 ± 575 versus -9404 ± 550 mm Hg/s and prolonged Tau, P < 0.05) compared with controls. After transplantation, significantly decreased systolic function and prolonged Tau were observed in brain-dead and DCDD groups compared with those in controls. Tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-κB, inducible-NOS, and caspase-3 messenger RNA and protein-levels were significantly increased in the brain-dead compared with both control and DCDD groups. Additionally, marked myocardial inflammatory cell infiltration, edema, necrosis, and DNA-strand breaks were observed in the brain-dead group. Our results show that despite the similar functional outcome in DCDD and brain-dead groups, brain-dead hearts showed marked myocardial inflammatory cell infiltration, edema, necrosis, DNA-strand breaks, and increased transcriptional and posttranscriptional expression for markers of apoptosis and inflammatory signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
5-HTTLPR moderates the association between interdependence and brain responses to mortality threats.
Luo, Siyang; Yu, Dian; Han, Shihui
2017-12-01
While behavioral research suggests an association between cultural worldview and decreased anxiety of death, the underlying neurobiological mechanisms remain unclear. Using functional MRI, we investigated whether and how the serotonin transporter promoter polymorphism (5-HTTLPR), which has been associated with mental disorders such as anxiety and depression, moderates the associations between a cultural trait (i.e., interdependence) and self-report of death anxiety/depression and between interdependence and brain responses to mortality threats. Long/long and short/short allele carriers of the 5-HTTLPR were scanned using fMRI while they performed a one-back task on death-related, death-unrelated negative, and neutral words. Participants' interdependence and death anxiety/depression were assessed using questionnaires after scanning. We found that participants who assessed themselves with greater interdependence reported lower death anxiety/depression and showed decreased neural response to death-related words in emotion-related brain regions including the anterior cingulate, putamen, and thalamus. However, these results were evident in long/long allele carriers of the 5-HTTLPR but not in short/short allele carriers who even showed positive associations between interdependence and neural activities in the anterior cingulate, putamen and thalamus in response to death-related words. Our findings suggest candidate mechanisms for explaining the complex relationship between genotype, cultural traits, and mental/neural responses to mortality threats. Hum Brain Mapp 38:6157-6171, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nishiyama, Yuichi; Kanayama, Hidekazu; Mori, Hiroshi; Tada, Keiji; Yamamoto, Yasushi; Katsube, Takashi; Takeshita, Haruo; Kawakami, Kazunori; Kitagaki, Hajime
2017-06-01
This study examined the usefulness of statistical parametric mapping (SPM) for investigating postmortem changes on brain computed tomography (CT). This retrospective study included 128 patients (23 - 100 years old) without cerebral abnormalities who underwent unenhanced brain CT before and after death. The antemortem CT (AMCT) scans and postmortem CT (PMCT) scans were spatially normalized using our original brain CT template, and postmortem changes of CT values (in Hounsfield units; HU) were analysed by the SPM technique. Compared with AMCT scans, 58.6 % and 98.4 % of PMCT scans showed loss of the cerebral sulci and an unclear grey matter (GM)-white matter (WM) interface, respectively. SPM analysis revealed a significant decrease in cortical GM density within 70 min after death on PMCT scans, suggesting cytotoxic brain oedema. Furthermore, there was a significant increase in the density of the WM, lenticular nucleus and thalamus more than 120 min after death. The SPM technique demonstrated typical postmortem changes on brain CT scans, and revealed that the unclear GM-WM interface on early PMCT scans is caused by a rapid decrease in cortical GM density combined with a delayed increase in WM density. SPM may be useful for assessment of whole brain postmortem changes. • The original brain CT template achieved successful normalization of brain morphology. • Postmortem changes in the brain were independent of sex. • Cortical GM density decreased rapidly after death. • WM and deep GM densities increased following cortical GM density change. • SPM could be useful for assessment of whole brain postmortem changes.
Khushf, George
2010-06-01
Many accounts of the historical development of neurological criteria for determination of death insufficiently distinguish between two strands of interpretation advanced by advocates of a "whole-brain" criterion. One strand focuses on the brain as the organ of integration. Another provides a far more complex and nuanced account, both of death and of a policy on the determination of death. Current criticisms of the whole-brain criterion are effective in refuting the first interpretation, but not the second, which is advanced in the 2008 President's Council report on the determination of death. In this essay, I seek to further develop this second strand of interpretation. I argue that policy on determination of death aligns moral, biological, and ontological death concepts. Morally, death marks the stage when respect is no longer owed. Biologically, death concerns integrated functioning of an organism as a whole. But the biological concepts are underdetermined. The moral concerns lead to selection of strong individuality concepts rather than weak ones. They also push criteria to the "far side" of the dying process. There is a countervailing consideration associated with optimizing the number of available organs, and this pushes to the "near side" of death. Policy is governed by a conviction that it is possible to align these moral and biological death concepts, but this conviction simply lays out an agenda. There is also a prescription-integral to the dead donor rule-that lexically prioritizes the deontic concerns and that seeks to balance the countervailing tendencies by using science-based refinements to make the line between life and death more precise. After showing how these concerns have been effectively aligned in the current policy, I present a modified variant of a "division" scenario and show how an "inverse decapitation problem" leads to a conclusive refutation of the nonbrain account of death.
Thom, Maria; Michalak, Zuzanna; Wright, Gabriella; Dawson, Timothy; Hilton, David; Joshi, Abhijit; Diehl, Beate; Koepp, Matthias; Lhatoo, Samden; Sander, Josemir W; Sisodiya, Sanjay M
2016-08-01
Sudden unexpected death in epilepsy (SUDEP) is one of the leading causes of death in people with epilepsy. For classification of definite SUDEP, a post mortem (PM), including anatomical and toxicological examination, is mandatory to exclude other causes of death. We audited PM practice as well as the value of brain examination in SUDEP. We reviewed 145 PM reports in SUDEP cases from four UK neuropathology centres. Data were extracted for clinical epilepsy details, circumstances of death and neuropathological findings. Macroscopic brain abnormalities were identified in 52% of cases. Mild brain swelling was present in 28%, and microscopic pathologies relevant to cause or effect of seizures were seen in 89%. Examination based on whole fixed brains (76.6% of all PMs), and systematic regional sampling was associated with higher detection rates of underlying pathology (P < 0.01). Information was more frequently recorded regarding circumstances of death and body position/location than clinical epilepsy history and investigations. Our findings support the contribution of examination of the whole fixed brain in SUDEP, with high rates of detection of relevant pathology. Availability of full clinical epilepsy-related information at the time of PM could potentially further improve detection through targeted tissue sampling. Apart from confirmation of SUDEP, complete neuropathological examination contributes to evaluation of risk factors as well as helping to direct future research into underlying causes. © 2015 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.
Kucera, Kristen L; Yau, Rebecca K; Register-Mihalik, Johna; Marshall, Stephen W; Thomas, Leah C; Wolf, Susanne; Cantu, Robert C; Mueller, Frederick O; Guskiewicz, Kevin M
2017-01-06
An estimated 1.1 million high school and 75,000 college athletes participate in tackle football annually in the United States. Football is a collision sport; traumatic injuries are frequent (1,2), and can be fatal (3). This report updates the incidence and characteristics of deaths caused by traumatic brain injury and spinal cord injury (4) in high school and college football and presents illustrative case descriptions. Information was analyzed from the National Center for Catastrophic Sport Injury Research (NCCSIR). During 2005-2014, a total of 28 deaths (2.8 deaths per year) from traumatic brain and spinal cord injuries occurred among high school (24 deaths) and college football players (four deaths) combined. Most deaths occurred during competitions and resulted from tackling or being tackled. All four of the college deaths and 14 (58%) of the 24 high school deaths occurred during the last 5 years (2010-2014) of the 10-year study period. These findings support the need for continued surveillance and safety efforts (particularly during competition) to ensure proper tackling techniques, emergency planning for severe injuries, availability of medical care onsite during competitions, and assessment that it is safe to return to play following a concussion.
Brooks, C M
1985-06-01
There is at present considerable confusion with respect to ethical guidelines that should govern the behavior of society and the physician confronted by problems resulting from recent attainments of medicine and science. The use of life supporting devices raises the problem of determining when death has occurred and what is proper ethical procedure in dealing with the deficient half life caused by "Brain Death." Some guidance is obtained from a consideration of the nature of life, the nature of death, the nature of man, and the essence lost in death of man. A parallel consideration of the nature of ethics, the bases of ethics and of ethical decision can be helpful. An individual may have ideals which control behavior, even elevate ethical standards; others entertain concepts that destroy social ethics. Ethics control and direct social interactions; ethics determine the quality of social behavior--ethics are established by societies not by individuals. Numerous commissions have endeavored to define the requirements of physicians for diagnosing brain death and for appropriate subsequent actions. The rationales presented, however, are not invariably accepted by lay society. The problem is created by numerous trends. Among them are the "rightest" movement which, though possessing many virtues, has its excesses such as expressed in the "right to life movement." These have not been beneficial and have necessitated "right to death movements." Opposition is also due to the fact that society's concepts of the medical profession have changed. The practice of organ transplantation has created problems. Finally, the concept of death as other than evil is no longer generally accepted. As more biological manipulations are possible ever more difficult ethical problems will arise. It is a certainty, however, that when brain death has occurred life of man and that of the individual has ended. Although others might not agree, our ethic requires us to use life assist techniques to preserve the vegetative man, the individual who can still breathe spontaneously though lacking consciousness and behavioral ability. All the codes of medical ethics state that a physician shall not kill--this does not mean he cannot permit the terminal phases of death when the essence of human life is lost. A major question is the ethical responsibility of one society toward another. Can an affluent society squander its resources in the preservation of ineffectual life in the body after "brain death" when others are without the medical assistance which would permit total living?
Effectiveness of a nonpenetrating captive bolt for euthanasia of 3 kg to 9 kg pigs.
Casey-Trott, T M; Millman, S T; Turner, P V; Nykamp, S G; Lawlis, P C; Widowski, T M
2014-11-01
The objective of this study was to determine the effectiveness of a nonpenetrating captive bolt, Zephyr-E, for euthanasia of suckling and weaned pigs from 3 to 9 kg (5-49 d of age) using signs of insensibility and death as well as postmortem assessment of traumatic brain injury (TBI). The Zephyr-E was used by 15 stock people to euthanize 150 compromised pigs from 4 farrowing and nursery units from commercial farms and 2 research stations. Brainstem reflexes, convulsions, and heartbeat were used to assess insensibility, time of brain death, and cardiac arrest following Zephyr-E application. Skull fracture displacement (FD) was quantified from computed tomography (CT) scans (n = 24), macroscopic scoring was used to assess brain hemorrhage and skull fracture severity (n = 150), and microscopic scoring was used to assess subdural hemorrhage (SDH) and parenchymal hemorrhage within specific brain regions that are responsible for consciousness and vital function (n = 32). The Zephyr-E caused immediate, sustained insensibility until death in 98.6% of pigs. On average, clonic convulsions (CC) ceased in 82.2 s (± 3.4 SE), brain death was achieved in 144.9 s (± 5.4 SE), and cardiac arrest occurred in 226.5 s (± 8.7 SE). Time of brain death and cardiac arrest differed significantly among stock people (P = 0.0225 and P = 0.0369). Age was positively related to the duration of CC (P = 0.0092), time of brain death (P = 0.0025), and cardiac arrest (P = 0.0068) with shorter durations seen in younger pigs. Average FD was 8.3 mm (± 1.0 SE). Macroscopic scores were significantly different among weight classes for subcutaneous (P = 0.0402) and subdural-ventral (P = 0.0037) hemorrhage with the lowest severity hemorrhage found in the 9-kg weight category. Microscopic scores differed among brain sections (P = 0.0070) for SDH with lower scores found in the brainstem compared to the cerebral cortex and midbrain. Parenchymal hemorrhage differed among brain sections (P = 0.0052) and weight categories (P = 0.0128) with the lowest scores in the midbrain and brainstem and the 7- and 9-kg weight categories. The Zephyr-E was highly effective for the euthanasia of pigs up to 9 kg (49 d) based on immediate insensibility sustained until death. Postmortem results confirmed that severe skull fracture and widespread brain hemorrhage were caused by the Zephyr-E nonpenetrating captive bolt.
Kubler, A; Lipinska-Gediga, M; Kedziora, J; Kubler, M
2009-06-01
The practice of retrieving vital organs from brain-dead heart-beating donors is legally and medically accepted in Poland, but public beliefs and opinions regarding these matters have not been sufficiently explored. The purpose of this study was to evaluate the attitude of university students to the concepts of brain death and organ retrieval, compared with the attitude of critical care physicians. The cohorts of 989 students and 139 physicians completed a questionnaire based on a survey instrument developed in an earlier reported study on Ohio residents. Participants assessed 3 scenarios: (1) brain death, (2) coma, and (3) vegetative state. More than 48% of students classified the patient from the brain death scenario as alive, and 51% of them were willing to donate organs of this patient. Ninety percent of students classified the patients in coma and in a vegetative state as alive, but still 34% of them would donate organs of those patients. The group of physicians properly determined the patients' diagnoses, but 10% of them accepted organ procurement from patients in coma and in a vegetative state. Our results supported the earlier observations of low public knowledge and inadequate understanding of brain death criteria and organ procurement processes. The majority of students were willing to accept organ procurement from severely ill but alive patients, in contrast with physicians. A considerable increase in public educational activity in this field is urgently recommended.
Simulation-based training in brain death determination.
MacDougall, Benjamin J; Robinson, Jennifer D; Kappus, Liana; Sudikoff, Stephanie N; Greer, David M
2014-12-01
Despite straightforward guidelines on brain death determination by the American Academy of Neurology (AAN), substantial practice variability exists internationally, between states, and among institutions. We created a simulation-based training course on proper determination based on the AAN practice parameters to address and assess knowledge and practice gaps at our institution. Our intervention consisted of a didactic course and a simulation exercise, and was bookended by before and after multiple-choice tests. The 40-min didactic course, including a video demonstration, covered all aspects of the brain death examination. Simulation sessions utilized a SimMan 3G manikin and involved a complete examination, including an apnea test. Possible confounders and signs incompatible with brain death were embedded throughout. Facilitators evaluated performance with a 26-point checklist based on the most recent AAN guidelines. A senior neurologist conducted all aspects of the course, including the didactic session, simulation, and debriefing session. Ninety physicians from multiple specialties have participated in the didactic session, 38 of whom have completed the simulation. Pre-test scores were poor (41.4 %), with attendings scoring higher than residents (46.6 vs. 40.4 %, p = 0.07), and neurologists and neurosurgeons significantly outperforming other specialists (53.9 vs. 38.9 %, p = 0.003). Post-test scores (73.3 %) were notably higher than pre-test scores (45.4 %). Participant feedback has been uniformly positive. Baseline knowledge of brain death determination among providers was low but improved greatly after the course. Our intervention represents an effective model that can be replicated at other institutions to train clinicians in the determination of brain death according to evidence-based guidelines.
Mechanical versus humoral determinants of brain death-induced lung injury
Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Hupkens, Emeline; Dewachter, Céline; Creteur, Jacques; Mc Entee, Kathleen; Naeije, Robert; Rondelet, Benoît
2017-01-01
Background The mechanisms of brain death (BD)-induced lung injury remain incompletely understood, as uncertainties persist about time-course and relative importance of mechanical and humoral perturbations. Methods Brain death was induced by slow intracranial blood infusion in anesthetized pigs after randomization to placebo (n = 11) or to methylprednisolone (n = 8) to inhibit the expression of pro-inflammatory mediators. Pulmonary artery pressure (PAP), wedged PAP (PAWP), pulmonary vascular resistance (PVR) and effective pulmonary capillary pressure (PCP) were measured 1 and 5 hours after Cushing reflex. Lung tissue was sampled to determine gene expressions of cytokines and oxidative stress molecules, and pathologically score lung injury. Results Intracranial hypertension caused a transient increase in blood pressure followed, after brain death was diagnosed, by persistent increases in PAP, PCP and the venous component of PVR, while PAWP did not change. Arterial PO2/fraction of inspired O2 (PaO2/FiO2) decreased. Brain death was associated with an accumulation of neutrophils and an increased apoptotic rate in lung tissue together with increased pro-inflammatory interleukin (IL)-6/IL-10 ratio and increased heme oxygenase(HO)-1 and hypoxia inducible factor(HIF)-1 alpha expression. Blood expressions of IL-6 and IL-1β were also increased. Methylprednisolone pre-treatment was associated with a blunting of increased PCP and PVR venous component, which returned to baseline 5 hours after BD, and partially corrected lung tissue biological perturbations. PaO2/FiO2 was inversely correlated to PCP and lung injury score. Conclusions Brain death-induced lung injury may be best explained by an initial excessive increase in pulmonary capillary pressure with increased pulmonary venous resistance, and was associated with lung activation of inflammatory apoptotic processes which were partially prevented by methylprednisolone. PMID:28753621
Schulz, Christian M; Burden, Amanda; Posner, Karen L; Mincer, Shawn L; Steadman, Randolph; Wagner, Klaus J; Domino, Karen B
2017-08-01
Situational awareness errors may play an important role in the genesis of patient harm. The authors examined closed anesthesia malpractice claims for death or brain damage to determine the frequency and type of situational awareness errors. Surgical and procedural anesthesia death and brain damage claims in the Anesthesia Closed Claims Project database were analyzed. Situational awareness error was defined as failure to perceive relevant clinical information, failure to comprehend the meaning of available information, or failure to project, anticipate, or plan. Patient and case characteristics, primary damaging events, and anesthesia payments in claims with situational awareness errors were compared to other death and brain damage claims from 2002 to 2013. Anesthesiologist situational awareness errors contributed to death or brain damage in 198 of 266 claims (74%). Respiratory system damaging events were more common in claims with situational awareness errors (56%) than other claims (21%, P < 0.001). The most common specific respiratory events in error claims were inadequate oxygenation or ventilation (24%), difficult intubation (11%), and aspiration (10%). Payments were made in 85% of situational awareness error claims compared to 46% in other claims (P = 0.001), with no significant difference in payment size. Among 198 claims with anesthesia situational awareness error, perception errors were most common (42%), whereas comprehension errors (29%) and projection errors (29%) were relatively less common. Situational awareness error definitions were operationalized for reliable application to real-world anesthesia cases. Situational awareness errors may have contributed to catastrophic outcomes in three quarters of recent anesthesia malpractice claims.Situational awareness errors resulting in death or brain damage remain prevalent causes of malpractice claims in the 21st century.
A Case Report of Successful Kidney Donation After Brain Death Following Nicotine Intoxication.
Räsänen, M; Helanterä, I; Kalliomäki, J; Savikko, J; Parry, M; Lempinen, M
Nicotine intoxication is a rare cause of death and can lead to brain death after respiratory arrest and hypoxic-ischemic encephalopathy. To our knowledge, no previous reports regarding organ donation after nicotine intoxication have been described. We present a successful case of kidney donation after brain death caused by subcutaneous nicotine overdose from liquid nicotine from an e-cigarette cartridge in an attempted suicide. Both kidneys were transplanted successfully with immediate graft function, and both recipients were discharged at postoperative day 9 with normal plasma creatinine levels. Graft function has remained excellent in follow-up. This case suggests that kidneys from a donor with fatal nicotine intoxication may be successfully used for kidney transplantation in the absence of other contraindications for donation. Copyright © 2016 Elsevier Inc. All rights reserved.
Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits
Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa
2017-01-01
A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain-dead donors. In the present study, two-dimensional gel electrophoresis and MALDI-TOF MS-based comparative proteomic analysis were conducted to profile the differentially-expressed proteins between brain death and the control group renal tissues. A total of 40 age- and sex-matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two-dimensional gel electrophoresis, >2-fold alterations were identified by MALDI-TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3-N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b-c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre-mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V-type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin-3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time-dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain-dead donors. PMID:28534953
Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.
Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît
2016-12-01
Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Moschella, Melissa
2016-10-01
As is clear in the 2008 report of the President's Council on Bioethics, the brain death debate is plagued by ambiguity in the use of such key terms as 'integration' and 'wholeness'. Addressing this problem, I offer a plausible ontological account of organismal unity drawing on the work of Hoffman and Rosenkrantz, and then apply that account to the case of brain death, concluding that a brain dead body lacks the unity proper to a human organism, and has therefore undergone a substantial change. I also show how my view can explain hard cases better than one in which biological integration (as understood by Alan Shewmon and the President's Council) is taken to imply ontological wholeness or unity. © 2016 John Wiley & Sons Ltd.
Brain protection by methylprednisolone in rats with spinal cord injury.
Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung
2009-07-01
Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.
Individual choice in the definition of death.
Bagheri, A
2007-03-01
While there are numerous doubts, controversies and lack of consensus on alternative definitions of human death, it is argued that it is more ethical to allow people to choose either cessation of cardio-respiratory function or loss of entire brain function as the definition of death based on their own views. This paper presents the law of organ transplantation in Japan, which allows people to decide whether brain death can be used to determine their death in agreement with their family. Arguably, Japan could become a unique example of individual choice in the definition of death if the law is revised to allow individuals choose definition of death independently of their family. It suggests that such an approach is one of the reasonable policy options a country can adopt for legislation on issues related to the definition of death.
Abandoning the dead donor rule? A national survey of public views on death and organ donation
Nair-Collins, Michael; Green, Sydney R; Sutin, Angelina R
2015-01-01
Brain dead organ donors are the principal source of transplantable organs. However, it is controversial whether brain death is the same as biological death. Therefore, it is unclear whether organ removal in brain death is consistent with the ‘dead donor rule’, which states that organ removal must not cause death. Our aim was to evaluate the public's opinion about organ removal if explicitly described as causing the death of a donor in irreversible apneic coma. We conducted a cross-sectional internet survey of the American public (n=1096). Questionnaire domains included opinions about a hypothetical scenario of organ removal described as causing the death of a patient in irreversible coma, and items measuring willingness to donate organs after death. Some 71% of the sample agreed that it should be legal for patients to donate organs in the scenario described and 67% agreed that they would want to donate organs in a similar situation. Of the 85% of the sample who agreed that they were willing to donate organs after death, 76% agreed that they would donate in the scenario of irreversible coma with organ removal causing death. There appears to be public support for organ donation in a scenario explicitly described as violating the dead donor rule. Further, most but not all people who would agree to donate when organ removal is described as occurring after death would also agree to donate when organ removal is described as causing death in irreversible coma. PMID:25260779
Ballesteros, María A; Rubio-Lopez, María I; San Martín, María; Padilla, Ana; López-Hoyos, Marcos; Llorca, Javier; Miñambres, Eduardo
2018-02-15
To evaluate the correlation between protein S100B concentrations measured in the jugular bulb as well as at peripheral level and the prognostic usefulness of this marker. A prospective study of all patients admitted to the intensive care unit with acute brain damage was carried out. Peripheral and jugular bulb blood samples were collected upon admission and every 24h for three days. The endpoints were brain death diagnosis and the Glasgow Outcome Scale score after 6months. A total of 83 patients were included. Jugular protein S100B levels were greater than systemic levels upon admission and also after 24 and 72h (mean difference>0). Jugular protein S100B levels showed acceptable precision in predicting brain death both upon admission [AUC 0.67 (95% CI 0.53-0.80)] and after 48h [AUC 0.73 (95% CI 0.57-0.89)]. Similar results were obtained regarding the capacity of jugular protein S100B levels upon admission to predict an unfavourable outcome (AUC 0.69 (95% CI 0.56-0.79)). The gradient upon admission (jugular-peripheral levels) showed its capacity to predict the development of brain death [AUC 0.74 (95% CI 0.62-0.86)] and together with the Glasgow Coma Scale constituted the independent factors associated with the development of brain death. Regional protein S100B determinations are higher than systemic determinations, thus confirming the cerebral origin of protein S100B. The transcranial protein S100B gradient is correlated to the development of brain death. Copyright © 2017. Published by Elsevier B.V.
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, Theodore R.; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.
2017-01-01
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models. PMID:26936506
Do Spanish Medical Students Understand the Concept of Brain Death?
Ríos, Antonio; López-Navas, A; López-López, A; Gómez, F J; Iriarte, J; Herruzo, R; Blanco, G; Llorca, F J; Asunsolo, A; Sánchez, P; Gutiérrez, P R; Fernández, A; de Jesús, M T; Alarcón, L Martínez; Del Olivo, M; Fuentes, L; Hernández, J R; Virseda, J; Yelamos, J; Bondía, J A; Hernández, A M; Ayala, M A; Ramírez, P; Parrilla, P
2018-03-01
To analyze the level of understanding of the brain death concept among medical students in universities in Spain. This cross-sectional sociological, interdisciplinary, and multicenter study was performed on 9598 medical students in Spain. The sample was stratified by geographical area and academic year. A previously validated self-reported measure of brain death knowledge (questionnaire Proyecto Colaborativo Internacional Donante sobre la Donación y Transplante de Organos) was completed anonymously by students. Respondents completed 9275 surveys for a completion rate of 95.7%. Of those, 67% (n = 6190) of the respondents understood the brain death concept. Of the rest, 28% (n = 2652) did not know what it meant, and the remaining 5% (n = 433) believed that it did not mean that the patient was dead. The variables related to a correct understanding of the concept were: (1) being older ( P < .001), (2) studying at a public university ( P < .001), (3) year of medical school ( P < .001), (4) studying at one of the universities in the south of Spain ( P = .003), (5) having discussed donation and transplantation with the family ( P < .001), (6) having spoken to friends about the matter ( P < .001), (7) a partner's favorable attitude toward donation and transplantation ( P < .001), and (8) religious beliefs ( P < .001). Sixty-seven percent of medical students know the concept of brain death, and knowledge improved as they advanced in their degree.
Wijesinghe, Printha; Gorrie, Catherine; Shankar, S K; Chickabasaviah, Yasha T; Amaratunga, Dhammika; Hulathduwa, Sanjayah; Kumara, K Sunil; Samarasinghe, Kamani; Suh, Yoo-Hun; Steinbusch, H W M; De Silva, K Ranil D
2017-01-01
There is little information available in the literature concerning the contribution of dementia in injury deaths in elderly people (≥60 years). This study was intended to investigate the extent of dementia-related pathologies in the brains of elderly people who died in traffic accidents or by suicide and to compare our findings with age- and sex-matched natural deaths in an elderly population. Autopsy-derived human brain samples from nine injury death victims (5 suicide and 4 traffic accidents) and nine age- and sex-matched natural death victims were screened for neurodegenerative and cerebrovascular pathologies using histopathological and immunohistochemical techniques. For the analysis, Statistical Package for the Social Sciences (SPSS) version 16.0 was used. There was a greater likelihood for Alzheimer's disease (AD)-related changes in the elders who succumbed to traffic accidents (1 out of 4) compared to age- and sex-matched suicides (0 out of 5) or natural deaths (0 out of 9) as assessed by the National Institute on Aging - Alzheimer's Association guidelines. Actual burden of both neurofibrillary tangles (NFTs) and (SPs) was comparatively higher in the brains of traffic accidents, and the mean NFT counts were significantly higher in the region of entorhinal cortex ( P < 0.05). However, associations obtained for other dementia-related pathologies were not statistically important. Our findings suggest that early Alzheimer stages may be a contributing factor to injury deaths caused by traffic accidents in elderly people whereas suicidal brain neuropathologies resembled natural deaths.
Ten Leading Causes of Death and Injury
... Brain Injury Violence Prevention Ten Leading Causes of Death and Injury Recommend on Facebook Tweet Share Compartir ... Emergency Departments, United States – 2014 Leading Causes of Death Charts Causes of Death by Age Group 2016 [ ...
The profile of head injuries and traumatic brain injury deaths in Kashmir.
Yattoo, Gh; Tabish, Amin
2008-06-21
This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI) deaths were also studied retrospectively for a period of eight years (1996 to 2003).The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21-30 years (18.8%), followed by 11-20 years age group (17.8%) and 31-40 years (14.3%). The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas.To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres) need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients.
Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C
2016-02-01
The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation with propofol and other compounds with GABA receptor activity are frequently used in patients with acute brain pathologies to facilitate sedation or surgical and interventional procedures.
Brain injury following trial of hypothermia for neonatal hypoxic–ischaemic encephalopathy
Shankaran, Seetha; Barnes, Patrick D; Hintz, Susan R; Laptook, Abbott R; Zaterka-Baxter, Kristin M; McDonald, Scott A; Ehrenkranz, Richard A; Walsh, Michele C; Tyson, Jon E; Donovan, Edward F; Goldberg, Ronald N; Bara, Rebecca; Das, Abhik; Finer, Neil N; Sanchez, Pablo J; Poindexter, Brenda B; Van Meurs, Krisa P; Carlo, Waldemar A; Stoll, Barbara J; Duara, Shahnaz; Guillet, Ronnie; Higgins, Rosemary D
2013-01-01
Objective The objective of our study was to examine the relationship between brain injury and outcome following neonatal hypoxic–ischaemic encephalopathy treated with hypothermia. Design and patients Neonatal MRI scans were evaluated in the National Institute of Child Health and Human Development (NICHD) randomised controlled trial of whole-body hypothermia and each infant was categorised based upon the pattern of brain injury on the MRI findings. Brain injury patterns were assessed as a marker of death or disability at 18–22 months of age. Results Scans were obtained on 136 of 208 trial participants (65%); 73 in the hypothermia and 63 in the control group. Normal scans were noted in 38 of 73 infants (52%) in the hypothermia group and 22 of 63 infants (35%) in the control group. Infants in the hypothermia group had fewer areas of infarction (12%) compared to infants in the control group (22%). Fifty-one of the 136 infants died or had moderate or severe disability at 18 months. The brain injury pattern correlated with outcome of death or disability and with disability among survivors. Each point increase in the severity of the pattern of brain injury was independently associated with a twofold increase in the odds of death or disability. Conclusions Fewer areas of infarction and a trend towards more normal scans were noted in brain MRI following whole-body hypothermia. Presence of the NICHD pattern of brain injury is a marker of death or moderate or severe disability at 18–22 months following hypothermia for neonatal encephalopathy. PMID:23080477
Brain Death and Human Organismal Integration: A Symposium on the Definition of Death
Moschella, Melissa
2016-01-01
Does the ability of some brain dead bodies to maintain homeostasis with the help of artificial life support actually imply that those bodies are living human organisms? Or might it be possible that a brain dead body on life support is a mere collection of still-living cells, organs and tissues which can coordinate with one another, but which lack the genuine integration that is the hallmark of a unified human organism as a whole? To foster further study of these difficult and timely questions, a Symposium on the Definition of Death was held at The Catholic University of America in June 2014. The Symposium brought together scholars from a variety of disciplines—law, medicine, biology, philosophy and theology—who all share a commitment to the dead donor rule and to a biological definition of death, but who have differing opinions regarding the validity of neurological criteria for human death. The papers found in this special issue are among the fruits of this Symposium. PMID:27107428
Escudero, D; Otero, J; Quindós, B; Viña, L
2015-05-01
Transcranial Doppler ultrasound is able to demonstrate cerebral circulatory arrest associated to brain death, being especially useful in sedated patients, or in those in which complete neurological exploration is not possible. Transcranial Doppler ulstrasound is a portable, noninvasive and high-availability technique. Among its limitations, mention must be made of the absence of acoustic windows and false-negative cases. In patients clinically diagnosed with brain death, with open skulls or with anoxia as the cause of death, cerebral blood flow can be observed by ultrasound, since cerebral circulatory arrest is not always synchronized to the clinical diagnosis. The diagnostic rate is therefore time-dependent, and this fact that must be recognized in order to avoid delays in death certification. Despite its limitations, transcranial Doppler ulstrasound helps solve common diagnostic problems, avoids the unnecessary consumption of resources, and can optimize organ harvesting for transplantation. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Growth of melanoma brain tumors monitored by photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Staley, Jacob; Grogan, Patrick; Samadi, Abbas K.; Cui, Huizhong; Cohen, Mark S.; Yang, Xinmai
2010-07-01
Melanoma is a primary malignancy that is known to metastasize to the brain and often causes death. The ability to image the growth of brain melanoma in vivo can provide new insights into its evolution and response to therapies. In our study, we use a reflection mode photoacoustic microscopy (PAM) system to detect the growth of melanoma brain tumor in a small animal model. The melanoma tumor cells are implanted in the brain of a mouse at the beginning of the test. Then, PAM is used to scan the region of implantation in the mouse brain, and the growth of the melanoma is monitored until the death of the animal. It is demonstrated that PAM is capable of detecting and monitoring the brain melanoma growth noninvasively in vivo.
Deloncle, Roger; Fauconneau, Bernard; Guillard, Olivier; Delaval, José; Lesage, Gérard; Pineau, Alain
2017-01-01
In Creutzfeldt Jakob, Alzheimer and Parkinson diseases, copper metalloproteins such as prion, amyloid protein precursor and α-synuclein are able to protect against free radicals by reduction from cupric Cu +2 to cupreous Cu + . In these pathologies, a regional copper (Cu) brain decrease correlated with an iron, zinc or manganese (Mn) increase has previously been observed, leading to local neuronal death and abnormal deposition of these metalloproteins in β-sheet structures. In this study we demonstrate the protective effect of Cu metalloproteins against deleterious free-radical effects. With neuroblastoma SH-SY5Y cell cultures, we show that bovine brain prion protein in Cu but not Mn form prevents free radical-induced neuronal death. The survival ratio of SH-SY5Y cells has been measured after UV irradiation (free radical production), when the incubating medium is supplemented with bovine brain homogenate in native, Cu or Mn forms. This ratio, about 28% without any addition or with bovine brain protein added in Mn form, increases by as much as 54.73% with addition to the culture medium of native bovine brain protein and by as much as 95.95% if the addition is carried out in cupric form. This protective effect of brain copper protein against free radical-induced neuronal death has been confirmed with Inductively Coupled Plasma Mass Spectrometry Mn and Cu measurement in bovine brain homogenates: respectively lower than detection limit and 9.01μg/g dry weight for native form; lower than detection limit and 825.85μg/g dry weight for Cu-supplemented form and 1.75 and 68.1μg/g dry weight in Mn-supplemented brain homogenate. Copyright © 2016 Elsevier GmbH. All rights reserved.
Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries.
Sakamula, Romgase; Thong-Asa, Wachiryah
2018-06-01
Cerebral ischemia reperfusion (IR) is associated with neuronal death, which leads to disability and cognitive decline. The pathomechanism occurs because ischemia is exacerbated during the reperfusion period. Neuronal damage susceptibility depends on the affected brain areas and the duration of ischemia. Prevention and supplementation to neurons may help them endure during IR and further benefit them in rehabilitation. We investigated the protective effect of p-coumaric acid (PC) on cerebral IR injuries in mice. We randomly divided 30 male ICR mice into 3 groups of Sham (received vehicle and not induced IR), Control-IR (received vehicle and induced IR) and PC-IR (received 100 mg/kg PC and induced IR). We orally administered vehicle or 100 mg/kg of p-coumaric acid for 2 weeks before inducing the cerebral IR injuries by using 30 min of a bilateral common carotid artery occlusion followed by a 45-min reperfusion. We induced the IR condition in the Control-IR and PC-IR groups but not the Sham group, and only the PC-IR group received p-coumaric acid. After IR induction, we sacrificed all the mice and collected their brain tissues to evaluate their oxidative statuses, whole brain infarctions and vulnerable neuronal deaths. We studied the whole-brain infarction volume by 2, 3, 5-triethyltetrazoliumchloride staining of sections. We performed a histological investigation of the vulnerable neuronal population in the dorsal hippocampus by staining brain sections with 0.1% cresyl violet. The results indicated that IR caused significant increases in calcium and malondialdehyde (MDA) levels, whole brain infarction volume and hippocampal neuronal death. Pretreatment with p-coumaric acid significantly reduced MDA levels, whole-brain infarction volume and hippocampal neuronal death together and increased catalase and superoxide dismutase activities. We conclude here that pretreating animals with p-coumaric acid can prevent IR-induced brain oxidative stress, infarction size and neuronal vulnerability to death in cerebral IR injuries.
Accelerated death rate in population-based cohort of persons with traumatic brain injury.
Selassie, Anbesaw W; Cao, Yue; Church, Elizabeth C; Saunders, Lee L; Krause, James
2014-01-01
To determine the influence of preexisting heart, liver, kidney, cancer, stroke, and mental health problems and examine the influence of low socioeconomic status on mortality after discharge from acute care facilities for individuals with traumatic brain injury. Population-based retrospective cohort study of 33695 persons discharged from acute care hospital with traumatic brain injury in South Carolina, 1999-2010. Days elapsing from the dates of injury to death established the survival time (T). Data were censored at the 145th month. Multivariable Cox regression was used to examine the independent effect of the variables on death. Age-adjusted cumulative probability of death for each chronic disease of interest was plotted. By the 70th month of follow-up, rate of death was accelerated from 10-fold for heart diseases to 2.5-fold for mental health problems. Adjusted hazard ratios for diseases of the heart (2.13), liver-renal (3.25), cancer (2.64), neurological diseases and stroke (2.07), diabetes (1.89), hypertension (1.43), and mental health problems (1.59) were highly significant (each with P < .001). Compared with persons with private insurance, the hazard ratio was significantly elevated with Medicaid (1.67), Medicare (1.54), and uninsured (1.27) (each with P < .001). Specific chronic diseases strongly influenced postdischarge mortality after traumatic brain injury. Low socioeconomic status as measured by the type of insurance elevated the risk of death.
NASA Astrophysics Data System (ADS)
Song, Bin; Zhou, Ting; Liu, Jia; Shao, LongQuan
2016-11-01
The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.
A model to predict progression in brain-injured patients.
Tommasino, N; Forteza, D; Godino, M; Mizraji, R; Alvarez, I
2014-11-01
The study of brain death (BD) epidemiology and the acute brain injury (ABI) progression profile is important to improve public health programs, organ procurement strategies, and intensive care unit (ICU) protocols. The purpose of this study was to analyze the ABI progression profile among patients admitted to ICUs with a Glasgow Coma Score (GCS) ≤8, as well as establishing a prediction model of probability of death and BD. This was a retrospective analysis of prospective data that included all brain-injured patients with GCS ≤8 admitted to a total of four public and private ICUs in Uruguay (N = 1447). The independent predictor factors of death and BD were studied using logistic regression analysis. A hierarchical model consisting of 2 nested logit regression models was then created. With these models, the probabilities of death, BD, and death by cardiorespiratory arrest were analyzed. In the first regression, we observed that as the GCS decreased and age increased, the probability of death rose. Each additional year of age increased the probability of death by 0.014. In the second model, however, BD risk decreased with each year of age. The presence of swelling, mass effect, and/or space-occupying lesion increased BD risk for the same given GCS. In the presence of injuries compatible with intracranial hypertension, age behaved as a protective factor that reduced the probability of BD. Based on the analysis of the local epidemiology, a model to predict the probability of death and BD can be developed. The organ potential donation of a country, region, or hospital can be predicted on the basis of this model, customizing it to each specific situation.
Wijesinghe, Printha; Gorrie, Catherine; Shankar, S. K.; Chickabasaviah, Yasha T.; Amaratunga, Dhammika; Hulathduwa, Sanjayah; Kumara, K. Sunil; Samarasinghe, Kamani; Suh, Yoo-Hun; Steinbusch, H. W. M.; De Silva, K. Ranil D.
2017-01-01
Background: There is little information available in the literature concerning the contribution of dementia in injury deaths in elderly people (≥60 years). Aim: This study was intended to investigate the extent of dementia-related pathologies in the brains of elderly people who died in traffic accidents or by suicide and to compare our findings with age- and sex-matched natural deaths in an elderly population. Materials and Methods: Autopsy-derived human brain samples from nine injury death victims (5 suicide and 4 traffic accidents) and nine age- and sex-matched natural death victims were screened for neurodegenerative and cerebrovascular pathologies using histopathological and immunohistochemical techniques. For the analysis, Statistical Package for the Social Sciences (SPSS) version 16.0 was used. Results: There was a greater likelihood for Alzheimer's disease (AD)-related changes in the elders who succumbed to traffic accidents (1 out of 4) compared to age- and sex-matched suicides (0 out of 5) or natural deaths (0 out of 9) as assessed by the National Institute on Aging – Alzheimer's Association guidelines. Actual burden of both neurofibrillary tangles (NFTs) and (SPs) was comparatively higher in the brains of traffic accidents, and the mean NFT counts were significantly higher in the region of entorhinal cortex (P < 0.05). However, associations obtained for other dementia-related pathologies were not statistically important. Conclusion: Our findings suggest that early Alzheimer stages may be a contributing factor to injury deaths caused by traffic accidents in elderly people whereas suicidal brain neuropathologies resembled natural deaths. PMID:29497190
Organ donation in adults: a critical care perspective.
Citerio, Giuseppe; Cypel, Marcelo; Dobb, Geoff J; Dominguez-Gil, Beatriz; Frontera, Jennifer A; Greer, David M; Manara, Alex R; Shemie, Sam D; Smith, Martin; Valenza, Franco; Wijdicks, Eelco F M
2016-03-01
The shortage of organs for transplantation is an important medical and societal problem because transplantation is often the best therapeutic option for end-stage organ failure. We review the potential deceased organ donation pathways in adult ICU practice, i.e. donation after brain death (DBD) and controlled donation after circulatory death (cDCD), which follows the planned withdrawal of life-sustaining treatments (WLST) and subsequent confirmation of death using cardiorespiratory criteria. Strategies in the ICU to increase the number of organs available for transplantation are discussed. These include timely identification of the potential organ donor, optimization of the brain-dead donor by aggressive management of the physiological consequence of brain death, implementation of cDCD protocols, and the potential for ex vivo perfusion techniques. Organ donation should be offered as a routine component of the end-of-life care plan of every patient dying in the ICU where appropriate, and intensivists are the key professional in this process.
Characteristics of memories for near-death experiences.
Moore, Lauren E; Greyson, Bruce
2017-05-01
Near-death experiences are vivid, life-changing experiences occurring to people who come close to death. Because some of their features, such as enhanced cognition despite compromised brain function, challenge our understanding of the mind-brain relationship, the question arises whether near-death experiences are imagined rather than real events. We administered the Memory Characteristics Questionnaire to 122 survivors of a close brush with death who reported near-death experiences. Participants completed Memory Characteristics Questionnaires for three different memories: that of their near-death experience, that of a real event around the same time, and that of an event they had imagined around the same time. The Memory Characteristics Questionnaire score was higher for the memory of the near-death experience than for that of the real event, which in turn was higher than that of the imagined event. These data suggest that memories of near-death experiences are recalled as "realer" than real events or imagined events. Copyright © 2017 Elsevier Inc. All rights reserved.
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; ...
2016-03-02
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less
Rahardjo, Theresia Monica; Maskoen, Tinni Trihartini; Redjeki, Ike Sri
2016-08-26
Recovery from cytomegalovirus meningoencephalitis with brain stem death in an immunocompetent patient is almost impossible. We present a remarkable recovery from a possible cytomegalovirus infection in an immunocompetent man who had severe neurological syndromes, suggesting brain stem death complicated by pneumonia and pleural effusion. A 19-year-old Asian man presented at our hospital's emergency department with reduced consciousness and seizures following high fever, headache, confusion, and vomitus within a week before arrival. He was intubated and sent to our intensive care unit. He had nuchal rigidity and tetraparesis with accentuated tendon reflexes. Electroencephalography findings suggested an acute structural lesion at his right temporal area or an epileptic state. A cerebral spinal fluid examination suggested viral infection. A computed tomography scan was normal at the early stage of disease. Immunoglobulin M, immunoglobulin G anti-herpes simplex virus, and immunoglobulin M anti-cytomegalovirus were negative. However, immunoglobulin G anti-cytomegalovirus was positive, which supported a diagnosis of cytomegalovirus meningoencephalitis. His clinical condition deteriorated, spontaneous respiration disappeared, cranial reflexes became negative, and brain stem death was suspected. Therapy included antivirals, corticosteroids, antibiotics, anticonvulsant, antipyretics, antifungal agents, and a vasopressor to maintain hemodynamic stability. After 1 month, he showed a vague response to painful stimuli at his supraorbital nerve and respiration started to appear the following week. After pneumonia and pleural effusion were resolved, he was weaned from the ventilator and moved from the intensive care unit on day 90. This case highlights several important issues that should be considered. First, the diagnosis of brain stem death must be confirmed with caution even if there are negative results of brain stem death test for a long period. Second, cytomegalovirus meningoencephalitis should be considered in the differential diagnosis even for an immunocompetent adult. Third, accurate therapy and simultaneous intensive care have very important roles in the recovery process of patients with cytomegalovirus meningoencephalitis.
Díaz-Regañón, Genaro; Miñambres, Eduardo; Holanda, Marisol; González-Herrera, Segundo; López-Espadas, Francisco; Garrido-Díaz, Carlos
2002-12-01
To assess the usefulness of venous oxygen saturation in the jugular bulb (SjO(2)) as a complementary test for the diagnosis of brain death. Prospective observational study. Polytrauma intensive care unit (ICU) of an acute-care teaching hospital in Santander, Spain. We studied 118 (44%) out of 270 patients with severe head injury and intracranial hemorrhage meeting criteria of brain death (lack of cardiac response to atropine, unresponsive apnea, and iso-electric EEG in the absence of shock, hypotension and treatment with muscle relaxants and/or central nervous system (CNS) depressant drugs). At the moment at which clinical diagnosis of brain death was made and an iso-electric EEG was obtained, simultaneous oxygen saturation in central venous blood (right atrium) (SvO(2)) and jugular venous bulb (SjO(2)) samples was measured. The ratio between SvO(2) and SjO(2), expressed as CvjO(2) (the so-called central venous-jugular bulb oxygen saturation rate; CvjO(2) = SvO(2)/SjO(2)) was calculated. CvjO(2) less than 1 was obtained in 114 patients [mean (SD): 0.89 (0.02)], whereas CvjO(2) greater than 1 was obtained in only 4 (3.38%). In the group of 152 survivors, a single patient was discharged from the ICU in a vegetative state in which CvjO(2) was below 1. CvjO(2)as a complementary test for the diagnosis of brain death showed 96.6% sensitivity, 99.3% specificity, and 99.1% and 97.4% positive and negative predictive values, respectively. Central venous-jugular bulb oxygen saturation rate below 1 together with accepted clinical criteria (unresponsive coma with brainstem areflexia) provides non-invasive assessment of cerebral circulatory arrest that can help to suspect brain death.
