DOE Office of Scientific and Technical Information (OSTI.GOV)
Kito, Hiroaki; Yamazaki, Daiju; Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto
Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cellmore » turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.« less
Mechanisms of Neurodegeneration and Regeneration in Alcoholism
Crews, Fulton T.; Nixon, Kim
2009-01-01
Aims: This is a review of preclinical studies covering alcohol-induced brain neuronal death and loss of neurogenesis as well as abstinence-induced brain cell genesis, e.g. brain regeneration. Efforts are made to relate preclinical studies to human studies. Methods: The studies described are preclinical rat experiments using a 4-day binge ethanol treatment known to induce physical dependence to ethanol. Neurodegeneration and cognitive deficits following binge treatment mimic the mild degeneration and cognitive deficits found in humans. Various histological methods are used to follow brain regional degeneration and regeneration. Results: Alcohol-induced degeneration occurs due to neuronal death during alcohol intoxication. Neuronal death is related to increases in oxidative stress in brain that coincide with the induction of proinflammatory cytokines and oxidative enzymes that insult brain. Degeneration is associated with increased NF-κB proinflammatory transcription and decreased CREB transcription. Corticolimbic brain regions are most sensitive to binge-induced degeneration and induce relearning deficits. Drugs that block oxidative stress and NF-κB transcription or increase CREB transcription block binge-induced neurodegeneration, inhibition of neurogenesis and proinflammatory enzyme induction. Regeneration of brain occurs during abstinence following binge ethanol treatment. Bursts of proliferating cells occur across multiple brain regions, with many new microglia across brain after months of abstinence and many new neurons in neurogenic hippocampal dentate gyrus. Brain regeneration may be important to sustain abstinence in humans. Conclusions: Alcohol-induced neurodegeneration occurs primarily during intoxication and is related to increased oxidative stress and proinflammatory proteins that are neurotoxic. Abstinence after binge ethanol intoxication results in brain cell genesis that could contribute to the return of brain function and structure found in abstinent humans. PMID:18940959
Mechanical versus humoral determinants of brain death-induced lung injury
Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Hupkens, Emeline; Dewachter, Céline; Creteur, Jacques; Mc Entee, Kathleen; Naeije, Robert; Rondelet, Benoît
2017-01-01
Background The mechanisms of brain death (BD)-induced lung injury remain incompletely understood, as uncertainties persist about time-course and relative importance of mechanical and humoral perturbations. Methods Brain death was induced by slow intracranial blood infusion in anesthetized pigs after randomization to placebo (n = 11) or to methylprednisolone (n = 8) to inhibit the expression of pro-inflammatory mediators. Pulmonary artery pressure (PAP), wedged PAP (PAWP), pulmonary vascular resistance (PVR) and effective pulmonary capillary pressure (PCP) were measured 1 and 5 hours after Cushing reflex. Lung tissue was sampled to determine gene expressions of cytokines and oxidative stress molecules, and pathologically score lung injury. Results Intracranial hypertension caused a transient increase in blood pressure followed, after brain death was diagnosed, by persistent increases in PAP, PCP and the venous component of PVR, while PAWP did not change. Arterial PO2/fraction of inspired O2 (PaO2/FiO2) decreased. Brain death was associated with an accumulation of neutrophils and an increased apoptotic rate in lung tissue together with increased pro-inflammatory interleukin (IL)-6/IL-10 ratio and increased heme oxygenase(HO)-1 and hypoxia inducible factor(HIF)-1 alpha expression. Blood expressions of IL-6 and IL-1β were also increased. Methylprednisolone pre-treatment was associated with a blunting of increased PCP and PVR venous component, which returned to baseline 5 hours after BD, and partially corrected lung tissue biological perturbations. PaO2/FiO2 was inversely correlated to PCP and lung injury score. Conclusions Brain death-induced lung injury may be best explained by an initial excessive increase in pulmonary capillary pressure with increased pulmonary venous resistance, and was associated with lung activation of inflammatory apoptotic processes which were partially prevented by methylprednisolone. PMID:28753621
Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries.
Sakamula, Romgase; Thong-Asa, Wachiryah
2018-06-01
Cerebral ischemia reperfusion (IR) is associated with neuronal death, which leads to disability and cognitive decline. The pathomechanism occurs because ischemia is exacerbated during the reperfusion period. Neuronal damage susceptibility depends on the affected brain areas and the duration of ischemia. Prevention and supplementation to neurons may help them endure during IR and further benefit them in rehabilitation. We investigated the protective effect of p-coumaric acid (PC) on cerebral IR injuries in mice. We randomly divided 30 male ICR mice into 3 groups of Sham (received vehicle and not induced IR), Control-IR (received vehicle and induced IR) and PC-IR (received 100 mg/kg PC and induced IR). We orally administered vehicle or 100 mg/kg of p-coumaric acid for 2 weeks before inducing the cerebral IR injuries by using 30 min of a bilateral common carotid artery occlusion followed by a 45-min reperfusion. We induced the IR condition in the Control-IR and PC-IR groups but not the Sham group, and only the PC-IR group received p-coumaric acid. After IR induction, we sacrificed all the mice and collected their brain tissues to evaluate their oxidative statuses, whole brain infarctions and vulnerable neuronal deaths. We studied the whole-brain infarction volume by 2, 3, 5-triethyltetrazoliumchloride staining of sections. We performed a histological investigation of the vulnerable neuronal population in the dorsal hippocampus by staining brain sections with 0.1% cresyl violet. The results indicated that IR caused significant increases in calcium and malondialdehyde (MDA) levels, whole brain infarction volume and hippocampal neuronal death. Pretreatment with p-coumaric acid significantly reduced MDA levels, whole-brain infarction volume and hippocampal neuronal death together and increased catalase and superoxide dismutase activities. We conclude here that pretreating animals with p-coumaric acid can prevent IR-induced brain oxidative stress, infarction size and neuronal vulnerability to death in cerebral IR injuries.
Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long
2014-01-01
Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490
Tunicamycin-induced unfolded protein response in the developing mouse brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haiping; Wang, Xin; Ke, Zun-Ji
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident bymore » the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.« less
Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.
Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît
2016-12-01
Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury
Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian
2016-01-01
ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396
Deloncle, Roger; Fauconneau, Bernard; Guillard, Olivier; Delaval, José; Lesage, Gérard; Pineau, Alain
2017-01-01
In Creutzfeldt Jakob, Alzheimer and Parkinson diseases, copper metalloproteins such as prion, amyloid protein precursor and α-synuclein are able to protect against free radicals by reduction from cupric Cu +2 to cupreous Cu + . In these pathologies, a regional copper (Cu) brain decrease correlated with an iron, zinc or manganese (Mn) increase has previously been observed, leading to local neuronal death and abnormal deposition of these metalloproteins in β-sheet structures. In this study we demonstrate the protective effect of Cu metalloproteins against deleterious free-radical effects. With neuroblastoma SH-SY5Y cell cultures, we show that bovine brain prion protein in Cu but not Mn form prevents free radical-induced neuronal death. The survival ratio of SH-SY5Y cells has been measured after UV irradiation (free radical production), when the incubating medium is supplemented with bovine brain homogenate in native, Cu or Mn forms. This ratio, about 28% without any addition or with bovine brain protein added in Mn form, increases by as much as 54.73% with addition to the culture medium of native bovine brain protein and by as much as 95.95% if the addition is carried out in cupric form. This protective effect of brain copper protein against free radical-induced neuronal death has been confirmed with Inductively Coupled Plasma Mass Spectrometry Mn and Cu measurement in bovine brain homogenates: respectively lower than detection limit and 9.01μg/g dry weight for native form; lower than detection limit and 825.85μg/g dry weight for Cu-supplemented form and 1.75 and 68.1μg/g dry weight in Mn-supplemented brain homogenate. Copyright © 2016 Elsevier GmbH. All rights reserved.
Methamphetamine-induced neuronal necrosis: the role of electrographic seizure discharges
Fujikawa, Denson G.; Pais, Emil S.; Aviles, Ernesto R.; Hsieh, Kung-Chiao; Bashir, Muhammad Tariq
2016-01-01
We have evidence that methamphetamine (METH)-induced neuronal death is morphologically necrotic, not apoptotic, as is currently believed, and that electrographic seizures may be responsible. We administered 40 mg/kg i.p. to 12 male C57BL/6 mice and monitored EEGs continuously and rectal temperatures every 15 min, keeping rectal temperatures <41.0 °C. Seven of the 12 mice had repetitive electrographic seizure discharges (RESDs) and 5 did not. The RESDs were often not accompanied by behavioral signs of seizures–i.e., they were often not accompanied by clonic forelimb movements. The 7 mice with RESDs had acidophilic neurons (the H&E light-microscopic equivalent of necrotic neurons by ultrastructural examination) in all of 7 brain regions (hippocampal CA1, CA2, CA3 and hilus, amygdala, piriform cortex and entorhinal cortex), the same brain regions damaged following generalized seizures, 24 h after METH administration. The 5 mice without RESDs had a few acidophilic neurons in 4 of the 7 brain regions, but those with RESDs had significantly more in 6 of the 7 brain regions. Maximum rectal temperatures were comparable in mice with and without RESDs, so that cannot explain the difference between the two groups with respect to METH-induced neuronal death. Our data show that METH-induced neuronal death is morphologically necrotic, that EEGs must be recorded to detect electrographic seizure activity in rodents without behavioral evidence of seizures, and that RESDs may be responsible for METH-induced neuronal death. PMID:26562800
Ieraci, Alessandro; Herrera, Daniel G
2018-06-01
Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; Bourassa, Megan W.; Sleiman, Sama F.; John, Roseleen; Thinnes, Cyrille C.; Yeh, Tzu-Lan; Demetriades, Marina; Neitemeier, Sandra; Cruz, Dana; Gazaryan, Irina; Killilea, David W.; Morgenstern, Lewis; Xi, Guohua; Keep, Richard F.; Schallert, Timothy; Tappero, Ryan V.; Zhong, Jian; Cho, Sunghee; Maxfield, Frederick R.; Holman, Theodore R.; Culmsee, Carsten; Fong, Guo-Hua; Su, Yijing; Ming, Guo-li; Song, Hongjun; Cave, John W.; Schofield, Christopher J.; Colbourne, Frederick; Coppola, Giovanni; Ratan, Rajiv R.
2017-01-01
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron, and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. We show that the hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) family of iron-dependent, oxygen-sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in the mouse striatum improved functional recovery after ICH. A low-molecular-weight hydroxyquinoline inhibitor of the HIF-PHD enzymes, adaptaquin, reduced neuronal death and behavioral deficits after ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of activity of the prodeath factor ATF4 rather than activation of an HIF-dependent prosurvival pathway. Together, these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier-permeable inhibitor adaptaquin can improve functional outcomes after ICH in several rodent models. PMID:26936506
Fonseca, Ana Catarina R G; Ferreiro, Elisabete; Oliveira, Catarina R; Cardoso, Sandra M; Pereira, Cláudia F
2013-12-01
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice. Incubation of rat brain endothelial cells (RBE4 cell line) with Aβ1-40 increased the levels of several markers of ER stress-induced unfolded protein response (UPR), in a time-dependent manner, and affected the Ca(2+) homeostasis due to the release of Ca(2+) from this intracellular store. Finally, Aβ1-40 was shown to activate both mitochondria-dependent and -independent apoptotic cell death pathways. Enhanced release of cytochrome c from mitochondria and activation of the downstream caspase-9 were observed in cells treated with Aβ1-40 concomitantly with caspase-12 activation. Furthermore, Aβ1-40 activated the apoptosis effectors' caspase-3 and promoted the translocation of apoptosis-inducing factor (AIF) to the nucleus demonstrating the involvement of caspase-dependent and -independent mechanisms during Aβ-induced endothelial cell death. In conclusion, our data demonstrate that ER stress plays a significant role in Aβ1-40-induced apoptotic cell death in brain endothelial cells suggesting that ER stress-targeted therapeutic strategies might be useful in AD to counteract vascular defects and ultimately neurodegeneration. © 2013.
Severe Hypoglycemia–Induced Lethal Cardiac Arrhythmias Are Mediated by Sympathoadrenal Activation
Reno, Candace M.; Daphna-Iken, Dorit; Chen, Y. Stefanie; VanderWeele, Jennifer; Jethi, Krishan; Fisher, Simon J.
2013-01-01
For people with insulin-treated diabetes, severe hypoglycemia can be lethal, though potential mechanisms involved are poorly understood. To investigate how severe hypoglycemia can be fatal, hyperinsulinemic, severe hypoglycemic (10–15 mg/dL) clamps were performed in Sprague-Dawley rats with simultaneous electrocardiogram monitoring. With goals of reducing hypoglycemia-induced mortality, the hypotheses tested were that: 1) antecedent glycemic control impacts mortality associated with severe hypoglycemia; 2) with limitation of hypokalemia, potassium supplementation could limit hypoglycemia-associated deaths; 3) with prevention of central neuroglycopenia, brain glucose infusion could prevent hypoglycemia-associated arrhythmias and deaths; and 4) with limitation of sympathoadrenal activation, adrenergic blockers could prevent hypoglycemia-induced arrhythmic deaths. Severe hypoglycemia–induced mortality was noted to be worsened by diabetes, but recurrent antecedent hypoglycemia markedly improved the ability to survive an episode of severe hypoglycemia. Potassium supplementation tended to reduce mortality. Severe hypoglycemia caused numerous cardiac arrhythmias including premature ventricular contractions, tachycardia, and high-degree heart block. Intracerebroventricular glucose infusion reduced severe hypoglycemia–induced arrhythmias and overall mortality. β-Adrenergic blockade markedly reduced cardiac arrhythmias and completely abrogated deaths due to severe hypoglycemia. Under conditions studied, sudden deaths caused by insulin-induced severe hypoglycemia were mediated by lethal cardiac arrhythmias triggered by brain neuroglycopenia and the marked sympathoadrenal response. PMID:23835337
Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric
2013-01-18
Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.
Ito, Minako; Kondo, Taisuke; Shichita, Takashi; Yoshimura, Akihiko
2013-07-01
Stroke or brain ischemia is one of the major causes of death and disability worldwide. Post-ischemic inflammation is an essential step in the progression of brain ischemia-reperfusion injury. In a mouse stroke model, we have reported that IL-23 produced from infiltrating macrophages induces IL-17 producing T cells. IL-17 is mainly produced from gammadeltaT cells and promotes delayed (day 3-4) ischemic brain damage. We also demonstrated that peroxiredoxin (Prx) family proteins released extracellularly from necrotic brain cells induce expression of inflammatory cytokines including IL-23 in macrophages through activation of Toll-like receptor 2(TLR2) and TLR4, thereby promoting neural cell death. We thus propose that regulation of the IL-23-IL-17 axis including gammadeltaT cells, macrophages, and extracellular Prxs could be a potent neuroprotective tool.
Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury.
Shi, Guodong; Liu, Yang; Liu, Tielong; Yan, Wangjun; Liu, Xiaowei; Wang, Yuan; Shi, Jiangang; Jia, Lianshun
2012-01-01
It is increasingly clear that microRNAs (miRNAs) play an important role in controlling cell survival. However, the functional significance of miRNAs in ischemic brain injury remains poorly understood. In the present study, we assayed the expression levels of miR-29b after ischemic brain injury, and defined the target genes and biological functions of miR-29b. We found that the miR-29b levels were significantly increased in rat brain after transient middle cerebral artery occlusion and neurons after oxygen-glucose deprivation. Moreover, ectopic expression of miR-29b promoted neuronal cell death, whereas its repression decreased cell death. Furthermore, we verified that miR-29b directly targeted and inhibited Bcl2L2 gene expression, and then increased neuronal cell death. Importantly, Bcl2L2 overexpression rescued neuronal cell death induced by miR-29b. These results suggest an important role of miR-29b in regulating neuronal cell death, thus offering a new target for the development of therapeutic agents against ischemic brain injury.
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.; ...
2016-03-02
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karuppagounder, Saravanan S.; Alim, Ishraq; Khim, Soah J.
Disability or death due to intracerebral hemorrhage (ICH) is attributed to blood lysis, liberation of iron and consequent oxidative stress. Iron chelators bind to free iron and prevent neuronal death induced by oxidative stress and disability due to ICH, but the mechanisms for this effect remain unclear. Here we show that the hypoxia-inducible factor prolyl-hydroxylase (HIF- PHD) family of iron-dependent oxygen sensing enzymes are effectors of iron chelation. Molecular reduction of the three HIF-PHD enzyme isoforms in mouse striatum improved functional recovery following ICH. A low molecular weight hydroxyquinoline inhibitor of the HIF-PHDs, adaptaquin, reduced neuronal death and behavioral deficitsmore » following ICH in several rodent models without affecting total iron or zinc distribution in the brain. Unexpectedly, protection from oxidative death in vitro or from ICH in vivo by adaptaquin was associated with suppression of expression of the prodeath factor ATF4 rather than activation of a HIF-dependent prosurvival pathway. In conclusion, together these findings demonstrate that brain-specific inactivation of the HIF-PHD metalloenzymes with the blood-brain barrier permeable inhibitor adaptaquin can improve functional outcomes following ICH in multiple rodent species.« less
Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim
2018-01-15
In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.
Duncan, Jeremy W.; Zhang, Xiao; Wang, Niping; Johnson, Shakevia; Harris, Sharonda; Udemgba, Chinelo; Ou, Xiao-Ming; Youdim, Moussa B.; Stockmeier, Craig A.; Wang, Jun Ming
2016-01-01
Binge drinking induces several neurotoxic consequences including oxidative stress and neurodegeneration. Because of these effects, drugs which prevent ethanol-induced damage to the brain may be clinically beneficial. In this study, we investigated the ethanol-mediated KLF11-MAO cell death cascade in the frontal cortex of Sprague–Dawley rats exposed to a modified Majchowicz 4-day binge ethanol model and control rats. Moreover, MAO inhibitors (MAOIs) were investigated for neuroprotective activity against binge ethanol. Binge ethanol-treated rats demonstrated a significant increase in KLF11, both MAO isoforms, protein oxidation and caspase-3, as well as a reduction in BDNF expression in the frontal cortex compared to control rats. MAOIs prevented these binge ethanol-induced changes, suggesting a neuroprotective benefit. Neither binge ethanol nor MAOI treatment significantly affected protein expression levels of the oxidative stress enzymes, SOD2 or catalase. Furthermore, ethanol-induced antinociception was enhanced following exposure to the 4-day ethanol binge. These results demonstrate that the KLF11-MAO pathway is activated by binge ethanol exposure and MAOIs are neuroprotective by preventing the binge ethanol-induced changes associated with this cell death cascade. This study supports KLF11-MAO as a mechanism of ethanol-induced neurotoxicity and cell death that could be targeted with MAOI drug therapy to alleviate alcohol-related brain injury. Further examination of MAOIs to reduce alcohol use disorder-related brain injury could provide pivotal insight to future pharmacotherapeutic opportunities. PMID:26805422
Inadequate Antioxidative Responses in Kidneys of Brain-Dead Rats.
Hoeksma, Dane; Rebolledo, Rolando A; Hottenrott, Maximilia; Bodar, Yves S; Wiersema-Buist, Janneke J; Van Goor, Harry; Leuvenink, Henri G D
2017-04-01
Brain death (BD)-related lipid peroxidation, measured as serum malondialdehyde (MDA) levels, correlates with delayed graft function in renal transplant recipients. How BD affects lipid peroxidation is not known. The extent of BD-induced organ damage is influenced by the speed at which intracranial pressure increases. To determine possible underlying causes of lipid peroxidation, we investigated the renal redox balance by assessing oxidative and antioxidative processes in kidneys of brain-dead rats after fast and slow BD induction. Brain death was induced in 64 ventilated male Fisher rats by inflating a 4.0F Fogarty catheter in the epidural space. Fast and slow inductions were achieved by an inflation speed of 0.45 and 0.015 mL/min, respectively, until BD confirmation. Healthy non-brain-dead rats served as reference values. Brain-dead rats were monitored for 0.5, 1, 2, or 4 hours, after which organs and blood were collected. Increased MDA levels became evident at 2 hours of slow BD induction at which increased superoxide levels, decreased glutathione peroxidase (GPx) activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased plasma creatinine levels were evident. At 4 hours after slow BD induction, superoxide, MDA, and plasma creatinine levels increased further, whereas GPx activity remained decreased. Increased MDA and plasma creatinine levels also became evident after 4 hours fast BD induction. Brain death leads to increased superoxide production, decreased GPx activity, decreased glutathione levels, increased inducible nitric oxide synthase and heme-oxygenase 1 expression, and increased MDA and plasma creatinine levels. These effects were more pronounced after slow BD induction. Modulation of these processes could lead to decreased incidence of delayed graft function.
Vo, Diep-Khanh Ho; Urano, Yasuomi; Takabe, Wakako; Saito, Yoshiro; Noguchi, Noriko
2015-07-01
24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, is known to play an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces a type of non-apoptotic programmed necrosis in neuronal cells expressing little caspase-8. Necroptosis has been characterized as a type of programmed necrosis in which activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) is involved in the signaling pathway. In the present study, we investigated the involvement of these three proteins in 24S-OHC-induced cell death. We found that RIPK1 but neither RIPK3 nor MLKL was expressed in human neuroblastoma SH-SY5Y cells, while all three proteins were expressed in human T lymphoma caspase-8-deficient Jurkat (Jurkat(Cas8-/-)) cells. In Jurkat(Cas8-/-) cells, tumor necrosis factor α (TNFα)-induced cell death was significantly suppressed by treatment with respective inhibitors of RIPK1, RIPK3, and MLKL. In contrast, only RIPK1 inhibitor showed significant suppression of 24S-OHC-induced cell death, and even this was less prominent than was observed in TNFα-induced cell death. In Jurkat(Cas8-/-) cells, knockdown of either RIPK1 or RIPK3 caused moderate but significant suppression of 24S-OHC-induced cell death, but no such effect was observed as a result of knockdown of MLKL. Collectively, these results suggest that, for both SH-SY5Y cells and Jurkat(Cas8-/-) cells, 24S-OHC-induced cell death is dependent on RIPK1 but not on MLKL. We therefore conclude that, in the absence of caspase-8 activity, 24S-OHC induces a necroptosis-like cell death which is RIPK1-dependent but MLKL-independent. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, D; Liu, F; Yang, T; Jin, T; Zhang, H; Luo, X; Wang, M
2016-09-30
Intracerebral hemorrhage (ICH) results in a devastating brain disorder with high mortality and poor prognosis and effective therapeutic intervention for the disease remains a challenge at present. The present study investigated the neuroprotective effects of rapamycin on ICH-induced brain damage and the possible involvement of activated microglia. ICH was induced in rats by injection of type IV collagenase into striatum. Different dose of rapamycin was systemically administrated by intraperitoneal injection beginning at 1 h after ICH induction. Western blot analysis showed that ICH led to a long-lasting increase of phosphorylated mTOR and this hyperactivation of mTOR was reduced by systemic administration of rapamycin. Rapamycin treatment significantly improved the sensorimotor deficits induced by ICH, and attenuated ICH-induced brain edema formation as well as lesion volume. Nissl and Fluoro-Jade C staining demonstrated that administration with rapamycin remarkably decreased neuronal death surrounding the hematoma at 7 d after ICH insult. ELISA and real-time quantitative PCR demonstrated that rapamycin inhibited ICH-induced excessive expression of TNF-α and IL-1β in ipsilateral hemisphere. Furthermore, activation of microglia induced by ICH was significantly suppressed by rapamycin administration. These data indicated that treatment of rapamycin following ICH decreased the brain injuries and neuronal death at the peri-hematoma striatum, and increased neurological function, which associated with reduced the levels of proinflammatory cytokines and activated microglia. The results provide novel insight into the neuroprotective therapeutic strategy of rapamycin for ICH insult, which possibly involving the regulation of microglial activation.
Park, Mi-Ha; Kim, Ha Na; Lim, Joon Seo; Ahn, Jae-Sung; Koh, Jae-Young
2013-12-01
The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures. Exposure of cortical cultures containing neurons and astrocytes to 300 μM zinc for 15 min induced submaximal death in both types of cells. Interestingly, addition of angiotensin II significantly enhanced the zinc-triggered neuronal death, while leaving astrocytic cell death relatively unchanged. Both type 1 and 2 angiotensin II receptors (AT1R and AT2R, respectively) were expressed in neurons as well as astrocytes. Zinc neurotoxicity was substantially attenuated by PD123319, a specific inhibitor of AT2R, and augmented by CGP42112, a selective activator of AT2R, indicating a critical role for this receptor subtype in the augmentation of neuronal cell death.Because zinc toxicity occurs largely through oxidative stress, the levels of superoxides in zinc-treated neurons were assessed by DCF fluorescence microscopy. Combined treatment with zinc and angiotensin II substantially increased the levels of superoxides in neurons compared to those induced by zinc alone. This increase in oxidative stress by angiotensin II was completely blocked by the addition of PD123319. Finally, since zinc-induced oxidative stress may be caused by induction and/or activation of NADPH oxidase, the activation status of Rac and the level of the NADPH oxidase subunit p67phox were measured. Angiotensin II markedly increased Rac activity and the levels of p67phox in zinc-treated neurons and astrocytes in a PD123319-dependent manner. The present study shows that the angiotensin system, especially that involving AT2R, may have an oxidative injury-potentiating effect via augmentation of the activity of NADPH oxidase. Hence, blockade of angiotensin signaling cascades in the brain may prove useful in protecting against the oxidative neuronal death that is likely to occur in acute brain injury.
Hilton, Genell D.; Nunez, Joseph L.; Bambrick, Linda; Thompson, Scott M.; McCarthy, Margaret M.
2008-01-01
Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate. PMID:17156362
Song, Juhyun; Yoon, So Ra
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases. PMID:28680530
Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.
Sebastiani, Anne; Granold, Matthias; Ditter, Anja; Sebastiani, Philipp; Gölz, Christina; Pöttker, Bruno; Luh, Clara; Schaible, Eva-Verena; Radyushkin, Konstantin; Timaru-Kast, Ralph; Werner, Christian; Schäfer, Michael K; Engelhard, Kristin; Moosmann, Bernd; Thal, Serge C
2016-02-01
The gamma-aminobutyric acid modulator propofol induces neuronal cell death in healthy immature brains by unbalancing neurotrophin homeostasis via p75 neurotrophin receptor signaling. In adulthood, p75 neurotrophin receptor becomes down-regulated and propofol loses its neurotoxic effect. However, acute brain lesions, such as traumatic brain injury, reactivate developmental-like programs and increase p75 neurotrophin receptor expression, probably to foster reparative processes, which in turn could render the brain sensitive to propofol-mediated neurotoxicity. This study investigates the influence of delayed single-bolus propofol applications at the peak of p75 neurotrophin receptor expression after experimental traumatic brain injury in adult mice. Randomized laboratory animal study. University research laboratory. Adult C57BL/6N and nerve growth factor receptor-deficient mice. Sedation by IV propofol bolus application delayed after controlled cortical impact injury. Propofol sedation at 24 hours after traumatic brain injury increased lesion volume, enhanced calpain-induced αII-spectrin cleavage, and increased cell death in perilesional tissue. Thirty-day postinjury motor function determined by CatWalk (Noldus Information Technology, Wageningen, The Netherlands) gait analysis was significantly impaired in propofol-sedated animals. Propofol enhanced pro-brain-derived neurotrophic factor/brain-derived neurotrophic factor ratio, which aggravates p75 neurotrophin receptor-mediated cell death. Propofol toxicity was abolished both by pharmacologic inhibition of the cell death domain of the p75 neurotrophin receptor (TAT-Pep5) and in mice lacking the extracellular neurotrophin binding site of p75 neurotrophin receptor. This study provides first evidence that propofol sedation after acute brain lesions can have a deleterious impact and implicates a role for the pro-brain-derived neurotrophic factor-p75 neurotrophin receptor pathway. This observation is important as sedation with propofol and other compounds with GABA receptor activity are frequently used in patients with acute brain pathologies to facilitate sedation or surgical and interventional procedures.
Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan
2011-01-01
Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional outcomes, suggesting an important role for this caspase in pathophysiology of acute brain trauma. PMID:21957448
Prevention of hypoglycemia-induced neuronal death by minocycline
2012-01-01
Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689
Atangana, Etienne; Schneider, Ulf C; Blecharz, Kinga; Magrini, Salima; Wagner, Josephin; Nieminen-Kelhä, Melina; Kremenetskaia, Irina; Heppner, Frank L; Engelhardt, Britta; Vajkoczy, Peter
2017-04-01
Activation of innate immunity contributes to secondary brain injury after experimental subarachnoid hemorrhage (eSAH). Microglia accumulation and activation within the brain has recently been shown to induce neuronal cell death after eSAH. In isolated mouse brain capillaries after eSAH, we show a significantly increased gene expression for intercellular adhesion molecule-1 (ICAM-1) and P-selectin. Hence, we hypothesized that extracerebral intravascular inflammatory processes might initiate the previously reported microglia accumulation within the brain tissue. We therefore induced eSAH in knockout mice for ICAM-1 (ICAM-1 -/- ) and P-selectin glycoprotein ligand-1 (PSGL-1 -/- ) to find a significant decrease in neutrophil-endothelial interaction within the first 7 days after the bleeding in a chronic cranial window model. This inhibition of neutrophil recruitment to the endothelium results in significantly ameliorated microglia accumulation and neuronal cell death in knockout animals in comparison to controls. Our results suggest an outside-in activation of the CNS innate immune system at the vessel/brain interface following eSAH. Microglia cells, as part of the brain's innate immune system, are triggered by an inflammatory reaction in the microvasculature after eSAH, thus contributing to neuronal cell death. This finding offers a whole range of new research targets, as well as possible therapy options for patients suffering from eSAH.
Pan, Rong; Chen, Chen; Liu, Wenlan; Liu, Ke Jian
2013-01-01
Aim Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study testes the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Methods Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-hour hypoxic treatment. Results Although 3-hr hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc concentration dependent manner. Exposure of astrocytes to hypoxia for 3-hr remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Conclusions Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. PMID:23582235
Choi, Ji Woong; Shin, Chan Young; Choi, Min Sik; Yoon, Seo Young; Ryu, Jong Hoon; Lee, Jae-Chul; Kim, Won-Ki; El Kouni, Mahmoud H; Ko, Kwang Ho
2008-06-01
We previously reported that uridine blocked glucose deprivation-induced death of immunostimulated astrocytes by preserving ATP levels. Uridine phosphorylase (UPase), an enzyme catalyzing the reversible phosphorylation of uridine, was involved in this effect. Here, we tried to expand our previous findings by investigating the uridine effect on the brain and neurons using in vivo and in vitro ischemic injury models. Orally administrated uridine (50-200 mg/kg) reduced middle cerebral artery occlusion (1.5 h)/reperfusion (22 h)-induced infarct in mouse brain. Additionally, in the rat brain subjected to the same ischemic condition, UPase mRNA and protein levels were up-regulated. Next, we employed glucose deprivation-induced hypoglycemia in mixed cortical cultures of neurons and astrocytes as an in vitro model. Cells were deprived of glucose and, two hours later, supplemented with 20 mM glucose. Under this condition, a significant ATP loss followed by death was observed in neurons but not in astrocytes, which were blocked by treatment with uridine in a concentration-dependent manner. Inhibition of cellular uptake of uridine by S-(4-nitrobenzyl)-6-thioinosine blocked the uridine effect. Similar to our in vivo data, UPase expression was up-regulated by glucose deprivation in mRNA as well as protein levels. Additionally, 5-(phenylthio)acyclouridine, a specific inhibitor of UPase, prevented the uridine effect. Finally, the uridine effect was shown only in the presence of astrocytes. Taken together, the present study provides the first evidence that uridine protects neurons against ischemic insult-induced neuronal death, possibly through the action of UPase.
Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok
2011-12-01
Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Palmela, Inês; Correia, Leonor; Silva, Rui F. M.; Sasaki, Hiroyuki; Kim, Kwang S.; Brites, Dora; Brito, Maria A.
2015-01-01
Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells. PMID:25821432
Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli
Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria
2014-01-01
Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations. PMID:25386905
2011-01-01
Background We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs. Methods/Results In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect. Conclusions We show that LPS-activated microglia promote BBB disruption through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection. PMID:21385378
Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Mardor, Yael; Miklavcic, Damijan
2016-03-01
Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p < 0.008, r(2) = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.
Auzmendi, Jerónimo; Buchholz, Bruno; Salguero, Jimena; Cañellas, Carlos; Kelly, Jazmín; Men, Paula; Zubillaga, Marcela; Rossi, Alicia; Merelli, Amalia; Gelpi, Ricardo J; Ramos, Alberto J; Lazarowski, Alberto
2018-02-16
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death in those patients suffering from refractory epilepsy (RE), with a 24-fold higher risk relative to the normal population. SUDEP risk increases with seizure frequency and/or seizure-duration as in RE and Status Epilepticus (SE). P-glycoprotein (P-gp), the product of the multidrug resistant ABCB1-MDR-1 gene, is a detoxifying pump that extrudes drugs out of the cells and can confer pharmacoresistance to the expressing cells. Neurons and cardiomyocytes normally do not express P-gp, however, it is overexpressed in the brain of patients or in experimental models of RE and SE. P-gp was also detected after brain or cardiac hypoxia. We have previously demonstrated that repetitive pentylenetetrazole (PTZ)-induced seizures increase P-gp expression in the brain, which is associated with membrane depolarization in the hippocampus, and in the heart, which is associated with fatal SE. SE can produce hypoxic-ischemic altered cardiac rhythm (HIACR) and severe arrhythmias, and both are related with SUDEP. Here, we investigate whether SE induces the expression of hypoxia-inducible transcription factor (HIF)-1α and P-gp in cardiomyocytes, which is associated with altered heart rhythm, and if these changes are related with the spontaneous death rate. SE was induced in Wistar rats once a week for 3 weeks, by lithium-pilocarpine-paradigm. Electrocardiograms, HIF-1α, and P-gp expression in cardiomyocytes, were evaluated in basal conditions and 72 h after SE. All spontaneous deaths occurred 48 h after each SE was registered. We observed that repeated SE induced HIF-1α and P-gp expression in cardiomyocytes, electrocardiographic (ECG) changes, and a high rate of spontaneous death. Our results suggest that the highly accumulated burden of convulsive stress results in a hypoxic heart insult, where P-gp expression may play a depolarizing role in cardiomyocyte membranes and in the development of the ECG changes, such as QT interval prolongation, that could be related with SUDEP. We postulate that this mechanism could explain, in part, the higher SUDEP risk in patients with RE or SE.
Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons
Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian
2016-01-01
Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345
Neuroprotective effect of α-mangostin and curcumin against iodoacetate-induced cell death.
Reyes-Fermín, Laura María; González-Reyes, Susana; Tarco-Álvarez, Nadia Gabriela; Hernández-Nava, Marisol; Orozco-Ibarra, Marisol; Pedraza-Chaverri, José
2012-09-01
Curcumin is a phenolic yellow curry pigment with anti-inflammatory and antioxidant activities and α-mangostin is a xanthone isolated from mangosteen fruit with antioxidant properties. Iodoacetate (IAA) is an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase that induces a model of metabolic inhibition in neurons where reactive oxygen species (ROS) production is a significant mechanism. Furthermore, it has been shown that the induction of heme oxygenase-1 (HO-1) protects against IAA-induced neuronal death. To study the effects of α-mangostin and curcumin against the IAA-induced cell death and on HO-1 expression in primary cultures of cerebellar granule neurons (CGNs). CGNs were treated with curcumin or α-mangostin before the addition of IAA. Cell viability and ROS production were measured 24 and 4 hours after IAA addition, respectively. HO-1 expression was measured by western blot. Both α-mangostin and curcumin pretreatment ameliorated the neuronal death induced by IAA in a concentration-dependent way, which was associated with an amelioration of IAA-induced ROS formation. In addition, it was found that α-mangostin and curcumin induced HO-1 expression. Treatment with α-mangostin and curcumin provided a neuroprotective effect against IAA in primary cultures of CGNs, an effect associated with an amelioration of the IAA-induced ROS production. HO-1 induced by these antioxidants may also be involved in the neuroprotective effect. Future work will be required to determine whether α-mangostin may cross the blood-brain barrier and achieve enough bioavailability to elicit a protective response in the brain being an effective nutraceutical compound for preventive therapy of neurodegenerative diseases.
Lukiw, Walter J.; Pogue, Aileen I.
2007-01-01
Iron- and aluminum-sulfate together, at nanomolar concentrations, trigger the production of reactive oxygen species (ROS) in cultures of human brain cells. Previous studies have shown that following ROS induction, a family of pathogenic brain genes that promote inflammatory signalling, cellular apoptosis and brain cell death is significantly over-expressed. Notably, iron- and aluminum-sulfate induce genes in cultured human brain cells that exhibit expression patterns similar to those observed to be up-regulated in moderate- to late-stage Alzheimer's disease (AD). In this study we have extended our investigations to analyze the expression of micro RNA (miRNA) populations in iron- and aluminum-sulfate treated human neural cells in primary culture. The main finding was that these ROS-generating neurotoxic metal sulfates also up-regulate a specific set of miRNAs that includes miR-9, miR-125b and miR-128. Notably, these same miRNAs are up-regulated in AD brain. These findings further support the idea that iron- and aluminum-sulfates induce genotoxicity via a ROS-mediated up-regulation of specific regulatory elements and pathogenic genes that redirect brain cell fate towards progressive dysfunction and apoptotic cell death. PMID:17629564
Pla, Antoni; Pascual, María; Guerri, Consuelo
2016-01-01
Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.
Formentini, Laura; Pereira, Marta P; Sánchez-Cenizo, Laura; Santacatterina, Fulvio; Lucas, José J; Navarro, Carmen; Martínez-Serrano, Alberto; Cuezva, José M
2014-04-01
A key transducer in energy conservation and signaling cell death is the mitochondrial H(+)-ATP synthase. The expression of the ATPase inhibitory factor 1 (IF1) is a strategy used by cancer cells to inhibit the activity of the H(+)-ATP synthase to generate a ROS signal that switches on cellular programs of survival. We have generated a mouse model expressing a mutant of human IF1 in brain neurons to assess the role of the H(+)-ATP synthase in cell death in vivo. The expression of hIF1 inhibits the activity of oxidative phosphorylation and mediates the shift of neurons to an enhanced aerobic glycolysis. Metabolic reprogramming induces brain preconditioning affording protection against quinolinic acid-induced excitotoxicity. Mechanistically, preconditioning involves the activation of the Akt/p70S6K and PARP repair pathways and Bcl-xL protection from cell death. Overall, our findings provide the first in vivo evidence highlighting the H(+)-ATP synthase as a target to prevent neuronal cell death.
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A
2015-06-01
Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.
Wang, Janice C; Bindokas, Vytautas P; Skinner, Matthew; Emrick, Todd; Marks, Jeremy D
2017-10-01
Global brain ischemia can lead to widespread neuronal death and poor neurologic outcomes in patients. Despite detailed understanding of the cellular and molecular mechanisms mediating neuronal death following focal and global brain hypoxia-ischemia, treatments to reduce ischemia-induced brain injury remain elusive. One pathway central to neuronal death following global brain ischemia is mitochondrial dysfunction, one consequence of which is the cascade of intracellular events leading to mitochondrial outer membrane permeabilization. A novel approach to rescuing injured neurons from death involves targeting cellular membranes using a class of synthetic molecules called Pluronics. Pluronics are triblock copolymers of hydrophilic poly[ethylene oxide] (PEO) and hydrophobic poly[propylene oxide] (PPO). Evidence is accumulating to suggest that hydrophilic Pluronics rescue injured neurons from death following substrate deprivation by preventing mitochondrial dysfunction. Here, we will review current understanding of the nature of interaction of Pluronic molecules with biological membranes and the efficacy of F-68, an 80% hydrophilic Pluronic, in rescuing neurons from injury. We will review data indicating that F-68 reduces mitochondrial dysfunction and mitochondria-dependent death pathways in a model of neuronal injury in vitro, and present new evidence that F-68 acts directly on mitochondria to inhibit mitochondrial outer membrane permeabilization. Finally, we will present results of a pilot, proof-of-principle study suggesting that F-68 is effective in reducing hippocampal injury induced by transient global ischemia in vivo. By targeting mitochondrial dysfunction, F-68 and other Pluronic molecules constitute an exciting new approach to rescuing neurons from acute injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro
2004-04-01
The expression of oxygen regulated protein 150-kDa (ORP-150) was strongly induced in human brain under the hypoxic conditions. We examined the expression of ORP-150 in the brain samples, and discussed its significance in forensic practice. The cerebral cortexes of 31 cases (asphyxia: 9 cases, hypothermia: 4, exsanguinations: 5, CO intoxication (CO): 6, sudden cardiac death (SCD): 7) were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibody and the number of ORP-150 positive cells were counted. In the multiple linear regression method, the estimated regression coefficient of ORP-150 on age was significant (P=0.039) thus, we could find that the ORP-150 expression level depended on age. Using analysis of covariance, we compared the means of ORP-150, LSMEAN, which means hypothetic average value excluding influence of age, for each cause of death. The LSMEAN+/-SE was 84.74+/-9.03 in hypothermia, 57.52+/-6.34 in asphyxia, 46.68+/-6.70 in CO, 24.84+/-8.05 in exsanguinations, and 16.24+/-7.35 in SCD. As a result of the analysis, the LSMEAN of the ORP-150 expression level was related to the cause of death. There might be differences in the duration of brain ischemia before death. For example, SCD is presumed to be instant death, while brain ischemia continues for several minutes in asphyxia, CO and exsanguinations, and for several hours in hypothermia cases. Therefore, the immunohistochemical and morphometrical analysis of ORP-150 in the brain may be very useful to determine the duration of brain ischemia before death in forensic autopsy cases.
Ye, Hui; Wang, Dong-Ping; Zhang, Chuan-Zhao; Zhang, Long-Juan; Wang, Hao-Chen; Li, Zhuo-Hui; Chen, Zhen; Zhang, Tao; Cai, Chang-Jie; Ju, Wei-Qiang; Ma, Yi; Guo, Zhi-Yong; He, Xiao-Shun
2014-10-01
Donation after brain death followed by circulatory death (DBCD) is a unique practice in China. The aim of this study was to define the pathologic characteristics of DBCD liver allografts in a porcine model. Fifteen male pigs (25-30 kg) were allocated randomly into donation after brain death (DBD), donation after circulatory death (DCD) and DBCD groups. Brain death was induced by augmenting intracranial pressure. Circulatory death was induced by withdrawal of life support in DBCD group and by venous injection of 40 mL 10% potassium chloride in DCD group. The donor livers were perfused in situ and kept in cold storage for 4 h. Liver tissue and common bile duct samples were collected for hematoxylin and eosin staining, TUNEL testing and electron microscopic examination. Spot necrosis was found in hepatic parenchyma of DBD and DBCD groups, while a large area of necrosis was shown in DCD group. The apoptosis rate of hepatocytes in DBD [(0.56±0.30)%] and DBCD [(0.50 ± 0.11)%] groups was much lower than that in DCD group [(3.78±0.33)%] (P<0.05). And there was no significant difference between DBD group and DBCD group (P>0.05)). The structures of bile duct were intact in both DBD and DBCD groups, while the biliary epithelium was totally damaged in DCD group. Under electron microscope, the DBD hepatocytes were characterized by intact cell membrane, well-organized endoplasmic reticulum, mild mitochondria edema and abundant glycogens. Broken cell membrane, mild inflammatory cell infiltration and sinusoidal epithelium edema, as well as reduced glycogen volume, were found in the DBCD hepatocytes. The DCD hepatocytes had more profound cell organelle injury and much less glycogen storage. In conclusion, the preservation injury of DBCD liver allografts is much less severe than that of un-controlled DCD, but more severe than that of DBD liver allografts under electron microscope, which might reflect post-transplant liver function to some extent.
Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury.
Eroglu, Binnur; Kimbler, Donald E; Pang, Junfeng; Choi, Justin; Moskophidis, Demetrius; Yanasak, Nathan; Dhandapani, Krishnan M; Mivechi, Nahid F
2014-09-01
Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI. © 2014 International Society for Neurochemistry.
Fowler, Anna-Kate; Hewetson, Aveline; Agrawal, Rajiv G; Dagda, Marisela; Dagda, Raul; Moaddel, Ruin; Balbo, Silvia; Sanghvi, Mitesh; Chen, Yukun; Hogue, Ryan J; Bergeson, Susan E; Henderson, George I; Kruman, Inna I
2012-12-21
The brain is one of the major targets of chronic alcohol abuse. Yet the fundamental mechanisms underlying alcohol-mediated brain damage remain unclear. The products of alcohol metabolism cause DNA damage, which in conditions of DNA repair dysfunction leads to genomic instability and neural death. We propose that one-carbon metabolism (OCM) impairment associated with long term chronic ethanol intake is a key factor in ethanol-induced neurotoxicity, because OCM provides cells with DNA precursors for DNA repair and methyl groups for DNA methylation, both critical for genomic stability. Using histological (immunohistochemistry and stereological counting) and biochemical assays, we show that 3-week chronic exposure of adult mice to 5% ethanol (Lieber-Decarli diet) results in increased DNA damage, reduced DNA repair, and neuronal death in the brain. These were concomitant with compromised OCM, as evidenced by elevated homocysteine, a marker of OCM dysfunction. We conclude that OCM dysfunction plays a causal role in alcohol-induced genomic instability in the brain because OCM status determines the alcohol effect on DNA damage/repair and genomic stability. Short ethanol exposure, which did not disturb OCM, also did not affect the response to DNA damage, whereas additional OCM disturbance induced by deficiency in a key OCM enzyme, methylenetetrahydrofolate reductase (MTHFR) in Mthfr(+/-) mice, exaggerated the ethanol effect on DNA repair. Thus, the impact of long term ethanol exposure on DNA repair and genomic stability in the brain results from OCM dysfunction, and MTHFR mutations such as Mthfr 677C→T, common in human population, may exaggerate the adverse effects of ethanol on the brain.
Caspase inhibitors protect neurons by enabling selective necroptosis of inflamed microglia.
Fricker, Michael; Vilalta, Anna; Tolkovsky, Aviva M; Brown, Guy C
2013-03-29
Microglia are resident brain macrophages, which can cause neuronal loss when activated in infectious, ischemic, traumatic, and neurodegenerative diseases. Caspase-8 has both prodeath and prosurvival roles, mediating apoptosis and/or preventing RIPK1-mediated necroptosis depending on cell type and stimulus. We found that inflammatory stimuli (LPS, lipoteichoic acid, or TNF-α) caused an increase in caspase-8 IETDase activity in primary rat microglia without inducing apoptosis. Inhibition of caspase-8 with either Z-VAD-fmk or IETD-fmk resulted in necrosis of activated microglia. Inhibition of caspases with Z-VAD-fmk did not kill non-activated microglia, or astrocytes and neurons in any condition. Necrostatin-1, a specific inhibitor of RIPK1, prevented microglial caspase inhibition-induced death, indicating death was by necroptosis. In mixed cerebellar cultures of primary neurons, astrocytes, and microglia, LPS induced neuronal loss that was prevented by inhibition of caspase-8 (resulting in microglial necroptosis), and neuronal death was restored by rescue of microglia with necrostatin-1. We conclude that the activation of caspase-8 in inflamed microglia prevents their death by necroptosis, and thus, caspase-8 inhibitors may protect neurons in the inflamed brain by selectively killing activated microglia.
Li, Yifu; Xiong, Yunyi; Zhang, Huanxi; Li, Jun; Wang, Dong; Chen, Wenfang; Yuan, Xiaopeng; Su, Qiao; Li, Wenwen; Huang, Huiting; Bi, Zirong; Liu, Longshan; Wang, Changxi
2017-01-01
This study aimed to investigate the protective effects of EGb761, a Ginkgo Biloba extract, against brain death-induced kidney injury. Sixty male Sprague Dawley rats were randomly divided into six groups: sham, brain-death (BD), BD + EGb b48h (48 hours before BD), BD + EGb 2 h (2 hours after BD), BD + EGb 1 h, and BD + EGb 0.5 h. Six hours after BD, serum sample and kidney tissues were collected for analyses. The levels of blood urea nitrogen (BUN) and serum creatinine significantly elevated in the BD group than in sham group. In all the EGb761-treated BD animals except for the BD + Gb 2 h group, the levels of BUN and serum creatinine significantly reduced (all P < 0.01). EGb761 attenuated tubular injury and lowered the histological score. In addition, the longer duration of drug treatment was, the better protective efficacy could be observed. EGb761 significantly reduced IL-1β, IL-6, TNF-α, MCP-1, IP-10 mRNA expression and macrophage infiltration in the kidney. EGb761 treatment at 48 hour before brain death significantly attenuate the levels of p-JNK-MAPK, p-p38-MAPK, and p-STAT3 proteins (all P < 0.05, compared to BD group). In summary, our data showed that EGb761 treatment protected donor kidney from BD-induced damages by blocking SAPK and JAK-STAT signalings. Early administration of EGb761 can provide better protective efficacy. PMID:28332628
Sharabi, Shirley; Kos, Bor; Last, David; Guez, David; Daniels, Dianne; Harnof, Sagi; Miklavcic, Damijan
2016-01-01
Background Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. Material and methods Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. Results Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r2 = 0.79; p < 0.008, r2 = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. Conclusions The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup. PMID:27069447
Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.
Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R
2013-11-01
Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.
Purushothuman, Sivaraman; Marotte, Lauren; Stowe, Sally; Johnstone, Daniel M.; Stone, Jonathan
2013-01-01
Understanding the response of the brain to haemorrhagic damage is important in haemorrhagic stroke and increasingly in the understanding the cerebral degeneration and dementia that follow head trauma and head-impact sports. In addition, there is growing evidence that haemorrhage from small cerebral vessels is important in the pathogenesis of age-related dementia (Alzheimer’s disease). In a penetration injury model of rat cerebral cortex, we have examined the neuropathology induced by a needlestick injury, with emphasis on features prominent in the ageing and dementing human brain, particularly plaque-like depositions and the expression of related proteins. Needlestick lesions were made in neo- and hippocampal cortex in Sprague Dawley rats aged 3–5 months. Brains were examined after 1–30 d survival, for haemorrhage, for the expression of hyperphosphorylated tau, Aβ, amyloid precursor protein (APP), for gliosis and for neuronal death. Temporal cortex from humans diagnosed with Alzheimer’s disease was examined with the same techniques. Needlestick injury induced long-lasting changes–haem deposition, cell death, plaque-like deposits and glial invasion–along the needle track. Around the track, the lesion induced more transient changes, particularly upregulation of Aβ, APP and hyperphosporylated tau in neurons and astrocytes. Reactions were similar in hippocampus and neocortex, except that neuronal death was more widespread in the hippocampus. In summary, experimental haemorrhagic injury to rat cerebral cortex induced both permanent and transient changes. The more permanent changes reproduced features of human senile plaques, including the formation of extracellular deposits in which haem and Aβ-related proteins co-localised, neuronal loss and gliosis. The transient changes, observed in tissue around the direct lesion, included the upregulation of Aβ, APP and hyperphosphorylated tau, not associated with cell death. The findings support the possibility that haemorrhagic damage to the brain can lead to plaque-like pathology. PMID:23555765
2014-11-01
to nerve agents induces prolonged status epilepticus (SE), causing brain damage or death. Diazepam (DZP) is the cur- rent US Food and Drug... status epilepticus (SE), which are initiated by the excessive stimulation of cholinergic receptors. If immediate death is prevented by adequate...5-yl)ethyl] decahydroisoquinoline-3-carboxylic acid; PBS, phosphate-buffered saline; SE, status epilepticus ; UBP302, (S)-3-(2-carboxybenzyl
Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells
Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho
2014-01-01
Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS).We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. PMID:25034532
Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter
2016-04-01
Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.
Rostron, Anthony J; Avlonitis, Vassilios S; Cork, David M W; Grenade, Danielle S; Kirby, John A; Dark, John H
2008-02-27
The autonomic storm accompanying brain death leads to neurogenic pulmonary edema and triggers development of systemic and pulmonary inflammatory responses. Neurogenic vasoplegia exacerbates the pulmonary injury caused by brain death and primes the lung for ischemia reperfusion injury and primary graft dysfunction in the recipient. Donor resuscitation with norepinephrine ameliorates the inflammatory response to brain death, however norepinephrine has deleterious effects, particularly on the heart. We tested the hypothesis that arginine vasopressin is a suitable alternative to norepinephrine in managing the hypotensive brain dead donor. Brain death was induced in Wistar rats by intracranial balloon inflation. Pulmonary capillary leak was estimated using radioiodinated albumin. Development of pulmonary edema was assessed by measurement of wet and dry lung weights. Cell surface expression of CD11b/CD18 by neutrophils was determined using flow cytometry. Enzyme-linked immunosorbent assays were used to measure the levels of TNFalpha, IL-1beta, CINC-1, and CINC-3 in serum and bronchoalveolar lavage. Quantitative reverse-transcription polymerase chain reaction was used to determine the expression of cytokine mRNA (IL-1beta, CINC-1 and CINC-3) in lung tissue. There was a significant increase in pulmonary capillary permeability, wet/dry lung weight ratios, neutrophil integrin expression and pro-inflammatory cytokines in serum (TNFalpha, IL-1beta, CINC-1 and CINC-3), bronchoalveolar lavage (TNFalpha and IL-1beta) and lung tissue (IL-1beta and CINC-1) in braindead animals compared to controls. Correction of neurogenic hypotension with either arginine vasopressin or norepinephrine limits edema, reduces pulmonary capillary leak, and modulates systemic and pulmonary inflammatory responses to brain death. Arginine vasopressin and norepinephrine are equally effective in treating the hypotensive pulmonary donor in this rodent model.
Üllen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang
2012-01-01
2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase–hydrogen peroxide–chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood–brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. PMID:22982051
Zhang, Wenting; Liu, Jia; Hu, Xiaoming; Li, Peiying; Leak, Rehana K; Gao, Yanqin; Chen, Jun
2015-10-01
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate neonatal hypoxic/ischemic (H/I) brain damage, but the underlying mechanisms are not fully understood. This study tested the hypothesis that n-3 PUFAs enhance Akt-dependent prosurvival signaling by promoting the biosynthesis of phosphatidylserine in neuronal cell membranes. Dietary n-3 PUFA supplementation was initiated on the second day of pregnancy in dams. H/I was induced in 7-day-old rat pups by ipsilateral common carotid artery occlusion followed by hypoxia (8% oxygen for 2.5 hours). Neurological outcomes, brain tissue loss, cell death, and the activation of signaling events were assessed after H/I. The effects of n-3 PUFAs (docosahexaenoic acid and eicosapentaenoic acid) on oxygen-glucose deprivation-induced cell death and the underlying mechanism of protection were also examined in primary cortical neuron cultures. n-3 PUFAs reduced brain tissue loss at 7 days after H/I and improved neurological outcomes, whereas inhibition of PI3K/Akt signaling by LY294002 partially abrogated this neuroprotective effect. Docosahexaenoic acid/eicosapentaenoic acid also prevented ischemic neuronal death through the Akt prosurvival pathway in vitro. Furthermore, docosahexaenoic acid/eicosapentaenoic acid increased the production of phosphatidylserine, the major membrane-bound phospholipids, after ischemia both in vitro and in vivo. A reduction in membrane phosphatidylserine by shRNA-mediated knockdown of phosphatidylserine synthetase-1 attenuated Akt activation and neuronal survival after docosahexaenoic acid/eicosapentaenoic acid treatment in the oxygen-glucose deprivation model. n-3 PUFAs robustly protect against H/I-induced brain damage in neonates by activating Akt prosurvival pathway in compromised neurons. In addition, n-3 PUFAs promote the formation of membrane phosphatidylserine, thereby promoting Akt activity and improving cellular survival. © 2015 American Heart Association, Inc.
Astrocyte truncated-TrkB mediates BDNF antiapoptotic effect leading to neuroprotection.
Saba, Julieta; Turati, Juan; Ramírez, Delia; Carniglia, Lila; Durand, Daniela; Lasaga, Mercedes; Caruso, Carla
2018-05-31
Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase-3 and p53 expression. The antiapoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium and Src. BDNF reduced reactive oxygen species (ROS) levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte conditioned media (ACM) from untreated astrocytes partially protected PC12 neurons whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced ROS levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Oxidative damage to lipids, proteins and nucleic acids in brain often causes progressive neuronal degeneration and death which are the focal traits of chronic and acute pathologies in the brain, including those involving cognitive decline. It has been postulated that at least part of the loss of cog...
Sari, Youssef
2013-04-24
Experimental designs for investigating the effects of prenatal alcohol exposure during early embryonic stages in fetal brain growth are challenging. This is mostly due to the difficulty of microdissection of fetal brains and their sectioning for determination of apoptotic cells caused by prenatal exposure to alcohol. The experiments described here provide visualized techniques from mice breeding to the identification of cell death in fetal brain tissue. This study used C57BL/6 mice as the animal model for studying fetal alcohol exposure and the role of trophic peptide against alcohol-induced apoptosis. The breeding consists of a 2-hr matting window to determine the exact stage of embryonic age. An established fetal alcohol exposure model has been used in this study to determine the effects of prenatal alcohol exposure in fetal brains. This involves free access to alcohol or pair-fed liquid diets as the sole source of nutrients for the pregnant mice. The techniques involving dissection of fetuses and microdissection of fetal brains are described carefully, since the latter can be challenging. Microdissection requires a stereomicroscope and ultra-fine forceps. Step-by-step procedures for dissecting the fetal brains are provided visually. The fetal brains are dissected from the base of the primordium olfactory bulb to the base of the metencephalon. For investigating apoptosis, fetal brains are first embedded in gelatin using a peel-away mold to facilitate their sectioning with a vibratome apparatus. Fetal brains embedded and fixed in paraformaldehyde are easily sectioned, and the free floating sections can be mounted in superfrost plus slides for determination of apoptosis or cell death. TUNEL (TdT-mediated dUTP Nick End Labeling; TdT: terminal deoxynucleotidyl transferase) assay has been used to identify cell death or apoptotic cells. It is noteworthy that apoptosis and cell-mediated cytotoxicity are characterized by DNA fragmentation. Thus, the visualized TUNEL-positive cells are indicative of cell death or apoptotic cells. The experimental designs here provide information about the use of an established liquid diet for studying the effects of alcohol and the role of neurotrophic peptides during pregnancy in fetal brains. This involves breeding and feeding pregnant mice, microdissecting fetal brains, and determining apoptosis. Together, these visual and textual techniques might be a source for investigating prenatal exposure of harmful agents in fetal brains.
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.
2015-01-01
Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407
Iriyama, Takayuki; Kamei, Yoshimasa; Kozuma, Shiro; Taketani, Yuji
2009-02-13
Glutamate-induced excitotoxicity has been implicated in the pathogenesis of various neurological damages and disorders. In the brain damage of immature animals such as neonatal hypoxic-ischemic brain injury, the excitotoxicity appears to be more intimately involved through apoptosis. Bax, a member of the Bcl-2 family proteins, plays a key role in the promotion of apoptosis by translocation from the cytosol to the mitochondria and the release of apoptogenic factors such as cytochrome c. Recently, Bax-inhibiting peptide (BIP), a novel membrane-permeable peptide which can bind Bax in the cytosol and inhibit its translocation to the mitochondria, was developed. To investigate the possibility of a new neuroprotection strategy targeting Bax translocation in glutamate-induced neuronal cell death, cerebellar granule neurons (CGNs) were exposed to glutamate with or without BIP. Pretreatment of CGNs with BIP elicited a dose-dependent reduction of glutamate-induced neuronal cell death as measured by MTT assay. BIP significantly suppressed both the number of TUNEL-positive cells and the increase in caspases 3 and 9 activities induced by glutamate. In addition, immunoblotting after subcellular fractionation revealed that BIP prevented the glutamate-induced Bax translocation to the mitochondria and the release of cytochrome c from the mitochondria. These results suggest that agents capable of inhibiting Bax activity such as BIP might lead to new drugs for glutamate-related diseases in the future.
Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J
2017-08-01
We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.
Ivanov, Vladimir N.; Wu, Jinhua; Hei, Tom K.
2017-01-01
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The challenging problem in cancer treatment is to find a way to upregulate radiosensitivity of GBM while protecting neurons and neural stem/progenitor cells in the brain. The goal of the present study was upregulation of the cytotoxic effect of γ-irradiation in GBM by non-psychotropic and non-toxic cannabinoid, cannabidiol (CBD). We emphasized three main aspects of signaling mechanisms induced by CBD treatment (alone or in combination with γ-irradiation) in human GBM that govern cell death: 1) CBD significantly upregulated the active (phosphorylated) JNK1/2 and MAPK p38 levels with the subsequent downregulation of the active phospho-ERK1/2 and phospho-AKT1 levels. MAPK p38 was one of the main drivers of CBD-induced cell death, while death levels after combined treatment of CBD and radiation were dependent on both MAPK p38 and JNK. Both MAPK p38 and JNK regulate the endogenous TRAIL expression. 2) NF-κB p65-P(Ser536) was not the main target of CBD treatment and this transcription factor was found at high levels in CBD-treated GBM cells. Additional suppression of p65-P(Ser536) levels using specific small molecule inhibitors significantly increased CBD-induced apoptosis. 3) CBD treatment substantially upregulated TNF/TNFR1 and TRAIL/TRAIL-R2 signaling by modulation of both ligand and receptor levels followed by apoptosis. Our results demonstrate that radiation-induced death in GBM could be enhanced by CBD-mediated signaling in concert with its marginal effects for neural stem/progenitor cells and astrocytes. It will allow selecting efficient targets for sensitization of GBM and overcoming cancer therapy-induced severe adverse sequelae. PMID:29088769
Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.
Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. Themore » molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis attenuates cocaine neurotoxicity. • This effect is mediated by the cannabinoid CB1 receptor/PI3K pathway.« less
Gender difference in the effect of progesterone on neonatal hypoxic/ischemic brain injury in mouse.
Dong, Shuyu; Zhang, Qian; Kong, Delian; Zhou, Chao; Zhou, Jie; Han, Jingjing; Zhou, Yan; Jin, Guoliang; Hua, Xiaodong; Wang, Jun; Hua, Fang
2018-08-01
This study investigated the effects of progesterone (PROG) on neonatal hypoxic/ischemic (NHI) brain injury, the differences in effects between genders, and the underlying mechanisms. NHI brain injury was established in both male and female neonatal mice induced by occlusion of the left common carotid artery followed by hypoxia. The mice were treated with PROG or vehicle. Fluoro-Jade B staining (F-JB), long term behavior testing, and brain magnetic resonance image (MRI) were applied to evaluate neuronal death, neurological function, and brain damage. The underlying molecular mechanisms were also investigated by Western blots. The results showed that, in the male mice, administration of PROG significantly reduced neuronal death, improved the learning and memory function impaired by cerebral HI, decreased infarct size, and maintained the thickness of the cortex after cerebral HI. PROG treatment, however, did not show significant neuroprotective effects on female mice subjected to HI. In addition, the data demonstrated a gender difference in the expression of tumor necrosis factor receptor 1 (TNFR1), TNF receptor associated factor 6 (TRAF6), Fas associated protein with death domain (FADD), and TIR-domain-containing adapter-inducing interferon-β (TRIF) between males and females. Our results indicated that treatment with PROG had beneficial effects on NHI injured brain in acute stage and improved the long term cognitive function impaired by cerebral HI in male mice. In addition, the activation of TNF and TRIF mediated signaling in response to cerebral HI and the treatment of PROG varied between genders, which highly suggested that gender differences should be emphasized in evaluating neonatal HI brain injury and PROG effects, as well as the underlying mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Fuxiang; Su, Xingfen; Lin, Zhangya; Lin, Yuanxiang; Yu, Lianghong; Cai, Jiawei; Kang, Dezhi; Hu, Liwen
2017-01-01
Necroptosis is programmed cell death that has been recently proposed and reported to be involved in several neurologic diseases. However, the role of necroptosis in early brain injury after subarachnoid hemorrhage (SAH) is still unknown. The purpose of this study was to investigate whether necroptosis was involved in SAH-induced early brain injury, and to assess the possible neuroprotective effect of necrostatin-1 using an endovascular perforation rat model of SAH. Our results showed that the expression levels of necroptosis-related proteins including RIP1, RIP3 and MLKL in the basal cortex all increased at 3 hours after SAH ( P <0.05) and peaked at 48 hours after SAH ( P <0.05). However, they were greatly reduced after treatment with necrostatin-1 ( P <0.05). Concurrently, neurologic outcomes were significantly improved after necrostatin-1 treatment ( P <0.05). Furthermore, brain edema, blood-brain barrier disruption, necrotic cell death and neuroinflammation were also greatly inhibited after necrostatin-1 treatment. These results indicate that necroptosis is an important mechanism of cell death involved in the early brain injury after experimental SAH. Necrostatin-1 perhaps can serve as a promising neuroprotective agent for SAH treatment.
Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee
2009-11-01
Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease.
[Ischemic brain injury and hepatocyte growth factor].
Takeo, Satoshi; Takagi, Norio; Takagi, Keiko
2007-11-01
Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.
Shen, Haitao; Liu, Chenglin; Zhang, Dongping; Yao, Xiyang; Zhang, Kai; Li, Haiying; Chen, Gang
2017-03-02
Cell death is a hallmark of second brain injury after intracerebral hemorrhage (ICH); however, the mechanism still has not been fully illustrated. In this study, we explored whether necroptosis, a type of regulated necrosis, has an essential role in brain injury after ICH. We found that inhibiting receptor-interacting protein 1 (RIP1) - a core element of the necroptotic pathway - by a specific chemical inhibitor or genetic knockdown attenuated brain injury in a rat model of ICH. Furthermore, necroptosis of cultured neurons could be induced by conditioned medium from microglia stimulated with oxygen hemoglobin, and this effect could be inhibited by TNF-α inhibitor, indicating that TNF-α secreted from activated microglia is an important factor in inducing necroptosis of neurons. Undoubtedly, overexpression of RIP1 increased conditioned medium-induced necroptosis in vitro, but this effect was partially diminished in mutation of serine kinase phosphorylation site of RIP1, showing that phosphorylation of RIP1 is the essential molecular mechanism of necroptosis, which was activated in the in vitro model of ICH. Collectively, our investigation identified that necroptosis is an important mechanism of cell death in brain injury after ICH, and inhibition of necroptosis may be a potential therapeutic intervention of ICH.
Shen, Haitao; Liu, Chenglin; Zhang, Dongping; Yao, Xiyang; Zhang, Kai; Li, Haiying; Chen, Gang
2017-01-01
Cell death is a hallmark of second brain injury after intracerebral hemorrhage (ICH); however, the mechanism still has not been fully illustrated. In this study, we explored whether necroptosis, a type of regulated necrosis, has an essential role in brain injury after ICH. We found that inhibiting receptor-interacting protein 1 (RIP1) – a core element of the necroptotic pathway – by a specific chemical inhibitor or genetic knockdown attenuated brain injury in a rat model of ICH. Furthermore, necroptosis of cultured neurons could be induced by conditioned medium from microglia stimulated with oxygen hemoglobin, and this effect could be inhibited by TNF-α inhibitor, indicating that TNF-α secreted from activated microglia is an important factor in inducing necroptosis of neurons. Undoubtedly, overexpression of RIP1 increased conditioned medium-induced necroptosis in vitro, but this effect was partially diminished in mutation of serine kinase phosphorylation site of RIP1, showing that phosphorylation of RIP1 is the essential molecular mechanism of necroptosis, which was activated in the in vitro model of ICH. Collectively, our investigation identified that necroptosis is an important mechanism of cell death in brain injury after ICH, and inhibition of necroptosis may be a potential therapeutic intervention of ICH. PMID:28252651
Wang, Bo; Li, Wenyang; Jin, Hongyu; Nie, Xinshi; Shen, Hui; Li, Erran; Wang, Wei
2018-09-01
Chronic intermittent hypoxia (CIH) is one of the main features of obstructive sleep apnea (OSA), which is also commonly associated with neurocognitive impairments. The present study aimed to elucidate the beneficial effect of curcumin on CIH-induced brain injuries. Male balb/c mice (6 ∼ 8 weeks) were exposed to normoxia or a pattern of CIH (8 h/day, cycles of 180 s each, hypoxia: 5% O 2 for 50 s, reoxygenation: 21% O 2 for 50 s) for 10 weeks, along with daily curcumin treatment (50, 100, or 200 mg/kg, intragastrically) or its vehicle. The results showed that CIH induced significant brain edema, as well as neuronal apoptosis and astrogliosis in the cerebral cortex, brainstem, and cerebellum regions of brain. In addition, increased astrocytic AQP4 expression and activation of p38 MAPK pathway were observed after CIH exposure. Curcumin dose-dependently mitigated the brain edema and relevant cell alterations, showing a neuroprotective effect in CIH-induced brain injury. Together, these results suggest curcumin ameliorates the CIH-induced brain injuries, including brain edema, neuronal death and astrogliosis. The beneficial role of curcumin is mediated partially by regulating AQP4 and p38 MAPK pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xiang Jun; Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322; Yu, Shan Ping
2010-07-01
The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release andmore » activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.« less
Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis
Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael
2014-01-01
Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627
Noorbakhsh, Farshid; Ramachandran, Rithwik; Barsby, Nicola; Ellestad, Kristofor K; LeBlanc, Andrea; Dickie, Peter; Baker, Glen; Hollenberg, Morley D; Cohen, Eric A; Power, Christopher
2010-06-01
MicroRNAs (miRNAs) are small noncoding RNA molecules, which are known to regulate gene expression in physiological and pathological conditions. miRNA profiling was performed using brain tissue from patients with HIV encephalitis (HIVE), a neuroinflammatory/degenerative disorder caused by HIV infection of the brain. Microarray analysis showed differential expression of multiple miRNAs in HIVE compared to control brains. Target prediction and gene ontology enrichment analysis disclosed targeting of several gene families/biological processes by differentially expressed miRNAs (DEMs), with cell death-related genes, including caspase-6, showing a bias toward down-regulated DEMs. Consistent with the miRNA data, HIVE brains exhibited higher levels of caspase-6 transcripts compared with control patients. Immunohistochemical analysis showed localization of the cleaved form of caspase-6 in astrocytes in HIVE brain sections. Exposure of cultured human primary astrocytes to HIV viral protein R (Vpr) induced p53 up-regulation, loss of mitochondrial membrane potential, and caspase-6 activation followed by cell injury. Transgenic mice, expressing Vpr in microglial cells, demonstrated astrocyte apoptosis in brain, which was associated with caspase-6 activation and neurobehavioral abnormalities. Overall, these data point to previously unrecognized alterations in miRNA profile in the brain during HIV infection, which contribute to cell death through dysregulation of cell death machinery.
Cylindromatosis mediates neuronal cell death in vitro and in vivo.
Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten
2018-01-19
The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.
Liu, Zhan; Huang, Yan; Cao, Bei-Bei; Qiu, Yi-Hua; Peng, Yu-Ping
2017-12-01
T helper (Th)17 cells, a subset of CD4 + T lymphocytes, have strong pro-inflammatory property and appear to be essential in the pathogenesis of many inflammatory diseases. However, the involvement of Th17 cells in Parkinson's disease (PD) that is characterized by a progressive degeneration of dopaminergic (DAergic) neurons in the nigrostriatal system is unclear. Here, we aimed to demonstrate that Th17 cells infiltrate into the brain parenchyma and induce neuroinflammation and DAergic neuronal death in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- or 1-methyl-4-phenylpyridinium (MPP + )-induced PD models. Blood-brain barrier (BBB) disruption in the substantia nigra (SN) was assessed by the signal of FITC-labeled albumin that was injected into blood circulation via the ascending aorta. Live cell imaging system was used to observe a direct contact of Th17 cells with neurons by staining these cells using the two adhesion molecules, leukocyte function-associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1, respectively. Th17 cells invaded into the SN where BBB was disrupted in MPTP-induced PD mice. Th17 cells exacerbated DAergic neuronal loss and pro-inflammatory/neurotrophic factor disorders in MPP + -treated ventral mesencephalic (VM) cell cultures. A direct contact of LFA-1-stained Th17 cells with ICAM-1-stained VM neurons was dynamically captured. Either blocking LFA-1 in Th17 cells or blocking ICAM-1 in VM neurons with neutralizing antibodies abolished Th17-induced DAergic neuronal death. These results establish that Th17 cells infiltrate into the brain parenchyma of PD mice through lesioned BBB and exert neurotoxic property by promoting glial activation and importantly by a direct damage to neurons depending on LFA-1/ICAM-1 interaction.
Ullen, Andreas; Fauler, Günter; Bernhart, Eva; Nusshold, Christoph; Reicher, Helga; Leis, Hans-Jörg; Malle, Ernst; Sattler, Wolfgang
2012-11-01
2-Chlorohexadecanal (2-ClHDA), a chlorinated fatty aldehyde, is formed via attack on ether-phospholipids by hypochlorous acid (HOCl) that is generated by the myeloperoxidase-hydrogen peroxide-chloride system of activated leukocytes. 2-ClHDA levels are elevated in atherosclerotic lesions, myocardial infarction, and neuroinflammation. Neuroinflammatory conditions are accompanied by accumulation of neutrophils (an ample source of myeloperoxidase) in the brain. Microvessel damage by inflammatory mediators and/or reactive oxidants can induce blood-brain barrier (BBB) dysfunction, a pathological condition leading to cerebral edema, brain hemorrhage, and neuronal death. In this in vitro study we investigated the impact of 2-ClHDA on brain microvascular endothelial cells (BMVEC), which constitute the morphological basis of the BBB. We show that exogenously added 2-ClHDA is subject to rapid uptake and metabolism by BMVEC. Using C16 structural analogues of 2-ClHDA we found that the cytotoxic potential decreases in the following order: 2-ClHDA>hexadecanal>palmitic acid>2-ClHDA-dimethylacetal. 2-ClHDA induces loss of barrier function, mitochondrial dysfunction, apoptosis via activation of caspase 3, and altered intracellular redox balance. Finally we investigated potential protective effects of several natural polyphenols on in vitro BBB function. Of the compounds tested, phloretin almost completely abrogated 2-ClHDA-induced BMVEC barrier dysfunction and cell death. These data suggest that 2-ClHDA has the potential to induce BBB breakdown under inflammatory conditions and that phloretin confers protection in this experimental setting. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Okuda, Wataru; Kawauchi, Satoko; Ashida, Hiroshi; Sato, Shunichi; Nishidate, Izumi
2014-03-01
Blast-induced traumatic brain injury is a growing concern, but its underlying pathophysiology and mechanism are still unknown. Thus, study using an animal model is needed. We have been proposing the use of a laser-induced shock wave (LISW), whose energy is highly controllable and reproducible, to mimic blast-related injury. We previously observed the occurrence of spreading depolarization (SD) and prolonged hypoxemia in the rat brain exposed to an LISW. However, the relationship between these two events is unclear. In this study, we investigated the spatiotemporal characteristics of hypoxemia and SD to examine their correlation, for which multichannel fiber measurement and multispectral imaging of the diffuse reflectance were performed for the rat brain exposed to an LISW. We also quantified tissue oxygen saturation (StO2) in the hypoxemic phase, which is associated with possible neuronal cell death, based on an inverse Monte Carlo simulation. Fiber measurement showed that the region of hypoxemia was expanding from the site of LISW application to the distant region over the brain; the speed of expansion was similar to that of the propagation speed of SD. Simulation showed that oxygen saturation was decreased by ~40%. Multispectral imaging showed that after LISW application, a vasodilatation occurred for ~1 min, which was followed by a long-lasting vasoconstriction. In the phase of vasoconstriction, StO2 declined all over the field of view. These results indicate a strong correlation between SD and hypoxemia; the estimated StO2 seems to be low enough to induce neuronal cell death.
Rosas-Hernandez, Hector; Cuevas, Elvis; Escudero-Lourdes, Claudia; Lantz, Susan M; Sturdivant, Nasya M; Imam, Syed Z; Sarkar, Sumit; Slikker, William; Paule, Merle G; Balachandran, Kartik; Ali, Syed F
2018-04-13
Traumatic brain injury (TBI) occurs when external mechanical forces induce brain damage as result of impact, penetration or rapid acceleration/deceleration that causes deformation of brain tissue. Depending on its severity, TBI can be classified as mild, moderate or severe and can lead to blood-brain barrier (BBB) dysfunction. In the present study, we evaluated the effects of uniaxial high-speed stretch (HSS) at 0, 5, 10 and 15% on a pure culture of primary rat brain endothelial cells as an in vitro model of TBI to the BBB. LDH release, viability and apoptosis analysis, expression of tight junction proteins and endothelial permeability were evaluated 24 h after a single stretch episode. HSS slightly increased cell death and apoptosis at 10 and 15%, while LDH release was increased only at 15% stretch. Occludin expression was increased at 10% stretch, while claudin-5 expression was increased at 5% stretch, which also decreased the endothelial permeability. In summary, 15% HSS induced low levels of cell death, consistent with mild TBI and very low percentages of HSS (5%) enhanced the BBB properties, promoting the formation of a stronger barrier. These data support the use of 15% HSS as valuable tool in the study of mild TBI to the BBB in vitro. Published by Elsevier B.V.
Yamanaka, Kazunori; Saito, Yoshiro; Yamamori, Tohru; Urano, Yasuomi; Noguchi, Noriko
2011-07-15
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.
Yamanaka, Kazunori; Saito, Yoshiro; Yamamori, Tohru; Urano, Yasuomi; Noguchi, Noriko
2011-01-01
24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis. PMID:21613228
Verma, Dinesh Kumar; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Singh, Abhishek; Gupta, Parul; Tiwari, Shubhangini; Sivarama Raju, K; Chaturvedi, Swati; Wahajuddin, M; Singh, Sarika
2018-06-01
Piracetam, a nootropic drug that has been clinically used for decades but remains enigmatic due to no distinct understanding of its mechanism of action. The present study aimed to investigate the role of caspase independent pathway in piracetam mediated neuroprotection. LPS administration caused significant alterations in oxidative stress related parameters like glutathione, glutathione reductase and increased lipid peroxidation. LPS administration also caused augmented expression of inflammatory cytokines and astrocytes activation. Piracetam treatment offered significant protection against LPS induced oxidative and inflammatory parameters and inhibited astrocytes activation. LPS administration caused augmented level of reactive oxygen species and depleted mitochondrial membrane potential which were attenuated with piracetam treatment. This study for the first time demonstrates the role of caspase independent death factors in piracetam induced neuroprotective effects in rat brain. Translocation of mitochondrial resident apoptosis inducing factor and endonuclease G to nucleus through cytosol after LPS administration was significantly blocked with piracetam treatment. Further, LPS induced DNA fragmentation along with up regulated Poly [ADP-ribose] polymerase 1 (PARP1) levels were also inhibited with piracetam treatment. Apoptotic death was confirmed by the cleavage of caspase 3 as well as histological alteration in rat brain regions. LPS administration caused significantly increased level of cleaved caspase 3, altered neuronal morphology and decreased neuronal density which were restored with piracetam treatment. Collectively our findings indicate that piracetam offered protection against LPS induced inflammatory responses and cellular death including its antioxidative antiapoptotic activity with its attenuation against mitochondria mediated caspase independent pathway. Copyright © 2018 Elsevier B.V. All rights reserved.
3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna
2016-03-01
This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.
Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S
2011-06-01
Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.
Disparate roles of zinc in chemical hypoxia-induced neuronal death
Kim, Sujeong; Seo, Jung-Woo; Oh, Shin Bi; Kim, So Hee; Kim, Inki; Suh, Nayoung; Lee, Joo-Yong
2015-01-01
Accumulating evidence has provided a causative role of zinc (Zn2+) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn2+ is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn2+ release/accumulation in viable neurons. The immediate addition of the Zn2+ chelator, CaEDTA or N,N,N’N’-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), prevented the intracellular Zn2+ load and CoCl2-induced neuronal death, but neither 3 hour later Zn2+ chelation nor a non-Zn2+ chelator ZnEDTA (1 mM) demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn2+ rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn2+ release/accumulation is common during chemical hypoxia, Zn2+ might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms. PMID:25667569
Disparate roles of zinc in chemical hypoxia-induced neuronal death.
Kim, Sujeong; Seo, Jung-Woo; Oh, Shin Bi; Kim, So Hee; Kim, Inki; Suh, Nayoung; Lee, Joo-Yong
2015-01-01
Accumulating evidence has provided a causative role of zinc (Zn(2+)) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn(2+) is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn(2+) release/accumulation in viable neurons. The immediate addition of the Zn(2+) chelator, CaEDTA or N,N,N'N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), prevented the intracellular Zn(2+) load and CoCl2-induced neuronal death, but neither 3 hour later Zn(2+) chelation nor a non-Zn(2+) chelator ZnEDTA (1 mM) demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn(2+) rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn(2+) release/accumulation is common during chemical hypoxia, Zn(2+) might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.
Zinc release contributes to hypoglycemia-induced neuronal death.
Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A
2004-08-01
Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.
Brainstem death: A comprehensive review in Indian perspective
Dhanwate, Anant Dattatray
2014-01-01
With the advent of cardiopulmonary resuscitation techniques, the cardiopulmonary definition of death lost its significance in favor of brain death. Brain death is a permanent cessation of all functions of the brain in which though individual organs may function but lack of integrating function of the brain, lack of respiratory drive, consciousness, and cognition confirms to the definition that death is an irreversible cessation of functioning of the organism as a whole. In spite of medical and legal acceptance globally, the concept of brain death and brain-stem death is still unclear to many. Brain death is not promptly declared due to lack of awareness and doubts about the legal procedure of certification. Many brain dead patients are kept on life supporting systems needlessly. In this comprehensive review, an attempt has been made to highlight the history and concept of brain death and brain-stem death; the anatomical and physiological basis of brain-stem death, and criteria to diagnose brain-stem death in India. PMID:25249744
Wang, Chao; Zhang, Jie; Tang, Junchun; Li, Yi-Yi; Gu, YanXia; Yu, Ying; Xiong, Jing; Zhao, Xueqing; Zhang, Zheng; Li, Ting-Ting; Chen, Jutao; Wan, Qi; Zhang, Zhaohui
2018-04-17
Lysophosphatidic acid (LPA), an extracellular signaling molecule, influences diverse biological events, including the pathophysiological process induced after ischemic brain injury. However, the molecular mechanisms mediating the pathological change after ischemic stroke remain elusive. Here we report that asparagine endopeptidase (AEP), a lysosomal cysteine proteinase, is regulated by LPA during stroke. AEP proteolytically cleaves tau and generates tauN368 fragments, triggering neuronal death. Inhibiting the generation of LPA reduces the expression of AEP and tauN368, and alleviates neuronal cell death. Together, this evidence indicates that the LPA-AEP pathway plays a key role in the pathophysiological process induced after ischemic stroke. Inhibition of LPA could be a useful therapeutic for treating neuronal injury after stroke. Copyright © 2018 Elsevier Inc. All rights reserved.
(-)-Phenserine inhibits neuronal apoptosis following ischemia/reperfusion injury.
Chang, Cheng-Fu; Lai, Jing-Huei; Wu, John Chung-Che; Greig, Nigel H; Becker, Robert E; Luo, Yu; Chen, Yen-Hua; Kang, Shuo-Jhen; Chiang, Yung-Hsiao; Chen, Kai-Yun
2017-12-15
Stroke commonly leads to adult disability and death worldwide. Its major symptoms are spastic hemiplegia and discordant motion, consequent to neuronal cell death induced by brain vessel occlusion. Acetylcholinesterase (AChE) is upregulated and allied with inflammation and apoptosis after stroke. Recent studies suggest that AChE inhibition ameliorates ischemia-reperfusion injury and has neuroprotective properties. (-)-Phenserine, a reversible AChE inhibitor, has a broad range of actions independent of its AChE properties, including neuroprotective ones. However, its protective effects and detailed mechanism of action in the rat middle cerebral artery occlusion model (MCAO) remain to be elucidated. This study investigated the therapeutic effects of (-)-phenserine for stroke in the rat focal cerebral ischemia model and oxygen-glucose deprivation/reperfusion (OGD/RP) damage model in SH-SY5Y neuronal cultures. (-)-Phenserine mitigated OGD/PR-induced SH-SY5Y cell death, providing an inverted U-shaped dose-response relationship between concentration and survival. In MCAO challenged rats, (-)-phenserine reduced infarction volume, cell death and improved body asymmetry, a behavioral measure of stoke impact. In both cellular and animal studies, (-)-phenserine elevated brain-derived neurotrophic factor (BDNF) and B-cell lymphoma 2 (Bcl-2) levels, and decreased activated-caspase 3, amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP) expression, potentially mediated through the ERK-1/2 signaling pathway. These actions mitigated neuronal apoptosis in the stroke penumbra, and decreased matrix metallopeptidase-9 (MMP-9) expression. In synopsis, (-)-phenserine significantly reduced neuronal damage induced by ischemia/reperfusion injury in a rat model of MCAO and cellular model of OGD/RP, demonstrating that its anti-apoptotic/neuroprotective/neurotrophic cholinergic and non-cholinergic properties warrant further evaluation in conditions of brain injury. Published by Elsevier B.V.
Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per; Zhu, Changlian; Blomgren, Klas
2017-05-23
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation.
Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M.; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per
2017-01-01
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation. PMID:28415806
How I Cool Children in Neurocritical Care
Fink, Ericka L.; Kochanek, Patrick M.; Clark, Robert S. B.; Bell, Michael J.
2010-01-01
Brain injury is the leading cause of death in our pediatric ICU 1. Clinical care for brain injury remains largely supportive. Therapeutic hypothermia has been shown to be effective in improving neurological outcome after adult ventricular-arrhythmia induced cardiac arrest and neonatal asphyxia, and is under investigation as a neuroprotectant after cardiac arrest and traumatic brain injury in children in our ICU and other centers. We routinely induce hypothermia in children comatose after cardiac arrest targeting 32–34°C using cooling blankets and intravenous iced saline as primary methods for induction, for 24–72 hours duration and vigilant re-warming. The objective of this article is to share our hypothermia protocol for cooling children with acute brain injury. PMID:20146026
FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.