Brain endothelial TAK1 and NEMO safeguard the neurovascular unit
Ridder, Dirk A.; Wenzel, Jan; Müller, Kristin; Töllner, Kathrin; Tong, Xin-Kang; Assmann, Julian C.; Stroobants, Stijn; Weber, Tobias; Niturad, Cristina; Fischer, Lisanne; Lembrich, Beate; Wolburg, Hartwig; Grand’Maison, Marilyn; Papadopoulos, Panayiota; Korpos, Eva; Truchetet, Francois; Rades, Dirk; Sorokin, Lydia M.; Schmidt-Supprian, Marc; Bedell, Barry J.; Pasparakis, Manolis; Balschun, Detlef; D’Hooge, Rudi; Löscher, Wolfgang; Hamel, Edith
2015-01-01
Inactivating mutations of the NF-κB essential modulator (NEMO), a key component of NF-κB signaling, cause the genetic disease incontinentia pigmenti (IP). This leads to severe neurological symptoms, but the mechanisms underlying brain involvement were unclear. Here, we show that selectively deleting Nemo or the upstream kinase Tak1 in brain endothelial cells resulted in death of endothelial cells, a rarefaction of brain microvessels, cerebral hypoperfusion, a disrupted blood–brain barrier (BBB), and epileptic seizures. TAK1 and NEMO protected the BBB by activating the transcription factor NF-κB and stabilizing the tight junction protein occludin. They also prevented brain endothelial cell death in a NF-κB–independent manner by reducing oxidative damage. Our data identify crucial functions of inflammatory TAK1–NEMO signaling in protecting the brain endothelium and maintaining normal brain function, thus explaining the neurological symptoms associated with IP. PMID:26347470
Serpins Promote Cancer Cell Survival and Vascular Cooption in Brain Metastasis
Valiente, Manuel; Obenauf, Anna C.; Jin, Xin; Chen, Qing; Zhang, Xiang H.-F.; Lee, Derek J.; Chaft, Jamie E.; Kris, Mark G.; Huse, Jason T.; Brogi, Edi; Massagué, Joan
2014-01-01
Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM that metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its deleterious consequences. By protecting cancer cells from death signals and fostering vascular cooption, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498
The distribution of apolipoprotein E alleles in Scottish perinatal deaths
Becher, J‐C; Keeling, J W; McIntosh, N; Wyatt, B; Bell, J
2006-01-01
Background The apolipoprotein E (ApoE) polymorphism has been well studied in the adult human population, in part because the e4 allele is a known risk factor for Alzheimer's disease. Little is known of the distribution of ApoE alleles in newborns, and their association with perinatal brain damage has not been investigated. Methods ApoE genotyping was undertaken in a Scottish cohort of perinatal deaths (n = 261), some of whom had prenatal brain damage. The distribution of ApoE alleles in perinatal deaths was compared with that in healthy liveborn infants and in adults in Scotland. Results ApoE e2 was over‐represented in 251 perinatal deaths (13% v 8% in healthy newborns, odds ratio (OR) = 1.63, 95% confidence interval (CI) 1.13 to 2.36 and 13% v 8% in adults, OR = 1.67, 95% CI 1.16 to 2.41), both in liveborn and stillborn perinatal deaths. In contrast, the prevalence of ApoE e4 was raised in healthy liveborn infants (19%) compared with stillbirths (13%, OR = 1.59, 95% CI 1.11 to 2.26) and with adults (15%, OR = 1.35, 95% CI 1.04 to 1.76). However, no correlation was found between ApoE genotype and the presence or absence of perinatal brain damage. Conclusions This study shows a shift in ApoE allelic distribution in early life compared with adults. The raised prevalence of ApoE e2 associated with perinatal death suggests that this allele is detrimental to pregnancy outcome, whereas ApoE e4 may be less so. However, ApoE genotype did not appear to influence the vulnerability for perinatal hypoxic/ischaemic brain damage, in agreement with findings in adult brains and in animal models. PMID:16183800
Walter, U; Noachtar, S; Hinrichs, H
2018-02-01
The guidelines of the German Medical Association and the German Society for Clinical Neurophysiology and Functional Imaging (DGKN) require a high procedural and technical standard for electroencephalography (EEG) as an ancillary method for diagnosing the irreversible cessation of brain function (brain death). Nowadays, digital EEG systems are increasingly being applied in hospitals. So far it is unclear to what extent the digital EEG systems currently marketed in Germany meet the guidelines for diagnosing brain death. In the present article, the technical und safety-related requirements for digital EEG systems and the EEG documentation for diagnosing brain death are described in detail. On behalf of the DGKN, the authors sent out a questionnaire to all identified distributors of digital EEG systems in Germany with respect to the following technical demands: repeated recording of the calibration signals during an ongoing EEG recording, repeated recording of all electrode impedances during an ongoing EEG recording, assessability of intrasystem noise and galvanic isolation of measurement earthing from earthing conductor (floating input). For 15 of the identified 20 different digital EEG systems the specifications were provided by the distributors (among them all distributors based in Germany). All of these EEG systems are provided with a galvanic isolation (floating input). The internal noise can be tested with all systems; however, some systems do not allow repeated recording of the calibration signals and/or the electrode impedances during an ongoing EEG recording. The majority but not all of the currently available digital EEG systems offered for clinical use are eligible for use in brain death diagnostics as per German guidelines.
Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi
2012-07-10
The diagnosis of mechanical asphyxia as a cause of death, especially smothering and choking lacking evident injury, is one of the most difficult tasks in forensic pathology. The present study investigated the intrapulmonary expressions of aquaporins (AQPs; AQP-1 and AQP-5), as markers of water homeostasis, in forensic autopsy cases (total n=64, within 48 h postmortem) of mechanical asphyxiation due to neck compression (strangulation, n=24), including manual/ligature strangulation (n=12) and atypical hanging (n=12), smothering (n=7) and choking (n=8), compared with sudden cardiac death (n=14) and acute brain injury (n=11). Quantification of mRNA using a Taqman real-time PCR assay system demonstrated suppressed expression of AQP-5, but not AQP-1, in smothering and choking, compared with that in strangulation as well as sudden cardiac death and acute brain injury death. Immunostaining of AQP-5 was weakly detected in a linear pattern in the type I alveolar epithelial cells in smothering and choking cases, while cardiac and brain injury death showed marked positivity, and most strangulation cases had AQP-5-positive granular aggregates and fragments in intra-alveolar spaces. These observations indicate a partial difference in pulmonary molecular pathology among these causes of death, suggesting a procedure for possible discrimination of smothering and choking from sudden cardiac death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente
2014-06-01
Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.
Abandoning the dead donor rule? A national survey of public views on death and organ donation.
Nair-Collins, Michael; Green, Sydney R; Sutin, Angelina R
2015-04-01
Brain dead organ donors are the principal source of transplantable organs. However, it is controversial whether brain death is the same as biological death. Therefore, it is unclear whether organ removal in brain death is consistent with the 'dead donor rule', which states that organ removal must not cause death. Our aim was to evaluate the public's opinion about organ removal if explicitly described as causing the death of a donor in irreversible apneic coma. We conducted a cross-sectional internet survey of the American public (n=1096). Questionnaire domains included opinions about a hypothetical scenario of organ removal described as causing the death of a patient in irreversible coma, and items measuring willingness to donate organs after death. Some 71% of the sample agreed that it should be legal for patients to donate organs in the scenario described and 67% agreed that they would want to donate organs in a similar situation. Of the 85% of the sample who agreed that they were willing to donate organs after death, 76% agreed that they would donate in the scenario of irreversible coma with organ removal causing death. There appears to be public support for organ donation in a scenario explicitly described as violating the dead donor rule. Further, most but not all people who would agree to donate when organ removal is described as occurring after death would also agree to donate when organ removal is described as causing death in irreversible coma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Traumatic Brain Injury (TBI) Data and Statistics
... data.cdc.gov . Emergency Department Visits, Hospitalizations, and Deaths Rates of TBI-related Emergency Department Visits, Hospitalizations, ... related Hospitalizations by Age Group and Injury Mechanism Deaths Rates of TBI-related Deaths by Sex Rates ...
Proteomic analysis of differentially expressed proteins in kidneys of brain dead rabbits.
Li, Ling; Li, Ning; He, Chongxiang; Huang, Wei; Fan, Xiaoli; Zhong, Zibiao; Wang, Yanfeng; Ye, Qifa
2017-07-01
A large number of previous clinical studies have reported a delayed graft function for brain dead donors, when compared with living relatives or cadaveric organ transplantations. However, there is no accurate method for the quality evaluation of kidneys from brain‑dead donors. In the present study, two‑dimensional gel electrophoresis and MALDI‑TOF MS‑based comparative proteomic analysis were conducted to profile the differentially‑expressed proteins between brain death and the control group renal tissues. A total of 40 age‑ and sex‑matched rabbits were randomly divided into donation following brain death (DBD) and control groups. Following the induction of brain death via intracranial progressive pressure, the renal function and the morphological alterations were measured 2, 6 and 8 h afterwards. The differentially expressed proteins were detected from renal histological evidence at 6 h following brain death. Although 904±19 protein spots in control groups and 916±25 in DBD groups were identified in the two‑dimensional gel electrophoresis, >2‑fold alterations were identified by MALDI‑TOF MS and searched by NCBI database. The authors successfully acquired five downregulated proteins, these were: Prohibitin (isoform CRA_b), beta-1,3‑N-acetylgalactosaminyltransferase 1, Annexin A5, superoxide dismutase (mitochondrial) and cytochrome b‑c1 complex subunit 1 (mitochondrial precursor). Conversely, the other five upregulated proteins were: PRP38 pre‑mRNA processing factor 38 (yeast) domain containing A, calcineurin subunit B type 1, V‑type proton ATPase subunit G 1, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10 and peroxiredoxin‑3 (mitochondrial). Immunohistochemical results revealed that the expressions of prohibitin (PHB) were gradually increased in a time‑dependent manner. The results indicated that there were alterations in levels of several proteins in the kidneys of those with brain death, even if the primary function and the morphological changes were not obvious. PHB may therefore be a novel biomarker for primary quality evaluation of kidneys from brain‑dead donors.
Al Sebayel, M I M; Khalaf, H A
2004-09-01
Organ shortage has been the main obstacle in the progress of organ transplantation in Saudi Arabia. The aim of this pilot study was to determine the percentage of potential donors among all deaths in Riyadh hospital intensive care units (ICUs). Mortality data were collected by a medical professional in each ICU and analyzed on weekly basis for 1 year (June 2001 through May 2002): The final analysis at the end of the year showed the number of brain death cases in all hospitals to be 114 out of 542 deaths. Fifty-four percent occurred in one hospital. Thirty-eight cases were reported to the Saudi Center for Organ Transplantation (33%). Documentation was completed in only 23 cases (60%). Only four cases became actual donors. In conclusion, there is underreporting of brain death cases. Dealing with the reported cases is inefficient since only four cases became actual donors out of 38. Improving the efficiency of ICUs in dealing with brain death cases (reporting, documentation, maintenance and consent) will require solving several problems at the medical, administrative, religious, and mass media levels.
Song, Juhyun; Yoon, So Ra
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases. PMID:28680530
Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.
Chan, Julie Y H; Wu, Carol H Y; Tsai, Ching-Yi; Cheng, Hsiao-Lei; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W
2007-06-15
As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.
Noorbakhsh, Farshid; Ramachandran, Rithwik; Barsby, Nicola; Ellestad, Kristofor K; LeBlanc, Andrea; Dickie, Peter; Baker, Glen; Hollenberg, Morley D; Cohen, Eric A; Power, Christopher
2010-06-01
MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.
Chen, Fuxiang; Su, Xingfen; Lin, Zhangya; Lin, Yuanxiang; Yu, Lianghong; Cai, Jiawei; Kang, Dezhi; Hu, Liwen
2017-01-01
Necroptosis is programmed cell death that has been recently proposed and reported to be involved in several neurologic diseases. However, the role of necroptosis in early brain injury after subarachnoid hemorrhage (SAH) is still unknown. The purpose of this study was to investigate whether necroptosis was involved in SAH-induced early brain injury, and to assess the possible neuroprotective effect of necrostatin-1 using an endovascular perforation rat model of SAH. Our results showed that the expression levels of necroptosis-related proteins including RIP1, RIP3 and MLKL in the basal cortex all increased at 3 hours after SAH ( P <0.05) and peaked at 48 hours after SAH ( P <0.05). However, they were greatly reduced after treatment with necrostatin-1 ( P <0.05). Concurrently, neurologic outcomes were significantly improved after necrostatin-1 treatment ( P <0.05). Furthermore, brain edema, blood-brain barrier disruption, necrotic cell death and neuroinflammation were also greatly inhibited after necrostatin-1 treatment. These results indicate that necroptosis is an important mechanism of cell death involved in the early brain injury after experimental SAH. Necrostatin-1 perhaps can serve as a promising neuroprotective agent for SAH treatment.
Skov, Louise; Holm, Karen Marie Dollerup; Johansen, Sys Stybe; Linnet, Kristian
2016-09-01
To interpret postmortem toxicology results, reference concentrations for non-toxic and toxic levels are needed. Usually, measurements are performed in blood, but because of postmortem redistribution phenomena this may not be optimal. Rather, measurement in the target organ of psychoactive drugs, the brain, might be considered. Here we present reference concentrations of femoral blood and brain tissue of selected benzodiazepines (BZDs). Using LC-MS/MS, we quantified alprazolam, bromazepam, chlordiazepoxide, diazepam, and the metabolites desmethyldiazepam, oxazepam and temazepam in postmortem femoral blood and brain tissue in 104 cases. BZDs were judged to be unrelated to the cause of death in 88 cases and contributing to death in 16 cases. No cases were found with cause of death solely attributed to BZD poisoning. All BZDs investigated tended to have higher concentrations in brain than in blood with median brain-blood ratios ranging from 1.1 to 2.3. A positive correlation between brain and blood concentrations was found with R(2) values from 0.51 to 0.95. Our reported femoral blood concentrations concur with literature values, but sparse information on brain concentration was available. Drug-metabolite ratios were similar in brain and blood for most compounds. Duplicate measurements of brain samples showed that the pre-analytical variation in brain (5.9%) was relatively low, supporting the notion that brain tissue is a suitable postmortem specimen. The reported concentrations in both brain and blood can be used as reference values when evaluating postmortem cases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mechanisms of Neurodegeneration and Regeneration in Alcoholism
Crews, Fulton T.; Nixon, Kim
2009-01-01
Aims: This is a review of preclinical studies covering alcohol-induced brain neuronal death and loss of neurogenesis as well as abstinence-induced brain cell genesis, e.g. brain regeneration. Efforts are made to relate preclinical studies to human studies. Methods: The studies described are preclinical rat experiments using a 4-day binge ethanol treatment known to induce physical dependence to ethanol. Neurodegeneration and cognitive deficits following binge treatment mimic the mild degeneration and cognitive deficits found in humans. Various histological methods are used to follow brain regional degeneration and regeneration. Results: Alcohol-induced degeneration occurs due to neuronal death during alcohol intoxication. Neuronal death is related to increases in oxidative stress in brain that coincide with the induction of proinflammatory cytokines and oxidative enzymes that insult brain. Degeneration is associated with increased NF-κB proinflammatory transcription and decreased CREB transcription. Corticolimbic brain regions are most sensitive to binge-induced degeneration and induce relearning deficits. Drugs that block oxidative stress and NF-κB transcription or increase CREB transcription block binge-induced neurodegeneration, inhibition of neurogenesis and proinflammatory enzyme induction. Regeneration of brain occurs during abstinence following binge ethanol treatment. Bursts of proliferating cells occur across multiple brain regions, with many new microglia across brain after months of abstinence and many new neurons in neurogenic hippocampal dentate gyrus. Brain regeneration may be important to sustain abstinence in humans. Conclusions: Alcohol-induced neurodegeneration occurs primarily during intoxication and is related to increased oxidative stress and proinflammatory proteins that are neurotoxic. Abstinence after binge ethanol intoxication results in brain cell genesis that could contribute to the return of brain function and structure found in abstinent humans. PMID:18940959
Evaluation of the law of presumed consent after brain death by Spanish journalism students.
Martínez-Alarcón, L; Ríos, A; Sánchez, J; Ramis, G; López-Navas, A; Ramírez, P; Parrilla, P
2010-10-01
Information provided by journalists is crucial to create a climate of social opinion. This is important in organ donation and transplantation (ODT), wherein the participation of the general public is essential to obtain organs. The objective of this study was to determine the knowledge of students taking a degree in journalism about the concept of brain death and the law of presumed consent. The study involved 129 journalism degree students in the 2005-2006 academic year from a university in the south-east of Spain. Attitudes on the psychosocial aspects of ODT were evaluated using a validated questionnaire. The self-administered survey was completed anonymously in classes and compulsory practical sessions. The questionnaire completion rate was 98% (n=126). Of the students surveyed, 43% (n=54) understood the concept of brain death, 44% (n=56) stated that they had doubts, whereas 13% (n=16) believed that a person with brain death can recover and lead a normal life. Their knowledge was more accurate in the final than in the first year (54% vs 47%; P=.016). Most students 66% (n=83) believed that it would be interesting to receive an informative talk about ODT. Concerning legislation, 75% of students were against the law of presumed consent, whereas 25% were in favor. More than 50% of journalism students do not understand the concept of brain death. Furthermore, up to 75% do not accept the law of presumed consent that donation must be made. Copyright © 2010 Elsevier Inc. All rights reserved.
Do the 'brain dead' merely appear to be alive?
Nair-Collins, Michael; Miller, Franklin G
2017-11-01
The established view regarding 'brain death' in medicine and medical ethics is that patients determined to be dead by neurological criteria are dead in terms of a biological conception of death, not a philosophical conception of personhood, a social construction or a legal fiction. Although such individuals show apparent signs of being alive, in reality they are (biologically) dead, though this reality is masked by the intervention of medical technology. In this article, we argue that an appeal to the distinction between appearance and reality fails in defending the view that the 'brain dead' are dead. Specifically, this view relies on an inaccurate and overly simplistic account of the role of medical technology in the physiology of a 'brain dead' patient. We conclude by offering an explanation of why the conventional view on 'brain death', though mistaken, continues to be endorsed in light of its connection to organ transplantation and the dead donor rule. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Sudden unexpected death from oligodendroglioma: a case report and review of the literature.
Manousaki, Maria; Papadaki, Helen; Papavdi, Asteria; Kranioti, Elena F; Mylonakis, Panagiotis; Varakis, John; Michalodimitrakis, Manolis
2011-12-01
Sudden and unexpected deaths due to asymptomatic 5 primary brain tumors are extremely rare, with an incidence that ranges from 0.16 to 3.2%. Usually, such tumors are glioblastomas or, less commonly, astrocytomas. Asymptomatic oligodendrogliomas causing sudden death are hardly ever reported among medico-legal investigated cases.We report a rare case of sudden and unexpected death from a previously asymptomatic and undiagnosed, well-differentiated, grade II oligodendrogloioma (WHO classification). According to the autopsy and the microscopic findings brain edema as a result of obstruction of the cerebrospinal fluid flow due to hemorrhagic leakage of the oligodendroglioma is incriminated as the most probable physiopathological mechanism for the sudden death. Diagnosis is mainly based on the special microscopic features of the tumor cells (typical "fried-egg" appearance), interrupted by a dense network of branching capillaries. We discuss further the pathophysiological mechanisms of death and present a short review of literature.
Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I
Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana
2013-01-01
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I. PMID:23326493
Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I.
Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana
2013-01-01
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.
Serpins promote cancer cell survival and vascular co-option in brain metastasis.
Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan
2014-02-27
Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
[Prognosis in pediatric traumatic brain injury. A dynamic cohort study].
Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma
2013-01-01
traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.
Vaaramo, Kalle; Puljula, Jussi; Tetri, Sami; Juvela, Seppo; Hillbom, Matti
2015-10-15
Patients who have recovered from traumatic brain injury (TBI) show an increased risk of premature death. To investigate long-term mortality rates in a population admitted to the hospital for head injury (HI), we conducted a population-based prospective case-control, record-linkage study, All subjects who were living in Northern Ostrobothnia, and who were admitted to Oulu University Hospital in 1999 because of HI (n=737), and 2196 controls matched by age, gender, and residence randomly drawn from the population of Northern Ostrobothnia were included. Death rate and causes of death in HI subjects during 15 years of follow-up was compared with the general population controls. The crude mortality rates were 56.9, 18.6, and 23.8% for subjects having moderate-to-severe traumatic brain injury (TBI), mild TBI, and head injury without TBI, respectively. The corresponding approximate annual mortality rates were 6.7%, 1.4%, and 1.9%. All types of index HI predicted a significant risk of traumatic death in the future. Subjects who had HI without TBI had an increased risk of both death from all causes (hazard ratio 2.00; 95% confidence interval 1.57-2.55) and intentional or unintentional traumatic death (4.01, 2.20-7.30), compared with controls. The main founding was that even HI without TBI carries an increased risk of future traumatic death. The reason for this remains unknown and further studies are needed. To prevent such premature deaths, post-traumatic therapy should include an interview focusing on lifestyle factors.
Jochems, D; Leenen, L P H; Hietbrink, F; Houwert, R M; van Wessem, K J P
2018-05-23
Central nervous system (CNS) related injuries and exsanguination have been the most common causes of death in trauma for decades. Despite improvements in haemorrhage control in recent years exsanguination is still a major cause of death. We conducted a prospective database study to investigate the current incidence of haemorrhage related mortality. A prospective database study of all trauma patients admitted to an urban major trauma centre between January 2007 and December 2016 was conducted. All in-hospital trauma deaths were included. Cause of death was reviewed by a panel of trauma surgeons. Patients who were dead on arrival were excluded. Trends in demographics and outcome were analysed per year. Further, 2 time periods (2007-2012 and 2013-2016) were selected representing periods before and after implementation of haemostatic resuscitation and damage control procedures in our hospital to analyse cause of death into detail. 11,553 trauma patients were admitted, 596 patients (5.2%) died. Mean age of deceased patients was 61 years and 61% were male. Mechanism of injury (MOI) was blunt in 98% of cases. Mean ISS was 28 with head injury the most predominant injury (mean AIS head 3.4). There was no statistically significant difference in sex and MOI over time. Even though deceased patients were older in 2016 compared to 2007 (67 vs. 46 years, p < 0.001), mortality was lower in later years (p = 0.02). CNS related injury was the main cause of death in the whole decade; 58% of patients died of CNS in 2007-2012 compared to 76% of patients in 2013-2016 (p = 0.001). In 2007-2012 9% died of exsanguination compared to 3% in 2013-2016 (p = 0.001). In this cohort in a major trauma centre death by exsanguination has decreased to 3% of trauma deaths. The proportion of traumatic brain injury has increased over time and has become the most common cause of death in blunt trauma. Besides on-going prevention of brain injury future studies should focus on treatment strategies preventing secondary damage of the brain once the injury has occurred. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ye, Hui; Wang, Dong-Ping; Zhang, Chuan-Zhao; Zhang, Long-Juan; Wang, Hao-Chen; Li, Zhuo-Hui; Chen, Zhen; Zhang, Tao; Cai, Chang-Jie; Ju, Wei-Qiang; Ma, Yi; Guo, Zhi-Yong; He, Xiao-Shun
2014-10-01
Donation after brain death followed by circulatory death (DBCD) is a unique practice in China. The aim of this study was to define the pathologic characteristics of DBCD liver allografts in a porcine model. Fifteen male pigs (25-30 kg) were allocated randomly into donation after brain death (DBD), donation after circulatory death (DCD) and DBCD groups. Brain death was induced by augmenting intracranial pressure. Circulatory death was induced by withdrawal of life support in DBCD group and by venous injection of 40 mL 10% potassium chloride in DCD group. The donor livers were perfused in situ and kept in cold storage for 4 h. Liver tissue and common bile duct samples were collected for hematoxylin and eosin staining, TUNEL testing and electron microscopic examination. Spot necrosis was found in hepatic parenchyma of DBD and DBCD groups, while a large area of necrosis was shown in DCD group. The apoptosis rate of hepatocytes in DBD [(0.56±0.30)%] and DBCD [(0.50 ± 0.11)%] groups was much lower than that in DCD group [(3.78±0.33)%] (P<0.05). And there was no significant difference between DBD group and DBCD group (P>0.05)). The structures of bile duct were intact in both DBD and DBCD groups, while the biliary epithelium was totally damaged in DCD group. Under electron microscope, the DBD hepatocytes were characterized by intact cell membrane, well-organized endoplasmic reticulum, mild mitochondria edema and abundant glycogens. Broken cell membrane, mild inflammatory cell infiltration and sinusoidal epithelium edema, as well as reduced glycogen volume, were found in the DBCD hepatocytes. The DCD hepatocytes had more profound cell organelle injury and much less glycogen storage. In conclusion, the preservation injury of DBCD liver allografts is much less severe than that of un-controlled DCD, but more severe than that of DBD liver allografts under electron microscope, which might reflect post-transplant liver function to some extent.
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541
Jiménez-Castro, Mónica B; Meroño, Noelia; Mendes-Braz, Mariana; Gracia-Sancho, Jordi; Martínez-Carreres, Laia; Cornide-Petronio, Maria Eugenia; Casillas-Ramirez, Araní; Rodés, Juan; Peralta, Carmen
2015-01-01
Most liver grafts undergoing transplantation derive from brain dead donors, which may also show hepatic steatosis, being both characteristic risk factors in liver transplantation. Ischemic preconditioning shows benefits when applied in non-brain dead clinical situations like hepatectomies, whereas it has been less promising in the transplantation from brain dead patients. This study examined how brain death affects preconditioned steatotic and non-steatotic liver grafts undergoing transplantation. Steatotic and non-steatotic grafts from non-brain dead and brain dead-donors were cold stored for 6h and then transplanted. After 2, 4, and 16 h of reperfusion, hepatic damage was analysed. In addition, two therapeutic strategies, ischemic preconditioning and/or acetylcholine pre-treatment, and their underlying mechanisms were characterized. Preconditioning benefits in non-brain dead donors were associated with nitric oxide and acetylcholine generation. In brain dead donors, preconditioning generated nitric oxide but did not promote acetylcholine upregulation, and this resulted in inflammation and damage. Acetylcholine treatment in brain dead donors, through PKC, increased antioxidants and reduced lipid peroxidation, nitrotyrosines and neutrophil accumulation, altogether protecting against damage. The combination of acetylcholine and preconditioning conferred stronger protection against damage, oxidative stress and neutrophil accumulation than acetylcholine treatment alone. These superior beneficial effects were due to a selective preconditioning-mediated generation of nitric oxide and regulation of PPAR and TLR4 pathways, which were not observed when acetylcholine was administered alone. Our findings propose the combination of acetylcholine+preconditioning as a feasible and highly protective strategy to reduce the adverse effects of brain death and to ultimately improve liver graft quality. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.
Latin American Consensus on the use of transcranial Doppler in the diagnosis of brain death
2014-01-01
Transcranial Doppler evaluates cerebral hemodynamics in patients with brain injury and is a useful technical tool in diagnosing cerebral circulatory arrest, usually present in the brain-dead patient. This Latin American Consensus was formed by a group of 26 physicians experienced in the use of transcranial Doppler in the context of brain death. The purpose of this agreement was to make recommendations regarding the indications, technique, and interpretation of the study of transcranial ultrasonography in patients with a clinical diagnosis of brain death or in the patient whose clinical diagnosis presents difficulties; a working group was formed to enable further knowledge and to strengthen ties between Latin American physicians working on the same topic. A review of the literature, concepts, and experiences were exchanged in two meetings and via the Internet. Questions about pathophysiology, equipment, techniques, findings, common problems, and the interpretation of transcranial Doppler in the context of brain death were answered. The basic consensus statements are the following: cerebral circulatory arrest is the final stage in the evolution of progressive intracranial hypertension, which is visualized with transcranial Doppler as a "pattern of cerebral circulatory arrest". The following are accepted as the standard of cerebral circulatory arrest: reverberant pattern, systolic spikes, and absence of previously demonstrated flow. Ultrasonography should be used - in acceptable hemodynamic conditions - in the anterior circulation bilaterally (middle cerebral artery) and in the posterior (basilar artery) territory. If no ultrasonographic images are found in any or all of these vessels, their proximal arteries are acceptable to be studied to look for a a pattern of cerebral circulatory arrest. PMID:25295818
2011-01-01
Background We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection. PMID:21385378
Flygt, Johanna; Gumucio, Astrid; Ingelsson, Martin; Skoglund, Karin; Holm, Jonatan; Alafuzoff, Irina; Marklund, Niklas
2016-06-01
Oligodendrocyte (OL) death may contribute to white matter pathology, a common cause of network dysfunction and persistent cognitive problems in patients with traumatic brain injury (TBI). Oligodendrocyte progenitor cells (OPCs) persist throughout the adult CNS and may replace dead OLs. OL death and OPCs were analyzed by immunohistochemistry of human brain tissue samples, surgically removed due to life-threatening contusions and/or focal brain swelling at 60.6 ± 75 hours (range 4-192 hours) postinjury in 10 severe TBI patients (age 51.7 ± 18.5 years). Control brain tissue was obtained postmortem from 5 age-matched patients without CNS disorders. TUNEL and CC1 co-labeling was used to analyze apoptotic OLs, which were increased in injured brain tissue (p < 0.05), without correlation with time from injury until surgery. The OPC markers Olig2, A2B5, NG2, and PDGFR-α were used. In contrast to the number of single-labeled Olig2, A2B5, NG2, and PDGFR-α-positive cells, numbers of Olig2 and A2B5 co-labeled cells were increased in TBI samples (p < 0.05); this was inversely correlated with time from injury to surgery (r = -0.8, p < 0.05). These results indicate that severe focal human TBI results in OL death and increases in OPCs postinjury, which may influence white matter function following TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.
Chang, Alice Y W
2012-11-17
Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/ mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague-Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73, rather than Elk-1 at Ser383 in RVLM were also augmented during the pro-life phase. Furthermore, pretreatment by microinjection into the bilateral RVLM of specific JNK inhibitors, JNK inhibitor I (100 pmol) or SP600125 (5 pmol), or specific p38MAPK inhibitors, p38MAPK inhibitor III (500 pmol) or SB203580 (2 nmol), exacerbated the depressor effect and blunted the augmented life-and-death signal exhibited during the pro-life phase. On the other hand, pretreatment with the negative control for JNK or p38MAPK inhibitor, JNK inhibitor I negative control (100 pmol) or SB202474 (2 nmol), was ineffective in the vehicle-controls and Mev-treatment groups. Our results demonstrated that activation of JNK or p38MAPK in RVLM by their upstream activators MAP2K4 or MAP2K6 plays a preferential pro-life role by sustaining the central cardiovascular regulatory machinery during experimental brain stem death via phosphorylation and activation of nuclear transcription factor ATF-2 or c-Jun.
de Vries, D K; Lindeman, J H N; Ringers, J; Reinders, M E J; Rabelink, T J; Schaapherder, A F M
2011-05-01
Donor brain death has profound effects on post-transplantation graft function and survival. We hypothesized that changes initiated in the donor influence the graft's response to ischemia and reperfusion. In this study, human brain dead donor kidney grafts were compared to living and cardiac dead donor kidney grafts. Pretransplant biopsies of brain dead donor kidneys contained notably more infiltrating T lymphocytes and macrophages. To assess whether the different donor conditions result in a different response to reperfusion, local cytokine release from the reperfused kidney was studied by measurement of paired arterial and renal venous blood samples. Reperfusion of kidneys from brain dead donors was associated with the instantaneous release of inflammatory cytokines, such as G-CSF, IL-6, IL-9, IL-16 and MCP-1. In contrast, kidneys from living and cardiac dead donors showed a more modest cytokine response with release of IL-6 and small amounts of MCP-1. In conclusion, this study shows that donor brain death initiates an inflammatory state of the graft with T lymphocyte and macrophage infiltration and massive inflammatory cytokine release upon reperfusion. These observations suggest that brain dead donors require a novel approach for donor pretreatment aimed at preventing this inflammatory response to increase graft survival. ©2011 The Authors Journal compilation©2011 The American Society of Transplantation and the American Society of Transplant Surgeons.
Atangana, Etienne; Schneider, Ulf C; Blecharz, Kinga; Magrini, Salima; Wagner, Josephin; Nieminen-Kelhä, Melina; Kremenetskaia, Irina; Heppner, Frank L; Engelhardt, Britta; Vajkoczy, Peter
2017-04-01
Activation of innate immunity contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Microglia accumulation and activation within the brain has recently been shown to induce neuronal cell death after eSAH. In isolated mouse brain capillaries after eSAH, we show a significantly increased gene expression for intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Hence, we hypothesized that extracerebral intravascular inflammatory processes might initiate the previously reported microglia accumulation within the brain tissue. We therefore induced eSAH in knockout mice for ICAM-1 (ICAM-1 -/- ) and P-selectin glycoprotein ligand-1 (PSGL-1 -/- ) to find a significant decrease in neutrophil-endothelial interaction within the first 7 days after the bleeding in a chronic cranial window model. This inhibition of neutrophil recruitment to the endothelium results in significantly ameliorated microglia accumulation and neuronal cell death in knockout animals in comparison to controls. Our results suggest an outside-in activation of the CNS innate immune system at the vessel/brain interface following eSAH. Microglia cells, as part of the brain's innate immune system, are triggered by an inflammatory reaction in the microvasculature after eSAH, thus contributing to neuronal cell death. This finding offers a whole range of new research targets, as well as possible therapy options for patients suffering from eSAH.
Process and barriers to organ donation and causes of brain death in northeast of Iran.
Bahrami, Abdollah; Khaleghi, Ebrahim; Vakilzadeh, Ali Khorsand; Afzalaghaee, Monavar
2017-02-01
Organ transplantation is the treatment of choice for some diseases. However, the need for cadaveric organ donation has either plateaued or is on a decreasing trend in some countries, especially in developed ones. In this study, we aimed to identify the barriers to organ donation in brain dead patients, who were referred to the organ procurement organizations (OPO) in northeast Iran. In this cross-sectional study during 2006 to 2013, data were collected from medical records of brain dead patients. Demographic information, cause of brain death, the process of obtaining informed consent, and the reasons for declining organ donation were obtained from the OPO records. The data were analyzed using chi-square test by SPSS 13 software. Of 1034 brain dead patients, 751 cases (72.6%) were eligible for organ donation, and, ultimately, 344 cases underwent organ donation. The rate of organ donation increased during the course of the study; medical and legal reasons as well as family refusal to authorize donation were the main barriers to the process. Based on the pattern of mortality, the need for living donors in developing countries, such as Iran and other countries in the Mediterranean region, can be reduced by improving the quality of healthcare, efficient identification of brain death, and obtaining consent with appropriate strategies.
Brain Death and Human Organismal Integration: A Symposium on the Definition of Death.
Moschella, Melissa
2016-06-01
Does the ability of some brain dead bodies to maintain homeostasis with the help of artificial life support actually imply that those bodies are living human organisms? Or might it be possible that a brain dead body on life support is a mere collection of still-living cells, organs and tissues which can coordinate with one another, but which lack the genuine integration that is the hallmark of a unified human organism as a whole? To foster further study of these difficult and timely questions, a Symposium on the Definition of Death was held at The Catholic University of America in June 2014. The Symposium brought together scholars from a variety of disciplines-law, medicine, biology, philosophy and theology-who all share a commitment to the dead donor rule and to a biological definition of death, but who have differing opinions regarding the validity of neurological criteria for human death. The papers found in this special issue are among the fruits of this Symposium. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Anesthesia Management of Organ Donors.
Xia, Victor W; Braunfeld, Michelle
2017-09-01
The shortage of suitable organs is the biggest obstacle for transplants. At present, most organs for transplant in the United States are from donation after neurologic determination of death (brain death). Potential organs for transplant need to maintain their viability during a series of insults, including the original disease, physiologic derangements during the dying process, ischemia, and reperfusion. Proper donor management before, during, and after procurement has potential to increase the number and quality of organs from donors. Anesthesiologists need to understand the physiologic derangements associated with brain death and the updated donor management during the periprocurement period. Copyright © 2017 Elsevier Inc. All rights reserved.
Legal Standards for Brain Death and Undue Influence in Euthanasia Laws.
Pope, Thaddeus Mason; Okninski, Michaela E
2016-06-01
A major appellate court decision from the United States seriously questions the legal sufficiency of prevailing medical criteria for the determination of death by neurological criteria. There may be a mismatch between legal and medical standards for brain death, requiring the amendment of either or both. In South Australia, a Bill seeks to establish a legal right for a defined category of persons suffering unbearably to request voluntary euthanasia. However, an essential criterion of a voluntary decision is that it is not tainted by undue influence, and this Bill falls short of providing adequate guidance to assess for undue influence.
Alcohol-induced apoptosis of oligodendrocytes in the fetal macaque brain.
Creeley, Catherine E; Dikranian, Krikor T; Johnson, Stephen A; Farber, Nuri B; Olney, John W
2013-06-12
In utero exposure of the fetal non-human primate (NHP) brain to alcohol on a single occasion during early or late third-trimester gestation triggers widespread acute apoptotic death of cells in both gray and white matter (WM) regions of the fetal brain. In a prior publication, we documented that the dying gray matter cells are neurons, and described the regional distribution and magnitude of this cell death response. Here, we present new findings regarding the magnitude, identity and maturational status of the dying WM cells in these alcohol-exposed fetal NHP brains. Our findings document that the dying WM cells belong to the oligodendrocyte (OL) lineage. OLs become vulnerable when they are just beginning to generate myelin basic protein in preparation for myelinating axons, and they remain vulnerable throughout later stages of myelination. We found no evidence linking astrocytes, microglia or OL progenitors to this WM cell death response. The mean density (profiles per mm3) of dying WM cells in alcohol-exposed brains was 12.7 times higher than the mean density of WM cells dying by natural apoptosis in drug-naive control brains. In utero exposure of the fetal NHP brain to alcohol on a single occasion triggers widespread acute apoptotic death of neurons (previous study) and of OLs (present study) throughout WM regions of the developing brain. The rate of OL apoptosis in alcohol-exposed brains was 12.7 times higher than the natural OL apoptosis rate. OLs become sensitive to the apoptogenic action of alcohol when they are just beginning to generate constituents of myelin in their cytoplasm, and they remain vulnerable throughout later stages of myelination. There is growing evidence for a similar apoptotic response of both neurons and OLs following exposure of the developing brain to anesthetic and anticonvulsant drugs. Collectively, this body of evidence raises important questions regarding the role that neuro and oligo apoptosis may play in the human condition known as fetal alcohol spectrum disorder (FASD), and also poses a question whether other apoptogenic drugs, although long considered safe for pediatric/obstetric use, may have the potential to cause iatrogenic FASD-like developmental disability syndromes.
Confounding Brain Stem Function During Pediatric Brain Death Determination: Two Case Reports.
Hansen, Gregory; Joffe, Ari R
2017-06-01
A patient who has been declared brain dead is considered to be both legally and clinically dead. However, we report 2 pediatric cases in which the patients demonstrated clinical signs of brain stem function that are not recognized or tested in current Canadian or US guidelines.
Death, democracy and public ethical choice.
Cushman, Reid; Holm, Soren
1990-07-01
The Danish Council of Ethics...believed that the brain-death criterion should not be accepted without public education and debate. Following the introduction of a spectrum of educational and related activites, a Gallup poll found that 98% of the survey population was aware of the debate over brain-vs-heart criteria and that 80% favoured the adoption of a supplemental brain-death standard... This raises the fundamental question of decisionmaking in pluralist democratic societies, of the limits of democratic involvement in such choices, and of the role of bodies like the Danish Council of Ethics... It must be part of the mission of a governmental bioethical body to use its peculiar expertise to teach and to lead -- to build a popular consensus out of confusion. But in doing so, such a Commission will be steering a dangerous course....
Sari, Youssef
2013-04-24
Experimental designs for investigating the effects of prenatal alcohol exposure during early embryonic stages in fetal brain growth are challenging. This is mostly due to the difficulty of microdissection of fetal brains and their sectioning for determination of apoptotic cells caused by prenatal exposure to alcohol. The experiments described here provide visualized techniques from mice breeding to the identification of cell death in fetal brain tissue. This study used C57BL/6 mice as the animal model for studying fetal alcohol exposure and the role of trophic peptide against alcohol-induced apoptosis. The breeding consists of a 2-hr matting window to determine the exact stage of embryonic age. An established fetal alcohol exposure model has been used in this study to determine the effects of prenatal alcohol exposure in fetal brains. This involves free access to alcohol or pair-fed liquid diets as the sole source of nutrients for the pregnant mice. The techniques involving dissection of fetuses and microdissection of fetal brains are described carefully, since the latter can be challenging. Microdissection requires a stereomicroscope and ultra-fine forceps. Step-by-step procedures for dissecting the fetal brains are provided visually. The fetal brains are dissected from the base of the primordium olfactory bulb to the base of the metencephalon. For investigating apoptosis, fetal brains are first embedded in gelatin using a peel-away mold to facilitate their sectioning with a vibratome apparatus. Fetal brains embedded and fixed in paraformaldehyde are easily sectioned, and the free floating sections can be mounted in superfrost plus slides for determination of apoptosis or cell death. TUNEL (TdT-mediated dUTP Nick End Labeling; TdT: terminal deoxynucleotidyl transferase) assay has been used to identify cell death or apoptotic cells. It is noteworthy that apoptosis and cell-mediated cytotoxicity are characterized by DNA fragmentation. Thus, the visualized TUNEL-positive cells are indicative of cell death or apoptotic cells. The experimental designs here provide information about the use of an established liquid diet for studying the effects of alcohol and the role of neurotrophic peptides during pregnancy in fetal brains. This involves breeding and feeding pregnant mice, microdissecting fetal brains, and determining apoptosis. Together, these visual and textual techniques might be a source for investigating prenatal exposure of harmful agents in fetal brains.
Apoptosis and brain ischaemia.
Love, Seth
2003-04-01
There is increasing evidence that some neuronal death after brain ischaemia is mediated by the action of cysteine-requiring aspartate-directed proteases (caspases), the proteases responsible for apoptosis in mammals, although this form of neuronal death is not always accompanied by the morphological changes that are typical of apoptosis in other tissues. Caspase-mediated neuronal death is more extensive after transient than permanent focal brain ischaemia and may contribute to delayed loss of neurons from the penumbral region of infarcts. The activation of caspases after brain ischaemia is largely consequent on the translocation of Bax, Bak, and other BH3-only members of the Bcl-2 family to the mitochondrial outer membrane and the release of cytochrome c, procaspase-9, and apoptosis activating factor-1 (Apaf-1) from the mitochondrial intermembrane space. How exactly ischaemia induces this translocation is still poorly understood. NF-kappaB, the c-jun N-terminal kinase-c-Jun pathway, p53, E2F1, and other transcription factors are probably all involved in regulating the expression of BH3-only proteins after brain ischaemia, and mitochondrial translocation of Bad from sequestering cytosolic proteins is promoted by inactivation of the serine-threonine kinase, Akt. Other processes that are probably involved in the activation of caspases after brain ischaemia include the mitochondrial release of the second mitochondrial activator of caspases (Smac) or direct inhibitor-of-apoptosis-binding protein with low pI (DIABLO), the accumulation of products of lipid peroxidation, a marked reduction in protein synthesis, and the aberrant reentry of neurons into the cell cycle. Non-caspase-mediated neuronal apoptosis may also occur, but there is little evidence to date that this makes a significant contribution to brain damage after ischaemia. The intracellular processes that contribute to caspase-mediated neuronal death after ischaemia are all potential targets for therapy. However, anti-apoptotic interventions in stroke patients will require detailed evaluation using a range of outcome measures, as some such interventions seem simply to delay neuronal death and others to preserve neurons but not neuronal function.
Factors associated with resistance to dementia despite high Alzheimer disease pathology.
Erten-Lyons, D; Woltjer, R L; Dodge, H; Nixon, R; Vorobik, R; Calvert, J F; Leahy, M; Montine, T; Kaye, J
2009-01-27
Autopsy series have shown that some elderly people remain with normal cognitive function during life despite having high burdens of pathologic lesions associated with Alzheimer disease (AD) at death. Understanding why these individuals show no cognitive decline, despite high AD pathologic burdens, may be key to discovery of neuroprotective mechanisms. A total of 36 subjects who on autopsy had Braak stage V or VI and moderate or frequent neuritic plaque scores based on Consortium to Establish a Registry for Alzheimer's Disease (CERAD) standards were included. Twelve had normal cognitive function and 24 a diagnosis of AD before death. Demographic characteristics, clinical and pathologic data, as well as antemortem brain volumes were compared between the groups. In multiple regression analysis, antemortem hippocampal and total brain volumes were significantly larger in the group with normal cognitive function after adjusting for gender, age at MRI, time from MRI to death, Braak stage, CERAD neuritic plaque score, and overall presence of vascular disease. Larger brain and hippocampal volumes were associated with preserved cognitive function during life despite a high burden of Alzheimer disease (AD) pathologic lesions at death. A better understanding of processes that lead to preservation of brain volume may provide important clues for the discovery of mechanisms that protect the elderly from AD.
Shirota, Go; Gonoi, Wataru; Ishida, Masanori; Okuma, Hidemi; Shintani, Yukako; Abe, Hiroyuki; Takazawa, Yutaka; Ikemura, Masako; Fukayama, Masashi; Ohtomo, Kuni
2015-01-01
The purpose of this study was to evaluate the brain by postmortem computed tomography (PMCT) versus antemortem computed tomography (AMCT) using brains from the same patients. We studied 36 nontraumatic subjects who underwent AMCT, PMCT, and pathological autopsy in our hospital between April 2009 and December 2013. PMCT was performed within 20 h after death, followed by pathological autopsy including the brain. Autopsy confirmed the absence of intracranial disorders that might be related to the cause of death or might affect measurements in our study. Width of the third ventricle, width of the central sulcus, and attenuation in gray matter (GM) and white matter (WM) from the same area of the basal ganglia, centrum semiovale, and high convexity were statistically compared between AMCT and PMCT. Both the width of the third ventricle and the central sulcus were significantly shorter in PMCT than in AMCT (P < 0.0001). GM attenuation increased after death at the level of the centrum semiovale and high convexity, but the differences were not statistically significant considering the differences in attenuation among the different computed tomography scanners. WM attenuation significantly increased after death at all levels (P<0.0001). The differences were larger than the differences in scanners. GM/WM ratio of attenuation was significantly lower by PMCT than by AMCT at all levels (P<0.0001). PMCT showed an increase in WM attenuation, loss of GM-WM differentiation, and brain swelling, evidenced by a decrease in the size of ventricles and sulci.
Ito, Minako; Kondo, Taisuke; Shichita, Takashi; Yoshimura, Akihiko
2013-07-01
Stroke or brain ischemia is one of the major causes of death and disability worldwide. Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In a mouse stroke model, we have reported that IL-23 produced from infiltrating macrophages induces IL-17 producing T cells. IL-17 is mainly produced from gammadeltaT cells and promotes delayed (day 3-4) ischemic brain damage. We also demonstrated that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including IL-23 in macrophages through activation of Toll-like receptor 2(TLR2) and TLR4, thereby promoting neural cell death. We thus propose that regulation of the IL-23-IL-17 axis including gammadeltaT cells, macrophages, and extracellular Prxs could be a potent neuroprotective tool.
Rady, Mohamed Y; Verheijde, Joseph L
2013-03-01
The utilitarian construct of two alternative criteria of human death increases the supply of transplantable organs at the end of life. Neither the neurological criterion (heart-beating donation) nor the circulatory criterion (non-heart-beating donation) is grounded in scientific evidence but based on philosophical reasoning. A utilitarian death definition can have unintended consequences for dying Muslim patients: (1) the expedited process of determining death for retrieval of transplantable organs can lead to diagnostic errors, (2) the equivalence of brain death with human death may be incorrect, and (3) end-of-life religious values and traditional rituals may be sacrificed. Therefore, it is imperative to reevaluate the two different types and criteria of death introduced by the Resolution (Fatwa) of the Council of Islamic Jurisprudence on Resuscitation Apparatus in 1986. Although we recognize that this Fatwa was based on best scientific evidence available at that time, more recent evidence shows that it rests on outdated knowledge and understanding of the phenomenon of human death. We recommend redefining death in Islam to reaffirm the singularity of this biological phenomenon as revealed in the Quran 14 centuries ago.
Organismal death, the dead-donor rule and the ethics of vital organ procurement.
Symons, Xavier; Chua, Reginald Mary
2018-06-19
Several bioethicists have recently discussed the complexity of defining human death, and considered in particular how our definition of death affects our understanding of the ethics of vital organ procurement. In this brief paper, we challenge the mainstream medical definition of human death-namely, that death is equivalent to total brain failure-and argue with Nair-Collins and Miller that integrated biological functions can continue even after total brain failure has occurred. We discuss the implications of Nair-Collins and Miller's argument and suggest that it may be necessary to look for alternative biological markers that reliably indicate the death of a human being. We reject the suggestion that we should abandon the dead-donor criteria for organ donation. Rather than weaken the ethical standards for vital organ procurement, it may be necessary to make them more demanding. The aim of this paper is not to justify the dead donor rule. Rather, we aim to explore the perspective of those who agree with critiques of the whole brain and cardiopulmonary definitions of death but yet disagree with the proposal that we should abandon the dead-donor rule. We will consider what those who want to retain the dead-donor rule must argue in light of Nair-Collins and Miller's critique. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Burman, P; Mattsson, A F; Johannsson, G; Höybye, C; Holmer, H; Dahlqvist, P; Berinder, K; Engström, B E; Ekman, B; Erfurth, E M; Svensson, J; Wahlberg, J; Karlsson, F A
2013-04-01
Patients with hypopituitarism have an increased standardized mortality rate. The basis for this has not been fully clarified. To investigate in detail the cause of death in a large cohort of patients with hypopituitarism subjected to long-term follow-up. All-cause and cause-specific mortality in 1286 Swedish patients with hypopituitarism prospectively monitored in KIMS (Pfizer International Metabolic Database) 1995-2009 were compared to general population data in the Swedish National Cause of Death Registry. In addition, events reported in KIMS, medical records, and postmortem reports were reviewed. Standardized mortality ratios (SMR) were calculated, with stratification for gender, attained age, and calendar year during follow-up. An excess mortality was found, 120 deaths vs 84.3 expected, SMR 1.42 (95% confidence interval: 1.18-1.70). Infections, brain cancer, and sudden death were associated with significantly increased SMRs (6.32, 9.40, and 4.10, respectively). Fifteen patients, all ACTH-deficient, died from infections. Eight of these patients were considered to be in a state of adrenal crisis in connection with death (medical reports and post-mortem examinations). Another 8 patients died from de novo malignant brain tumors, 6 of which had had a benign pituitary lesion at baseline. Six of these 8 subjects had received prior radiation therapy. Two important causes of excess mortality were identified: first, adrenal crisis in response to acute stress and intercurrent illness; second, increased risk of a late appearance of de novo malignant brain tumors in patients who previously received radiotherapy. Both of these causes may be in part preventable by changes in the management of pituitary disease.
Mikla, M; Rios, A; Lopez-Navas, A; Gotlib, J; Kilanska, D; Martinez-Alarcón, L; Ramis, G; Ramirez, P; Lopez Montesinos, M J
2016-09-01
The knowledge and acceptance of the concept of brain death among future health professionals is essential. The objective of this study was to analyze the knowledge of the concept of brain death among nursing students at the Medical University of Warsaw and determine the factors that affect it. Academic year 2011-2012, nursing students of the University of Poland. Sampling points in 5 compulsory-attendance nursing courses with a completion rate >80%. Validated questionnaire (PCID-DTO Rios), anonymous and self-administered. The completion rate was 96% (793/828); 71% (n = 561) knew the concept of brain death, 22% (n = 178) did not know it, and 7% (n = 54) did not know that it implies the death of the patient. Variables related to the correct knowledge: 1) to be studying in 4th year compared with 1st year (85% vs 60%; P ≤ .001); 2) discuss the subject with family (76% vs 61%; P ≤ .001); 3) discuss with friends (73% vs 63%; P = .009); and 4) having a favorable attitude toward organ donation (74% vs 65%; P = .011). In the multivariate analysis, the variables that remained independent were studying in 4th year (odds ratio [OR], 3.809; 95% confidence interval [CI], 2.006-5.823; P ≤ .001) and discussed with family concerning donation and transplantation (OR, 1.718; 95% CI, 1.241-2.381; P ≤ .001). One-third of the nursing students were unfamiliar with the concept of brain death. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Janice C; Bindokas, Vytautas P; Skinner, Matthew; Emrick, Todd; Marks, Jeremy D
2017-10-01
Global brain ischemia can lead to widespread neuronal death and poor neurologic outcomes in patients. Despite detailed understanding of the cellular and molecular mechanisms mediating neuronal death following focal and global brain hypoxia-ischemia, treatments to reduce ischemia-induced brain injury remain elusive. One pathway central to neuronal death following global brain ischemia is mitochondrial dysfunction, one consequence of which is the cascade of intracellular events leading to mitochondrial outer membrane permeabilization. A novel approach to rescuing injured neurons from death involves targeting cellular membranes using a class of synthetic molecules called Pluronics. Pluronics are triblock copolymers of hydrophilic poly[ethylene oxide] (PEO) and hydrophobic poly[propylene oxide] (PPO). Evidence is accumulating to suggest that hydrophilic Pluronics rescue injured neurons from death following substrate deprivation by preventing mitochondrial dysfunction. Here, we will review current understanding of the nature of interaction of Pluronic molecules with biological membranes and the efficacy of F-68, an 80% hydrophilic Pluronic, in rescuing neurons from injury. We will review data indicating that F-68 reduces mitochondrial dysfunction and mitochondria-dependent death pathways in a model of neuronal injury in vitro, and present new evidence that F-68 acts directly on mitochondria to inhibit mitochondrial outer membrane permeabilization. Finally, we will present results of a pilot, proof-of-principle study suggesting that F-68 is effective in reducing hippocampal injury induced by transient global ischemia in vivo. By targeting mitochondrial dysfunction, F-68 and other Pluronic molecules constitute an exciting new approach to rescuing neurons from acute injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kohler, Betsy A; Ward, Elizabeth; McCarthy, Bridget J; Schymura, Maria J; Ries, Lynn A G; Eheman, Christie; Jemal, Ahmedin; Anderson, Robert N; Ajani, Umed A; Edwards, Brenda K
2011-05-04
The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute, and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information on cancer occurrence and trends in the United States. This year's report highlights brain and other nervous system (ONS) tumors, including nonmalignant brain tumors, which became reportable on a national level in 2004. Cancer incidence data were obtained from the National Cancer Institute, CDC, and NAACCR, and information on deaths was obtained from the CDC's National Center for Health Statistics. The annual percentage changes in age-standardized incidence and death rates (2000 US population standard) for all cancers combined and for the top 15 cancers for men and for women were estimated by joinpoint analysis of long-term (1992-2007 for incidence; 1975-2007 for mortality) trends and short-term fixed interval (1998-2007) trends. Analyses of malignant neuroepithelial brain and ONS tumors were based on data from 1980-2007; data on nonmalignant tumors were available for 2004-2007. All statistical tests were two-sided. Overall cancer incidence rates decreased by approximately 1% per year; the decrease was statistically significant (P < .05) in women, but not in men, because of a recent increase in prostate cancer incidence. The death rates continued to decrease for both sexes. Childhood cancer incidence rates continued to increase, whereas death rates continued to decrease. Lung cancer death rates decreased in women for the first time during 2003-2007, more than a decade after decreasing in men. During 2004-2007, more than 213 500 primary brain and ONS tumors were diagnosed, and 35.8% were malignant. From 1987-2007, the incidence of neuroepithelial malignant brain and ONS tumors decreased by 0.4% per year in men and women combined. The decrease in cancer incidence and mortality reflects progress in cancer prevention, early detection, and treatment. However, major challenges remain, including increasing incidence rates and continued low survival for some cancers. Malignant and nonmalignant brain tumors demonstrate differing patterns of occurrence by sex, age, and race, and exhibit considerable biologic diversity. Inclusion of nonmalignant brain tumors in cancer registries provides a fuller assessment of disease burden and medical resource needs associated with these unique tumors.
Characterization of Death in Neonatal Encephalopathy in the Hypothermia Era.
Lemmon, Monica E; Boss, Renee D; Bonifacio, Sonia L; Foster-Barber, Audrey; Barkovich, A James; Glass, Hannah C
2017-03-01
This study aimed to characterize the circumstances of death in encephalopathic neonates treated with therapeutic hypothermia. Patients who died after or during treatment with therapeutic hypothermia between 2007-2014 were identified. Patient circumstance of death was characterized using an established paradigm. Thirty-one of 229 patients died (14%) at a median of 3 days of life. Most who died were severely encephalopathic on examination (90%) and had severely abnormal electroencephalographic (EEG) findings (87%). All those who had magnetic resonance images (n = 13) had evidence of moderate-severe brain injury; 6 had near-total brain injury. Cooling was discontinued prematurely in 61% of patients. Most patients (90%) were physiologically stable at the time of death; 81% died following elective extubation for quality of life considerations. Three patients (10%) died following withholding or removal of artificial hydration and nutrition. Characterization of death in additional cohorts is needed to identify differences in decision making practices over time and between centers.
Life and death of neurons in the aging brain
NASA Technical Reports Server (NTRS)
Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)
1997-01-01
Neurodegenerative disorders are characterized by extensive neuron death that leads to functional decline, but the neurobiological correlates of functional decline in normal aging are less well defined. For decades, it has been a commonly held notion that widespread neuron death in the neocortex and hippocampus is an inevitable concomitant of brain aging, but recent quantitative studies suggest that neuron death is restricted in normal aging and unlikely to account for age-related impairment of neocortical and hippocampal functions. In this article, the qualitative and quantitative differences between aging and Alzheimer's disease with respect to neuron loss are discussed, and age-related changes in functional and biochemical attributes of hippocampal circuits that might mediate functional decline in the absence of neuron death are explored. When these data are viewed comprehensively, it appears that the primary neurobiological substrates for functional impairment in aging differ in important ways from those in neurodegenerative disorders such as Alzheimer's disease.
[Causes of the people death from drunkenness and alcoholism].
Erokhin, Iu A; Paukov, V S; Kirillov, Iu A
2012-01-01
We analyzed causes of 1008 people death, who abused by alcohol. Among them 2 groups were separated out: people died due to drunkenness and due to alcoholism. The structure of the death was similar in the both groups, however depended on alcoholism stages. The major cause of the death in group of drunkenness people was acute heart insufficiency, less commonly--lung pathology, and very rarely--brain vessels pathology and liver cirrhosis. In group of people, who died due to alcoholism, lung pathology was the major cause of these deaths, acute heart insufficiency was occurred less commonly, and very rare brain pathology because of delirium tremens or alcohol withdrawal syndrome, as so liver cirrhosis with complications. Hemorrhagic pancreonecrosis after alcoholic excess was found out in both groups, but it was more often in people, who died due to drunkenness. Obtained results show importance of chronic alcoholism identification as a disease with several stages including drunkenness and alcoholism.
Cylindromatosis mediates neuronal cell death in vitro and in vivo.
Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten
2018-01-19
The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.
Ju, M K; Sim, M K; Son, S Y
2018-05-01
The purpose of this study was to identify the knowledge, attitude, educational needs, and will of nursing students on organ donation from brain-dead donors. Data were collected by using a 40-item questionnaire to measure knowledge, attitude, educational needs, and will for organ donation of 215 nursing college students in one university in Dangjin city from May 11 to May 31, 2017. The data were analyzed using SPSS 22 program (Data Solution Inc, Seoul). In the general characteristics, 85.1% of the subjects did not receive education on donation, and 99.5% of the subjects responded that education is needed. The desired methods of education were special lecture in school (55.3%), "webtoons" on the Internet (19.5%), formal curriculum (15.8%). Points to improve to increase brain-death organ transplantation and donation included "active publicity through pan-national campaign activities" (56.3%), "respecting prior consent from brain-dead donors" (21.9%), and "encouragement and increased support for organ donors" (12.1%). There was a significant difference in knowledge according to will for organ donation (t = 3.29, P = .001) and consent to brain-death organ donation in family members (t = 3.29, P = .001). There was a statistically significant positive correlation between attitude and knowledge of the subjects regarding brain-death organ donation. The knowledge, attitude, educational need, and will for organ donation of nursing students revealed in this study will be used as basic data to provide systematic transplant education including contents about organ transplantation in the regular nursing curriculum in the future. It will contribute to the activation of organ donation. Copyright © 2018 Elsevier Inc. All rights reserved.
Arifin, Muhammad Zafrullah; Faried, Ahmad; Shahib, Muhammad Nurhalim; Wiriadisastra, Kahdar; Bisri, Tatang
2011-01-01
Background. Traumatic brain injury (TBI) remains a major cause of death and disability. Oxidative stress is an important element of the injury cascade following TBI. Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation are one of the major mechanisms of secondary TBI. NR2B is a glutamate receptor and its activation is caused by TBI increasing a brain cell death, along with caspase-3 as a hall mark of apoptosis. Glutathione is a potent free radical scavenger that might prevent secondary TBI damage and inhibited apoptosis. Materials and Methods. In the present study, it aims to demonstrate the effect of glutathione on inhibition of brain oxidative damage in a TBI rat model. Results. In this study, the expressions of mRNA NR2B in placebo group and groups with glutathione administration at 0, 3, and 6 hours after TBI were 328.14, 229.90, 178.50, and 136.14, respectively (P<0.001). The highest caspase-3 expression was shown in placebo group with 66.7% showing strong positive results (>80%); as expected, glutathione administered in 0, 3, and 6 hours groups had lower strong positive results of 50%, 16.7%, and 16.7%, respectively, (P=0.025). Conclusion. In conclusion, this study showed that glutathione administration in a TBI rat model decreased NR2B gene- and caspase-3 protein-expression that lead to the inhibition of brain cell death. Our results suggest that glutathione, as a potent free radical scavenger, has a brain cell protective effect against oxidative damage and cell death induced by TBI in rat model. PMID:22347327
2012-01-01
Background Based on an experimental brain stem death model, we demonstrated previously that activation of the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/ mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients. The present study assessed the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM during experimental brain stem death. We further delineated the participation of phosphorylating activating transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK, in this process. Results An experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague–Dawley rats was used, alongside cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total JNK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185 and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73, rather than Elk-1 at Ser383 in RVLM were also augmented during the pro-life phase. Furthermore, pretreatment by microinjection into the bilateral RVLM of specific JNK inhibitors, JNK inhibitor I (100 pmol) or SP600125 (5 pmol), or specific p38MAPK inhibitors, p38MAPK inhibitor III (500 pmol) or SB203580 (2 nmol), exacerbated the depressor effect and blunted the augmented life-and-death signal exhibited during the pro-life phase. On the other hand, pretreatment with the negative control for JNK or p38MAPK inhibitor, JNK inhibitor I negative control (100 pmol) or SB202474 (2 nmol), was ineffective in the vehicle-controls and Mev-treatment groups. Conclusions Our results demonstrated that activation of JNK or p38MAPK in RVLM by their upstream activators MAP2K4 or MAP2K6 plays a preferential pro-life role by sustaining the central cardiovascular regulatory machinery during experimental brain stem death via phosphorylation and activation of nuclear transcription factor ATF-2 or c-Jun. PMID:23157661
Davies, C
1997-01-01
The study aimed to explore nurses knowledge and attitudes towards brain stem death and organ donation. An ex post facto research design was used to determine relationships between variables. A 16 item questionnaire was used to collect data. Statistical analysis revealed one significant result. The limitations of the sample size is acknowledged and the conclusion suggests a larger study is required.
Alonso-Alconada, Daniel; Hilario, Enrique; Álvarez, Francisco José; Álvarez, Antonia
2012-07-01
Despite advances in neonatology, the hypoxic-ischemic injury in the perinatal period remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Using a sheep model of intrauterine asphyxia, we evaluated the correlation between reactive oxygen species (ROS) overproduction, cytokine expression, and apoptotic cell death. Fetal lambs were assigned to sham group, nonasphyctic animals; and hypoxia-ischemia (HI) group, lambs subjected to 60 minutes of HI) by partial cord occlusion and sacrificed 3 hours later. Different brain regions were separated to quantify the number of apoptotic cells and the same territories were dissociated for flow cytometry studies. Our results suggest that the overproduction of ROS and the early increase in cytokine production after HI in fetal lambs correlate in a significant manner with the apoptotic index, as well as with each brain region evaluated.
Van Elderen, Saskia S G C; Zhang, Qian; Sigurdsson, Sigudur; Haight, Thaddeus J; Lopez, Oscar; Eiriksdottir, Gudny; Jonsson, Palmi; de Jong, Laura; Harris, Tamara B; Garcia, Melissa; Gudnason, Vilmundar; van Buchem, Mark A; Launer, Lenore J
2016-01-01
Total brain volume is an integrated measure of health and may be an independent indicator of mortality risk independent of any one clinical or subclinical disease state. We investigate the association of brain volume to total and cause-specific mortality in a large nondemented stroke-free community-based cohort. The analysis includes 3,543 men and women (born 1907-1935) participating in the Age, Gene, Environment Susceptibility-Reykjavik Study. Participants with a known brain-related high risk for mortality (cognitive impairment or stroke) were excluded from these analyses. Quantitative estimates of total brain volume, white matter, white matter lesions, total gray matter (GM; cortical GM and subcortical GM separately), and focal cerebral vascular disease were generated from brain magnetic resonance imaging. Brain atrophy was expressed as brain tissue volume divided by total intracranial volume, yielding a percentage. Mean follow-up duration was 7.2 (0-10) years, with 647 deaths. Cox regression was used to analyze the association of mortality to brain atrophy, adjusting for demographics, cardiovascular risk factors, and cerebral vascular disease. Reduced risk of mortality was significantly associated with higher total brain volume (hazard ratio, 95% confidence interval = 0.71, 0.65-0.78), white matter (0.85, 0.78-0.93), total GM (0.74, 0.68-0.81), and cortical GM (0.78, 0.70-0.87). Overall, the associations were similar for cardiovascular and noncardiovascular-related deaths. Independent of multiple risk factors and cerebral vascular damage, global brain volume predicts mortality in a large nondemented stroke-free community-dwelling older cohort. Total brain volume may be an integrated measure reflecting a range of health and with further investigation could be a useful clinical tool when assessing risk for mortality. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.
Cerebral Oximetry as an Auxiliary Diagnostic Tool in the Diagnosis of Brain Death.
Tatli, O; Bekar, O; Imamoglu, M; Gonenc Cekic, O; Aygun, A; Eryigit, U; Karaca, Y; Sahin, A; Turkmen, S; Turedi, S
2017-10-01
To investigate the efficacy of cerebral oximetry (CO) as an auxiliary diagnostic tool in brain death (BD). This observational case-control study was performed on patients with suspected BD. Patients with diagnosis of BD confirmed by the brain death committee were enrolled as the BD group and other patients as the non-BD group. CO monitoring was performed at least 6 h, and cerebral tissue oxygen saturation (ScO 2 ) parameters were compared. Mean ScO 2 level in the BD group was lower than non-brain-dead patients: mean difference for right lobe = 6.48 (95% confidence interval [CI] 0.08-12.88) and for left lobe = 6.09 (95% CI -0.22-12.41). Maximum ScO 2 values in the BD group were significantly lower than the non-BD group: mean difference for right lobe = 8.20 (95% CI 1.64-14.77) and for left lobe = 9.54 (95% CI 3.06-16.03). The area under the curve for right lobe maximum ScO 2 was 0.69 (95% CI 0.55-0.81) and for left lobe was 0.72 (95% CI 0.58-0.84). Maximum ScO 2 in brain-dead patients at CO monitoring is significantly low. However, this cannot be used to differentiate brain-dead and non-brain-dead patients. CO monitoring is therefore not an appropriate auxiliary diagnostic tool for confirming BD. Copyright © 2017 Elsevier Inc. All rights reserved.
The profile of potential organ and tissue donors.
Moraes, Edvaldo Leal de; Silva, Leonardo Borges de Barros E; Moraes, Tatiana Cristine de; Paixão, Nair Cordeiro dos Santos da; Izumi, Nelly Miyuki Shinohara; Guarino, Aparecida de Jesus
2009-01-01
This study aimed to characterize donors according to gender, age group, cause of brain death; quantify donors with hypernatremia, hyperpotassemia and hypopotassemia; and get to know which organs were the most used in transplantations. This quantitative, descriptive, exploratory and retrospective study was performed at the Organ Procurement Organization of the University of São Paulo Medical School Hospital das Clínicas. Data from the medical records of 187 potential donors were analyzed. Cerebrovascular accidents represented 53.48% of all brain death causes, sodium and potassium disorders occurred in 82.36% of cases and 45.46% of the potential donors were between 41 and 60 years old. The results evidenced that natural death causes exceeded traumatic deaths, and that most donors presented sodium and potassium alterations, likely associated to inappropriate maintenance.
Hottenrott, Maximilia C; Krebs, Joerg; Pelosi, Paolo; Luecke, Thomas; Rocco, Patricia R M; Sticht, Carsten; Breedijk, Annette; Yard, Benito; Tsagogiorgas, Charalambos
2017-12-01
Pathophysiological changes of brain death (BD) are impairing distal organ function and harming potential renal allografts. Whether ventilation strategies influence the quality of renal allografts from BD donors has not been thoroughly studied. 28 adult male Wistar rats were randomly assigned to four groups: 1) no brain death (NBD) with low tidal volume/low positive endexpiratory pressure (PEEP) titrated to minimal static elastance of the respiratory system (LVT/OLPEEP); 2) NBD with high tidal volume/low PEEP (HVT/LPEEP); 3) brain death (BD) with LVT/OLPEEP; and 4) BD with HVT/LPEEP. We hypothesized that HVT/LPEEP in BD leads to increased interleukin 6 (IL-6) gene expression and impairs potential renal allografts after six hours of mechanical ventilation. We assessed inflammatory cytokines in serum, genome wide gene expression profiles and quantitative PCR (qPCR) in kidney tissue. The influence of BD on renal gene-expression profiles was greater than the influence of the ventilation strategy. In BD, LVT ventilation did not influence the inflammatory parameters or kidney function in our experimental model. Copyright © 2017. Published by Elsevier B.V.
Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique
2013-01-01
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720
Role of Caspase-8 and Fas in Cell Death After Spinal Cord Injury
Sobrido-Cameán, Daniel; Barreiro-Iglesias, Antón
2018-01-01
Spinal cord injury (SCI) causes the death of neurons and glial cells due to the initial mechanical forces (i.e., primary injury) and through a cascade of secondary molecular events (e.g., inflammation or excitotoxicity) that exacerbate cell death. The loss of neurons and glial cells that are not replaced after the injury is one of the main causes of disability after SCI. Evidence accumulated in last decades has shown that the activation of apoptotic mechanisms is one of the factors causing the death of intrinsic spinal cord (SC) cells following SCI. Although this is not as clear for brain descending neurons, some studies have also shown that apoptosis can be activated in the brain following SCI. There are two main apoptotic pathways, the extrinsic and the intrinsic pathways. Activation of caspase-8 is an important step in the initiation of the extrinsic pathway. Studies in rodents have shown that caspase-8 is activated in SC glial cells and neurons and that the Fas receptor plays a key role in its activation following a traumatic SCI. Recent work in the lamprey model of SCI has also shown the retrograde activation of caspase-8 in brain descending neurons following SCI. Here, we review our current knowledge on the role of caspase-8 and the Fas pathway in cell death following SCI. We also provide a perspective for future work on this process, like the importance of studying the possible contribution of Fas/caspase-8 signaling in the degeneration of brain neurons after SCI in mammals. PMID:29666570
Aleman, M; Williams, D C; Guedes, A; Madigan, J E
2015-01-01
An overdose of pentobarbital sodium administered i.v. is the most commonly used method of euthanasia in veterinary medicine. Determining death after the infusion relies on the observation of physical variables. However, it is unknown when cortical electrical activity and brainstem function are lost in a sequence of events before death. To examine changes in the electrical activity of the cerebral cortex and brainstem during an overdose of pentobarbital sodium solution for euthanasia. Our testing hypothesis is that isoelectric pattern of the brain in support of brain death occurs before absence of electrocardiogram (ECG) activity. Fifteen horses requiring euthanasia. Prospective observational study. Horses with neurologic, orthopedic, and cardiac illnesses were selected and instrumented for recording of electroencephalogram, electrooculogram, brainstem auditory evoked response (BAER), and ECG. Physical and neurologic (brainstem reflexes) variables were monitored. Loss of cortical electrical activity occurred during or within 52 seconds after the infusion of euthanasia solution. Cessation of brainstem function as evidenced by a lack of brainstem reflexes and disappearance of the BAER happened subsequently. Despite undetectable heart sounds, palpable arterial pulse, and mean arterial pressure, recordable ECG was the last variable to be lost after the infusion (5.5-16 minutes after end of the infusion). Overdose of pentobarbital sodium solution administered i.v. is an effective, fast, and humane method of euthanasia. Brain death occurs within 73-261 seconds of the infusion. Although absence of ECG activity takes longer to occur, brain death has already occurred. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Ahlemeyer, Barbara; Gottwald, Magdalena; Baumgart-Vogt, Eveline
2012-01-01
SUMMARY Impaired neuronal migration and cell death are commonly observed in patients with peroxisomal biogenesis disorders (PBDs), and in mouse models of this diseases. In Pex11β-deficient mice, we observed that the deletion of a single allele of the Pex11β gene (Pex11β+/− heterozygous mice) caused cell death in primary neuronal cultures prepared from the neocortex and cerebellum, although to a lesser extent as compared with the homozygous-null animals (Pex11β−/− mice). In corresponding brain sections, cell death was rare, but differences between the genotypes were similar to those found in vitro. Because PEX11β has been implicated in peroxisomal proliferation, we searched for alterations in peroxisomal abundance in the brain of heterozygous and homozygous Pex11β-null mice compared with wild-type animals. Deletion of one allele of the Pex11β gene slightly increased the abundance of peroxisomes, whereas the deletion of both alleles caused a 30% reduction in peroxisome number. The size of the peroxisomal compartment did not correlate with neuronal death. Similar to cell death, neuronal development was delayed in Pex11β+/− mice, and to a further extent in Pex11β−/− mice, as measured by a reduced mRNA and protein level of synaptophysin and a reduced protein level of the mature isoform of MAP2. Moreover, a gradual increase in oxidative stress was found in brain sections and primary neuronal cultures from wild-type to heterozygous to homozygous Pex11β-deficient mice. SOD2 was upregulated in neurons from Pex11β+/− mice, but not from Pex11β−/− animals, whereas the level of catalase remained unchanged in neurons from Pex11β+/− mice and was reduced in those from Pex11β−/− mice, suggesting a partial compensation of oxidative stress in the heterozygotes, but a failure thereof in the homozygous Pex11β−/− brain. In conclusion, we report the alterations in the brain caused by the deletion of a single allele of the Pex11β gene. Our data might lead to the reconsideration of the clinical treatment of PBDs and the common way of using knockout mouse models for studying autosomal recessive diseases. PMID:21954064
USDA-ARS?s Scientific Manuscript database
Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to death of brain cells that transmit dopamine (DA), one of the brain chemicals responsible for transmitting signals between brain nerve cells. We examined the neuroprotective ef...
Mechanisms of gender-linked ischemic brain injury
Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.
2010-01-01
Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke. PMID:19531872
Roberts, Derek J.; Harzan, Christina; Kirkpatrick, Andrew W.; Dixon, Elijah; Grondin, Sean C.; McBeth, Paul B.; Kaplan, Gilaad G.
2018-01-01
Summary A wide range of factors have traditionally led to early in-hospital death following severe injury. The primary goal of this commentary was to evaluate the causes of early posttraumatic inpatient deaths over an extended period. Although early posttraumatic in-hospital death remains multifactorial, severe traumatic brain injuries are the dominant cause and have increased in proportion over time. Other traditional causes of death have also decreased owing to improved clinical care. PMID:29806810
Determination of death: Metaphysical and biomedical discourse.
Jakušovaitė, Irayda; Luneckaitė, Žydrunė; Peičius, Eimantas; Bagdonaitė, Živilė; Riklikienė, Olga; Stankevičius, Edgaras
2016-01-01
The prominence of biomedical criteria relying on brain death reduces the impact of metaphysical, anthropological, psychosocial, cultural, religious, and legal aspects disclosing the real value and essence of human life. The aim of this literature review is to discuss metaphysical and biomedical approaches toward death and their complimentary relationship in the determination of death. A critical appraisal of theoretical and scientific evidence and legal documents supported analytical discourse. In the metaphysical discourse of death, two main questions about what human death is and how to determine the fact of death clearly separate the ontological and epistemological aspects of death. During the 20th century, various understandings of human death distinguished two different approaches toward the human: the human is a subject of activities or a subject of the human being. Extinction of the difference between the entities and the being, emphasized as rational-logical instrumentation, is not sufficient to understand death thoroughly. Biological criteria of death are associated with biological features and irreversible loss of certain cognitive capabilities. Debating on the question "Does a brain death mean death of a human being?" two approaches are considering: the body-centrist and the mind-centrist. By bridging those two alternatives human death appears not only as biomedical, but also as metaphysical phenomenon. It was summarized that a predominance of clinical criteria for determination of death in practice leads to medicalization of death and limits the holistic perspective toward individual's death. Therefore, the balance of metaphysical and biomedical approaches toward death and its determination would decrease the medicalization of the concept of death. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Moderate zinc deficiency increases cell death after brain injury in the rat.
Yeiser, E Carden; Vanlandingham, Jacob W; Levenson, Cathy W
2002-10-01
Zinc supplementation has been used clinically to reduce Zn losses and protein turnover in patients suffering from traumatic brain injury. Despite the known role of zinc in cell survival and integrity, the influence of zinc status on central nervous system wound healing in the weeks and months after brain injury has not been addressed. In this investigation, we examined cell death after unilateral cortical stab wounds in adult rats (n = 5 per group) that were provided diets containing adequate zinc (30 mg Zn/kg diet), supplemental zinc (180 mg/kg), or moderately deficient zinc (5 mg/kg). Four weeks following the brain injury there was a 1.82-2.65-fold increase in terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling (TUNEL)-positive cells with DNA fragmentation at the site of injury in animals receiving a moderately zinc deficient diet compared to animals receiving a zinc-adequate or supplemented diet (p0.05). Examination of the nuclear morphology of these cells suggested the presence of both apoptosis and necrosis. Immunohistochemistry showed that the TUNEL-positive cells expressed both ED-1 and OX-42, identifying them as microglia/macrophages. Thus it appears that adequate zinc status may be necessary to minimize the amount of neuroimmune cell death after brain injury.
Dose-dependent lipopolysaccharide-induced fetal brain injury in the guinea pig.
Harnett, Erica L; Dickinson, Michelle A; Smith, Graeme N
2007-08-01
This study determined whether a lipopolysaccharide (LPS) dose-dependent increase in fetal brain injury occurs to further characterize the relationship between maternal inflammation and fetal brain injury. Pregnant guinea pigs (n = 59) at 70% gestation were injected intraperitoneally with 1, 5, 25, 50, 100, 200, or 300 microg LPS per kilogram of maternal body weight or an equivalent volume of vehicle. Animals were killed 7 days later. Maternal serum and amniotic fluid samples were assayed for proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 using enzyme-linked immunosorbent assay kits. Fetal brains (n = 72) were stained for evidence of cell death with NeuroTACS stain. Seven days after LPS injections, cytokine concentrations in maternal serum and amniotic fluid were not different (P > .05) from controls. Levels of cell death in all brain regions examined were highest following the maternal administration of 300 mug/kg LPS (P < .05). The dose effect was brain region-dependent (P < .05). A threshold of maternal infection/inflammation exists, beyond which demonstrable fetal brain injury may result.
Reye syndrome is a rare illness that can affect the blood, liver, and brain of someone who has recently ... a viral illness, seek medical attention immediately. Reye syndrome can lead to a coma and brain death, ...
Miñambres, E; Suberviola, B; Dominguez-Gil, B; Rodrigo, E; Ruiz-San Millan, J C; Rodríguez-San Juan, J C; Ballesteros, M A
2017-08-01
The use of donation after circulatory death (DCD) has increased significantly during the past decade. However, warm ischemia results in a greater risk for transplantation. Indeed, controlled DCD (cDCD) was associated with inferior outcomes compared with donation after brain death. The use of abdominal normothermic regional perfusion (nRP) to restore blood flow before organ recovery in cDCD has been proposed as better than rapid recovery to reverse the effect of ischemia and improve recipients' outcome. Here, the first Spanish series using abdominal nRP as an in situ conditioning method is reported. A specific methodology to avoid restoring circulation to the brain after death determination is described. Twenty-seven cDCD donors underwent abdominal nRP during at least 60 min. Thirty-seven kidneys, 11 livers, six bilateral lungs, and one pancreas were transplanted. The 1-year death-censored kidney survival was 91%, and delayed graft function rate was 27%. The 1-year liver survival rate was 90.1% with no cases of ischemic cholangiopathy. Transplanted lungs and pancreas exhibited primary function. The use of nRP may represent an advance to increase the number and quality of grafts in cDCD. Poor results in cDCD livers could be reversed with nRP. Concerns about restoring brain circulation after death are easily solved. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Ma, Qingyi; Zhang, Lubo
2018-06-01
Neonatal hypoxia-ischemia (HI) is the most common cause of brain injury in neonates, which leads to high neonatal mortality and severe neurological morbidity in later life (Vannucci, 2000; Volpe, 2001). Yet the molecular mechanisms of neuronal death and brain damage induced by neonatal HI remain largely elusive. Herein, using both in vivo and in vitro models, we determine an endogenous neuroprotectant role of c-type natriuretic peptide (CNP) in preserving neuronal survival after HI brain injury in mouse pups. Postnatal day 7 (P7) mouse pups with CNP deficiency (Nppc lbab/lbab ) exhibit increased brain infarct size and worsened long-term locomotor function after neonatal HI compared with wildtype control (Nppc +/+ ). In isolated primary cortical neurons, recombinant CNP dose-dependently protects primary neurons from oxygen-glucose deprivation (OGD) insult. This neuroprotective effect appears to be mediated through its cognate natriuretic peptide receptor 2 (NPR2), in that antagonization of NPR2, but not NPR3, exacerbates neuronal death and counteracts the protective effect of CNP on primary neurons exposed to OGD insult. Immunoblot and confocal microscopy demonstrate the abundant expression of NPR2 in neurons of the neonatal brain and in isolated primary cortical neurons as well. Moreover, similar to CNP deficiency, administration of NPR2 antagonist P19 via intracerebroventricular injection prior to HI results in exacerbated neuronal death and brain injury after HI. Altogether, the present study indicates that CNP and its cognate receptor NPR2 mainly expressed in neurons represent an innate neuroprotective mechanism in neonatal HI brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long
2014-01-01
Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490
Park, Mi-Ha; Kim, Ha Na; Lim, Joon Seo; Ahn, Jae-Sung; Koh, Jae-Young
2013-12-01
The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures. Exposure of cortical cultures containing neurons and astrocytes to 300 μM zinc for 15 min induced submaximal death in both types of cells. Interestingly, addition of angiotensin II significantly enhanced the zinc-triggered neuronal death, while leaving astrocytic cell death relatively unchanged. Both type 1 and 2 angiotensin II receptors (AT1R and AT2R, respectively) were expressed in neurons as well as astrocytes. Zinc neurotoxicity was substantially attenuated by PD123319, a specific inhibitor of AT2R, and augmented by CGP42112, a selective activator of AT2R, indicating a critical role for this receptor subtype in the augmentation of neuronal cell death.Because zinc toxicity occurs largely through oxidative stress, the levels of superoxides in zinc-treated neurons were assessed by DCF fluorescence microscopy. Combined treatment with zinc and angiotensin II substantially increased the levels of superoxides in neurons compared to those induced by zinc alone. This increase in oxidative stress by angiotensin II was completely blocked by the addition of PD123319. Finally, since zinc-induced oxidative stress may be caused by induction and/or activation of NADPH oxidase, the activation status of Rac and the level of the NADPH oxidase subunit p67phox were measured. Angiotensin II markedly increased Rac activity and the levels of p67phox in zinc-treated neurons and astrocytes in a PD123319-dependent manner. The present study shows that the angiotensin system, especially that involving AT2R, may have an oxidative injury-potentiating effect via augmentation of the activity of NADPH oxidase. Hence, blockade of angiotensin signaling cascades in the brain may prove useful in protecting against the oxidative neuronal death that is likely to occur in acute brain injury.
78 FR 48692 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-09
... Skull as Route of Delivery for Treatment of Brain Injury and Disease Description of Technology: Traumatic Brain injury (TBI) often results from head impact and is a major cause of death and disability. Brain injuries vary in severity and can be associated with hemorrhaging, swelling, inflammation, and...
Ward, Elizabeth; McCarthy, Bridget J.; Schymura, Maria J.; Eheman, Christie; Jemal, Ahmedin; Anderson, Robert N.; Ajani, Umed A.; Edwards, Brenda K.
2011-01-01
Background The American Cancer Society, the Centers for Disease Control and Prevention (CDC), the National Cancer Institute, and the North American Association of Central Cancer Registries (NAACCR) collaborate annually to provide updated information on cancer occurrence and trends in the United States. This year’s report highlights brain and other nervous system (ONS) tumors, including nonmalignant brain tumors, which became reportable on a national level in 2004. Methods Cancer incidence data were obtained from the National Cancer Institute, CDC, and NAACCR, and information on deaths was obtained from the CDC’s National Center for Health Statistics. The annual percentage changes in age-standardized incidence and death rates (2000 US population standard) for all cancers combined and for the top 15 cancers for men and for women were estimated by joinpoint analysis of long-term (1992–2007 for incidence; 1975–2007 for mortality) trends and short-term fixed interval (1998–2007) trends. Analyses of malignant neuroepithelial brain and ONS tumors were based on data from 1980–2007; data on nonmalignant tumors were available for 2004–2007. All statistical tests were two-sided. Results Overall cancer incidence rates decreased by approximately 1% per year; the decrease was statistically significant (P < .05) in women, but not in men, because of a recent increase in prostate cancer incidence. The death rates continued to decrease for both sexes. Childhood cancer incidence rates continued to increase, whereas death rates continued to decrease. Lung cancer death rates decreased in women for the first time during 2003–2007, more than a decade after decreasing in men. During 2004–2007, more than 213 500 primary brain and ONS tumors were diagnosed, and 35.8% were malignant. From 1987–2007, the incidence of neuroepithelial malignant brain and ONS tumors decreased by 0.4% per year in men and women combined. Conclusions The decrease in cancer incidence and mortality reflects progress in cancer prevention, early detection, and treatment. However, major challenges remain, including increasing incidence rates and continued low survival for some cancers. Malignant and nonmalignant brain tumors demonstrate differing patterns of occurrence by sex, age, and race, and exhibit considerable biologic diversity. Inclusion of nonmalignant brain tumors in cancer registries provides a fuller assessment of disease burden and medical resource needs associated with these unique tumors. PMID:21454908
Tunicamycin-induced unfolded protein response in the developing mouse brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiping; Wang, Xin; Ke, Zun-Ji
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident bymore » the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.« less
Hischebeth, Gunnar T R; Keil, Vera C; Gentil, Katrin; Boström, Azize; Kuchelmeister, Klaus; Bekeredjian-Ding, Isabelle
2014-06-10
Fusobacterium nucleatum is a strict anaerobic microorganism that causes disease entities such as periodontal and soft tissue abscesses, pulmonary and intraabdominal infections and very rarely intracerebral infections. Here, we report the rare case of a previously healthy 25-year-old German man with a cerebellar abscess caused by Fusobacterium nucleatum that resulted in rapid brain death. Toxicological screening showed positivity for amphetamines and cannabis. The diagnosis was obtained by polymerase chain reaction amplification of bacterial deoxyribonucleic acid in cerebrospinal fluid. In drug users clinicians should think about rare causes of brain abscesses/meningitis. Early diagnosis is necessary and justifies the use of molecular techniques.
Giardino, Anthony E
2009-05-01
More than 1.5 million Americans have participated in combat operations in Iraq and Afghanistan over the past seven years. Some of these veterans have subsequently committed capital crimes and found themselves in our nation's criminal justice system. This Essay argues that combat veterans suffering from post-traumatic stress disorder or traumatic brain injury at the time of their offenses should not be subject to the death penalty.Offering mitigating evidence regarding military training, post-traumatic stress disorder, and traumatic brain injury presents one means that combat veterans may use to argue for their lives during the sentencing phase of their trials. Alternatively, Atkins v. Virginia and Roper v. Simmons offer a framework for establishing a legislatively or judicially created categorical exclusion for these offenders, exempting them from the death penalty as a matter of law. By understanding how combat service and service-related injuries affect the personal culpability of these offenders, the legal system can avoid the consequences of sentencing to death America's mentally wounded warriors, ensuring that only the worst offenders are subject to the ultimate punishment.
Carson, Henry J; Eilers, Stanley G
2008-08-01
We encountered a decedent with an unexpected glioblastoma multiforme. A 61-year-old retired African-American woman was found dead in her home, fully clothed in her bathtub, with a pillow under her head. At autopsy, the brain showed a glioblastoma multiforme. Toxicology showed elevated hydrocodone, propoxyphene, acetaminophen, and positive paroxetine. The presence of a brain tumor likely caused a severe headache. The use of her medications could have indicated a reaction to the escalating pain of the brain trauma, and overuse could be consistent with escalating pain or loss of rational thought processes. The present case is interesting in that it had evidence of behavioral dysfunction that could be related to the brain tumor, and death arising from the glioblastoma multiforme (cerebral hemorrhage and edema) with concurrent multiple drug intoxication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, John T., E-mail: jolucas@wakehealth.edu; Colmer, Hentry G.; White, Lance
Purpose: To estimate the hazard for neurologic (central nervous system, CNS) and nonneurologic (non-CNS) death associated with patient, treatment, and systemic disease status in patients receiving stereotactic radiosurgery after whole-brain radiation therapy (WBRT) failure, using a competing risk model. Patients and Methods: Of 757 patients, 293 experienced recurrence or new metastasis following WBRT. Univariate Cox proportional hazards regression identified covariates for consideration in the multivariate model. Competing risks multivariable regression was performed to estimate the adjusted hazard ratio (aHR) and 95% confidence interval (CI) for both CNS and non-CNS death after adjusting for patient, disease, and treatment factors. The resultantmore » model was converted into an online calculator for ease of clinical use. Results: The cumulative incidence of CNS and non-CNS death at 6 and 12 months was 20.6% and 21.6%, and 34.4% and 35%, respectively. Patients with melanoma histology (relative to breast) (aHR 2.7, 95% CI 1.5-5.0), brainstem location (aHR 2.1, 95% CI 1.3-3.5), and number of metastases (aHR 1.09, 95% CI 1.04-1.2) had increased aHR for CNS death. Progressive systemic disease (aHR 0.55, 95% CI 0.4-0.8) and increasing lowest margin dose (aHR 0.97, 95% CI 0.9-0.99) were protective against CNS death. Patients with lung histology (aHR 1.3, 95% CI 1.1-1.9) and progressive systemic disease (aHR 2.14, 95% CI 1.5-3.0) had increased aHR for non-CNS death. Conclusion: Our nomogram provides individual estimates of neurologic death after salvage stereotactic radiosurgery for patients who have failed prior WBRT, based on histology, neuroanatomical location, age, lowest margin dose, and number of metastases after adjusting for their competing risk of death from other causes.« less
Caputo, M P; Benson, E R; Pritchett, E M; Hougentogler, D P; Jain, P; Patil, C; Johnson, A L; Alphin, R L
2012-12-01
The mass depopulation of production birds remains an effective means of controlling fast-moving, highly infectious diseases such as avian influenza and virulent Newcastle disease. Two experiments were performed to compare the physiological responses of White Pekin commercial ducks during foam depopulation and CO(2) gas depopulation. Both experiment 1 (5 to 9 wk of age) and 2 (8 to 14 wk of age) used electroencephalogram, electrocardiogram, and accelerometer to monitor and evaluate the difference in time to unconsciousness, motion cessation, brain death, altered terminal cardiac activity, duration of bradycardia, and elapsed time from onset of bradycardia to onset of unconsciousness between foam and CO(2) gas. Experiment 2 also added a third treatment, foam + atropine injection, to evaluate the effect of suppressing bradycardia. Experiment 1 resulted in significantly shorter times for all 6 physiological points for CO(2) gas compared with foam, whereas experiment 2 found that there were no significant differences between foam and CO(2) gas for these physiological points except brain death, in which CO(2) was significantly faster than foam and duration of bradycardia, which was shorter for CO(2). Experiment 2 also determined there was a significant positive correlation between duration of bradycardia and time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity was significantly faster for the treatment foam + atropine injection compared with foam. Both experiments showed that bradycardia can occur as a result of either submersion in foam or exposure to CO(2) gas. The duration of bradycardia has a significant impact on the time it takes White Pekin ducks to reach unconsciousness and death during depopulation.
Al-Sebayel, Mohammed I
2003-07-01
Organ transplantation programs have been successful in the Kingdom of Saudi Arabia. This success is limited by organ shortage. The aim of this study is to find out the percentage of actual donors out of all potential donors in intensive care units (ICU), and to look at problems related to the donation process, particularly from the logistical point of view. The study was conducted prospectively for a one year period, June 2001 through to May 2002, in 4 main Riyadh hospitals. Mortality data was collected by a medical professional in each ICU and analyzed on a weekly basis. Final analysis was made at the end of the year. Five hundred and forty-two deaths occurred in these ICUs. Fifty-four percent occurred in one hospital. The number of brain death cases in all hospitals was 114 cases. Thirty-eight cases were reported to the Saudi Center for Organ Transplantation (33%). Documentation was completed in only 23 cases (60%). In these, there was a significant delay in documentation (second test was carried out in 6-12 hours in 4 cases only). We have found that the reporting of brain death cases was low (33%). Dealing with the reported cases is inefficient since only 4 cases were able to become the actual donor out of 38 cases. We found also that there is a gross difference in the number of brain death cases among different hospitals. To improve the efficiency of ICUs in dealing with brain death cases (reporting, documentation, maintenance and consent) will require solving several problems at the medical, administrative, and religious and mass media levels.
Defining human death: an intersection of bioethics and metaphysics.
Manninen, Bertha Alvarez
2009-01-01
For many years now, bioethicists, physicians, and others in the medical field have disagreed concerning how to best define human death. Different theories range from the Harvard Criteria of Brain Death, which defines death as the cessation of all brain activity, to the Cognitive Criteria, which is based on the loss of almost all core mental properties, e.g., memory, self-consciousness, moral agency, and the capacity for reason. A middle ground is the Irreversibility Standard, which defines death as occurring when the capacity for consciousness is forever lost. Given all these different theories, how can we begin to approach solving the issue of how to define death? I propose that a necessary starting point is discussing an even more fundamental question that properly belongs in the philosophical field of metaphysics: we must first address the issue of diachronic identity over time, and the persistence conditions of personal identity. In this paper, I illustrate the interdependent relationship between this metaphysical question and questions concerning the definition of death. I also illustrate how it is necessary to antecedently attend to the metaphysical issue of defining death before addressing certain issues in medical ethics, e.g., whether it is morally permissible to euthanize patients in persistent vegetative states or procure organs from anencephalic infants.
Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS).
Studer, Jacqueline; Bartsch, Christine; Haas, Cordula
2014-07-01
Failure in the regulation of homeostatic water balance in the brain is associated with severe cerebral edema and increased brain weights and may also play an important role in the pathogenesis of sudden infant death syndrome (SIDS). We genotyped three single-nucleotide polymorphisms in the aquaporin-4 water channel-encoding gene (AQP4), which were previously shown to be associated with (i) SIDS in Norwegian infants (rs2075575), (ii) severe brain edema (rs9951307), and (iii) increased brain water permeability (rs3906956). We also determined whether the brain/body weight ratio is increased in SIDS infants compared with sex- and age-matched controls. Genotyping of the three AQP4 single-nucleotide polymorphisms was performed in 160 Caucasian SIDS infants and 181 healthy Swiss adults using a single-base extension method. Brain and body weights were measured during autopsy in 157 SIDS and 59 non-SIDS infants. No differences were detected in the allelic frequencies of the three AQP4 single-nucleotide polymorphisms between SIDS and adult controls. The brain/body weight ratio was similarly distributed in SIDS and non-SIDS infants. Variations in the AQP4 gene seem of limited significance as predisposing factors in Caucasian SIDS infants. Increased brain weights may only become evident in conjunction with environmental or other genetic risk factors.