2013-01-01
Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816
Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.
Golime, RamaRao; Palit, Meehir; Acharya, J; Dubey, D K
2018-05-01
Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100β, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 μg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-β and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.
Chen, Bin; Wang, Guoxiang; Li, Weiwei; Liu, Weilin; Lin, Ruhui; Tao, Jing; Jiang, Min; Chen, Lidian; Wang, Yun
2017-02-15
Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca 2+ ), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Strubelt, Süster; Maas, Uwe
2008-01-01
The root bark of the Iboga shrub (Tabernanthe iboga) is used in Gabon, Africa, to induce a near-death experience for spiritual and psychological purposes. The pharmacology of ibogaine, a psychoactive indole alkaloid extracted from the bark, has been investigated extensively because of its putative qualities to treat addiction. This review of these studies and neuroscientific approaches to the near-death experience compared with field studies of traditional African rituals has generated new insights into the neurological correlates and the psychological effects and after-effects of the near-death experience. Ibogaine stimulates the cerebellar fastigial nucleus in the same manner as ischemia and leads to a medium-term protection of the brain against glutamate-induced neurotoxicity. At the same time, it induces changes in the autonomic nervous and the cardiovascular systems, which aid in the survival of ischemia: iboga intake and ischemia both lead to slowing of electroencephalogram (EEG) activity (dominance of theta and delta waves), a stimulation of the limbic system, and a dominance of a phylogenetically older branch of the vagus nerve, originating in the dorsal motor nucleus, which lowers the metabolic rate of the body. In conclusion, the near-death experience seems to be the result of a dominance of phylogenetically and ontogenetically old neurological structures and brain waves, which are allowed to show their (para)psychological abilities in the absence of cortical dominance. If parts of the neocortex are still active and permit observation and memory performance, the experience can be integrated within the personality. The newly learned peaceful state ofvagal and subcortical dominance can be actively self-induced. Implications of this model for alternative healing are discussed.
Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu
2014-01-01
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475
Özdemir, Mehmet Bülent; Akça, Hakan; Erdoğan, Çağdaş; Tokgün, Onur; Demiray, Aydın; Semin, Fenkçi; Becerir, Cem
2012-01-01
Astrocytes perform many functions in the brain and spinal cord. Glucose metabolism is important for astroglial cells and astrocytes are the only cells with insulin receptors in the brain. The common antibiotic penicillin is also a chemical agent that causes degenerative effect on neuronal cell. The aim of this study is to show the effect of insulin and glucose at different concentrations on the astrocyte death induced by penicillin on primer astroglial cell line. It is well known that intracranial penicillin treatment causes neuronal cell death and it is used for experimental epilepsy model commonly. Previous studies showed that insulin and glucose might protect neuronal cell in case of proper concentrations. But, the present study is about the effect of insulin and glucose against astrocyte death induced by penicillin. For this purpose, newborn rat brain was extracted and then mechanically dissociated to astroglial cell suspension and finally grown in culture medium. Clutters were maintained for 2 weeks prior to being used in these experiments. Different concentrations of insulin (0, 1, 3 nM) and glucose (0, 3, 30 mM) were used in media without penicillin and with 2 500 μM penicillin. Penicillin decreased the viability of astroglial cell seriously. The highest cell viability appeared in medium with 3 nM insulin and 3 mM glucose but without penicillin. However, in medium with penicillin, the best cell survival was in medium with 1 nM insulin but without glucose. We concluded that insulin and glucose show protective effects on the damage induced by penicillin to primer astroglial cell line. Interestingly, cell survival depends on concentrations of insulin and glucose strongly. The results of this study will help to explain cerebrovascular pathologies parallel to insulin and glucose conditions of patient after intracranial injuries. PMID:25624816
Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dae-Hee, E-mail: leedneo@gmail.com; Kim, Dong-Wook; Jung, Chang-Hwa
Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We alsomore » found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.« less
Kommajosyula, Srinivasa P; Randall, Marcus E; Brozoski, Thomas J; Odintsov, Boris M; Faingold, Carl L
2017-09-01
Sudden unexpected death in epilepsy (SUDEP) is a major concern for patients with epilepsy. In most witnessed cases of SUDEP generalized seizures and respiratory failure preceded death, and pre-mortem neuroimaging studies in SUDEP patients observed changes in specific subcortical structures. Our study examined the role of subcortical structures in the DBA/1 mouse model of SUDEP using manganese-enhanced magnetic resonance imaging (MEMRI). These mice exhibit acoustically-evoked generalized seizures leading to seizure-induced respiratory arrest (S-IRA) that results in sudden death unless resuscitation is rapidly instituted. MEMRI data in the DBA/1 mouse brain immediately after acoustically-induced S-IRA were compared to data in C57 (control) mice that were exposed to the same acoustic stimulus that did not trigger seizures. The animals were anesthetized and decapitated immediately after seizure in DBA/1 mice and after an equivalent time in control mice. Comparative T1 weighted MEMRI images were evaluated using a 14T MRI scanner and quantified. We observed significant increases in activity in DBA/1 mice as compared to controls at previously-implicated auditory (superior olivary complex) and sensorimotor-limbic [periaqueductal gray (PAG) and amygdala] networks and also in structures in the respiratory network. The activity at certain raphe nuclei was also increased, suggesting activation of serotonergic mechanisms. These data are consistent with previous findings that enhancing the action of serotonin prevents S-IRA in this SUDEP model. Increased activity in the PAG and the respiratory and raphe nuclei suggest that compensatory mechanisms for apnea may have been activated by S-IRA, but they were not sufficient to prevent death. The present findings indicate that changes induced by S-IRA in specific subcortical structures in DBA/1 mice are consistent with human SUDEP findings. Understanding the changes in brain activity during seizure-induced death in animals may lead to improved approaches directed at prevention of human SUDEP. Copyright © 2017 Elsevier B.V. All rights reserved.
Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente
2014-06-01
Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.
Takabe, Wakako; Urano, Yasuomi; Vo, Diep-Khanh Ho; Shibuya, Kimiyuki; Tanno, Masaki; Kitagishi, Hiroaki; Fujimoto, Toyoshi; Noguchi, Noriko
2016-01-01
The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death. PMID:27647838
Heroin Contaminated with Fentanyl Dramatically Enhances Brain Hypoxia and Induces Brain Hypothermia.
Solis, Ernesto; Cameron-Burr, Keaton T; Kiyatkin, Eugene A
2017-01-01
While opioid abuse is an established medical and public health issue, the increased availability of highly potent synthetic opioids, such as fentanyl, has given rise to acute health complications, including a comatose state and death during drug overdose. Since respiratory depression that leads to acute hypoxia is the most dangerous complication of opioid drug use, we examined the effects of intravenous heroin and heroin contaminated with 10% fentanyl on oxygen levels in the nucleus accumbens (NAc) monitored using high-speed amperometry in freely moving rats. Additionally, we examined the effects of heroin, fentanyl, and their mixture on locomotion and temperatures in the NAc, temporal muscle, and skin. Both fentanyl and heroin at human-relevant doses (400 and 40 μg/kg, respectively) induced rapid, strong and transient decreases in NAc oxygen, indicative of brain hypoxia. When the heroin-fentanyl mixture was injected, the NAc hypoxic response was greatly potentiated in its duration, suggesting sustained hypoxia. In contrast to modest, monophasic brain temperature increases caused by heroin alone, the heroin-fentanyl mixture induced a biphasic temperature response, with a prominent postinjection decrease resulting from peripheral vasodilation. This hypothermic effect, albeit much smaller and more transient, was typical of fentanyl injected alone. Our findings indicate that accidental use of fentanyl instead of heroin, or even a relatively minor contamination of "street heroin" with fentanyl, poses great danger for acute health complications, including a comatose state and death.
García-Fuster, María-Julia; Miralles, Antonio; García-Sevilla, Jesús A
2007-02-01
This study was designed to assess the effects of opiate treatment on the expression of Fas-associated protein with death domain (FADD) in the rat brain. FADD is involved in the transmission of Fas-death signals that have been suggested to contribute to the development of opiate tolerance and addiction. Acute treatments with high doses of sufentanil and morphine (mu-agonists), SNC-80 (delta-agonist), and U50488H (kappa-agonist) induced significant decreases (30-60%) in FADD immunodensity in the cerebral cortex, through specific opioid receptor mechanisms (effects antagonized by naloxone, naltrindole, or nor-binaltorphimine). The cannabinoid CB1 receptor agonist WIN 55,212-2 did not alter FADD content in the brain. Chronic (5 days) morphine (10-100 mg/kg), SNC-80 (10 mg/kg), or U50488H (10 mg/kg) was associated with the induction of tachyphylaxis to the acute effects. In morphine- and SNC-80-tolerant rats, antagonist-precipitated (2 h) or spontaneous withdrawal (24-48 h) induced a new and sustained inhibition of FADD (13-50%). None of these treatments altered the densities of caspases 8/3 (including the active cleaved forms) in the brain. Pretreatment of rats with SL 327 (a selective MEK1/2 inhibitor that blocks ERK activation) fully prevented the reduction of FADD content induced by SNC-80 in the cerebral cortex (43%) and corpus striatum (29%), demonstrating the direct involvement of ERK1/2 signaling in the regulation of FADD by the opiate agonist. The results indicate that mu- and delta-opioid receptors have a prominent role in the modulation of FADD (opposite to that of Fas) shortly after initiating treatment. Opiate drugs (and specifically the delta-agonists) could promote survival signals in the brain through inhibition of FADD, which in turn is dependent on the activation of the antiapoptotic ERK1/2 signaling pathway.
Liu, Yuan; Gordesky-Gold, Beth; Leney-Greene, Michael; Weinbren, Nathan L; Tudor, Matthew; Cherry, Sara
2018-06-09
The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor. Copyright © 2018. Published by Elsevier Inc.
Transplantation of donor hearts after circulatory or brain death in a rat model.
Li, Shiliang; Loganathan, Sivakkanan; Korkmaz, Sevil; Radovits, Tamás; Hegedűs, Peter; Zhou, Yan; Karck, Matthias; Szabó, Gábor
2015-05-01
Heart transplantation represents the only curative treatment for end-stage heart failure. Presently, the donor pool is restricted to brain-dead donors. Based on the lack of suitable donors and the increasing number of patients, we investigated some molecular pathomechanisms of the potential use of hearts after circulatory determination of death (DCDD) in transplantation. Rats were either maintained brain death for 5 h by inflation of a subdurally placed balloon catheter (n = 6) or subjected to cardiac arrest by exsanguinations (n = 6). Additionally, a control group was used (n = 9). Then the hearts were perfused with a cold preservation solution (Custodiol), explanted, stored at 4°C in Custodiol, and heterotopically transplanted. Brain death was associated with decreased left-ventricular contractility (dP/dtmax: 4895 ± 505 versus 8037 ± 565 mm Hg/s; ejection fraction: 27 ± 5 versus 44 ± 5%; Emax: 2.2 ± 0.3 versus 4.2 ± 0.3 mm Hg/μL; preload recruitable stroke work: 59 ± 5 versus 96 ± 6 mm Hg; 5 h after brain death versus before brain death; P < 0.05) and impaired cardiac relaxation (dP/dtmin: -4734 ± 575 versus -9404 ± 550 mm Hg/s and prolonged Tau, P < 0.05) compared with controls. After transplantation, significantly decreased systolic function and prolonged Tau were observed in brain-dead and DCDD groups compared with those in controls. Tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-κB, inducible-NOS, and caspase-3 messenger RNA and protein-levels were significantly increased in the brain-dead compared with both control and DCDD groups. Additionally, marked myocardial inflammatory cell infiltration, edema, necrosis, and DNA-strand breaks were observed in the brain-dead group. Our results show that despite the similar functional outcome in DCDD and brain-dead groups, brain-dead hearts showed marked myocardial inflammatory cell infiltration, edema, necrosis, DNA-strand breaks, and increased transcriptional and posttranscriptional expression for markers of apoptosis and inflammatory signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Naked mole-rat cortical neurons are resistant to acid-induced cell death.
Husson, Zoé; Smith, Ewan St John
2018-05-09
Regulation of brain pH is a critical homeostatic process and changes in brain pH modulate various ion channels and receptors and thus neuronal excitability. Tissue acidosis, resulting from hypoxia or hypercapnia, can activate various proteins and ion channels, among which acid-sensing ion channels (ASICs) a family of primarily Na + permeable ion channels, which alongside classical excitotoxicity causes neuronal death. Naked mole-rats (NMRs, Heterocephalus glaber) are long-lived, fossorial, eusocial rodents that display remarkable behavioral/cellular hypoxia and hypercapnia resistance. In the central nervous system, ASIC subunit expression is similar between mouse and NMR with the exception of much lower expression of ASIC4 throughout the NMR brain. However, ASIC function and neuronal sensitivity to sustained acidosis has not been examined in the NMR brain. Here, we show with whole-cell patch-clamp electrophysiology of cultured NMR and mouse cortical and hippocampal neurons that NMR neurons have smaller voltage-gated Na + channel currents and more hyperpolarized resting membrane potentials. We further demonstrate that acid-mediated currents in NMR neurons are of smaller magnitude than in mouse, and that all currents in both species are reversibly blocked by the ASIC antagonist benzamil. We further demonstrate that NMR neurons show greater resistance to acid-induced cell death than mouse neurons. In summary, NMR neurons show significant cellular resistance to acidotoxicity compared to mouse neurons, contributing factors likely to be smaller ASIC-mediated currents and reduced NaV activity.
2009-01-01
to organophosphorus nerve agents in- uces brain seizures, which can cause profound brain dam- ge resulting in death or long-term cognitive deficits...The mygdala and the hippocampus are two of the most seizure- rone brain structures, but their relative contribution to the eneration of seizures after...nerve agent exposure is unclear. ere, we report that application of 1 M soman for 30 min, in at coronal brain slices containing both the hippocampus
Dose-dependent lipopolysaccharide-induced fetal brain injury in the guinea pig.
Harnett, Erica L; Dickinson, Michelle A; Smith, Graeme N
2007-08-01
This study determined whether a lipopolysaccharide (LPS) dose-dependent increase in fetal brain injury occurs to further characterize the relationship between maternal inflammation and fetal brain injury. Pregnant guinea pigs (n = 59) at 70% gestation were injected intraperitoneally with 1, 5, 25, 50, 100, 200, or 300 microg LPS per kilogram of maternal body weight or an equivalent volume of vehicle. Animals were killed 7 days later. Maternal serum and amniotic fluid samples were assayed for proinflammatory cytokines tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 using enzyme-linked immunosorbent assay kits. Fetal brains (n = 72) were stained for evidence of cell death with NeuroTACS stain. Seven days after LPS injections, cytokine concentrations in maternal serum and amniotic fluid were not different (P > .05) from controls. Levels of cell death in all brain regions examined were highest following the maternal administration of 300 mug/kg LPS (P < .05). The dose effect was brain region-dependent (P < .05). A threshold of maternal infection/inflammation exists, beyond which demonstrable fetal brain injury may result.
Yi, Jung-Sun; Lee, Soon-Keum; Sato, Taka-Aki; Koh, Jae-Young
2003-08-21
Zinc induces in cultured cortical neurons both p75(NTR) and p75(NTR)-associated death executor (NADE), which together contribute to caspase-dependent neuronal apoptosis. Since zinc neurotoxicity may contribute to neuronal death following seizures, we examined whether p75(NTR) and NADE are co-induced also in rat hippocampal neurons degenerating after seizures. Staining of brain sections with a zinc-specific fluorescent dye (N-(6-methoxy-8-quinolyl)-p-carboxybenzoylsulphonamide) and acid fuchsin revealed zinc accumulation in degenerating neuronal cell bodies in CA1 and CA3 of hippocampus 24 h after kainate injection. Both anti-p75(NTR) and anti-NADE immunoreactivities appeared in zinc-accumulating/degenerating neurons in both areas. Intraventricular injection of CaEDTA, without altering the severity or time course of kainate-induced seizures, markedly attenuated the induction of p75(NTR)/NADE in hippocampus, which correlated with the decrease of caspase-3 activation and zinc accumulation/cell death. The present study has demonstrated that p75(NTR) and NADE are co-induced in neurons degenerating after kainate-induced seizures in rats, likely in a zinc-dependent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagard, Camille, E-mail: camille.lagard@gmail.com
Poisoning with opioid analgesics including tramadol represents a challenge. Tramadol may induce respiratory depression, seizures and serotonin syndrome, possibly worsened when in combination to benzodiazepines. Our objectives were to investigate tramadol-related neurotoxicity, consequences of diazepam/tramadol combination, and mechanisms of drug-drug interactions in rats. Median lethal-doses were determined using Dixon–Bruce's up-and-down method. Sedation, seizures, electroencephalography and plethysmography parameters were studied. Concentrations of tramadol and its metabolites were measured using liquid-chromatography-high-resolution-mass-spectrometry. Plasma, platelet and brain monoamines were measured using liquid-chromatography coupled to fluorimetry. Median lethal-doses of tramadol and diazepam/tramadol combination did not significantly differ, although time-to-death was longer with combination (P =more » 0.04). Tramadol induced dose-dependent sedation (P < 0.05), early-onset seizures (P < 0.001) and increase in inspiratory (P < 0.01) and expiratory times (P < 0.05). The diazepam/tramadol combination abolished seizures but significantly enhanced sedation (P < 0.01) and respiratory depression (P < 0.05) by reducing tidal volume (P < 0.05) in addition to tramadol-related increase in respiratory times, suggesting a pharmacodynamic mechanism of interaction. Plasma M1 and M5 metabolites were mildly increased, contributing additionally to tramadol-related respiratory depression. Tramadol-induced early-onset increase in brain concentrations of serotonin and norepinephrine was not significantly altered by the diazepam/tramadol combination. Interestingly neither pretreatment with cyproheptadine (a serotonin-receptor antagonist) nor a benserazide/5-hydroxytryptophane combination (enhancing brain serotonin) reduced tramadol-induced seizures. Our study shows that diazepam/tramadol combination does not worsen tramadol-induced fatality risk but alters its toxicity pattern with enhanced respiratory depression but abolished seizures. Drug-drug interaction is mainly pharmacodynamic but increased plasma M1 and M5 metabolites may also contribute to enhancing respiratory depression. Tramadol-induced seizures are independent of brain serotonin. - Highlights: • Diazepam does not alter tramadol-induced median lethal dose but delays death onset. • Diazepam/tramadol combination worsens respiratory depression but prevents seizures. • Diazepam/tramadol-induced respiratory effects results from a pharmacodynamic drug-drug interaction. • Tramadol increases brain serotonin and norepinephrine that is not altered by diazepam. • Tramadol-induced seizures are independent of brain serotonin.« less
Endoplasmic reticulum stress-mediated neuronal apoptosis by acrylamide exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komoike, Yuta, E-mail: komoike@research.twmu.ac.jp
Acrylamide (AA) is a well-known neurotoxic compound in humans and experimental animals. However, intracellular stress signaling pathways responsible for the neurotoxicity of AA are still not clear. In this study, we explored the involvement of the endoplasmic reticulum (ER) stress response in AA-induced neuronal damage in vitro and in vivo. Exposure of SH-SY5Y human neuroblastoma cells to AA increased the levels of phosphorylated form of eukaryotic translation initiation factor 2α (eIF2α) and its downstream effector, activating transcription factor 4 (ATF4), indicating the induction of the unfolded protein response (UPR) by AA exposure. Furthermore, AA exposure increased the mRNA level ofmore » c/EBP homologous protein (CHOP), the ER stress-dependent apoptotic factor, and caused the accumulation of reactive oxygen species (ROS) in SH-SY5Y cells. Treatments of SH-SY5Y cells with the chemical chaperone, 4-phenylbutyric acid and the ROS scavenger, N-acetyl-cysteine reduced the AA-induced expression of ATF4 protein and CHOP mRNA, and resulted in the suppression of apoptosis. In addition, AA-induced eIF2α phosphorylation was also suppressed by NAC treatment. In consistent with in vitro study, exposure of zebrafish larvae at 6-day post fertilization to AA induced the expression of chop mRNA and apoptotic cell death in the brain, and also caused the disruption of brain structure. These findings suggest that AA exposure induces apoptotic neuronal cell death through the ER stress and subsequent eIF2α–ATF4–CHOP signaling cascade. The accumulation of ROS by AA exposure appears to be responsible for this ER stress-mediated apoptotic pathway. - Highlights: • Exposure of SH-SY5Y cells to AA activates the eIF2α–ATF4 pathway of the UPR. • Exposure of SH-SY5Y cells to AA induces the CHOP expression and apoptosis. • Exposure of zebrafish to AA induces the chop expression and apoptosis in the brain. • AA possibly induces apoptotic neuronal cell death through the ER stress response. • AA-induced ROS production is involved in this ER stress response.« less
Interleukin-1 receptor 1 deletion in focal and diffuse experimental traumatic brain injury in mice.
Chung, Joon Yong; Krapp, Nicolas; Wu, Limin; Lule, Sevda; McAllister, Lauren; Edmiston Iii, William; Martin, Samantha; Levy, Emily; Songtachalert, Tanya; Sherwood, John; Buckley, Erin; Sanders, Bharat; Izzy, Saef; Hickman, Suzanne; Guo, Shuzhen; Lok, Josephine; El Khoury, Joseph; Lo, Eng; Kaplan, David; Whalen, Michael
2018-05-17
Important differences in the biology of focal and diffuse traumatic brain injury (TBI) subtypes may result in unique pathophysiological responses to shared molecular mechanisms. Interleukin-1 (IL-1) signaling has been tested as a potential therapeutic target in preclinical models of cerebral contusion and diffuse TBI, and in a phase II clinical trial, but no published studies have examined IL-1 signaling in an impact/acceleration closed head injury (CHI) model. We hypothesized that genetic deletion of IL-1 receptor-1 (IL-1R1 KO) would be beneficial in focal (contusion) and CHI in mice. Wild type and IL-1R1 KO mice were subjected to controlled cortical impact (CCI), or to CHI. CCI produced brain leukocyte infiltration, HMGB1 translocation and release, edema, cell death, and cognitive deficits. CHI induced peak rotational acceleration of 9.7 x 105 + 8.1 x 104 rad/s2, delayed time to righting reflex, and robust Morris water maze deficits without deficits in tests of anxiety, locomotion, sensorimotor function, or depression. CHI produced no discernable acute plasmalemma damage or cell death, blood-brain barrier permeability to IgG, or brain edema and only a modest increase in brain leukocyte infiltration at 72 h. In both models, mature (17 kDa) interleukin-1 beta (IL-1β) was induced by 24 h in CD31+ endothelial cells isolated from injured brain but was not induced in CD11b+ cells in either model. High mobility group box protein-1 was released from injured brain cells in CCI but not CHI. Surprisingly, cognitive outcome in mice with global deletion of IL-1R1 was improved in CHI, but worse after CCI without affecting lesion size, edema, or infiltration of CD11b+/CD45+ leukocytes in CCI. IL-1R1 may induce unique biological responses, beneficial or detrimental to cognitive outcome, after TBI depending on the pathoanatomical subtype. Brain endothelium is a hitherto unrecognized source of mature IL-1β in both models.
Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua
2018-04-01
Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.
Barrese, Vincenzo; Taglialatela, Maurizio; Greenwood, Iain A; Davidson, Colin
2015-01-01
Ischemic stroke can cause striatal dopamine efflux that contributes to cell death. Since Kv7 potassium channels regulate dopamine release, we investigated the effects of their pharmacological modulation on dopamine efflux, measured by fast cyclic voltammetry (FCV), and neurotoxicity, in Wistar rat caudate brain slices undergoing oxygen and glucose deprivation (OGD). The Kv7 activators retigabine and ICA27243 delayed the onset, and decreased the peak level of dopamine efflux induced by OGD; and also decreased OGD-induced damage measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Retigabine also reduced OGD-induced necrotic cell death evaluated by lactate dehydrogenase activity assay. The Kv7 blocker linopirdine increased OGD-evoked dopamine efflux and OGD-induced damage, and attenuated the effects of retigabine. Quantitative-PCR experiments showed that OGD caused an ~6-fold decrease in Kv7.2 transcript, while levels of mRNAs encoding for other Kv7 subunits were unaffected; western blot experiments showed a parallel reduction in Kv7.2 protein levels. Retigabine also decreased the peak level of dopamine efflux induced by L-glutamate, and attenuated the loss of TTC staining induced by the excitotoxin. These results suggest a role for Kv7.2 in modulating ischemia-evoked caudate damage. PMID:25966943
Crommentuijn, Matheus H W; Maguire, Casey A; Niers, Johanna M; Vandertop, W Peter; Badr, Christian E; Würdinger, Thomas; Tannous, Bakhos A
2016-04-01
Glioblastoma (GBM) is the most common malignant brain tumor in adults. We designed an adeno-associated virus (AAV) vector for intracranial delivery of secreted, soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) to GBM tumors in mice and combined it with the TRAIL-sensitizing cardiac glycoside, lanatoside C (lan C). We applied this combined therapy to two different GBM models using human U87 glioma cells and primary patient-derived GBM neural spheres in culture and in orthotopic GBM xenograft models in mice. In U87 cells, conditioned medium from AAV2-sTRAIL expressing cells combined with lan C induced 80% cell death. Similarly, lan C sensitized primary GBM spheres to sTRAIL causing over 90% cell death. In mice bearing intracranial U87 tumors treated with AAVrh.8-sTRAIL, administration of lan C caused a decrease in tumor-associated Fluc signal, while tumor size increased within days of stopping the treatment. Another round of lan C treatment re-sensitized GBM tumor to sTRAIL-induced cell death. AAVrh.8-sTRAIL treatment alone and combined with lanatoside C resulted in a significant decrease in tumor growth and longer survival of mice bearing orthotopic invasive GBM brain tumors. In summary, AAV-sTRAIL combined with lanatoside C induced cell death in U87 glioma cells and patient-derived GBM neural spheres in culture and in vivo leading to an increased in overall mice survival. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique
2013-01-01
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720
Tang, Zhongshu; Arjunan, Pachiappan; Lee, Chunsik; Li, Yang; Kumar, Anil; Hou, Xu; Wang, Bin; Wardega, Piotr; Zhang, Fan; Dong, Lijin; Zhang, Yongqing; Zhang, Shi-Zhuang; Ding, Hao; Fariss, Robert N.; Becker, Kevin G.; Lennartsson, Johan; Nagai, Nobuo; Cao, Yihai
2010-01-01
Platelet-derived growth factor CC (PDGF-CC) is the third member of the PDGF family discovered after more than two decades of studies on the original members of the family, PDGF-AA and PDGF-BB. The biological function of PDGF-CC remains largely to be explored. We report a novel finding that PDGF-CC is a potent neuroprotective factor that acts by modulating glycogen synthase kinase 3β (GSK3β) activity. In several different animal models of neuronal injury, such as axotomy-induced neuronal death, neurotoxin-induced neuronal injury, 6-hydroxydopamine–induced Parkinson’s dopaminergic neuronal death, and ischemia-induced stroke, PDGF-CC protein or gene delivery protected different types of neurons from apoptosis in both the retina and brain. On the other hand, loss-of-function assays using PDGF-C null mice, neutralizing antibody, or short hairpin RNA showed that PDGF-CC deficiency/inhibition exacerbated neuronal death in different neuronal tissues in vivo. Mechanistically, we revealed that the neuroprotective effect of PDGF-CC was achieved by regulating GSK3β phosphorylation and expression. Our data demonstrate that PDGF-CC is critically required for neuronal survival and may potentially be used to treat neurodegenerative diseases. Inhibition of the PDGF-CC–PDGF receptor pathway for different clinical purposes should be conducted with caution to preserve normal neuronal functions. PMID:20231377
Rahardjo, Theresia Monica; Maskoen, Tinni Trihartini; Redjeki, Ike Sri
2016-08-26
Recovery from cytomegalovirus meningoencephalitis with brain stem death in an immunocompetent patient is almost impossible. We present a remarkable recovery from a possible cytomegalovirus infection in an immunocompetent man who had severe neurological syndromes, suggesting brain stem death complicated by pneumonia and pleural effusion. A 19-year-old Asian man presented at our hospital's emergency department with reduced consciousness and seizures following high fever, headache, confusion, and vomitus within a week before arrival. He was intubated and sent to our intensive care unit. He had nuchal rigidity and tetraparesis with accentuated tendon reflexes. Electroencephalography findings suggested an acute structural lesion at his right temporal area or an epileptic state. A cerebral spinal fluid examination suggested viral infection. A computed tomography scan was normal at the early stage of disease. Immunoglobulin M, immunoglobulin G anti-herpes simplex virus, and immunoglobulin M anti-cytomegalovirus were negative. However, immunoglobulin G anti-cytomegalovirus was positive, which supported a diagnosis of cytomegalovirus meningoencephalitis. His clinical condition deteriorated, spontaneous respiration disappeared, cranial reflexes became negative, and brain stem death was suspected. Therapy included antivirals, corticosteroids, antibiotics, anticonvulsant, antipyretics, antifungal agents, and a vasopressor to maintain hemodynamic stability. After 1 month, he showed a vague response to painful stimuli at his supraorbital nerve and respiration started to appear the following week. After pneumonia and pleural effusion were resolved, he was weaned from the ventilator and moved from the intensive care unit on day 90. This case highlights several important issues that should be considered. First, the diagnosis of brain stem death must be confirmed with caution even if there are negative results of brain stem death test for a long period. Second, cytomegalovirus meningoencephalitis should be considered in the differential diagnosis even for an immunocompetent adult. Third, accurate therapy and simultaneous intensive care have very important roles in the recovery process of patients with cytomegalovirus meningoencephalitis.
Nicotinamide Adenine Dinucleotide (NAD+) and Nicotinamide: Sex Differences in Cerebral Ischemia
Siegel, Chad S.; McCullough, Louise D.
2013-01-01
Background Previous literature suggests that cell death pathways activated after cerebral ischemia differ between the sexes. While caspase-dependent mechanisms predominate in the female brain, caspase-independent cell death induced by activation of Poly (ADP-ribose) polymerase (PARP) predominates in the male brain. PARP-1 gene deletion decreases infarction volume in the male brain, but paradoxically increases damage in PARP-1 knockout females. Purpose This study examined stroke induced changes in NAD+, a key energy molecule involved in PARP-1 activation in both sexes. Methods Mice were subjected to Middle Cerebral Artery Occlusion and NAD+ levels were assessed. Caspase-3 activity and nuclear translocation was assessed 6 hours after ischemia. In additional cohorts, Nicotinamide (500mg/kg i.p.) a precursor of NAD+ or vehicle was administered and infarction volume was measured 24 hours after ischemia. Results Males have higher baseline NAD+ levels than females. Significant stroke-induced NAD+ depletion occurred in males and ovariectomized females but not in intact females. PARP-1 deletion prevented the stroke induced loss in NAD+ in males, but worsened NAD+ loss in PARP-1 deficient females. Preventing NAD+ loss with nicotinamide reduced infarct in wild-type males and PARP-1 knockout mice of both sexes, with no effect in WT females. Caspase-3 activity was significantly increased in PARP-1 knockout females compared to males and wild-type females, this was reversed with nicotinamide. Conclusions Sex differences exist in baseline and stroke-induced NAD+ levels. Nicotinamide protected males and PARP knockout mice, but had minimal effects in the wild-type female brain. This may be secondary to differences in energy metabolism between the sexes. PMID:23403179
A Response to the Legitimacy of Brain Death in Islam.
Rady, Mohamed Y; Verheijde, Joseph L
2016-08-01
Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria.
Yamanaka, K; Urano, Y; Takabe, W; Saito, Y; Noguchi, N
2014-01-01
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography–mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death. PMID:24407243
Yamanaka, K; Urano, Y; Takabe, W; Saito, Y; Noguchi, N
2014-01-09
24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, has an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces necroptosis in human neuroblastoma SH-SY5Y cells. In the present study, we investigated the mechanisms by which 24S-OHC-induced cell death occurs. We found that lipid droplets formed at the early stages in the treatment of SH-SY5Y cells with 24S-OHC. These lipid droplets could be almost completely eliminated by treatment with a specific inhibitor or by siRNA knockdown of acyl-CoA:cholesterol acyltransferase 1 (ACAT1). In association with disappearance of lipid droplets, cell viability was recovered by treatment with the inhibitor or siRNA for ACAT1. Using gas chromatography-mass spectrometry, we confirmed that 24S-OHC-treated cells exhibited accumulation of 24S-OHC esters but not of cholesteryl esters and confirmed that accumulation of 24S-OHC esters was reduced when ACAT1 was inhibited. 24S-OHC induced apoptosis in T-lymphoma Jurkat cells, which endogenously expressed caspase-8, but did not induce apoptosis in SH-SY5Y cells, which expressed no caspase-8. In Jurkat cells treated with the pan-caspase inhibitor ZVAD and in caspase-8-deficient Jurkat cells, 24S-OHC was found to induce caspase-independent cell death, and this was partially but significantly inhibited by Necrostatin-1. Similarly, knockdown of receptor-interacting protein kinase 3, which is one of the essential kinases for necroptosis, significantly suppressed 24S-OHC-induced cell death in Jurkat cells treated with ZVAD. These results suggest that 24S-OHC can induce apoptosis or necroptosis, which of the two is induced being determined by caspase activity. Regardless of the presence or absence of ZVAD, 24S-OHC treatment induced the formation of lipid droplets and cell death in Jurkat cells, and this was suppressed by treatment with ACAT1 inhibitor. Collectively, these results suggest that it is ACAT1-catalyzed 24S-OHC esterification and the resulting lipid droplet formation that is the initial key event which is responsible for 24S-OHC-induced cell death.
Ghanbari, Amir; Ghareghani, Majid; Zibara, Kazem; Delaviz, Hamdallah; Ebadi, Elham; Jahantab, Mohammad Hossein
2017-05-01
Methanol-induced retinal toxicity, frequently associated with elevated free radicals and cell edema, is characterized by progressive retinal ganglion cell (RGC) death and vision loss. Previous studies investigated the effect of photomodulation on RGCs, but not the visual cortex. In this study, the effect of 670nm Light-Emitting Diode (LED) therapy on RGCs and visual cortex recovery was investigated in a seven-day methanol-induced retinal toxicity protocol in rats. Methanol administration showed a reduction in the number of RGCs, loss of neurons (neuronal nuclear antigen, NeuN+), activation of glial fibrillary acidic protein (GFAP+) expressing cells, suppression of brain-derived neurotrophic factor (BDNF+) positive cells, increase in apoptosis (caspase 3+) and enhancement of nitric oxide (NO) release in serum and brain. On the other hand, LED therapy significantly reduced RGC death, in comparison to the methanol group. In addition, the number of BDNF positive cells was significantly higher in the visual cortex of LED-treated group, in comparison to methanol-intoxicated and control groups. Moreover, LED therapy caused a significant decrease in cell death (caspase 3+ cells) and a significant reduction in the NO levels, both in serum and brain tissue, in comparison to methanol-intoxicated rats. Overall, LED therapy demonstrated a number of beneficial effects in decreasing oxidative stress and in functional recovery of RGCs and visual cortex. Our data suggest that LED therapy could be a potential condidate as a non-invasive approach for treatment of retinal damage, which needs further clinicl studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Costa, Lucio G.; Pellacani, Claudia; Dao, Khoi; Kavanagh, Terrance J.; Roque, Pamela J.
2015-01-01
Polybrominated diphenyl ethers (PBDEs), used for decades as flame retardants, have become widespread environmental contaminants. Exposure is believed to occur primarily through diet and dust, and infants and toddlers have the highest body burden, raising concern for potential developmental neurotoxicity. The exact mechanisms of PBDE neurotoxicity have not been elucidated, but two relevant modes of action relate to impairment of thyroid hormone homeostasis and to direct effects on brain cells causing alterations in signal transduction, oxidative stress and apoptotic cell death. The present study shows that BDE-47 (2,2′,4,4′-tetrabromodiphenyl ether) induces oxidative stress and ensuing apoptotic cell death in mouse cerebellar granule neurons in vitro. Similarly, in vivo administration of BDE-47, according to an exposure protocol shown to induce behavioral and biochemical alterations (10 mg/kg, per os on post-natal day 10), induces oxidative stress and apoptosis, without altering serum levels of thyroid hormones. The effects of BDE-47 both in vitro and in vivo were more pronounced in a mouse model lacking the modifier subunit of glutamate cysteine ligase (GCLM) which results in reduced anti-oxidant capability due to low levels of GSH. Concentrations of BDE-47 in brain were in the mid-nanomolar range. These findings indicate that effects observed with BDE-47 in vitro are also present after in vivo administration, suggesting that in addition to potential endocrine effects, which were not seen here, direct interactions with brain cells should be considered as a potential mechanism of BDE-47 neurotoxicity. PMID:25797475
The expression of a novel stress protein '150-kDa oxygen regulated protein' in sudden infant death.
Ikematsu, Kazuya; Tsuda, Ryouichi; Kondo, Toshikazu; Kondo, Hisayoshi; Ozawa, Kentaro; Ogawa, Satoshi; Nakasono, Ichiro
2003-03-01
The oxygen regulated protein 150-kDa (ORP-150) is only induced in hypoxic conditions. We performed an immunohistochemical and morphometrical study on the expression of ORP-150 in the brains of sudden infant death (SID) victims. The cerebral cortexes of 18 infants were used for this study. Each tissue section was incubated with anti-ORP-150 polyclonal antibodies and the number of ORP-150 positive cells was counted. In the cluster analysis, the 18 cases were classified into three groups (A-C groups). Group A was composed of six sudden infant death syndrome (SIDS) cases and its mean value of ORP-150 positive cells was 66.75+/-3.44, Group B (six severe respiratory infectious disease such as pneumonia and bronchitis including sepsis): 39.50+/-2.52 and Group C (five SIDS and one severe respiratory infectious disease): 16.00+/-2.92, respectively. These results might reflect chronic hypoxic condition before death, because ORP-150 is only induced when a hypoxic condition exist, but not acute hypoxia. And chronic hypoxic state is likely to be antecedent to SIDS. Therefore, immunohistochemical analysis of OPR-150 in the brain of SID cases may be very useful to differentiate between SIDS and acute asphyxia.
Chan, Julie Y H; Wu, Carol H Y; Tsai, Ching-Yi; Cheng, Hsiao-Lei; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W
2007-06-15
As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.
Caldwell, Matthew; Moroz, Tracy; Hapuarachchi, Tharindi; Bainbridge, Alan; Robertson, Nicola J; Cooper, Chris E; Tachtsidis, Ilias
2015-01-01
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue.
Bainbridge, Alan; Robertson, Nicola J.; Cooper, Chris E.
2015-01-01
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term damage or death. In order to improve understanding and test new treatments, piglets are used as preclinical models for human neonates. We have extended an earlier computational model of piglet cerebral physiology for application to multimodal experimental data recorded during episodes of induced HI. The data include monitoring with near-infrared spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simulates the circulatory and metabolic processes that give rise to the measured signals. Model extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is compared to data from two piglets, one of which recovered following HI while the other did not. Behaviourally-important model parameters are identified via sensitivity analysis, and these are optimised to simulate the experimental data. For the non-recovering piglet, we investigate several state changes that might explain why some MRS and NIRS signals do not return to their baseline values following the HI insult. We discover that the model can explain this failure better when we include, among other factors such as mitochondrial uncoupling and poor cerebral blood flow restoration, the death of around 40% of the brain tissue. PMID:26445281
Choy, Fong Chan; Klarić, Thomas S; Leong, Wai Khay; Koblar, Simon A
2015-01-01
Stroke is the second leading cause of death and the most frequent cause of adult disability. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischaemia. Although previous studies have demonstrated that Npas4 plays a critical role in protecting neurons against neurodegenerative insults, the neuroprotective effect of Npas4 in response to ischaemic brain injury remains unknown. In this study, we used a loss-of-function approach to examine the neuroprotective potential of Npas4 in the context of ischaemic damage. Using oxygen and glucose deprivation, we demonstrated that the knockdown of Npas4 in mouse cortical neurons resulted in increased susceptibility to cell death. The protective effect of Npas4 was further investigated in vivo using a photochemically-induced stroke model in mice. We found a significantly larger lesion size and increased neurodegeneration in Npas4 knockout mice as compared to wild-type mice. Moreover, we also showed that ablation of Npas4 caused an increase in activated astrocytes and microglia, pro-inflammatory cytokines interleukin-6 and tumour necrosis factor alpha levels and a switch from apoptotic to necrotic cell death. Taken together, these data suggest that Npas4 plays a neuroprotective role in ischaemic stroke by limiting progressive neurodegeneration and neuroinflammation. PMID:26661154
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.
Dan, Mo; Bae, Younsoo; Pittman, Thomas A; Yokel, Robert A
2015-05-01
Superparamagnetic iron oxide nanoparticles (IONPs) are being investigated for brain cancer therapy because alternating magnetic field (AMF) activates them to produce hyperthermia. For central nervous system applications, brain entry of diagnostic and therapeutic agents is usually essential. We hypothesized that AMF-induced hyperthermia significantly increases IONP blood-brain barrier (BBB) association/uptake and flux. Cross-linked nanoassemblies loaded with IONPs (CNA-IONPs) and conventional citrate-coated IONPs (citrate-IONPs) were synthesized and characterized in house. CNA-IONP and citrate-IONP BBB cell association/uptake and flux were studied using two BBB Transwell(®) models (bEnd.3 and MDCKII cells) after conventional and AMF-induced hyperthermia exposure. AMF-induced hyperthermia for 0.5 h did not alter CNA-IONP size but accelerated citrate-IONP agglomeration. AMF-induced hyperthermia for 0.5 h enhanced CNA-IONP and citrate-IONP BBB cell association/uptake. It also enhanced the flux of CNA-IONPs across the two in vitro BBB models compared to conventional hyperthermia and normothermia, in the absence of cell death. Citrate-IONP flux was not observed under these conditions. AMF-induced hyperthermia also significantly enhanced paracellular pathway flux. The mechanism appears to involve more than the increased temperature surrounding the CNA-IONPs. Hyperthermia induced by AMF activation of CNA-IONPs has potential to increase the BBB permeability of therapeutics for the diagnosis and therapy of various brain diseases.
Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan
2016-01-01
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1’s downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke. PMID:27630541
Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan
2016-01-01
Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1's downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke.
Inta, Ioana; Vogt, Miriam A; Vogel, Anne S; Bettendorf, Markus; Gass, Peter; Inta, Dragos
2016-10-01
NMDA receptor (NMDAR) antagonists induce in perinatal rodent cortical apoptosis and protracted schizophrenia-like alterations ameliorated by antipsychotic treatment. The broad-spectrum antibiotic minocycline elicits antipsychotic and neuroprotective effects. Here we tested, if minocycline protects also against apoptosis triggered by the NMDAR antagonist MK-801 at postnatal day 7. Surprisingly, minocycline induced widespread cortical apoptosis and exacerbated MK-801-triggered cell death. In some areas such as the subiculum, the pro-apoptotic effect of minocycline was even more pronounced than that elicited by MK-801. These data reveal among antipsychotics unique pro-apoptotic properties of minocycline, raising concerns regarding consequences for brain development and the use in children.