Antioxidant gene therapy against neuronal cell death
Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo
2014-01-01
Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264
Kaneko, Satoshi; Nomura, Kazuhiro; Yoshimura, Takesumi; Yamaguchi, Naohito
2002-10-01
In order to estimate the risk of primary brain tumor (PBT), we attempted to estimate the national incidence rates of PBT by histological subtypes using the Brain Tumor Registry of Japan (BTR). The number of deaths due to PBT in a certain year is the sum of the deaths among patients diagnosed in different years. Registered cases in the BTR represent incident cases of PBT in the whole country multiplied by a cover rate. The cover rate is defined as the proportions of PBT cases that the Registry counts in relation to all the cases in the country in a given year. If the survival experience among the registered cases represents the survival experience of all cases, then the rate of registered deaths represents all deaths due to PBT in Japan. By this logic, we estimated the cover rates and incidence rates from 1973 to 1993 using the BTR and National Vital Statistics data. Our estimates showed three patterns of time trends: (1) a gradual linear increasing trend before the 1980s followed by a plateau (total PBT, gliomas, meningioma, and hemangioblastoma), (2) a trend with a step-up increase in the 1980s followed by a plateau (germ cell tumor and pituitary tumor), and (3) a linear increasing trend throughout the observation period with no plateau (malignant lymphoma and neurinoma). Furthermore, obvious sex differences in time trends were observed in rates of meningioma, germ cell tumor, and pituitary tumor. The results of this study demonstrated several distinctive patterns in time trends, which give us insight into the possible etiologies of brain tumors. Further epidemiological study is needed to elucidate these findings.
Kim, Jung Ran; Elliott, Doug; Hyde, Cheryl
2004-04-01
Although brain death was formally recognized in Korea in 2000 for the purpose of organ donation, traditional Confucian-based thought still prevails. The aim of this study was to explore sociocultural perspectives that influence health professionals' attitudes and perceptions regarding organ donation. Semistructured interviews were conducted with nine key informants from three major hospitals providing transplant services in South Korea. Several themes were identified as barriers to organ donation: Confucianism, misunderstandings and myths, organs as spare for selling, lack of clarity in the definition of death in the new legislation, and limited medical insurance coverage. It remains difficult for brain death to be accepted as true death, and there is currently a poor rate of organ procurement. Findings of the study will help identify socioculturally appropriate strategies to promote acceptance and accessibility of organ transplantation among South Koreans.
Methamphetamine-induced neuronal necrosis: the role of electrographic seizure discharges
Fujikawa, Denson G.; Pais, Emil S.; Aviles, Ernesto R.; Hsieh, Kung-Chiao; Bashir, Muhammad Tariq
2016-01-01
We have evidence that methamphetamine (METH)-induced neuronal death is morphologically necrotic, not apoptotic, as is currently believed, and that electrographic seizures may be responsible. We administered 40 mg/kg i.p. to 12 male C57BL/6 mice and monitored EEGs continuously and rectal temperatures every 15 min, keeping rectal temperatures <41.0 °C. Seven of the 12 mice had repetitive electrographic seizure discharges (RESDs) and 5 did not. The RESDs were often not accompanied by behavioral signs of seizures–i.e., they were often not accompanied by clonic forelimb movements. The 7 mice with RESDs had acidophilic neurons (the H&E light-microscopic equivalent of necrotic neurons by ultrastructural examination) in all of 7 brain regions (hippocampal CA1, CA2, CA3 and hilus, amygdala, piriform cortex and entorhinal cortex), the same brain regions damaged following generalized seizures, 24 h after METH administration. The 5 mice without RESDs had a few acidophilic neurons in 4 of the 7 brain regions, but those with RESDs had significantly more in 6 of the 7 brain regions. Maximum rectal temperatures were comparable in mice with and without RESDs, so that cannot explain the difference between the two groups with respect to METH-induced neuronal death. Our data show that METH-induced neuronal death is morphologically necrotic, that EEGs must be recorded to detect electrographic seizure activity in rodents without behavioral evidence of seizures, and that RESDs may be responsible for METH-induced neuronal death. PMID:26562800
[Short-term outcomes of lung transplant recipients using organs from brain death donors].
He, W X; Jiang, C; Liu, X G; Huang, W; Chen, C; Jiang, L; Yang, B; Wu, K; Chen, Q K; Yang, Y; Yu, Y M; Jiang, G N
2016-12-01
Objective: To assess short-term outcomes after lung transplantation with organs procured following brain death. Methods: Between April 2015 and July 2016, all 17 recipients after lung transplantation using organs from brain death donors (DBD) at Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine were enrolled in this study. All patients were male, aging (60±7) years, including 11 chronic obstructive pulmonary disease, 5 idiopathic pulmonary fibrosis, 1 silicosis. Seventeen donors were 16 males and 1 female, with 10 traumatic brain injury, 5 cerebrovascular accident and 2 sudden cardiac death. Of 17 recipients receiving DBD lung transplant, 16 were single lung transplant. Data were collected including intubation duration of mechanical ventilation, hospital length of stay, incidence of pulmonary infection bronchus anastomosis complications, primary graft dysfunction (PGD), and acute rejection, bronchiolitis obliterans syndrome (BOS) as well as mortality of 90-day after lung transplantation. Results: Median duration of intubation were 2 (2) days ( M ( Q R )) in recipients after lung transplantation. The incidence of pulmonary infection and bronchus anastomosis complications were 15/17 and 5/17, respectively. Median length of stay in hospital were 56 (19) days. The ratio of readmission 1 month after discharge were 10/17. Mortality of 90-day post-transplant were 2/17. The incidence of PGD and BOS were 1/17 and 2/17, respectively. Conclusion: Recipients with DBD lung transplantation have an acceptable survival during short-term follow-up, but with higher incidences of complications related to infection post-transplantation.
[Is the brain the creator of psychic phenomena or is a paradigm shift inevitable?].
Bonilla, Ernesto
2014-06-01
Every day new scientific information is appearing that cannot be explained using the classical Newtonian model and is calling for the emergence of a new paradigm that would include the explanation of such phenomena as telepathy, clairvoyance, presentiment, precognition, out of the body experiences, psychic healing, after-death communication, near-death experiences and reincarnation. The materialist paradigm which considers the brain as the sole cause of consciousness and psychic phenomena has been challenged by a new paradigm that seems to demonstrate that there is not a cause-effect relationship between brain activity and psychic phenomena but only a correlation between them, since these phenomena can be experienced without the body and appear to have an extra-cerebral origin (cosmic field, cosmic consciousness?). Of course, the brain is intensely involved in the manifestation of consciousness in our daily life but this is not equivalent to affirm that brain creates consciousness. Recent findings force us to consider a non-physical, spiritual and transpersonal aspect of reality.
Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.
Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra
2005-06-01
Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.
Ahn, So Yoon; Yoo, Hye Soo; Lee, Jang Hoon; Sung, Dong Kyung; Jung, Yu Jin; Sung, Se In; Lim, Keun Ho; Chang, Yun Sil; Lee, Jung Hee; Kim, Ki Soo; Park, Won Soon
2013-07-01
This study was performed to determine the accuracy of proton magnetic spectroscopy ((1)H-MRS) lipid peak as a noninvasive tool for quantitative in vivo detection of brain cell death. Seven day-old Sprague Dawley rats were subjected to 8% oxygen following a unilateral carotid artery ligation. For treatment, cycloheximide was given immediately after hypoxic ischemia (HI). Lipid peak was measured using (1)H-MRS at 24 hr after HI, and then brains were harvested for fluorocytometric analyses with annexin V/propidium iodide (PI) and fluorescent probe JC-1, and for adenosine-5'-triphosphate (ATP) and lactate. Increased lipid peak at 1.3 ppm measured with (1)H-MRS, apoptotic and necrotic cells, and loss of mitochondrial membrane potential (ΔΨ) at 24 hr after HI were significantly improved with cycloheximide treatment. Significantly reduced brain ATP and increased lactate levels observed at 24 hr after HI showed a tendency to improve without statistical significance with cycloheximide treatment. Lipid peak at 1.3 ppm showed significant positive correlation with both apoptotic and necrotic cells and loss of ΔΨ, and negative correlation with normal live cells. Lipid peak at 1.3 ppm measured by (1)H-MRS might be a sensitive and reliable diagnostic tool for quantitative in vivo detection of brain cell death after HI.
Khaing, Z Z; Weickert, C S; Weinberger, D R; Lipska, B K
2000-12-01
We examined the developmental profile of excitotoxin-induced nuclear DNA fragmentation using the transferase dUTP nick-end labelling (TUNEL) technique, as a marker of DNA damage and cell death in rats with neonatal and adult excitotoxic lesions of the ventral hippocampus. We hypothesized that infusion of neurotoxin may result in a differential pattern of cell death in neonatally and adult lesioned rats, both in the infusion site and in remote brain regions presumably involved in mediating behavioural changes observed in these animals. Brains of rats lesioned at 7 days of age and in adulthood were collected at several survival times 1-21 days after the lesion. In the lesioned neonates 1-3 days postlesion, marked increases in TUNEL-positive cells occurred in the ventral hippocampus, the site of neurotoxin infusion, and in a wide surrounding area. Adult lesioned brains showed more positive cells than controls only at the infusion site. In the lesioned neonates, TUNEL-labelled cells were also present in the striatum and nucleus accumbens 1 day postlesion but not at later survival times. Our findings indicate that cell death in remote regions is more prominent in immature than adult brains, that it may lead to distinct alterations in development of these brain regions, and thus may be responsible for functional differences between neonatally and adult lesioned rats.
Lukiw, Walter J.; Pogue, Aileen I.
2007-01-01
Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564
Facco, Enrico; Agrillo, Christian
2012-01-01
Near-death experiences (NDEs) are profound psychic experiences commonly occurring in life-threatening conditions. They include feeling a sense of peace, of seeing a bright light, encountering deceased relatives or religious figures, and of transcending space and time. To explain them, it has been suggested that they stem from brain disorders and/or psychological reactions to approaching death, a sort of wishful thinking in response to the perceived threat. This is a report on a case with most of the features typical of NDEs except that it occurred entirely without any life-threatening conditions. This evidence is theoretically incompatible with either of the above hypotheses, suggesting that a broader interpretation of the phenomenon is needed. PMID:23162522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi Jen Pan; Yu Jue Hong; Gwo Chin Chang
1994-12-31
We have collected data on the cancer deaths of children and adolescents 0-19 yr old living in a residential area near 3 large petroleum and petrochemical complexes in and near Kaohsiung city (petrochemical industrial districts, PIDs) in the period of 1971-1990 and compared these with the cancer deaths of children and adolescents 0-19 yr old among the entire population of Taiwan (national reference) and among the residents of 26 administrative districts, comprising all of Kaohsiung city and Kaohsiung county (local reference), except for 8 sparsely populated, rural districts. Having scrutinized all cancer death certificates, we have identified various statistically significantmore » excess deaths, as compared with the national and local reference, due to cancers at all sites. Cancer of the bone, brain, and bladder in boys and girls 0-9 yr and 10-19 yr of age in the 1981-1990 decade that followed the establishment of petrochemical production in the PIDs was studied. However, excess cancer deaths seemed to have clustered in the 10-19 yr age group, who had been potentially exposed to the petrochemical pollutants for the longest period of time from the youngest age. Almost all bone, brain, and bladder cancer deaths registered were within 3 km of the 3 complexes. Bone and brain cancers in particular occurred in girls in the PIDs more frequently than in boys, even though these are believed to occur more in males than females elsewhere. 32 refs., 1 fig., 6 tabs.« less
Patterns of cell death in the perinatal mouse forebrain.
Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G
2017-01-01
The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Shi, J R; Tian, C J; Zeng, Q; Guo, X J; Lu, J; Gao, C R
2016-06-01
To explore the value of mast cell tryptase and brain natriuretic peptide(BNP) in the differential diagnostic of sudden death due to hypersensitivity and coronary atherosclerotic heart disease. Totally 30 myocardial samples were collected from the autopsy cases in the Department of Forensic Pathology, Shanxi Medical University during 2010-2015. All samples were divided into three groups: death of craniocerebral injury group, sudden death of hypersensitivity group and sudden death of coronary atherosclerotic heart disease group, 10 cases in each group. Mast cell tryptase and BNP in myocardium were detected by immunofluorescence staining and Western Blotting. Immunofluorescence staining showed that the positive staining mast cell tryptase appeared in myocardium of sudden death of hypersensitivity group and coronary atherosclerotic heart disease group. Among the three groups, the expression of mast cell tryptase showed significantly differences through pairwise comparison ( P <0.05); The expression level of BNP in sudden death of coronary atherosclerotic heart disease group were significantly higher than the sudden death of hypersensitivity group and death of craniocerebral injury group ( P <0.05). The difference of the expression level of BNP between the sudden death of hypersensitivity group and the death of craniocerebral injury group had no statistical significance ( P >0.05). The combined detection of the mast cell tryptase and BNP in myocardium is expected to provide help for the forensic differential diagnosis of sudden death due to hypersensitivity and coronary atherosclerotic heart disease. Copyright© by the Editorial Department of Journal of Forensic Medicine
Tissue residues of dieldrin in relation to mortality in birds and mammals
Stickel, W.H.; Stickel, L.F.; Spann, J.W.; Miller, M.W.; Berg, G.G.
1969-01-01
An experiment was performed with Coturnix to learn what residue levels were indicative of death from dieldrin poisoning. Birds were fed diets containing 250, 50, 10, and 2 ppm dieldrin for periods up to 158 days. The dieldrin was 95% pure HEOD, which is 1,2,3,4,10,10-hexachloro-6, 7.epoxy. l,4,4a,5,6,7,8,8a-octahydro-l,4-endo,exo-5,8- dimethanonaphthalene. When half of a group was dead, the other half was sacrificed for comparison of residues in dead and survivors. Dosage levels controlled time to death, but did not control residue levels in the dead. Residues in liver and carcass proved to be misleading and complicated by changes in lipid content. Brain residues correlated well with death although residues in dead and survivors overlapped. Brain residues of animals killed by dieldrin in the field and in other experiments are listed. Data agree in general for several species of birds and mammals. There is evidence, however, for species differences in average lethal brain residues. It is concluded that brain residues of 4 or 5 ppm (wet weight) or higher indicate that the animal was in the known danger zone and may have died from dieldrin. Brain residues averaged lower in wild than in experimental animals. Possible explanations include species differences, more stress and exertion in the wild, and overrepresentation in the field series of individuals that will die with low but lethal brain residues. The latter is supported by the fact that the first Coturnix to die in each sex and treatment group had the lowest brain residue of its group. Birds receiving 2 ppm dieldrin, and some receiving 10 ppm, were able to maintain low brain residues throughout the experiment. However, birds of the 10 ppm group could withstand little stress and mobilization of toxicant, for a few micrograms in the brain were lethal and bodies contained hundreds or thousands of micrograms.
Lattimer, J K; Laidlaw, A
1996-05-01
When President Abraham Lincoln was shot in the back of the head at Ford's Theater in Washington, D.C., on April 14, 1865, he was immediately rendered unconscious and apneic. Doctor Charles A. Leale, an Army surgeon, who had special training in the care of brain injuries, rushed to Lincoln's assistance. When Doctor Leale probed the wound in Lincoln's thickened scalp, feeling for the bullet, he dislodged a blood clot, and Lincoln began to breathe again. However, Lincoln progressively deteriorated and died at 7:22 AM on April 15, 1865. During the postmortem examination of Lincoln's body, numerous secondary missiles of bone and metal were found in the track of pultaceous brain tissue, extending completely through the brain to the front of the skull. In February 1995, an article in a popular magazine alleged that Doctor Leale had caused further (fatal) damage to Lincoln's brain by thrusting his finger into the brain through the bullet hole. The article alleged (wrongly) that most bullet wounds of the brain incurred in Civil War times were not fatal. The following study demonstrates that it is impossible to introduce even the tip of the little finger through a hole in the skull resulting from a .41-caliber bullet fired from a derringer. In our study, a .41-caliber derringer was used to fire bullets into numerous fresh skulls; the bullet holes all had razor-sharp edges and were much too small to accommodate a fingertip. Thus, the allegation that President Lincoln's brain was damaged further because Doctor Leale thrust his finger through the bullet hole into the brain parenchyma is not valid. In this study, experimental data are presented to demonstrate the foregoing point. The wound made by John Wilkes Booth's derringer ball in Lincoln's brain was devastating; it was clearly the cause of his death. Good Samaritan surgeon Leale has been falsely accused of contributing to Lincoln's death.
Place of death of pediatric cancer patients in a single institute during 7 years.
Yanai, Tomoko; Hirase, Satoshi; Matsunoshita, Natsuki; Yamamoto, Nobuyuki; Ninchoji, Takeshi; Kubokawa, Ikuko; Mori, Takeshi; Hayakawa, Akira; Takeshima, Yasuhiro; Iijima, Kazumoto; Matsuo, Masafumi
2012-06-27
Place of death is an important issue at the end-of-life. It is poorly understood in pediatric cancer patients in Japan. This study aimed to clarify place of death of children with cancer as well as variables associated with place of death. Study population was pediatric cancer patients who died in the Department of Pediatrics at Kobe University Hospital during the last 7 years. The medical records were retrospectively reviewed regardless of cause of death to derive data relating to patients' characteristics and disease. 18 patients were included. Median age at death was 12.2 years old. 6 patients including 5 children in complete remission had hematological disease and 12 patients suffered from solid tumors. 4 patients (22.2%) died at home, whereas 14 patients (77.8%) died in the hospital including 6 ICU deaths. No one died in hospices. Preference of patients was unavailable due to the lack of inquiry. Factors influencing place of death (home, ICU, non-ICU) were disease (hematological disease vs. solid tumor, p=0.010, brain tumor vs. non-brain tumor, p=0.023), disease status (complete remission vs. non-complete remission, p=0.0014) and preference of families (p=0.029). Among 6 families who expressed preference, no disparity was observed between actual and preferred place of death. This is the first English publication of place of death of pediatric cancer patients in Japan. The low percentage of home death, factors influencing place of death and the lack of disparity between actual and preferred place of death were indicated. Further studies are required to better understand place of death.
Effectiveness of a nonpenetrating captive bolt for euthanasia of piglets less than 3 d of age.
Casey-Trott, T M; Millman, S T; Turner, P V; Nykamp, S G; Widowski, T M
2013-11-01
The objective of this study was to determine the effectiveness of a nonpenetrating captive bolt (NPCB), the Zephyr-Euthanasia (Zephyr-E), for euthanasia of neonatal piglets<72 h of age using signs of insensibility and death, as well as postmortem assessment of traumatic brain injury (TBI). The Zephyr-E was used by 10 stock people to euthanize 100 low viability neonatal piglets from 3 commercial farrowing units and 1 research farm. Brainstem reflexes, convulsions, and heartbeat were used to assess insensibility, time of brain death, and cardiac arrest after Zephyr-E application. Hemorrhage severity and skull fracture displacement (FD) were quantified from computed tomography scans (n=10), macroscopic scoring was used to assess brain hemorrhage and skull fracture (SK) severity (n=100), and microscopic scoring was used to assess subdural (SDH) and parenchymal (PH) hemorrhage within specific brain regions that are responsible for consciousness and vital function (n=10). All 100 piglets were rendered immediately insensible without return to sensibility. On average, clonic convulsions (CC) ceased in 101 s (±7.4 SE), brain death was achieved in 229 s (±9.18 SE), and cardiac arrest occurred in 420 s (±13.57 SE). Time of cardiac arrest differed significantly among stock people when either body weight (BW: P=0.0053) or body mass index (BMI: P=0.0059) was used as a covariate. The BMI was inversely related to the duration of CC (P=0.0227). Moderate to severe hemorrhage severity was reported in 9 of 10 piglets. There was no relationship between FD and BW (P=0.8408) or BMI (P=0.6439). Macroscopic analyses indicated moderate to severe hemorrhage and SK in all piglets. No differences were found among brain sections for SDH (P=0.2302); PH was greater in the cerebral cortex than in the midbrain and brainstem (P=0.0328). The Zephyr-E NPCB reliably caused immediate, sustained insensibility followed by death in neonatal piglets. Postmortem assessment confirmed that application of the Zephyr-E caused widespread, irreversible brain damage.
Gender difference in the effect of progesterone on neonatal hypoxic/ischemic brain injury in mouse.
Dong, Shuyu; Zhang, Qian; Kong, Delian; Zhou, Chao; Zhou, Jie; Han, Jingjing; Zhou, Yan; Jin, Guoliang; Hua, Xiaodong; Wang, Jun; Hua, Fang
2018-08-01
This study investigated the effects of progesterone (PROG) on neonatal hypoxic/ischemic (NHI) brain injury, the differences in effects between genders, and the underlying mechanisms. NHI brain injury was established in both male and female neonatal mice induced by occlusion of the left common carotid artery followed by hypoxia. The mice were treated with PROG or vehicle. Fluoro-Jade B staining (F-JB), long term behavior testing, and brain magnetic resonance image (MRI) were applied to evaluate neuronal death, neurological function, and brain damage. The underlying molecular mechanisms were also investigated by Western blots. The results showed that, in the male mice, administration of PROG significantly reduced neuronal death, improved the learning and memory function impaired by cerebral HI, decreased infarct size, and maintained the thickness of the cortex after cerebral HI. PROG treatment, however, did not show significant neuroprotective effects on female mice subjected to HI. In addition, the data demonstrated a gender difference in the expression of tumor necrosis factor receptor 1 (TNFR1), TNF receptor associated factor 6 (TRAF6), Fas associated protein with death domain (FADD), and TIR-domain-containing adapter-inducing interferon-β (TRIF) between males and females. Our results indicated that treatment with PROG had beneficial effects on NHI injured brain in acute stage and improved the long term cognitive function impaired by cerebral HI in male mice. In addition, the activation of TNF and TRIF mediated signaling in response to cerebral HI and the treatment of PROG varied between genders, which highly suggested that gender differences should be emphasized in evaluating neonatal HI brain injury and PROG effects, as well as the underlying mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.
Brain-Dead Donors on Extracorporeal Membrane Oxygenation.
Bronchard, Régis; Durand, Louise; Legeai, Camille; Cohen, Johana; Guerrini, Patrice; Bastien, Olivier
2017-10-01
To describe donors after brain death with ongoing extracorporeal membrane oxygenation and to analyze the outcome of organs transplanted from these donors. Retrospective analysis of the national information system run by the French Biomedicine Agency (CRISTAL database). National registry data of all donors after brain death in France and their organ recipients between 2007 and 2013. Donors after brain death and their organ recipients. None. During the study period, there were 22,270 brain-dead patients diagnosed in France, of whom 161 with extracorporeal membrane oxygenation. Among these patients, 64 donors on extracorporeal membrane oxygenation and 10,805 donors without extracorporeal membrane oxygenation had at least one organ retrieved. Donors on extracorporeal membrane oxygenation were significantly younger and had more severe intensive care medical conditions (hemodynamic, biological, renal, and liver insults) than donors without extracorporeal membrane oxygenation. One hundred nine kidneys, 37 livers, seven hearts, and one lung were successfully transplanted from donors on extracorporeal membrane oxygenation. We found no significant difference in 1-year kidney graft survival (p = 0.24) and function between recipients from donors on extracorporeal membrane oxygenation (92.7% [85.9-96.3%]) and matching recipients from donors without extracorporeal membrane oxygenation (95.4% [93.0-97.0%]). We also found no significant difference in 1-year liver recipient survival (p = 0.91): 86.5% (70.5-94.1) from donors on extracorporeal membrane oxygenation versus 80.7% (79.8-81.6) from donors without extracorporeal membrane oxygenation. Brain-dead patients with ongoing extracorporeal membrane oxygenation have more severe medical conditions than those without extracorporeal membrane oxygenation. However, kidney graft survival and function were no different than usual. Brain-dead patients with ongoing extracorporeal membrane oxygenation are suitable for organ procurement.
2014-01-01
Background Fusobacterium nucleatum is a strict anaerobic microorganism that causes disease entities such as periodontal and soft tissue abscesses, pulmonary and intraabdominal infections and very rarely intracerebral infections. Case presentation Here, we report the rare case of a previously healthy 25-year-old German man with a cerebellar abscess caused by Fusobacterium nucleatum that resulted in rapid brain death. Toxicological screening showed positivity for amphetamines and cannabis. The diagnosis was obtained by polymerase chain reaction amplification of bacterial deoxyribonucleic acid in cerebrospinal fluid. Conclusions In drug users clinicians should think about rare causes of brain abscesses/meningitis. Early diagnosis is necessary and justifies the use of molecular techniques. PMID:24915846
Zhu, Yonghong; Xu, Jie; Kwong, Wing Hang; Wai, Sen Mun; Lam, Wai Ping; Yew, David T
2007-10-01
The brains of three Alzheimer patients aged 93, 94, and 104 years old were analyzed. Although cell death was apparent in different cortices, the prefrontal cortex and the Broca's appeared to be hit hardest. The different CA areas of the hippocampal formation all displayed equivalent degrees of cell death but the entorhinal areas showed the most severe degree of cell degeneration. Both apoptosis and necrosis were observed in the different cerebral regions of these very old patients, as expected.
Evans, David Wainwright
2007-01-01
Because complex organs taken from unequivocally dead people are not suitable for transplantation, human death has been redefined so that it can be certified at some earlier stage in the dying process and thereby make viable organs available without legal problems. Redefinitions based on concepts of "brain death" have underpinned transplant practice for many years although those concepts have never found universal philosophical acceptance. Neither is there consensus about the clinical tests which have been held sufficient to diagnose the irreversible cessation of all brain function – or as much of it as is deemed relevant – while the body remains alive. For these reasons, the certification of death for transplant purposes on "brain death" grounds is increasingly questioned and there has been pressure to return to its diagnosis on the basis of cardiac arrest and the consequent cessation of blood circulation throughout the body. While superficially a welcome return to the traditional and universally accepted understanding of human death, examination of the protocols using such criteria for the diagnosis of death prior to organ removal reveals a materially different scenario in which the circulatory arrest is not certainly final and purely nominal periods of arrest are required before surgery begins. Recognizing the probably unresolvable conflict between allowing enough time to pass after truly final circulatory arrest for a safe diagnosis of death and its minimization for the sake of the wanted organs, Verheijde and colleagues follow others in calling for the abandonment of the "dead donor rule" and the enactment of legislation to permit the removal of organs from the dying, without pretence that they are dead before that surgery. While it may be doubted whether such a "paradigm change" in the ethics of organ procurement would be accepted by society, their call for its consideration as a fully and fairly informed basis for organ donation is to be applauded. PMID:17603889
Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim
2018-01-15
In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Parental Concussion Education Assessment: A Quality Improvement Initiative
ERIC Educational Resources Information Center
Best, Melanie
2017-01-01
Background of Problem: Brain injury is a leading cause of death and disability in children and adolescents. According to the Brain Injury Association of America (2015) ages 0-4 and 15-19 are the two age groups at greatest risk for traumatic brain injury (TBI) or concussion. Five out of ten concussions are not reported or go undetected. The…
Raho, Joseph A; Miccinesi, Guido
2015-10-01
Patients who are imminently dying sometimes experience symptoms refractory to traditional palliative interventions, and in rare cases, continuous sedation is offered. Samuel H. LiPuma, in a recent article in this Journal, argues that continuous sedation until death is equivalent to physician-assisted suicide/euthanasia based on a higher brain neocortical definition of death. We contest his position that continuous sedation involves killing and offer four objections to the equivalency thesis. First, sedation practices are proportional in a way that physician-assisted suicide/euthanasia is not. Second, continuous sedation may not entirely abolish consciousness. Third, LiPuma's particular version of higher brain neocortical death relies on an implausibly weak construal of irreversibility--a position that is especially problematic in the case of continuous sedation. Finally, we explain why continuous sedation until death is not functionally equivalent to neocortical death and, hence, physician-assisted suicide/euthanasia. Concluding remarks review the differences between these two end-of-life practices. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
What You Need to Know about Drugs: Ecstasy
... his or her body can dangerously overheat during dancing or other physical activities, which can lead to muscle breakdown, kidney, liver and heart damage, and even death. Taking the drug can cause seizures, brain swelling and permanent brain ...
Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D
2012-08-22
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Killing by organ procurement: brain-based death and legal fictions.
Veatch, Robert M
2015-06-01
The dead donor rule (DDR) governs procuring life-prolonging organs. They should be taken only from deceased donors. Miller and Truog have proposed abandoning the rule when patients have decided to forgo life-sustaining treatment and have consented to procurement. Organs could then be procured from living patients, thus killing them by organ procurement. This proposal warrants careful examination. They convincingly argue that current brain or circulatory death pronouncement misidentifies the biologically dead. After arguing convincingly that physicians already cause death by withdrawing treatment, they claim no bright-line differences preclude organ removal from the living. The argument fails for those who accept the double effect doctrine or other grounds for distinguishing forgoing life support from active, intentional killing. If the goal is determining irreversible loss of somatic function, they correctly label current death pronouncement a "legal fiction." Recognizing a second, public policy meaning of the term death provides grounds for maintaining the DDR without jeopardizing procurement. © The Author 2015. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Thyroid gland and cerebella lesions: New risk factors for sudden cardiac death in schizophrenia?
Scorza, Fulvio A; Cavalheiro, Esper A; de Albuquerque, Marly; de Albuquerque, Juliana; Cysneiros, Roberta M; Terra, Vera C; Arida, Ricardo M
2011-02-01
People with schizophrenia show a two to threefold increased risk to die prematurely than those without schizophrenia. Patients' life style, suicide, premature development of cardiovascular disease, high prevalence of metabolic syndrome and sudden cardiac death are well-known causes of the excess mortality. The exact pathophysiological cause of sudden death in schizophrenia is unknown, but it is likely that cardiac arrhythmia and respiratory abnormalities play potential role. Some antipsychotics may be associated with cardiovascular adverse events (e.g., QT interval prolongation) and lesions in specific brain regions, such as cerebella may be associated with respiratory abnormalities, suggesting that metabolic and brain dysfunction could lead to sudden cardiac death in patients with schizophrenia. However, exact knowledge regarding the association of these findings and schizophrenia is lacking. As subclinical hyperthyroidism has been linked with increased risk of cardiovascular disease and cerebella progressive atrophy has been observed in patients with schizophrenia, we propose in this paper that subclinical thyroid dysfunction and cerebella volume loss could be considered as new risk factor for sudden cardiac death in schizophrenia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F
2013-12-01
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.
Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Mardor, Yael; Miklavcic, Damijan
2016-03-01
Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p < 0.008, r(2) = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.
Why do I stand against the movement for cardiac transplantation in Japan?
Watanabe, Y
1994-11-01
In order to clarify the reason the author stands against the movement for cardiac transplantation in Japan, certain crucial differences between death judged by the classical criteria and so-called brain death are briefly discussed, followed by the presentation of three major arguments. First, various problems associated with postoperative care of organ recipients are delineated, particularly side effects of immunosuppressive drugs and long term prognosis with reference of life expectancy as well as quality of life. Second, it is emphasized that transplantation involves prejudice and inequality, since the number of potential organ recipients far exceeds that of donors and only a small portion of transplant candidates can actually receive the organs while others have to wait in vain. Third, once organ transplantation from brain dead patients is allowed, numerous ethical and social problems would arise including an arbitrary expansion of the criteria for brain death, selection of donors and recipients by taking non-medial factors into consideration, development of organ commerce leading to the involvement of organized crime, and the birth of a trend in transplant candidates to wish for an early death of histocompatible donors. Finally, it is pointed out that we must give serious thought to the danger of "from neck down" transplantation creating a new person from two bodies (which is a brain transplant in actuality) in the future, since the difference between such a procedure and the multiorgan transplantation presently practiced in many developed countries is only quantitative and one cannot find a logical reason to ban the former while retaining the latter.
Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan
2011-01-01
Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma. PMID:21957448
Neuropathology of SUDEP: Role of inflammation, blood-brain barrier impairment, and hypoxia.
Michalak, Zuzanna; Obari, Dima; Ellis, Matthew; Thom, Maria; Sisodiya, Sanjay M
2017-02-07
To seek a neuropathologic signature of sudden unexpected death in epilepsy (SUDEP) in a postmortem cohort by use of immunohistochemistry for specific markers of inflammation, gliosis, acute neuronal injury due to hypoxia, and blood-brain barrier (BBB) disruption, enabling the generation of hypotheses about potential mechanisms of death in SUDEP. Using immunohistochemistry, we investigated the expression of 6 markers (CD163, human leukocyte antigen-antigen D related, glial fibrillary acid protein, hypoxia-inducible factor-1α [HIF-1α], immunoglobulin G, and albumin) in the hippocampus, amygdala, and medulla in 58 postmortem cases: 28 SUDEP (definite and probable), 12 epilepsy controls, and 18 nonepileptic sudden death controls. A semiquantitative measure of immunoreactivity was scored for all markers used, and quantitative image analysis was carried out for selected markers. Immunoreactivity was observed for all markers used within all studied brain regions and groups. Immunoreactivity for inflammatory reaction, BBB leakage, and HIF-1α in SUDEP cases was not different from that seen in control groups. This study represents a starting point to explore by immunohistochemistry the mechanisms underlying SUDEP in human brain tissue. Our approach highlights the potential and importance of considering immunohistochemical analysis to help identify biomarkers of SUDEP. Our results suggest that with the markers used, there is no clear immunohistochemical signature of SUDEP in human brain. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
Neuronal survival in the brain: neuron type-specific mechanisms.
Pfisterer, Ulrich; Khodosevich, Konstantin
2017-03-02
Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.
Strahan, J Alex; Walker, William H; Montgomery, Taylor R; Forger, Nancy G
2017-06-01
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a > tenfold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex, septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3 to P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose 1 week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial "inhibitor" increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 753-766, 2017. © 2016 Wiley Periodicals, Inc.
Strahan, J. Alex; Walker, William H.; Montgomery, Taylor R.; Forger, Nancy G.
2016-01-01
Minocycline, an antibiotic of the tetracycline family, inhibits microglia in many paradigms, and is among the most commonly used tools for examining the role of microglia in physiological processes. Microglia may play an active role in triggering developmental neuronal cell death, although findings have been contradictory. To determine whether microglia influence developmental cell death, we treated perinatal mice with minocycline (45 mg/kg) and quantified effects on dying cells and microglial labeling using immunohistochemistry for activated caspase-3 (AC3) and ionized calcium-binding adapter molecule 1 (Iba1), respectively. Contrary to our expectations, minocycline treatment from embryonic day 18 to postnatal day (P)1 caused a >10-fold increase in cell death 8 h after the last injection in all brain regions examined, including the primary sensory cortex (S1), septum, hippocampus and hypothalamus. Iba1 labeling was also increased in most regions. Similar effects, although of smaller magnitude, were seen when treatment was delayed to P3-P5. Minocycline treatment from P3-P5 also decreased overall cell number in the septum at weaning, suggesting lasting effects of the neonatal exposure. When administered at lower doses (4.5 or 22.5 mg/kg), or at the same dose one week later (P10-P12), minocycline no longer increased microglial markers or cell death. Taken together, the most commonly used microglial “inhibitor” increases cell death and Iba1 labeling in the neonatal mouse brain. Minocycline is used clinically in infant and pediatric populations; caution is warrented when using minocycline in developing animals, or extrapolating the effects of this drug across ages. PMID:27706925
Roat, Thaisa Cristina; da Cruz Landim, Carminda
2010-06-01
Apis mellifera is an interesting model to neurobiological studies. It has a relatively small brain that commands the complex learning and memory tasks demanded by the social organization. An A. mellifera colony is made up of a queen, thousands of workers and a varying number of drones. The latter are males, whereas the former are the two female castes. These three phenotypes differ in morphology, physiology and behavior, correlated with their respective functions in the society. Such differences include the morphology and architecture of their brains. To understand the processes generating such polymorphic brains we characterized the cell division and cell death dynamics which underlie the morphogenesis of the mushroom bodies, through several methods suitable for evidence the time and place of occurrence. Cell death was detected in mushroom bodies of last larval instar and mainly in black-eyed pupae. Cell division was observed in mushroom bodies, primarily at the start of metamorphosis, exhibiting temporal differences among workers, queens and males. Copyright 2010 Elsevier Ltd. All rights reserved.
Severe neurological impairment: legal aspects of decisions to reduce care.
Beresford, H R
1984-05-01
Decisions to reduce care for patients with severe neurological impairment may raise legal questions. The laws of most states now authorize physicians to stop care for those who have suffered irreversible cessation of all functions of the brain ("brain death"). Where state law is not explicit, it is nevertheless probably lawful to regard brain death as death for legal purposes so long as currently accepted criteria are satisfied. Several courts have ruled that it is lawful to reduce care for patients in vegetative states, but have prescribed differing standards and procedures for implementing such decisions. The issue of whether parents can authorize physicians to reduce care for neurologically impaired children is the focus of current litigation. Implicit in this litigation is the question of how severe neurological impairment must be before parents and physicians may lawfully agree to reduce care. For severely impaired but not vegetative adults, there is some legal authority to justify certain decisions to reduce care. The issue of whether withholding feeding from a severely demented patient with life-threatening medical problems constitutes criminal behavior is now being considered by a state supreme court.
Advanced Pediatric Brain Imaging Research and Training Program
2014-10-01
death and disability in children. Recent advances in pediatric magnetic resonance imaging ( MRI ) techniques are revolutionizing our understanding of... MRI , brain injury. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...principles of pediatric brain injury and recovery following injury, as well as the clinical application of sophisticated MRI techniques that are
Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury
Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia
2017-01-01
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295
Transcranial amelioration of inflammation and cell death after brain injury
NASA Astrophysics Data System (ADS)
Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.
2014-01-01
Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.
Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.
Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M
2010-09-01
Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.
Cole, J H; Ritchie, S J; Bastin, M E; Valdés Hernández, M C; Muñoz Maniega, S; Royle, N; Corley, J; Pattie, A; Harris, S E; Zhang, Q; Wray, N R; Redmond, P; Marioni, R E; Starr, J M; Cox, S R; Wardlaw, J M; Sharp, D J; Deary, I J
2018-01-01
Age-associated disease and disability are placing a growing burden on society. However, ageing does not affect people uniformly. Hence, markers of the underlying biological ageing process are needed to help identify people at increased risk of age-associated physical and cognitive impairments and ultimately, death. Here, we present such a biomarker, ‘brain-predicted age’, derived using structural neuroimaging. Brain-predicted age was calculated using machine-learning analysis, trained on neuroimaging data from a large healthy reference sample (N=2001), then tested in the Lothian Birth Cohort 1936 (N=669), to determine relationships with age-associated functional measures and mortality. Having a brain-predicted age indicative of an older-appearing brain was associated with: weaker grip strength, poorer lung function, slower walking speed, lower fluid intelligence, higher allostatic load and increased mortality risk. Furthermore, while combining brain-predicted age with grey matter and cerebrospinal fluid volumes (themselves strong predictors) not did improve mortality risk prediction, the combination of brain-predicted age and DNA-methylation-predicted age did. This indicates that neuroimaging and epigenetics measures of ageing can provide complementary data regarding health outcomes. Our study introduces a clinically-relevant neuroimaging ageing biomarker and demonstrates that combining distinct measurements of biological ageing further helps to determine risk of age-related deterioration and death. PMID:28439103
Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M
2014-04-01
A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.
Use of Lung Allografts from Brain-Dead Donors after Cardiopulmonary Arrest and Resuscitation
Worni, Mathias; Osho, Asishana A.; Snyder, Laurie D.; Palmer, Scott M.; Pietrobon, Ricardo; Davis, R. Duane; Hartwig, Matthew G.
2013-01-01
Rationale: Patients who progress to brain death after resuscitation from cardiac arrest have been hypothesized to represent an underused source of potential organ donors; however, there is a paucity of data regarding the viability of lung allografts after a period of cardiac arrest in the donor. Objectives: To analyze postoperative complications and survival after lung transplant from brain-dead donors resuscitated after cardiac arrest. Methods: The United Network for Organ Sharing database records donors with cardiac arrest occurring after brain death. Adult recipients of lung allografts from these arrest/resuscitation donors between 2005 and 2011 were compared with nonarrest donors. Propensity score matching was used to reduce the effect of confounding. Postoperative complications and overall survival were assessed using McNemar’s test for correlated binary proportions and Kaplan–Meier methods. Measurements and Main Results: A total of 479 lung transplant recipients from arrest/resuscitation donors were 1:1 propensity matched from a cohort of 9,076 control subjects. Baseline characteristics in the 1:1-matched cohort were balanced. There was no significant difference in perioperative mortality, airway dehiscence, dialysis requirement, postoperative length of stay (P ≥ 0.38 for all), or overall survival (P = 0.52). A subanalysis of the donor arrest group demonstrated similar survival when stratified by resuscitation time quartile (P = 0.38). Conclusions: There is no evidence of inferior outcomes after lung transplant from brain-dead donors who have had a period of cardiac arrest provided that good lung function is preserved and the donor is otherwise deemed acceptable for transplantation. Potential expansion of the donor pool to include cardiac arrest as the cause of brain death requires further study. PMID:23777361
Apoptosis and Acute Brain Ischemia in Ischemic Stroke.
Radak, Djordje; Katsiki, Niki; Resanovic, Ivana; Jovanovic, Aleksandra; Sudar-Milovanovic, Emina; Zafirovic, Sonja; Mousad, Shaker A; Isenovic, Esma R
2017-01-01
Apoptosis may contribute to a significant proportion of neuron death following acute brain ischemia (ABI), but the underlying mechanisms are still not fully understood. Brain ischemia may lead to stroke, which is one of the main causes of long-term morbidity and mortality in both developed and developing countries. Therefore, stroke prevention and treatment is clinically important. There are two important separate areas of the brain during ABI: the ischemic core and the ischemic penumbra. The ischemic core of the brain experiences a sudden reduction of blood flow, just minutes after ischemic attack with irreversible injury and subsequent cell death. On the other hand, apoptosis within the ischemic penumbra may occur after several hours or days, while necrosis starts in the first hours after the onset of ABI in the ischemic core. ABI is characterized by key molecular events that initiate apoptosis in many cells, such as overproduction of free radicals, Ca2+ overload and excitotoxicity. These changes in cellular homeostasis may trigger either necrosis or apoptosis, which often depends on cell type, cell age, and location in the brain. Apoptosis results in DNA fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally uptake by phagocytic cells. This review focuses on recent findings based on animal and human studies regarding the apoptotic mechanisms of neuronal death following ABI and the development of potential neuroprotective agents that reduce morbidity. The effects of statins on stroke prevention and treatment as well as on apoptotic mediators are also considered. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Causes of death in remote symptomatic epilepsy.
Day, S M; Wu, Y W; Strauss, D J; Shavelle, R M; Reynolds, R J
2005-07-26
To determine the causes of death of individuals with developmental disabilities that occur more frequently among those with remote symptomatic epilepsy (i.e., epilepsy occurring in persons with developmental delay or identified brain lesions) than for those without. The authors compared causes of mortality in persons with (n = 10,030) and without (n = 96,163) history of epilepsy in a California population of persons with mild developmental disabilities, 1988 to 2002. Subjects had traumatic brain injury, cerebral palsy, Down syndrome, autism, or a developmental disability with other or unknown etiology. There were 721,759 person-years of data, with 2,397 deaths. Underlying causes of death were determined from the State of California's official mortality records. Cause-specific death rates and standardized mortality ratios (SMRs) were computed for those with and without epilepsy relative to subjects in the California general population. Comparisons were then made between SMRs of those with and without epilepsy, and CIs on the ratios of SMRs were determined. Death rates for persons with epilepsy were elevated for several causes. The greatest excess was due to seizures (International Classification of Diseases-9 [ICD-9] 345; SMR 53.1, 95% CI 28.0 to 101.0) and convulsions (ICD-9 780.3; SMR 25.2, 95% CI 11.7 to 54.2). Other causes occurring more frequently in those with epilepsy included brain cancer (SMR 5.2, 95% CI 2.2 to 12.1), respiratory diseases (SMR 1.7, 95% CI 1.2 to 2.5), circulatory diseases (SMR 1.3, 95% CI 1.0 to 1.7), and accidents (SMR 2.7, 95% CI 1.9 to 3.7), especially accidental drowning (SMR 12.8, 95% CI 7.0 to 23.2). Remote symptomatic epilepsy is associated with an increased risk of death. Seizures, aspiration pneumonia, and accidental drowning are among the leading contributors.
Sugar for the brain: the role of glucose in physiological and pathological brain function
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas
2013-01-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694
Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia.
Broad, Kevin D; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D; Robertson, Nicola J
2016-03-01
Cooling to 33.5°C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia-ischemia we assessed whether inhaled 45-50% Argon from 2-26h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia-ischemia, 20 Newborn male Large White piglets<40h were randomized to: (i) Cooling (33°C) from 2-26h (n=10); or (ii) Cooling and inhaled 45-50% Argon (Cooling+Argon) from 2-26h (n=8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48h after hypoxia-ischemia. EEG was monitored. At 48h after hypoxia-ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia-ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling+Argon group were excluded. Comparing Cooling+Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48h after hypoxia-ischemia (p<0.001 for both) and lower (1)H MRS lactate/N acetyl aspartate in white (p=0.03 and 0.04) but not gray matter at 24 and 48h. EEG background recovery was faster (p<0.01) with Cooling+Argon. An overall difference between average cell-death of Cooling versus Cooling+Argon was observed (p<0.01); estimated cells per mm(2) were 23.9 points lower (95% C.I. 7.3-40.5) for the Cooling+Argon versus Cooling. Inhaled 45-50% Argon from 2-26h augmented hypothermic protection at 48h after hypoxia-ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy to augment cooling for neonatal encephalopathy. Copyright © 2015. Published by Elsevier Inc.
Association of BDNF Val66Met Polymorphism and Brain BDNF Levels with Major Depression and Suicide.
Youssef, Mariam M; Underwood, Mark D; Huang, Yung-Yu; Hsiung, Shu-Chi; Liu, Yan; Simpson, Norman R; Bakalian, Mihran J; Rosoklija, Gorazd B; Dwork, Andrew J; Arango, Victoria; Mann, J John
2018-06-01
Brain-derived neurotrophic factor is implicated in the pathophysiology of major depressive disorder and suicide. Both are partly caused by early life adversity, which reduces brain-derived neurotrophic factor protein levels. This study examines the association of brain-derived neurotrophic factor Val66Met polymorphism and brain brain-derived neurotrophic factor levels with depression and suicide. We hypothesized that both major depressive disorder and early life adversity would be associated with the Met allele and lower brain brain-derived neurotrophic factor levels. Such an association would be consistent with low brain-derived neurotrophic factor mediating the effect of early life adversity on adulthood suicide and major depressive disorder. Brain-derived neurotrophic factor Val66Met polymorphism was genotyped in postmortem brains of 37 suicide decedents and 53 nonsuicides. Additionally, brain-derived neurotrophic factor protein levels were determined by Western blot in dorsolateral prefrontal cortex (Brodmann area 9), anterior cingulate cortex (Brodmann area 24), caudal brainstem, and rostral brainstem. The relationships between these measures and major depressive disorder, death by suicide, and reported early life adversity were examined. Subjects with the Met allele had an increased risk for depression. Depressed patients also have lower brain-derived neurotrophic factor levels in anterior cingulate cortex and caudal brainstem compared with nondepressed subjects. No effect of history of suicide death or early life adversity was observed with genotype, but lower brain-derived neurotrophic factor levels in the anterior cingulate cortex were found in subjects who had been exposed to early life adversity and/or died by suicide compared with nonsuicide decedents and no reported early life adversity. This study provides further evidence implicating low brain brain-derived neurotrophic factor and the brain-derived neurotrophic factor Met allele in major depression risk. Future studies should seek to determine how altered brain-derived neurotrophic factor expression contributes to depression and suicide.