Using the brain criterion in organ donation after the circulatory determination of death.
Dalle Ave, Anne L; Bernat, James L
2016-06-01
The UK, France, and Switzerland determine death using the brain criterion even in organ donation after the circulatory determination of death (DCDD), in which the United States and Canada use the circulatory-respiratory criterion. In our analysis of the scientific validity of the brain criterion in DCDD, we concluded that although it may be attractive in theory because it conceptualizes death as a unitary phenomenon, its use in practice is invalid. The preconditions (ie, the absence of reversible causes, such as toxic or metabolic disorders) for determining brain death cannot be met in DCDD. Thus, although brain death tests prove the cessation of tested brain functions, they do not prove that their cessation is irreversible. A stand-off period of 5 to 10 minutes is insufficient to achieve the irreversibility requirement of brain death. Because circulatory cessation inevitably leads to cessation of brain functions, first permanently and then irreversibly, the use of brain criterion is unnecessary to determine death in DCDD. Expanding brain death to permit it to be satisfied by permanent cessation of brain functions is controversial but has been considered as a possible means to declare death in uncontrolled DCDD. Copyright © 2016 Elsevier Inc. All rights reserved.
Wu, Jui-Sheng; Tsai, Hsin-Da; Cheung, Wai-Mui; Hsu, Chung Y; Lin, Teng-Nan
2016-08-01
Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult.
Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia.
Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J
2014-06-01
Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that-against general belief-neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress.
Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia
Saez, Isabel; Duran, Jordi; Sinadinos, Christopher; Beltran, Antoni; Yanes, Oscar; Tevy, María F; Martínez-Pons, Carlos; Milán, Marco; Guinovart, Joan J
2014-01-01
Glycogen is present in the brain, where it has been found mainly in glial cells but not in neurons. Therefore, all physiologic roles of brain glycogen have been attributed exclusively to astrocytic glycogen. Working with primary cultured neurons, as well as with genetically modified mice and flies, here we report that—against general belief—neurons contain a low but measurable amount of glycogen. Moreover, we also show that these cells express the brain isoform of glycogen phosphorylase, allowing glycogen to be fully metabolized. Most importantly, we show an active neuronal glycogen metabolism that protects cultured neurons from hypoxia-induced death and flies from hypoxia-induced stupor. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism participates in the neuronal tolerance to hypoxic stress. PMID:24569689
Patrick, Ping; Price, Tulin O; Diogo, Ana L; Sheibani, Nader; Banks, William A; Shah, Gul N
Hyperglycemia in diabetes mellitus causes oxidative stress and pericyte depletion from the microvasculature of the brain thus leading to the Blood-Brain Barrier (BBB) disruption. The compromised BBB exposes the brain to circulating substances, resulting in neurotoxicity and neuronal cell death. The decline in pericyte numbers in diabetic mouse brain and pericyte apoptosis in high glucose cultures are caused by excess superoxide produced during enhanced respiration (mitochondrial oxidative metabolism of glucose). Superoxide is precursor to all Reactive Oxygen Species (ROS) which, in turn, cause oxidative stress. The rate of respiration and thus the ROS production is regulated by mitochondrial carbonic anhydrases (mCA) VA and VB, the two isoforms expressed in the mitochondria. Inhibition of both mCA: decreases the oxidative stress and restores the pericyte numbers in diabetic brain; and reduces high glucose-induced respiration, ROS, oxidative stress, and apoptosis in cultured brain pericytes. However, the individual role of the two isoforms has not been established. To investigate the contribution of mCA VA in ROS production and apoptosis, a mCA VA overexpressing brain pericyte cell line was engineered. These cells were exposed to high glucose and analyzed for the changes in ROS and apoptosis. Overexpression of mCA VA significantly increased pericyte ROS and apoptosis. Inhibition of mCA VA with topiramate prevented increases both in glucose-induced ROS and pericyte death. These results demonstrate, for the first time, that mCA VA regulates the rate of pericyte respiration. These findings identify mCA VA as a novel and specific therapeutic target to protect the cerebromicrovascular bed in diabetes.
Liu, Yan-Jie; Guan, Zhi-Zhong; Gao, Qin; Pei, Jin-Jing
2011-07-28
In order to reveal the mechanism of the brain injury induced by chronic fluorosis, the levels of apoptosis and c-Jun N-terminal kinases (JNK) in brains of rats and SH-SY5Y cells exposed to different concentrations of sodium fluoride (NaF) were detected. The dental fluorosis and fluoride contents in blood, urine and bones of rats were measured to evaluate the exhibition of fluorosis. The apoptotic death rate was measured by flow cytometry and the expression of JNK at protein level by Western blotting. The results showed that as compared with controls, the apoptotic death rate was obviously increased in brains of the rats exposed to high-fluoride (50ppm) for 6 months with a concentration dependent manner, but no significant change for 3 months. In SH-SY5Y cells treated with high concentration (50ppm) of fluoride, the increased apoptotic death rate was obviously observed as compared to controls. In addition, the expressions of phospho-JNK at protein level were raised by 20.5% and 107.6%, respectively, in brains of the rats exposed to low-fluoride (5ppm) and high-fluoride for 6 months; while no significant changes were found between the rats exposed to fluoride and the controls for 3 months. The protein level of phospho-JNK was also increased in SH-SY5Y cells exposed to high-fluoride. There were no changes of total-JNK both in the rats and in the SH-SY5Y cells exposed to excessive fluoride as compared to controls. When SH-SY5Y cells were singly treated with SP600125, an inhibitor of phospho-JNK, the decreased expression of phospho-JNK, but no apoptosis, was detected. Interestingly, after JNK phosphorylation in the cultured cells was inhibited by SP600125, the treatment with high-fluoride did not induce the increase of apoptosis. In addition, there was a positive correlation between the expression of phospho-JNK and the apoptotic death rate in rat brains or SH-SY5Y cells treated with high-fluoride. The results indicated that exposure to excessive fluoride resulted in the increase of apoptosis in rat brains and SH-SY5Y cells, in which one of the mechanisms might be activating JNK phosphorylation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Zheng, Wenhua; Chong, Cheong-Meng; Wang, Haitao; Zhou, Xuanhe; Zhang, Lang; Wang, Rikang; Meng, Qian; Lazarovici, Philip; Fang, Jiankang
2016-08-01
The production of nitric oxide (NO) is one of the primary mediators of ischemic damage, glutamate neurotoxicity and neurodegeneration and therefore inhibition of NO-induced neurotoxicity may be considered a therapeutic target for reducing neuronal cell death (neuroprotection). In this study, artemisinin, a well-known anti-malaria drug was found to suppress sodium nitroprusside (SNP, a nitric oxide donor)-induced cell death in the PC12 cells and brain primary cortical neuronal cultures. Pretreatment of PC12 cells with artemisinin significantly suppressed SNP-induced cell death by decreasing the extent of oxidation, preventing the decline of mitochondrial membrane potential, restoring abnormal changes in nuclear morphology and reducing lactate dehydrogenase release and inhibiting caspase 3/7 activities. Western blotting analysis revealed that artemisinin was able to activate extracellular regulated protein kinases (ERK) pathway. Furthermore, the ERK inhibitor PD98059 blocked the neuroprotective effect of artemisinin whereas the PI3K inhibitor LY294002 had no effect. Cumulatively these findings support the notion that artemisinin confers neuroprotection from SNP-induce neuronal cell death insult, a phenomenon coincidentally related to activation of ERK phosphorylation. This SNP-induced oxidative insult in PC12 cell culture model may be useful to investigate molecular mechanisms of NO-induced neurotoxicity and drug-induced neuroprotection, and to generate novel therapeutic concepts for ischemic disease treatment. Copyright © 2016 Elsevier Inc. All rights reserved.
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-01-01
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-03-21
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.
Gentile, Maria Teresa; Ciniglia, Claudia; Reccia, Mafalda G; Volpicelli, Floriana; Gatti, Monica; Thellung, Stefano; Florio, Tullio; Melone, Mariarosa A B; Colucci-D'Amato, Luca
2015-01-01
Glioblastoma multiforme is a highly aggressive brain tumor whose prognosis is very poor. Due to early invasion of brain parenchyma, its complete surgical removal is nearly impossible, and even after aggressive combined treatment (association of surgery and chemo- and radio-therapy) five-year survival is only about 10%. Natural products are sources of novel compounds endowed with therapeutic properties in many human diseases, including cancer. Here, we report that the water extract of Ruta graveolens L., commonly known as rue, induces death in different glioblastoma cell lines (U87MG, C6 and U138) widely used to test novel drugs in preclinical studies. Ruta graveolens' effect was mediated by ERK1/2 and AKT activation, and the inhibition of these pathways, via PD98058 and wortmannin, reverted its antiproliferative activity. Rue extract also affects survival of neural precursor cells (A1) obtained from embryonic mouse CNS. As in the case of glioma cells, rue stimulates the activation of ERK1/2 and AKT in A1 cells, whereas their blockade by pharmacological inhibitors prevents cell death. Interestingly, upon induction of differentiation and cell cycle exit, A1 cells become resistant to rue's noxious effects but not to those of temozolomide and cisplatin, two alkylating agents widely used in glioblastoma therapy. Finally, rutin, a major component of the Ruta graveolens water extract, failed to cause cell death, suggesting that rutin by itself is not responsible for the observed effects. In conclusion, we report that rue extracts induce glioma cell death, discriminating between proliferating/undifferentiated and non-proliferating/differentiated neurons. Thus, it can be a promising tool to isolate novel drugs and also to discover targets for therapeutic intervention.
Liu, Yanan; Yan, Yasheng; Inagaki, Yasuyoshi; Logan, Sarah; Bosnjak, Zeljko J; Bai, Xiaowen
2017-07-01
Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 μM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3β. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P < .05) but did not influence astrocyte viability. The neuronal death was attenuated by a high ANR (1:1 cocultures; fold change [FC] = 1.17, 95% CI, 0.96-1.38, P < .05), but not with a low ANR [1:9 cocultures; FC = 1.87, 95% CI, 1.48-2.26, P > .05]). Astrocytes secreted BDNF in a cell density-dependent way and propofol decreased BDNF secretion from astrocytes. Administration of BDNF, CHIR99021, or Mdivi-1 significantly attenuated the propofol-induced neuronal death and aberrant mitochondria in neuron-alone cultures (FC = 0.8, 95% CI, 0.62-0.98; FC = 1.22, 95% CI, 1.11-1.32; FC = 1.35, 95% CI, 1.16-1.54, respectively, P < .05) and the cocultures with a low ANR (1:9; FC = 0.85, 95% CI, 0.74-0.97; FC = 1.08, 95% CI, 0.84-1.32; FC = 1.25, 95% CI, 1.1-1.39, respectively, P < .05). Blocking BDNF receptor or protein kinase B activity abolished astrocyte-induced neuroprotection in the cocultures with a high ANR (1:1). Astrocytes attenuate propofol-induced neurotoxicity through BDNF-mediated cell survival pathway suggesting multiple neuroprotective strategies such as administration of BDNF, astrocyte-conditioned medium, decreasing mitochondrial fission, or inhibition of GSK3β.
Donation after brain circulation determination of death.
Dalle Ave, Anne L; Bernat, James L
2017-02-23
The fundamental determinant of death in donation after circulatory determination of death is the cessation of brain circulation and function. We therefore propose the term donation after brain circulation determination of death [DBCDD]. In DBCDD, death is determined when the cessation of circulatory function is permanent but before it is irreversible, consistent with medical standards of death determination outside the context of organ donation. Safeguards to prevent error include that: 1] the possibility of auto-resuscitation has elapsed; 2] no brain circulation may resume after the determination of death; 3] complete circulatory cessation is verified; and 4] the cessation of brain function is permanent and complete. Death should be determined by the confirmation of the cessation of systemic circulation; the use of brain death tests is invalid and unnecessary. Because this concept differs from current standards, consensus should be sought among stakeholders. The patient or surrogate should provide informed consent for organ donation by understanding the basis of the declaration of death. In cases of circulatory cessation, such as occurs in DBCDD, death can be defined as the permanent cessation of brain functions, determined by the permanent cessation of brain circulation.
Bagci-Onder, Tugba; Du, Wanlu; Figueiredo, Jose-Luiz; Martinez-Quintanilla, Jordi
2015-01-01
Characterizing clinically relevant brain metastasis models and assessing the therapeutic efficacy in such models are fundamental for the development of novel therapies for metastatic brain cancers. In this study, we have developed an in vivo imageable breast-to-brain metastasis mouse model. Using real time in vivo imaging and subsequent composite fluorescence imaging, we show a widespread distribution of micro- and macro-metastasis in different stages of metastatic progression. We also show extravasation of tumour cells and the close association of tumour cells with blood vessels in the brain thus mimicking the multi-foci metastases observed in the clinics. Next, we explored the ability of engineered adult stem cells to track metastatic deposits in this model and show that engineered stem cells either implanted or injected via circulation efficiently home to metastatic tumour deposits in the brain. Based on the recent findings that metastatic tumour cells adopt unique mechanisms of evading apoptosis to successfully colonize in the brain, we reasoned that TNF receptor superfamily member 10A/10B apoptosis-inducing ligand (TRAIL) based pro-apoptotic therapies that induce death receptor signalling within the metastatic tumour cells might be a favourable therapeutic approach. We engineered stem cells to express a tumour selective, potent and secretable variant of a TRAIL, S-TRAIL, and show that these cells significantly suppressed metastatic tumour growth and prolonged the survival of mice bearing metastatic breast tumours. Furthermore, the incorporation of pro-drug converting enzyme, herpes simplex virus thymidine kinase, into therapeutic S-TRAIL secreting stem cells allowed their eradication post-tumour treatment. These studies are the first of their kind that provide insight into targeting brain metastasis with stem-cell mediated delivery of pro-apoptotic ligands and have important clinical implications. PMID:25910782
Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise?
Zhang, Q L; Niu, Q; Ji, X L; Conti, P; Boscolo, P
2008-01-01
Besides being an aggravating factor secondary to major physiological alterations in degenerative diseases, aluminum has also been considered as a risk factor in the etiology. Although many in vivo and in vitro data are in favor of apoptosis and necrosis being involved in Al induced neurodegenerative processes, there is considerable evidence that very complex events may contribute to neural cell death. Necroptosis, a novel cell death pathway, was recently reported to contribute to ischemia brain injury. It is different from, but associated with, apoptosis and necrosis, the two common major pathways of cell demise. In the present study, SH-SY5Y cells were put under stress by Al, a potential degenerative cell death inducer. Nec-1, a specific inhibitor, was used to identify necroptosis. The characteristics observed in Nec-1 and Al treated SH-SY5Y cells showed that necrotic morphological changes were reduced, and a sharp decrease of necrotic rate was detected. Besides, there were Al-induced mitochondria membrane potential decreasing, reactive oxygen species remaining, and autophagosomes declining. The mechanism of Nec-1s effect on cell death may be related to caspases pathways. To our best knowledge, this is the pioneer report on necroptosis in mixed human neural cell death pathways, which might offer a novel therapeutic target for neurodegenerative diseases, and an extended window for neuroprotection.
Methylmercury induces the expression of TNF-α selectively in the brain of mice
Iwai-Shimada, Miyuki; Takahashi, Tsutomu; Kim, Min-Seok; Fujimura, Masatake; Ito, Hitoyasu; Toyama, Takashi; Naganuma, Akira; Hwang, Gi-Wook
2016-01-01
Methylmercury selectively damages the central nervous system (CNS). The tumor necrosis factor (TNF) superfamily includes representative cytokines that participate in the inflammatory response as well as cell survival, and apoptosis. In this study, we found that administration of methylmercury selectively induced TNF-α expression in the brain of mice. Although the accumulated mercury concentration in the liver and kidneys was greater than in the brain, TNF-α expression was induced to a greater extent in brain. Thus, it is possible that there may exist a selective mechanism by which methylmercury induces TNF-α expression in the brain. We also found that TNF-α expression was induced by methylmercury in C17.2 cells (mouse neural stem cells) and NF-κB may participate as a transcription factor in that induction. Further, we showed that the addition of TNF-α antagonist (WP9QY) reduced the toxicity of methylmercury to C17.2 cells. In contrast, the addition of recombinant TNF-α to the culture medium decreased the cell viability. We suggest that TNF-α may play a part in the selective damage of the CNS by methylmercury. Furthermore, our results indicate that the higher TNF-α expression induced by methylmercury maybe the cause of cell death, as TNF-α binds to its receptor after being released extracellularly. PMID:27910896
C5a induces caspase-dependent apoptosis in brain vascular endothelial cells in experimental lupus.
Mahajan, Supriya D; Tutino, Vincent M; Redae, Yonas; Meng, Hui; Siddiqui, Adnan; Woodruff, Trent M; Jarvis, James N; Hennon, Teresa; Schwartz, Stanley; Quigg, Richard J; Alexander, Jessy J
2016-08-01
Blood-brain barrier (BBB) dysfunction complicates central nervous system lupus, an important aspect of systemic lupus erythematosus. To gain insight into the underlying mechanism, vascular corrosion casts of brain were generated from the lupus mouse model, MRL/lpr mice and the MRL/MpJ congenic controls. Scanning electron microscopy of the casts showed loss of vascular endothelial cells in lupus mice compared with controls. Immunostaining revealed a significant increase in caspase 3 expression in the brain vascular endothelial cells, which suggests that apoptosis could be an important mechanism causing cell loss, and thereby loss of BBB integrity. Complement activation occurs in lupus resulting in increased generation of circulating C5a, which caused the endothelial layer to become 'leaky'. In this study, we show that C5a and lupus serum induced apoptosis in cultured human brain microvascular endothelial cells (HBMVECs), whereas selective C5a receptor 1 (C5aR1) antagonist reduced apoptosis in these cells, demonstrating C5a/C5aR1-dependence. Gene expression of initiator caspases, caspase 1 and caspase 8, and pro-apoptotic proteins death-associated protein kinase 1, Fas-associated protein (FADD), cell death-inducing DNA fragmentation factor 45 000 MW subunit A-like effector B (CIDEB) and BCL2-associated X protein were increased in HBMVECs treated with lupus serum or C5a, indicating that both the intrinsic and extrinsic apoptotic pathways could be critical mediators of brain endothelial cell apoptosis in this setting. Overall, our findings suggest that C5a/C5aR1 signalling induces apoptosis through activation of FADD, caspase 8/3 and CIDEB in brain endothelial cells in lupus. Further elucidation of the underlying apoptotic mechanisms mediating the reduced endothelial cell number is important in establishing the potential therapeutic effectiveness of C5aR1 inhibition that could prevent and/or reduce BBB alterations and preserve the physiological function of BBB in central nervous system lupus. © 2016 John Wiley & Sons Ltd.
Loss of proteostasis induced by amyloid beta peptide in brain endothelial cells.
Fonseca, Ana Catarina; Oliveira, Catarina R; Pereira, Cláudia F; Cardoso, Sandra M
2014-06-01
Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1-40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin-proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Arifin, Muhammad Zafrullah; Faried, Ahmad; Shahib, Muhammad Nurhalim; Wiriadisastra, Kahdar; Bisri, Tatang
2011-01-01
Background. Traumatic brain injury (TBI) remains a major cause of death and disability. Oxidative stress is an important element of the injury cascade following TBI. Progressive compromise of antioxidant defenses and free radical-mediated lipid peroxidation are one of the major mechanisms of secondary TBI. NR2B is a glutamate receptor and its activation is caused by TBI increasing a brain cell death, along with caspase-3 as a hall mark of apoptosis. Glutathione is a potent free radical scavenger that might prevent secondary TBI damage and inhibited apoptosis. Materials and Methods. In the present study, it aims to demonstrate the effect of glutathione on inhibition of brain oxidative damage in a TBI rat model. Results. In this study, the expressions of mRNA NR2B in placebo group and groups with glutathione administration at 0, 3, and 6 hours after TBI were 328.14, 229.90, 178.50, and 136.14, respectively (P<0.001). The highest caspase-3 expression was shown in placebo group with 66.7% showing strong positive results (>80%); as expected, glutathione administered in 0, 3, and 6 hours groups had lower strong positive results of 50%, 16.7%, and 16.7%, respectively, (P=0.025). Conclusion. In conclusion, this study showed that glutathione administration in a TBI rat model decreased NR2B gene- and caspase-3 protein-expression that lead to the inhibition of brain cell death. Our results suggest that glutathione, as a potent free radical scavenger, has a brain cell protective effect against oxidative damage and cell death induced by TBI in rat model. PMID:22347327
An educational initiative to improve medical student awareness about brain death.
Lewis, Ariane; Howard, Jonathan; Watsula-Morley, Amanda; Gillespie, Colleen
2018-04-01
Medical student knowledge about brain death determination is limited. We describe an educational initiative to improve medical student awareness about brain death and assess the impact of this initiative. Beginning in July 2016, students at our medical school were required to attend a 90-min brain death didactic and simulation session during their neurology clerkship. Students completed a test immediately before and after participating in the initiative. Of the 145 students who participated in this educational initiative between July 2016 and June 2017, 124 (86%) consented to have their data used for research purposes as part of a medical education registry. Students correctly answered a median of 53% of questions (IQR 47-58%) on the pretest and 86% of questions (IQR 78-89%) on the posttest (p < .001). Comfort with both performing a brain death evaluation and talking to a family about brain death improved significantly after this initiative (18% of students were comfortable performing a brain death evaluation before the initiative and 86% were comfortable doing so after the initiative, p < .001; 18% were comfortable talking to a family about brain death before the initiative and 76% were comfortable doing so after the initiative, p < .001). Incorporation of simulation in undergraduate medical education is high-yield. At our medical school, knowledge about brain death and comfort performing a brain death exam or talking to a family about brain death was limited prior to development of this initiative, but awareness and comfort dealing with brain death improved significantly after this initiative. Copyright © 2018 Elsevier B.V. All rights reserved.
Costa, Vivian V.; Del Sarto, Juliana L.; Rocha, Rebeca F.; Silva, Flavia R.; Doria, Juliana G.; Olmo, Isabella G.; Marques, Rafael E.; Queiroz-Junior, Celso M.; Foureaux, Giselle; Araújo, Julia Maria S.; Cramer, Allysson; Real, Ana Luíza C. V.; Ribeiro, Lucas S.; Sardi, Silvia I.; Ferreira, Anderson J.; Machado, Fabiana S.; de Oliveira, Antônio C.; Teixeira, Antônio L.; Nakaya, Helder I.; Souza, Danielle G.
2017-01-01
ABSTRACT Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. PMID:28442607
Tian, Dai-Shi; Feng, Li-Jie; Liu, Jun-Li
2017-01-01
Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2–CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2–CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2–CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy. SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2–CCR2 signaling is required for monocyte infiltration, which in turn contributes to kainic acid (KA)-induced neuronal cell death. The downstream of CCR2 activation involves STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. The current study provides a novel insight on the function and mechanisms of CCL2–CCR2 signaling in KA-induced neurodegeneration and behavioral deficits. PMID:28716963
Zheng, J; Li, G; Chen, S; Bihl, J; Buck, J; Zhu, Y; Xia, H; Lazartigues, E; Chen, Y; Olson, J E
2014-07-25
We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Neural Mechanisms Linking Mild Traumatic Brain Injury and Anxiety States in an Animal Model
2012-03-01
IGF-1R (Madathil et al., 2010, Rubovitch et al., 2010) to decrease 22 programmed cell death in these sub regions of the amygdala. Thus, whether... corticosterone in the rat medial hypothalamus potentiates D- fenfluramine-induced elevations of extracellular 5- HT concentrations. Hormones and Behavior. 56...in the Appendix). Brains were sectioned and stained to identify neurons for neuronal cell counts, and also stained using the TUNEL method to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kikuchi, Kiyoshi; Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567; Kawahara, Ko-ichi
2009-07-24
High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death inmore » a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.« less
Distinct pathways leading to TDP-43-induced cellular dysfunctions.
Yamashita, Makiko; Nonaka, Takashi; Hirai, Shinobu; Miwa, Akiko; Okado, Haruo; Arai, Tetsuaki; Hosokawa, Masato; Akiyama, Haruhiko; Hasegawa, Masato
2014-08-15
TAR DNA-binding protein of 43 kDa (TDP-43) is the major component protein of inclusions found in brains of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP). However, the molecular mechanisms by which TDP-43 causes neuronal dysfunction and death remain unknown. Here, we report distinct cytotoxic effects of full-length TDP-43 (FL-TDP) and its C-terminal fragment (CTF) in SH-SY5Y cells. When FL-TDP was overexpressed in the cells using a lentiviral system, exogenous TDP-43, like endogenous TDP-43, was expressed mainly in nuclei of cells without any intracellular inclusions. However, these cells showed striking cell death, caspase activation and growth arrest at G2/M phase, indicating that even simple overexpression of TDP-43 induces cellular dysfunctions leading to apoptosis. On the other hand, cells expressing TDP-43 CTF showed cytoplasmic aggregates but without significant cell death, compared with cells expressing FL-TDP. Confocal microscopic analyses revealed that RNA polymerase II (RNA pol II) and several transcription factors, such as specificity protein 1 and cAMP-response-element-binding protein, were co-localized with the aggregates of TDP-43 CTF, suggesting that sequestration of these factors into TDP-43 aggregates caused transcriptional dysregulation. Indeed, accumulation of RNA pol II at TDP-43 inclusions was detected in brains of patients with FTLD-TDP. Furthermore, apoptosis was not observed in affected neurons of FTLD-TDP brains containing phosphorylated and aggregated TDP-43 pathology. Our results suggest that different pathways of TDP-43-induced cellular dysfunction may contribute to the degeneration cascades involved in the onset of ALS and FTLD-TDP. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kim, Tae-Hyoung; Huang, Tai-Qin; Jang, Ja-June; Kim, Man Ho; Kim, Hyun-Jeong; Lee, Jae-Seon; Pack, Jeong Ki; Seo, Jeong-Sun
2008-01-01
Even though there is no direct evidence to prove the cellular and molecular changes induced by radiofrequency (RF) radiation itself, we cannot completely exclude the possibility of any biological effect of mobile phone frequency radiation. We established a carousel-type exposure chamber for 849 MHz or 1763 MHz of mobile phone RF radiation to expose RF to the heads of C57BL mice. In this chamber, animals were irradiated intermittently at 7.8 W/kg for a maximum of 12 months. During this period, the body weights of 3 groups-sham, 849 MHz RF, and 1763 MHz RF-did not show any differences between groups. The brain tissues were obtained from 3 groups at 6 months and 12 months to examine the differences in histology and cell proliferation between control and RF exposure groups, but we could not find any change upon RF radiation. Likewise, we could not find changes in the expression and distribution of NeuN and GFAP in hippocampus and cerebellum, or in cell death by TUNEL assay in RF exposure groups. From these data, we conclude that the chronic exposure to 849 MHz and 1763 MHz RF radiation at a 7.8 W/kg specific absorption rate (SAR) could not induce cellular alterations such as proliferation, death, and reactive gliosis. PMID:18587267
Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm
2018-06-06
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar
2017-01-01
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Coptidis Rhizoma Prevents Heat Stress-Induced Brain Damage and Cognitive Impairment in Mice
Moon, Minho; Huh, Eugene; Song, Eun Ji; Hwang, Deok-Sang; Lee, Tae Hee; Oh, Myung Sook
2017-01-01
Heat stress conditions lead to neuroinflammation, neuronal death, and memory loss in animals. Coptidis Rhizoma (CR) exhibits potent fever-reducing effects and has been used as an important traditional medicinal herb for treating fever. However, to date, the effects of antipyretic CR on heat-induced brain damages have not been investigated. In this study, CR significantly reduced the elevation of ear and rectal temperatures after exposure to heat in mice. Additionally, CR attenuated hyperthermia-induced stress responses, such as release of cortisol into the blood, and upregulation of heat shock protein and c-Fos in the hypothalamus and hippocampus of mice. The administration of CR inhibited gliosis and neuronal loss induced by thermal stress in the hippocampal CA3 region. Treatment with CR also reduced the heat stress-induced expression of nuclear factor kappa β, tumor necrosis factor-α, and interleukin-1β (IL-1β) in the hippocampus. Moreover, CR significantly decreased proinflammatory mediators such as IL-9 and IL-13 in the heat-stressed hypothalamus. Furthermore, CR attenuated cognitive dysfunction triggered by thermal stress. These results indicate that CR protects the brain against heat stress-mediated brain damage via amelioration of hyperthermia and neuroinflammation in mice, suggesting that fever-reducing CR can attenuate thermal stress-induced neuropathology. PMID:28946610
Khaing, Z Z; Weickert, C S; Weinberger, D R; Lipska, B K
2000-12-01
We examined the developmental profile of excitotoxin-induced nuclear DNA fragmentation using the transferase dUTP nick-end labelling (TUNEL) technique, as a marker of DNA damage and cell death in rats with neonatal and adult excitotoxic lesions of the ventral hippocampus. We hypothesized that infusion of neurotoxin may result in a differential pattern of cell death in neonatally and adult lesioned rats, both in the infusion site and in remote brain regions presumably involved in mediating behavioural changes observed in these animals. Brains of rats lesioned at 7 days of age and in adulthood were collected at several survival times 1-21 days after the lesion. In the lesioned neonates 1-3 days postlesion, marked increases in TUNEL-positive cells occurred in the ventral hippocampus, the site of neurotoxin infusion, and in a wide surrounding area. Adult lesioned brains showed more positive cells than controls only at the infusion site. In the lesioned neonates, TUNEL-labelled cells were also present in the striatum and nucleus accumbens 1 day postlesion but not at later survival times. Our findings indicate that cell death in remote regions is more prominent in immature than adult brains, that it may lead to distinct alterations in development of these brain regions, and thus may be responsible for functional differences between neonatally and adult lesioned rats.
Markert, L; Bockholdt, B; Verhoff, M A; Heinze, S; Parzeller, M
2016-03-01
In the practice of legal medicine in Germany, the assessment of brain death is of minor importance and attracts little attention. However, since several years, international criticism on the concept of brain death has culminated. By reviewing literature and the results of a questionnaire distributed among the participants of the 93rd Annual Congress of the Germany Society of Legal Medicine, the state of knowledge and the current views on brain death were evaluated. Literature search of recent publications regarding brain death was performed (PubMed database, references of legal medicine, Report of the President's Council on Bioethics, USA 2008). A questionnaire was developed and distributed among the participants of the Congress. The assumption that individual and brain death are synonymous is criticized. Internationally, there are trends to harmonize the very different clinical criteria to assess brain death. The diagnostic advantage of novel techniques such as CT angiography is controversially discussed. It becomes apparent that procedures which record the blood flow and perfusion of the brain will be applied more in the future. Regrettably, these developments are not described in the literature of legal medicine. Moreover, among German forensic scientists, different views concerning brain death exist. The majority favors its equivalent treatment with individual death. The thanatological background can be improved concerning certain aspects of brain death as well as its legal implications. Teaching and research in legal medicine should include the subject brain death. Expertise in forensic science may contribute to the interdisciplinary discussion on brain death. The transfer of actual knowledge, also on disputed ethical aspects of thanatology, to physicians of all disciplines is of great importance.
Prevention of acute/severe hypoglycemia-induced neuron death by lactate administration.
Won, Seok Joon; Jang, Bong Geom; Yoo, Byung Hoon; Sohn, Min; Lee, Min Woo; Choi, Bo Young; Kim, Jin Hee; Song, Hong Ki; Suh, Sang Won
2012-06-01
Hypoglycemia-induced cerebral neuropathy can occur in patients with diabetes who attempt tight control of blood glucose and may lead to cognitive dysfunction. Accumulating evidence from animal models suggests that hypoglycemia-induced neuronal death is not a simple result of glucose deprivation, but is instead the end result of a multifactorial process. In particular, the excessive activation of poly (ADP-ribose) polymerase-1 (PARP-1) consumes cytosolic nicotinamide adenine dinucleotide (NAD(+)), resulting in energy failure. In this study, we investigate whether lactate administration in the absence of cytosolic NAD(+) affords neuroprotection against hypoglycemia-induced neuronal death. Intraperitoneal injection of sodium L-lactate corrected arterial blood pH and blood lactate concentration after hypoglycemia. Lactate administered without glucose was not sufficient to promote electroencephalogram recovery from an isoelectric state during hypoglycemia. However, supplementation of glucose with lactate reduced neuronal death by ∼80% in the hippocampus. Hypoglycemia-induced superoxide production and microglia activation was also substantially reduced by administration of lactate. Taken together, these results suggest an intriguing possibility: that increasing brain lactate following hypoglycemia offsets the decrease in NAD(+) due to overactivation of PARP-1 by acting as an alternative energy substrate that can effectively bypass glycolysis and be fed directly to the citric acid cycle to maintain cellular ATP levels.
Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury
Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia
2017-01-01
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295
Transcranial amelioration of inflammation and cell death after brain injury
NASA Astrophysics Data System (ADS)
Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.
2014-01-01
Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.
Churn, S B; DeLorenzo, R J; Shapiro, S M
1995-12-01
Excessive bilirubin levels in newborn infants result in long-term neurologic deficits that remain after bilirubin levels return to normal. Much of the observed neurologic deficits can be attributed to bilirubin-induced, delayed neuronal cell death. Inhibition of calcium/calmodulin-dependent kinase II (CaM kinase II) activity that precedes cell death is observed in conditions such as seizure activity, stroke, and glutamate excitotoxicity. Because neonatal bilirubin exposure results in neuronal loss in developing brain systems, we tested whether bilirubin exposure would induce an immediate inhibition of CaM activity, in vitro. P-81 filtration assay of basal and calcium-stimulated kinase activity was performed under standard kinase assay conditions. Bilirubin and/or albumin was added to the reaction vessels to determine the effect of these agents on kinase activity. Bilirubin exposure resulted in a concentration-dependent inhibition of CaM kinase II activity (IC50 = 16.78 microM). At concentrations above 50 microM, bilirubin exposure resulted in a 71 +/- 8% (mean +/- SD) inhibition of kinase activity (p < 0.001, t test, n = 10). Bilirubin exposure did not result in kinase inhibition if excessive bilirubin was removed by albumin binding before stimulation of kinase activity (106.9 +/- 9.6% control activity, n = 5). However, removal of bilirubin by binding with albumin after calcium addition did not restore kinase activity. (36.1 +/- 3.8% control activity, n = 5). Thus, once inhibition was observed, the activity could not be restored by addition of albumin. The data suggest that bilirubin exposure resulted in a calcium-dependent inhibition of CaM kinase II activity that, once induced, was not reversible by removing bilirubin by the addition of albumin. Because inhibition of CaM kinase II activity has been correlated with delayed neuronal cell death in many neuropathologic conditions, bilirubin-induced inhibition of this enzyme may be a cellular mechanism by which bilirubin exposure results in delayed neuronal cell death in developing brain.
Al-Gharaibeh, Abeer; Kolli, Nivya
2017-01-01
Despite recent advancements in cancer therapies, glioblastoma multiforme (GBM) remains largely incurable. Curcumin (Cur), a natural polyphenol, has potent anticancer effects against several malignancies, including metastatic brain tumors. However, its limited bioavailability reduces its efficiency for treating GBM. Recently, we have shown that solid lipid Cur particles (SLCPs) have greater bioavailability and brain tissue penetration. The present study compares the efficiency of cell death by Cur and/or SLCPs in cultured GBM cells derived from human (U-87MG) and mouse (GL261) tissues. Several cell viability and cell death assays and marker proteins (MTT assay, annexin-V staining, TUNEL staining, comet assay, DNA gel electrophoresis, and Western blot) were investigated following the treatment of Cur and/or SLCP (25 μM) for 24–72 h. Relative to Cur, the use of SLCP increased cell death and DNA fragmentation, produced longer DNA tails, and induced more fragmented nuclear lobes. In addition, cultured GBM cells had increased levels of caspase-3, Bax, and p53, with decreases in Bcl2, c-Myc, and both total Akt, as well as phosphorylated Akt, when SLCP, rather Cur, was used. Our in vitro work suggests that the use of SLCP may be a promising strategy for reversing or preventing GBM growth, as compared to using Cur. PMID:29359011
Liu, Song; Xin, Danqing; Wang, Lingxiao; Zhang, Tiantian; Bai, Xuemei; Li, Tong; Xie, Yunkai; Xue, Hao; Bo, Shishi; Liu, Dexiang; Wang, Zhen
2017-10-01
Neonatal hypoxic-ischemic (HI) injury is a major cause of neonatal death and neurological dysfunction. H 2 S has been shown to protect against hypoxia-induced injury and apoptosis of neurons. L-Cysteine is catalyzed by cystathionine-β-synthase (CBS) in the brain and sequentially produces endogenous H 2 S. The present study was designed to investigate whether L-Cysteine could attenuate the acute brain injury and improve neurobehavioral outcomes following HI brain injury in neonatal mice by releasing endogenous H 2 S. L-Cysteine treatment significantly attenuated brain edema and decreased infarct volume and neuronal cell death, as shown by a decrease in the Bax/Bcl-2 ratio, suppression of caspase-3 activation, and reduced phosphorylation of Akt and ERK at 72h after HI. Additionally, L-Cysteine substantially up-regulated NF-E2-related factor 2 and heme oxygenase-1 expression. L-Cysteine also decreased endoplasmic reticulum (ER) stress-associated pro-apoptotic protein expression. Furthermore, L-Cysteine had long-term effects by protecting against the loss of ipsilateral brain tissue and improving neurobehavioral outcomes. Importantly, pre-treatment with a CBS inhibitor significantly attenuated the neuroprotection of L-Cysteine on HI insult. Thus, L-Cysteine exerts neuroprotection against HI-induced injury in neonates via the CBS/H 2 S pathway, mediated in part by anti-apoptotic effects and reduced oxidative stress and ER stress. Thus, L-Cysteine may be a promising treatment for HI. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Terlouw, Claudia; Bourguet, Cécile; Deiss, Véronique
2016-08-01
This review describes the neurobiological mechanisms that are relevant for the stunning and killing process of animals in the abattoir. The mechanisms underlying the loss of consciousness depend on the technique used: mechanical, electrical or gas stunning. Direct exsanguination (without prior stun) causes also a loss of consciousness before inducing death. The underlying mechanisms may involve cerebral anoxia or ischemia, or the depolarisation, acidification and/or the destruction of brain neurons. These effects may be caused by shock waves, electrical fields, the reduction or arrest of the cerebral blood circulation, increased levels of CO2 or low levels of O2 in the inhaled air, or the mechanical destruction of neurons. The targeted brain structures are the reticular formation, the ascending reticular activating system or thalamus, or the cerebral hemispheres in a general manner. Some of the techniques, when properly used, induce an immediate loss of consciousness; other techniques a progressive loss of consciousness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mouton-Liger, F; Rebillat, A-S; Gourmaud, S; Paquet, C; Leguen, A; Dumurgier, J; Bernadelli, P; Taupin, V; Pradier, L; Rooney, T; Hugon, J
2015-01-15
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice).
PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model
Mouton-Liger, F; Rebillat, A-S; Gourmaud, S; Paquet, C; Leguen, A; Dumurgier, J; Bernadelli, P; Taupin, V; Pradier, L; Rooney, T; Hugon, J
2015-01-01
Brain thiamine homeostasis has an important role in energy metabolism and displays reduced activity in Alzheimer's disease (AD). Thiamine deficiency (TD) induces regionally specific neuronal death in the animal and human brains associated with a mild chronic impairment of oxidative metabolism. These features make the TD model amenable to investigate the cellular mechanisms of neurodegeneration. Once activated by various cellular stresses, including oxidative stress, PKR acts as a pro-apoptotic kinase and negatively controls the protein translation leading to an increase of BACE1 translation. In this study, we used a mouse TD model to assess the involvement of PKR in neuronal death and the molecular mechanisms of AD. Our results showed that the TD model activates the PKR-eIF2α pathway, increases the BACE1 expression levels of Aβ in specific thalamus nuclei and induces motor deficits and neurodegeneration. These effects are reversed by PKR downregulation (using a specific inhibitor or in PKR knockout mice). PMID:25590804
Fatal encephalopathy after an isolated overdose of cocaine
Kondziella, D; Danielsen, E R; Arlien-Soeborg, P
2009-01-01
Cocaine induced brain damage can be divided into primary neurotoxic effects causing toxic encephalopathy, secondary effects of compromised cerebral blood flow in ischaemic and haemorrhagic stroke, cerebral vasculitis and vasospasm, and tertiary effects due to hypoxia as a result of cardiopulmonary collapse. Toxic leucoencephalopathy mainly affects white matter (WM) tracts serving higher cerebral function, thereby leading to altered personality, attention deficits and memory impairment in mild cases and to dementia, coma and brain death in severe cases. Here we describe the case of a 21-year-old man who committed suicide by injecting cocaine. The cocaine induced a toxic leucoencephalopathy, which was proven at autopsy. PMID:21731586
The chemokine CCL2 protects against methylmercury neurotoxicity.
Godefroy, David; Gosselin, Romain-Daniel; Yasutake, Akira; Fujimura, Masatake; Combadière, Christophe; Maury-Brachet, Régine; Laclau, Muriel; Rakwal, Randeep; Melik-Parsadaniantz, Stéphane; Bourdineaud, Jean-Paul; Rostène, William
2012-01-01
Industrial pollution due to heavy metals such as mercury is a major concern for the environment and public health. Mercury, in particular methylmercury (MeHg), primarily affects brain development and neuronal activity, resulting in neurotoxic effects. Because chemokines can modulate brain functions and are involved in neuroinflammatory and neurodegenerative diseases, we tested the possibility that the neurotoxic effect of MeHg may interfere with the chemokine CCL2. We have used an original protocol in young mice using a MeHg-contaminated fish-based diet for 3 months relevant to human MeHg contamination. We observed that MeHg induced in the mice cortex a decrease in CCL2 concentrations, neuronal cell death, and microglial activation. Knock-out (KO) CCL2 mice fed with a vegetal control food already presented a decrease in cortical neuronal cell density in comparison with wild-type animals under similar diet conditions, suggesting that the presence of CCL2 is required for normal neuronal survival. Moreover, KO CCL2 mice showed a pronounced neuronal cell death in response to MeHg. Using in vitro experiments on pure rat cortical neurons in culture, we observed by blockade of the CCL2/CCR2 neurotransmission an increased neuronal cell death in response to MeHg neurotoxicity. Furthermore, we showed that sod genes are upregulated in brain of wild-type mice fed with MeHg in contrast to KO CCL2 mice and that CCL2 can blunt in vitro the decrease in glutathione levels induced by MeHg. These original findings demonstrate that CCL2 may act as a neuroprotective alarm system in brain deficits due to MeHg intoxication.
Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.
Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young
2006-01-01
Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.