Brain Basics: Preventing Stroke
... of death or disability from stroke. With good control, the risk of stroke in most age groups can be kept below that for accidental injury ... of death or disability from stroke. With good control, the risk of stroke in most age groups can be kept below that for accidental injury ...
Hasegawa, Junichi; Sekizawa, Akihiko; Tanaka, Hiroaki; Katsuragi, Shinji; Osato, Kazuhiro; Murakoshi, Takeshi; Nakata, Masahiko; Nakamura, Masamitsu; Yoshimatsu, Jun; Sadahiro, Tomohito; Kanayama, Naohiro; Ishiwata, Isamu; Kinoshita, Katsuyuki; Ikeda, Tomoaki
2016-03-21
To clarify the problems related to maternal deaths in Japan, including the diseases themselves, causes, treatments and the hospital or regional systems. Descriptive study. Maternal death registration system established by the Japan Association of Obstetricians and Gynecologists (JAOG). Women who died during pregnancy or within a year after delivery, from 2010 to 2014, throughout Japan (N=213). The preventability and problems in each maternal death. Maternal deaths were frequently caused by obstetric haemorrhage (23%), brain disease (16%), amniotic fluid embolism (12%), cardiovascular disease (8%) and pulmonary disease (8%). The Committee considered that it was impossible to prevent death in 51% of the cases, whereas they considered prevention in 26%, 15% and 7% of the cases to be slightly, moderately and highly possible, respectively. It was difficult to prevent maternal deaths due to amniotic fluid embolism and brain disease. In contrast, half of the deaths due to obstetric haemorrhage were considered preventable, because the peak duration between the initial symptoms and initial cardiopulmonary arrest was 1-3 h. A range of measures, including individual education and the construction of good relationships among regional hospitals, should be established in the near future, to improve primary care for patients with maternal haemorrhage and to save the lives of mothers in Japan. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Demyelination as a rational therapeutic target for ischemic or traumatic brain injury.
Shi, Hong; Hu, Xiaoming; Leak, Rehana K; Shi, Yejie; An, Chengrui; Suenaga, Jun; Chen, Jun; Gao, Yanqin
2015-10-01
Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Mardal, Marie; Johansen, Sys Stybe; Thomsen, Ragnar; Linnet, Kristian
2017-09-01
Three case reports are presented, including autopsy findings and toxicological screening results, which were tested positive for the potent hallucinogenic drug lysergic acid diethylamide (LSD). LSD and its main metabolites were quantified in brain tissue and femoral blood, and furthermore hematoma and urine when available. LSD, its main metabolite 2-oxo-3-hydroxy-LSD (oxo-HO-LSD), and iso-LSD were quantified in biological samples according to a previously published procedure involving liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). LSD was measured in the brain tissue of all presented cases at a concentration level from 0.34-10.8μg/kg. The concentration level in the target organ was higher than in peripheral blood. Additional psychoactive compounds were quantified in blood and brain tissue, though all below toxic concentration levels. The cause of death in case 1 was collision-induced brain injury, while it was drowning in case 2 and 3 and thus not drug intoxication. However, the toxicological findings could help explain the decedent's inability to cope with brain injury or drowning incidents. The presented findings could help establish reference concentrations in brain samples and assist in interpretation of results from forensic drug screening in brain tissue. This is to the author's knowledge the first report of LSD, iso-LSD, and oxo-HO-LSD measured in brain tissue samples. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Oxidative damage to lipids, proteins and nucleic acids in brain often causes progressive neuronal degeneration and death which are the focal traits of chronic and acute pathologies in the brain, including those involving cognitive decline. It has been postulated that at least part of the loss of cog...
Liu, Yan-Jie; Guan, Zhi-Zhong; Gao, Qin; Pei, Jin-Jing
2011-07-28
In order to reveal the mechanism of the brain injury induced by chronic fluorosis, the levels of apoptosis and c-Jun N-terminal kinases (JNK) in brains of rats and SH-SY5Y cells exposed to different concentrations of sodium fluoride (NaF) were detected. The dental fluorosis and fluoride contents in blood, urine and bones of rats were measured to evaluate the exhibition of fluorosis. The apoptotic death rate was measured by flow cytometry and the expression of JNK at protein level by Western blotting. The results showed that as compared with controls, the apoptotic death rate was obviously increased in brains of the rats exposed to high-fluoride (50ppm) for 6 months with a concentration dependent manner, but no significant change for 3 months. In SH-SY5Y cells treated with high concentration (50ppm) of fluoride, the increased apoptotic death rate was obviously observed as compared to controls. In addition, the expressions of phospho-JNK at protein level were raised by 20.5% and 107.6%, respectively, in brains of the rats exposed to low-fluoride (5ppm) and high-fluoride for 6 months; while no significant changes were found between the rats exposed to fluoride and the controls for 3 months. The protein level of phospho-JNK was also increased in SH-SY5Y cells exposed to high-fluoride. There were no changes of total-JNK both in the rats and in the SH-SY5Y cells exposed to excessive fluoride as compared to controls. When SH-SY5Y cells were singly treated with SP600125, an inhibitor of phospho-JNK, the decreased expression of phospho-JNK, but no apoptosis, was detected. Interestingly, after JNK phosphorylation in the cultured cells was inhibited by SP600125, the treatment with high-fluoride did not induce the increase of apoptosis. In addition, there was a positive correlation between the expression of phospho-JNK and the apoptotic death rate in rat brains or SH-SY5Y cells treated with high-fluoride. The results indicated that exposure to excessive fluoride resulted in the increase of apoptosis in rat brains and SH-SY5Y cells, in which one of the mechanisms might be activating JNK phosphorylation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
[External post-mortem examination].
Hartwig, S
2016-09-01
The external post-mortem examination in Germany is a non-delegable medical duty for determination of death, identity of the deceased, cause of death, manner of death, time of death and notifiable infectious diseases. Within the framework of rescue service missions the physician is limited to ascertaining that death has occurred. The determination of death must be reliable and is automatically followed by a complete external post-mortem examination of the body, if necessary by another physician. The certain signs of death are livor mortis, rigor mortis and putrefaction. Reliable features for the occurrence of death are injuries which are not compatible with life and brain death. The external post-mortem examination is the basis for the decision on whether further criminal investigations are necessary. The external post-mortem examination and the accompanying death certification must always be meticulously carried out.
Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation
Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.
2009-01-01
Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516
Jochmans, Ina; Darius, Tom; Kuypers, Dirk; Monbaliu, Diethard; Goffin, Eric; Mourad, Michel; Ledinh, Hieu; Weekers, Laurent; Peeters, Patrick; Randon, Caren; Bosmans, Jean-Louis; Roeyen, Geert; Abramowicz, Daniel; Hoang, Anh-Dung; De Pauw, Luc; Rahmel, Axel; Squifflet, Jean-Paul; Pirenne, Jacques
2012-08-01
Worldwide shortage of standard brain dead donors (DBD) has revived the use of kidneys donated after circulatory death (DCD). We reviewed the Belgian DCD kidney transplant (KT) experience since its reintroduction in 2000. Risk factors for delayed graft function (DGF) were identified using multivariate analysis. Five-year patient/graft survival was assessed using Kaplan-Meier curves. The evolution of the kidney donor type and the impact of DCDs on the total KT activity in Belgium were compared with the Netherlands. Between 2000 and 2009, 287 DCD KT were performed. Primary nonfunction occurred in 1% and DGF in 31%. Five-year patient and death-censored graft survival were 93% and 95%, respectively. In multivariate analysis, cold storage (versus machine perfusion), cold ischemic time, and histidine-tryptophan-ketoglutarate solution were independent risk factors for the development of DGF. Despite an increased number of DCD donations and transplantations, the total number of deceased KT did not increase significantly. This could suggest a shift from DBDs to DCDs. To increase KT activity, Belgium should further expand controlled DCD programs while simultaneously improve the identification of all potential DBDs and avoid their referral for donation as DCDs before brain death occurs. Furthermore, living donation remains underused. © 2012 The Authors. Transplant International © 2012 European Society for Organ Transplantation.
McGlade, Donal; Pierscionek, Barbara
2013-12-30
The emergence of evidence suggests that student nurses commonly exhibit concerns about their lack of knowledge of organ donation and transplantation. Formal training about organ donation has been shown to positively influence attitude, encourage communication and registration behaviours and improve knowledge about donor eligibility and brain death. The focus of this study was to determine the attitude and behaviour of student nurses and to assess their level of knowledge about organ donation after a programme of study. A quantitative questionnaire was completed before and after participation in a programme of study using a pretest-post-test design. Participants were recruited from a University based in Northern Ireland during the period from February to April 2011. 100 preregistration nurses (female : male=96 : 4) aged 18-50 years (mean (SD) 24.3 (6.0) years) were recruited. Participants' knowledge improved over the programme of study with regard to the suitability of organs that can be donated after death, methods available to register organ donation intentions, organ donation laws, concept of brain death and the likelihood of recovery after brain death. Changes in attitude postintervention were also observed in relation to participants' willingness to accept an informed system of consent and with regard to participants' actual discussion behaviour. The results provide support for the introduction of a programme that helps inform student nurses about important aspects of organ donation.
Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric
2013-01-18
Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.
Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi
2017-01-01
This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628
Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Miklavcic, Damijan
2016-01-01
Background Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Material and methods Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Results Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r2 = 0.79; p < 0.008, r2 = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. Conclusions The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup. PMID:27069447
Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury
Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M
2015-01-01
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death. PMID:25484084
Help, I need to develop communication skills on donation: the "VIDEO" model.
Smudla, A; Mihály, S; Hegedüs, K; Nemes, B; Fazakas, J
2011-05-01
Information about brain stem death and donation can be influence the consent rate for donation and its psychosocial effects. The aim of this study was to create a "VIDEO" model that could be used to help physicians to develop communication skills. A video recorded 32 simulations of family interviews: 16 under-age and 16 adult donors. They were analyzed during 8 courses conducted in 2008 and 2009. During the VIDEO process, the visual presentation was followed by participants (n=192) discussing interactively the donation situation. After the transcription of the video records, family interviews were explored retrospectively regarding informing relatives about brain stem death and donation, typical communication gaps and common questions from families. The data were examined qualitatively and semiquantitatively. We think that teaching can be optimized by our results. A comprehensible explanation about brain stem death was provided to relatives in 65.63% of cases. The consent of the family was more important for the physicians than the application of the law in 93.75%; 78.13% of physicians emphasized altruism to support donation. Remarkable mistakes of communication included using the teams coma and brain stem death interchangeably (9.38%); applying expressions connected with life in the present tense (21.88%) and mechanically kept alive (21.88%); organ-focused behavior such as "organs to be usable" (34.38%). The frequent questions and statements of "relatives" were "heart beats" (100%), "did he really die?" (65.63%), "fear of loss of integrity of the corpse" (59.38%), and "wake up from the coma" (46.88%). Interaction with the family requires great preparation. The communication skills of physicians can be developed through the VIDEO model. The results can be integrated into educational programs that consider the particular features of the given country. Copyright © 2011 Elsevier Inc. All rights reserved.
Geisenberger, D; Huppertz, L M; Büchsel, M; Kramer, L; Pollak, S; Große Perdekamp, M
2015-12-01
Acute subdural hematomas are mostly due to blunt traumatization of the head. In rare instances, subdural bleeding occurs without evidence of a previous trauma following spontaneous hemorrhage, e.g. from a ruptured aneurysm or an intracerebral hematoma perforating the brain surface and the arachnoid. The paper presents the morphological, microbiological and toxicological findings in a 38-year-old drug addict who was found by his partner in a dazed state. When brought to a hospital, he underwent trepanation to empty a right-sided subdural hematoma, but he died already 4h after admission. Autopsy revealed previously undiagnosed infective endocarditis of the aortic valve as well as multiple infarctions of brain, spleen and kidneys obviously caused by septic emboli. The subdural hematoma originated from a subcortical brain hemorrhage which had perforated into the subdural space. Microbiological investigation of the polypous vegetations adhering to the aortic valve revealed colonization by Streptococcus mitis and Klebsiella oxytoca. According to the toxicological analysis, no psychotropic substances had contributed to the lethal outcome. The case reported underlines that all deaths of drug addicts should be subjected to complete forensic autopsy, as apart from intoxications also natural and traumatic causes of death have to be taken into consideration. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kubo, S; Orihara, Y; Gotohda, T; Tokunaga, I; Tsuda, R; Ikematsu, K; Kitamura, O; Yamamoto, A; Nakasono, I
1998-12-01
Several nuclei in brain stem are well known to play an important role in supporting human life. However, the connection between neural changes of brain stem and the cause of death is not yet fully understood. To investigate the correlation of brain stem damage with various cause of respiratory disorders, neural changes of the arcuate nucleus (ARC), the hypoglossal nucleus (HN) and the inferior olivary nucleus (IO) were examined using immunohistochemical technique. Based on the cause of death, the forensic autopsy cases were divided into 5 groups as follows. Group I: hanging, ligature strangulation and manual strangulation, Group II: smothering and choking, Group III: drowning, Group IV: respiratory failure, control group: heat stroke and sun stroke. Brain was fixed with phosphate-buffer formalin, and the brain stem was horizontally dissected at the level of apex, then embedded in paraffin. The sections were stained with the antibodies against microtubule-associated protein 2 (MAP2), muscalinic acetylcholine receptor (mAChR), c-fos gene product (c-Fos) and 72 kD heat-shock protein (HSP70). Three nuclei showed no obvious morphological changes in all examined groups. However, in case of asphyxia (Group I to III), neurons in HN were positively stained with both HSP70 and c-Fos antibodies. This may indicate that the occlusion of upper airway results in the neuronal damage of HN without their morphological changes. Positive staining of HSP70 and c-Fos in IO was more frequently observed in Group III than other 4 groups. Since IO is involved in maintaining body balance which is often disturbed by drowning, it seems possible that neuronal damage in IO observed in drowning may be related to the disturbance of body balance. These observations indicate that immunohistochemical study on the damage to neurons in brain stem nuclei can provide useful information for determining the cause of death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Clara Y.H.; Chang, Steven D.; Gibbs, Iris C.
2012-11-01
Purpose: Single-modality treatment of large brain metastases (>2 cm) with whole-brain irradiation, stereotactic radiosurgery (SRS) alone, or surgery alone is not effective, with local failure (LF) rates of 50% to 90%. Our goal was to improve local control (LC) by using multimodality therapy of surgery and adjuvant SRS targeting the resection cavity. Patients and Methods: We retrospectively evaluated 97 patients with brain metastases >2 cm in diameter treated with surgery and cavity SRS. Local and distant brain failure (DF) rates were analyzed with competing risk analysis, with death as a competing risk. The overall survival rate was calculated by themore » Kaplain-Meier product-limit method. Results: The median imaging follow-up duration for all patients was 10 months (range, 1-80 months). The 12-month cumulative incidence rates of LF, with death as a competing risk, were 9.3% (95% confidence interval [CI], 4.5%-16.1%), and the median time to LF was 6 months (range, 3-17 months). The 12-month cumulative incidence rate of DF, with death as a competing risk, was 53% (95% CI, 43%-63%). The median survival time for all patients was 15.6 months. The median survival times for recursive partitioning analysis classes 1, 2, and 3 were 33.8, 13.7, and 9.0 months, respectively (p = 0.022). On multivariate analysis, Karnofsky Performance Status ({>=}80 vs. <80; hazard ratio 0.54; 95% CI 0.31-0.94; p = 0.029) and maximum preoperative tumor diameter (hazard ratio 1.41; 95% CI 1.08-1.85; p = 0.013) were associated with survival. Five patients (5%) required intervention for Common Terminology Criteria for Adverse Events v4.02 grade 2 and 3 toxicity. Conclusion: Surgery and adjuvant resection cavity SRS yields excellent LC of large brain metastases. Compared with other multimodality treatment options, this approach allows patients to avoid or delay whole-brain irradiation without compromising LC.« less
Igaki, Hiroshi; Harada, Ken; Umezawa, Rei; Miyakita, Yasuji; Ohno, Makoto; Takahashi, Masamichi; Sumi, Minako; Inaba, Koji; Murakami, Naoya; Ito, Yoshinori; Narita, Yoshitaka; Itami, Jun
2017-07-31
To determine the clinical efficacy of surgery followed by local brain radiotherapy (LBRT) for patients with a single brain metastasis, by comparing the results with those of postoperative whole brain radiotherapy (WBRT). We performed a retrospective analysis to compare the survival rate, recurrence-free rates, and causes of death for single brain metastasis patients who underwent surgery followed by LBRT or WBRT in the 2010-2015 period. After their surgery, 22 and 32 patients were treated by LBRT and WBRT, respectively. The median survival times for these LBRT and WBRT groups were 18.3 months and 19.2 months, respectively (p = 0.356). The local recurrence-free rates were 81.2% at 1 year and 81.2% at 2 years after LBRT, and 63.8% at 1 year and 58.9% at 2 years after WBRT (p = 0.589). The distant brain recurrence-free rates were 42.5% at 1 year and 25.5% at 2 years after LBRT, and 69.8% at 1 year and 52.4% at 2 years after WBRT (p = 0.044). Distant brain recurrences were observed significantly more frequently in the LBRT group, but the rates of salvage treatment application and survival were not significantly different between the LBRT and WBRT groups. The probability of neurologic death was not significantly higher in the LBRT group compared with the WBRT group. Surgery followed by LBRT for single brain metastasis is not inferior to postoperative WBRT, because survival and the necessity of salvage treatment after LBRT were equivalent to those after WBRT.
Beyond the basics: brain injuries.
Duncan, Tim; Krost, William S; Mistovich, Joseph J; Limmer, Daniel
2007-07-01
Increased intracranial pressure can be a catastrophic event that may lead to death or permanent disability. Without prompt recognition and reversal of hypoxia, hypotension, hypercarbia, acidosis and increased intracranial pressure, the cerebral blood flow and resultant cerebral perfusion can be inadequate, leading to an exacerbation of secondary brain injury.
Knowledge, Attitudes, and Beliefs Toward Organ Donation Among Social Media Users.
Hajjar, W M; Bin Abdulqader, S A; Aldayel, S S; Alfardan, A W; Alzaidy, N I
2016-09-01
Organ transplantation is the optimal treatment for end-stage organ diseases. The demand for organs has exceeded the available supply, which becomes a major obstacle worldwide. Identifying the factors affecting this gap will help in overcoming this obstacle. The purpose of the work was to study the knowledge, attitudes, and beliefs of organ donation and to determine the knowledge of brain death among social media users. A cross-sectional study was conducted among social media users living in Saudi Arabia. A pre-designed self-administrated questionnaire was distributed online randomly on social media networks in 2015. Of the total 1368 participants, only 913 met the criteria. Most respondents were between 18 and 29 years of age (61.2%) and living in the central region of Saudi Arabia (64.5%). The majority of respondents received their information from television (57%) and social media (50%) networks; 46.4% of respondents knew that the religious fatwa allowed organ donation; 51% of respondents were willing to donate their organs; 46.5% considered the brain-dead to be deceased, whereas 37.7% considered it a coma; 33.3% did not know if someone who was brain-dead would ever wake up; on the other hand, 323 (35.4%) said yes. Our study showed that the vast majority of our sample had enough information about organ donation. On the contrary, they had minimal knowledge about brain death. Moreover, a fair percentage of the participants had positive attitudes toward organ donation. Also, the media had a significant effect on the information about organ donation and brain death. Copyright © 2016 Elsevier Inc. All rights reserved.
Leblanc, Guillaume; Boutin, Amélie; Shemilt, Michèle; Lauzier, François; Moore, Lynne; Potvin, Véronique; Zarychanski, Ryan; Archambault, Patrick; Lamontagne, François; Léger, Caroline; Turgeon, Alexis F
2018-06-01
Background Most deaths following severe traumatic brain injury follow decisions to withdraw life-sustaining therapies. However, the incidence of the withdrawal of life-sustaining therapies and its potential impact on research data interpretation have been poorly characterized. The aim of this systematic review was to assess the reporting and the impact of withdrawal of life-sustaining therapies in randomized clinical trials of patients with severe traumatic brain injury. Methods We searched Medline, Embase, Cochrane Central, BIOSIS, and CINAHL databases and references of included trials. All randomized controlled trials published between January 2002 and August 2015 in the six highest impact journals in general medicine, critical care medicine, and neurocritical care (total of 18 journals) were considered for eligibility. Randomized controlled trials were included if they enrolled adult patients with severe traumatic brain injury (Glasgow Coma Scale ≤ 8) and reported data on mortality. Our primary objective was to assess the proportion of trials reporting the withdrawal of life-sustaining therapies in a publication. Our secondary objectives were to describe the overall mortality rate, the proportion of deaths following the withdrawal of life-sustaining therapies, and to assess the impact of the withdrawal of life-sustaining therapies on trial results. Results From 5987 citations retrieved, we included 41 randomized trials (n = 16,364, ranging from 11 to 10,008 patients). Overall mortality was 23% (range = 3%-57%). Withdrawal of life-sustaining therapies was reported in 20% of trials (8/41, 932 patients in trials) and the crude number of deaths due to the withdrawal of life-sustaining therapies was reported in 17% of trials (7/41, 884 patients in trials). In these trials, 63% of deaths were associated with the withdrawal of life-sustaining therapies (105/168). An analysis carried out by imputing a 4% differential rate in instances of withdrawal of life-sustaining therapies between study groups yielded different results and conclusions in one third of the trials. Conclusion Data on the withdrawal of life-sustaining therapies are incompletely reported in randomized controlled trials of patients with severe traumatic brain injury. Given the high proportion of deaths due to the withdrawal of life-sustaining therapies in severe traumatic brain injury patients, and the potential of this medical decision to influence the results of clinical trials, instances of withdrawal of life-sustaining therapies should be systematically reported in clinical trials in this group of patients.
The ethics of extracorporeal membrane oxygenation in brain-dead potential organ donors.
Dalle Ave, Anne L; Gardiner, Dale; Shaw, David M
2016-05-01
Organ-preserving extracorporeal membrane oxygenation (OP-ECMO) is defined as the use of extracorporeal support for the primary purpose of preserving organs for transplantation, rather than to save the patient's life. This paper discusses the ethics of using OP-ECMO in donation after brain determination of death (DBDD) to avoid the loss of organs for transplantation. We review case reports in the literature and analyze the ethical issues raised. We conclude that there is little additional ethical concern in continuing OP-ECMO in patients already on ECMO if they become brain dead. The implementation of OP-ECMO in hemodynamically unstable brain-dead patients is ethically permissible in certain clinical situations but requires specific consent from relatives if the patient's wish to donate is not clear. If no evidence of a patient's wish to donate is available, OP-ECMO is not recommended. In countries with presumed consent legislation, failure to opt out should be considered as a positive wish to donate. If a patient is not-yet brain-dead or is undergoing testing for brain death, OP-ECMO is not recommended. Further research on OP-ECMO is needed to better understand the attitudes of professionals, families, and lay people to ensure agreement on key ethical issues. © 2016 Steunstichting ESOT.
Rosas-Hernandez, Hector; Cuevas, Elvis; Escudero-Lourdes, Claudia; Lantz, Susan M; Sturdivant, Nasya M; Imam, Syed Z; Sarkar, Sumit; Slikker, William; Paule, Merle G; Balachandran, Kartik; Ali, Syed F
2018-04-13
Traumatic brain injury (TBI) occurs when external mechanical forces induce brain damage as result of impact, penetration or rapid acceleration/deceleration that causes deformation of brain tissue. Depending on its severity, TBI can be classified as mild, moderate or severe and can lead to blood-brain barrier (BBB) dysfunction. In the present study, we evaluated the effects of uniaxial high-speed stretch (HSS) at 0, 5, 10 and 15% on a pure culture of primary rat brain endothelial cells as an in vitro model of TBI to the BBB. LDH release, viability and apoptosis analysis, expression of tight junction proteins and endothelial permeability were evaluated 24 h after a single stretch episode. HSS slightly increased cell death and apoptosis at 10 and 15%, while LDH release was increased only at 15% stretch. Occludin expression was increased at 10% stretch, while claudin-5 expression was increased at 5% stretch, which also decreased the endothelial permeability. In summary, 15% HSS induced low levels of cell death, consistent with mild TBI and very low percentages of HSS (5%) enhanced the BBB properties, promoting the formation of a stronger barrier. These data support the use of 15% HSS as valuable tool in the study of mild TBI to the BBB in vitro. Published by Elsevier B.V.
Sugar for the brain: the role of glucose in physiological and pathological brain function.
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas
2013-10-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nitrobenzodiazepines: Postmortem brain and blood reference concentrations.
Skov, Louise; Holm, Karen Marie Dollerup; Linnet, Kristian
2016-11-01
Reference concentrations are needed to evaluate postmortem toxicology results and usually femoral blood is the specimen of choice. However, brain tissue has been suggested as a viable alternative specimen, since postmortem blood concentrations can be difficult to interpret due to postmortem redistribution, among other factors. Here we present reference concentrations of postmortem brain and femoral blood of the nitrobenzodiazepines clonazepam, flunitrazepam, and nitrazepam that are of particular interest since they commonly are converted to their corresponding 7-aminometabolites in the postmortem situation. The drugs and metabolites were quantified in both matrices using LC-MS-MS in 69 cases. In 63 cases the compounds were judged not to have been of significance for the death (C cases), whereas they were considered to have been a contributing factor in 6 cases (B cases). No cases were observed with a nitrobenzodiazepine being the sole cause of death (A cases). The brain-blood ratios for clonazepam and nitrazepam were 5.5 and 4.7, respectively, while the brain-blood ratios for the 7-aminometabolites ranged from 0.4 to 0.5. Flunitrazepam only occurred as the 7-aminometabolite. A positive correlation between brain and blood concentrations was found with Spearman's rank correlation coefficients (r s ) ranging from 0.77 to 0.96. The measured femoral blood concentrations agree with literature values, but only few brain concentrations were available for comparison. The drug-metabolite ratios for clonazepam and nitrazepam were 10-12 times higher in brain than in blood. The pre-analytical variation in brain of 5.9% was fairly low, suggesting that brain tissue is a useful alternative to blood. The reported brain and femoral blood concentrations serve as reference values in postmortem investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, ...
Singh, Satish; Houng, Aiilyan K; Reed, Guy L
2018-04-15
During acute brain ischemia, α2-antiplasmin markedly enhances brain injury, blood-brain barrier breakdown and matrix metalloproteinase-9 (MMP-9) expression. Although α2-antiplasmin inhibits fibrin thrombus-degradation, and MMP-9 is a collagen-degrading enzyme altering blood-brain barrier, both have similar deleterious effects on the ischemic brain. We examined the hypothesis that MMP-9 is an essential downstream mediator of α2-antiplasmin's deleterious effects during brain ischemia. Middle cerebral artery thromboembolic stroke was induced in a randomized, blinded fashion in mice with increased blood levels of α2-antiplasmin. There was a robust increase in MMP-9 expression (immunofluorescence) in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ but not MMP-9 -/- mice, 24 h after stroke. Brain swelling and hemorrhage were significantly increased in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ mice. By comparison to MMP-9 +/+ mice, the ischemic hemispheres of MMP-9 -/- mice showed a ∼6-fold reduction in brain swelling (p < 0.001) and a ∼9-fold reduction in brain hemorrhage. Brain infarction (p < 0.0001) and TUNEL-positive cell death (p < 0.001) were significantly diminished in the ischemic hemisphere of MMP-9 -/- mice vs. MMP-9 +/+ mice. Ischemic breakdown of the blood-brain barrier and fibrin deposition were also significantly reduced in MMP-9 -/- mice vs. MMP-9 +/+ mice (p < 0.05), as measured by quantitative immunofluorescence. We conclude that MMP-9 deficiency ablates many of the deleterious effects of high α2-antiplasmin levels, significantly reducing blood-brain barrier breakdown, TUNEL-positive cell death, brain hemorrhage, swelling and infarction. This suggests that the two molecules may be in a shared pathway in which MMP-9 is essential downstream for the deleterious effects of α2-antiplasmin in ischemic stroke. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Mortality in US Army Gulf War Veterans Exposed to 1991 Khamisiyah Chemical Munitions Destruction
Bullman, Tim A.; Mahan, Clare M.; Kang, Han K.; Page, William F.
2005-01-01
Objectives. We investigated whether US Army Gulf War veterans who were potentially exposed to nerve agents during the March 1991 weapons demolitions at Khamisiyah, Iraq, are at increased risk of cause-specific mortality. Methods. The cause-specific mortality of 100487 exposed US Army Gulf War veterans was compared with that of 224980 unexposed US Army Gulf War veterans. Exposure was determined with the Department of Defense 2000 plume model. Relative risk estimates were derived from Cox proportional hazards models. Results. The risks of most disease-related mortality were similar for exposed and unexposed veterans. However, exposed veterans had an increased risk of brain cancer deaths (relative risk [RR]=1.94; 95% confidence interval [CI]=1.12, 3.34). The risk of brain cancer death was larger among those exposed 2 or more days than those exposed 1 day when both were compared separately to all unexposed veterans (RR=3.26; 95% CI=1.33, 7.96; RR=1.72; 95% CI=0.95,3.10, respectively). Conclusions. Exposure to chemical munitions at Khamisiyah may be associated with an increased risk of brain cancer death. Additional research is required to confirm this finding. PMID:16043669
Mortality in US Army Gulf War veterans exposed to 1991 Khamisiyah chemical munitions destruction.
Bullman, Tim A; Mahan, Clare M; Kang, Han K; Page, William F
2005-08-01
We investigated whether US Army Gulf War veterans who were potentially exposed to nerve agents during the March 1991 weapons demolitions at Khamisiyah, Iraq, are at increased risk of cause-specific mortality. The cause-specific mortality of 100487 exposed US Army Gulf War veterans was compared with that of 224980 unexposed US Army Gulf War veterans. Exposure was determined with the Department of Defense 2000 plume model. Relative risk estimates were derived from Cox proportional hazards models. The risks of most disease-related mortality were similar for exposed and unexposed veterans. However, exposed veterans had an increased risk of brain cancer deaths (relative risk [RR]=1.94; 95% confidence interval [CI]=1.12, 3.34). The risk of brain cancer death was larger among those exposed 2 or more days than those exposed 1 day when both were compared separately to all unexposed veterans (RR=3.26; 95% CI=1.33, 7.96; RR=1.72; 95% CI=0.95,3.10, respectively). Exposure to chemical munitions at Khamisiyah may be associated with an increased risk of brain cancer death. Additional research is required to confirm this finding.
Ethical and legal issues in donation after cardiac death in Italy.
Bruzzone, P
2010-05-01
In Italy death of a human being must be declared either after brain death or after 20 minutes of cardiac arrest, certified by continuous electrocardiography (EKG) recording. It is my personal opinion that in such circumstances after cardiac death (DCD) will allow at best only the retrieval of few marginal kidneys and some tissues, and therefore will not be very helpful for our waiting list patients. I suggest instead modifying first the Italian law in order to be able to declare cardiac death after only 5 minutes of cardiac arrest, certified by continuous EKG recording. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Sudden infant death syndrome caused by poliomyelitis.
Dunne, J W; Harper, C G; Hilton, J M
1984-07-01
Most seemingly well infants who die suddenly and unexpectedly have no adequate cause of death found on thorough postmortem examination. Respiratory and enteric viruses are often present, especially in the upper respiratory tract, but the infective process seems, of itself, insufficient to cause death. In the remainder of the cases, a variety of lesions will be discovered, including viral myocarditis, bronchiolitis, and sepsis. We report a case of sudden and unexpected death in a 5-week-old male infant due to acute anterior poliomyelitis. This case illustrates the importance of a thorough postmortem examination, including histologic studies of the brain stem and spinal cord in cases of sudden infant death syndrome.
Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.
Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M
2018-03-28
Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.
Glucose and oxygen metabolism after penetrating ballistic-like brain injury
Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross
2015-01-01
Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903
Glucose and oxygen metabolism after penetrating ballistic-like brain injury.
Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross
2015-05-01
Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies.
Hilton, Genell D.; Nunez, Joseph L.; Bambrick, Linda; Thompson, Scott M.; McCarthy, Margaret M.
2008-01-01
Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate. PMID:17156362
Donation after circulatory death: burying the dead donor rule.
Rodríguez-Arias, David; Smith, Maxwell J; Lazar, Neil M
2011-08-01
Despite continuing controversies regarding the vital status of both brain-dead donors and individuals who undergo donation after circulatory death (DCD), respecting the dead donor rule (DDR) remains the standard moral framework for organ procurement. The DDR increases organ supply without jeopardizing trust in transplantation systems, reassuring society that donors will not experience harm during organ procurement. While the assumption that individuals cannot be harmed once they are dead is reasonable in the case of brain-dead protocols, we argue that the DDR is not an acceptable strategy to protect donors from harm in DCD protocols. We propose a threefold alternative to justify organ procurement practices: (1) ensuring that donors are sufficiently protected from harm; (2) ensuring that they are respected through informed consent; and (3) ensuring that society is fully informed of the inherently debatable nature of any criterion to declare death.
Jörns, K P
1994-12-16
The message of the resurrection from the dead is relevant to human beings living and dying in the unity of body and soul. The personality of man is inseparable connected with this unit--even beyond death. Brain death only marks a (decisive) point during the process of dying, and it cannot be defined as the death of a human being (in general). Theological ethics object to this definition and to a new dualism of brain and body as well as of body and personality (i.e. soul), because this dualism socialises the organs of individuals and denies the personal dignity of disappearing life. Therefore, the explantation of organs must depend on a personal declaration of consent given by the adult sponsor himself. Each information given on organ transplants must clarify that the explanation of organs means an interruption of dying.
Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.
Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R
2013-11-01
Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.
Reagents that block neuronal death from Huntington's disease also curb oxidative stress.
Valencia, Antonio; Sapp, Ellen; Reeves, Patrick B; Alexander, Jonathan; Masso, Nicholas; Li, Xueyi; Kegel, Kimberly B; DiFiglia, Marian
2012-01-04
Patients with Huntington's disease suffer severe neuronal loss and signs of oxidative damage in the brain. Previously we found that primary neurons from embryonic cortex of mice bearing the Huntington's disease mutation (140 glutamines inserted into exon 1 of huntingtin) showed higher levels of reactive oxygen species before cell death. Here, we treated mutant neurons with known neuroprotective agents and determined the effects on neuronal survival and levels of reactive oxygen species. Primary neurons were exposed to the neurotrophin, brain derived neurotrophic factor, the antioxidant N-acetyl-cysteine or a specific inhibitor of glycogen synthase kinase 3-β, SB216763. Each reagent increased the survival of the mutant neurons compared with untreated mutant neurons and also reduced the levels of reactive oxygen species to levels of wild-type neurons. These results suggest that reducing the levels of reactive oxygen species may be necessary to protect neurons with the Huntington's disease mutation from cell death.
The changing nature of death on the trauma service.
Kahl, Jessica E; Calvo, Richard Y; Sise, Michael J; Sise, C Beth; Thorndike, Jonathan F; Shackford, Steven R
2013-08-01
Recent innovations in care have improved survival following injury. Coincidentally, the population of elderly injured patients with preexisting comorbidities has increased. We hypothesized that this increase in elderly injured patients may have combined with recent care innovations to alter the causes of death after trauma. We reviewed demographics, injury characteristics, and cause of death of in-hospital deaths of patients admitted to our Level I trauma service from 2000 through 2011. Cause of death was classified as acute hemorrhagic shock; severe traumatic brain injury or high spinal cord injury; complications of preexisting medical condition only (PM); survivable trauma combined with complications of preexisting medical condition (TCoM); multiple-organ failure, sepsis, or adult respiratory distress syndrome (MOF/S/ARDS), or trauma not otherwise categorized (e.g., asphyxiation). Major trauma care advances implemented on our service during the period were identified, and trends in the causes of death were analyzed. Of the 27,276 admissions, 819 (3%) eligible nonsurvivors were identified for the cause-of-death analyses. Causes of death were severe traumatic brain injury or high spinal cord injury at 44%, acute hemorrhagic shock at 28%, PM at 11%, TCoM at 10%, MOF/S/ARDS at 2%, and trauma not otherwise categorized at 5%. Mean age at death increased across the study interval (range, 47-57 years), while mean Injury Severity Score (ISS) decreased (range, 28-35). There was a significant increase in deaths because of TCoM (3.3-20.9%) and PM (6.7-16.4%), while deaths caused by MOF/S/ARDS decreased from 5% to 0% by 2007. Compared with year 2000, the annual adjusted mortality rate decreased consistently starting in 2009, after the 2002 to 2007 adoption of four major trauma practice guidelines. Mortality caused by preexisting medical conditions has increased, while markedly fewer deaths resulted from the complications of injury. Future improvements in outcomes will require improvement in the management of elderly trauma patients with comorbid conditions.
Xu, Jin; Sayed, Blayne Amir; Casas-Ferreira, Ana Maria; Srinivasan, Parthi; Heaton, Nigel; Rela, Mohammed; Ma, Yun; Fuggle, Susan; Legido-Quigley, Cristina; Jassem, Wayel
2016-01-01
The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD). The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD), we aimed to understand how ischemia/reperfusion (I/R) injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration. Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13) and DBD (n = 10) livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22) and DBD (n = 13) livers. When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05) and C22 ceramide (p<0.05) were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST) of DCD allografts had significantly increased. These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation.
Bedenko, Ramon Correa; Nisihara, Renato; Yokoi, Douglas Shun; Candido, Vinícius de Mello; Galina, Ismael; Moriguchi, Rafael Massayuki; Ceulemans, Nico; Salvalaggio, Paolo
2016-09-01
To evaluate the knowledge and acceptance of the public and professionals working in intensive care units regarding organ donation after cardiac death. The three hospitals with the most brain death notifications in Curitiba were selected, and two groups of respondents were established for application of the same questionnaire: the general public (i.e., visitors of patients in intensive care units) and health professionals working in the same intensive care unit. The questionnaire contained questions concerning demographics, intention to donate organs and knowledge of current legislation regarding brain death and donation after cardiac death. In total, 543 questionnaires were collected, including 442 from family members and 101 from health professionals. There was a predominance of women and Catholics in both groups. More females intended to donate. Health professionals performed better in the knowledge comparison. The intention to donate organs was significantly higher in the health professionals group (p = 0.01). There was no significant difference in the intention to donate in terms of education level or income. There was a greater acceptance of donation after uncontrolled cardiac death among Catholics than among evangelicals (p < 0.001). Most of the general population intended to donate, with greater intentions expressed by females. Education and income did not affect the decision. The type of transplant that used a donation after uncontrolled cardiac death was not well accepted in the study population, indicating the need for more clarification for its use in our setting.
Palmela, Inês; Correia, Leonor; Silva, Rui F. M.; Sasaki, Hiroyuki; Kim, Kwang S.; Brites, Dora; Brito, Maria A.
2015-01-01
Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells. PMID:25821432
Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli
Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria
2014-01-01
Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations. PMID:25386905
Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter
2016-04-01
Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.
Li, Cheukfai; Zhao, Qiang; Zhang, Wei; Chen, Maogen; Ju, Weiqiang; Wu, Linwei; Han, Ming; Ma, Yi; Zhu, Xiaofeng; Wang, Dongping; Guo, Zhiyong; He, Xiaoshun
2017-01-01
Background Poor transplant outcome was observed in donation after brain death followed by circulatory death (DBCD), since the donor organs suffered both cytokine storm of brain death and warm ischemia injury. MicroRNAs (miRNAs) have emerged as promising disease biomarkers, so we sought to establish a miRNA signature of porcine DBCD and verify the findings in human liver transplantation. Material/Methods MiRNA expression was determined with miRNA sequencing in 3 types of the porcine model of organ donation, including donation after brain death (DBD) group, donation after circulatory death (DCD) group, and DBCD group. Bioinformatics analysis was performed to reveal the potential regulatory behavior of target miRNA. Human liver graft biopsy samples after reperfusion detected by fluorescence in situ hybridization were used to verify the expression of target miRNA. Results We compared miRNA expression profiles of the 3 donation types. The porcine liver graft miR-146b was significantly increased and selected in the DBCD group versus in the DBD and DCD groups. The donor liver expression of human miR-146b-5p, which is homologous to porcine miR-146b, was further examined in 42 cases of human liver transplantations. High expression of miR-146b-5p successfully predicted the post-transplant early allograft dysfunction (EAD) with the area under the ROC curve (AUC) 0.759 (P=0.004). Conclusions Our results revealed the miRNA signature of DBCD liver grafts for the first time. The miR-146b-5p may have important clinical implications for monitoring liver graft function and predicating transplant outcomes. PMID:29227984
Lim, Stephanie M.; van den Ham, Henk-Jan; Oduber, Minoushka; Martina, Eurydice; Zaaraoui-Boutahar, Fatiha; Roose, Jeroen M.; van IJcken, Wilfred F. J.; Osterhaus, Albert D. M. E.; Andeweg, Arno C.; Koraka, Penelope; Martina, Byron E. E.
2017-01-01
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases. PMID:28861067
Lim, Stephanie M; van den Ham, Henk-Jan; Oduber, Minoushka; Martina, Eurydice; Zaaraoui-Boutahar, Fatiha; Roose, Jeroen M; van IJcken, Wilfred F J; Osterhaus, Albert D M E; Andeweg, Arno C; Koraka, Penelope; Martina, Byron E E
2017-01-01
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.
Garcia-Arencibia, Moises; Molina-Holgado, Eduardo; Molina-Holgado, Francisco
2018-05-24
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. © 2018 The British Pharmacological Society.
Successful multiple organ donation after donor brain death due to Actinomyces israelii meningitis.
Lagunes, Leonel; Len, Oscar; Sandiumenge, Alberto; Martínez-Saez, Elena; Pumarola, Tomás; Bodro, Marta; Macías, Antonio; Silva, Jose T; Nuvials, F Xavier; Charco, Ramon; Moreso, Francesc; Pont, Teresa
2017-08-01
The increasing gap between availability of solid organs for transplantation and the demand has led to the inclusion of donor organs that, according to current guidelines, may be discarded, some of them because of the possibility for transmission of infection to the recipients. We present the first report, to the best of our knowledge, of a case of a brain-dead donor with a localized and treated Actinomyces israelii central nervous system infection who, after a thorough evaluation, provided organs for successful transplant procedures in four recipients. There was no evidence of transmission of infection within a 6-month follow-up. Relative contraindications must be individualized in order to expand the number of real organ donors, emphasizing caution in rare causes for brain death in which patients should be thoroughly evaluated for possible donation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase
Endres, Matthias; Biniszkiewicz, Detlev; Sobol, Robert W.; Harms, Christoph; Ahmadi, Michael; Lipski, Andreas; Katchanov, Juri; Mergenthaler, Philipp; Dirnagl, Ulrich; Wilson, Samuel H.; Meisel, Andreas; Jaenisch, Rudolf
2004-01-01
Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung–/– fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung–/– primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung–/– mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia. PMID:15199406
The ethical "elephant" in the death penalty "room".
Keane, Michael
2008-10-01
The United States Supreme Court recently ruled that execution by a commonly used protocol of drug administration does not represent cruel or unusual punishment. Various medical journals have editorialized on this drug protocol, the death penalty in general and the role that physicians play. Many physicians, and societies of physicians, express the opinion that it is unethical for doctors to participate in executions. This Target Article explores the harm that occurs to murder victims' relatives when an execution is delayed or indefinitely postponed. By using established principles in psychiatry and the science of the brain, it is shown that victims' relatives can suffer brain damage when justice is not done. Conversely, adequate justice can reverse some of those changes in the brain. Thus, physician opposition to capital punishment may be contributing to significant harm. In this context, the ethics of physician involvement in lethal injection is complex.
Clinical Phase IIB Trial of Oxycyte Perflurocarbon in Severe Human Traumatic Brain Injury
2013-10-01
TERMS Penetrating ballistic brain injury, ischemia, hypoxia, perfluorocarbon , cell death, perfusion. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...SUBTITLE The Role of Perfluorocarbons in Mitigating Traumatic Brain Injury 5a. CONTRACT NUMBER W81XWH-08-1-0419 5b. GRANT NUMBER 5c. PROGRAM...damage seems to be mediated by mechanisms that follow the initial injury (secondary mechanisms). Perfluorocarbons (PFCs) are one of the methods by which
Experimental missile wound to the brain.
Carey, M E; Sarna, G S; Farrell, J B; Happel, L T
1989-11-01
Among civilians in the United States, 33,000 gunshot wound deaths occur each year; probably half of these involve the head. In combat, head wounds account for approximately half of the immediate mortality when death can be attributed to a single wound. No significant reduction in the neurosurgical mortality associated with these wounds has occurred between World War II and the Vietnam conflict, and very little research into missile wounds of the brain has been undertaken. An experimental model has been developed in the anesthetized cat whereby a ballistic injury to the brain may be painlessly reproduced in order that the pathophysiological effects of brain wounding may be studied and better treatments may be designed to lower the mortality and morbidity rates associated with gunshot wounds. Prominent among physiological effects observed in this model was respiratory arrest even though the missile did not injure the brain stem directly. The incidence of prolonged respiratory arrest increased with increasing missile energy, but arrest was often reversible provided respiratory support was given. It is possible that humans who receive a brain wound die from missile-induced apnea instead of brain damage per se. The mortality rate in humans with brain wounding might be reduced by prompt respiratory support. Brain wounding was associated with persistently increased intracranial pressure and reduced cerebral perfusion pressure not entirely attributable to intracranial bleeding. The magnitude of these derangements appeared to be missile energy-dependent and approached dangerous levels in higher-energy wounds. All wounded cats exhibited postwounding increases in blood glucose concentrations consistent with a generalized stress reaction. A transient rise in hematocrit also occurred immediately after wounding. Both of these phenomena could prove deleterious to optimal brain function after injury.
2009-01-01
to organophosphorus nerve agents in- uces brain seizures, which can cause profound brain dam- ge resulting in death or long-term cognitive deficits...The mygdala and the hippocampus are two of the most seizure- rone brain structures, but their relative contribution to the eneration of seizures after...nerve agent exposure is unclear. ere, we report that application of 1 M soman for 30 min, in at coronal brain slices containing both the hippocampus
Pneumothorax as a Complication of Apnea Testing for Brain Death.
Gorton, Lauren Elizabeth; Dhar, Rajat; Woodworth, Lindsey; Anand, Nitin J; Hayes, Benjamin; Ramiro, Joanna Isabelle; Kumar, Abhay
2016-10-01
Pneumothorax is an under-recognized complication of apnea testing performed as part of the neurological determination of death. It may result in hemodynamic instability or even cardiac arrest, compromising ability to declare brain death (BD) and viability of organs for transplantation. We report three cases of pneumothorax with apnea testing (PAT) and review the available literature of this phenomenon. Series of three cases supplemented with a systematic review of literature (including discussion of apnea testing in major brain death guidelines). Two patients were diagnosed with PAT due to immediate hemodynamic compromise, while the third was diagnosed many hours after BD. An additional nine cases of PAT were found in the literature. Information regarding oxygen cannula diameter was available for nine patients (range 2.3-5.3 mm), and flow rate was available for ten patients (mean 11 L/min). Pneumothorax was treated to resolution in the majority of patients (n = 8), although only six completed apnea testing following diagnosis/treatment of pneumothorax and only three patients became organ donors afterward. Review of major BD guidelines showed that although use of low oxygen flow rate (usually ≤ 6 L/min) during apnea testing is suggested, the risk of PAT was explicitly mentioned in just one. Development of PAT may adversely affect the process of BD determination and could limit the opportunity for organ donation. Each institution should have preventive measures in place.