Alcohol-induced apoptosis of oligodendrocytes in the fetal macaque brain.
Creeley, Catherine E; Dikranian, Krikor T; Johnson, Stephen A; Farber, Nuri B; Olney, John W
2013-06-12
In utero exposure of the fetal non-human primate (NHP) brain to alcohol on a single occasion during early or late third-trimester gestation triggers widespread acute apoptotic death of cells in both gray and white matter (WM) regions of the fetal brain. In a prior publication, we documented that the dying gray matter cells are neurons, and described the regional distribution and magnitude of this cell death response. Here, we present new findings regarding the magnitude, identity and maturational status of the dying WM cells in these alcohol-exposed fetal NHP brains. Our findings document that the dying WM cells belong to the oligodendrocyte (OL) lineage. OLs become vulnerable when they are just beginning to generate myelin basic protein in preparation for myelinating axons, and they remain vulnerable throughout later stages of myelination. We found no evidence linking astrocytes, microglia or OL progenitors to this WM cell death response. The mean density (profiles per mm3) of dying WM cells in alcohol-exposed brains was 12.7 times higher than the mean density of WM cells dying by natural apoptosis in drug-naive control brains. In utero exposure of the fetal NHP brain to alcohol on a single occasion triggers widespread acute apoptotic death of neurons (previous study) and of OLs (present study) throughout WM regions of the developing brain. The rate of OL apoptosis in alcohol-exposed brains was 12.7 times higher than the natural OL apoptosis rate. OLs become sensitive to the apoptogenic action of alcohol when they are just beginning to generate constituents of myelin in their cytoplasm, and they remain vulnerable throughout later stages of myelination. There is growing evidence for a similar apoptotic response of both neurons and OLs following exposure of the developing brain to anesthetic and anticonvulsant drugs. Collectively, this body of evidence raises important questions regarding the role that neuro and oligo apoptosis may play in the human condition known as fetal alcohol spectrum disorder (FASD), and also poses a question whether other apoptogenic drugs, although long considered safe for pediatric/obstetric use, may have the potential to cause iatrogenic FASD-like developmental disability syndromes.
Neuroscience and Brain Death Controversies: The Elephant in the Room.
Verheijde, Joseph L; Rady, Mohamed Y; Potts, Michael
2018-06-21
The conception and the determination of brain death continue to raise scientific, legal, philosophical, and religious controversies. While both the President's Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research in 1981 and the President's Council on Bioethics in 2008 committed to a biological definition of death as the basis for the whole-brain death criteria, contemporary neuroscientific findings augment the concerns about the validity of this biological definition. Neuroscientific evidentiary findings, however, have not yet permeated discussions about brain death. These findings have critical relevance (scientifically, medically, legally, morally, and religiously) because they indicate that some core assumptions about brain death are demonstrably incorrect, while others lack sufficient evidential support. If behavioral unresponsiveness does not equate to unconsciousness, then the philosophical underpinning of the definition based on loss of capacity for consciousness as well as the criteria, and tests in brain death determination are incongruent with empirical evidence. Thus, the primary claim that brain death equates to biological death has then been de facto falsified. This conclusion has profound philosophical, religious, and legal implications that should compel respective authorities to (1) reassess the philosophical rationale for the definition of death, (2) initiate a critical reappraisal of the presumed alignment of brain death with the theological definition of death in Abrahamic faith traditions, and (3) enact new legislation ratifying religious exemption to death determination by neurologic criteria.
Huang, Changsheng; Sakry, Dominik; Menzel, Lutz; Dangel, Larissa; Sebastiani, Anne; Krämer, Tobias; Karram, Khalad; Engelhard, Kristin; Trotter, Jacqueline; Schäfer, Michael K E
2016-04-01
Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2-knockout mice (NG2-KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2-KO compared to wild-type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin-2) were increased in the perilesional brain tissue of NG2-KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2-KO mice. While TBI-induced expression of pro-inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI-induced up-regulation of the C-X-C motif chemokine 13 gene Cxcl13 in NG2-KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2-KO mice still exhibited more pronounced neurological deficits than WT mice, up-regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba-1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI. © 2015 Wiley Periodicals, Inc.
Total Brain Death and the Integration of the Body Required of a Human Being
Lee, Patrick
2016-01-01
I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change—the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. PMID:27097647
Yang, Qing; Miller, Geoffrey
2015-06-01
The concept of brain death as equivalent to cardiopulmonary death was initially conceived following developments in neuroscience, critical care, and transplant technology. It is now a routine part of medicine in Western countries, including the United States. In contrast, Eastern countries have been reluctant to incorporate brain death into legislation and medical practice. Several countries, most notably China, still lack laws recognizing brain death and national medical standards for making the diagnosis. The perception is that Asians are less likely to approve of brain death or organ transplant from brain dead donors. Cultural and religious traditions have been referenced to explain this apparent difference. In the West, the status of the brain as home to the soul in Enlightenment philosophy, combined with pragmatism and utilitarianism, supports the concept of brain death. In the East, the integration of body with spirit and nature in Buddhist and folk beliefs, along with the Confucian social structure that builds upon interpersonal relationships, argues against brain death. However, it is unclear whether these reasoning strategies are explicitly used when families and medical providers are faced with acknowledging brain death. Their decisions are more likely to involve a prioritization of values and a rationalization of intuitive responses. Why and whether there might be differences between East and West in the acceptance of the brain death concept requires further empirical testing, which would help inform policy-making and facilitate communication between providers and patients from different cultural and ethnic backgrounds.
Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.
Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert
2018-04-15
The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.
Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E
2010-05-01
beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.
Apoptosis and brain ischaemia.
Love, Seth
2003-04-01
There is increasing evidence that some neuronal death after brain ischaemia is mediated by the action of cysteine-requiring aspartate-directed proteases (caspases), the proteases responsible for apoptosis in mammals, although this form of neuronal death is not always accompanied by the morphological changes that are typical of apoptosis in other tissues. Caspase-mediated neuronal death is more extensive after transient than permanent focal brain ischaemia and may contribute to delayed loss of neurons from the penumbral region of infarcts. The activation of caspases after brain ischaemia is largely consequent on the translocation of Bax, Bak, and other BH3-only members of the Bcl-2 family to the mitochondrial outer membrane and the release of cytochrome c, procaspase-9, and apoptosis activating factor-1 (Apaf-1) from the mitochondrial intermembrane space. How exactly ischaemia induces this translocation is still poorly understood. NF-kappaB, the c-jun N-terminal kinase-c-Jun pathway, p53, E2F1, and other transcription factors are probably all involved in regulating the expression of BH3-only proteins after brain ischaemia, and mitochondrial translocation of Bad from sequestering cytosolic proteins is promoted by inactivation of the serine-threonine kinase, Akt. Other processes that are probably involved in the activation of caspases after brain ischaemia include the mitochondrial release of the second mitochondrial activator of caspases (Smac) or direct inhibitor-of-apoptosis-binding protein with low pI (DIABLO), the accumulation of products of lipid peroxidation, a marked reduction in protein synthesis, and the aberrant reentry of neurons into the cell cycle. Non-caspase-mediated neuronal apoptosis may also occur, but there is little evidence to date that this makes a significant contribution to brain damage after ischaemia. The intracellular processes that contribute to caspase-mediated neuronal death after ischaemia are all potential targets for therapy. However, anti-apoptotic interventions in stroke patients will require detailed evaluation using a range of outcome measures, as some such interventions seem simply to delay neuronal death and others to preserve neurons but not neuronal function.
Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats
Rakhunde, Purushottam B.; Saher, Sana; Ali, Syed Ayaz
2014-01-01
Objectives: Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. Materials and Methods: We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. Results: The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). Conclusion: These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation. PMID:25538333
Neuroprotective effect of Feronia limonia on ischemia reperfusion induced brain injury in rats.
Rakhunde, Purushottam B; Saher, Sana; Ali, Syed Ayaz
2014-01-01
Brain stroke is a leading cause of death without effective treatment. Feronia limonia have potent antioxidant activity and can be proved as neuroprotective against ischemia-reperfusion induced brain injury. We studied the effect of methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) and Vitamin E as reference standard drug on 30 min induced ischemia, followed by reperfusion by testing the neurobehavioral tests such as neurodeficit score, rota rod test, hanging wire test, beam walk test and elevated plus maze. The biochemical parameters, which were measured in animals brain were catalase, superoxide dismutase (SOD), malondialdehyde and nitric oxide in control and treated rats. The methanolic extract of F. limonia fruit (250 mg/kg, 500 mg/kg body weight, p.o.) treated groups showed a statistically significant improvement in the neurobehavioral parameters such as motor performance (neurological status, significant increase in grasping ability, forelimb strength improvement in balance and co-ordination). The biochemical parameters in the brains of rats showed a significant reduction in the total nitrite (P < 0.01) and lipid peroxidation (P < 0.01), also a significant enhanced activity of enzymatic antioxidants such as catalase (P < 0.01) and SOD (P < 0.05). These observations suggest the neuroprotective and antioxidant activity of F. limonia and Vitamin E on ischemia reperfusion induced brain injury and may require further evaluation.
Sun, Xiao-Cai; Xian, Xiao-Hui; Li, Wen-Bin; Li, Li; Yan, Cai-Zhen; Li, Qing-Jun; Zhang, Min
2010-08-01
This study investigates whether activation of p38 MAPK by the up-regulation of HSP 70 participates in the induction of brain ischemic tolerance by limb ischemic preconditioning (LIP). Western blot and immunohistochemical assays indicated that p38 MAPK activation occurred earlier than HSP 70 induction in the CA1 region of the hippocampus after LIP. P-p38 MAPK expression was up-regulated at 6h and reached its peak 12h after LIP, while HSP 70 expression was not significantly increased until 1 day and peaked 2 days after LIP. Neuropathological evaluation by thionin staining showed that quercetin (4 ml/kg, 50mg/kg, intraperitoneal injection), an inhibitor of HSP 70, blocked the protective effect of LIP against delayed neuronal death that is normally induced by lethal brain ischemic insult, indicating that HSP 70 participates in the induction of brain ischemic tolerance by LIP. Furthermore, SB 203580, an inhibitor of HSP 70, inhibited HSP 70 activation in the CA1 region of the hippocampus induced by LIP either with or without the presence of subsequent brain ischemic insult. Based on the above results, it can be concluded that activation of p38 MAPK participates in the brain ischemic tolerance induced by LIP at least partly by the up-regulation of HSP 70 expression. (c) 2010 Elsevier Inc. All rights reserved.
Siegel, C; McCullough, L D
2011-09-01
Multiple cell death pathways are activated in cerebral ischaemia. Much of the initial injury, especially in the core of the infarct where cerebral blood flow is severely reduced, is necrotic and secondary to severe energy failure. However, there is considerable evidence that delayed cell death continues for several days, primarily in the penumbral region. As reperfusion therapies grow in number and effectiveness, restoration of blood flow early after injury may lead to a shift towards apoptosis. It is important to elucidate what are the key mediators of apoptotic cell death after stroke, as inhibition of apoptosis may have therapeutic implications. There are two well described pathways that lead to apoptotic cell death; the caspase pathway and the more recently described caspase-independent pathway triggered by poly-ADP-ribose polymers (PARP) activation. Caspase-induced cell death is initiated by release of mitochondrial cytochrome c, formation of the cytosolic apoptosome, and activation of endonucleases leading to a multitude of small randomly cleaved DNA fragments. In contrast caspase-independent cell death is secondary to activation of apoptosis inducing factor (AIF). Mitochondrial AIF translocates to the nucleus, where it induces peripheral chromatin condensation, as well as characteristic high-molecular-weight (50 kbp) DNA fragmentation. Although caspase-independent cell death has been recognized for some time and is known to contribute to ischaemic injury, the upstream triggering events leading to activation of this pathway remain unclear. The two major theories are that ischaemia leads to nicotinamide adenine dinucleotide (NAD+) depletion and subsequent energy failure, or alternatively that cell death is directly triggered by a pro-apoptotic factor produced by activation of the DNA repair enzyme PARP. PARP activation is robust in the ischaemic brain producing variable lengths of poly-ADP-ribose (PAR) polymers as byproducts of PARP activation. PAR polymers may be directly toxic by triggering mitochondrial AIF release independently of NAD+ depletion. Recently, sex differences have been discovered that illustrate the importance of understanding these molecular pathways, especially as new therapeutics targeting apoptotic cell death are developed. Cell death in females proceeds primarily via caspase activation whereas caspase-independent mechanisms triggered by the activation of PARP predominate in the male brain. This review summarizes the current literature in an attempt to clarify the roles of NAD+ and PAR polymers in caspase-independent cell death, and discuss sex specific cell death to provide an example of the possible importance of these downstream mediators. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Ma, Qingyi; Zhang, Lubo
2018-06-01
Neonatal hypoxia-ischemia (HI) is the most common cause of brain injury in neonates, which leads to high neonatal mortality and severe neurological morbidity in later life (Vannucci, 2000; Volpe, 2001). Yet the molecular mechanisms of neuronal death and brain damage induced by neonatal HI remain largely elusive. Herein, using both in vivo and in vitro models, we determine an endogenous neuroprotectant role of c-type natriuretic peptide (CNP) in preserving neuronal survival after HI brain injury in mouse pups. Postnatal day 7 (P7) mouse pups with CNP deficiency (Nppc lbab/lbab ) exhibit increased brain infarct size and worsened long-term locomotor function after neonatal HI compared with wildtype control (Nppc +/+ ). In isolated primary cortical neurons, recombinant CNP dose-dependently protects primary neurons from oxygen-glucose deprivation (OGD) insult. This neuroprotective effect appears to be mediated through its cognate natriuretic peptide receptor 2 (NPR2), in that antagonization of NPR2, but not NPR3, exacerbates neuronal death and counteracts the protective effect of CNP on primary neurons exposed to OGD insult. Immunoblot and confocal microscopy demonstrate the abundant expression of NPR2 in neurons of the neonatal brain and in isolated primary cortical neurons as well. Moreover, similar to CNP deficiency, administration of NPR2 antagonist P19 via intracerebroventricular injection prior to HI results in exacerbated neuronal death and brain injury after HI. Altogether, the present study indicates that CNP and its cognate receptor NPR2 mainly expressed in neurons represent an innate neuroprotective mechanism in neonatal HI brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Suh, Sang Won; Gum, Elizabeth T.; Hamby, Aaron M.; Chan, Pak H.; Swanson, Raymond A.
2007-01-01
Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH oxidase inhibitor apocynin in both cell culture and in vivo models of insulin-induced hypoglycemia. Superoxide production and neuronal death were also blocked in studies using mice or cultured neurons deficient in the p47phox subunit of NADPH oxidase. Chelation of zinc with calcium disodium EDTA blocked both the assembly of the neuronal NADPH oxidase complex and superoxide production. Inhibition of the hexose monophosphate shunt, which utilizes glucose to regenerate NADPH, also prevented superoxide formation and neuronal death, suggesting a mechanism linking glucose reperfusion to superoxide formation. Moreover, the degree of superoxide production and neuronal death increased with increasing glucose concentrations during the reperfusion period. These results suggest that high blood glucose concentrations following hypoglycemic coma can initiate neuronal death by a mechanism involving extracellular zinc release and activation of neuronal NADPH oxidase. PMID:17404617
Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D
2012-08-22
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.
Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won
2014-08-01
Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.
Oh, Tae Woo; Jung, Hyo Won; Shin, Gil Jo; Park, Yong-Ki
2014-01-28
To study the neuroprotective effect of the methylene chloride fraction from modified Boyang-Hwan-o-Tang (mBHT-MC), especially against neuronal apoptosis. mBHT-MC (10, 25 or 50 mg/kg) was orally administered once per day for 7 days in transient middle cerebral artery occlusion (MCAO)-induced ischemic rats. Infarction volumes was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining, neurological deficit score and the expression of apoptotic proteins such as Bcl-2, Bax and caspase-3 by Western blot in MCAO-induced ischemic brain. Neuronal apoptosis in ischemic phenumbra was also investigated by staining with hematoxylin and eosin, Nissl and Hoechst 33342. mBHT-MC administration in MCAO rats significantly decreased infarction volume and neurological deficit scores. mBHT-MC significantly enhanced Bcl-2 expression, and inhibited Bax and caspase-3 expression in ischemic brain. In addition, mBHT-MC significantly decreased the number of apoptotic neuronal cells in ischemic brains. mBHT-MC administration inhibits neuronal death induced by cerebral ischemia in rats, suggesting that mBHT-MC has a neuroprotective property in brain ischemia.
Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata
2017-10-01
Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.
Hou, Sheng T; Jiang, Susan X; Slinn, Jacqueline; O'Hare, Michael; Karchewski, Laurie
2010-04-01
Neuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains. In this study, we examined the contribution of NRP2 gene to cerebral ischemia-induced brain injury using NRP2 deficient mouse. To our surprise, the lack of NRP2 expression does not affect the outcome of brain injury induced by transient occlusion of the middle cerebral artery (MCAO) in mouse. The cerebral vasculature in terms of the middle cerebral artery anatomy and microvessel density in the cerebral cortex of NRP2 deficient homozygous (NRP2(-/-)) mice are normal and almost identical to those of the heterozygous (NRP2(+/-)) and wild type (NRP2(+/+)) littermates. MCAO (1h) and 24h reperfusion caused a brain infarction of 23% (compared to the contralateral side) in NRP2(-/-) mice, which is not different from those in NRP2(+/- and +/+) mice at 22 and 21%, respectively (n=19, p>0.05). Correspondingly, NRP2(-/-) mouse also showed a similar level of deterioration of neurological functions after stroke compared with their NRP2(+/- and +/+) littermates. Oxygen-glucose-deprivation (OGD) caused a significant neuronal death in NRP2(-/-) cortical neurons, at the level similar to that in NRP(+/+) cortical neurons (72% death in NRP(-/-) neurons vs. 75% death in NRP2(+/+) neurons; n=4; p>0.05). Together, these loss-of-function studies demonstrated that despite of its critical role in neuronal guidance and vascular formation during development, NRP2 expression dose not affect adult brain response to cerebral ischemia. Crown Copyright 2009. Published by Elsevier Ireland Ltd. All rights reserved.
Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
Lim, Chiyeon; Lim, Sehyun; Lee, Byoungho; Kim, Buyeo; Cho, Suin
2018-05-01
Licorice is extracted from the roots of plants in the Glycyrrhiza genus, especially Glycyrrhiza uralensis in China and Korea. It has several pharmacological activities, including neuro-protective, anti-fungal, and anti-cariogenic effects. Ischemia/reperfusion-induced brain injury is a leading cause of adult disability and death; thus, the identification of anti-apoptotic, neuro-protective therapeutic agents is viewed as an attractive drug development strategy. Infarct volumes and the expression of several apoptosis-related proteins, including Bcl-xL, Bcl-2, caspase-8, and caspase-9, were evaluated by western blotting in the brains of mice subjected to middle cerebral artery occlusion (MCAO). Three consecutive days of oral pretreatment with the methanol extract of licorice (GRex) significantly reduced infarct volumes 24 h after MCAO. In addition, GRex effectively inhibited the activation of caspase-9 by upregulating protein expression of Bcl-xL and Bcl-2. The neuro-protective effect of licorice was due to its regulation of apoptosis-related proteins. These data suggest that licorice could be a potential candidate for the treatment of ischemia-induced brain damage.
Questionnaire on Brain Death and Organ Procurement.
Hammad, Saleh; Alnammourah, Manal; Almahmoud, Farah; Fawzi, Mais; Breizat, Abdel-Hadi
2017-02-01
The subject of organs for transplant after brain death raises many concerns, including definition and timing of death, how to permit human organ transplant, and the idea of paying for organs. Many ethical concerns are raised regarding regulations and procedures for organ transplant in developing countries. These include where and how to obtain organs and the concept of justice in organ distribution. We administered 2682 questionnaires to 628 men and 2054 women over 24 months (range, 18 to 70 years old). We included people from universities, colleges, and the general public and asked questions on the circumstances of death, the conditions of conversations around organ donation, and reasons for acceptance or refusal of donation. The identical questionnaire, consisting of 8 questions, was administered twice: before and after a teaching session on brain death and organ procurement. The study was approved by our Ethical Review Committee and in accordance with the ethical guidelines of the 1975 Helsinki Declaration. Written informed consent was obtained from all participants. We found that 72.1% understood brain death in the prequestionnaire and 88% understood brain death in the postquestionnaire, with 63.8% versus 68% accepting the concept of brain death, 50.6% versus 58.3% thinking that their religion is against brain death, 11.3% versus 11.3% carrying a donor card, 50.7% versus 58.9% wanting to carry a donor card, 46.4% versus 56.4% agreeing to give consent for organ donation if a relative was diagnosed with brain death, 28.3% versus 50% aware of the laws and regulations concerning brain death and organ donation and transplant in Jordan, and 35.4% versus 40% in agreement with the Presumed Consent Law, respectively. In Jordan, along with legal requirements concerning brain death and organ donation and transplant, there is a lack of acceptance of organ donation after brain death, necessitating further work and activities to achieve self-sufficiency from donated organs.
The intricate mechanisms of neurodegeneration in prion diseases
Soto, Claudio; Satani, Nikunj
2010-01-01
Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases. PMID:20889378
Cyanidin-3-glucoside ameliorates ethanol neurotoxicity in the developing brain.
Ke, Zunji; Liu, Ying; Wang, Xin; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A; Frank, Jacqueline A; Ou, Xiaoming; Shi, Xianglin; Luo, Jia
2011-10-01
Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons. Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration, and microglial activation in the cerebral cortex of 7-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G. Copyright © 2011 Wiley-Liss, Inc.
A Brief Overview of Tauopathy: Causes, Consequences, and Therapeutic Strategies.
Orr, Miranda E; Sullivan, A Campbell; Frost, Bess
2017-07-01
There are currently no disease-modifying therapies for the treatment of tauopathies, a group of progressive neurodegenerative disorders that are pathologically defined by the presence of tau protein aggregates in the brain. Current challenges for the treatment of tauopathies include the inability to diagnose early and to confidently discriminate between distinct tauopathies in patients, alongside an incomplete understanding of the cellular mechanisms involved in pathogenic tau-induced neuronal death and dysfunction. In this review, we describe current diagnostic and therapeutic strategies, known drivers of pathogenic tau formation, recent contributions to our current mechanistic understanding of how pathogenic tau induces neuronal death, and potential diagnostic and therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effgen, Gwen B; Vogel, Edward W; Lynch, Kimberly A; Lobel, Ayelet; Hue, Christopher D; Meaney, David F; Bass, Cameron R Dale; Morrison, Barclay
2014-07-01
An increasing number of U.S. soldiers are diagnosed with traumatic brain injury (TBI) subsequent to exposure to blast. In the field, blast injury biomechanics are highly complex and multi-phasic. The pathobiology caused by exposure to some of these phases in isolation, such as penetrating or inertially driven injuries, has been investigated extensively. However, it is unclear whether the primary component of blast, a shock wave, is capable of causing pathology on its own. Previous in vivo studies in the rodent and pig have demonstrated that it is difficult to deliver a primary blast (i.e., shock wave only) without rapid head accelerations and potentially confounding effects of inertially driven TBI. We have previously developed a well-characterized shock tube and custom in vitro receiver for exposing organotypic hippocampal slice cultures to pure primary blast. In this study, isolated primary blast induced minimal hippocampal cell death (on average, below 14% in any region of interest), even for the most severe blasts tested (424 kPa peak pressure, 2.3 ms overpressure duration, and 248 kPa*ms impulse). In contrast, measures of neuronal function were significantly altered at much lower exposures (336 kPa, 0.84 ms, and 86.5 kPa*ms), indicating that functional changes occur at exposures below the threshold for cell death. This is the first study to investigate a tolerance for primary blast-induced brain cell death in response to a range of blast parameters and demonstrate functional deficits at subthreshold exposures for cell death.
Two way controls of apoptotic regulators consign DmArgonaute-1 a better clasp on it
Bag, Indira; SNCVL, Pushpavalli; Garikapati, Koteswara Rao; Bhadra, Utpal
2018-01-01
Argonaute family proteins are well conserved among all organisms. Its role in mitotic cell cycle progression and apoptotic cell elimination is poorly understood. Earlier we have established the contribution of Ago-1 in cell cycle control related to G2/M cyclin in Drosophila. Here we have extended our study in understanding the relationship of Ago-1 in regulating apoptosis during Drosophila development. Apoptosis play a critical role in controlling organ shape and size during development of multi cellular organism. Multifarious regulatory pathways control apoptosis during development among which highly conserved JNK (c-Jun N-terminal kinase) pathway play a crucial role. Here we have over expressed Ago-1 in Drosophila eye and brain by employing UAS (upstream activation sequence)-GAL4 system under the expression of eye and brain specific driver. Over expression of Ago-1 resulted in reduced number of ommatidia in the eye and produced smaller size brain in adult and larval Drosophila. A drastic reversal of the phenotype towards normal was observed upon introduction of a single copy of the dominant negative mutation of basket (bsk, Drosophila homolog of JNK) indicating an active and physical involvement of the bsk with Ago-1 in inducing developmental apoptotic process. Further study showed that Ago-1 stimulates phosphorylation of JNK through transforming growth factor-β activated kinase 1- hemipterous (Tak1-hep) axis of JNK pathway. JNK phosphorylation results in up regulation of pro-apoptotic genes head involution defective (hid), grim & reaper (rpr) and induces activation of Drosophila caspases (cysteinyl aspartate proteinases);DRONC (Death regulator Nedd2-like caspase), ICE (alternatively Drice, Death related ICE-like caspase) and DCP1 (Death caspase-1) by inhibiting apoptotic inhibitor protein DIAP1 (Death-associated inhibitor of apoptosis 1). Further, Ago-1 also inhibits miR-14 expression to trigger apoptosis. Our findings propose that Ago-1 acts as a key regulator in controlling cell death, tumor regression and stress response in metazoan providing a constructive bridge between RNAi machinery and cell death. PMID:29385168
Effect of blueberries and insulin on glucose induced neurotoxicity in brain cells in vitro
USDA-ARS?s Scientific Manuscript database
Introduction Literature had shown that disruption in glucose metabolism seen in metabolic syndrome maybe responsible for neuronal cell-death. Oxidative stress (OS) and inflammation (INF) triggered by the impaired metabolic process are considered to be the primary factors for the toxic neuronal atmos...
A change of heart and a change of mind? Technology and the redefinition of death in 1968.
Giacomini, M
1997-05-01
In 1968, an ad hoc committee of Harvard faculty publicly redefined death as "brain death". What interests and issues compelled the redefinition of death, and formed the "spirit" of this precedent-setting policy? This paper reports on an historical study of the files of the Harvard ad hoc committee, the proceedings of an international conference on ethical issues in organ transplantation, and a review of the medical literature and media in the decades preceding the redefinition of death. This analysis of the technological and professional forces involved in the redefinition of death in 1968 questions two common theses: that technological "progress", primarily in the areas of life support and electroencephalography, literally created brain-dead bodies and dictated their defining features (respectively), and that Harvard's definition of brain death by committee constituted a net loss of autonomy for medicine. In fact, medical researchers through the 1960s disputed and negotiated many features of the brain death syndrome, and transplantation interests-perhaps more kidney than heart-played a particularly influential role in tailoring the final criteria put forth by Harvard in 1968. It is also doubtful whether Harvard's definition of brain death by multidisciplinary committee undermined medical privilege and autonomy. The Harvard Ad Hoc Committee may not have succeeded in establishing definitive, indisputable brain death criteria and ensuring their consistent application to all clinical cases of brain death. However, it did gain significant ground for transplant and other medical interests by (1) establishing brain death as a technical "fact" and the definition of brain death as an exercise for medical theorists, (2) involving non-medical ethics and humanities experts in supporting the technical redefinition of death, and, (3) successfully involving transplant surgeons in the redefinition of death and attempting (albeit unsuccessfully) not to exclude them from the actual diagnosis of death in individual cases.
Moschella, Melissa
2016-01-01
This article explains the problems with Alan Shewmon’s critique of brain death as a valid sign of human death, beginning with a critical examination of his analogy between brain death and severe spinal cord injury. The article then goes on to assess his broader argument against the necessity of the brain for adult human organismal integration, arguing that he fails to translate correctly from biological to metaphysical claims. Finally, on the basis of a deeper metaphysical analysis, I offer a revised rationale for the validity of the neurological criterion of human death. PMID:27095749
Ge, Pengfei; Luo, Yinan; Wang, Haifeng; Ling, Feng
2009-12-01
Brain ischemia has been an important risk factor for human being health, there is no effective medicine can be used to protect delayed neuronal injury or death secondary to blood reperfusion following ischemia. Recent discovery shows protein aggregation is an important factor resulting in ischemia-induced neuron death. Therefore, we propose the hypothesis that inhibiting protein aggregation may be an effective way to prevent delayed neuronal death after transient ischemia. At present, in vitro studies show some chemicals such as 4PBA (sodium 4-phenylbutyrate) and trehalose have the features of antagonizing protein aggregation in vitro. Moreover, polyQ-binding peptide (QBP1), geldanamycin, amino acids and amino acid derivatives have been also used in vitro to decrease aggregation and to increase protein stability. Although in vivo and systematical study should be performed to evaluate their effects of anti-protein aggregation, this enlightening us on using them to protect ischemic-induced neuronal death, and find new potential chemicals or methods which could be effective in keeping protein stable and prevent forming aggregates.
Alfonso-Loeches, Silvia; Ureña-Peralta, Juan R.; Morillo-Bargues, Maria José; Oliver-De La Cruz, Jorge; Guerri, Consuelo
2014-01-01
Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are innate immunity sensors that provide an early/effective response to pathogenic or injury conditions. We have reported that ethanol-induced TLR4 activation triggers signaling inflammatory responses in glial cells, causing neuroinflammation and brain damage. However, it is uncertain if ethanol is able to activate NLRs/inflammasome in astroglial cells, which is the mechanism of activation, and whether there is crosstalk between both immune sensors in glial cells. Here we show that chronic ethanol treatment increases the co-localization of caspase-1 with GFAP+ cells, and up-regulates IL-1β and IL-18 in the frontal medial cortex in WT, but not in TLR4 knockout mice. We further show that cultured cortical astrocytes expressed several inflammasomes (NLRP3, AIM2, NLRP1, and IPAF), although NLRP3 mRNA is the predominant form. Ethanol, as ATP and LPS treatments, up-regulates NLRP3 expression, and causes caspase-1 cleavage and the release of IL-1β and IL-18 in astrocytes supernatant. Ethanol-induced NLRP3/caspase-1 activation is mediated by mitochondrial (m) reactive oxygen species (ROS) generation because when using a specific mitochondria ROS scavenger, the mito-TEMPO (500 μM) or NLRP3 blocking peptide (4 μg/ml) or a specific caspase-1 inhibitor, Z-YVAD-FMK (10 μM), abrogates mROS release and reduces the up-regulation of IL-1β and IL-18 induced by ethanol or LPS or ATP. Confocal microscopy studies further confirm that ethanol, ATP or LPS promotes NLRP3/caspase-1 complex recruitment within the mitochondria to promote cell death by caspase-1-mediated pyroptosis, which accounts for ≈73% of total cell death (≈22%) and the remaining (≈25%) die by caspase-3-dependent apoptosis. Suppression of the TLR4 function abrogates most ethanol effects on NLRP3 activation and reduces cell death. These findings suggest that NLRP3 participates, in ethanol-induced neuroinflammation and highlight the NLRP3/TLR4 crosstalk in ethanol-induced brain injury. PMID:25136295
Shan, Haiyan; Chu, Yang; Chang, Pan; Yang, Lijun; Wang, Yi; Zhu, Shaohua; Zhang, Mingyang; Tao, Luyang
2017-11-01
Sodium azide (NaN3) is a chemical of rapidly growing commercial importance. It is very acutely toxic and inhibits cytochrome oxidase (COX) by binding irreversibly to the heme cofactor. A previous study from our group demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator identified, had protective effects against neuronal damage induced by traumatic brain injury (TBI). It is well‑known that TBI can reduce the activity of COX and have detrimental effects on the central nervous system metabolism. Therefore, in the present study, it was hypothesized that H2S may provide neuroprotection against NaN3 toxicity. The current results revealed that NaN3 treatment induced non‑apoptotic cell death, namely autophagic cell death, in PC12 cells. Expression of the endogenous H2S‑producing enzymes, cystathionine‑β‑synthase and 3‑mercaptopyruvate sulfurtransferase, decreased in a dose‑dependent manner following NaN3 treatment. Pretreatment with H2S markedly attenuated the NaN3‑induced cell viability loss and autophagic cell death in a dose‑dependent manner. The present study suggests that H2S‑based strategies may have future potential in the prevention and/or therapy of neuronal damage following NaN3 exposure.
Total brain death: a reply to Alan Shewmon.
Lee, Patrick; GriseZ, Germain
2012-06-01
D. Alan Shewmon has advanced a well-documented challenge to the widely accepted total brain death criterion for death of the human being. We show that Shewmon’s argument against this criterion is unsound, though he does refute the standard argument for that criterion. We advance a distinct argument for the total brain death criterion and answer likely objections. Since human beings are rational animals--sentient organisms of a specific type--the loss of the radical capacity for sentience (the capacity to sense or to develop the capacity to sense) involves a substantial change, the passing away of the human organism. In human beings total brain death involves the complete loss of the radical capacity for sentience, and so in human beings total brain death is death.
Neuropathology of SUDEP: Role of inflammation, blood-brain barrier impairment, and hypoxia.
Michalak, Zuzanna; Obari, Dima; Ellis, Matthew; Thom, Maria; Sisodiya, Sanjay M
2017-02-07
To seek a neuropathologic signature of sudden unexpected death in epilepsy (SUDEP) in a postmortem cohort by use of immunohistochemistry for specific markers of inflammation, gliosis, acute neuronal injury due to hypoxia, and blood-brain barrier (BBB) disruption, enabling the generation of hypotheses about potential mechanisms of death in SUDEP. Using immunohistochemistry, we investigated the expression of 6 markers (CD163, human leukocyte antigen-antigen D related, glial fibrillary acid protein, hypoxia-inducible factor-1α [HIF-1α], immunoglobulin G, and albumin) in the hippocampus, amygdala, and medulla in 58 postmortem cases: 28 SUDEP (definite and probable), 12 epilepsy controls, and 18 nonepileptic sudden death controls. A semiquantitative measure of immunoreactivity was scored for all markers used, and quantitative image analysis was carried out for selected markers. Immunoreactivity was observed for all markers used within all studied brain regions and groups. Immunoreactivity for inflammatory reaction, BBB leakage, and HIF-1α in SUDEP cases was not different from that seen in control groups. This study represents a starting point to explore by immunohistochemistry the mechanisms underlying SUDEP in human brain tissue. Our approach highlights the potential and importance of considering immunohistochemical analysis to help identify biomarkers of SUDEP. Our results suggest that with the markers used, there is no clear immunohistochemical signature of SUDEP in human brain. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
The effects of compound 48/80, morphine, and mast cell depletion on electroshock seizure in mice.
Yillar, D O; Küçükhüseyin, C
2008-01-01
The effects of compound 48/80 (C48/80), morphine, and mast cell depletion on maximal electroshock seizure (MES) were studied in Swiss albino mice. An electrical current (60Hz, 0.2 msec) inducing convulsions in 50% of the animals (CC50) was assessed as 46 mA. Compound 48/80 (5 mg/kg) and morphine (100mg/kg) were administered subcutaneously. CC50 was applied separately to electroshock-unexposed animal groups at 15, 30, 60, 120, and 240 min after the onset of the experiment. In untreated controls, the percent of seizure induced by CC50 and percent of death among mice having convulsions were 50 and 20, respectively. After C48/80, a significant increase in rates of seizure at 60th and 120th min and death beyond 60th min (p < .0001) indicates a pro-convulsive action of the drug, probably caused by a reduction in MES threshold. In contrast, rate of seizure tended to decrease following mast-cell depletion, which was readily reversed by C48/80 at the 60th min (p < .0001). Mast-cell depletion, alone or plus morphine, significantly increased the death percentage of convulsions. Morphine alone reduced the percentage of seizure induced by the application of CC50 in the mast-cell depleted animals (anticonvulsive action) but increased the percent of dying animals by as much as 100% at the 30th and 60th min (p < .0001). Combined morphine + C48/80 not only augmented the anticonvulsive effect of morphine at the 30th min but also nullified the rate of death among mice having convulsions. We concluded that compound 48/80 (1) penetrates into the central nervous system to produce a central effect; (2) acts as pro-convulsive, and (3) paradoxically augments the anticonvulsive action of morphine, likely caused by the ability of the compound to increase the permeability of blood-brain barrier for morphine or by the release of histamine from mast cells in the brain, acting as anticonvulsant through the stimulation of H1 receptors or both. The precise mechanism of the increased death rate by C48/80 or morphine in intact and in mast-cell-depleted mice appears to involve pro-convulsive effects, cardiovascular impairment, and respiratory depression. The nullification of morphine-induced lethal toxicity by C48/80 could be due to the antagonistic interaction of the drug with opiate receptors in the brain.
Medvetz, Doug; Sun, Yang; Li, Chenggang; Khabibullin, Damir; Balan, Murugabaskar; Parkhitko, Andrey; Priolo, Carmen; Asara, John M; Pal, Soumitro; Yu, Jane; Henske, Elizabeth P
2015-01-01
Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome associated with tumors of the brain, heart, kidney, and lung. The TSC protein complex inhibits the mammalian or mechanistic target of rapamycin complex 1 (mTORC1). Inhibitors of mTORC1, including rapamycin, induce a cytostatic response in TSC tumors, resulting in temporary disease stabilization and prompt regrowth when treatment is stopped. The lack of TSC-specific cytotoxic therapies represents an important unmet clinical need. Using a high-throughput chemical screen in TSC2-deficient, patient-derived cells, we identified a series of molecules antagonized by rapamycin and therefore selective for cells with mTORC1 hyperactivity. In particular, the cell-permeable alkaloid chelerythrine induced reactive oxygen species (ROS) and depleted glutathione (GSH) selectively in TSC2-null cells based on metabolic profiling. N-acetylcysteine or GSH cotreatment protected TSC2-null cells from chelerythrine's effects, indicating that chelerythrine-induced cell death is ROS dependent. Induction of heme-oxygenase-1 (HMOX1/HO-1) with hemin also blocked chelerythrine-induced cell death. In vivo, chelerythrine inhibited the growth of TSC2-null xenograft tumors with no evidence of systemic toxicity with daily treatment over an extended period of time. This study reports the results of a bioactive compound screen and the identification of a potential lead candidate that acts via a novel oxidative stress-dependent mechanism to selectively induce necroptosis in TSC2-deficient tumors. This study demonstrates that TSC2-deficient tumor cells are hypersensitive to oxidative stress-dependent cell death, and provide critical proof of concept that TSC2-deficient cells can be therapeutically targeted without the use of a rapalog to induce a cell death response. ©2014 American Association for Cancer Research.
Horder, M M; Barnett, S B; Vella, G J; Edwards, M J; Wood, A K
1998-11-01
Temperature increase was measured at various depths in the brain of living fetal guinea pigs during in utero exposure to unscanned pulsed ultrasound at ISPTA 2.8 W/cm2. Mean temperature increases of 4.9 degrees C close to parietal bone and 1.2 degrees C in the midbrain were recorded after 2-min exposures. When exposures were repeated on the same sites in each fetus after death, the corresponding mean temperature increases were 4.9 degrees C and 1.3 degrees C, respectively. Cerebral blood perfusion had little cooling effect on ultrasound-induced heating in the guinea pig fetus of 57-61 days gestational age.
Total Brain Death and the Integration of the Body Required of a Human Being.
Lee, Patrick
2016-06-01
I develop and refine an argument for the total brain death criterion of death previously advanced by Germain Grisez and me: A human being is essentially a rational animal, and so must have a radical capacity for rational operations. For rational animals, conscious sensation is a pre-requisite for rational operation. But total brain death results in the loss of the radical capacity for conscious sensation, and so also for rational operations. Hence, total brain death constitutes a substantial change-the ceasing to be of the human being. Objections are considered, including the objection that total brain death need not result in the loss of capacity for sensation, and that damage to the brain less than total brain death can result in loss of capacity for rational operations. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Valencia-Olvera, Ana Carolina; Morán, Julio; Camacho-Carranza, Rafael; Prospéro-García, Oscar; Espinosa-Aguirre, Jesús Javier
2014-10-01
Increasing evidence suggests that brain cytochrome P450 (CYP) can contribute to the in situ metabolism of xenobiotics. In the liver, some xenobiotics can be metabolized by CYPs into more reactive products that can damage hepatocytes and induce cell death. In addition, normal CYP activity may produce reactive oxygen species (ROS) that contribute to cell damage through oxidative mechanisms. CYP2E1 is a CYP isoform that can generate ROS leading to cytotoxicity in multiple tissue types. The aim of this study was to determine whether CYP2E1 induction may lead to significant brain cell impairment. Immunological analysis revealed that exposure of primary cerebellar granule neuronal cultures to the CYP inducer isoniazid, increased CYP2E1 expression. In the presence of buthionine sulfoximine, an agent that reduces glutathione levels, isoniazid treatment also resulted in reactive oxygen species (ROS) production, DNA oxidation and cell death. These effects were attenuated by simultaneous exposure to diallyl sulfide, a CYP2E1 inhibitor, or to a mimetic of superoxide dismutase/catalase, (Euka). These results suggest that in cases of reduced antioxidant levels, the induction of brain CYP2E1 could represent a risk of in situ neuronal damage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Confounding factors in diagnosing brain death: a case report.
Burns, Jeffrey M; Login, Ivan S
2002-06-26
Brain death is strictly defined medically and legally. This diagnosis depends on three cardinal neurological features: coma, absent brainstem reflexes, and apnea. The diagnosis can only be made, however, in the absence of intoxication, hypothermia, or certain medical illnesses. A patient with severe hypoxic-ischemic brain injury met the three cardinal neurological features of brain death but concurrent profound hypothyroidism precluded the diagnosis. Our clinical and ethical decisions were further challenged by another facet of this complex case. Although her brain damage indicated a hopeless prognosis, we could not discontinue care based on futility because the only known surrogate was mentally retarded and unable to participate in medical planning. The presence of certain medical conditions prohibits a diagnosis of brain death, which is a medicolegal diagnosis of death, not a prediction or forecast of future outcome. While prognostication is important in deciding to withdraw care, it is not a component in diagnosing brain death.