McGlade, Donal; Pierscionek, Barbara
2013-01-01
Objective The emergence of evidence suggests that student nurses commonly exhibit concerns about their lack of knowledge of organ donation and transplantation. Formal training about organ donation has been shown to positively influence attitude, encourage communication and registration behaviours and improve knowledge about donor eligibility and brain death. The focus of this study was to determine the attitude and behaviour of student nurses and to assess their level of knowledge about organ donation after a programme of study. Design A quantitative questionnaire was completed before and after participation in a programme of study using a pretest–post-test design. Setting Participants were recruited from a University based in Northern Ireland during the period from February to April 2011. Participants 100 preregistration nurses (female : male=96 : 4) aged 18–50 years (mean (SD) 24.3 (6.0) years) were recruited. Results Participants’ knowledge improved over the programme of study with regard to the suitability of organs that can be donated after death, methods available to register organ donation intentions, organ donation laws, concept of brain death and the likelihood of recovery after brain death. Changes in attitude postintervention were also observed in relation to participants’ willingness to accept an informed system of consent and with regard to participants’ actual discussion behaviour. Conclusions The results provide support for the introduction of a programme that helps inform student nurses about important aspects of organ donation. PMID:24381257
Ieraci, Alessandro; Herrera, Daniel G
2018-06-01
Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.
Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie
2015-08-01
Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun
2015-10-01
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.
Use of Transcranial Doppler in Patients with Severe Traumatic Brain Injuries.
Ziegler, Daniel; Cravens, George; Poche, Gerard; Gandhi, Raj; Tellez, Mark
2017-01-01
Severe traumatic brain injuries (TBI) are associated with a high rate of mortality and disability. Transcranial Doppler (TCD) sonography permits a noninvasive measurement of cerebral blood flow. The purpose of this study is to determine the usefulness of TCD in patients with severe TBI. TCD was performed, from April 2008 to April 2013, on 255 patients with severe TBI, defined as a Glasgow Coma Scale score of ≤8 on admission. TCD was performed on hospital days 1, 2, 3, and 7. Hypoperfusion was defined by having two out of three of the following: 1) mean velocity (Vm) of the middle cerebral artery <35 cm/sec, 2) diastolic velocity (Vd) of the middle cerebral artery <20 cm/sec, or 3) pulsatility index (PI) of >1.4. Vasospasm was defined by the following: Vm of the middle cerebral artery >120 cm/sec and/or a Lindegaard index (LI) >3. One hundred fourteen (45%) had normal measurements. Of these, 92 (80.7%) had a good outcome, 6 (5.3%) had moderate disability, and 16 (14%) died, 4 from brain death. Seventy-two patients (28%) had hypoperfusion and 71 (98.6%) died, 65 from brain death, and 1 patient survived with moderate disability. Sixty-nine patients (27%) had vasospasm, 31 (44.9%) had a good outcome, 16 (23.2%) had severe disability, and 22 (31.9%) died, 13 from brain death. The vasospasm was detected on hospital day 1 in 8 patients, on day 2 in 23 patients, on day 3 in 22 patients, and on day 7 in 16 patients. Patients with normal measurements can be expected to survive. Patients with hypoperfusion have a poor prognosis. Patients with vasospasm have a high incidence of mortality and severe disability. TCD is useful in determining early prognosis.
How the Mind Hurts and Heals the Body
ERIC Educational Resources Information Center
Ray, Oakley
2004-01-01
The author reviews some of the social and behavioral factors acting on the brain that influence health, illness, and death. Supported with data from several areas of research, his proposal for understanding health and illness provides both the concepts and the mechanisms for studying and explaining mind-body relationships. The brain is the body's…
Education, the Brain and Dementia: Neuroprotection or Compensation?
ERIC Educational Resources Information Center
Brayne, Carol; Ince, Paul G.; Keage, Hannah A. D.; McKeith, Ian G.; Matthews, Fiona E.; Polvikoski, Tuomo; Sulkava, Raimo
2010-01-01
The potential protective role of education for dementia is an area of major interest. Almost all older people have some pathology in their brain at death but have not necessarily died with dementia. We have explored these two observations in large population-based cohort studies (Epidemiological Clinicopathological Studies in Europe; EClipSE) in…
[Ethical problems in organ transplantation].
Bosshard, Georg
2009-08-01
Since the early 1960s transplantation surgery has rapidly developed into a flagship technique of modern high-tech medicine with convincing therapeutic success. However, transplantation surgery also raises a number of serious ethical issues. The majority of solid organ transplants are procured from so-called brain-dead donors, i.e., from individuals with irreversible loss of all brain functions. This imposes the question whether and how the well-defined irreversible brain death can be equated with the death of an individual. The distribution of organs from brain-dead donors raises additional ethical questions and concerns. In the face of an increasing shortage of donor organs, what are the best criteria for setting priorities among the recipients? Is it urgency, need, or cost-effectiveness of the transplantation? And how can these parameters be appropriately defined? Moreover, as living organ donation (kidney, liver) becomes rife we are faced with the question of what voluntariness means in such exceptional conditions and how voluntariness can be adequately assessed. Finally, serious ethical concerns evolve from the so-called 'transplant tourism' and 'organ trafficking', accounting for approximately 5 to 10 % of all kidney transplantations world-wide.
Hou, Yongmei; Huang, Qin; Prakash, Ravi; Chaudhury, Suprakash
2013-01-01
Near death experiences (NDE) are receiving increasing attention by the scientific community because not only do they provide a glimpse of the complexity of the mind-brain interactions in 'near-death' circumstances but also because they have significant and long lasting effects on various psychological aspects of the survivors. The over-all incidence-reports of NDEs in literature have varied widely from a modest Figure of 10% to around 35%, even up to an incredible Figure of 72% in persons who have faced close brush with death. Somewhat similar to this range of difference in incidences are the differences prevalent in the opinions that theorists and researchers harbor around the world for explaining this phenomena. None the less, objective evidences have supported physiological theories the most. A wide range of physiological processes have been targeted for explaining NDEs. These include cerebral anoxia, chemical alterations like hypercapnia, presence of endorphins, ketamine, and serotonin, or abnormal activity of the temporal lobe or the limbic system. In spite of the fact that the physiological theories of NDEs have revolved around the derangements in brain, no study till date has taken up the task of evaluating the experiences of near-death in patients where specific injury has been to brain. Most of them have evaluated NDEs in cardiac-arrest patients. Post-traumatic coma is one such state regarding which the literature seriously lacks any information related to NDEs. Patients recollecting any memory of their post-traumatic coma are valuable assets for NDE researchers and needs special attention. Our present study was aimed at collecting this valuable information from survivors of severe head injury after a prolonged coma. The study was conducted in the head injury department of Guangdong 999 Brain hospital, Guangzhou, China. Patients included in the study were the ones Recovered from the posttraumatic coma following a severe head injury. A total of 86 patients were chosen. Near death experience scale (NDES) score of 7 or more was used as the criteria of screening NDE experiences. After identifying such individuals, the Prakash-modification of the Interpretative Phenomenological Analysis (IPA) was used to interview and record the data for qualitative analysis. We found that contrary to earlier incidence reports, NDEs in post head injury patients were markedly low. Only 3 out of 86 of the patients recruited had a clear and confident experience of NDE. We conducted a qualitative study to explore further into these experiences. IPA of these 3 patients revealed four master themes: 1. Unique light visions 2. Intense feelings of astonishment, pleasure, and fear 3. The sense of helplessness 4. Supernatural but rationality of experience. NDE is uncommon in head-injury cases as compared to other near-death conditions. But the persons experiencing it have immense impacts on their belief systems and emotions. This experience should be further explored by studies of larger samples.
Naked mole-rat cortical neurons are resistant to acid-induced cell death.
Husson, Zoé; Smith, Ewan St John
2018-05-09
Regulation of brain pH is a critical homeostatic process and changes in brain pH modulate various ion channels and receptors and thus neuronal excitability. Tissue acidosis, resulting from hypoxia or hypercapnia, can activate various proteins and ion channels, among which acid-sensing ion channels (ASICs) a family of primarily Na + permeable ion channels, which alongside classical excitotoxicity causes neuronal death. Naked mole-rats (NMRs, Heterocephalus glaber) are long-lived, fossorial, eusocial rodents that display remarkable behavioral/cellular hypoxia and hypercapnia resistance. In the central nervous system, ASIC subunit expression is similar between mouse and NMR with the exception of much lower expression of ASIC4 throughout the NMR brain. However, ASIC function and neuronal sensitivity to sustained acidosis has not been examined in the NMR brain. Here, we show with whole-cell patch-clamp electrophysiology of cultured NMR and mouse cortical and hippocampal neurons that NMR neurons have smaller voltage-gated Na + channel currents and more hyperpolarized resting membrane potentials. We further demonstrate that acid-mediated currents in NMR neurons are of smaller magnitude than in mouse, and that all currents in both species are reversibly blocked by the ASIC antagonist benzamil. We further demonstrate that NMR neurons show greater resistance to acid-induced cell death than mouse neurons. In summary, NMR neurons show significant cellular resistance to acidotoxicity compared to mouse neurons, contributing factors likely to be smaller ASIC-mediated currents and reduced NaV activity.
Brain activity in near-death experiencers during a meditative state.
Beauregard, Mario; Courtemanche, Jérôme; Paquette, Vincent
2009-09-01
To measure brain activity in near-death experiencers during a meditative state. In two separate experiments, brain activity was measured with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) during a Meditation condition and a Control condition. In the Meditation condition, participants were asked to mentally visualize and emotionally connect with the "being of light" allegedly encountered during their "near-death experience". In the Control condition, participants were instructed to mentally visualize the light emitted by a lamp. In the fMRI experiment, significant loci of activation were found during the Meditation condition (compared to the Control condition) in the right brainstem, right lateral orbitofrontal cortex, right medial prefrontal cortex, right superior parietal lobule, left superior occipital gyrus, left anterior temporal pole, left inferior temporal gyrus, left anterior insula, left parahippocampal gyrus and left substantia nigra. In the EEG experiment, electrode sites showed greater theta power in the Meditation condition relative to the Control condition at FP1, F7, F3, T5, P3, O1, FP2, F4, F8, P4, Fz, Cz and Pz. In addition, higher alpha power was detected at FP1, F7, T3 and FP2, whereas higher gamma power was found at FP2, F7, T4 and T5. The results indicate that the meditative state was associated with marked hemodynamic and neuroelectric changes in brain regions known to be involved either in positive emotions, visual mental imagery, attention or spiritual experiences.
[Computed tomography as a tool to detect potential brain-dead donors].
Revuelto-Rey, Jaume; Aldabó-Pallás, Teresa; Egea-Guerrero, Juan José; Vilches-Arenas, Ángel; Lara, Enrique Javier; Gordillo-Escobar, Elena
2015-06-22
To assess the ability of urgent head computed tomography (CT) scan screening to detect patients who can evolve to brain death (BD). Patients who underwent urgent head CT scan and meet the following criteria: midline shift greater than 5mm and/or decrease or absence of basal cisterns. A follow-up for 28 days of each patient was made. Epidemiological data (sex, age, cause of brain injury), clinical data (level of consciousness, severity index in the CT) and patient outcomes (death, BD, discharge or transfer) were recorded. This was a prospective observational study. One hundred and sixty-six patients were selected for study, with mean age 60.08 (SD 21.8) years. A percentage of 49.4 were men and the rest women. In the follow-up, 20,5% (n=34) had BD. In univariate analysis, intracerebral hemorrhage, Glasgow Coma Scale score less than 8 and alteration of basal cisterns were statistically significant in predicting BD (P<.05). Multivariate analysis showed that patients with compression of basal cisterns were 20 (95% confidence interval [95% CI] 2.61 to 153.78; P=.004] times more likely to progress to brain death, while the absence there of 62.6 (95% CI 13.1 to 738.8; P<.001] times more. Our work shows that data as easy to interpret as compression/absence of basal cisterns can be a powerful tool for screening patients at risk for progression to BD. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Accuracy of Computed Tomographic Perfusion in Diagnosis of Brain Death: A Prospective Cohort Study.
Sawicki, Marcin; Sołek-Pastuszka, Joanna; Chamier-Ciemińska, Katarzyna; Walecka, Anna; Bohatyrewicz, Romuald
2018-05-04
BACKGROUND This study was designed to determine diagnostic accuracy of computed tomographic perfusion (CTP) compared to computed tomographic angiography (CTA) for the diagnosis of brain death (BD). MATERIAL AND METHODS Whole-brain CTP was performed in patients diagnosed with BD and in patients with devastating brain injury with preserved brainstem reflexes. CTA was derived from CTP datasets. Cerebral blood flow (CBF) and volume (CBV) were calculated in all brain regions. CTP findings were interpreted as confirming diagnosis of BD (positive) when CBF and CBV in all ROIs were below 10 mL/100 g/min and 1.0 mL/100 g, respectively. CTA findings were interpreted using a 4-point system. RESULTS Fifty brain-dead patients and 5 controls were included. In brain-dead patients, CTP results revealed CBF 0.00-9.98 mL/100 g/min and CBV 0.00-0.99 mL/100 g, and were thus interpreted as positive in all patients. CTA results suggested 7 negative cases, providing 86% sensitivity. In the non-brain-dead group, CTP results revealed CBF 2.37-37.59 mL/100 g/min and CBV 0.73-2.34 mL/100 g. The difference between values of CBF and CBV in the brain-dead and non-brain-dead groups was statistically significant (p=0.002 for CBF and p=0.001 for CBV). CTP findings in all non-brain-dead patients were interpreted as negative. This resulted in a specificity of 100% (95% CI, 0.31-1.00) for CTP in the diagnosis of BD. In all non-brain-dead patients, CTA revealed preserved intracranial filling and was interpreted as negative. This resulted in a specificity of 100% (95% CI, 0.31-1.00) for CTA in diagnosis of BD. CONCLUSIONS Whole-brain CTP seems to be a highly sensitive and specific method in diagnosis of BD.
Chen, Xin; Jiang, Xue-Mei; Zhao, Lin-Jing; Sun, Lin-Lin; Yan, Mei-Ling; Tian, You; Zhang, Shuai; Duan, Ming-Jing; Zhao, Hong-Mei; Li, Wen-Rui; Hao, Yang-Yang; Wang, Li-Bo; Xiong, Qiao-Jie; Ai, Jing
2017-01-01
Impaired synaptic plasticity and neuron loss are hallmarks of Alzheimer’s disease and vascular dementia. Here, we found that chronic brain hypoperfusion (CBH) by bilateral common carotid artery occlusion (2VO) decreased the total length, numbers and crossings of dendrites and caused neuron death in rat hippocampi and cortices. It also led to increase in N-terminal β-amyloid precursor protein (N-APP) and death receptor-6 (DR6) protein levels and in the activation of caspase-3 and caspase-6. Further study showed that DR6 protein was downregulated by miR-195 overexpression, upregulated by miR-195 inhibition, and unchanged by binding-site mutation and miR-masks. Knockdown of endogenous miR-195 by lentiviral vector-mediated overexpression of its antisense molecule (lenti-pre-AMO-miR-195) decreased the total length, numbers and crossings of dendrites and neuron death, upregulated N-APP and DR6 levels, and elevated cleaved caspase-3 and caspase-6 levels. Overexpression of miR-195 using lenti-pre-miR-195 prevented these changes triggered by 2VO. We conclude that miR-195 is involved in CBH-induced dendritic degeneration and neuron death through activation of the N-APP/DR6/caspase pathway. PMID:28569780
Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation
Reno, Candace M.; Daphna-Iken, Dorit; Chen, Y. Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J.
2013-01-01
For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10–15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths. Severe hypoglycemia–induced mortality was noted to be worsened by diabetes, but recurrent antecedent hypoglycemia markedly improved the ability to survive an episode of severe hypoglycemia. Potassium supplementation tended to reduce mortality. Severe hypoglycemia caused numerous cardiac arrhythmias including premature ventricular contractions, tachycardia, and high-degree heart block. Intracerebroventricular glucose infusion reduced severe hypoglycemia–induced arrhythmias and overall mortality. β-Adrenergic blockade markedly reduced cardiac arrhythmias and completely abrogated deaths due to severe hypoglycemia. Under conditions studied, sudden deaths caused by insulin-induced severe hypoglycemia were mediated by lethal cardiac arrhythmias triggered by brain neuroglycopenia and the marked sympathoadrenal response. PMID:23835337
Shemie, Sam D
2007-01-01
Recent commentaries by Verheijde et al, Evans and Potts suggesting that donation after cardiac death practices routinely violate the dead donor rule are based on flawed presumptions. Cell biology, cardiopulmonary resuscitation, critical care life support technologies, donation and transplantation continue to inform concepts of life and death. The impact of oxygen deprivation to cells, organs and the brain is discussed in relation to death as a biological transition. In the face of advancing organ support and replacement technologies, the reversibility of cardiac arrest is now purely related to the context in which it occurs, in association to the availability and application of support systems to maintain oxygenated circulation. The 'complete and irreversible' lexicon commonly used in death discussions and legal statutes are ambiguous, indefinable and should be replaced by accurate terms. Criticism of controlled DCD on the basis of violating the dead donor rule, where autoresuscitation has not been described beyond 2 minutes, in which life support is withdrawn and CPR is not provided, is not valid. However, any post mortem intervention that re-establishes brain blood flow should be prohibited. In comparison to traditional practice, organ donation has forced the clarification of the diagnostic criteria for death and improved the rigour of the determinations. PMID:17718918
Lee, Sook-Jeong; Koh, Jae-Young
2010-10-26
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
NASA Astrophysics Data System (ADS)
Thong, P. S. P.; Watt, F.; Ponraj, D.; Leong, S. K.; He, Y.; Lee, T. K. Y.
1999-10-01
Parkinson's disease is a degenerative brain disease characterised by a loss of cells in the substantia nigra (SN) region of the brain and accompanying biochemical changes such as inhibition of mitochondrial function, increased iron concentrations and decreased glutathione levels in the parkinsonian SN. Though the aetiology of the disease is still unknown, the observed biochemical changes point to the involvement of oxidative stress. In particular, iron is suspected to play a role by promoting free radical production, leading to oxidative stress and cell death. The increase in iron in the parkinsonian SN has been confirmed by several research groups, both in human post-mortem brains and in brain tissue from parkinsonian animal models. However, the question remains as to whether the observed increase in iron is a cause or a consequence of the SN cell death process. Our previous study using unilaterally 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-lesioned monkeys in a time sequence experiment has shown that the increase in bulk iron concentrations follow rather than precede dopaminergic cell death. However, changes in the localised iron concentrations, which may play a more direct role in SN cell death, may not be reflected at the bulk level. Indeed, we have observed iron-rich granules in parkinsonian SNs. From this time sequence study into the iron content of iron-rich granules in the SNs of an untreated control and unilaterally MPTP-lesioned parkinsonian models, we present the following observations: (1) Iron-rich granules are found in both control and parkinsonian SNs and are variable in size and iron content in any one model. (2) These iron-rich granules may be associated with neuromelanin granules found in the SN and are known to accumulate transition metal ions such as iron. (3) The early onset of bulk SN cell loss (35%) was accompanied by a significant elevation of iron in granules found in the MPTP-injected SN compared to the contra-lateral SN. This shows that localised iron increase may be an early event contributing to cell death. (4) The iron content in granules found in both the MPTP-injected and contra-lateral SNs is correlated with the degree of bulk SN cell loss (assessed by TH-immunohistochemistry) in individual models. This indicates a correlation between localised iron increase and cell loss, at least at the whole SN level. Our results are consistent with the observation that in Parkinson's disease (PD), neuronal cell death seems to be related to their neuromelanin content and support the proposal that iron-melanin interaction may play a role in oxidative neuronal cell death. Indeed, iron-saturated neuromelanin granules may act as centres of free radical production, contributing to localised cell death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitroka, J.G.
1989-01-01
Potential antidotes for human exposure to monochloroacetic acid (MCA) were evaluated using a rodent model. Dichloroacetic acid (DCA) and phenobarbital (PB) but not ethanol or phenytoin, were found to be effective antidotes to monochloroacetic acid (MCA) in rats. DCA (110 mg/kg, ip), administered to rats 15 minutes after a LD-80 of MCA (80 mg/kg, iv), consistently reduced mortality to 0%, while PB reduced mortality to less than 20%. Both DCA and PB were found to be similarly effective in mice. The hypothesis that PB reduces mortality in MCA treated rats by altering the metabolic disposition of MCA was evaluated andmore » rejected. Administration of PB to rats treated with a lethal dose of ({sup 14}C)MCA did not alter the concentrations of MCA or its metabolites in plasma or cerebrospinal fluid (CSF), or the extent of covalent binding between radioactivity equivalent to ({sup 14}C)MCA and brain proteins. The relationship between altered blood-brain barrier permeability and death in MCA treated rats was investigated. Treatment with MCA (80 mg/kg, iv) was associated with a significant (50%) increase in the permeability of the rat blood-brain barrier to ({sup 125}I)BSA. The effect was not altered by treatment with PB, however, suggesting that altered blood-brain barrier permeability does not have an important role in the lethal effect of MCA in rats. The effect of MCA on brain carbohydrate metabolism in vivo was investigated. CSF and blood lactic acid concentrations increased in MCA treated rats, and the increase in CSF levels was dose related. In individual MCA treated rats, CSF lactate concentrations paralleled the time course of ataxia and a discrete threshold for death (18 mmol/L) was observed. The relationship between excess brain lactate levels and death in MCA treated rats was investigated further.« less
Moreno, Paula; Alvarez, Antonio; Illana, Jennifer; Espinosa, Dionisio; Baamonde, Carlos; Cerezo, Francisco; Algar, Francisco Javier; Salvatierra, Angel
2013-06-01
To determine whether lung retrieval from traumatic donors performed within 24 h of brain death has a negative impact on early graft function and survival after lung transplantation (LT), when compared with those retrieved after 24 h. Review of lung transplants performed from traumatic donors over a 17-year period. Recipients were distributed into two groups: transplants from traumatic donor lungs retrieved within 24 h of brain death (Group A), and transplants from traumatic donor lungs retrieved after 24 h of brain death (Group B). Demographic data of donors and recipients, early graft function, perioperative complications and mortality were compared between both groups. Among 356 lung transplants performed at our institution, 132 were from traumatic donors (70% male, 30% female). Group A: 73 (55%); Group B: 59 (45%). There were 53 single, 77 double, and 2 combined LT. Indications were emphysema in 41 (31%), pulmonary fibrosis in 31 (23%), cystic fibrosis in 38 (29%), bronchiectasis in 9 (7%) and other indications in 13 patients (10%). Donor and recipient demographic data, need or cardiopulmonary bypass, postoperative complications and Intensive Care Unit and hospital stay did not differ between groups. Primary graft dysfunction (A vs B): 9 (16%) vs 13 (26%) P = 0.17. PaO2/FiO2 24 h post-transplant (A vs B): 303 mmHg vs 288 mmHg (P = 0.57). Number of acute rejection episodes (A vs B): 0.93 vs 1.49 (P = 0.01). Postoperative intubation time (A vs B): 99 vs 100 h (P = 0.99). 30-day mortality (A vs B): 7 (10%) vs 2 (3.5%) (P = 0.13). Freedom from bronchiolitis obliterans syndrome (A vs B): 82, 72, 37, 22 vs 78, 68, 42, 15%, at 3, 5, 10 and 15 years, respectively (P = 0.889). Survival (A vs B): 65, 54, 46, 42 and 27 vs 60, 50, 45, 43 and 29% at 3, 5, 7, 10 and 15 years, respectively (P = 0.937). In our experience, early lung retrieval after brain death from traumatic donors does not adversely affect early and long-term outcomes after LT.
Turgeon, Alexis F.; Lauzier, François; Simard, Jean-François; Scales, Damon C.; Burns, Karen E.A.; Moore, Lynne; Zygun, David A.; Bernard, Francis; Meade, Maureen O.; Dung, Tran Cong; Ratnapalan, Mohana; Todd, Stephanie; Harlock, John; Fergusson, Dean A.
2011-01-01
Background: Severe traumatic brain injury often leads to death from withdrawal of life-sustaining therapy, although prognosis is difficult to determine. Methods: To evaluate variation in mortality following the withdrawal of life-sustaining therapy and hospital mortality in patients with critical illness and severe traumatic brain injury, we conducted a two-year multicentre retrospective cohort study in six Canadian level-one trauma centres. The effect of centre on hospital mortality and withdrawal of life-sustaining therapy was evaluated using multivariable logistic regression adjusted for baseline patient-level covariates (sex, age, pupillary reactivity and score on the Glasgow coma scale). Results: We randomly selected 720 patients with traumatic brain injury for our study. The overall hospital mortality among these patients was 228/720 (31.7%, 95% confidence interval [CI] 28.4%–35.2%) and ranged from 10.8% to 44.2% across centres (χ2 test for overall difference, p < 0.001). Most deaths (70.2% [160/228], 95% CI 63.9%–75.7%) were associated with withdrawal of life-sustaining therapy, ranging from 45.0% (18/40) to 86.8% (46/53) (χ2 test for overall difference, p < 0.001) across centres. Adjusted odd ratios (ORs) for the effect of centre on hospital mortality ranged from 0.61 to 1.55 (p < 0.001). The incidence of withdrawal of life-sustaining therapy varied by centre, with ORs ranging from 0.42 to 2.40 (p = 0.001). About one half of deaths that occurred following the withdrawal of life-sustaining therapies happened within the first three days of care. Interpretation: We observed significant variation in mortality across centres. This may be explained in part by regional variations in physician, family or community approaches to the withdrawal of life-sustaining therapy. Considering the high proportion of early deaths associated with the withdrawal of life-sustaining therapy and the limited accuracy of current prognostic indicators, caution should be used regarding early withdrawal of life-sustaining therapy following severe traumatic brain injury. PMID:21876014
Alonso-Alconada, Daniel; Broad, Kevin D; Bainbridge, Alan; Chandrasekaran, Manigandan; Faulkner, Stuart D; Kerenyi, Áron; Hassell, Jane; Rocha-Ferreira, Eridan; Hristova, Mariya; Fleiss, Bobbi; Bennett, Kate; Kelen, Dorottya; Cady, Ernest; Gressens, Pierre; Golay, Xavier; Robertson, Nicola J
2015-01-01
In infants with moderate to severe neonatal encephalopathy, whole-body cooling at 33°C to 34°C for 72 hours is standard care with a number needed to treat to prevent a adverse outcome of 6 to 7. The precise brain temperature providing optimal neuroprotection is unknown. After a quantified global cerebral hypoxic-ischemic insult, 28 piglets aged <24 hours were randomized (each group, n=7) to (1) normothermia (38.5°C throughout) or whole-body cooling 2 to 26 hours after insult to (2) 35°C, (3) 33.5°C, or (4) 30°C. At 48 hours after hypoxia-ischemia, delayed cell death (terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and cleaved caspase 3) and microglial ramification (ionized calcium-binding adapter molecule 1) were evaluated. At 48 hours after hypoxia-ischemia, substantial cerebral injury was found in the normothermia and 30°C hypothermia groups. However, with 35°C and 33.5°C cooling, a clear reduction in delayed cell death and microglial activation was observed in most brain regions (P<0.05), with no differences between 35°C and 33.5°C cooling groups. A protective pattern was observed, with U-shaped temperature dependence in delayed cell death in periventricular white matter, caudate nucleus, putamen, hippocampus, and thalamus. A microglial activation pattern was also seen, with inverted U-shaped temperature dependence in periventricular white matter, caudate nucleus, internal capsule, and hippocampus (all P<0.05). Cooling to 35°C (an absolute drop of 3.5°C as in therapeutic hypothermia protocols) or to 33.5°C provided protection in most brain regions after a cerebral hypoxic-ischemic insult in the newborn piglet. Although the relatively wide therapeutic range of a 3.5°C to 5°C drop in temperature reassured, overcooling (an 8.5°C drop) was clearly detrimental in some brain regions. © 2014 American Heart Association, Inc.
Donation after cardiac death and the emergency department: ethical issues.
Simon, Jeremy R; Schears, Raquel M; Padela, Aasim I
2014-01-01
Organ donation after cardiac death (DCD) is increasingly considered as an option to address the shortage of organs available for transplantation, both in the United States and worldwide. The procedures for DCD differ from procedures for donation after brain death and are likely less familiar to emergency physicians (EPs), even as this process is increasingly involving emergency departments (EDs). This article explores the ED operational and ethical issues surrounding this procedure. © 2013 by the Society for Academic Emergency Medicine.
Wang, Qi; Ishikawa, Takaki; Michiue, Tomomi; Zhu, Bao-Li; Guan, Da-Wei; Maeda, Hitoshi
2014-05-01
Methamphetamine (METH) is a highly addictive drug of abuse and toxic to the brain. Recent studies indicated that besides direct damage to dopamine and 5-HT terminals, neurotoxicity of METH may also result from its ability to modify the structure of blood-brain barrier (BBB). The present study investigated the postmortem brain mRNA and immunohistochemical expressions of matrix metalloproteases (MMPs), claudin5 (CLDN5), and aquaporins (AQPs) in forensic autopsy cases of carbon monoxide (n = 14), METH (n = 21), and phenobarbital (n = 17) intoxication, compared with mechanical asphyxia (n = 15), brain injury (n = 11), non-brain injury (n = 21), and sharp instrument injury (n = 15) cases. Relative mRNA quantification using Taqman real-time PCR assay demonstrated higher expression of AQP4 and MMP9, lower expression of CLDN5 in METH intoxication cases and lower expression of MMP2 in phenobarbital intoxication cases. Immunostaining results showed substantial interindividual variations in each group, showing no evident differences in distribution or intensity among all the causes of death. These findings suggest that METH may increase BBB permeability by altering CLDN5 and MMP9, and the self-protective system maybe activated to eliminate accumulating water from the extracellular space of the brain by up-regulating AQP4. Systematic analysis of gene expressions using real-time PCR may be a useful procedure in forensic death investigation.
Brain swelling and death in children with cerebral malaria.
Seydel, Karl B; Kampondeni, Samuel D; Valim, Clarissa; Potchen, Michael J; Milner, Danny A; Muwalo, Francis W; Birbeck, Gretchen L; Bradley, William G; Fox, Lindsay L; Glover, Simon J; Hammond, Colleen A; Heyderman, Robert S; Chilingulo, Cowles A; Molyneux, Malcolm E; Taylor, Terrie E
2015-03-19
Case fatality rates among African children with cerebral malaria remain in the range of 15 to 25%. The key pathogenetic processes and causes of death are unknown, but a combination of clinical observations and pathological findings suggests that increased brain volume leading to raised intracranial pressure may play a role. Magnetic resonance imaging (MRI) became available in Malawi in 2009, and we used it to investigate the role of brain swelling in the pathogenesis of fatal cerebral malaria in African children. We enrolled children who met a stringent definition of cerebral malaria (one that included the presence of retinopathy), characterized them in detail clinically, and obtained MRI scans on admission and daily thereafter while coma persisted. Of 348 children admitted with cerebral malaria (as defined by the World Health Organization), 168 met the inclusion criteria, underwent all investigations, and were included in the analysis. A total of 25 children (15%) died, 21 of whom (84%) had evidence of severe brain swelling on MRI at admission. In contrast, evidence of severe brain swelling was seen on MRI in 39 of 143 survivors (27%). Serial MRI scans showed evidence of decreasing brain volume in the survivors who had had brain swelling initially. Increased brain volume was seen in children who died from cerebral malaria but was uncommon in those who did not die from the disease, a finding that suggests that raised intracranial pressure may contribute to a fatal outcome. The natural history indicates that increased intracranial pressure is transient in survivors. (Funded by the National Institutes of Health and Wellcome Trust U.K.).
One life ends, another begins: Management of a brain-dead pregnant mother-A systematic review-
2010-01-01
Background An accident or a catastrophic disease may occasionally lead to brain death (BD) during pregnancy. Management of brain-dead pregnant patients needs to follow special strategies to support the mother in a way that she can deliver a viable and healthy child and, whenever possible, also be an organ donor. This review discusses the management of brain-dead mothers and gives an overview of recommendations concerning the organ supporting therapy. Methods To obtain information on brain-dead pregnant women, we performed a systematic review of Medline, EMBASE and the Cochrane Central Register of Controlled Trials (CENTRAL). The collected data included the age of the mother, the cause of brain death, maternal medical complications, gestational age at BD, duration of extended life support, gestational age at delivery, indication of delivery, neonatal outcome, organ donation of the mothers and patient and graft outcome. Results In our search of the literature, we found 30 cases reported between1982 and 2010. A nontraumatic brain injury was the cause of BD in 26 of 30 mothers. The maternal mean age at the time of BD was 26.5 years. The mean gestational age at the time of BD and the mean gestational age at delivery were 22 and 29.5 weeks, respectively. Twelve viable infants were born and survived the neonatal period. Conclusion The management of a brain-dead pregnant woman requires a multidisciplinary team which should follow available standards, guidelines and recommendations both for a nontraumatic therapy of the fetus and for an organ-preserving treatment of the potential donor. PMID:21087498
Risk factors and global cognitive status related to brain arteriolosclerosis in elderly individuals
Ighodaro, Eseosa T; Abner, Erin L; Fardo, David W; Lin, Ai-Ling; Katsumata, Yuriko; Schmitt, Frederick A; Kryscio, Richard J; Jicha, Gregory A; Neltner, Janna H; Monsell, Sarah E; Kukull, Walter A; Moser, Debra K; Appiah, Frank; Bachstetter, Adam D; Van Eldik, Linda J
2016-01-01
Risk factors and cognitive sequelae of brain arteriolosclerosis pathology are not fully understood. To address this, we used multimodal data from the National Alzheimer's Coordinating Center and Alzheimer's Disease Neuroimaging Initiative data sets. Previous studies showed evidence of distinct neurodegenerative disease outcomes and clinical-pathological correlations in the “oldest-old” compared to younger cohorts. Therefore, using the National Alzheimer's Coordinating Center data set, we analyzed clinical and neuropathological data from two groups according to ages at death: < 80 years (n = 1008) and ≥80 years (n = 1382). In both age groups, severe brain arteriolosclerosis was associated with worse performances on global cognition tests. Hypertension (but not diabetes) was a brain arteriolosclerosis risk factor in the younger group. In the ≥ 80 years age at death group, an ABCC9 gene variant (rs704180), previously associated with aging-related hippocampal sclerosis, was also associated with brain arteriolosclerosis. A post-hoc arterial spin labeling neuroimaging experiment indicated that ABCC9 genotype is associated with cerebral blood flow impairment; in a convenience sample from Alzheimer's Disease Neuroimaging Initiative (n = 15, homozygous individuals), non-risk genotype carriers showed higher global cerebral blood flow compared to risk genotype carriers. We conclude that brain arteriolosclerosis is associated with altered cognitive status and a novel vascular genetic risk factor. PMID:26738751
Pogačnik, Lea; Pirc, Katja; Palmela, Inês; Skrt, Mihaela; Kim, Kwang S; Brites, Dora; Brito, Maria Alexandra; Ulrih, Nataša Poklar; Silva, Rui F M
2016-11-15
Natural food sources constitute a promising source of new compounds with neuroprotective properties, once they have the ability to reach the brain. Our aim was to evaluate the brain accessibility of quercetin, epigallocatechin gallate (EGCG) and cyanidin-3-glucoside (C3G) in relation to their neuroprotective capability. Primary cortical neuron cultures were exposed to oxidative insult in the absence and presence of the selected compounds, and neuroprotection was assessed through evaluation of apoptotic-like and necrotic-like cell death. The brain accessibility of selected compounds was assessed using an optimised human blood-brain barrier model. The blood-brain barrier model was crossed rapidly by EGCG and more slowly by C3G, but not by quercetin. EGCG protected against oxidation-induced neuronal necrotic-like cell death by ~40%, and apoptosis by ~30%. Both quercetin and C3G were less effective, since only the lowest quercetin concentration was protective, and C3G only prevented necrosis by ~37%. Quercetin, EGCG and C3G effectively inhibited α-synuclein fibrillation over the relevant timescale applied here. Overall, EGCG seems to be the most promising neuroprotective compound. Thus, inclusion of this polyphenol in the diet might provide an affordable means to reduce the impact of neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Pan, Rong; Chen, Chen; Liu, Wenlan; Liu, Ke Jian
2013-01-01
Aim Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study testes the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Methods Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-hour hypoxic treatment. Results Although 3-hr hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc concentration dependent manner. Exposure of astrocytes to hypoxia for 3-hr remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Conclusions Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. PMID:23582235
Xu, Jin; Sayed, Blayne Amir; Casas-Ferreira, Ana Maria; Srinivasan, Parthi; Heaton, Nigel; Rela, Mohammed; Ma, Yun; Fuggle, Susan; Legido-Quigley, Cristina; Jassem, Wayel
2016-01-01
Background and aims The shortage of organs for transplantation has led to increased use of organs procured from donors after cardiac death (DCD). The effects of cardiac death on the liver remain poorly understood, however. Using livers obtained from DCD versus donors after brain death (DBD), we aimed to understand how ischemia/reperfusion (I/R) injury alters expression of pro-inflammatory markers ceramides and influences graft leukocyte infiltration. Methods Hepatocyte inflammation, as assessed by ceramide expression, was evaluated in DCD (n = 13) and DBD (n = 10) livers. Allograft expression of inflammatory and cell death markers, and allograft leukocyte infiltration were evaluated from a contemporaneous independent cohort of DCD (n = 22) and DBD (n = 13) livers. Results When examining the differences between transplant stages in each group, C18, C20, C24 ceramides showed significant difference in DBD (p<0.05) and C22 ceramide (p<0.05) were more pronounced for DCD. C18 ceramide is correlated to bilirubin, INR, and creatinine after transplant in DCD. Prior to transplantation, DCD livers have reduced leukocyte infiltration compared to DBD allografts. Following reperfusion, the neutrophil infiltration and platelet deposition was less prevalent in DCD grafts while cell death and recipients levels of serum aspartate aminotransferase (AST) of DCD allografts had significantly increased. Conclusion These data suggest that I/R injury generate necrosis in the absence of a strong inflammatory response in DCD livers with an appreciable effect on early graft function. The long-term consequences of increased inflammation in DBD and increased cell death in DCD allografts are unknown and warrant further investigation. PMID:26863224
Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y.W.; Chan, Julie Y.H.; Chan, Samuel H.H.
2016-01-01
Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows. PMID:27162554
Su, Chia-Hao; Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H
2016-01-01
Baroreflex is the physiological mechanism for the maintenance of blood pressure and heart rate. Impairment of baroreflex is not a disease per se. However, depending on severity, the eventuality of baroreflex dysfunction varies from inconvenience in daily existence to curtailment of mobility to death. Despite universal acceptance, neuronal traffic within the contemporary neural circuits during the execution of baroreflex has never been visualized. By enhancing signal detection and fine-tuning the scanning parameters, we have successfully implemented tractographic analysis of the medulla oblongata in mice that allowed for visualization of connectivity between key brain stem nuclei in the baroreflex circuits. When viewed in conjunction with radiotelemetric analysis of the baroreflex, we found that under pathophysiological conditions when the disrupted connectivity between key nuclei in the baroreflex circuits was reversible, the associated disease condition (e.g. neurogenic hypertension) was amenable to remedial measures. Nevertheless, fatality ensues under pathological conditions (e.g. hepatic encephalopathy) when the connectivity between key substrates in the baroreflex circuits was irreversibly severed. MRI/DTI also prompted partial re-wiring of the contemporary circuit for baroreflex-mediated sympathetic vasomotor tone, and unearthed an explanation for the time lapse between brain death and the inevitable asystole signifying cardiac death that follows.
Nelson, Helen M; Glazier, Alexandra K; Delmonico, Francis L
2016-02-01
The clinical characteristics of all New England Organ Bank (NEOB) donors after circulatory death (DCD) donors were analyzed between July 1, 2009, and June 30, 2014. During that 5-year period, there were 494 authorized medically suitable potential DCDs that the NEOB evaluated, constituting more than 30% of deceased donors coordinated annually by the NEOB. From the cohort of 494 authorized potential DCDs, 331 (67%) became actual DCD, 82 (17%) were attempted as a DCD but did not progress to donation, and 81 (16%) transitioned to an actual donor after brain death (DBD). Two hundred seventy-six organs were transplanted from the 81 donors that transitioned from DCD to actual DBD, including 24 heart, 70 liver, 12 single and 14 bilateral lung, and 12 pancreas transplants. When patients with devastating brain injury admitted to the intensive care units are registered donors, the Organ Procurement Organization staff should share the patient's donation decision with the health care team and the patient's family, as early as possible after the comfort measures only discussion has been initiated. The experience of the NEOB becomes an important reference of the successful implementation of DCD that enables an expansion of deceased donation (inclusive of DBD).
Ethical issues in the use of anencephalic infants as organ donors.
Shinnar, S; Arras, J
1989-11-01
For many, the ethical issues raised in the previous sections are sufficient to justify opposition to tampering with either the dead-donor rule or the definition of death in general and the use of anencephalic infants as organ donors in particular regardless of how many organs could be procured. Others will see it as a question of balancing the relative costs and benefits of the proposal. Given, the likely bad consequences and meager benefits, these protocols are difficult to justify on those grounds as well. The proposals of waiting until brain death has occurred also pose some serious, though not necessarily insurmountable, ethical problems. With supportive care, however, anencephalic infants do not become brain dead in the first week of life. Given the declining incidence of anencephaly, the issue regarding anencephalic infants will probably become moot in the next few years. As the need for organ donors continues to grow, we will undoubtedly be faced with future proposals to harvest vital organs from other "unique" categories of dying or severely impaired patients. We believe that the current dead donor rule and the strict "whole-brain" definition of death are sound public policy and good ethics and should remain the cornerstone of future decisions in this field.
Intracranial pressure and cerebral perfusion pressure in patients developing brain death.
Salih, Farid; Holtkamp, Martin; Brandt, Stephan A; Hoffmann, Olaf; Masuhr, Florian; Schreiber, Stephan; Weissinger, Florian; Vajkoczy, Peter; Wolf, Stefan
2016-08-01
We investigated whether a critical rise of intracranial pressure (ICP) leading to a loss of cerebral perfusion pressure (CPP) could serve as a surrogate marker of brain death (BD). We retrospectively analyzed ICP and CPP of patients in whom BD was diagnosed (n = 32, 16-79 years). Intracranial pressure and CPP were recorded using parenchymal (n = 27) and ventricular probes (n = 5). Data were analyzed from admission until BD was diagnosed. Intracranial pressure was severely elevated (mean ± SD, 95.5 ± 9.8 mm Hg) in all patients when BD was diagnosed. In 28 patients, CPP was negative at the time of diagnosis (-8.2 ± 6.5 mm Hg). In 4 patients (12.5%), CPP was reduced but not negative. In these patients, minimal CPP was 4 to 18 mm Hg. In 1 patient, loss of CPP occurred 4 hours before apnea completed the BD syndrome. Brain death was universally preceded by a severe reduction of CPP, supporting loss of cerebral perfusion as a critical step in BD development. Our data show that a negative CPP is neither sufficient nor a prerequisite to diagnose BD. In BD cases with positive CPP, we speculate that arterial blood pressure dropped below a critical closing pressure, thereby causing cessation of cerebral blood flow. Copyright © 2016 Elsevier Inc. All rights reserved.
Tache, A; Badet, N; Azizi, A; Behr, J; Verdy, S; Delabrousse, E
2016-06-01
To evaluate the contribution of multiphase whole-body CT angiography (CTA) for identifying the contra-indications to multiorgan retrieval (MOR) and improving the preoperative organ harvesting strategy. One hundred and eleven consecutive patients who were clinically brain dead underwent multiphase whole-body CTA to confirm the diagnosis of brain death and for assessment of MOR. The CTA protocol included volumetric acquisitions of the brain and abdominopelvic cavity without IV administration of iodinated contrast material, then images of the thorax-abdomen-pelvis 25s after IV contrast administration, of the brain at 60s and finally an abdominopelvic CT acquisition at 90s. The diagnosis of brain death was based on well-established criteria. The assessment of thorax, abdomen and pelvis was based on a systematic checklist. Post-processing imaging techniques were used in all patients. No organs were retrieved from 21 patients due to patient refusal (19%). Twenty-two potential MOR were denied because of general contra-indications including 12/22 (54%) based on CTA criteria alone. Finally, 68 patients were eligible for MOR and 160 organs were harvested. The exclusion of specific organs was based on CTA alone for 2/16 livers, 4/70 kidneys and 5/55 lungs. Fifty hearts and 58 pancreases were not harvested, none based on CTA results alone. Hepatic abnormalities and vascular anatomical variants were identified in 10% of patients. At least one renal artery variant was found in 28% of patients, 13% presented with a double renal vein and 8% with a hepato-mesenteric artery. Multiphase whole-body CTA for MOR is based on the simultaneous association of cerebral CTA to determine brain death with CTA of the thorax, abdomen and pelvis. This rapid, standardized and easily accessible procedure has no harmful effects on harvested kidneys. It makes it possible to select the donors and the organs to be harvested and allows the retrieving surgeon to identify and anticipate technical difficulties. Copyright © 2015 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.
Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian
2017-09-01
Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.
Caspase 7: increased expression and activation after traumatic brain injury in rats.
Larner, Stephen F; McKinsey, Deborah M; Hayes, Ronald L; W Wang, Kevin K
2005-07-01
Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.
Death after discharge: predictors of mortality in older brain-injured patients.
Peck, Kimberly A; Calvo, Richard Y; Sise, C Beth; Johnson, Jeffrey; Yen, Jessica W; Sise, Michael J; Dunne, Casey E; Badiee, Jayraan; Shackford, Steven R; Lobatz, Michael A
2014-12-01
Older patients with traumatic brain injury (TBI) may be at high risk of death after hospitalization. The purpose of this study was to characterize long-term mortality of older TBI patients who survived to discharge. We hypothesized that predictors of postdischarge mortality differed from those of inpatient mortality. A retrospective cohort study was performed on TBI patients older than 55 years admitted to our Level I trauma center between July 1, 2006, and December 31, 2011. Postdischarge deaths were identified by matching patient data with local vital records up to December 31, 2011, when data collection was terminated (censoring). Patients were categorized by age, comorbidities, history of preinjury anticoagulant/prescription antiplatelet agent therapy, injury severity indices, initial TBI type, prehospital living status, discharge location, and discharge condition. The effect of risk factors on postdischarge mortality was evaluated by Cox proportional hazards modeling. Of 353 patients, 322 (91.2%) survived to discharge. Postdischarge mortality was 19.8% (n = 63) for the study period. Of the postdischarge deaths, 54.0% died within 6 months of discharge, and 68.3% died within 1 year. Median days to death after discharge or censoring were 149 and 410, respectively. Factors associated with death after discharge included age, preinjury anticoagulant use, higher number of Charlson comorbidities, discharge to a long-term care facility, and severe disability. Factors related to injury severity (i.e., Injury Severity Score [ISS], initial Glasgow Coma Scale [GCS] score) and preinjury prescription antiplatelet agent use, previously found to predict inpatient death, did not predict postdischarge mortality. Older TBI patients who survive to discharge have a significant risk of death within 1 year. Predictors of postdischarge mortality and inpatient death differ. Death after discharge is largely a function of overall health status. Monitoring health status and continued aggressive management of comorbidities after discharge may be essential in determining long-term outcomes. Epidemiologic study, level III.
Traumatic Brain Injury and Personality Change
ERIC Educational Resources Information Center
Fowler, Marc; McCabe, Paul C.
2011-01-01
Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…
"The Anatomy of Our Discontent": From Braining the Mind to Mindfulness for Teachers
ERIC Educational Resources Information Center
Baker, Bernadette M.; Saari, Antti
2018-01-01
This paper offers an overview of contemporary inscriptions of mindfulness, their conditions of possibility, and examples of the braining of mind on which contemporary neuro-meets-contemplative turns are dependent. We examine key nineteenth-century events integral to the formation of Biologies Old, in which historic debates over "the death of…
Hospital-School Collaboration to Serve the Needs of Children with Traumatic Brain Injury
ERIC Educational Resources Information Center
Chesire, David J.; Canto, Angela I.; Buckley, Valerie A.
2011-01-01
Traumatic brain injuries are the leading cause of death and disability for children and adolescents each year in the United States. Children who survive these injuries often suffer from a range of impairments including intellectual, academic, behavioral, affective, and social problems, but they often become mired in a slow-moving process while…
DOT National Transportation Integrated Search
1998-10-01
The 1995 crude mortality rate of physician diagnosed traumatic brain injury (TBI) in the New Mexico is estimated to be 21 deaths per 100,000 population and the crude incidence of both hospitalized and fatal TBI is 110 cases per 100,000 population (1,...
Purushothuman, Sivaraman; Marotte, Lauren; Stowe, Sally; Johnstone, Daniel M.; Stone, Jonathan
2013-01-01
Understanding the response of the brain to haemorrhagic damage is important in haemorrhagic stroke and increasingly in the understanding the cerebral degeneration and dementia that follow head trauma and head-impact sports. In addition, there is growing evidence that haemorrhage from small cerebral vessels is important in the pathogenesis of age-related dementia (Alzheimer’s disease). In a penetration injury model of rat cerebral cortex, we have examined the neuropathology induced by a needlestick injury, with emphasis on features prominent in the ageing and dementing human brain, particularly plaque-like depositions and the expression of related proteins. Needlestick lesions were made in neo- and hippocampal cortex in Sprague Dawley rats aged 3–5 months. Brains were examined after 1–30 d survival, for haemorrhage, for the expression of hyperphosphorylated tau, Aβ, amyloid precursor protein (APP), for gliosis and for neuronal death. Temporal cortex from humans diagnosed with Alzheimer’s disease was examined with the same techniques. Needlestick injury induced long-lasting changes–haem deposition, cell death, plaque-like deposits and glial invasion–along the needle track. Around the track, the lesion induced more transient changes, particularly upregulation of Aβ, APP and hyperphosporylated tau in neurons and astrocytes. Reactions were similar in hippocampus and neocortex, except that neuronal death was more widespread in the hippocampus. In summary, experimental haemorrhagic injury to rat cerebral cortex induced both permanent and transient changes. The more permanent changes reproduced features of human senile plaques, including the formation of extracellular deposits in which haem and Aβ-related proteins co-localised, neuronal loss and gliosis. The transient changes, observed in tissue around the direct lesion, included the upregulation of Aβ, APP and hyperphosphorylated tau, not associated with cell death. The findings support the possibility that haemorrhagic damage to the brain can lead to plaque-like pathology. PMID:23555765
Zheng, J; Li, G; Chen, S; Bihl, J; Buck, J; Zhu, Y; Xia, H; Lazartigues, E; Chen, Y; Olson, J E
2014-07-25
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Postmodern personhood: a matter of consciousness.
Rich, Ben A
1997-01-01
The concept of person is integral to bioethical discourse because persons are the proper subject of the moral domain. Nevertheless, the concept of person has played no role in the prevailing formulation of human death because of a purported lack of consensus concerning the essential attributes of a person. Beginning with John Locke's fundamental proposition that person is a 'forensic term', I argue that in Western society we do have a consensus on at least one necessary condition for personhood, and that is the capacity for conscious experience. When we consider the whole brain formulation of death, and the most prominent defense of it by the President's Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research, we can readily identify the flaws that grow out of the failure to define human death as the permanent loss of the capacity for conscious experience. Most fundamental among these flaws is a definition of human death that reduces persons to the capacity of the brain to regulate purely physiological functioning. Such a formulation would, in theory, apply to any member of the animal kingdom. I suggest that an appropriate concept of death should capture what it is about a particular living being that is so essential to it that the permanent loss of that thing constitutes death. What is essential to being a human being is living the life of a person, which derives from the capacity for conscious experience.
Morris, Martha Clare; Brockman, John; Schneider, Julie A.; Wang, Yamin; Bennett, David A.; Tangney, Christy C.; van de Rest, Ondine
2017-01-01
IMPORTANCE Seafood consumption is promoted for its many health benefits even though its contamination by mercury, a known neurotoxin, is a growing concern. OBJECTIVE To determine whether seafood consumption is correlated with increased brain mercury levels and also whether seafood consumption or brain mercury levels are correlated with brain neuropathologies. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional analyses of deceased participants in the Memory and Aging Project clinical neuropathological cohort study, 2004–2013. Participants resided in Chicago retirement communities and subsidized housing. The study included 286 autopsied brains of 554 deceased participants (51.6%). The mean (SD) age at death was 89.9 (6.1) years, 67% (193) were women, and the mean (SD) educational attainment was 14.6 (2.7) years. EXPOSURES Seafood intake was first measured by a food frequency questionnaire at a mean of 4.5 years before death. MAIN OUTCOMES AND MEASURES Dementia-related pathologies assessed were Alzheimer disease, Lewy bodies, and the number of macroinfarcts and microinfarcts. Dietary consumption of seafood and n-3 fatty acids was annually assessed by a food frequency questionnaire in the years before death. Tissue concentrations of mercury and selenium were measured using instrumental neutron activation analyses. RESULTS Among the 286 autopsied brains of 544 participants, brain mercury levels were positively correlated with the number of seafood meals consumed per week (ρ = 0.16; P = .02). In models adjusted for age, sex, education, and total energy intake, seafood consumption (≥1 meal[s]/week) was significantly correlated with less Alzheimer disease pathology including lower density of neuritic plaques (β = −0.69 score units [95% CI, −1.34 to −0.04]), less severe and widespread neurofibrillary tangles (β = −0.77 score units [95% CI, −1.52 to −0.02]), and lower neuropathologically defined Alzheimer disease (β = −0.53 score units [95% CI, −0.96 to −0.10]) but only among apolipoprotein E (APOE ε4) carriers. Higher intake levels of α-linolenic acid (18:3 n-3) were correlated with lower odds of cerebral macroinfarctions (odds ratio for tertiles 3 vs 1, 0.51 [95% CI, 0.27 to 0.94]). Fish oil supplementation had no statistically significant correlation with any neuropathologic marker. Higher brain concentrations of mercury were not significantly correlated with increased levels of brain neuropathology. CONCLUSIONS AND RELEVANCE In cross-sectional analyses, moderate seafood consumption was correlated with lesser Alzheimer disease neuropathology. Although seafood consumption was also correlated with higher brain levels of mercury, these levels were not correlated with brain neuropathology. PMID:26836731
Metformin treatment after the hypoxia-ischemia attenuates brain injury in newborn rats
Fang, Mingchu; Jiang, Huai; Ye, Lixia; Cai, Chenchen; Hu, Yingying; Pan, Shulin; Li, Peijun; Xiao, Jian; Lin, Zhenlang
2017-01-01
Neonatal hypoxic-ischemic (HI) brain injury is a devastating disease that often leads to death and detrimental neurological deficits. The present study was designed to evaluate the ability of metformin to provide neuroprotection in a model of neonatal hypoxic-ischemic brain injury and to study the associated molecular mechanisms behind these protective effects. Here, we found that metformin treatment remarkably attenuated brain infarct volumes and brain edema at 24 h after HI injury, and the neuroprotection of metformin was associated with inhibition of neuronal apoptosis, suppression of the neuroinflammation and amelioration of the blood brain barrier breakdown. Additionally, metformin treatment conferred long-term protective against brain damage at 7 d after HI injury. Our study indicates that metformin treatment protects against neonatal hypoxic-ischemic brain injury and thus has potential as a therapy for this disease. PMID:29088867
2016-07-01
of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, diaphragm, and skin) that were obtained from rats (postnatal days 42 and 70...of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, and diaphragm) that were used to quantify the amounts of free and regenerated...Biosamples (brain, diaphragm, eye, heart, lung, liver, and kidney ) were collected at time of death or 48 h post-exposure for survivors. All
Indrieri, Alessia; Conte, Ivan; Chesi, Giancarlo; Romano, Alessia; Quartararo, Jade; Tatè, Rosarita; Ghezzi, Daniele; Zeviani, Massimo; Goffrini, Paola; Ferrero, Ileana; Bovolenta, Paola; Franco, Brunella
2013-01-01
Mitochondrial-dependent (intrinsic) programmed cell death (PCD) is an essential homoeostatic mechanism that selects bioenergetically proficient cells suitable for tissue/organ development. However, the link between mitochondrial dysfunction, intrinsic apoptosis and developmental anomalies has not been demonstrated to date. Now we provide the evidence that non-canonical mitochondrial-dependent apoptosis explains the phenotype of microphthalmia with linear skin lesions (MLS), an X-linked developmental disorder caused by mutations in the holo-cytochrome c-type synthase (HCCS) gene. By taking advantage of a medaka model that recapitulates the MLS phenotype we demonstrate that downregulation of hccs, an essential player of the mitochondrial respiratory chain (MRC), causes increased cell death via an apoptosome-independent caspase-9 activation in brain and eyes. We also show that the unconventional activation of caspase-9 occurs in the mitochondria and is triggered by MRC impairment and overproduction of reactive oxygen species (ROS). We thus propose that HCCS plays a key role in central nervous system (CNS) development by modulating a novel non-canonical start-up of cell death and provide the first experimental evidence for a mechanistic link between mitochondrial dysfunction, intrinsic apoptosis and developmental disorders. PMID:23239471
Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia.
Fricker, Michael; Vilalta, Anna; Tolkovsky, Aviva M; Brown, Guy C
2013-03-29
Microglia are resident brain macrophages, which can cause neuronal loss when activated in infectious, ischemic, traumatic, and neurodegenerative diseases. Caspase-8 has both prodeath and prosurvival roles, mediating apoptosis and/or preventing RIPK1-mediated necroptosis depending on cell type and stimulus. We found that inflammatory stimuli (LPS, lipoteichoic acid, or TNF-α) caused an increase in caspase-8 IETDase activity in primary rat microglia without inducing apoptosis. Inhibition of caspase-8 with either Z-VAD-fmk or IETD-fmk resulted in necrosis of activated microglia. Inhibition of caspases with Z-VAD-fmk did not kill non-activated microglia, or astrocytes and neurons in any condition. Necrostatin-1, a specific inhibitor of RIPK1, prevented microglial caspase inhibition-induced death, indicating death was by necroptosis. In mixed cerebellar cultures of primary neurons, astrocytes, and microglia, LPS induced neuronal loss that was prevented by inhibition of caspase-8 (resulting in microglial necroptosis), and neuronal death was restored by rescue of microglia with necrostatin-1. We conclude that the activation of caspase-8 in inflamed microglia prevents their death by necroptosis, and thus, caspase-8 inhibitors may protect neurons in the inflamed brain by selectively killing activated microglia.
Choi, Ji Woong; Shin, Chan Young; Choi, Min Sik; Yoon, Seo Young; Ryu, Jong Hoon; Lee, Jae-Chul; Kim, Won-Ki; El Kouni, Mahmoud H; Ko, Kwang Ho
2008-06-01
We previously reported that uridine blocked glucose deprivation-induced death of immunostimulated astrocytes by preserving ATP levels. Uridine phosphorylase (UPase), an enzyme catalyzing the reversible phosphorylation of uridine, was involved in this effect. Here, we tried to expand our previous findings by investigating the uridine effect on the brain and neurons using in vivo and in vitro ischemic injury models. Orally administrated uridine (50-200 mg/kg) reduced middle cerebral artery occlusion (1.5 h)/reperfusion (22 h)-induced infarct in mouse brain. Additionally, in the rat brain subjected to the same ischemic condition, UPase mRNA and protein levels were up-regulated. Next, we employed glucose deprivation-induced hypoglycemia in mixed cortical cultures of neurons and astrocytes as an in vitro model. Cells were deprived of glucose and, two hours later, supplemented with 20 mM glucose. Under this condition, a significant ATP loss followed by death was observed in neurons but not in astrocytes, which were blocked by treatment with uridine in a concentration-dependent manner. Inhibition of cellular uptake of uridine by S-(4-nitrobenzyl)-6-thioinosine blocked the uridine effect. Similar to our in vivo data, UPase expression was up-regulated by glucose deprivation in mRNA as well as protein levels. Additionally, 5-(phenylthio)acyclouridine, a specific inhibitor of UPase, prevented the uridine effect. Finally, the uridine effect was shown only in the presence of astrocytes. Taken together, the present study provides the first evidence that uridine protects neurons against ischemic insult-induced neuronal death, possibly through the action of UPase.
Tang, Minke; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Kagan, Valerian E; Bayir, Hülya
2010-01-01
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
Katsari, Vasiliki; Domeyer, Philip J; Sarafis, Pavlos; Souliotis, Kyriakos
2015-07-02
Organ donation rates in Greece are the lowest in the European Union. Studying and improving young students' awareness may increase organ donation rates. This study aimed to investigate young students' knowledge, attitude and information regarding organ donation and whether they are modified by putative predictors. A 62-item electronic questionnaire was sent to 1451 eligible students aged 18-30 years in 16 Greek public technical schools. Two composite scales (knowledge and attitude) were created. The multivariate statistical analysis included ordinal logistic and linear regression, as appropriate. Only 37.9% of the students knew the correct definition of organ donation, 40.3% knew which organs can be donated, 27.4% were informed about the new Greek legislation, and 83.1% acknowledged the need for better information. Although 60.5% would donate an organ after death, only 16.1% would become living donors. Although 83.1% of the students declared knowing what brain death means, 18.6% believe that a brain-dead person could fully recover and 32.3% are unsure about it. Being a health professional or a blood donor, the parent's educational level, the wish to donate all organs after death, the information from announcements or posters, the fear of organ removal after death without prior consent, the consent for autopsy, the wish for better information, and the misbelief that a brain-dead person could fully recover emerged as important predictors of the knowledge and attitude, regarding organ donation. An important lack of knowledge and misperceptions were noted regarding organ donation. Significant predictors were identified.
Fetal brain hypometabolism during prolonged hypoxaemia in the llama
Ebensperger, Germán; Ebensperger, Renato; Herrera, Emilio A; Riquelme, Raquel A; Sanhueza, Emilia M; Lesage, Florian; Marengo, Juan J; Tejo, Rodrigo I; Llanos, Aníbal J; Reyes, Roberto V
2005-01-01
In this study we looked for additional evidence to support the hypothesis that fetal llama reacts to hypoxaemia with adaptive brain hypometabolism. We determined fetal llama brain temperature, Na+ and K+ channel density and Na+–K+-ATPase activity. Additionally, we looked to see whether there were signs of cell death in the brain cortex of llama fetuses submitted to prolonged hypoxaemia. Ten fetal llamas were instrumented under general anaesthesia to measure pH, arterial blood gases, mean arterial pressure, heart rate, and brain and core temperatures. Measurements were made 1 h before and every hour during 24 h of hypoxaemia (n = 5), which was imposed by reducing maternal inspired oxygen fraction to reach a fetal arterial partial pressure of oxygen (Pa,O2) of about 12 mmHg. A normoxaemic group was the control (n = 5). After 24 h of hypoxaemia, we determined brain cortex Na+–K+-ATPase activity, ouabain binding, and the expression of NaV1.1, NaV1.2, NaV1.3, NaV1.6, TREK1, TRAAK and KATP channels. The lack of brain cortex damage was assessed as poly ADP-ribose polymerase (PARP) proteolysis. We found a mean decrease of 0.56°C in brain cortex temperature during prolonged hypoxaemia, which was accompanied by a 51% decrease in brain cortex Na+–K+-ATPase activity, and by a 44% decrease in protein content of NaV1.1, a voltage-gated Na+ channel. These changes occurred in absence of changes in PARP protein degradation, suggesting that the cell death of the brain was not enhanced in the fetal llama during hypoxaemia. Taken together, these results provide further evidence to support the hypothesis that the fetal llama responds to prolonged hypoxaemia with adaptive brain hypometabolism, partly mediated by decreases in Na+–K+-ATPase activity and expression of NaV channels. PMID:16037083
Tibbs, R E; Haines, D E; Parent, A D
1998-12-01
Unintentional injury is the leading cause of death in children under the age of fourteen. The majority of these injuries/deaths occur when the child becomes airborne during an accident. The most common mechanisms by which children become airborne are motor vehicle collisions, bicycling accidents, and falls. A head injury is seen in a significant number of children in this setting. This includes injury to the scalp, skull, coverings of the brain, or the brain itself. These injuries are the most common cause of death in children resulting from unintentional injury. Other typical injuries include external bruises and abrasions, extremity fractures, and bruising or bleeding of internal organs. We propose to name this constellation of injuries the projectile child syndrome. This refers to those injuries occurring in infants and children as a result of becoming airborne during the events of an accident. The pattern of injuries seen as related to the anatomy of the child is stressed. A review of the impact to society and guidelines for prevention are presented.
Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons
Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian
2016-01-01
Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345
Not quite dead: why Egyptian doctors refuse the diagnosis of death by neurological criteria.
Hamdy, Sherine
2013-04-01
Drawing on two years of ethnographic fieldwork in Egypt focused on organ transplantation, this paper examines the ways in which the "scientific" criteria of determining death in terms of brain function are contested by Egyptian doctors. Whereas in North American medical practice, the death of the "person" is associated with the cessation of brain function, in Egypt, any sign of biological life is evidence of the persistence, even if fleeting, of the soul. I argue that this difference does not exemplify an irresolvable culture clash but points to an unsettling aspect of cadaveric organ procurement that has emerged wherever organ transplantation is practiced. Further, I argue that a misdiagnosis of the problem, as one about "religious extremism" or a "civilizational clash," has obfuscated unresolved concerns about fairness, access, and justice within Egyptian medical spheres. This misdiagnosis has led to the suspension of a cadaveric procurement program for over 30 years, despite Egypt's pioneering efforts in kidney transplantation.
Sudden death and paroxysmal autonomic dysfunction in stiff-man syndrome.
Mitsumoto, H; Schwartzman, M J; Estes, M L; Chou, S M; La Franchise, E F; De Camilli, P; Solimena, M
1991-04-01
Two women with typical stiff-man syndrome (SMS) developed increasingly frequent attacks of muscle spasms with severe paroxysmal autonomic dysfunctions such as transient hyperpyrexia, diaphoresis, tachypnea, tachycardia, pupillary dilation, and arterial hypertension. Autoantibodies to GABA-ergic neurons were identified in the serum of both patients and in the cerebrospinal fluid of one. Both died suddenly and unexpectedly. General autopsy did not reveal the cause of death. Neuropathological studies revealed perivascular gliosis in the spinal cord and brain stem of one patient and lymphocytic perivascular infiltration in the spinal cord, brain stem, and basal ganglia of the other. The occurrence of a chronic inflammatory reaction in one of the two patients supports the idea that an autoimmune disease against GABA-ergic neurons may be involved in SMS. A review of the literature indicates that functional impairment in SMS is severe and prognosis is unpredictable because of the potential for sudden and unexpected death. Both muscular abnormalities and autonomic dysfunctions may result from autoimmunity directed against GABA-ergic neurons.
Intensive care medicine and organ donation: exploring the last frontiers?
Escudero, D; Otero, J
2015-01-01
The main, universal problem for transplantation is organ scarcity. The gap between offer and demand grows wider every year and causes many patients in waiting list to die. In Spain, 90% of transplants are done with organs taken from patients deceased in brain death but this has a limited potential. In order to diminish organ shortage, alternative strategies such as donations from living donors, expanded criteria donors or donation after circulatory death, have been developed. Nevertheless, these types of donors also have their limitations and so are not able to satisfy current organ demand. It is necessary to reduce family denial and to raise donation in brain death thus generalizing, among other strategies, non-therapeutic elective ventilation. As intensive care doctors, cornerstone to the national donation programme, we must consolidate our commitment with society and organ transplantation. We must contribute with the values proper to our specialization and try to reach self-sufficiency by rising organ obtainment. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Wu, Jui-Sheng; Tsai, Hsin-Da; Cheung, Wai-Mui; Hsu, Chung Y; Lin, Teng-Nan
2016-08-01
Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult.
Duncan, Jeremy W.; Zhang, Xiao; Wang, Niping; Johnson, Shakevia; Harris, Sharonda; Udemgba, Chinelo; Ou, Xiao-Ming; Youdim, Moussa B.; Stockmeier, Craig A.; Wang, Jun Ming
2016-01-01
Binge drinking induces several neurotoxic consequences including oxidative stress and neurodegeneration. Because of these effects, drugs which prevent ethanol-induced damage to the brain may be clinically beneficial. In this study, we investigated the ethanol-mediated KLF11-MAO cell death cascade in the frontal cortex of Sprague–Dawley rats exposed to a modified Majchowicz 4-day binge ethanol model and control rats. Moreover, MAO inhibitors (MAOIs) were investigated for neuroprotective activity against binge ethanol. Binge ethanol-treated rats demonstrated a significant increase in KLF11, both MAO isoforms, protein oxidation and caspase-3, as well as a reduction in BDNF expression in the frontal cortex compared to control rats. MAOIs prevented these binge ethanol-induced changes, suggesting a neuroprotective benefit. Neither binge ethanol nor MAOI treatment significantly affected protein expression levels of the oxidative stress enzymes, SOD2 or catalase. Furthermore, ethanol-induced antinociception was enhanced following exposure to the 4-day ethanol binge. These results demonstrate that the KLF11-MAO pathway is activated by binge ethanol exposure and MAOIs are neuroprotective by preventing the binge ethanol-induced changes associated with this cell death cascade. This study supports KLF11-MAO as a mechanism of ethanol-induced neurotoxicity and cell death that could be targeted with MAOI drug therapy to alleviate alcohol-related brain injury. Further examination of MAOIs to reduce alcohol use disorder-related brain injury could provide pivotal insight to future pharmacotherapeutic opportunities. PMID:26805422
Moxley, Rodney A; Francis, David H; Tamura, Mizuho; Marx, David B; Santiago-Mateo, Kristina; Zhao, Mojun
2017-01-26
Enterohemorrhagic Escherichia coli (EHEC) is the most common cause of hemorrhagic colitis and hemolytic uremic syndrome in human patients, with brain damage and dysfunction the main cause of acute death. We evaluated the efficacy of urtoxazumab (TMA-15, Teijin Pharma Limited), a humanized monoclonal antibody against Shiga toxin (Stx) 2 for the prevention of brain damage, dysfunction, and death in a piglet EHEC infection model. Forty-five neonatal gnotobiotic piglets were inoculated orally with 3 × 10⁸ colony-forming units of EHEC O157:H7 strain EDL933 (Stx1⁺, Stx2⁺) when 22-24 h old. At 24 h post-inoculation, piglets were intraperitoneally administered placebo or TMA-15 (0.3, 1.0 or 3.0 mg/kg body weight). Compared to placebo ( n = 10), TMA-15 ( n = 35) yielded a significantly greater probability of survival, length of survival, and weight gain ( p <0.05). The efficacy of TMA-15 against brain lesions and death was 62.9% ( p = 0.0004) and 71.4% ( p = 0.0004), respectively. These results suggest that TMA-15 may potentially prevent or reduce vascular necrosis and infarction of the brain attributable to Stx2 in human patients acutely infected with EHEC. However, we do not infer that TMA-15 treatment will completely protect human patients infected with EHEC O157:H7 strains that produce both Stx1 and Stx2.
Li, D; Liu, F; Yang, T; Jin, T; Zhang, H; Luo, X; Wang, M
2016-09-30
Intracerebral hemorrhage (ICH) results in a devastating brain disorder with high mortality and poor prognosis and effective therapeutic intervention for the disease remains a challenge at present. The present study investigated the neuroprotective effects of rapamycin on ICH-induced brain damage and the possible involvement of activated microglia. ICH was induced in rats by injection of type IV collagenase into striatum. Different dose of rapamycin was systemically administrated by intraperitoneal injection beginning at 1 h after ICH induction. Western blot analysis showed that ICH led to a long-lasting increase of phosphorylated mTOR and this hyperactivation of mTOR was reduced by systemic administration of rapamycin. Rapamycin treatment significantly improved the sensorimotor deficits induced by ICH, and attenuated ICH-induced brain edema formation as well as lesion volume. Nissl and Fluoro-Jade C staining demonstrated that administration with rapamycin remarkably decreased neuronal death surrounding the hematoma at 7 d after ICH insult. ELISA and real-time quantitative PCR demonstrated that rapamycin inhibited ICH-induced excessive expression of TNF-α and IL-1β in ipsilateral hemisphere. Furthermore, activation of microglia induced by ICH was significantly suppressed by rapamycin administration. These data indicated that treatment of rapamycin following ICH decreased the brain injuries and neuronal death at the peri-hematoma striatum, and increased neurological function, which associated with reduced the levels of proinflammatory cytokines and activated microglia. The results provide novel insight into the neuroprotective therapeutic strategy of rapamycin for ICH insult, which possibly involving the regulation of microglial activation.
Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok
2011-12-01
Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies
2016-01-01
N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca2+ influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca2+ homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases. PMID:27630777
Voroneanu, Luminita; Siriopol, Dimitrie; Apetrii, Mugurel; Hogas, Simona; Onofriescu, Mihai; Nistor, Ionut; Kanbay, Mehmet; Dumea, Raluca; Cusai, Silvia; Cianga, Petru; Constantinescu, Daniela; Covic, Adrian
2018-05-01
Cardiovascular (CV) disease is a major cause of death in hemodialysis patients. Biomarkers used to identify high-risk asymptomatic patients would allow early evaluation of cardiac dysfunction and appropriate therapeutic intervention. Amino-terminal pro-brain natriuretic peptide (NT-proBNP) and galectin-3 (Gal-3) may serve this purpose. Plasma levels of NT-proBNP and Gal-3 were measured in 173 patients. Patients were prospectively followed for occurrences of major CV events or death. The association of NT-proBNP and Gal-3 with outcome was analyzed. The prognostic abilities for the combined outcome of Gal-3 and/or NT-proBNP were evaluated. During a median follow-up of 36 months, there were 47 incident outcomes (death and CV events). In the univariable Cox analysis, age, hypertension, albumin, phosphorus levels, and combined elevation of NT-proBNP with Gal-3 above the median (hazard ratio [HR] = 3.65, 95% confidence interval [CI] = 1.45-9.21) were associated with outcomes. In multivariable Cox analysis, both NT-proBNP and Gal-3 values above the median remained associated with outcomes (HR = 3.34, 95% CI = 1.30-8.56). In clinically asymptomatic dialysis patients, combined use of NT-proBNP and Gal-3 may improve risk stratification for death and CV events.
Engel, Tobias; Plesnila, Nikolaus; Prehn, Jochen H M; Henshall, David C
2011-01-01
The Bcl-2 homology (BH) domain 3-only proteins are a proapoptotic subgroup of the Bcl-2 gene family, which regulate cell death via effects on mitochondria. The BH3-only proteins react to various cell stressors and promote cell death by binding and inactivating antiapoptotic Bcl-2 family members and direct activation of proapoptotic multi-BH domain proteins such as Bax. Here, we review the in vivo evidence for their involvement in the pathophysiology of status epilepticus and contrast it to ischemia and traumatic brain injury. Seizures in rodents activate three potent proapoptotic BH3-only proteins: Bid, Bim, and Puma. Analysis of damage after seizures in mice singly deficient for each BH3-only protein supports a causal role for Puma and to a lesser extent Bim but, surprisingly, not Bid. In ischemia and trauma, where core aspects of the pathophysiology of cell death overlap, multiple BH3-only proteins are also activated and Bid has been shown to be required for neuronal death. The findings suggest that while each neurologic insult activates multiple BH3-only proteins, there may be specificity in their functional contribution. Future challenges include evaluating the remaining BH3-only proteins, explaining different causal contributions, and, if possible, exploring neurologic outcomes in mouse models deficient for multiple BH3-only proteins. PMID:21364604
Robinson, Andrew C; McNamee, Roseanne; Davidson, Yvonne S; Horan, Michael A; Snowden, Julie S; McInnes, Lynn; Pendleton, Neil; Mann, David M A
2018-04-25
Community- or population-based longitudinal studies of cognitive ability with a brain donation end point offer an opportunity to examine relationships between pathology and cognitive state prior to death. Discriminating the earliest signs of dementing disorders, such as Alzheimer disease (AD), is necessary to undertake early interventions and treatments. The neuropathological profile of brains donated from The University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age, including CERAD (Consortium to Establish a Registry for Alzheimer's Disease) and Braak stage, was assessed by immunohistochemistry. Cognitive test scores collected 20 years prior to death were correlated with the extent of AD pathology present at death. Baseline scores from the Memory Circle test had the ability to distinguish between individuals who developed substantial AD pathology and those with no, or low, AD pathology. Predicted test scores at the age of 65 years also discriminated between these pathology groups. The addition of APOE genotype further improved the discriminatory ability of the model. The results raise the possibility of identifying individuals at future risk of the neuropathological changes associated with AD over 20 years before death using a simple cognitive test. This work may facilitate early interventions, therapeutics and treatments for AD by identifying at-risk and minimally affected (in pathological terms) individuals. © 2018 S. Karger AG, Basel.
[Ischemic brain injury and hepatocyte growth factor].
Takeo, Satoshi; Takagi, Norio; Takagi, Keiko
2007-11-01
Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.
Nakajima, Yuko; Horiuchi, Yutaka; Kamata, Hiroshi; Yukawa, Masayoshi; Kuwabara, Masato; Tsubokawa, Takashi
2010-07-01
Secondary brain damage (SBD) is caused by apoptosis after traumatic brain injury that is classified into concussion and contusion. Brain concussion is temporary unconsciousness or confusion caused by a blow on the head without pathological changes, and contusion is a brain injury with hemorrhage and broad extravasations. In this study, we investigated the time-dependent changes of apoptosis in hippocampus after brain concussion and contusion using rat models. We generated the concussion by dropping a plumb on the dura from a height of 3.5 cm and the contusion by cauterizing the cerebral cortex. SBD was evaluated in the hippocampus by histopathological analyses and measuring caspase-3 activity that induces apoptotic neuronal cell death. The frequency of abnormal neuronal cells with vacuolation or nuclear condensation, or those with DNA fragmentation was remarkably increased at 1 hr after concussion (about 30% for each abnormality) from the pre-injury level (0%) and reached the highest level (about 50% for each) by 48 hrs, whereas the frequency of abnormal neuronal cells was increased at 1 hr after contusion (about 10%) and reached the highest level (about 40%) by 48 hrs. In parallel, caspase-3 activity was increased sevenfold in the hippocampus at 1 hr after concussion and returned to the pre-injury level by 48 hrs, whereas after contusion, caspase-3 activity was continuously increased to the highest level at 48 hrs (fivefold). Thus, anti-apoptotic-cell-death treatment to prevent SBD must be performed by 1 hr after concussion and at latest by 48 hrs after contusion.
Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I
2012-12-21
The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.
Patrick, Ping; Price, Tulin O; Diogo, Ana L; Sheibani, Nader; Banks, William A; Shah, Gul N
Hyperglycemia in diabetes mellitus causes oxidative stress and pericyte depletion from the microvasculature of the brain thus leading to the Blood-Brain Barrier (BBB) disruption. The compromised BBB exposes the brain to circulating substances, resulting in neurotoxicity and neuronal cell death. The decline in pericyte numbers in diabetic mouse brain and pericyte apoptosis in high glucose cultures are caused by excess superoxide produced during enhanced respiration (mitochondrial oxidative metabolism of glucose). Superoxide is precursor to all Reactive Oxygen Species (ROS) which, in turn, cause oxidative stress. The rate of respiration and thus the ROS production is regulated by mitochondrial carbonic anhydrases (mCA) VA and VB, the two isoforms expressed in the mitochondria. Inhibition of both mCA: decreases the oxidative stress and restores the pericyte numbers in diabetic brain; and reduces high glucose-induced respiration, ROS, oxidative stress, and apoptosis in cultured brain pericytes. However, the individual role of the two isoforms has not been established. To investigate the contribution of mCA VA in ROS production and apoptosis, a mCA VA overexpressing brain pericyte cell line was engineered. These cells were exposed to high glucose and analyzed for the changes in ROS and apoptosis. Overexpression of mCA VA significantly increased pericyte ROS and apoptosis. Inhibition of mCA VA with topiramate prevented increases both in glucose-induced ROS and pericyte death. These results demonstrate, for the first time, that mCA VA regulates the rate of pericyte respiration. These findings identify mCA VA as a novel and specific therapeutic target to protect the cerebromicrovascular bed in diabetes.
Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi
2015-01-01
Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. PMID:25910782
Nayak, Lakshmi; DeAngelis, Lisa M; Robins, H Ian; Govindan, Ramaswamy; Gadgeel, Shirish; Kelly, Karen; Rigas, James R; Peereboom, David M; Rosenfeld, Steven S; Muzikansky, Alona; Zheng, Ming; Urban, Patrick; Abrey, Lauren E; Omuro, Antonio; Wen, Patrick Y
2015-12-01
Treatment options for patients with non-small cell lung cancer (NSCLC) with brain metastases are limited. Patupilone (EPO906), a blood-brain barrier-penetrating, microtubule-targeting, cytotoxic agent, has shown clinical activity in phase 1/2 studies in patients with NSCLC. This study evaluates the efficacy, pharmacokinetics, and safety of patupilone in NSCLC brain metastases. Adult patients with NSCLC and confirmed progressive brain metastases received patupilone intravenously at 10 mg/m(2) every 3 weeks. The primary endpoint of this multinomial 2-stage study combined early progression (EP; death or progression within 3 weeks) and progression-free survival at 9 weeks (PFS9w) to determine drug activity. Fifty patients with a median age of 60 years (range, 33-74 years) were enrolled; the majority were men (58%), and most had received prior therapy for brain metastases (98%). The PFS9w rate was 36%, and the EP rate was 26%. Patupilone blood pharmacokinetic analyses showed mean areas under the concentration-time curve from time zero to 504 hours for cycles 1 and 3 of 1544 and 1978 ng h/mL, respectively, and a mean steady state distribution volume of 755 L/m(2) . Grade 3/4 adverse events (AEs), regardless of their relation with the study drug, included diarrhea (24%), pulmonary embolisms (8%), convulsions (4%), and peripheral neuropathy (4%). All patients discontinued the study drug: 31 (62%) for disease progression and 13 (26%) for AEs. Twenty-five of 32 deaths were due to brain metastases. The median time to progression and the overall survival were 3.2 and 8.8 months, respectively. This is the first prospective study of chemotherapy for recurrent brain metastases from NSCLC. In this population, patupilone demonstrated activity in heavily treated patients. © 2015 American Cancer Society.
Clark, D.R.; Kroll, J.C.
1977-01-01
Adult female free-tailed bats (Tadarida brasiliensis) were collected at Bracken Cave, Texas, and shipped to the Patuxent Wildlife Research Center. Treated mealworms (Tenebrio molitor) containing 107 ppm DDE were fed to 17 bats; five other bats were fed untreated mealworms. After 40 days on dosage, during which one dosed bat was killed accidentally, four dosed bats were frozen and the remaining 17 were starved to death. The objective was to elevate brain levels of DDE to lethality and measure these concentrations. After the feeding period, dosed bats weighed less than controls. After starvation, the body condition of dosed bats was poorer than that of controls even though there was no difference in the amounts of carcass fat. During starvation, dosed bats lost weight faster than controls. Also, four dosed bats exhibited the prolonged tremoring that characterizes DDE poisoning. DDE increased in brains of starving bats as fat was metabolized. The estimated mean brain concentration of DDE diagnostic of death was 519 ppm with a range of 458-564 ppm. These values resemble diagnostic levels known for two species of passerine birds, but they exceed published levels for two free-tailed bats from Carlsbad Caverns, New Mexico.
Kim, Jung-Ran Theresa; Fisher, Murray J; Elliott, Doug
2006-08-01
Organ donation from brain dead patients is a contentious issue in Korea within the cultural context of Confucian beliefs. Each year thousands of patients wait for organ donation note poor donation rates and importance of nurses in identifying potential donors. It is therefore important to identify knowledge levels and attitudes towards organ donation from brain dead patients of nursing students as future health workers. Using a 38-item instrument previously developed by the researchers, 292 undergraduate students in a Korean nursing college were surveyed in 2003 in Korea (response rate 92%). Validity and reliability of the instrument was demonstrated using a multiple analytical approach. A lack of knowledge regarding diagnostic tests and co-morbid factors of brain death were noted among students. Their attitudes toward organ donation were somewhat mixed and ambiguous, but overall they were positive and willing to be a potential donor in the future. While this study identified that an effective educational program is necessary for nursing students in Korea to improve their knowledge of brain death and organ donation, further research is also required to verify these single-site findings and improve the generalisability of results.
Santos, R S; Malheiros, S M F; Cavalheiro, S; de Oliveira, J M Parente
2013-03-01
Cancer is the leading cause of death in economically developed countries and the second leading cause of death in developing countries. Malignant brain neoplasms are among the most devastating and incurable forms of cancer, and their treatment may be excessively complex and costly. Public health decision makers require significant amounts of analytical information to manage public treatment programs for these patients. Data mining, a technology that is used to produce analytically useful information, has been employed successfully with medical data. However, the large-scale adoption of this technique has been limited thus far because it is difficult to use, especially for non-expert users. One way to facilitate data mining by non-expert users is to automate the process. Our aim is to present an automated data mining system that allows public health decision makers to access analytical information regarding brain tumors. The emphasis in this study is the use of ontology in an automated data mining process. The non-experts who tried the system obtained useful information about the treatment of brain tumors. These results suggest that future work should be conducted in this area. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ha, Grace K; Parikh, Shivani; Huang, Zhi; Petitto, John M
2008-08-13
The temporal relationship between severity of peripheral axonal injury and T lymphocyte trafficking to the neuronal cell bodies of origin in the brain has been unclear. We sought to test the hypothesis that greater neuronal death induced by disparate forms of peripheral nerve injury would result in differential patterns of T cell infiltration and duration at the cell bodies of origin in the brain and that these measures would correlate with the magnitude of neuronal death over time and cumulative neuronal loss. To test this hypothesis, we compared the time course of CD3(+) T cell infiltration and neuronal death (assessed by CD11b(+) perineuronal microglial phagocytic clusters) following axonal crush versus axonal resection injuries, two extreme variations of facial nerve axotomy that result in mild versus severe neuronal loss, respectively, in the facial motor nucleus. We also quantified the number of facial motor neurons present at 49 days post-injury to determine whether differences in the levels of neuronal death between nerve crush and resection correlated with differences in cumulative neuronal loss. Between 1 and 7 days post-injury when levels of neuronal death were minimal, we found that the rate of accumulation and magnitude of the T cell response was similar following nerve crush and resection. Differences in the T cell response were apparent by 14 days post-injury when the level of neuronal death following resection was substantially greater than that seen in crush injury. For nerve resection, the peak of neuronal death at 14 days post-resection was followed by a maximal T cell response one week later at 21 days. Differences in the level of neuronal death between the two injuries across the time course tested reflected differences in cumulative neuronal loss at 49 days post-injury. Altogether, these data suggest that the trafficking of T cells to the injured FMN is dependent upon the severity of peripheral nerve injury and associated neuronal death.
Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei
2018-06-01
Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Changes in the organ procurement system in South Korea: effects on brain-dead donor numbers.
Lee, S D; Kim, J H
2009-11-01
In Korea, the Organ Transplantation Act came into effect in 2000, establishing the Korean Network for Organ Sharing (KONOS) with centralized authority for organ procurement as well as for approval of donors and recipients to ensure fair organ allocation. However, the number of brain-dead donors decreased sharply, and the organ allocation system proved inefficient. The government revised the Organ Transplantation Act in August 2002, introducing an incentive system. If a transplantation hospital formed a Committee for Brain Death Evaluation and a Hospital Organ Procurement Organization, it could receive a kidney from a brain dead-donor as an incentive to foster organ procurement regardless of the KONOS wait list. The government also launched a pilot brain-dead donor registry program to strengthen Hospital Organ Procurement Organization activity. If local hospitals collaborated with specialized hospitals in organ procurement, local hospitals obtained financial incentives. But because the organ shortage problem has not been resolved, the government has proposed four initiatives: first, broadening the incentive system, which makes it possible to give each specialized hospital a choice of one of eight organs from each donor as an incentive; second, development of an Independent Organ Procurement Organization; third introduction of an opt-out system; and last, improvement of the Committee for Brain Death Evaluation system. It is uncertain which initiatives will be adopted, but changes in organ procurement systems are nonetheless considered a key to solve the organ shortage problem in Korea.
A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.
Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K
1994-02-01
This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.
Tao, X; Chen, X; Hao, S; Hou, Z; Lu, T; Sun, M; Liu, B
2015-04-16
Poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays an important role in traumatic brain injury (TBI). The objective of this study was to investigate whether PARP activation participated in the blood-brain barrier (BBB) disruption and edema formation in a mouse model of controlled cortical impact (CCI). N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally at 5 min and 8 h after experimental CCI. After 6 h and 24 h of CCI, the permeability of the cortical BBB was determined after Evans Blue administration. The water content of the brain was also measured. Treatment with PJ34 markedly attenuated the permeability of the BBB and decreased the brain edema at 6 h and 24 h after CCI. Our data showed the up-regulation of nuclear factor-κB in cytosolic fractions and nuclear fractions in the injured cortex, and these changes were reversed by PJ34. Moreover, PJ34 significantly lessened the activities of myeloperoxidase and the levels of matrix metalloproteinase-9, enhanced the levels of occludin, laminin, collagen IV and integrin β1, reduced neurological deficits, decreased the contusion volume, and attenuated the necrotic and apoptotic neuronal cell death. These data suggest the protective effects of PJ34 on BBB integrity and cell death during acute TBI. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
[Biodistribution and Postmortem Redistribution of Emamectin Benzoate in Intoxicated Mice].
Tang, Wei-wei; Lin, Yu-cai; Lu, Yan-xu
2016-02-01
To investigate the lethal blood level, the target organs and tissues, the toxicant storage depots and the postmortem redistribution in mice died of emamectin benzoate poisoning. The mice model of emamectin benzoate poisoning was established via intragastric injection. The main poisoning symptoms and the clinical death times of mice were observed and recorded dynamically in the acute poisoning group as well as the sub-acute poisoning death group. The pathological and histomorphological changes of organs and tissues were observed after poisoning death. The biodistribution and postmortem redistribution of emamectin benzoate in the organs and tissues of mice were assayed by the enzyme-linked immunosorbent assay (ELISA) at 0h, 24h, 48h and 72h after death. The lethal blood concentrations and the concentrations of emamectin benzoate were detected by high performance liquid chromatography (HPLC) at different time points after death. The symptoms of nervous and respiratory system were observed within 15-30 min after intragastric injection. The average time of death was (45.8 ± 7.9) min in the acute poisoning group and (8.0 ± 1.4) d in the sub-acute poisoning group, respectively. The range of acute lethal blood level was 447.164 0-524.463 5 mg/L. The pathological changes of the organs and tissues were observed via light microscope and immunofluorescence microscope. The changes of emamectin benzoate content in the blood, heart, liver, spleen, lung, kidney and brain of poisoning mice showed regularity within 72 h after death (P < 0.05). The target organs of emamectin benzoate poisoning include heart, liver, kidney, lung, brain and contact position (stomach). The toxicant storage depots are kidney and liver. There is emamectin benzoate postmortem redistribution in mice.
[Expression of proBNP and NT-proBNP in Sudden Death of Coronary Heart Disease].
Zeng, Q; Sun, R F; Li, Z; Zhai, L Q; Liu, M Z; Guo, X J; Gao, C R
2017-10-01
To study the expression change of pro-brain natriuretic peptide (proBNP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) in sudden death of coronary atherosclerotic heart disease, and to explore its application in forensic diagnosis. Myocardial and blood samples were collected from normal control group, sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group (20 cases in each group). The expression of proBNP in myocardial samples were detected by immunohistochemical staining and Western blotting, and that of BNP mRNA were detected by reverse transcription PCR (RT-PCR). The content of NT-proBNP in plasma were detected by ELISA. Immunohistochemical staining showed positive expression of proBNP in both sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group. There was no positive expression in normal control group. For sudden death of coronary atherosclerotic heart disease group and single coronary stenosis group, the relative expression of proBNP protein and BNP mRNA in myocardial tissue and the NT-proBNP content in plasma were higher than that of normal control group ( P <0.05). The NT-proBNP content in plasma of sudden death of coronary atherosclerotic heart disease group was higher than that of single coronary stenosis group ( P <0.05). In myocardial ischemia condition, the higher expression of proBNP in cardiac muscle cell shows that the detection of NT-proBNP in plasma can be useful to differentially diagnose the degree of coronary atherosclerotic heart disease and determine whether the sudden death due to coronary atherosclerotic heart disease. Copyright© by the Editorial Department of Journal of Forensic Medicine
Redox dynamics of manganese as a mitochondrial life-death switch
Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi; Jones, Dean P.
2017-01-01
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. PMID:28212723
Xenon neurotoxicity in rat hippocampal slice cultures is similar to isoflurane and sevoflurane.
Brosnan, Heather; Bickler, Philip E
2013-08-01
Anesthetic neurotoxicity in the developing brain of rodents and primates has raised concern. Xenon may be a nonneurotoxic alternative to halogenated anesthetics, but its toxicity has only been studied at low concentrations, where neuroprotective effects predominate in animal models. An equipotent comparison of xenon and halogenated anesthetics with respect to neurotoxicity in developing neurons has not been made. Organotypic hippocampal cultures from 7-day-old rats were exposed to 0.75, 1, and 2 minimum alveolar concentrations (MAC) partial pressures (60% xenon at 1.2, 2.67, and 3.67 atm; isoflurane at 1.4, 1.9, and 3.8%; and sevoflurane at 3.4 and 6.8%) for 6 h, at atmospheric pressure or in a pressure chamber. Cell death was assessed 24 h later with fluorojade and fluorescent dye exclusion techniques. Xenon caused death of hippocampal neurons in CA1, CA3, and dentate regions after 1 and 2 MAC exposures, but not at 0.75 MAC. At 1 MAC, xenon increased cell death 40% above baseline (P < 0.01; ANOVA with Dunnett test). Both isoflurane and sevoflurane increased neuron death at 1 but not 2 MAC. At 1 MAC, the increase in cell death compared with controls was 63% with isoflurane and 90% with sevoflurane (both P < 0.001). Pretreatment of cultures with isoflurane (0.75 MAC) reduced neuron death after 1 MAC xenon, isoflurane, and sevoflurane. Xenon causes neuronal cell death in an in vitro model of the developing rodent brain at 1 MAC, as does isoflurane and sevoflurane at similarly potent concentrations. Preconditioning with a subtoxic dose of isoflurane eliminates this toxicity.