Lan, Kuo-Mao; Tien, Lu-Tai; Cai, Zhengwei; Lin, Shuying; Pang, Yi; Tanaka, Sachiko; Rhodes, Philip G.; Bhatt, Abhay J.; Savich, Renate D.; Fan, Lir-Wan
2016-01-01
The hematopoietic growth factor erythropoietin (EPO) has been shown to be neuroprotective against hypoxia-ischemia (HI) in Postnatal Day 7 (P7)–P10 or adult animal models. The current study was aimed to determine whether EPO also provides long-lasting neuroprotection against HI in P5 rats, which is relevant to immature human infants. Sprague-Dawley rats at P5 were subjected to right common carotid artery ligation followed by an exposure to 6% oxygen with balanced nitrogen for 1.5 h. Human recombinant EPO (rEPO, at a dose of 5 units/g) was administered intraperitoneally one hour before or immediately after insult, followed by additional injections at 24 and 48 h post-insult. The control rats were injected with normal saline following HI. Neurobehavioral tests were performed on P8 and P20, and brain injury was examined on P21. HI insult significantly impaired neurobehavioral performance including sensorimotor, locomotor activity and cognitive ability on the P8 and P20 rats. HI insult also resulted in brain inflammation (as indicated by microglia activation) and neuronal death (as indicated by Jade B positive staining) in the white matter, striatum, cortex, and hippocampal areas of the P21 rat. Both pre- and post-treatment with rEPO significantly improved neurobehavioral performance and protected against the HI-induced neuronal death, microglia activation (OX42+) as well as loss of mature oligodendrocytes (APC-CC1+) and hippocampal neurons (Nissl+). The long-lasting protective effects of rEPO in the neonatal rat HI model suggest that to exert neurotrophic activity in the brain might be an effective approach for therapeutic treatment of neonatal brain injury induced by hypoxia-ischemia. PMID:26927081
Chung, Chiu-Yen; Yang, Jen-Tsung; Kuo, Yung-Chih
2013-12-01
Hypertensive intracerebral hemorrhage (ICH) is a rapidly evolutional pathology, inducing necrotic cell death followed by apoptosis, and alters gene expression levels in surrounding tissue of an injured brain. For ICH therapy by controlled gene release, the development of intravenously administrable delivery vectors to promote the penetration across the blood-brain barrier (BBB) is a critical challenge. To enhance transfer efficiency of genetic materials under hypoxic conditions, polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were used to mediate the intracellular transport of plasmid neurotrophin-3 (NT-3) containing hormone response element (HRE) with a cytomegalovirus (cmv) promoter and to differentiate induced pluripotent stem cells (iPSCs). The differentiation ability of iPSCs to neurons was justified by various immunological stains for protein fluorescence. The effect of PBCA NP/cmvNT-3-HRE complexes on treating ICH rats was studied by immunostaining, western blotting and Nissl staining. We found that the treatments with PBCA NP/cmvNT-3-HRE complexes increased the capability of differentiating iPSCs to express NT-3, TrkC and MAP-2. Moreover, PBCA NPs could protect cmvNT-3-HRE against degradation with EcoRI/PstI and DNase I in vitro and raise the delivery across the BBB in vivo. The administration of PBCA NP/cmvNT-3-HRE complexes increased the expression of NT-3, inhibited the expression of apoptosis-inducing factor, cleaved caspase-3 and DNA fragmentation, and reduced the cell death rate after ICH in vivo. PBCA NPs are demonstrated as an appropriate delivery system for carrying cmvNT-3-HRE to the brain for ICH therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model
Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J.; Franks, Nicholas P.; Mahoney, Peter F.
2018-01-01
Abstract The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave–induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury. PMID:29285980
Goren, Bulent; Cakir, Aysen; Sevinc, Cansu; Serter Kocoglu, Sema; Ocalan, Busra; Oy, Ceren; Minbay, Zehra; Kahveci, Nevzat; Alkan, Tulin; Cansev, Mehmet
2017-12-01
Exposure to excessive oxygen in survivors of preterm birth is one of the factors that underlie the adverse neurological outcome in later life. Various pathological changes including enhanced apoptotic activity, oxidative stress and inflammation as well as decreased neuronal survival has been demonstrated in animal models of neonatal hyperoxia. The aim of the present study was to investigate the effect of administering uridine, an anti-apoptotic agent, on cellular, molecular and behavioral consequences of hyperoxia-induced brain damage in a neonatal rat model. For five days from birth, rat pups were either subjected continuously to room air (21% oxygen) or hyperoxia (80% oxygen) and received daily intraperitoneal (i.p.) injections of saline (0.9% NaCl) or uridine (500mg/kg). Two-thirds of all pups were sacrificed on postnatal day 5 (P5) in order to investigate apoptotic cell death, myelination and number of surviving neurons. One-thirds of pups were raised through P40 in order to evaluate early reflexes, sensorimotor coordination and cognitive functions followed by investigation of neuron count and myelination. We show that uridine treatment reduces apoptotic cell death and hypomyelination while increasing the number of surviving neurons in hyperoxic pups on P5. In addition, uridine enhances learning and memory performances in periadolescent rats on P40. These data suggest that uridine administered during the course of hyperoxic insult enhances cognitive functions at periadolescent period probably by reducing apoptotic cell death and preventing hypomyelination during the neonatal period in a rat model of hyperoxia-induced brain injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Brain death: the challenges of translating medical science into Islamic bioethical discourse.
Padela, Aasim I; Basser, Taha A
2012-09-01
Islamic ethico-legal assessments of brain death are varied and controversial. Some Islamic ethico-legal bodies have concluded that brain death is equivalent to cardiopulmonary death; others regard it as an intermediate state between life and death, and a few opine that it does not meet the standards for legal death according to Islamic law. Yet this translation of the concept of brain death into the Islamic ethico-legal domain has generated multiple ethical complexities that receive insufficient attention within the extant medical and fiqh literature. How do Islamic legists understand brain death as a clinical phenomenon? How does the Islamic ethico-legal system treat medical uncertainty? What Islamic ethico-legal principles should apply to bioethical questions about life and death? In this paper, we analyze the arguments for, and against, the acceptance of brain death within the context of the deliberation of a representative juridical council. In our discussion we focus on areas in which the legists' ethico-legal reasoning hinges upon clinical conceptions of the state of the individual when diagnosed as brain dead. As Islamic ethics continues to engage scientific and technological advancements in these areas, such exploration of internal workings is necessary if we wish to better understand how Islamic ethical principles can contribute to bioethical deliberation.
A brain-targeted ampakine compound protects against opioid-induced respiratory depression.
Dai, Wei; Xiao, Dian; Gao, Xiang; Zhou, Xin-Bo; Fang, Tong-Yu; Yong, Zheng; Su, Rui-Bin
2017-08-15
The use of opioid drugs for pain relief can induce life-threatening respiratory depression. Although naloxone effectively counteracts opioid-induced respiratory depression, it diminishes the efficacy of analgesia. Our studies indicate that ampakines, in particular, a brain-targeted compound XD-8-17C, are able to reverse respiratory depression without affecting analgesia at relatively low doses. Mice and rats were subcutaneously or intravenously injected with the opioid agonist TH-030418 to induce moderate or severe respiratory depression. XD-8-17C was intravenously administered before or after TH-030418. The effect of XD-8-17C on opioid-induced respiratory depression was evaluated in terms of the opioid-induced acute death rate, arterial blood gas analysis and pulmonary function tests. In addition, the hot-plate test was conducted to investigate whether XD-8-17C influenced opioid-induced analgesia. Pre-treatment with XD-8-17C significantly reduced opioid-induced acute death, and increased the median lethal dose of TH-030418 by 4.7-fold. Blood gas analysis and pulmonary function tests demonstrated that post-treatment with XD-8-17C alleviated respiratory depression, as indicated by restoration of arterial blood gas (pO 2 , sO 2 , cK + ) and lung function parameters (respiratory frequency, minute ventilation) to the normal range. The hot-plate test showed that XD-8-17C had no impact on the antinociceptive efficacy of morphine. The ability of XD-8-17C to reverse opioid-induced respiratory depression has the potential to increase the safety and convenience of opioid treatment. These findings contribute to the discovery of novel therapeutic agents that protect against opioid-induced respiratory depression without loss of analgesia. Copyright © 2017 Elsevier B.V. All rights reserved.
The Case for Reasonable Accommodation of Conscientious Objections to Declarations of Brain Death.
Johnson, L Syd M
2016-03-01
Since its inception in 1968, the concept of whole-brain death has been contentious, and four decades on, controversy concerning the validity and coherence of whole-brain death continues unabated. Although whole-brain death is legally recognized and medically entrenched in the United States and elsewhere, there is reasonable disagreement among physicians, philosophers, and the public concerning whether brain death is really equivalent to death as it has been traditionally understood. A handful of states have acknowledged this plurality of viewpoints and enacted "conscience clauses" that require "reasonable accommodation" of religious and moral objections to the determination of death by neurological criteria. This paper argues for the universal adoption of "reasonable accommodation" policies using the New Jersey statute as a model, in light of both the ongoing controversy and the recent case of Jahi McMath, a child whose family raised religious objections to a declaration of brain death. Public policies that accommodate reasonable, divergent viewpoints concerning death provide a practical and compassionate way to resolve those conflicts that are the most urgent, painful, and difficult to reconcile.
A Needs Assessment of Brain Death Education in Pediatric Critical Care Medicine Fellowships.
Ausmus, Andrew M; Simpson, Pippa M; Zhang, Liyun; Petersen, Tara L
2018-04-12
To assess the current training in brain death examination provided during pediatric critical care medicine fellowship. Internet-based survey. United States pediatric critical care medicine fellowship programs. Sixty-four pediatric critical care medicine fellowship program directors and 230 current pediatric critical care medicine fellows/recent graduates were invited to participate. Participants were asked demographic questions related to their fellowship programs, training currently provided at their fellowship programs, previous experience with brain death examinations (fellows/graduates), and perceptions regarding the adequacy of current training. Twenty-nine program directors (45%) and 91 current fellows/graduates (40%) responded. Third-year fellows reported having performed a median of five examinations (interquartile range, 3-6). On a five-point Likert scale, 93% of program directors responded they "agree" or "strongly agree" that their fellows receive enough instruction on performing brain death examinations compared with 67% of fellows and graduates (p = 0.007). The responses were similar when asked about opportunity to practice brain death examinations (90% vs 54%; p < 0.001). In a regression tree analysis, number of brain death examinations performed was the strongest predictor of trainee satisfaction. Both fellows and program directors preferred bedside demonstration or simulation as educational modalities to add to the fellowship curriculum. Pediatric critical care medicine fellows overall perform relatively few brain death examinations during their training. Pediatric critical care medicine fellows and program directors disagree in their perceptions of the current training in brain death examination, with fellows perceiving a need for increased training. Both program directors and fellows prefer additional training using bedside demonstration or simulation. Since clinical exposure to brain death examinations is variable, adding simulated brain death examinations to the pediatric critical care medicine fellowship curriculum could help standardize the experience.
Traumatic Brain Injury-Induced Ependymal Ciliary Loss Decreases Cerebral Spinal Fluid Flow
Xiong, Guoxiang; Elkind, Jaclynn A.; Kundu, Suhali; Smith, Colin J.; Antunes, Marcelo B.; Tamashiro, Edwin; Kofonow, Jennifer M.; Mitala, Christina. M.; Stein, Sherman C.; Grady, M. Sean; Einhorn, Eugene; Cohen, Noam A.
2014-01-01
Abstract Traumatic brain injury (TBI) afflicts up to 2 million people annually in the United States and is the primary cause of death and disability in young adults and children. Previous TBI studies have focused predominantly on the morphological, biochemical, and functional alterations of gray matter structures, such as the hippocampus. However, little attention has been given to the brain ventricular system, despite the fact that altered ventricular function is known to occur in brain pathologies. In the present study, we investigated anatomical and functional alterations to mouse ventricular cilia that result from mild TBI. We demonstrate that TBI causes a dramatic decrease in cilia. Further, using a particle tracking technique, we demonstrate that cerebrospinal fluid flow is diminished, thus potentially negatively affecting waste and nutrient exchange. Interestingly, injury-induced ventricular system pathology resolves completely by 30 days after injury as ependymal cell ciliogenesis restores cilia density to uninjured levels in the affected lateral ventricle. PMID:24749541
Mardal, Marie; Johansen, Sys Stybe; Thomsen, Ragnar; Linnet, Kristian
2017-09-01
Three case reports are presented, including autopsy findings and toxicological screening results, which were tested positive for the potent hallucinogenic drug lysergic acid diethylamide (LSD). LSD and its main metabolites were quantified in brain tissue and femoral blood, and furthermore hematoma and urine when available. LSD, its main metabolite 2-oxo-3-hydroxy-LSD (oxo-HO-LSD), and iso-LSD were quantified in biological samples according to a previously published procedure involving liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). LSD was measured in the brain tissue of all presented cases at a concentration level from 0.34-10.8μg/kg. The concentration level in the target organ was higher than in peripheral blood. Additional psychoactive compounds were quantified in blood and brain tissue, though all below toxic concentration levels. The cause of death in case 1 was collision-induced brain injury, while it was drowning in case 2 and 3 and thus not drug intoxication. However, the toxicological findings could help explain the decedent's inability to cope with brain injury or drowning incidents. The presented findings could help establish reference concentrations in brain samples and assist in interpretation of results from forensic drug screening in brain tissue. This is to the author's knowledge the first report of LSD, iso-LSD, and oxo-HO-LSD measured in brain tissue samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Brain death in Islamic ethico-legal deliberation: challenges for applied Islamic bioethics.
Padela, Aasim I; Arozullah, Ahsan; Moosa, Ebrahim
2013-03-01
Since the 1980s, Islamic scholars and medical experts have used the tools of Islamic law to formulate ethico-legal opinions on brain death. These assessments have varied in their determinations and remain controversial. Some juridical councils such as the Organization of Islamic Conferences' Islamic Fiqh Academy (OIC-IFA) equate brain death with cardiopulmonary death, while others such as the Islamic Organization of Medical Sciences (IOMS) analogize brain death to an intermediate state between life and death. Still other councils have repudiated the notion entirely. Similarly, the ethico-legal assessments are not uniform in their acceptance of brain-stem or whole-brain criteria for death, and consequently their conceptualizations of, brain death. Within the medical literature, and in the statements of Muslim medical professional societies, brain death has been viewed as sanctioned by Islamic law with experts citing the aforementioned rulings. Furthermore, health policies around organ transplantation and end-of-life care within the Muslim world have been crafted with consideration of these representative religious determinations made by transnational, legally-inclusive, and multidisciplinary councils. The determinations of these councils also have bearing upon Muslim clinicians and patients who encounter the challenges of brain death at the bedside. For those searching for 'Islamically-sanctioned' responses that can inform their practice, both the OIC-IFA and IOMS verdicts have palpable gaps in their assessments and remain clinically ambiguous. In this paper we analyze these verdicts from the perspective of applied Islamic bioethics and raise several questions that, if answered by future juridical councils, will better meet the needs of clinicians and bioethicists. © 2011 Blackwell Publishing Ltd.
Brogaard, Berit
2013-01-01
Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.
Withey, Sarah L.; Hill, Rob; Lyndon, Abigail; Dewey, William L.; Kelly, Eamonn
2017-01-01
Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine. PMID:28130265
Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells
NASA Astrophysics Data System (ADS)
Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun
2012-02-01
Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.
Mechanisms of Aminoglycoside-Induced Hair Cell Death
ERIC Educational Resources Information Center
Mangiardi, Dominic A.; Cotanche, Douglas A.
2005-01-01
Aminoglycoside antibiotics are commonly used because of their ability to treat bacterial infections, yet they also are a major cause of deafness. Aminoglycosides selectively damage the cochlea's sensory hair cells, the receptors that respond to the fluid movement in the cochlea to produce neural signals that are relayed to the brain. Sensory hair…
NASA Astrophysics Data System (ADS)
Pan, Boan; Liu, Weichao; Fang, Xiang; Huang, Xiaobo; Li, Ting
2018-02-01
Brain death is defined as permanent loss of the brain functions. The evaluation of it has many meanings, such as the relief of organ transplantation stress and family burden. However, it is hard to be judged precisely. The standard clinical tests are expensive, time consuming and even dangerous, and some auxiliary methods have limitations. Functional near infrared spectroscopy (fNIRS), monitoring cerebral hemodynamic responses noninvasively, evaluate brain death in some papers published, but there is no discussion about which experimental mode can monitor brain death patient more sensitively. Here, we attempt to use our fNIRS to evaluate brain death and find which experimental mode is effective. In order to discuss the problem, we detected eleven brain death patients and twenty normal patients under natural state. They were provided different fraction of inspiration O2 (FIO2) in different phase. We found that the ratio of Δ[HbO2] (the concentration changes in oxyhemoglobin) to Δ[Hb] (the concentration changes in deoxyhemoglobin) in brain death patients is significantly higher than normal patients in FIO2 experiment. Combined with the data analysis result, restore oxygen change process and low-high-low paradigm is more sensitively.
Evaluation and diagnosis of brain death by functional near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Pan, Boan; Zhong, Fulin; Huang, Xiaobo; Pan, Lingai; Lu, Sen; Li, Ting
2017-02-01
Brain death, the irreversible and permanent loss of the brain and brainstem functions, is hard to be judged precisely for some clinical reasons. The traditional diagnostic methods are time consuming, expensive and some are even dangerous. Functional near infrared spectroscopy (FNIRS), using the good scattering properties of major component of blood to NIR, is capable of noninvasive monitoring cerebral hemodynamic responses. Here, we attempt to use portable FNIRS under patients' natural state for brain death diagnosis. Ten brain death patients and seven normal subjects participated in FNIRS measurements. All of them were provided different fractional concentration of inspired oxygen (FIO2) in different time periods. We found that the concentration variation of deoxyhemoglobin concentration (Δ[Hb]) presents the trend of decrease in the both brain death patients and normal subjects with the raise of the FIO2, however, the data in the normal subjects is more significant. And the concentration variation of oxyhemoglobins concentration (Δ[HbO2]) emerges the opposite trends. Thus Δ[HbO2]/Δ[Hb] in brain death patients is significantly higher than normal subjects, and emerges the rising trend as time went on. The findings indicated the potential of FNIRS-measured hemodynamic index in diagnosing brain death.
RamaRao, Golime; Afley, Prachiti; Acharya, Jyothiranjan; Bhattacharya, Bijoy Krishna
2014-04-04
Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas. Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2×LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus. Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes and subsequent long term neurological effects induced by nerve agents.
Serum S100B protein concentration in brain-dead organ donors: a pilot study.
Krzych, Łukasz J; Czempik, Piotr Filip; Saucha, Wojciech; Kokocińska, Danuta; Knapik, Piotr
2015-01-01
Protein S100B is considered to be a marker of brain damage, but there is a paucity of data regarding the utility of its assessment in brain-dead organ donors. The aim of the study was to compare serum protein S100B concentrations between brain-dead organ donors and patients with a confirmed permanent neurological deficit but without signs of brain death. The concentration of serum S100B protein was measured in 12 brain-dead organ donors (including 7 males with a median age of 40 years). All measurements were taken when brain death was confirmed by the commission. Twenty-nine patients (including 13 males with a median age of 63 years) who died in the medical ICU with confirmed permanent brain injury without signs of brain death acted as controls. In these patients, S-100B protein measurements were performed upon ICU admission. In brain-dead organ donors, the median values of serum S100B protein were much higher in comparison to the control group (median and IQR, respectively: 5.04 μg L⁻¹; 1.775-6.765 vs 0.897 μg L⁻¹; 0.324-1.880, P < 0.001). S100B serum values > 1.81 μg L⁻¹ predicted brain death with the highest accuracy (AUROC = 0.83; 95% CI 0.68-0.93; P < 0.001). Concentrations of serum S100B protein in brain-dead organ donors are extremely high and may support the diagnosis of brain death. This fact may be of value when the presence of reflex movements (frequently reported despite brain death) might delay determination of brain death and result in the failure of organ donation.
Implications of sodium hydrogen exchangers in various brain diseases.
Verma, Vivek; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh
2015-09-01
Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.
Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P
2014-03-01
Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.
Lim, Ratana; Morwood, Carrington J.; Barker, Gillian; Lappas, Martha
2014-01-01
Infection-induced preterm birth is the largest cause of infant death and of neurological disabilities in survivors. Silibinin, from milk thistle, exerts potent anti-inflammatory activities in non-gestational tissues. The aims of this study were to determine the effect of silibinin on pro-inflammatory mediators in (i) human fetal membranes and myometrium treated with bacterial endotoxin lipopolysaccharide (LPS) or the pro-inflammatory cytokine IL-1β, and (ii) in preterm fetal membranes with active infection. The effect of silibinin on infection induced inflammation and brain injury in pregnant mice was also assessed. Fetal membranes and myometrium (tissue explants and primary cells) were treated with 200 μM silibinin in the presence or absence of 10 μg/ml LPS or 1 ng/ml IL-1β. C57BL/6 mice were injected with 70 mg/kg silibinin with or without 50 μg LPS on embryonic day 16. Fetal brains were collected after 6 h. In human fetal membranes, silibinin significantly decreased LPS-stimulated expression of IL-6 and IL-8, COX-2, and prostaglandins PGE2 and PGF2α. In primary amnion and myometrial cells, silibinin also decreased IL-1β-induced MMP-9 expression. Preterm fetal membranes with active infection treated with silibinin showed a decrease in IL-6, IL-8 and MMP-9 expression. Fetal brains from mice treated with silibinin showed a significant decrease in LPS-induced IL-8 and ninjurin, a marker of brain injury. Our study demonstrates that silibinin can reduce infection and inflammation-induced pro-labour mediators in human fetal membranes and myometrium. Excitingly, the in vivo results indicate a protective effect of silibinin on infection-induced brain injury in a mouse model of preterm birth. PMID:24647589
Confounding factors in diagnosing brain death: a case report
Burns, Jeffrey M; Login, Ivan S
2002-01-01
Background Brain death is strictly defined medically and legally. This diagnosis depends on three cardinal neurological features: coma, absent brainstem reflexes, and apnea. The diagnosis can only be made, however, in the absence of intoxication, hypothermia, or certain medical illnesses. Case presentation A patient with severe hypoxic-ischemic brain injury met the three cardinal neurological features of brain death but concurrent profound hypothyroidism precluded the diagnosis. Our clinical and ethical decisions were further challenged by another facet of this complex case. Although her brain damage indicated a hopeless prognosis, we could not discontinue care based on futility because the only known surrogate was mentally retarded and unable to participate in medical planning. Conclusion The presence of certain medical conditions prohibits a diagnosis of brain death, which is a medicolegal diagnosis of death, not a prediction or forecast of future outcome. While prognostication is important in deciding to withdraw care, it is not a component in diagnosing brain death. PMID:12097152
Caspase Activation in Fetal Rat Brain Following Experimental Intrauterine Inflammation
Sharangpani, Aditi; Takanohashi, Asako; Bell, Michael J.
2009-01-01
Intrauterine inflammation has been implicated in developmental brain injuries, including the development of periventricular leukomalacia (PVL) and cerebral palsy (CP). Previous studies in our rat model of intrauterine inflammation demonstrated apoptotic cell death in fetal brains within the first 5 days after lipopolysaccharide (LPS) administration to mothers and eventual dysmyelination. Cysteine-containing, aspartate-specific proteases, or caspases, are proteins involved with apoptosis through both intracellular (intrinsic pathway) and extracellular (extrinsic pathway) mechanisms. We hypothesized that cell death in our model would occur mainly via activation of the extrinsic pathway. We further hypothesized that Fas, a member of the tumor necrosis factor receptor (TNFR) superfamily, would be increased and the death inducing signaling complex (DISC) would be detectable. Pregnant rats were injected intracervically with LPS at E15 and immunoblotting, immunohistochemical and immunoprecipitation analyses were performed. The presence of the activated form of the effector caspase (caspase-3) was observed 24 h after LPS administration. Caspase activity assays demonstrated rapid increases in (i) caspases-9 and -10 within 1 h, (ii) caspase-8 at 2 h and (iii) caspase-3 at 4 h. At 24 h after LPS, activated caspase-3+/Fas+ cells were observed within the developing white matter. Lastly, the DISC complex (caspase-8, Fas and Fas-associated Death Domain (FADD)) was observed within 30 min by immunoprecipitation. Apoptosis in our model occurs via both extrinsic and intrinsic pathways, and activation of Fas may play a role. Understanding the mechanisms of cell death in models of intrauterine inflammation may affect development of future strategies to mitigate these injuries in children. PMID:18289516
Chen, Xin; Jiang, Xue-Mei; Zhao, Lin-Jing; Sun, Lin-Lin; Yan, Mei-Ling; Tian, You; Zhang, Shuai; Duan, Ming-Jing; Zhao, Hong-Mei; Li, Wen-Rui; Hao, Yang-Yang; Wang, Li-Bo; Xiong, Qiao-Jie; Ai, Jing
2017-01-01
Impaired synaptic plasticity and neuron loss are hallmarks of Alzheimer’s disease and vascular dementia. Here, we found that chronic brain hypoperfusion (CBH) by bilateral common carotid artery occlusion (2VO) decreased the total length, numbers and crossings of dendrites and caused neuron death in rat hippocampi and cortices. It also led to increase in N-terminal β-amyloid precursor protein (N-APP) and death receptor-6 (DR6) protein levels and in the activation of caspase-3 and caspase-6. Further study showed that DR6 protein was downregulated by miR-195 overexpression, upregulated by miR-195 inhibition, and unchanged by binding-site mutation and miR-masks. Knockdown of endogenous miR-195 by lentiviral vector-mediated overexpression of its antisense molecule (lenti-pre-AMO-miR-195) decreased the total length, numbers and crossings of dendrites and neuron death, upregulated N-APP and DR6 levels, and elevated cleaved caspase-3 and caspase-6 levels. Overexpression of miR-195 using lenti-pre-miR-195 prevented these changes triggered by 2VO. We conclude that miR-195 is involved in CBH-induced dendritic degeneration and neuron death through activation of the N-APP/DR6/caspase pathway. PMID:28569780
"Brain Death" and dead donor rule. Discussion and proposals on the thesis of Truog.
Bruzzone, Paolo
2015-01-01
The introduction in 1968 by the "ad hoc" Harvard committee of the concept of "Brain Death" gave birth to the worldwide diffusion of organ transplantation. Recently "Total Brain Failure" has been proposed as preferred term, instead of "Brain Death", by the President's Council on Bioethics. The concepts of "brain death" and of "dead donor rule" remain the ethical and moral support of organ transplantation. However both criteria has been questioned , either separately or all together , by many authors and particularly by Dr. Robert D. Truog.
Cyanidin-3-Glucoside Ameliorates Ethanol Neurotoxicity in the Developing Brain
Ke, Zunji; Liu, Ying; Wang, Xin; Fan, Zhiqin; Chen, Gang; Xu, Mei; Bower, Kimberley A.; Frank, Jacqueline A.; Ou, Xiaoming; Shi, Xianglin; Luo, Jia
2011-01-01
Ethanol exposure induces neurodegeneration in the developing central nervous system (CNS). Fetal Alcohol Spectrum Disorders (FASD) are caused by ethanol exposure during pregnancy and are the most common nonhereditary cause of mental retardation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Multiple mechanisms have been proposed for ethanol-induced neurodegeneration, and oxidative stress is one of the most important mechanisms. Recent evidence indicates that glycogen synthase kinase 3β (GSK3β) is a potential mediator of ethanol-mediated neuronal death (Luo, 2009). Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is a potent natural antioxidant. Our previous study suggested that C3G inhibited GSK3β activity in neurons (Chen et al., 2009). Using a third trimester equivalent mouse model of ethanol exposure, we tested the hypothesis that C3G can ameliorate ethanol-induced neuronal death in the developing brain. Intraperitoneal injection of C3G reduced ethanol-meditated caspase-3 activation, neurodegeneration and microglial activation in the cerebral cortex of seven-day-old mice. C3G blocked ethanol-mediated GSK3β activation by inducing the phosphorylation at serine 9 while reducing the phosphorylation at tyrosine 216. C3G also inhibited ethanol-stimulated expression of malondialdehyde (MDA) and p47phox, indicating that C3G alleviated ethanol-induced oxidative stress. These results provide important insight into the therapeutic potential of C3G. PMID:21671257
The neuroprotective effects of cocoa flavanol and its influence on cognitive performance.
Nehlig, Astrid
2013-03-01
Cocoa powder and chocolate contain numerous substances among which there is a quite large percentage of antioxidant molecules, mainly flavonoids, most abundantly found in the form of epicatechin. These substances display several beneficial actions on the brain. They enter the brain and induce widespread stimulation of brain perfusion. They also provoke angiogenesis, neurogenesis and changes in neuron morphology, mainly in regions involved in learning and memory. Epicatechin improves various aspects of cognition in animals and humans. Chocolate also induces positive effects on mood and is often consumed under emotional stress. In addition, flavonoids preserve cognitive abilities during ageing in rats, lower the risk for developing Alzheimer's disease and decrease the risk of stroke in humans. In addition to their beneficial effects on the vascular system and on cerebral blood flow, flavonoids interact with signalization cascades involving protein and lipid kinases that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen radicals, and promote neuronal survival and synaptic plasticity. The present review intends to review the data available on the effects of cocoa and chocolate on brain health and cognitive abilities. © 2012 The Author. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
The neuroprotective effects of cocoa flavanol and its influence on cognitive performance
Nehlig, Astrid
2013-01-01
Cocoa powder and chocolate contain numerous substances among which there is a quite large percentage of antioxidant molecules, mainly flavonoids, most abundantly found in the form of epicatechin. These substances display several beneficial actions on the brain. They enter the brain and induce widespread stimulation of brain perfusion. They also provoke angiogenesis, neurogenesis and changes in neuron morphology, mainly in regions involved in learning and memory. Epicatechin improves various aspects of cognition in animals and humans. Chocolate also induces positive effects on mood and is often consumed under emotional stress. In addition, flavonoids preserve cognitive abilities during ageing in rats, lower the risk for developing Alzheimer's disease and decrease the risk of stroke in humans. In addition to their beneficial effects on the vascular system and on cerebral blood flow, flavonoids interact with signalization cascades involving protein and lipid kinases that lead to the inhibition of neuronal death by apoptosis induced by neurotoxicants such as oxygen radicals, and promote neuronal survival and synaptic plasticity. The present review intends to review the data available on the effects of cocoa and chocolate on brain health and cognitive abilities. PMID:22775434
Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects
Gupta, Raj K.; Przekwas, Andrzej
2013-01-01
Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI. PMID:23755039
Semyachkina-Glushkovskaya, Oxana; Borisova, Ekaterina; Abakumov, Maxim; Gorin, Dmitry; Avramov, Latchezar; Fedosov, Ivan; Namykin, Anton; Abdurashitov, Arkady; Serov, Alexander; Pavlov, Alexey; Zinchenko, Ekaterina; Lychagov, Vlad; Navolokin, Nikita; Shirokov, Alexander; Maslyakova, Galina; Zhu, Dan; Luo, Qingming; Chekhonin, Vladimir; Tuchin, Valery; Kurths, Jürgen
2016-01-01
In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health. PMID:27378933
Johnson, Adam G.; Ruiz, Jimmy; Isom, Scott; Lucas, John T.; Hinson, William H.; Watabe, Kounosuke; Laxton, Adrian W.; Tatter, Stephen B.; Chan, Michael D.
2017-01-01
Abstract Background. In this study we attempted to discern the factors predictive of neurologic death in patients with brain metastasis treated with upfront stereotactic radiosurgery (SRS) without whole brain radiation therapy (WBRT) while accounting for the competing risk of nonneurologic death. Methods. We performed a retrospective single-institution analysis of patients with brain metastasis treated with upfront SRS without WBRT. Competing risks analysis was performed to estimate the subdistribution hazard ratios (HRs) for neurologic and nonneurologic death for predictor variables of interest. Results. Of 738 patients treated with upfront SRS alone, neurologic death occurred in 226 (30.6%), while nonneurologic death occurred in 309 (41.9%). Multivariate competing risks analysis identified an increased hazard of neurologic death associated with diagnosis-specific graded prognostic assessment (DS-GPA) ≤ 2 (P = .005), melanoma histology (P = .009), and increased number of brain metastases (P<.001), while there was a decreased hazard associated with higher SRS dose (P = .004). Targeted agents were associated with a decreased HR of neurologic death in the first 1.5 years (P = .04) but not afterwards. An increased hazard of nonneurologic death was seen with increasing age (P =.03), nonmelanoma histology (P<.001), presence of extracranial disease (P<.001), and progressive systemic disease (P =.004). Conclusions. Melanoma, DS-GPA, number of brain metastases, and SRS dose are predictive of neurologic death, while age, nonmelanoma histology, and more advanced systemic disease are predictive of nonneurologic death. Targeted agents appear to delay neurologic death. PMID:27571883
Moschella, Melissa
2016-06-01
This article explains the problems with Alan Shewmon's critique of brain death as a valid sign of human death, beginning with a critical examination of his analogy between brain death and severe spinal cord injury. The article then goes on to assess his broader argument against the necessity of the brain for adult human organismal integration, arguing that he fails to translate correctly from biological to metaphysical claims. Finally, on the basis of a deeper metaphysical analysis, I offer a revised rationale for the validity of the neurological criterion of human death. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung
2016-04-01
Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are potential biomarkers for glioblastoma therapy.
Of wholes and parts: A Thomistic refutation of "Brain Death".
Accad, Michel
2015-08-01
I propose a refutation of the two major arguments that support the concept of "brain death" as an ontological equivalent to death of the human organism. I begin with a critique of the notion that a body part, such as the brain, could act as "integrator" of a whole body. I then proceed with a rebuttal of the argument that destruction of a body part essential for rational operations-such as the brain-necessarily entails that the remaining whole is indisposed to accrue a rational soul. Next, I point to the equivocal use of the terms "alive" or "living" as being at the root of conceptual errors about brain death. I appeal to the Thomistic definition of life and to the hylomorphic concept of "virtual presence" to clarify this confusion. Finally, I show how the Thomistic definition of life supports the traditional criterion for the determination of death. Lay summary: By the mid-1960s, medical technology became available that could keep "alive" the bodies of patients who had sustained complete and irreversible brain injury. The concept of "brain death" emerged to describe such states. Physicians, philosophers, and ethicists then proposed that the state of brain death is equivalent to the state of death traditionally identified by the absence of spontaneous pulse and respiration. This article challenges the major philosophical arguments that have been advanced to draw this equivalence.
Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex
Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.
2009-01-01
Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287
Keshtkaran, Zahra; Sharif, Farkhondeh; Navab, Elham; Gholamzadeh, Sakineh
2016-01-01
Background: Brain death is a concept in which its criteria have been expressed as documentations in Harvard Committee of Brain Death. The various perceptions of caregiver nurses for brain death patients may have effect on the chance of converting potential donors into actual organ donors. Objective: The present study has been conducted in order to perceive the experiences of nurses in care-giving to the brain death of organ donor patients. Methods: This qualitative study was carried out by means of Heidegger’s hermeneutic phenomenology. Eight nurses who have been working in ICU were interviewed. The semi-structured interviews were recorded by a tape-recorder and the given texts were transcribed and the analyses were done by Van-Mannen methodology and (thematic) analysis. Results: One of the foremost themes extracted from this study included ‘Halo of ambiguity and doubt’ that comprised of two sub-themes of ‘having unreasonable hope’ and ‘Conservative acceptance of brain death’. The unreasonable hope included lack of trust (uncertainty) in diagnosis and verification of brain death, passing through denial wall, and avoidance from explicit and direct disclosure of brain death in patients’ family. In this investigation, the nurses were involved in a type of ambiguity and doubt in care-giving to the potentially brain death of organ donor patients, which were also evident in their interaction with patients’ family and for this reason, they did not definitely announce the brain death and so far they hoped for treatment of the given patient. Such confusion and hesitance both caused annoyance of nurses and strengthening the denial of patients’ family to be exposed to death. Conclusion: The results of this study reveal the fundamental perceived care-giving of brain death in organ donor patients and led to developing some strategies to improve care-giving and achievement in donation of the given organ and necessity for presentation of educational and supportive services for nurses might become more evident than ever. PMID:26925919
Chi, Wenying; Meng, Fanjun; Li, Yan; Li, Peilong; Wang, Guizhi; Cheng, Hong; Han, Song; Li, Junfa
2014-12-10
As a newly discovered member of the HSP70 family, heat shock protein A12B (HSPA12B) is involved in brain ischemic injury. According to our previous study, microRNA-134 (miR-134) could target HSPA12B by binding to its 3'-untranslated region (UTR). However, the regulation of miR-134 on HSPA12B and their role in protecting neuronal cells from ischemic injury are unclear. In this study, the miR-134 expression level was manipulated, and the HSPA12B protein levels were also determined in oxygen-glucose deprivation (OGD)-treated primary cultured neuronal cells in vitro and mouse brain after middle cerebral artery occlusion (MCAO)-induced ischemic stroke in vivo. The results showed that miR-134 expression levels increased in primary cultured neuronal cells and mouse brain from 12h to 7 day reoxygenation/reperfusion after 1h OGD or 1h MCAO treatment. miR-134 overexpression promoted neuronal cell death and apoptosis by decreasing HSPA12B protein levels. Conversely, downregulating miR-134 reduced neuronal cell death and apoptosis by enhancing HSPA12B protein levels. Also, HSPA12B siRNA could block miR-134 inhibitor-mediated neuroprotection against OGD-induced neuronal cell injury in vitro. Taken together, miR-134 might influence neuronal cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by negatively modulating HSPA12B protein expression in a posttranscriptional manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Singh, Shilpee; Englander, Ella W
2012-11-01
Apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1) is a multifunctional protein critical for cellular survival. Its involvement in adaptive survival responses includes key roles in redox sensing, transcriptional regulation, and repair of DNA damage via the base excision repair (BER) pathway. Ape1 is abundant in most cell types and central in integrating the first BER step catalyzed by different DNA glycosylases. BER is the main process for removal of oxidative DNA lesions in postmitotic brain cells, and after ischemic brain injury preservation of Ape1 coincides with neuronal survival, while its loss has been associated with neuronal death. Here, we report that in cultured primary neurons, diminution of cellular ATP by either oligomycin or H(2)O(2) is accompanied by depletion of nuclear Ape1, while other BER proteins are unaffected and retain their nuclear localization under these conditions. Importantly, while H(2)O(2) induces γH2AX phosphorylation, indicative of chromatin rearrangements in response to DNA damage, oligomycin does not. Furthermore, despite comparable diminution of ATP content, H(2)O(2) and oligomycin differentially affect critical parameters of mitochondrial respiration that ultimately determine cellular ATP content. Taken together, our findings demonstrate that in neurons, nuclear compartmentalization of Ape1 depends on ATP and loss of nuclear Ape1 reflects disruption of neuronal energy homeostasis. Energy crisis is a hallmark of stroke and other ischemic/hypoxic brain injuries. In vivo studies have shown that Ape1 deficit precedes neuronal loss in injured brain regions. Thus, our findings bring to light the possibility that energy failure-induced Ape1 depletion triggers neuronal death in ischemic brain injuries. Copyright © 2012 Elsevier Inc. All rights reserved.
Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice.
Li, Qian; Wan, Jieru; Lan, Xi; Han, Xiaoning; Wang, Zhongyu; Wang, Jian
2017-09-01
Iron overload plays a key role in the secondary brain damage that develops after intracerebral hemorrhage (ICH). The significant increase in iron deposition is associated with the generation of reactive oxygen species (ROS), which leads to oxidative brain damage. In this study, we examined the protective effects of VK-28, a brain-permeable iron chelator, against hemoglobin toxicity in an ex vivo organotypic hippocampal slice culture (OHSC) model and in middle-aged mice subjected to an in vivo, collagenase-induced ICH model. We found that the effects of VK-28 were similar to those of deferoxamine (DFX), a well-studied iron chelator. Both decreased cell death and ROS production in OHSCs and in vivo, decreased iron-deposition and microglial activation around hematoma in vivo, and improved neurologic function. Moreover, compared with DFX, VK-28 polarized microglia to an M2-like phenotype, reduced brain water content, deceased white matter injury, improved neurobehavioral performance, and reduced overall death rate after ICH. The protection of VK-28 was confirmed in a blood-injection ICH model and in aged-male and young female mice. Our findings indicate that VK-28 is protective against iron toxicity after ICH and that, at the dosage tested, it has better efficacy and less toxicity than DFX does.
Knowledge of the Brain Death Concept Among the Population of Havana, Cuba.
Ríos, A; López-Navas, A I; Sánchez, Á; Martinez-Alarcon, L; Ayala, M A; Garrido, G; Sebastián, M J; Ramis, G; Abdo-Cuza, A; Hernández, A; Ramírez, P; Parrilla, P
2018-03-01
One of the main reasons against organ donation is the fear of apparent death due to ignorance of the brain death concept. Our aim was to assess knowledge about and acceptance of the brain death concept among the population of Havana, Cuba. The population screened, stratified by gender and age, included those >15 years old and living in Havana, Cuba. The appraisal tool utilized was a questionnaire on attitude toward organ donation ("PCID-DTO Ríos"). A random selection of individuals were surveyed according to the stratification. Cuba's census data were used. The participation was anonymized and self-administered. The verbal consent of participants was provided. There were 920 respondents: 31% (n = 282) knew the concept of brain death and accepted it; 57% (n = 529) did not; and 12% (n = 109) had a misperception, or did not accept brain death as a person's death. Those who knew and accepted the concept had a more favorable attitude toward their own organ donation after death (85% vs 61%; P < .001). The psychosocial factors related to the knowledge of brain death concept were: the gender (P = .002), to make up for speaking at a family level about the organ transplant (P < .001), the couple's opinion about the organ donation (P < .001) and the religion (P < .001). The brain death concept is not well understood in the population of Havana, Cuba. Copyright © 2017 Elsevier Inc. All rights reserved.
Public education and misinformation on brain death in mainstream media.