Auzmendi, Jerónimo; Buchholz, Bruno; Salguero, Jimena; Cañellas, Carlos; Kelly, Jazmín; Men, Paula; Zubillaga, Marcela; Rossi, Alicia; Merelli, Amalia; Gelpi, Ricardo J; Ramos, Alberto J; Lazarowski, Alberto
2018-02-16
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death in those patients suffering from refractory epilepsy (RE), with a 24-fold higher risk relative to the normal population. SUDEP risk increases with seizure frequency and/or seizure-duration as in RE and Status Epilepticus (SE). P-glycoprotein (P-gp), the product of the multidrug resistant ABCB1-MDR-1 gene, is a detoxifying pump that extrudes drugs out of the cells and can confer pharmacoresistance to the expressing cells. Neurons and cardiomyocytes normally do not express P-gp, however, it is overexpressed in the brain of patients or in experimental models of RE and SE. P-gp was also detected after brain or cardiac hypoxia. We have previously demonstrated that repetitive pentylenetetrazole (PTZ)-induced seizures increase P-gp expression in the brain, which is associated with membrane depolarization in the hippocampus, and in the heart, which is associated with fatal SE. SE can produce hypoxic-ischemic altered cardiac rhythm (HIACR) and severe arrhythmias, and both are related with SUDEP. Here, we investigate whether SE induces the expression of hypoxia-inducible transcription factor (HIF)-1α and P-gp in cardiomyocytes, which is associated with altered heart rhythm, and if these changes are related with the spontaneous death rate. SE was induced in Wistar rats once a week for 3 weeks, by lithium-pilocarpine-paradigm. Electrocardiograms, HIF-1α, and P-gp expression in cardiomyocytes, were evaluated in basal conditions and 72 h after SE. All spontaneous deaths occurred 48 h after each SE was registered. We observed that repeated SE induced HIF-1α and P-gp expression in cardiomyocytes, electrocardiographic (ECG) changes, and a high rate of spontaneous death. Our results suggest that the highly accumulated burden of convulsive stress results in a hypoxic heart insult, where P-gp expression may play a depolarizing role in cardiomyocyte membranes and in the development of the ECG changes, such as QT interval prolongation, that could be related with SUDEP. We postulate that this mechanism could explain, in part, the higher SUDEP risk in patients with RE or SE.
Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it
Bag, Indira; SNCVL, Pushpavalli; Garikapati, Koteswara Rao; Bhadra, Utpal
2018-01-01
Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death. PMID:29385168
Arbour, Richard B
2013-01-01
Patients with terminal brain stem herniation experience global physiological consequences and represent a challenging population in critical care practice as a result of multiple factors. The first factor is severe depression of consciousness, with resulting compromise in airway stability and lung ventilation. Second, with increasing severity of brain trauma, progressive brain edema, mass effect, herniation syndromes, and subsequent distortion/displacement of the brain stem follow. Third, with progression of intracranial pathophysiology to terminal brain stem herniation, multisystem consequences occur, including dysfunction of the hypothalamic-pituitary axis, depletion of stress hormones, and decreased thyroid hormone bioavailability as well as biphasic cardiovascular state. Cardiovascular dysfunction in phase 1 is a hyperdynamic and hypertensive state characterized by elevated systemic vascular resistance and cardiac contractility. Cardiovascular dysfunction in phase 2 is a hypotensive state characterized by decreased systemic vascular resistance and tissue perfusion. Rapid changes along the continuum of hyperperfusion versus hypoperfusion increase risk of end-organ damage, specifically pulmonary dysfunction from hemodynamic stress and high-flow states as well as ischemic changes consequent to low-flow states. A pronounced inflammatory state occurs, affecting pulmonary function and gas exchange and contributing to hemodynamic instability as a result of additional vasodilatation. Coagulopathy also occurs as a result of consumption of clotting factors as well as dilution of clotting factors and platelets consequent to aggressive crystalloid administration. Each consequence of terminal brain stem injury complicates clinical management within this patient demographic. In general, these multisystem consequences are managed with mechanism-based interventions within the context of caring for the donor's organs (liver, kidneys, heart, etc.) after death by neurological criteria. These processes begin far earlier in the continuum of injury, at the moment of terminal brain stem herniation. As such, aggressive, mechanism-based care, including hormonal replacement therapy, becomes clinically appropriate before formal brain death declaration to support cardiopulmonary stability following terminal brain stem herniation.
Threlkeld, Steven W.; Gaudet, Cynthia M.; La Rue, Molly E.; Dugas, Ethan; Hill, Courtney A.; Lim, Yow-Pin; Stonestreet, Barbara S.
2014-01-01
Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full term birth related complications. HI injury often results in learning and processing deficits that reflect widespread damage to an extensive range of cortical and sub-cortical brain structures. Further, inflammation has been implicated in the long-term progression and severity of HI injury. Recently, Inter-alpha Inhibitor Proteins (IAIPs) have been shown to attenuate inflammation in models of systemic infection. Importantly, preclinical studies of neonatal HI injury and neuroprotection often focus on single time windows of assessment or single behavioral domains. This approach limits translational validity, given evidence for a diverse spectrum of neurobehavioral deficits that may change across developmental windows following neonatal brain injury. Therefore, the aims of this research were to assess the effects of human IAIPs on early neocortical cell death (72 hours post insult), adult regional brain volume measurements (cerebral cortex, hippocampus, striatum, corpus callosum) and long-term behavioral outcomes in juvenile (P38-50) and adult (P80+) periods across two independent learning domains (spatial and non-spatial learning), after postnatal day 7 HI injury in rats. Here, for the first time, we show that IAIPs reduce acute neocortical neuronal cell death and improve brain weight outcome 72 hours following HI injury in the neonatal rat. Further, these longitudinal studies are the first to show age, task and treatment dependent improvements in behavioral outcome for both spatial and non-spatial learning following systemic administration of IAIPs in neonatal HI injured rats. Finally, results also show sparing of brain regions critical for spatial and non-spatial learning in adult animals treated with IAIPs at the time of injury onset. These data support the proposal that Inter-alpha Inhibitor Proteins may serve as novel therapeutics for brain injury associated with premature birth and/or neonatal brain injury and highlight the importance of assessing multiple ages, brain regions and behavioral domains when investigating experimental treatment efficacy. PMID:25084519
The national DBS brain tissue network pilot study: need for more tissue and more standardization.
Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S
2011-08-01
Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to facilitate advanced molecular studies and progenitor cell retrieval.
The global registry: hope for the future.
Broumand, Behrooz
2015-04-01
In 2014, there is unanimous agreement that kidney transplant is the optimal treatment for most patients who have end-stage renal failure. Increasing organ shortage is the main obstacle that delays transplant and might even cause death while the patient is on the waiting list for kidney transplant. Many innovations have been proposed to increase the number of organs for transplant in different countries such as increasing awareness about organ donation, based on different cultures and religions. Support of religious and faith leaders exists for procurement of organs for transplant from patients with brain death or circulatory death. In the past decade, use of marginal and expandedcriteria deceased-donor transplant has been very helpful to expand the kidney donor pool. Dual kidney transplant is another procedure that may minimize the waiting list. The 1977 transport of kidneys from Minneapolis to Tehran helped change the life of a 15-year-old girl. At that time, we had the potential to change a life across 2 continents, even though our techniques were new. This should have provided the impetus to develop such a program. Presently, with progress in science, techniques, and organ shipment, it is our responsibility to reach across the globe to change the lives of many more young and adult patients waiting for kidney transplant. There are many countries in which kidneys from patients with brain or cardiac death are being discarded because of the unavailability of a transplant program in these countries, or because these countries have young transplant programs and very limited resources. If a global registry could be organized under the observation of the International Society of Nephrology and The Transplantation Society Sister Transplant Center Program, transplant teams would be able to use kidneys from patients with brain or cardiac death, with strict regulation of organ donation in accordance with World Health Organization guidelines.
Early declaration of death by neurologic criteria results in greater organ donor potential.
Resnick, Shelby; Seamon, Mark J; Holena, Daniel; Pascual, Jose; Reilly, Patrick M; Martin, Niels D
2017-10-01
Aggressive management of patients prior to and after determination of death by neurologic criteria (DNC) is necessary to optimize organ recovery, transplantation, and increase the number of organs transplanted per donor (OTPD). The effects of time management are understudied but potentially pivotal component. The objective of this study was to analyze specific time points (time to DNC, time to procurement) and the time intervals between them to better characterize the optimal timeline of organ donation. Using data over a 5-year time period (2011-2015) from the largest US OPO, all patients with catastrophic brain injury and donated transplantable organs were retrospectively reviewed. Active smokers were excluded. Maximum donor potential was seven organs (heart, lungs [2], kidneys [2], liver, and pancreas). Time from admission to declaration of DNC and donation was calculated. Mean time points stratified by specific organ procurement rates and overall OTPD were compared using unpaired t-test. Of 1719 Declaration of Death by Neurologic Criteria organ donors, 381 were secondary to head trauma. Smokers and organs recovered but not transplanted were excluded leaving 297 patients. Males comprised 78.8%, the mean age was 36.0 (±16.8) years, and 87.6% were treated at a trauma center. Higher donor potential (>4 OTPD) was associated with shorter average times from admission to brain death; 66.6 versus 82.2 hours, P = 0.04. Lung donors were also associated with shorter average times from admission to brain death; 61.6 versus 83.6 hours, P = 0.004. The time interval from DNC to donation varied minimally among groups and did not affect donation rates. A shorter time interval between admission and declaration of DNC was associated with increased OTPD, especially lungs. Further research to identify what role timing plays in the management of the potential organ donor and how that relates to donor management goals is needed. Copyright © 2017 Elsevier Inc. All rights reserved.
Arland, Lesley C; Hendricks-Ferguson, Verna L; Pearson, Joanne; Foreman, Nicholas K; Madden, Jennifer R
2013-04-01
To evaluate an end-of-life (EOL) program related to specific outcomes (i.e., number of hospitalizations and place of death) for children with brain tumors. From 1990 to 2005, a retrospective chart review was performed related to specified outcomes for 166 children with admission for pediatric brain tumors. Patients who received the EOL program were hospitalized less often (n = 114; chi-square = 5.001 with df = 1, p <.05) than patients who did not receive the program. An EOL program may improve symptom management and decrease required hospital admissions for children with brain tumors. © 2013, Wiley Periodicals, Inc.
Panickar, Kiran S; Jang, Saebyeol
2013-08-01
Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.
Klein, H C; Krop-Van Gastel, W; Go, K G; Korf, J
1993-02-01
The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of damage, whole striatal tissue impedance (reflecting cellular water uptake), sodium/potassium contents (due to exchange with blood). Evans Blue staining (blood-brain barrier [BBB] integrity) and silver staining (increased in irreversibly damaged neurons) were used. A substantial decrease in blood pressure was observed during the hypoxic periods possibly producing severe ischaemia. Irreversibly increased impedance, massive changes in silver staining, accumulation of whole tissue Na and loss of K occurred only after a minimum of two periods of hypoxia, but there was no disruption of the BBB. Microscopic examination of tissue sections revealed that cell death was selective with reversible impedance changes, but became massive and non-specific after irreversible increase of the impedance. The development of brain infarcts could, however, not be predicted from measurements of physiological parameters in the blood. We suggest that the development of cerebral infarction during repetitive periods of hypoxia may serve as a model for the development of brain damage in a variety of clinical conditions. Furthermore, the present model allows the screening of potential therapeutic measuring of the prevention and treatment of both infarction and selective cell death.
Prevention of hypoglycemia-induced neuronal death by minocycline
2012-01-01
Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689
Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys.
Rankin, M K; Alphin, R L; Benson, E R; Johnson, A L; Hougentogler, D P; Mohankumar, P
2013-12-01
Recommended response strategies for outbreaks of avian influenza and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. The best methods of emergency mass depopulation should maximize human health and safety while minimizing disease spread and animal welfare concerns. The goal of this project was to evaluate the effectiveness of 2 mass depopulation methods on adult tom turkeys. The methods tested were carbon dioxide gassing and water-based foam. The time to unconsciousness, motion cessation, brain death, and altered terminal cardiac activity were recorded for each bird through the use of an electroencephalogram, accelerometer, and electrocardiogram. Critical times for physiological events were extracted from sensor data and compiled in a spreadsheet for statistical analysis. A statistically significant difference was observed in time to brain death, with water-based foam resulting in faster brain death (µ = 190 s) than CO2 gas (µ = 242 s). Though not statistically significant, differences were found comparing the time to unconsciousness (foam: µ = 64 s; CO2 gas: µ = 90 s), motion cessation (foam: µ = 182 s; CO2 gas: µ = 153 s), and altered terminal cardiac activity (foam: µ = 208 s; CO2 gas µ = 242 s) between foam and CO2 depopulation treatments. The results of this study demonstrate that water-based foam can be used to effectively depopulate market size male turkeys.
Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J
2017-08-01
We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.
Caldwell, Matthew; Moroz, Tracy; Hapuarachchi, Tharindi; Bainbridge, Alan; Robertson, Nicola J; Cooper, Chris E; Tachtsidis, Ilias
2015-01-01
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue.
Bainbridge, Alan; Robertson, Nicola J.; Cooper, Chris E.
2015-01-01
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. PMID:26445281
Choy, Fong Chan; Klarić, Thomas S; Leong, Wai Khay; Koblar, Simon A
2015-01-01
Stroke is the second leading cause of death and the most frequent cause of adult disability. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischaemia. Although previous studies have demonstrated that Npas4 plays a critical role in protecting neurons against neurodegenerative insults, the neuroprotective effect of Npas4 in response to ischaemic brain injury remains unknown. In this study, we used a loss-of-function approach to examine the neuroprotective potential of Npas4 in the context of ischaemic damage. Using oxygen and glucose deprivation, we demonstrated that the knockdown of Npas4 in mouse cortical neurons resulted in increased susceptibility to cell death. The protective effect of Npas4 was further investigated in vivo using a photochemically-induced stroke model in mice. We found a significantly larger lesion size and increased neurodegeneration in Npas4 knockout mice as compared to wild-type mice. Moreover, we also showed that ablation of Npas4 caused an increase in activated astrocytes and microglia, pro-inflammatory cytokines interleukin-6 and tumour necrosis factor alpha levels and a switch from apoptotic to necrotic cell death. Taken together, these data suggest that Npas4 plays a neuroprotective role in ischaemic stroke by limiting progressive neurodegeneration and neuroinflammation. PMID:26661154
... injuries Infections Tumors EEG is also used to: Evaluate problems with sleep ( sleep disorders ) Monitor the brain ... Tissue death due to a blockage in blood flow (cerebral infarction) Drug or alcohol abuse Head injury ...
Barallobre, M J; Perier, C; Bové, J; Laguna, A; Delabar, J M; Vila, M; Arbonés, M L
2014-06-12
In the brain, programmed cell death (PCD) serves to adjust the numbers of the different types of neurons during development, and its pathological reactivation in the adult leads to neurodegeneration. Dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) is a pleiotropic kinase involved in neural proliferation and cell death, and its role during brain growth is evolutionarily conserved. Human DYRK1A lies in the Down syndrome critical region on chromosome 21, and heterozygous mutations in the gene cause microcephaly and neurological dysfunction. The mouse model for DYRK1A haploinsufficiency (the Dyrk1a(+/-) mouse) presents neuronal deficits in specific regions of the adult brain, including the substantia nigra (SN), although the mechanisms underlying these pathogenic effects remain unclear. Here we study the effect of DYRK1A copy number variation on dopaminergic cell homeostasis. We show that mesencephalic DA (mDA) neurons are generated in the embryo at normal rates in the Dyrk1a haploinsufficient model and in a model (the mBACtgDyrk1a mouse) that carries three copies of Dyrk1a. We also show that the number of mDA cells diminishes in postnatal Dyrk1a(+/-) mice and increases in mBACtgDyrk1a mice due to an abnormal activity of the mitochondrial caspase9 (Casp9)-dependent apoptotic pathway during the main wave of PCD that affects these neurons. In addition, we show that the cell death induced by 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), a toxin that activates Casp9-dependent apoptosis in mDA neurons, is attenuated in adult mBACtgDyrk1a mice, leading to an increased survival of SN DA neurons 21 days after MPTP intoxication. Finally, we present data indicating that Dyrk1a phosphorylation of Casp9 at the Thr125 residue is the mechanism by which this kinase hinders both physiological and pathological PCD in mDA neurons. These data provide new insight into the mechanisms that control cell death in brain DA neurons and they show that deregulation of developmental apoptosis may contribute to the phenotype of patients with imbalanced DYRK1A gene dosage.
García-Fuster, María-Julia; Miralles, Antonio; García-Sevilla, Jesús A
2007-02-01
This study was designed to assess the effects of opiate treatment on the expression of Fas-associated protein with death domain (FADD) in the rat brain. FADD is involved in the transmission of Fas-death signals that have been suggested to contribute to the development of opiate tolerance and addiction. Acute treatments with high doses of sufentanil and morphine (mu-agonists), SNC-80 (delta-agonist), and U50488H (kappa-agonist) induced significant decreases (30-60%) in FADD immunodensity in the cerebral cortex, through specific opioid receptor mechanisms (effects antagonized by naloxone, naltrindole, or nor-binaltorphimine). The cannabinoid CB1 receptor agonist WIN 55,212-2 did not alter FADD content in the brain. Chronic (5 days) morphine (10-100 mg/kg), SNC-80 (10 mg/kg), or U50488H (10 mg/kg) was associated with the induction of tachyphylaxis to the acute effects. In morphine- and SNC-80-tolerant rats, antagonist-precipitated (2 h) or spontaneous withdrawal (24-48 h) induced a new and sustained inhibition of FADD (13-50%). None of these treatments altered the densities of caspases 8/3 (including the active cleaved forms) in the brain. Pretreatment of rats with SL 327 (a selective MEK1/2 inhibitor that blocks ERK activation) fully prevented the reduction of FADD content induced by SNC-80 in the cerebral cortex (43%) and corpus striatum (29%), demonstrating the direct involvement of ERK1/2 signaling in the regulation of FADD by the opiate agonist. The results indicate that mu- and delta-opioid receptors have a prominent role in the modulation of FADD (opposite to that of Fas) shortly after initiating treatment. Opiate drugs (and specifically the delta-agonists) could promote survival signals in the brain through inhibition of FADD, which in turn is dependent on the activation of the antiapoptotic ERK1/2 signaling pathway.
p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito
2012-07-13
Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less
Hou, Sheng T; Jiang, Susan X; Slinn, Jacqueline; O'Hare, Michael; Karchewski, Laurie
2010-04-01
Neuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains. In this study, we examined the contribution of NRP2 gene to cerebral ischemia-induced brain injury using NRP2 deficient mouse. To our surprise, the lack of NRP2 expression does not affect the outcome of brain injury induced by transient occlusion of the middle cerebral artery (MCAO) in mouse. The cerebral vasculature in terms of the middle cerebral artery anatomy and microvessel density in the cerebral cortex of NRP2 deficient homozygous (NRP2(-/-)) mice are normal and almost identical to those of the heterozygous (NRP2(+/-)) and wild type (NRP2(+/+)) littermates. MCAO (1h) and 24h reperfusion caused a brain infarction of 23% (compared to the contralateral side) in NRP2(-/-) mice, which is not different from those in NRP2(+/- and +/+) mice at 22 and 21%, respectively (n=19, p>0.05). Correspondingly, NRP2(-/-) mouse also showed a similar level of deterioration of neurological functions after stroke compared with their NRP2(+/- and +/+) littermates. Oxygen-glucose-deprivation (OGD) caused a significant neuronal death in NRP2(-/-) cortical neurons, at the level similar to that in NRP(+/+) cortical neurons (72% death in NRP(-/-) neurons vs. 75% death in NRP2(+/+) neurons; n=4; p>0.05). Together, these loss-of-function studies demonstrated that despite of its critical role in neuronal guidance and vascular formation during development, NRP2 expression dose not affect adult brain response to cerebral ischemia. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.
Medical Management of the Severe Traumatic Brain Injury Patient.
Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y
2017-12-01
Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.
The intricate mechanisms of neurodegeneration in prion diseases
Soto, Claudio; Satani, Nikunj
2010-01-01
Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases. PMID:20889378
Brain Death: Is It a Misunderstood Concept Among Nursing Students in the South of Poland?
Mikla, M; Ríos, A; López-Navas, A; Kasper, M; Brzostek, T; Martínez-Alarcón, L; Ramis, G; Ramírez, P; López-Montesinos, M J
2015-11-01
The objective of the present study was to analyze the knowledge and acceptance of the brain death (BD) concept among nursing students. The study was undertaken in the academic year of 2011 to 2012 in nursing students from the University of the South of Poland. The sample was carried out in compulsory sessions, in the 5 years of the nursing degree study, with a completion rate of 80%. The questionnaire was validated (PCID-DTO Ríos), self-administered, and completed anonymously. The completion rate was 93% (492 of 530). Of the students surveyed, 75% (n = 369) knew the concept of BD and considered it to mean a person's death. Of the rest, 19% (n = 93) did not know it, and the remaining 6% (n = 30) believed that it did not mean that a person was dead. The following variables were significantly related with the correct knowledge of the BD concept: 1) age (22 ± 2 years; P ≤ .001); 2) academic year (P ≤ .001); 3) discussion with friends about organ donation and transplantation (ODT) (P = .035); 4) partner's favorable attitude toward donation and transplantation (P = .009); and 5) being Catholic (P = .031). In the multivariate analysis, the following variables persisted as independent variables related to the BD concept: a) age [OR = 1.468 (1.247-1.697); P ≤ .001] and b) partner's opinion of ODT [OR = 2.248 (1.255-4.025); P = .006]. No association was found with attitude toward ODT. More than 25% of the students from the Jagiellonian University of Kraków did not know or accept the concept of brain death. Copyright © 2015 Elsevier Inc. All rights reserved.
(-)-Phenserine inhibits neuronal apoptosis following ischemia/reperfusion injury.
Chang, Cheng-Fu; Lai, Jing-Huei; Wu, John Chung-Che; Greig, Nigel H; Becker, Robert E; Luo, Yu; Chen, Yen-Hua; Kang, Shuo-Jhen; Chiang, Yung-Hsiao; Chen, Kai-Yun
2017-12-15
Stroke commonly leads to adult disability and death worldwide. Its major symptoms are spastic hemiplegia and discordant motion, consequent to neuronal cell death induced by brain vessel occlusion. Acetylcholinesterase (AChE) is upregulated and allied with inflammation and apoptosis after stroke. Recent studies suggest that AChE inhibition ameliorates ischemia-reperfusion injury and has neuroprotective properties. (-)-Phenserine, a reversible AChE inhibitor, has a broad range of actions independent of its AChE properties, including neuroprotective ones. However, its protective effects and detailed mechanism of action in the rat middle cerebral artery occlusion model (MCAO) remain to be elucidated. This study investigated the therapeutic effects of (-)-phenserine for stroke in the rat focal cerebral ischemia model and oxygen-glucose deprivation/reperfusion (OGD/RP) damage model in SH-SY5Y neuronal cultures. (-)-Phenserine mitigated OGD/PR-induced SH-SY5Y cell death, providing an inverted U-shaped dose-response relationship between concentration and survival. In MCAO challenged rats, (-)-phenserine reduced infarction volume, cell death and improved body asymmetry, a behavioral measure of stoke impact. In both cellular and animal studies, (-)-phenserine elevated brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) levels, and decreased activated-caspase 3, amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP) expression, potentially mediated through the ERK-1/2 signaling pathway. These actions mitigated neuronal apoptosis in the stroke penumbra, and decreased matrix metallopeptidase-9 (MMP-9) expression. In synopsis, (-)-phenserine significantly reduced neuronal damage induced by ischemia/reperfusion injury in a rat model of MCAO and cellular model of OGD/RP, demonstrating that its anti-apoptotic/neuroprotective/neurotrophic cholinergic and non-cholinergic properties warrant further evaluation in conditions of brain injury. Published by Elsevier B.V.
Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Magrini, Laura; Cappiello, Achille
2015-03-01
Sudden infant death syndrome (SIDS) and sudden intrauterine unexpected death syndrome (SIUDS) are an unresolved teaser in the social-medical and health setting of modern medicine and are the result of multifactorial interactions. Recently, prenatal exposure to environmental contaminants has been associated with negative pregnancy outcomes, and verification of their presence in fetal and newborn tissues is of crucial importance. A gas chromatography-tandem mass spectrometry (MS/MS) method, using a triple quadrupole analyzer, is proposed to assess the presence of 20 organochlorine pesticides, two organophosphate pesticides, one carbamate (boscalid), and a phenol (bisphenol A) in human brain tissues. Samples were collected during autopsies of infants and fetuses that died suddenly without any evident cause. The method involves a liquid-solid extraction using n-hexane as the extraction solvent. The extracts were purified with Florisil cartridges prior to the final determination. Recovery experiments using lamb brain spiked at three different concentrations in the range of 1-50 ng g(-1) were performed, with recoveries ranging from 79 to 106%. Intraday and interday repeatability were evaluated, and relative standard deviations lower than 10% and 18%, respectively, were obtained. The selectivity and sensitivity achieved in multiple reaction monitoring mode allowed us to achieve quantification and confirmation in a real matrix at levels as low as 0.2-0.6 ng g(-1). Two MS/MS transitions were acquired for each analyte, using the Q/q ratio as the confirmatory parameter. This method was applied to the analysis of 14 cerebral cortex samples (ten SIUDS and four SIDS cases), and confirmed the presence of several selected compounds.
Shankaran, Seetha; McDonald, Scott A; Laptook, Abbot R; Hintz, Susan R; Barnes, Patrick D; Das, Abhik; Pappas, Athina; Higgins, Rosemary D
2015-11-01
To examine the ability of magnetic resonance imaging (MRI) patterns of neonatal brain injury defined by the National Institute of Child Health and Human Development Neonatal Research Network to predict death or IQ at 6-7 years of age following hypothermia for neonatal encephalopathy. Out of 208 participants, 124 had MRI and primary outcome (death or IQ <70) data. The relationship between injury pattern and outcome was assessed. Death or IQ <70 occurred in 4 of 50 (8%) of children with pattern 0 (normal MRI), 1 of 6 (17%) with 1A (minimal cerebral lesions), 1 of 4 (25%) with 1B (extensive cerebral lesions), 3 of 8 (38%) with 2A (basal ganglia thalamic, anterior or posterior limb of internal capsule, or watershed infarction), 32 of 49 (65%) with 2B (2A with cerebral lesions), and 7 of 7 (100%) with pattern 3 (hemispheric devastation), P < .001; this association was also seen within hypothermia and control subgroups. IQ was 90 ± 13 among the 46 children with a normal MRI and 69 ± 25 among the 50 children with an abnormal MRI. In childhood, for a normal outcome, a normal neonatal MRI had a sensitivity of 61%, specificity of 92%, a positive predictive value of 92%, and a negative predictive value of 59%; for death or IQ <70, the 2B and 3 pattern combined had a sensitivity of 81%, specificity of 78%, positive predictive value of 70%, and a negative predictive value of 87%. The Neonatal Research Network MRI pattern of neonatal brain injury is a biomarker of neurodevelopmental outcome at 6-7 years of age. ClinicalTrials.gov: NCT00005772. Copyright © 2015. Published by Elsevier Inc.
Inequalities in Cancer Deaths by Age, Gender and Education.
Gróf, Marek; Vagašová, Tatiana; Oltman, Marián; Skladaný, Ľubomír; Maličká, Lenka
2017-12-01
The economy of each state provides a significant amount of money into the health care system with the aim of knowing the health status of its population in the context of socioeconomic characteristics for effective resource allocation. In recent years, there is a growing number of cancer deaths in Slovakia. Therefore, the structure of cancer deaths according to its primary determinants, such as age, sex and education with the aim of effective implementation of prevention programs in Slovakia was examined. Main source of data on deaths from 1996 to 2014 was provided by National Health Information Centre in Slovakia. However, data were available only from 2011. Standardized mortality rate per 100,000 inhabitants was estimated by the method of direct standardization using European standard population. The R project for statistical computing was used for calculation of statistically significant differences among various groups of mortality. The results show that people with primary education die from cancer later than people with higher education. However, major differences related to both sex and age are present in people with university education. A different variety of cancers occur in childhood (neoplasm of brain), adolescents (neoplasm of bone), young adults (neoplasm of brain), or adults (lung cancer and breast cancer). Malignant neoplasm of brain was more prevalent at higher education levels, Malignant neoplasm of bladder and Malignant melanoma of skin were more prevalent at the university level of education. The results can be useful for economists to define the health priorities in each country, make the financial decisions in economics, and thus contribute to better health, economic growth, as well as effective spending of health expenditures. Copyright© by the National Institute of Public Health, Prague 2017.
Traumatic Brain Injury and Blood-Brain Barrier Cross-Talk.
Nasser, Mohammad; Bejjani, Fabienne; Raad, Mohamad; Abou-El-Hassan, Hadi; Mantash, Sarah; Nokkari, Amaly; Ramadan, Naify; Kassem, Nouhad; Mondello, Stefania; Hamade, Eva; Darwish, Hala; Zibara, Kazem; Kobeissy, Firas
2016-01-01
Traumatic brain injury, often referred to as the "silent epidemic," is a nondegenerative, non-congenital insult to the brain due to a blow or penetrating object that disrupts the function of the brain leading to permanent or temporary impairment of cognition, physical and psychosocial functions. Traumatic brain injury usually has poor prognosis for long-term treatment and is a major cause of mortality and morbidity worldwide; approximately 10 million deaths and/or hospitalizations annually are directly related to traumatic brain injury. Traumatic brain injury involves primary and secondary insults. Primary injury occurs during the initial insult, and results from direct or indirect force applied to the physical structures of the brain. Secondary injury is characterized by longer-term degeneration of neurons, glial cells, and vascular tissues due to activation of several proteases, glutamate and pro-inflammatory cytokine secretion. In addition, there is growing evidence that the blood-brain barrier is involved in the course of traumatic brain injury pathophysiology and has detrimental effects on the overall pathology of brain trauma, as will be discussed in this work.
Iron as a risk factor in neurological diseases
NASA Astrophysics Data System (ADS)
Galazka-Friedman, Jolanta
2008-02-01
In this review the properties of iron in various human brain structures (e.g. Substantia nigra, globus pallidus, hippocampus) were analyzed to assess the possibility of initiation of oxidative stress leading to such diseases as Parkinson’s and Alzheimer’s disease, and progressive supranuclear palsy. Our own studies with the use of Mössbauer spectroscopy, electron microscopy and enzyme-linked immuno-absorbent assay (ELISA) were confronted with other methods used in other laboratories. Our results suggest that hippocampus is the most fragile for oxidative stress structure in human brain (the death of nervous cells in hippocampus leads to Alzheimer’s disease). Changes in iron metabolism were also found in substantia nigra (the death of nervous cells of this structure produces Parkinson’s disease) and in globus pallidus (neurodegeneration of this structure causes progressive supranuclear palsy).
The role of nitrous oxide in stroke
Zhang, Zhu-wei; Zhang, Dong-ping; Li, Hai-ying; Wang, Zhong; Chen, Gang
2017-01-01
Stroke that is caused by poor blood flow into the brain results in cell death, including ischemia stroke due to lack of blood into brain tissue, and hemorrhage due to bleeding. Both of them will give rise to the dysfunction of brain. In general, the signs and symptoms of stroke are the inability of feeling or moving on one side of body, sometimes loss of vision to one side. Above symptoms will appear soon after the stroke has happened. If the symptoms and signs happen in 1 or 2 hours, we often call them as transient ischemic attack. Moreover, hemorrhagic stroke often leads to severe headache. It is known that neuronal death can happen after stroke, and it depends upon the activation of N-methyl-D-aspartate (NMDA) excitatory glutamate receptor which is the goal for a lot of neuroprotective agents. Nitrous oxide was discovered by Joseph Priestley in 1772, and then he and his friends, including the poet Coleridge and Robert Sauce, experimented with the gas. They found this gas could make patients loss the sense of pain and still maintain consciousness after inhalation. Shortly the gas was used as an anesthetic, especially in the field of dentists. Now, accroding to theme of Helene N. David and other scientists, both of nitrous oxide at 75 vol% and xenon at 50 vol% could reduce ischemic neuronal death in the cortex by 70% and decrease NMDA-induced Ca2+ influx by 30%. Therefore, more clinical and experimental studies are important to illuminate the mechanisms of how nitrous oxide protects brain tissue and to explore the best protocol of this gas in stroke treatment. PMID:29497489
The chemokine CCL2 protects against methylmercury neurotoxicity.
Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William
2012-01-01
Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.
Li, S; Korkmaz-Icöz, S; Radovits, T; Ruppert, M; Spindler, R; Loganathan, S; Hegedűs, P; Brlecic, P; Theisinger, B; Theisinger, S; Höger, S; Brune, M; Lasitschka, F; Karck, M; Yard, B; Szabó, G
2017-07-01
Heart transplantation is the therapy of choice for end-stage heart failure. However, hemodynamic instability, which has been demonstrated in brain-dead donors (BDD), could also affect the posttransplant graft function. We tested the hypothesis that treatment of the BDD with the dopamine derivate n-octanoyl-dopamine (NOD) improves donor cardiac and graft function after transplantation. Donor rats were given a continuous intravenous infusion of either NOD (0.882 mg/kg/h, BDD+NOD, n = 6) or a physiological saline vehicle (BDD, n = 9) for 5 h after the induction of brain death by inflation of a subdural balloon catheter. Controls were sham-operated (n = 9). In BDD, decreased left-ventricular contractility (ejection fraction; maximum rate of rise of left-ventricular pressure; preload recruitable stroke work), relaxation (maximum rate of fall of left-ventricular pressure; Tau), and increased end-diastolic stiffness were significantly improved after the NOD treatment. Following the transplantation, the NOD-treatment of BDD improved impaired systolic function and ventricular relaxation. Additionally, after transplantation increased interleukin-6, tumor necrosis factor TNF-α, NF-kappaB-p65, and nuclear factor (NF)-kappaB-p105 gene expression, and increased caspase-3, TNF-α and NF-kappaB protein expression could be significantly downregulated by the NOD treatment compared to BDD. BDD postconditioning with NOD through downregulation of the pro-apoptotic factor caspase-3, pro-inflammatory cytokines, and NF-kappaB may protect the heart against the myocardial injuries associated with brain death and ischemia/reperfusion. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Pla, Antoni; Pascual, María; Guerri, Consuelo
2016-01-01
Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.
In-hospital mortality of generalized convulsive status epilepticus: a large US sample.
Koubeissi, Mohamad; Alshekhlee, Amer
2007-08-28
To evaluate the in-hospital mortality associated with generalized convulsive status epilepticus (GCSE), and predictors of death in a large US cohort. We identified our cohort from the National Inpatient Sample for the years 2000 through 2004 by searching the International Classification of Diseases, Ninth Revision, code for GCSE. We excluded patients with partial status epilepticus, and assessed whether associated diagnoses including brain tumors, CNS infections, stroke, hypoxic-ischemic brain injury, metabolic derangements, and respiratory failure predicted mortality. We used logistic regression models to identify predictors of death. Eleven thousand five hundred eighty patients were included in this analysis. The mean age of the patients was 39 +/- 25.6 years, and the median duration of stay was 3 days. Male sex (53.4%) and white race (42.4%) were predominant. Overall in-hospital mortality was 399 in 11,580 (3.45%). Age was a significant predictor of death. Mortality tripled in those who received mechanical ventilation compared with those who did not (7.43% vs 2.22%, odds ratio [OR] 2.79, 95% CI 2.18 to 3.59). Other predictors of mortality included hypoxic-ischemic brain injury (OR 9.85, 95% CI 6.63 to 14.6), cerebrovascular diseases (OR 2.08, 95% CI 1.13 to 3.82), female sex (OR 1.34, 95% CI 1.04 to 1.73), and higher comorbidity index (OR 6.79, 95% CI 4.27 to 10.8). Overall in-hospital mortality from generalized convulsive status epilepticus is low, but remarkably increases in those treated with mechanical ventilation. Other predictors of mortality include older age, female sex, hypoxic-ischemic brain injury, and higher comorbidity index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Janeen Denise
In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the controlmore » groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.« less
The expression of a novel stress protein '150-kDa oxygen regulated protein' in sudden infant death.
Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro
2003-03-01
The oxygen regulated protein 150-kDa (ORP-150) is only induced in hypoxic conditions. We performed an immunohistochemical and morphometrical study on the expression of ORP-150 in the brains of sudden infant death (SID) victims. The cerebral cortexes of 18 infants were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibodies and the number of ORP-150 positive cells was counted. In the cluster analysis, the 18 cases were classified into three groups (A-C groups). Group A was composed of six sudden infant death syndrome (SIDS) cases and its mean value of ORP-150 positive cells was 66.75+/-3.44, Group B (six severe respiratory infectious disease such as pneumonia and bronchitis including sepsis): 39.50+/-2.52 and Group C (five SIDS and one severe respiratory infectious disease): 16.00+/-2.92, respectively. These results might reflect chronic hypoxic condition before death, because ORP-150 is only induced when a hypoxic condition exist, but not acute hypoxia. And chronic hypoxic state is likely to be antecedent to SIDS. Therefore, immunohistochemical analysis of OPR-150 in the brain of SID cases may be very useful to differentiate between SIDS and acute asphyxia.
Imaging transplanted stem cells in real time using an MRI dual-contrast method
Ngen, Ethel J.; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri
2015-01-01
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies. PMID:26330231
Therapeutic Time Window for Edaravone Treatment of Traumatic Brain Injury in Mice
Miyamoto, Kazuyuki; Ohtaki, Hirokazu; Dohi, Kenji; Tsumuraya, Tomomi; Song, Dandan; Kiriyama, Keisuke; Satoh, Kazue; Shimizu, Ai; Aruga, Tohru; Shioda, Seiji
2013-01-01
Traumatic brain injury (TBI) is a major cause of death and disability in young people. No effective therapy is available to ameliorate its damaging effects. Our aim was to investigate the optimal therapeutic time window of edaravone, a free radical scavenger which is currently used in Japan. We also determined the temporal profile of reactive oxygen species (ROS) production, oxidative stress, and neuronal death. Male C57Bl/6 mice were subjected to a controlled cortical impact (CCI). Edaravone (3.0 mg/kg), or vehicle, was administered intravenously at 0, 3, or 6 hours following CCI. The production of superoxide radicals (O2 ∙−) as a marker of ROS, of nitrotyrosine (NT) as an indicator of oxidative stress, and neuronal death were measured for 24 hours following CCI. Superoxide radical production was clearly evident 3 hours after CCI, with oxidative stress and neuronal cell death becoming apparent after 6 hours. Edaravone administration after CCI resulted in a significant reduction in the injury volume and oxidative stress, particularly at the 3-hour time point. Moreover, the greatest decrease in O2 ∙− levels was observed when edaravone was administered 3 hours following CCI. These findings suggest that edaravone could prove clinically useful to ameliorate the devastating effects of TBI. PMID:23710445
The potential benefits of the pediatric nonheartbeating organ donor.
Koogler, T; Costarino, A T
1998-06-01
To examine the population of the pediatric intensive care unit in a large children's hospital to determine the potential importance of pediatric nonheartbeating organ donors (NHBDs). We analyzed retrospectively the 6307 admissions to the pediatric intensive care unit at the Children's Hospital of Philadelphia from January 1992 to July 1996 to identify all deaths. The hospital records of the children who had died were then reviewed to determine the mode of death, organ donation rate of heartbeating donors, and the number of potential NHBDs. Criteria for the NHBD included the decision to forgo life-sustaining therapy, death occurring within 2 hours of withdrawal of life support, and the absence of sepsis, HIV, hepatitis, or extracranial malignancy. Of 319 deaths, 102 (32.0%) died with resuscitation, 84 (26.3%) were brain-dead, 111 (34.8%) had withdrawal of life support, and 22 (6.9%) were on do-not-resuscitate orders. Of the 84 brain-dead children, 74 (88.1%) were medically suitable heartbeating donors, and 43 (58.1%) donated organs. Of the 111 patients who had life support withdrawn, 31 (27.9%) qualified for NHBDs. The routine use of the NHBD has the potential to increase organ donation at our institution by 42%. We discuss the ethical issues relating to NHBDs required to properly include these patients as potential organ donors.
Organ donation after cardiac death in the Middle East.
Faraj, W; Fakih, H; Mukherji, D; Khalife, M
2010-04-01
The shortage of organ donors along with the increased number of waiting recipients have created the need for new strategies to expand the organ pool: living donors, split livers, domino livers, and organs from donations after cardiac death (DCD). The purpose of this article was to focus upon aspects of DCD application in the religious, traditional, ethical, and legal aspects of the Arab world. DCD can increase the donor pool by 15%-25%. Several ethical, legal, and social concerns need to be addressed to make DCD more widely accepted by the general population in Western countries as well as in the Middle East. Organs from DCD donors have been transplanted since the 1960s. As soon as brain death criteria were published in 1968, organ retrieval from cadaveric heart-beating donors predominated. Donation after brain death (DBD) almost completely replaced DCD. In the 1990s, the organ shortage led to DCD in many countries, but not in the Arab world. DCD is still not accepted by most in the Arab world due to religious, ethical, social, and legal issues. DCD in the Arab world is more complicated than in Western countries. It should be re-evaluated and thoroughly reviewed with the new criteria for DCD and its implementation in our region. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Axelrod, David A; Dzebisashvilli, Nino; Lentine, Krista L; Xiao, Huiling; Schnitzler, Mark; Tuttle-Newhall, Janet E; Segev, Dorry L
2014-12-15
Despite improvement in surgical technique and medical management of liver transplant recipients, biliary complications remain a frequent cause of posttransplant morbidity and graft loss. Biliary complications require potentially expensive interventions including radiologic procedures and surgical revisions. A national data set linking transplant registry and Medicare claims data for 12,803 liver transplant recipients was developed to capture information on complications, treatments, and associated direct medical costs up to 3 years after transplantation. Biliary complications were more common in recipients of donation after cardiac death compared to donation after brain death allografts (23% vs. 19% P<0.001). Among donation after brain death recipients, biliary complications were associated with $54,699 (95% confidence interval [CI], $49,102 to $60,295) of incremental spending in the first year after transplantation and $7,327 in years 2 and 3 (95% CI, $4,419-$10,236). Biliary complications in donation after cardiac death recipients independently increased spending by $94,093 (95% CI, $64,643-$124,542) in the first year and $12,012 (95% CI, $-1,991 to $26,016) in years 2 and 3. This national study of biliary complications demonstrates the significant economic impact of this common perioperative complication and suggests a potential target for quality of care improvements.
Imaging transplanted stem cells in real time using an MRI dual-contrast method.
Ngen, Ethel J; Wang, Lee; Kato, Yoshinori; Krishnamachary, Balaji; Zhu, Wenlian; Gandhi, Nishant; Smith, Barbara; Armour, Michael; Wong, John; Gabrielson, Kathleen; Artemov, Dmitri
2015-09-02
Stem cell therapies are currently being investigated for the repair of brain injuries. Although exogenous stem cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) prior to transplantation provides a means to noninvasively monitor stem cell transplantation by magnetic resonance imaging (MRI), monitoring cell death is still a challenge. Here, we investigate the feasibility of using an MRI dual-contrast technique to detect cell delivery, cell migration and cell death after stem cell transplantation. Human mesenchymal stem cells were dual labelled with SPIONs and gadolinium-based chelates (GdDTPA). The viability, proliferation rate, and differentiation potential of the labelled cells were then evaluated. The feasibility of this MRI technique to distinguish between live and dead cells was next evaluated using MRI phantoms, and in vivo using both immune-competent and immune-deficient mice, following the induction of brain injury in the mice. All results were validated with bioluminescence imaging. In live cells, a negative (T2/T2*) MRI contrast predominates, and is used to track cell delivery and cell migration. Upon cell death, a diffused positive (T1) MRI contrast is generated in the vicinity of the dead cells, and serves as an imaging marker for cell death. Ultimately, this technique could be used to manage stem cell therapies.
Evidence for brain glucose dysregulation in Alzheimer's disease.
An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav
2018-03-01
It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.
Molecular insights into melanoma brain metastases.
Westphal, Dana; Glitza Oliva, Isabella C; Niessner, Heike
2017-06-01
Substantial proportions of patients with metastatic melanoma develop brain metastases during the course of their disease, often resulting in significant morbidity and death. Despite recent advances with BRAF/MEK and immune-checkpoint inhibitors in the treatment of patients who have melanoma with extracerebral metastases, patients who have melanoma brain metastases still have poor overall survival, highlighting the need for further therapy options. A deeper understanding of the molecular pathways involved in the development of melanoma brain metastases is required to develop more brain-specific therapies. Here, the authors summarize the currently known preclinical data and describe steps involved in the development of melanoma brain metastases. Only by knowing the molecular background is it possible to design new therapeutic agents that can be used to improve the outcome of patients with melanoma brain metastases. Cancer 2017;123:2163-75. © 2017 American Cancer Society. © 2017 American Cancer Society.
Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl
2016-09-01
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.
Association between vitamin D levels and inflammatory activity in brain death: A prospective study.
Custódio, Geisiane; Schwarz, Patrícia; Crispim, Daisy; Moraes, Rafael B; Czepielewski, Mauro; Leitão, Cristiane B; Rech, Tatiana H
2018-06-01
Vitamin D insufficiency is linked to several common inflammatory disorders. Brain death (BD) causes a massive catecholamine release, leading to intense inflammatory activity. We aimed to evaluate vitamin D serum levels in brain-dead individuals in comparison to critically ill patients without BD to assess the correlation between vitamin D and cytokine levels. Sixteen brain-dead patients and 32 critically ill controls were prospectively enrolled. Blood samples from 25 brain-dead patients from a previous study were also used for vitamin D quantification. Plasma TNF, IL-1β, IL-6, IL-8, IL-10, IFN-γ and serum vitamin D levels were compared using Student's t-test or one-way ANOVA. Spearman's test was used to assess the correlation between vitamin D and cytokine levels. Mean vitamin D levels were 16.4 ± 7.9 ng/mL, with 52 patients (71.2%) classified as vitamin D deficient (serum levels < 20 ng/mL). Vitamin D levels were similar in 41 brain-dead patients as compared to control subjects (15.6 ± 6.9 ng/mL vs 17.4 ± 9.0 ng/mL; p = 0.383). Moderate direct correlations were observed between vitamin D and IL-8, IL-10, and IFN-γ in the prospective group of 16 brain-dead patients (IL-8: r = 0.5, p = 0.049; IL-10 r = 0.67, p = 0.005; IFN-γ r = 0.6, p = 0.015). Vitamin D was inversely correlated with IL-6 (r = -0.36, p = 0.044) in critically ill controls. Vitamin D serum levels were similarly low in brain-dead and critically ill patients. In brain-dead patients, vitamin D serum levels correlated with plasma IL-8, IL-10 and IFN-γ. Copyright © 2018 Elsevier B.V. All rights reserved.
Early Brain Vulnerability in Wolfram Syndrome
Hershey, Tamara; Lugar, Heather M.; Shimony, Joshua S.; Rutlin, Jerrel; Koller, Jonathan M.; Perantie, Dana C.; Paciorkowski, Alex R.; Eisenstein, Sarah A.; Permutt, M. Alan
2012-01-01
Wolfram Syndrome (WFS) is a rare autosomal recessive disease characterized by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, deafness, and neurological dysfunction leading to death in mid-adulthood. WFS is caused by mutations in the WFS1 gene, which lead to endoplasmic reticulum (ER) stress-mediated cell death. Case studies have found widespread brain atrophy in late stage WFS. However, it is not known when in the disease course these brain abnormalities arise, and whether there is differential vulnerability across brain regions and tissue classes. To address this limitation, we quantified regional brain abnormalities across multiple imaging modalities in a cohort of young patients in relatively early stages of WFS. Children and young adults with WFS were evaluated with neurological, cognitive and structural magnetic resonance imaging measures. Compared to normative data, the WFS group had intact cognition, significant anxiety and depression, and gait abnormalities. Compared to healthy and type 1 diabetic control groups, the WFS group had smaller intracranial volume and preferentially affected gray matter volume and white matter microstructural integrity in the brainstem, cerebellum and optic radiations. Abnormalities were detected in even the youngest patients with mildest symptoms, and some measures did not follow the typical age-dependent developmental trajectory. These results establish that WFS is associated with smaller intracranial volume with specific abnormalities in the brainstem and cerebellum, even at the earliest stage of clinical symptoms. This pattern of abnormalities suggests that WFS has a pronounced impact on early brain development in addition to later neurodegenerative effects, representing a significant new insight into the WFS disease process. Longitudinal studies will be critical for confirming and expanding our understanding of the impact of ER stress dysregulation on brain development. PMID:22792385