Lewis, Ariane; Lord, Aaron S; Czeisler, Barry M; Caplan, Arthur
2016-09-01
We sought to evaluate the caliber of education mainstream media provides the public about brain death. We reviewed articles published prior to July 31, 2015, on the most shared/heavily trafficked mainstream media websites of 2014 using the names of patients from two highly publicized brain death cases, "Jahi McMath" and "Marlise Muñoz." We reviewed 208 unique articles. The subject was referred to as being "alive" or on "life support" in 72% (149) of the articles, 97% (144) of which also described the subject as being brain dead. A definition of brain death was provided in 4% (9) of the articles. Only 7% (14) of the articles noted that organ support should be discontinued after brain death declaration unless a family has agreed to organ donation. Reference was made to well-known cases of patients in persistent vegetative states in 16% (34) of articles and 47% (16) of these implied both patients were in the same clinical state. Mainstream media provides poor education to the public on brain death. Because public understanding of brain death impacts organ and tissue donation, it is important for physicians, organ procurement organizations, and transplant coordinators to improve public education on this topic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Brochard, Vanessa; Combadière, Béhazine; Prigent, Annick; Laouar, Yasmina; Perrin, Aline; Beray-Berthat, Virginie; Bonduelle, Olivia; Alvarez-Fischer, Daniel; Callebert, Jacques; Launay, Jean-Marie; Duyckaerts, Charles; Flavell, Richard A.; Hirsch, Etienne C.; Hunot, Stéphane
2008-01-01
Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of dopamine-containing neurons. Mounting evidence suggests that dopaminergic cell death is influenced by the innate immune system. However, the pathogenic role of the adaptive immune system in PD remains enigmatic. Here we showed that CD8+ and CD4+ T cells but not B cells had invaded the brain in both postmortem human PD specimens and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD during the course of neuronal degeneration. We further demonstrated that MPTP-induced dopaminergic cell death was markedly attenuated in the absence of mature T lymphocytes in 2 different immunodeficient mouse strains (Rag1–/– and Tcrb–/– mice). Importantly, similar attenuation of MPTP-induced dopaminergic cell death was seen in mice lacking CD4 as well as in Rag1–/– mice reconstituted with FasL-deficient splenocytes. However, mice lacking CD8 and Rag1–/– mice reconstituted with IFN-γ–deficient splenocytes were not protected. These data indicate that T cell–mediated dopaminergic toxicity is almost exclusively arbitrated by CD4+ T cells and requires the expression of FasL but not IFNγ. Further, our data may provide a rationale for targeting the adaptive arm of the immune system as a therapeutic strategy in PD. PMID:19104149
Kotsch, Katja; Ulrich, Frank; Reutzel-Selke, Anja; Pascher, Andreas; Faber, W; Warnick, P; Hoffman, S; Francuski, M; Kunert, C; Kuecuek, O; Schumacher, G; Wesslau, C; Lun, A; Kohler, S; Weiss, S; Tullius, S G; Neuhaus, P; Pratschke, Johann
2008-12-01
To investigate potential beneficial effects of donor treatment with methylprednisolone on organ function and outcome after liver transplantation. It is proven experimentally and clinically that the brain death of the donor leads to increased levels of inflammatory cytokines and is followed by an intensified ischemia/reperfusion injury after organ transplantation. In experiments, donor treatment with steroids successfully diminished these effects and led to better organ function after transplantation. To investigate whether methylprednisolone treatment of the deceased donor is applicable to attenuate brain death-associated damage in clinical liver transplantation we conducted a prospective randomized treatment-versus-control study in 100 deceased donors. Donor treatment (n = 50) consisted of 250 mg methylprednisolone at the time of consent for organ donation and a subsequent infusion of 100 mg/h until recovery of organs. A liver biopsy was taken immediately after laparotomy and blood samples were obtained after brain death diagnosis and before organ recovery. Cytokines were assessed by real-time reverse transcriptase-polymerase chain reaction. Soluble serum cytokines were measured by cytometric bead array system. After methylprednisolone treatment, steroid plasma levels were significantly higher (P < 0.05), and a significant decrease in soluble interleukins, monocyte chemotactic protein-1, interleukin-2, interleukin-6, tumor necrosis factor-alpha, and inducible protein-10 was observed. Methylprednisolone treatment resulted in a significant downregulation of intercellular adhesion molecule-1, tumor necrosis factor-alpha, major histocompatibility complex class II, Fas-ligand, inducible protein-10, and CD68 intragraft mRNA expression. Significantly ameliorated ischemia/reperfusion injury in the posttransplant course was accompanied by a decreased incidence of acute rejection. Our present study verifies the protective effect of methylprednisolone treatment in deceased donor liver transplantation, suggesting it as a potential therapeutical approach.
Drug- and/or trauma-induced hyperthermia? Characterization of HSP70 and myoglobin expression
Rosinsky, Franziska; Trauer, Heiner; Schneider, Eckhardt; Dreßler, Jan; Franke, Heike
2018-01-01
Introduction Heat shock protein 70 (HSP70) expression could be discussed as an adaption that promotes repair and counteracts cell damage. Myoglobin is released upon muscle damage of several pathways. The purpose of the present study was to determine whether the expression of HSP70 in kidney, heart and brain and of myoglobin in the kidney were associated with the cause of death and the survival times after lethal intoxications with three of the drugs most widely used in our local area (Saxony, Germany) as well as after fatal traumatic brain injury (TBI). Methods We retrospectively collected kidney, heart and brain samples of 50 autopsy cases with toxicological proved lethal intoxication (main drugs methamphetamine, morphine, alcohol), 14 TBI cases and 15 fatalities with acute myocardial injury in age- and gender-matched compilations. Results Our main findings suggest that HSP70 is associated with hyperthermal and other stress factors of most cell populations. HSP70 expressions in kidney and heart muscle are useful for a differentiation between fatal intoxications and cases without toxicological influence (p < 0.05). There were significant differences in the cerebral expression patterns between methamphetamine- and morphine-associated deaths compared to alcohol fatalities (p < 0.05). An intensive staining of HSP70 in the pericontusional zone and the hippocampus after TBI (especially neuronal and vascular) was shown even after short survival times and may be useful as an additional marker in questions of vitality or wound age. A relevant myoglobin decoration of renal tubules was only shown for methamphetamine abuse in the study presented. Conclusion In sum, the immunohistochemical characteristics presented can be supportive for determining final death circumstances and minimal trauma survival times but are not isolated usefully for the detection of drug- or trauma-induced hyperthermia. PMID:29566034
Sommer, Jens Bak; Bach, Anders; Malá, Hana; Strømgaard, Kristian; Mogensen, Jesper; Pickering, Darryl S
2017-01-01
PSD-95 inhibitors have been shown to be neuroprotective in stroke, but have only to a very limited extent been evaluated in the treatment of traumatic brain injury (TBI) that has pathophysiological mechanisms in common with stroke. The aims of the current study were to assess the effects of a novel dimeric inhibitor of PSD-95, UCCB01-147, on histopathology and long-term cognitive outcome after controlled cortical impact (CCI) in rats. As excitotoxic cell death is thought to be a prominent part of the pathophysiology of TBI, we also investigated the neuroprotective effects of UCCB01-147 and related compounds on NMDA-induced cell death in cultured cortical neurons. Anesthetized rats were given a CCI or sham injury, and were randomized to receive an injection of either UCCB01-147 (10 mg/kg), the non-competitive NMDAR-receptor antagonist MK-801 (1 mg/kg) or saline immediately after injury. At 2 and 4 weeks post-trauma, spatial learning and memory were assessed in a water maze, and at 3 months, brains were removed for estimation of lesion volumes. Overall, neither treatment with UCCB01-147 nor MK-801 resulted in significant improvements of cognition and histopathology after CCI. Although MK-801 provided robust neuroprotection against NMDA-induced toxicity in cultured cortical neurons, UCCB01-147 failed to reduce cell death and became neurotoxic at high doses. The data suggest potential differential effects of PSD-95 inhibition in stroke and TBI that should be investigated further in future studies taking important experimental factors such as timing of treatment, dosage, and anesthesia into consideration. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Lee, Ji Hyung; Amarsanaa, Khulan; Wu, Jinji; Jeon, Sang-Chan; Cui, Yanji; Jung, Sung-Cherl; Park, Deok-Bae; Kim, Se-Jae; Han, Sang-Heon; Kim, Hyun-Wook; Rhyu, Im Joo; Eun, Su-Yong
2018-05-01
Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (ΔΨ m ). Therefore, pharmacological manipulation of ΔΨ m can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ΔΨ m against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity (100 µM, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate (100 µM)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of Ca 2+ (5 µM). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ΔΨ m were completely abolished in K + -free medium on pure isolated mitochondria. Taken together, results demonstrate that K + influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial K + influx is probably mediated, at least in part, by activation of mitochondrial K + channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.
Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Ahn, Jee-Yin; Park, Won Soon
2017-01-24
Mesenchymal stem cell (MSC) transplantation protects against neonatal severe intraventricular hemorrhage (IVH)-induced brain injury by a paracrine rather than regenerative mechanism; however, the paracrine factors involved and their roles have not yet been delineated. This study aimed to identify the paracrine mediator(s) and to determine their role in mediating the therapeutic effects of MSCs in severe IVH. We first identified significant upregulation of brain-derived neurotrophic factor (BDNF) in MSCs compared with fibroblasts, in both DNA and antibody microarrays, after thrombin exposure. We then knocked down BDNF in MSCs by transfection with small interfering (si)RNA specific for human BDNF. The therapeutic effects of MSCs with or without BDNF knockdown were evaluated in vitro in rat neuronal cells challenged with thrombin, and in vivo in newborn Sprague-Dawley rats by injecting 200 μl of blood on postnatal day 4 (P4), and transplanting MSCs (1 × 105 cells) intraventricularly on P6. siRNA-induced BDNF knockdown abolished the in vitro benefits of MSCs on thrombin-induced neuronal cell death. BDNF knockdown also abolished the in vivo protective effects against severe IVH-induced brain injuries such as the attenuation of posthemorrhagic hydrocephalus, impaired behavioral test performance, increased astrogliosis, increased number of TUNEL cells, ED-1+ cells, and inflammatory cytokines, and reduced myelin basic protein expression. Our data indicate that BDNF secreted by transplanted MSCs is one of the critical paracrine factors that play a seminal role in attenuating severe IVH-induced brain injuries in newborn rats.
Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study.
Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S
2012-10-01
Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ∼12 mm from the illumination site. The temperature at the onset of the experiment was ∼34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using DRS. Although several approaches have described the rise in temperature and its impact on tissue, to the best of our knowledge no information is available describing the ability to monitor temperature during heatstroke with DRS. The motivation of this study was to successfully describe this ability.
Landoni, Verónica I.; Schierloh, Pablo; de Campos Nebel, Marcelo; Fernández, Gabriela C.; Calatayud, Cecilia; Lapponi, María J.; Isturiz, Martín A.
2012-01-01
The hemolytic uremic syndrome (HUS) is characterized by hemolytic anemia, thrombocytopenia and renal dysfunction. The typical form of HUS is generally associated with infections by Gram-negative Shiga toxin (Stx)-producing Escherichia coli (STEC). Endothelial dysfunction induced by Stx is central, but bacterial lipopolysaccharide (LPS) and neutrophils (PMN) contribute to the pathophysiology. Although renal failure is characteristic of this syndrome, neurological complications occur in severe cases and is usually associated with death. Impaired blood-brain barrier (BBB) is associated with damage to cerebral endothelial cells (ECs) that comprise the BBB. Astrocytes (ASTs) are inflammatory cells in the brain and determine the BBB function. ASTs are in close proximity to ECs, hence the study of the effects of Stx1 and LPS on ASTs, and the influence of their response on ECs is essential. We have previously demonstrated that Stx1 and LPS induced activation of rat ASTs and the release of inflammatory factors such as TNF-α, nitric oxide and chemokines. Here, we demonstrate that rat ASTs-derived factors alter permeability of ECs with brain properties (HUVECd); suggesting that functional properties of BBB could also be affected. Additionally, these factors activate HUVECd and render them into a proagregant state promoting PMN and platelets adhesion. Moreover, these effects were dependent on ASTs secreted-TNF-α. Stx1 and LPS-induced ASTs response could influence brain ECs integrity and BBB function once Stx and factors associated to the STEC infection reach the brain parenchyma and therefore contribute to the development of the neuropathology observed in HUS. PMID:22479186
Pogačnik, Lea; Pirc, Katja; Palmela, Inês; Skrt, Mihaela; Kim, Kwang S; Brites, Dora; Brito, Maria Alexandra; Ulrih, Nataša Poklar; Silva, Rui F M
2016-11-15
Natural food sources constitute a promising source of new compounds with neuroprotective properties, once they have the ability to reach the brain. Our aim was to evaluate the brain accessibility of quercetin, epigallocatechin gallate (EGCG) and cyanidin-3-glucoside (C3G) in relation to their neuroprotective capability. Primary cortical neuron cultures were exposed to oxidative insult in the absence and presence of the selected compounds, and neuroprotection was assessed through evaluation of apoptotic-like and necrotic-like cell death. The brain accessibility of selected compounds was assessed using an optimised human blood-brain barrier model. The blood-brain barrier model was crossed rapidly by EGCG and more slowly by C3G, but not by quercetin. EGCG protected against oxidation-induced neuronal necrotic-like cell death by ~40%, and apoptosis by ~30%. Both quercetin and C3G were less effective, since only the lowest quercetin concentration was protective, and C3G only prevented necrosis by ~37%. Quercetin, EGCG and C3G effectively inhibited α-synuclein fibrillation over the relevant timescale applied here. Overall, EGCG seems to be the most promising neuroprotective compound. Thus, inclusion of this polyphenol in the diet might provide an affordable means to reduce the impact of neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
McTyre, Emory R; Johnson, Adam G; Ruiz, Jimmy; Isom, Scott; Lucas, John T; Hinson, William H; Watabe, Kounosuke; Laxton, Adrian W; Tatter, Stephen B; Chan, Michael D
2017-04-01
In this study we attempted to discern the factors predictive of neurologic death in patients with brain metastasis treated with upfront stereotactic radiosurgery (SRS) without whole brain radiation therapy (WBRT) while accounting for the competing risk of nonneurologic death. We performed a retrospective single-institution analysis of patients with brain metastasis treated with upfront SRS without WBRT. Competing risks analysis was performed to estimate the subdistribution hazard ratios (HRs) for neurologic and nonneurologic death for predictor variables of interest. Of 738 patients treated with upfront SRS alone, neurologic death occurred in 226 (30.6%), while nonneurologic death occurred in 309 (41.9%). Multivariate competing risks analysis identified an increased hazard of neurologic death associated with diagnosis-specific graded prognostic assessment (DS-GPA) ≤ 2 (P = .005), melanoma histology (P = .009), and increased number of brain metastases (P<.001), while there was a decreased hazard associated with higher SRS dose (P = .004). Targeted agents were associated with a decreased HR of neurologic death in the first 1.5 years (P = .04) but not afterwards. An increased hazard of nonneurologic death was seen with increasing age (P =.03), nonmelanoma histology (P<.001), presence of extracranial disease (P<.001), and progressive systemic disease (P =.004). Melanoma, DS-GPA, number of brain metastases, and SRS dose are predictive of neurologic death, while age, nonmelanoma histology, and more advanced systemic disease are predictive of nonneurologic death. Targeted agents appear to delay neurologic death. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Rady, Mohamed Y; Verheijde, Joseph L
2018-04-01
Death is defined in the Quran with a single criterion of irreversible separation of the ruh (soul) from the body. The Quran is a revelation from God to man, and the primary source of Islamic knowledge. The secular concept of death by neurological criteria, or brain death, is at odds with the Quranic definition of death. The validity of this secular concept has been contested scientifically and philosophically. To legitimize brain death for the purpose of organ donation and transplantation in Muslim communities, Chamsi-Pasha and Albar (concurring with the US President's Council on Bioethics) have argued that irreversible loss of capacity for consciousness and breathing (apneic coma) in brain death defines true death in accordance with Islamic sources. They have postulated that the absence of nafs (personhood) and nafas (breath) in apneic coma constitutes true death because of departure of the soul (ruh) from the body. They have also asserted that general anesthesia is routine in brain death before surgical procurement. Their argument is open to criticism because: (1) the ruh is described as the essence of life, whereas the nafs and nafas are merely human attributes; (2) unlike true death, the ruh is still present even with absent nafs and nafas in apneic coma; and (3) the routine use of general anesthesia indicates the potential harm to brain-dead donors from surgical procurement. Postmortem general anesthesia is not required for autopsy. Therefore, the conclusion must be that legislative enforcement of nonconsensual determination of neurological (brain) death and termination of life-support and medical treatment violates the religious rights of observant Muslims.
Informed consent for the diagnosis of brain death: a conceptual argument.
Muramoto, Osamu
2016-10-13
This essay provides an ethical and conceptual argument for the use of informed consent prior to the diagnosis of brain death. It is meant to enable the family to make critical end-of-life decisions, particularly withdrawal of life support system and organ donation, before brain death is diagnosed, as opposed to the current practice of making such decisions after the diagnosis of death. The recent tragic case of a 13-year-old brain-dead patient in California who was maintained on a ventilator for over 2 years illustrates how such a consent would have made a crucial difference. Conceptual, philosophical, and ethical analysis. I first consider a conceptual justification for the use of consent for certain non-beneficial and unwanted medical diagnoses. I suggest that the diagnosis of brain death falls into this category for some patients. Because the diagnostic process of brain death lacks the transparency of traditional death determination, has a unique epistemic structure and a complex risk-benefit profile which differs markedly from case to case, and presents conflicts of interest for physicians and society, I argue that pre-diagnostic counseling and informed consent should be part of the diagnostic process. This approach can be termed as "allow cardiac death", whose parallel logic with "allow natural death" is discussed. I also discuss potential negative impacts on organ donation and health care cost from this proposal and offer possible mitigation. I show that the pre-diagnostic counseling can improve the possibility for well-thought-out decisions regarding organ donation and terminating life-support system in cases of hopeless prognosis. This approach differs conceptually from the pluralism of the definition of death, such as those in New Jersey and Japan, and it upholds the Uniform Determination of Death Act. My intention is not to provide an instant panacea for the ongoing impasse of the brain death debate, but to point to a novel conceptual ground for a more pragmatic, and more patient- and family-centered approach. By enabling the family to consent to or decline the diagnostic process of brain death, but not to choose the definition of death, it upholds the current legal definition of death.
Harmanci Seren, A K; Yavuz, H
2017-04-01
Turkey is one of the countries facing a serious organ shortage problem, with thousands of patients with end-stage organ failure. The Social Security Institution started to increase the reimbursement for transplantation operations in 2007 to solve this problem, and this policy has continued since then. Although the number of transplantation centers and operations in Turkey increased in this term, according to organ donation and transplantation statistics from the Ministry of Health, the rate of organ retrieval from deceased organ donors has decreased. This study was performed with the purpose of retrospectively analyzing (between the years 2005 and 2015) the number of brain deaths and donors after brain death in hospitals that are affiliated with the Istanbul Regional Coordination Office and have transplantation units. Data were collected via the website of the Ministry of Health. Hospitals were categorized as those directly affiliated with the Ministry of Health, university hospitals, and private hospitals. This study found that the number of transplantation centers has increased >3 times since 2005, and the number of private transplantation centers has increased 9 times for the same period. We also found that the number of brain deaths, donors after brain death in hospitals, and number of brain deaths and donors after brain death per hospital had varied throughout the study years. Although the number of transplantation centers has increased since 2005, the number of brain deaths and donors after brain death has not increased to the same extent for this period in these hospitals that have transplantation units. Copyright © 2017 Elsevier Inc. All rights reserved.
Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Ataee, Ramin; Moghaddam, Shiva Nasiraei
2010-08-01
Aging is the major risk factor for neurodegenerative diseases and oxidative stress and is involved in their pathophysiology. Oxidative stress can induce neuronal damage and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. In this study we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (5, 15, or 45 mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intracerebroventricular injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests, were evaluated 24 hours after the last injection of curcumin or vehicle. Results indicated that Hcy induces lipid peroxidation and increases malondialdehyde (MDA) and superoxide anion (SOA) levels in whole rat brain. In addition, Hcy impaired memory retention in the passive avoidance learning test. However, curcumin treatment significantly decreased MDA and SOA levels and improved learning and memory in rats. These results suggest that Hcy may induce lipid peroxidation in rat brain and that polyphenol treatment (curcumin) improves learning and memory deficits by protecting the nervous system against oxidative stress.
Ning, Qiaoqing; Liu, Zhaoguo; Wang, Xiuhua; Zhang, Ruyi; Zhang, Jing; Yang, Meizi; Sun, Hongliu; Han, Fang; Zhao, Wenxiang; Zhang, Xiuli
2017-04-01
Sepsis-associated encephalopathy (SAE) is a frequent and nasty complication of sepsis, associated with patients increased risk of death and long-term brain dysfunctions. This study aimed to explore the effect of dexmedetomidine (Dex), an anesthetic adjuvant, on the development of SAE. Lipopolysaccharide (LPS, 10 mg/kg) was intraperitoneally injected to male BALB/c mice to induce sepsis. Dex (25 μg/kg) was given intraperitoneally immediately after LPS injection. Levels of TNF-α, IL-1β, malondialdehyde (MDA) and reactive oxygen species (ROS) were detected in mice brains tissue eight hours later after drug administration. Hematoxylin and eosin (HE) staining was used to detect brain pathologic change. We also detected apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and Bcl-2, Bax, Caspase-3 expressions by western blot. Levels of TNF-α, IL-1β, MDA and ROS were increased in the brain tissue after LPS treatment, indicating that LPS injection resulted in increased brain inflammation and elevated oxidative stress. We further found a large quantity of degenerative neurons widespread in hippocampal CA1, CA3 regions and cerebral cortex according to HE staining. Dex could significantly decrease brain inflammation and oxidative stress by decreasing the levels of TNF-α, IL-1β, MDA and ROS, and ameliorate neurodegenerative changes. The associated results also demonstrated that Dex treatment ameliorated the LPS-induced neuronal apoptosis, probably by upregulating the Bcl-2 expression and downregulating the Bax expression. Our results indicated that Dex could reverse neurodegenerative changes and neuroapoptosis in mice brain of septic mice induced by LPS through anti-inflammatory and antiapoptotic effects.
Moroni, Flavio; Carpenedo, Raffaella; Cozzi, Andrea; Meli, Elena; Chiarugi, Alberto; Pellegrini-Giampietro, Domenico E
2003-01-01
Kynurenine 3-mono-oxygenase (KMO) inhibitors facilitate kynurenic acid (KYNA) neosynthesis and reduce the formation of 3OH-kynurenine (3-HK) and quinolinic acid (QUIN). They also attenuate post-ischemic brain damage and decrease glutamate (Glu) content in brain extracellular spaces. To investigate KMO mechanism(s) of neuroprotection, we performed experiments in gerbils subjected to bilateral carotid occlusion and in organotypic rat hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD). In gerbils, direct application of KYNA (100 nM, through reverse microdialysis in the hippocampus) completely prevented the increase in Glu output induced by transient (5 min) occlusion of the carotids. In rat hippocampal slices exposed for 30 min to OGD, KMO inhibitors (m-nitrobenzoyl)-alanine (mNBA, 30-100 microM) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (Ro 61-8048, 1-10 microM) reduced post-ischemic neuronal death and increased KYNA concentrations in the incubation medium. KYNA may antagonize glycineb or alpha7 nicotinic acetylcholine receptors but the concentrations in the incubation medium never reached values that could efficiently antagonize receptor function. On the contrary, 3-HK (1-10 microM) added to slices exposed to OGD in the presence of KMO inhibitors completely prevented the neuroprotective effects of the inhibitors. Our findings suggest that KMO inhibitors reduce OGD-induced pyramidal cell death by decreasing 3-HK (and possibly QUIN) synthesis.
Atomoxetine, a norepinephrine reuptake inhibitor, reduces seizure-induced respiratory arrest.
Zhang, Honghai; Zhao, Haiting; Feng, Hua-Jun
2017-08-01
Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication, and no effective preventive strategies are currently available for this fatal disorder. Clinical and animal studies of SUDEP demonstrate that seizure-induced respiratory arrest (S-IRA) is the primary event leading to death after generalized seizures in many cases. Enhancing brain levels of serotonin reduces S-IRA in animal models relevant to SUDEP, including the DBA/1 mouse. Given that serotonin in the brain plays an important role in modulating respiration and arousal, these findings suggest that deficits in respiration and/or arousal may contribute to S-IRA. It is well known that norepinephrine is an important neurotransmitter that modulates respiration and arousal in the brain as well. Therefore, we hypothesized that enhancing noradrenergic neurotransmission suppresses S-IRA. To test this hypothesis, we examined the effect of atomoxetine, a norepinephrine reuptake inhibitor (NRI), on S-IRA evoked by either acoustic stimulation or pentylenetetrazole in DBA/1 mice. We report the original observation that atomoxetine specifically suppresses S-IRA without altering the susceptibility to seizures evoked by acoustic stimulation, and atomoxetine also reduces S-IRA evoked by pentylenetetrazole in DBA/1 mice. Our data suggest that the noradrenergic signaling is importantly involved in S-IRA, and that atomoxetine, a medication widely used to treat attention deficit hyperactivity disorder (ADHD), is potentially useful to prevent SUDEP. Copyright © 2017 Elsevier Inc. All rights reserved.
Julio-Amilpas, Alberto; Montiel, Teresa; Soto-Tinoco, Eva; Gerónimo-Olvera, Cristian; Massieu, Lourdes
2015-05-01
Glucose is the main energy substrate in brain but in certain circumstances such as prolonged fasting and the suckling period alternative substrates can be used such as the ketone bodies (KB), beta-hydroxybutyrate (BHB), and acetoacetate. It has been shown that KB prevent neuronal death induced during energy limiting conditions and excitotoxicity. The protective effect of KB has been mainly attributed to the improvement of mitochondrial function. In the present study, we have investigated the protective effect of D-BHB against neuronal death induced by severe noncoma hypoglycemia in the rat in vivo and by glucose deprivation (GD) in cortical cultures. Results show that systemic administration of D-BHB reduces reactive oxygen species (ROS) production in distinct cortical areas and subregions of the hippocampus and efficiently prevents neuronal death in the cortex of hypoglycemic animals. In vitro results show that D-BHB stimulates ATP production and reduces ROS levels, while the nonphysiologic isomer of BHB, L-BHB, has no effect on energy production but reduces ROS levels. Data suggest that protection by BHB, not only results from its metabolic action but is also related to its capability to reduce ROS, rendering this KB as a suitable candidate for the treatment of ischemic and traumatic injury.
Jeong, Hoon Jae; Kim, Dae Won; Kim, Mi Jin; Woo, Su Jung; Kim, Hye Ri; Kim, So Mi; Jo, Hyo Sang; Hwang, Hyun Sook; Kim, Duk Soo; Cho, Sung Woo; Won, Moo Ho; Han, Kyu Hyung; Park, Jin Seu; Eum, Won Sik; Choi, Soo Young
2012-10-31
Reactive oxygen species (ROS) contribute to the development of a number of neuronal diseases including ischemia. DJ-1, also known to PARK7, plays an important role in transcriptional regulation, acting as molecular chaperone and antioxidant. In the present study, we investigated whether DJ-1 protein shows a protective effect against oxidative stress-induced neuronal cell death in vitro and in ischemic animal models in vivo. To explore DJ-1 protein's potential role in protecting against ischemic cell death, we constructed cell permeable Tat-DJ-1 fusion proteins. Tat-DJ-1 protein efficiently transduced into neuronal cells in a doseand time-dependent manner. Transduced Tat-DJ-1 protein increased cell survival against hydrogen peroxide (H2O2) toxicity and also reduced intracellular ROS. In addition, Tat-DJ-1 protein inhibited DNA fragmentation induced by H2O2. Furthermore, in animal models, immunohistochemical analysis revealed that Tat-DJ-1 protein prevented neuronal cell death induced by transient forebrain ischemia in the CA1 region of the hippocampus. These results demonstrate that transduced Tat-DJ-1 protein protects against cell death in vitro and in vivo, suggesting that the transduction of Tat-DJ-1 may be useful as a therapeutic agent for ischemic injuries related to oxidative stress.
Withey, Sarah L; Hill, Rob; Lyndon, Abigail; Dewey, William L; Kelly, Eamonn; Henderson, Graeme
2017-04-01
Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Koh, Eun-Jeong; Kim, Kui-Jin; Choi, Jia; Kang, Do-Hyung; Lee, Boo-Yong
2018-04-23
Spirulina maxima is a blue-green micro alga that contains abundant amounts of proteins (60-70%), vitamins, chlorophyll a, and C-phycocyanin (C-PC). It has been shown to reduce oxidative stress, and prevent diabetes and non-alcoholic fatty liver disease. However, it is unclear whether Spirulina maxima 70% ethanol extract (SM70EE), chlorophyll a, and C-PC prevent Aβ 1-42 -induced neurotoxicity in PC12 cells. The aim of this study was to investigate whether SM70EE, chlorophyll a, and C-PC prevent Aβ 1-42 -induced cell death. SM70EE, chlorophyll a, and C-PC suppressed the Aβ 1-42 -induced increase in poly-ADP ribose polymerase-1 (PARP-1) cleavage and reduced Aβ 1-42 -induced decreases in glutathione and its associated factors. The level of brain-derived neurotrophic factor (BDNF), which plays a critical role in neuronal survival and neuroprotection, was increased by SM70EE, chlorophyll a, and C-PC in Aβ 1-42 -treated cells. SM70EE treatment decreased oxidative stress and cell death in response to Aβ 1-42 treatment, while simultaneously suppressing PARP cleavage and increasing the levels of glutathione (GSH) and its associated factors. Moreover, SM70EE lowered the levels of APP and BACE1, two major factors involved in APP processing, and increased BDNF expression during Aβ 1-42 -induced neurotoxicity in PC12 cells. We suggest that SM70EE prevents cell death caused by Aβ 1-42 -induced neurotoxicity via the activation of BDNF signaling. Copyright © 2018 Elsevier B.V. All rights reserved.
Norambuena, Andrés; Wallrabe, Horst; McMahon, Lloyd; Silva, Antonia; Swanson, Eric; Khan, Shahzad S.; Baerthlein, Daniel; Kodis, Erin; Oddo, Salvatore; Mandell, James W.; Bloom, George S.
2016-01-01
A major obstacle to pre-symptomatic diagnosis and disease-modifying therapy for Alzheimer's disease (AD) is inadequate understanding of molecular mechanisms of AD pathogenesis. For example, impaired brain insulin signaling is an AD hallmark, but whether and how it might contribute to the synaptic dysfunction and neuron death that underlie memory and cognitive impairment has been mysterious. Neuron death in AD is often caused by cell cycle re-entry (CCR) mediated by amyloid-β oligomers (AβOs) and tau, the precursors of plaques and tangles. We now report that CCR results from AβO-induced activation of the protein kinase complex, mTORC1, at the plasma membrane and mTORC1-dependent tau phosphorylation, and that CCR can be prevented by insulin-stimulated activation of lysosomal mTORC1. AβOs were also shown previously to reduce neuronal insulin signaling. Our data therefore indicate that the decreased insulin signaling provoked by AβOs unleashes their toxic potential to cause neuronal CCR, and by extension, neuron death. PMID:27693185
Du, Si-Hao; Tan, Xiao-Hui; Zhao, Rui; Zhao, Dong; Xue, Ye; Wang, Hui-Jun; Xie, Xiao-Li; Wang, Qi
2017-12-01
Deaths involved with environmental hazards and intoxication might present with minimal or nonspecific morphological features, which are insufficient to establish a diagnosis. The present study investigated the postmortem brain mRNA and immunohistochemical expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and nuclear factor erythroid-2-related factor-2 (Nrf2) in forensic cases. Relative mRNA quantification using Taqman real-time PCR assay demonstrated higher expression of IL-1β, TNF-α and iNOS, and lower expression of Nrf2 in methamphetamine intoxication and hyperthermia cases, higher expression of iNOS in phenobarbital intoxication cases, and higher expression of Nrf2 in phenobarbital intoxication and hypothermia cases. Immunostaining results showed substantial inter-individual variations in each group, showing no evident differences in distribution or intensity. These findings suggest that different inflammatory and antioxidant responses were involved in deaths from different etiologies, and these markers may be useful for evaluating brain damage and responses.
Liu, Hao; Li, Wenjin; Ahmad, Muzamil; Miller, Tricia M.; Rose, Marie E.; Poloyac, Samuel M.; Uechi, Guy; Balasubramani, Manimalha; Hickey, Robert W.; Graham, Steven H.
2010-01-01
Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ2] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ2 induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons. 15d-PGJ2 covalently modifies UCH-L1 and inhibits its hydrolase activity. Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate UCH-L1 function is important in hypoxic neuronal death and excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1. PMID:20933087
Gopčević, A; Rode, B; Vučić, M; Horvat, A; Širanović, M; Gavranović, Ž; Košec, V; Košec, A
2017-11-01
Maternal brain death during pregnancy remains an exceedingly complex situation that requires not only a well-considered medical management plan, but also careful decision-making in a legally and ethically delicate situation. Management of brain dead pregnant patients needs to adhere to special strategies that support the mother in a way that she can deliver a viable and healthy child. Brain death in pregnant women is very rare, with only a few published cases. We present a case of a pregnant woman with previously diagnosed multiple brain cavernomas that led to intracranial hemorrhage and brain stem death during the 21st week of pregnancy. The condition that can be proven unequivocally, using tests that do not endanger viability of the fetus, is brain stem death, diagnosed through absence of cranial reflexes. The patient was successfully treated until delivery of a healthy female child at 29weeks of gestation. The patient received continuous hormone substitution therapy, fetal monitoring and extrinsic regulation of maternal homeostasis over 64days. After delivery, the final diagnosis of brain death was established through multi-slice computerized tomography pan-angiography. This challenging case discusses ethical and medical circumstances arising from a diagnosis of maternal brain death, while showing that prolongation of somatic life support in a multidisciplinary setting can result in a successful pregnancy outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brain death revisited: it is not 'complete death' according to Islamic sources.
Bedir, Ahmet; Aksoy, Sahin
2011-05-01
Concepts, such as death, life and spirit cannot be known in their quintessential nature, but can be defined in accordance with their effects. In fact, those who think within the mode of pragmatism and Cartesian logic have ignored the metaphysical aspects of these terms. According to Islam, the entity that moves the body is named the soul. And the aliment of the soul is air. Cessation of breathing means leaving of the soul from the body. Those who agree on the diagnosis of brain death may not able to agree unanimously on the rules that lay down such diagnosis. That is to say, there are a heap of suspicions regarding the diagnosis of brain death, and these suspicions are on the increase. In fact, Islamic jurisprudence does not put provisions, decisions on suspicious grounds. By virtue of these facts, it can be asserted that brain death is not absolute death according to Islamic sources; for in the patients diagnosed with brain death the soul still has not abandoned the body. Therefore, these patients suffer in every operation performed on them.
Near-death experience and out of body phenomenon during torture--a case report.
Cooper, Maxwell J F
2011-01-01
A case of a near death experience (NDE) associated with an "Out of body" phenomenon in an African man as a result of torture is presented. Although NDEs occur in approximately ten per cent of survivors of cardiac arrest, case reports emerging from the medical examination of torture victims are lacking. This may be due to cultural/linguistic barriers and fear of disbelief. Low NDE incidence during torture would suggest that torture techniques rarely induce the critical brain ischaemia considered necessary to provoke an NDE. Alternatively psychological or physical characteristics of torture may render NDE harder to recall. Proof of low incidence during torture would counter the theory that NDEs are a psychological response to perceived threat of death. NDEs often induce transformational benefits in patients' lives and for this reason the author urges physicians to consider the possibility of NDE amongst torture victims under their care. A request for information about similar cases is made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Xu, Mei; Frank, Jacqueline A.
Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stemmore » cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD-induced neurotoxicity.« less
Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation.
Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George
2013-01-08
We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a 'false-negative' result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death.
Brain dead or not? CT angiogram yielding false-negative result on brain death confirmation
Johnston, Robyn; Kaliaperumal, Chandrasekaran; Wyse, Gerald; Kaar, George
2013-01-01
We describe a case of severe traumatic brain injury with multiple facial and skull fractures where CT angiogram (CTA) failed to yield a definite result of brain death as an ancillary test. A 28-year-old man was admitted following a road traffic accident with a Glasgow Coma Score (GCS) of 3/15 and fixed pupils. CT brain revealed uncal herniation and diffuse cerebral oedema with associated multiple facial and skull fractures. 72 h later, his clinical condition remained the same with high intracranial pressure refractory to medical management. Clinical confirmation on brain death was not feasible owing to facial injuries. A CTA, performed to determine brain perfusion, yielded a ‘false-negative’ result. Skull fractures have possibly led to venous prominence in the cortical and deep venous drainage system. This point needs to be borne in mind while considering CTA as an ancillary test to confirm brain death. PMID:23302550
Neuroinflamm-aging and neurodegenerative diseases: an overview.
Pizza, Vincenzo; Agresta, Anella; D'Acunto, Cosimo W; Festa, Michela; Capasso, Anna
2011-08-01
Neuroinflammation is considered a chronic activation of the immune response in the central nervous system (CNS) in response to different injuries. This brain immune activation results in various events: circulating immune cells infiltrate the CNS; resident cells are activated; and pro-inflammatory mediators produced and released induce neuroinflammatory brain disease. The effect of immune diffusible mediators on synaptic plasticity might result in CNS dysfunction during neuroinflammatory brain diseases. The CNS dysfunction may induce several human pathological conditions associated with both cognitive impairment and a variable degree of neuroinflammation. Furthermore, age has a powerful effect on enhanced susceptibility to neurodegenerative diseases and age-dependent enhanced neuroinflammatory processes may play an important role in toxin generation that causes death or dysfunction of neurons in neurodegenerative diseases This review will address current understanding of the relationship between ageing, neuroinflammation and neurodegenerative disease by focusing on the principal mechanisms by which the immune system influences the brain plastic phenomena. Also, the present review considers the principal human neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis and psychiatric disorders caused by aging and neuroinflammation.
Sierra, Saleta; Ramos, Maria C; Molina, Pilar; Esteo, Cynthia; Vázquez, Jose Antonio; Burgos, Javier S
2011-01-01
There is growing evidence to support the hypothesis that statins may act as neuroprotectants in several neuropathological conditions, including Alzheimer's disease. The mechanisms for neuroprotection are only partially understood, however, and pleiotropic phenomena could be involved. We have made a comparative study of 9 statins (lovastatin, mevastatin, pravastatin, simvastatin, cerivastatin, atorvastatin, fluvastatin, pitavastatin, and rosuvastatin), analyzing several parameters that could be related to neuroprotection, such as chemical structure, lipophilicity, potential blood-brain-barrier penetration (BBB), 3-hydroxy-3-methylglutaryl co-enzyme A reductase inhibition, cholesterol modulation in neurons, glia, and human hepatocyte cell lines, and protection against neurodegeneration caused by tau hyperphosphorylation induced by okadaic acid. Our results indicate that monacolin J derivatives (natural and semi-synthetic statins) are the best candidates for the prevention of neurodegenerative conditions due to their higher potential BBB penetration capacity, cholesterol lowering effect on neurons with a satisfactory safety profile, and in vitro protection against cell death caused by okadaic acid in culture. Among the nine statins studied, simvastatin presented the best characteristics for preventing neurodegenerative conditions.
Kundu, Paromita; Das, Manasi; Tripathy, Kalpalata; Sahoo, Sanjeeb K
2016-12-21
Parkinson's disease (PD) is the most widespread form of dementia where there is an age related degeneration of dopaminergic neurons in the substantia nigra region of the brain. Accumulation of α-synuclein (αS) protein aggregate, mitochondrial dysfunction, oxidative stress, and neuronal cell death are the pathological hallmarks of PD. In this context, amalgamation of curcumin and piperine having profound cognitive properties, and antioxidant activity seems beneficial. However, the blood-brain barrier (BBB) is the major impediment for delivery of neurotherapeutics to the brain. The present study involves formulation of curcumin and piperine coloaded glyceryl monooleate (GMO) nanoparticles coated with various surfactants with a view to enhance the bioavailability of curcumin and penetration of both drugs to the brain tissue crossing the BBB and to enhance the anti-parkinsonism effect of both drugs in a single platform. In vitro results demonstrated augmented inhibition of αS protein into oligomers and fibrils, reduced rotenone induced toxicity, oxidative stress, and apoptosis, and activation of autophagic pathway by dual drug loaded NPs compared to native counterpart. Further, in vivo studies revealed that our formulated dual drug loaded NPs were able to cross BBB, rescued the rotenone induced motor coordination impairment, and restrained dopaminergic neuronal degeneration in a PD mouse model.
Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria
Basu-Roy, Upal; Ty, Maureen; Alique, Matilde; Fernandez-Arias, Cristina; Movila, Alexandru; Gomes, Pollyanna; Edagha, Innocent; Wassmer, Samuel C.; Walther, Thomas
2016-01-01
Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised. PMID:27643439
Swanson, Phillip A.; Hart, Geoffrey T.; Russo, Matthew V.; Nayak, Debasis; Yazew, Takele; Peña, Mirna; Khan, Shahid M.; Pierce, Susan K.; McGavern, Dorian B.
2016-01-01
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. PMID:27907215
A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus.
Tajiri, Naoki; De La Peña, Ike; Acosta, Sandra A; Kaneko, Yuji; Tamir, Sharon; Landesman, Yosef; Carlson, Robert; Shacham, Sharon; Borlongan, Cesar V
2016-04-01
Exportin 1 (XPO1/CRM1) plays prominent roles in the regulation of nuclear protein export. Selective inhibitors of nuclear export (SINE) are small orally bioavailable molecules that serve as drug-like inhibitors of XPO1, with potent anti-cancer properties. Traumatic brain injury (TBI) presents with a secondary cell death characterized by neuroinflammation that is putatively regulated by nuclear receptors. Here, we report that the SINE compounds (KPT-350 or KPT-335) sequestered TBI-induced neuroinflammation-related proteins (NF-(k)B, AKT, FOXP1) within the nucleus of cultured primary rat cortical neurons, which coincided with protection against TNF-α (20 ng/mL)-induced neurotoxicity as shown by at least 50% and 100% increments in preservation of cell viability and cellular enzymatic activity, respectively, compared to non-treated neuronal cells (P's < 0.05). In parallel, using an in vivo controlled cortical impact (CCI) model of TBI, we demonstrate that adult Sprague-Dawley rats treated post-injury with SINE compounds exhibited significant reductions in TBI-induced behavioral and histological deficits. Animals that received KPT-350 orally starting at 2 h post-TBI and once a day thereafter over the next 4 days exhibited significantly better motor coordination, and balance in the rotorod test and motor asymmetry test by 100-200% improvements, as early as 4 h after initial SINE compound injection that was sustained during subsequent KPT-350 dosing, and throughout the 18-day post-TBI study period compared to vehicle treatment (P's < 0.05). Moreover, KPT-350 reduced cortical core impact area and peri-impact cell death compared to vehicle treatment (P's < 0.05). Both in vitro and in vivo experiments revealed that KPT-350 increased XPO1, AKT, and FOXP1 nuclear expression and relegated NF-(k)B expression within the neuronal nuclei. Altogether, these findings advance the utility of SINE compounds to stop trafficking of cell death proteins within the nucleus as an efficacious treatment for TBI. © 2016 John Wiley & Sons Ltd.
Experimental missile wound to the brain.
Carey, M E; Sarna, G S; Farrell, J B; Happel, L T
1989-11-01
Among civilians in the United States, 33,000 gunshot wound deaths occur each year; probably half of these involve the head. In combat, head wounds account for approximately half of the immediate mortality when death can be attributed to a single wound. No significant reduction in the neurosurgical mortality associated with these wounds has occurred between World War II and the Vietnam conflict, and very little research into missile wounds of the brain has been undertaken. An experimental model has been developed in the anesthetized cat whereby a ballistic injury to the brain may be painlessly reproduced in order that the pathophysiological effects of brain wounding may be studied and better treatments may be designed to lower the mortality and morbidity rates associated with gunshot wounds. Prominent among physiological effects observed in this model was respiratory arrest even though the missile did not injure the brain stem directly. The incidence of prolonged respiratory arrest increased with increasing missile energy, but arrest was often reversible provided respiratory support was given. It is possible that humans who receive a brain wound die from missile-induced apnea instead of brain damage per se. The mortality rate in humans with brain wounding might be reduced by prompt respiratory support. Brain wounding was associated with persistently increased intracranial pressure and reduced cerebral perfusion pressure not entirely attributable to intracranial bleeding. The magnitude of these derangements appeared to be missile energy-dependent and approached dangerous levels in higher-energy wounds. All wounded cats exhibited postwounding increases in blood glucose concentrations consistent with a generalized stress reaction. A transient rise in hematocrit also occurred immediately after wounding. Both of these phenomena could prove deleterious to optimal brain function after injury.
Chen, Ling-Lin; Wu, Mei-Ling; Zhu, Feng; Kai, Jie-Jing; Dong, Jing-Yin; Wu, Xi-Mei; Zeng, Ling-Hui
2016-12-01
Previous study suggests that mTOR signaling pathway may play an important role in epileptogenesis. The present work was designed to explore the contribution of raptor protein to the development of epilepsy and comorbidities. Mice with conditional knockout of raptor protein were generated by cross-bred Rptor flox/flox mice with nestin-CRE mice. The expression of raptor protein was analyzed by Western blotting in brain tissue samples. Neuronal death and mossy fiber sprouting were detected by FJB staining and Timm staining, respectively. Spontaneous seizures were recorded by EEG-video system. Morris water maze, open field test, and excitability test were used to study the behaviors of Rptor CKO mice. As the consequence of deleting Rptor, downstream proteins of raptor in mTORC1 signaling were partly blocked. Rptor CKO mice exhibited decrease in body and brain weight under 7 weeks old and accordingly, cortical layer thickness. After kainic acid (KA)-induced status epilepticus, overactivation of mTORC1 signaling was markedly reversed in Rptor CKO mice. Although low frequency of spontaneous seizure and seldom neuronal cell death were observed in both Rptor CKO and control littermates, KA seizure-induced mossy fiber spouting were attenuated in Rptor CKO mice. Additionally, cognitive-deficit and anxiety-like behavior after KA-induced seizures were partly reversed in Rptor CKO mice. Loss of the Rptor gene in mice neural progenitor cells affects normal development in young age and may contribute to alleviate KA seizure-induced behavioral abnormalities, suggesting that raptor protein plays an important role in seizure comorbidities. © 2016 John Wiley & Sons Ltd.
Liu, Xiaoyan; Hu, Wenhui; Wang, Yinye
2014-01-01
Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation. PMID:24671253
Shang, Hanbing; Cui, Derong; Yang, Dehua; Liang, Sheng; Zhang, Weifeng; Zhao, Weiguo
2015-01-01
Oxidative injury caused by reactive oxygen species plays an important role in the progression of intracerebral hemorrhage (ICH)-induced secondary brain injury. Previous studies have demonstrated that the free radical scavenger edaravone may prevent neuronal injury and brain edema after ICH. However, the influence of edaravone on cerebral metabolism in the early stages after ICH and the underlying mechanism have not been fully investigated. In the present study, we investigated the effect of edaravone on perihematomal glucose metabolism using (18)F-fluorordeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Additionally, the neurologic deficits, brain edemas, and cell death that followed ICH were quantitatively analyzed. After blood infusion, the rats treated with edaravone showed significant improvement in both forelimb placing and corner turn tests compared with those treated with vehicle. Moreover, the brain water content of the edaravone-treated group was significantly decreased compared with that of the vehicle group on day 3 after ICH. PET/CT images of ICH rats exhibited obvious decreases in FDG standardized uptake values in perihematomal region on day 3, and the lesion-to-normal ratio of the edaravone-treated ICH rats was significantly increased compared with that of the control rats. Calculation of the brain injury volumes from the PET/CT images revealed that the volumes of the blood-induced injuries were significantly smaller in the edaravone group compared with the vehicle group. Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assays performed 3 days after ICH revealed that the numbers of apoptotic cells in perihematomal region of edaravone-treated ICH rats were decreased relative to the vehicle group. Thus, the present study demonstrates that edaravone has scavenging properties that attenuate neurologic behavioral deficits and brain edema in the early period of ICH. Additionally, edaravone may improve cerebral metabolism around the hematoma by attenuating apoptotic cell death after ICH. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.
Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M
2006-08-25
Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement does not develop gradually since youth, but appears characterized by relatively late onset.
ERIC Educational Resources Information Center
Chathu, Finla; Krishnakumar, Amee; Paulose, Cheramadathikudyil S.
2008-01-01
Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death.…
The potential role of neuroinflammation and transcription factors in Parkinson disease
Tiwari, Prafulla Chandra; Pal, Rishi
2017-01-01
Parkinson disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons affected by inflammatory processes. Post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines, confirming an ongoing neuroinflammation in the affected brain regions. These inflammatory mediators may activate transcription factors—notably nuclear factor κB, Ying-Yang 1 (YY1), fibroblast growth factor 20 (FGF20), and mammalian target of rapamycin (mTOR)—which then regulate downstream signaling pathways that in turn promote death of dopaminergic neurons through death domain-containing receptors. Dopaminergic neurons are vulnerable to oxidative stress and inflammatory attack. An increased level of inducible nitric oxide synthase observed in the substantia nigra and striatum of PD patients suggests that both cytokine—and chemokine-induced toxicity and inflammation lead to oxidative stress that contributes to degeneration of dopaminergic neurons and to disease progression. Lipopolysaccharide activation of microglia in the proximity of dopaminergic neurons in the substantia nigra causes their degeneration, and this appears to be a selective vulnerability of dopaminergic neurons to inflammation. In this review, we will look at the role of various transcription factors and signaling pathways in the development of PD. PMID:28566949
Evaluation of Two Models of Non-Penetrating Captive Bolt Devices for On-Farm Euthanasia of Turkeys
Woolcott, Caitlin R.; Torrey, Stephanie; Serpa, Lilia; Schwean-Lardner, Karen; Widowski, Tina M.
2018-01-01
Simple Summary Animal care guidelines for livestock and poultry require farms to have euthanasia plans in place for birds that are sick, injured, or unable to access feed and water. Killing methods considered to be humane are those that induce rapid insensibility (stun) and result in brain death leading to irreversible respiratory and cardiac arrest. Therefore, the evaluation of the effectiveness of a killing method generally focuses on measures of insensibility and brain death. Non-penetrating captive bolt devices are intended to deliver sufficient force and energy to the head to result in immediate insensibility and brain death without penetrating the skin. We evaluated the effectiveness of two models of non-penetrating captive bolt devices when applied by stock people to different sizes and ages of turkeys, using signs of insensibility corroborated by ante- and post- mortem evaluation of brain damage. Both non-penetrating captive bolt devices used in this study were found to be highly effective at inducing immediate insensibility and would be appropriate for on-farm euthanasia of turkeys of various ages and size. Abstract On-farm euthanasia is a critical welfare issue in the poultry industry and can be particularly difficult to perform on mature turkeys due to their size. We evaluated the efficacy of two commercially available non-penetrating captive bolt devices, the Zephyr-EXL and the Turkey Euthanasia Device (TED), on 253 turkeys at three stages of production: 4–5, 10, and 15–20 weeks of age. Effectiveness of each device was measured using both ante- and post-mortem measures. Application of the Zephyr-EXL resulted in a greater success rate (immediate abolishment of brainstem reflexes) compared to the TED (97.6% vs. 89.3%, p = 0.0145). Times to last movement (p = 0.102) and cardiac arrest (p = 0.164) did not differ between devices. Ante- and post-mortem measures of trauma and hemorrhage were highly correlated. Skull fractures and gross subdural hemorrhage (SDH) were present in 100% of birds euthanized with both the Zephyr-EXL and TED devices. Gross SDH scores were greater in birds killed with the Zephyr-EXL than the TED (p < 0.001). Microscopic SDH scores indicated moderate to severe hemorrhage in 92% of turkeys for the Zephyr-EXL and 96% of turkeys for the TED, with no difference between devices (p = 0.844). Overall, both devices were highly effective inducing immediate insensibility through traumatic brain injury and are reliable, single-step methods for on-farm euthanasia of turkeys. PMID:29558419
Portrayal of Brain Death in Film and Television.
Lewis, A; Weaver, J; Caplan, A
2017-03-01
We sought to evaluate whether television and cinematic coverage of brain death is educational or misleading. We identified 24 accessible productions that addressed brain death using the archives of the Paley Center for Media (160 000 titles) and the Internet Movie Database (3.7 million titles). Productions were reviewed by two board-certified neurologists. Although 19 characters were pronounced brain dead, no productions demonstrated a complete examination to assess for brain death (6 included an assessment for coma, 9 included an evaluation of at least 1 brainstem reflex, but none included an assessment of every brainstem reflex, and 2 included an apnea test). Subjectively, both authors believed only a small fraction of productions (13% A.L., 13% J.W.) provided the public a complete and accurate understanding of brain death. Organ donation was addressed in 17 productions (71%), but both reviewers felt that the discussions about organ donation were professional in a paucity of productions (9% for A.L., 27% for J.W.). Because television and movies serve as a key source for public education, the quality of productions that feature brain death must be improved. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Djelti, Fathia; Braudeau, Jerome; Hudry, Eloise; Dhenain, Marc; Varin, Jennifer; Bièche, Ivan; Marquer, Catherine; Chali, Farah; Ayciriex, Sophie; Auzeil, Nicolas; Alves, Sandro; Langui, Dominique; Potier, Marie-Claude; Laprevote, Olivier; Vidaud, Michel; Duyckaerts, Charles; Miles, Richard; Aubourg, Patrick; Cartier, Nathalie
2015-08-01
Abnormalities in neuronal cholesterol homeostasis have been suspected or observed in several neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, it has not been demonstrated whether an increased abundance of cholesterol in neurons in vivo contributes to neurodegeneration. To address this issue, we used RNA interference methodology to inhibit the expression of cholesterol 24-hydroxylase, encoded by the Cyp46a1 gene, in the hippocampus of normal mice. Cholesterol 24-hydroxylase controls cholesterol efflux from the brain and thereby plays a major role in regulating brain cholesterol homeostasis. We used an adeno-associated virus vector encoding short hairpin RNA directed against the mouse Cyp46a1 mRNA to decrease the expression of the Cyp46a1 gene in hippocampal neurons of normal mice. This increased the cholesterol concentration in neurons, followed by cognitive deficits and hippocampal atrophy due to apoptotic neuronal death. Prior to neuronal death, the recruitment of the amyloid protein precursor to lipid rafts was enhanced leading to the production of β-C-terminal fragment and amyloid-β peptides. Abnormal phosphorylation of tau and endoplasmic reticulum stress were also observed. In the APP23 mouse model of Alzheimer's disease, the abundance of amyloid-β peptides increased following inhibition of Cyp46a1 expression, and neuronal death was more widespread than in normal mice. Altogether, these results suggest that increased amounts of neuronal cholesterol within the brain may contribute to inducing and/or aggravating Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rao, Geeta; Verma, Rakesh; Mukherjee, Arun; Haldar, Chandana; Agrawal, Neeraj Kumar
2016-09-01
Oxidative stress is a well known phenomenon under hyperthyroid condition that induces various physiological and neural problems with a higher prevalence in females. We, therefore investigated the antioxidant potential of melatonin (Mel) on hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain (cognition and memory centre) of aged female golden hamster, Mesocricetus auratus. Aged female hamsters were randomly divided into four experimental groups (n=7); group-I: control, group-II: Melatonin (5mgkg(-1)day(-1), i.p., for one week), group-III: Hyperthyroid (100μg kg(-1)day(-1), i.p., for two weeks) and group-IV- Hyper+Mel. Hormonal profiles (thyroid and melatonin), activity of antioxidant enzymes (SOD, CAT and GPX), lipid peroxidation level (TBARS) and the specific apoptotic markers (Bax/Bcl-2 ratio and Caspase-3) expression were evaluated. A significant increase in the profile of total thyroid hormone (tT3 and tT4) in hyperthyroidic group as compared to control while tT3 significantly decreased in melatonin treated hyperthyroidic group. However, Mel level significantly decreased in hyperthyroidic group but increased in melatonin treated hyperthyroidic group. Further, the number of immune-positive cells for thyroid hormone receptor-alpha (TR-α) decreased in the hippocampus of hyperthyroidic group and increased in melatonin treated hyperthyroidic group. Profiles of antioxidant enzymes showed a significant decrease in hyperthyroidic group with a simultaneous increase in lipid peroxidation (TBARS). Melatonin treatment to hyperthyroidic group lead to decreased TBARS level with a concomitant increase in antioxidant enzyme activity. Moreover, increased expression of Bax/Bcl-2 ratio and Caspase-3, in hyperthyroidic group had elevated neuronal cell death in hippocampal area and melatonin treatment reduced its expression in hyperthyroidic group. Our findings thus indicate that melatonin reduced the hyperthyroidism-induced oxidative stress and neuronal cell death in the hippocampus region of brain, suggesting a novel therapeutic approach of melatonin for management of cognition and memory function in females under hyperthyroid condition. Copyright © 2016 Elsevier Inc. All rights reserved.
Is donation after cardiac death reducing the brain-dead donor pool in Australia?
Sampson, Brett G; O'Callaghan, Gerry P; Russ, Graeme R
2013-03-01
Donation after cardiac death (DCD) has increased faster than donation after brain death (DBD) in Australia. However, DBD is the preferred pathway because it provides more organs per donor, the donation process is simpler and transplant outcomes are optimised. To determine if the increase in DCD has reduced the brain-dead donor pool in Australia. Retrospective analysis of records of organ donors (intended and actual) with brain injury as the cause of death from 2001 to 2011 in Australian intensive care units. Change in median ventilation period, over time, before brain-death determination in DBD donors (as DCD increased); a decreased median ventilation period in DBD donors being consistent with the conversion of DBD to DCD. As DCD (n = 311) increased, the median ventilation period in DBD donors (n = 2218) did not fall overall (P = 0.83), in all jurisdictions (P > 0.25) and for all causes of death (P > 0.3). The proportion of patients ventilated for less than 2 days was unchanged over time in both DBD (P = 1) and DCD (P = 0.99). The overall ventilation period in DCD donors (3.8 days; interquartile range [IQR], 2.1-6.3 days), exceeded the ventilation period in DBD donors (1.3 days; IQR, 1.0-2.4 days; P < 0.0001). DCD ventilation period was significantly longer in all jurisdictions, for all causes of death and annually (P < 0.05). In Australia, brain-injured donors appear to be ventilated long enough to allow progression to brain death before proceeding to DCD. Therefore, DCD is unlikely to have reduced the brain-dead donor pool.
Singh, Satish; Houng, Aiilyan K; Reed, Guy L
2018-04-15
During acute brain ischemia, α2-antiplasmin markedly enhances brain injury, blood-brain barrier breakdown and matrix metalloproteinase-9 (MMP-9) expression. Although α2-antiplasmin inhibits fibrin thrombus-degradation, and MMP-9 is a collagen-degrading enzyme altering blood-brain barrier, both have similar deleterious effects on the ischemic brain. We examined the hypothesis that MMP-9 is an essential downstream mediator of α2-antiplasmin's deleterious effects during brain ischemia. Middle cerebral artery thromboembolic stroke was induced in a randomized, blinded fashion in mice with increased blood levels of α2-antiplasmin. There was a robust increase in MMP-9 expression (immunofluorescence) in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ but not MMP-9 -/- mice, 24 h after stroke. Brain swelling and hemorrhage were significantly increased in the ischemic vs. the non-ischemic hemisphere of MMP-9 +/+ mice. By comparison to MMP-9 +/+ mice, the ischemic hemispheres of MMP-9 -/- mice showed a ∼6-fold reduction in brain swelling (p < 0.001) and a ∼9-fold reduction in brain hemorrhage. Brain infarction (p < 0.0001) and TUNEL-positive cell death (p < 0.001) were significantly diminished in the ischemic hemisphere of MMP-9 -/- mice vs. MMP-9 +/+ mice. Ischemic breakdown of the blood-brain barrier and fibrin deposition were also significantly reduced in MMP-9 -/- mice vs. MMP-9 +/+ mice (p < 0.05), as measured by quantitative immunofluorescence. We conclude that MMP-9 deficiency ablates many of the deleterious effects of high α2-antiplasmin levels, significantly reducing blood-brain barrier breakdown, TUNEL-positive cell death, brain hemorrhage, swelling and infarction. This suggests that the two molecules may be in a shared pathway in which MMP-9 is essential downstream for the deleterious effects of α2-antiplasmin in ischemic stroke. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model
2012-01-01
Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222
Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M.; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran
2015-01-01
Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration. PMID:25848957
Overgaard-Steensen, Christian; Stødkilde-Jørgensen, Hans; Larsson, Anders; Tønnesen, Else; Frøkiaer, Jørgen; Ring, Troels
2016-07-01
What is the central question of this study? The brain response to acute hyponatraemia is usually studied in rodents by intraperitoneal instillation of hypotonic fluids (i.p. model). The i.p. model is described as 'dilutional' and 'syndrome of inappropriate ADH (SIADH)', but the mechanism has not been explored systematically and might affect the brain response. Therefore, in vivo brain and muscle response were studied in pigs. What is the main finding and its importance? The i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution, not dilution. A large reduction in brain sodium is observed, probably because of the specific mechanism causing the hyponatraemia. This is not accounted for in current understanding of the brain response to acute hyponatraemia. Hyponatraemia is common clinically, and if it develops rapidly, brain oedema evolves, and severe morbidity and even death may occur. Experimentally, acute hyponatraemia is most frequently studied in small animal models, in which the hyponatraemia is produced by intraperitoneal instillation of hypotonic fluids (i.p. model). This hyponatraemia model is described as 'dilutional' or 'syndrome of inappropriate ADH (SIADH)', but seminal studies contradict this interpretation. To confront this issue, we developed an i.p. model in a large animal (the pig) and studied water and electrolyte responses in brain, muscle, plasma and urine. We hypothesized that hyponatraemia was induced by simple water dilution, with no change in organ sodium content. Moderate hypotonic hyponatraemia was induced by a single i.v. dose of desmopressin and intraperitoneal instillation of 2.5% glucose. All animals were anaesthetized and intensively monitored. In vivo brain and muscle water was determined by magnetic resonance imaging and related to the plasma sodium concentration. Muscle water content increased less than expected as a result of pure dilution, and muscle sodium content decreased significantly (by 28%). Sodium was redistributed to the peritoneal fluid, resulting in a significantly reduced plasma volume. This shows that the i.p. model induces hypovolaemic hyponatraemia and not dilutional/SIADH hyponatraemia. Brain oedema evolved, but brain sodium content decreased significantly (by 21%). To conclude, the i.p. model induces hypovolaemic hyponatraemia attributable to sodium redistribution and not water dilution. The large reduction in brain sodium is probably attributable to the specific mechanism that causes the hyponatraemia. This is not accounted for in the current understanding of the brain response to acute hyponatraemia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F
2015-01-01
Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. PMID:25950469
Bortolussi, G; Codarin, E; Antoniali, G; Vascotto, C; Vodret, S; Arena, S; Cesaratto, L; Scaloni, A; Tell, G; Muro, A F
2015-05-07
Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.
Cao, Lu; Walker, Mary P; Vaidya, Naveen K; Fu, Mingui; Kumar, Santosh; Kumar, Anil
2016-09-01
Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy, generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6-h exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7, and p-Bcl-2/Beclin-1 were also involved, and this was confirmed by using selective inhibitors and small interfering RNAs (siRNAs). In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death.
Cao, Lu; Walker, Mary P; Vaidya, Naveen K; Fu, Mingui; Kumar, Santosh; Kumar, Anil
2015-01-01
Cocaine, a commonly used drug of abuse, has been shown to cause neuropathological dysfunction and damage in the human brain. However, the role of autophagy in this process is not defined. Autophagy generally protective in nature, can also be destructive leading to autophagic cell death. This study was designed to investigate whether cocaine induces autophagy in the cells of CNS origin. We employed astrocyte, the most abundant cell in the CNS, to define the effects of cocaine on autophagy. We measured levels of the autophagic marker protein LC3II in SVGA astrocytes after exposure with cocaine. The results showed that cocaine caused an increase in LC3II level in a dose- and time-dependent manner, with the peak observed at 1 mM cocaine after 6 hours exposure. This result was also confirmed by detecting LC3II in SVGA astrocytes using confocal microscopy and transmission electron microscopy. Next, we sought to explore the mechanism by which cocaine induces the autophagic response. We found that cocaine-induced autophagy was mediated by sigma 1 receptor, and autophagy signaling proteins p-mTOR, Atg5, Atg7 and p-Bcl-2/Beclin-1 were also involved and this was confirmed by using selective inhibitors and siRNAs. In addition, we found that chronic treatment with cocaine resulted in cell death, which is caspase-3 independent, and can be ameliorated by autophagy inhibitor. Therefore, this study demonstrated that cocaine induces autophagy in astrocytes and is associated with autophagic cell death. PMID:26243186
Vigneron, C; Labeye, V; Cour, M; Hannoun, S; Grember, A; Rampon, F; Cotton, F
2016-01-01
Previous studies have shown that a loss of distinction between gray matter (GM) and white matter (WM) on unenhanced CT scans was predictive of poor outcome after cardiac arrest. The aim of this study was to identify a marker/predictor of imminent brain death. In this retrospective study, 15 brain-dead patients after anoxia and cardiac arrest were included. Patients were paired (1:1) with normal control subjects. Only patients' unenhanced CT scans performed before brain death and during the 24 hours after initial signs were analyzed. WM and GM densities were measured in predefined regions of interest (basal ganglia level, centrum semi-ovale level, high convexity level, brainstem level). At each level, GM and WM density and GM/WM ratio for brain-dead patients and normal control subjects were compared using the Wilcoxon signed-rank test. At each level, a lower GM/WM ratio and decreased GM and WM densities were observed in brain-dead patients' CT scans when compared with normal control subject CT scans. A cut-off value of 1.21 at the basal ganglia level was identified, below which brain death systematically occurred. GM/WM dedifferentiation on unenhanced CT scan is measurable before the occurrence of brain death, highlighting its importance in brain death prediction. The mechanism of GM/WM differentiation loss could be explained by the lack of oxygen caused by ischemia initially affecting the mitochondrial system. Copyright © 2016 Elsevier Inc. All rights reserved.
α-Synuclein fibril-induced paradoxical structural and functional defects in hippocampal neurons.
Froula, Jessica M; Henderson, Benjamin W; Gonzalez, Jose Carlos; Vaden, Jada H; Mclean, John W; Wu, Yumei; Banumurthy, Gokulakrishna; Overstreet-Wadiche, Linda; Herskowitz, Jeremy H; Volpicelli-Daley, Laura A
2018-05-01
Neuronal inclusions composed of α-synuclein (α-syn) characterize Parkinson's Disease (PD) and Dementia with Lewy bodies (DLB). Cognitive dysfunction defines DLB, and up to 80% of PD patients develop dementia. α-Syn inclusions are abundant in the hippocampus, yet functional consequences are unclear. To determine if pathologic α-syn causes neuronal defects, we induced endogenous α-syn to form inclusions resembling those found in diseased brains by treating hippocampal neurons with α-syn fibrils. At seven days after adding fibrils, α-syn inclusions are abundant in axons, but there is no cell death at this time point, allowing us to assess for potential alterations in neuronal function that are not caused by neuron death. We found that exposure of neurons to fibrils caused a significant reduction in mushroom spine densities, adding to the growing body of literature showing that altered spine morphology is a major pathologic phenotype in synucleinopathies. The reduction in spine densities occurred only in wild type neurons and not in neurons from α-syn knockout mice, suggesting that the changes in spine morphology result from fibril-induced corruption of endogenously expressed α-syn. Paradoxically, reduced postsynaptic spine density was accompanied by increased frequency of miniature excitatory postsynaptic currents (EPSCs) and presynaptic docked vesicles, suggesting enhanced presynaptic function. Action-potential dependent activity was unchanged, suggesting compensatory mechanisms responding to synaptic defects. Although activity at the level of the synapse was unchanged, neurons exposed to α-syn fibrils, showed reduced frequency and amplitudes of spontaneous Ca 2+ transients. These findings open areas of research to determine the mechanisms that alter neuronal function in brain regions critical for cognition at time points before neuron death.
Culmsee, Carsten; Siewe, Jan; Junker, Vera; Retiounskaia, Marina; Schwarz, Stephanie; Camandola, Simonetta; El-Metainy, Shahira; Behnke, Hagen; Mattson, Mark P; Krieglstein, Josef
2003-09-17
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 precedes apoptosis in many cell types. Controversial reports exist on the role of the transcription factor nuclear factor-kappaB (NF-kappaB) in p53-mediated apoptosis, depending on the cell type and experimental conditions. Therefore, we sought to elucidate the role of NF-kappaB in p53-mediated neuron death. In cultured neurons DNA damaging compounds induced activation of p53, whereas NF-kappaB activity declined significantly. The p53 inhibitor pifithrin-alpha (PFT) preserved NF-kappaB activity and protected neurons against apoptosis. Immunoprecipitation experiments revealed enhanced p53 binding to the transcriptional cofactor p300 after induction of DNA damage, whereas binding of p300 to NF-kappaB was reduced. In contrast, PFT blocked the interaction of p53 with the cofactor, whereas NF-kappaB binding to p300 was enhanced. Most interestingly, similar results were observed after oxygen glucose deprivation in cultured neurons and in ischemic brain tissue. Ischemia-induced repression of NF-kappaB activity was prevented and brain damage was reduced by the p53 inhibitor PFT in a dose-dependent manner. It is concluded that a balanced competitive interaction of p53 and NF-kappaB with the transcriptional cofactor p300 exists in neurons. Exposure of neurons to lethal stress activates p53 and disrupts NF-kappaB binding to p300, thereby blocking NF-kappaB-mediated survival signaling. Inhibitors of p53 provide pronounced neuroprotective effects because they block p53-mediated induction of cell death and concomitantly enhance NF-kappaB-induced survival signaling.
Cofilin Inhibition Restores Neuronal Cell Death in Oxygen-Glucose Deprivation Model of Ischemia.
Madineni, Anusha; Alhadidi, Qasim; Shah, Zahoor A
2016-03-01
Ischemia is a condition associated with decreased blood supply to the brain, eventually leading to death of neurons. It is associated with a diverse cascade of responses involving both degenerative and regenerative mechanisms. At the cellular level, the changes are initiated prominently in the neuronal cytoskeleton. Cofilin, a cytoskeletal actin severing protein, is known to be involved in the early stages of apoptotic cell death. Evidence supports its intervention in the progression of disease states like Alzheimer's and ischemic kidney disease. In the present study, we have hypothesized the possible involvement of cofilin in ischemia. Using PC12 cells and mouse primary cultures of cortical neurons, we investigated the potential role of cofilin in ischemia in two different in vitro ischemic models: chemical induced oxidative stress and oxygen-glucose deprivation/reperfusion (OGD/R). The expression profile studies demonstrated a decrease in phosphocofilin levels in all models of ischemia, implying stress-induced cofilin activation. Furthermore, calcineurin and slingshot 1L (SSH) phosphatases were found to be the signaling mediators of the cofilin activation. In primary cultures of cortical neurons, cofilin was found to be significantly activated after 1 h of OGD. To delineate the role of activated cofilin in ischemia, we knocked down cofilin by small interfering RNA (siRNA) technique and tested the impact of cofilin silencing on neuronal viability. Cofilin siRNA-treated neurons showed a significant reduction of cofilin levels in all treatment groups (control, OGD, and OGD/R). Additionally, cofilin siRNA-reduced cofilin mitochondrial translocation and caspase 3 cleavage, with a concomitant increase in neuronal viability. These results strongly support the active role of cofilin in ischemia-induced neuronal degeneration and apoptosis. We believe that targeting this protein mediator has a potential for therapeutic intervention in ischemic brain injury and stroke.
Chung, Mi Ja; Lee, Sanghyun; Park, Yong Il; Lee, Jisun; Kwon, Ki Han
2016-03-01
We investigated the neuroprotective effects and action mechanism of three major compounds [daucosterol (Dau), pectolinarin (Pec), and astragalin (Ast)] isolated from edible plants against H2O2-induced cell death of human brain neuroblastoma SK-N-SH cells. Cytotoxicity was determined by MTT and lactate dehydrogenase (LDH) assays. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by TUNEL assay. The formation of reactive oxygen species (ROS), expression of antioxidant enzymes and phosphorylation of mitogen-activated protein kinase (MAPK) were determined by 2,7-dichlorofluorescein diacetate (DCF-DA) assay, RT-PCR, and western blotting, respectively. The ethyl acetate fractions from Cirsium setidens (CSEA) and Aster scaber (ASEA) showed neuroprotective effects in SK-N-SH cells. The phytochemicals were isolated from CSEA and ASEA and identified by spectral analyses, as β-sitosterol, Dau, Pec, Ast, or isoquercitrin. Pretreatment with Dau, Pec, or Ast showed protective effects against H2O2-induced cell death and inhibited ROS generation by oxidative stress. HO-1 mRNA and protein levels were increased by the presence of H2O2 and were further elevated by pretreatment with Dau and Ast. Dau pretreatment resulted in further increases of H2O2-induced enhancement in levels of CAT and SOD2. Pretreatment with Dau, Pec, and Ast inhibited phosphorylation of MAPK, such as extracellular protein regulated protein kinase, p38, and c-Jun N-terminal kinase by H2O2. Dau exerts its neuroprotective effects by down regulation of MAPK pathways and upregulation of the HO-1, CAT and SOD2 antioxidant genes and is associated with reduced oxidative stress in SK-N-SH cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Shah, Seema K; Kasper, Kenneth; Miller, Franklin G
2015-04-01
Vital organ transplantation is premised on 'the dead donor rule': donors must be declared dead according to medical and legal criteria prior to donation. However, it is controversial whether individuals diagnosed as 'brain dead' are really dead in accordance with the established biological conception of death-the irreversible cessation of the functioning of the organism as a whole. A basic understanding of brain death is also relevant for giving valid, informed consent to serve as an organ donor. There is therefore a need for reliable empirical data on public understanding of brain death and vital organ transplantation. We conducted a review of the empirical literature that identified 43 articles with approximately 18,603 study participants. These data demonstrate that participants generally do not understand three key issues: (1) uncontested biological facts about brain death, (2) the legal status of brain death and (3) that organs are procured from brain dead patients while their hearts are still beating and before their removal from ventilators. These data suggest that, despite scholarly claims of widespread public support for organ donation from brain dead patients, the existing data on public attitudes regarding brain death and organ transplantation reflect substantial public confusion. Our review raises questions about the validity of consent for vital organ transplantation and suggests that existing data are of little assistance in developing policy proposals for organ transplantation from brain dead patients. New approaches to rigorous empirical research with educational components and evaluations of understanding are urgently needed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration.
Creus-Muncunill, Jordi; Rué, Laura; Alcalá-Vida, Rafael; Badillos-Rodríguez, Raquel; Romaní-Aumedes, Joan; Marco, Sonia; Alberch, Jordi; Perez-Otaño, Isabel; Malagelada, Cristina; Pérez-Navarro, Esther
2018-02-19
Rictor associates with mTOR to form the mTORC2 complex, which activity regulates neuronal function and survival. Neurodegenerative diseases are characterized by the presence of neuronal dysfunction and cell death in specific brain regions such as for example Huntington's disease (HD), which is characterized by the loss of striatal projection neurons leading to motor dysfunction. Although HD is caused by the expression of mutant huntingtin, cell death occurs gradually suggesting that neurons have the capability to activate compensatory mechanisms to deal with neuronal dysfunction and later cell death. Here, we analyzed whether mTORC2 activity could be altered by the presence of mutant huntingtin. We observed that Rictor levels are specifically increased in the striatum of HD mouse models and in the putamen of HD patients. Rictor-mTOR interaction and the phosphorylation levels of Akt, one of the targets of the mTORC2 complex, were increased in the striatum of the R6/1 mouse model of HD suggesting increased mTORC2 signaling. Interestingly, acute downregulation of Rictor in striatal cells in vitro reduced mTORC2 activity, as shown by reduced levels of phospho-Akt, and increased mutant huntingtin-induced cell death. Accordingly, overexpression of Rictor increased mTORC2 activity counteracting cell death. Furthermore, normalization of endogenous Rictor levels in the striatum of R6/1 mouse worsened motor symptoms suggesting an induction of neuronal dysfunction. In conclusion, our results suggest that increased Rictor striatal levels could counteract neuronal dysfunction induced by mutant huntingtin.
Yu, Zhanyang; Li, Zhaoyu; Liu, Ning; Jizhang, Yunneng; McCarthy, Thomas J; Tedford, Clark E; Lo, Eng H; Wang, Xiaoying
2015-06-01
Near infrared radiation (NIR) has been shown to be neuroprotective against neurological diseases including stroke and brain trauma, but the underlying mechanisms remain poorly understood. In the current study we aimed to investigate the hypothesis that NIR may protect neurons by attenuating oxygen-glucose deprivation (OGD)-induced nitric oxide (NO) production and modulating cell survival/death signaling. Primary mouse cortical neurons were subjected to 4 h OGD and NIR was applied at 2 h reoxygenation. OGD significantly increased NO level in primary neurons compared to normal control, which was significantly ameliorated by NIR at 5 and 30 min post-NIR. Neither OGD nor NIR significantly changed neuronal nitric oxide synthase (nNOS) mRNA or total protein levels compared to control groups. However, OGD significantly increased nNOS activity compared to normal control, and this effect was significantly diminished by NIR. Moreover, NIR significantly ameliorated the neuronal death induced by S-Nitroso-N-acetyl-DL-penicillamine (SNAP), a NO donor. Finally, NIR significantly rescued OGD-induced suppression of p-Akt and Bcl-2 expression, and attenuated OGD-induced upregulation of Bax, BAD and caspase-3 activation. These results suggest NIR may protect against OGD at least partially through reducing NO production by down-regulating nNOS activity, and modulating cell survival/death signaling.
Ebrahimzadeh-Bideskan, Ali-Reza; Hami, Javad; Alipour, Fatemeh; Haghir, Hossein; Fazel, Ali-Reza; Sadeghi, Akram
2016-10-01
Lead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e. Ascorbic acid and Garlic) might protect against lead-induced neuronal cell damage. The aim of the present study was to investigate the protective effects of Ascorbic acid and Garlic administration during pregnancy and lactation on lead-induced apoptosis in rat developing hippocampus. Timed pregnant Wistar rats were administrated with Lead (1500 ppm) via drinking water (Pb group) or lead plus Ascorbic acid (Pb + AA Group, 500 mg/kg, IP), or lead plus Garlic Extract (Pb + G Group, 1 ml garlic juice/100 g BW, via Gavage) from early gestation (GD 0) until postnatal day 50 (PN 50). At the end of experiments, the pups' brains were carefully dissected. To identify neuronal death, the brain sections were stained with TUNEL assay. Mean of blood and brain lead levels increased significantly in Pb group comparing to other studied groups (P < 0.01). There was significant reduction in blood and brain lead level in Pb + AA and Pb + G groups when compared to those of Pb group (P < 0.01). The mean number of TUNEL positive cells in the CA1, CA3, and DG was significantly lower in the groups treated by either Ascorbic acid or Garlic (P < 0.05). Administration of Ascorbic acid and Garlic during pregnancy and lactation protect against lead-induced neuronal cell apoptosis in the hippocampus of rat pups partially via the reduction of Pb concentration in the blood and in the brain.
Shiha, Ahmed A; de la Rosa, Rubén Fernández; Delgado, Mercedes; Pozo, Miguel A; García-García, Luis
2017-01-01
Epilepsy is a central disorder associated with neuronal damage and brain hypometabolism. It has been reported that antidepressant drugs show anticonvulsant and neuroprotective effects in different animal models of seizures and epilepsy. The purpose of this study was to investigate the eventual short-term brain impairment induced by a single low convulsant dose of the potassium channel blocker 4-aminopyridine (4-AP) and the eventual neuroprotective effects exerted by fluoxetine, a prototypical selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI). In vivo 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and several histological assessments were carried out in adult male rats after i.p. administration of 3 mg/kg 4-AP for evaluating eventual brain metabolism impairment and signs of hippocampal damage. We also evaluated the effects of a short-term fluoxetine treatment (10 mg/kg, i.p. for 7 days) in this seizure model. [18F]FDG PET analysis revealed no changes in the regional brain metabolism on day 3 after 4-AP injection. The histological assessments revealed signs of damage in the hippocampus, a brain area usually affected by seizures. Thus, reactive gliosis and a significant increase in the expression of caspase-9 were found in the aforementioned brain area. By contrast, we observed no signs of neurodegeneration or neuronal death. Regarding the effects of fluoxetine, this SSRI showed beneficial neurologic effects, since it significantly increased the seizure latency time and reduced the abovementioned 4-AP-induced hippocampal damage markers. Overall, our results point to SSRIs and eventually endogenous 5-HT as neuroprotective agents against convulsant-induced hippocampal damage. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
BAD and KATP channels regulate neuron excitability and epileptiform activity
Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L
2018-01-01
Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad (BCL-2 agonist of cell death) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (KATP) channels. Here we investigated the effect of BAD manipulation on KATP channel activity and excitability in acute brain slices. We found that BAD’s influence on neuronal KATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal KATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of KATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a ‘dentate gate’ function that is reinforced by increased KATP channel activity. PMID:29368690
Okabe, Akishi; Urano, Yasuomi; Itoh, Sayoko; Suda, Naoto; Kotani, Rina; Nishimura, Yuki; Saito, Yoshiro; Noguchi, Noriko
2013-01-01
Lipid peroxidation products have been known to induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through up-regulation of antioxidant compounds and enzymes. 24S-hydroxycholesterol (24SOHC) which is endogenously produced oxysterol in the brain plays an important role in maintaining brain cholesterol homeostasis. In this study, we evaluated adaptive responses induced by brain-specific oxysterol 24SOHC in human neuroblastoma SH-SY5Y cells. Cells treated with 24SOHC at sub-lethal concentrations showed significant reduction in cell death induced by subsequent treatment with 7-ketocholesterol (7KC) in both undifferentiated and retinoic acid-differentiated SH-SY5Y cells. These adaptive responses were also induced by other oxysterols such as 25-hydroxycholesterol and 27-hydroxycholesterol which are known to be ligands of liver X receptor (LXR). Co-treatment of 24SOHC with 9-cis retinoic acid, a retinoid X receptor ligand, enhanced the adaptive responses. Knockdown of LXRβ by siRNA diminished the adaptive responses induced by 24SOHC almost completely. The treatment with 24SOHC induced the expression of LXR target genes, such as ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1). The 24SOHC-induced adaptive responses were significantly attenuated by siRNA for ABCG1 but not by siRNA for ABCA1. Taken together, these results strongly suggest that 24SOHC at sub-lethal concentrations induces adaptive responses via transcriptional activation of LXR signaling pathway, thereby protecting neuronal cells from subsequent 7KC-induced cytotoxicity. PMID:24371802
Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury.
Reis, Cesar; Akyol, Onat; Araujo, Camila; Huang, Lei; Enkhjargal, Budbazar; Malaguit, Jay; Gospodarev, Vadim; Zhang, John H
2017-01-11
Cardiac arrest (CA) is a well-known cause of global brain ischemia. After CA and subsequent loss of consciousness, oxygen tension starts to decline and leads to a series of cellular changes that will lead to cellular death, if not reversed immediately, with brain edema as a result. The electroencephalographic activity starts to change as well. Although increased intracranial pressure (ICP) is not a direct result of cardiac arrest, it can still occur due to hypoxic-ischemic encephalopathy induced changes in brain tissue, and is a measure of brain edema after CA and ischemic brain injury. In this review, we will discuss the pathophysiology of brain edema after CA, some available techniques, and methods to monitor brain oxygen, electroencephalography (EEG), ICP (intracranial pressure), and microdialysis on its measurement of cerebral metabolism and its usefulness both in clinical practice and possible basic science research in development. With this review, we hope to gain knowledge of the more personalized information about patient status and specifics of their brain injury, and thus facilitating the physicians' decision making in terms of which treatments to pursue.
Tang, Minke; Alexander, Henry; Clark, Robert S B; Kochanek, Patrick M; Kagan, Valerian E; Bayir, Hülya
2010-01-01
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
Severe peri-ictal respiratory dysfunction is common in Dravet syndrome
Kim, YuJaung; Bravo, Eduardo; Thirnbeck, Caitlin K.; Smith-Mellecker, Lori A.; Kim, Se Hee; Gehlbach, Brian K.; Laux, Linda C.; Zhou, Xiuqiong; Nordli, Douglas R.
2018-01-01
Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly due to mutations of the sodium channel gene SCN1A. Patients with DS have a high risk of sudden unexplained death in epilepsy (SUDEP), widely believed to be due to cardiac mechanisms. Here we show that patients with DS commonly have peri-ictal respiratory dysfunction. One patient had severe and prolonged postictal hypoventilation during video EEG monitoring and died later of SUDEP. Mice with an Scn1aR1407X/+ loss-of-function mutation were monitored and died after spontaneous and heat-induced seizures due to central apnea followed by progressive bradycardia. Death could be prevented with mechanical ventilation after seizures were induced by hyperthermia or maximal electroshock. Muscarinic receptor antagonists did not prevent bradycardia or death when given at doses selective for peripheral parasympathetic blockade, whereas apnea, bradycardia, and death were prevented by the same drugs given at doses high enough to cross the blood-brain barrier. When given via intracerebroventricular infusion at a very low dose, a muscarinic receptor antagonist prevented apnea, bradycardia, and death. We conclude that SUDEP in patients with DS can result from primary central apnea, which can cause bradycardia, presumably via a direct effect of hypoxemia on cardiac muscle. PMID:29329111
Brain death and marginal grafts in liver transplantation.
Jiménez-Castro, M B; Gracia-Sancho, J; Peralta, C
2015-06-04
It is well known that most organs for transplantation are currently procured from brain-dead donors; however, the presence of brain death is an important risk factor in liver transplantation. In addition, one of the mechanisms to avoid the shortage of liver grafts for transplant is the use of marginal livers, which may show higher risk of primary non-function or initial poor function. To our knowledge, very few reviews have focused in the field of liver transplantation using brain-dead donors; moreover, reviews that focused on both brain death and marginal grafts in liver transplantation, both being key risk factors in clinical practice, have not been published elsewhere. The present review aims to describe the recent findings and the state-of-the-art knowledge regarding the pathophysiological changes occurring during brain death, their effects on marginal liver grafts and summarize the more controversial topics of this pathology. We also review the therapeutic strategies designed to date to reduce the detrimental effects of brain death in both marginal and optimal livers, attempting to explain why such strategies have not solved the clinical problem of liver transplantation.
[Revised act on organ transplantation: a pediatrician's viewpoint].
Mizuguchi, Masashi
2010-06-01
In Japan, from July 2010, an infant or a child with brain death will be legally regarded as a candidate of donor for organ transplantation under the consent of his or her family members. Official diagnostic criteria of brain death in children are currently under compilation. The causes and incidence of brain death remarkably differ among individuals belonging to different age groups. Secondary brain damages resulting from asphyxia, drowning, hypoxemia, and cardiopulmonary arrest more commonly occur in childhood than in adulthood. Child abuse or neglect is suspected to be involved in many of the cases of brain death. The current Japanese diagnostic criteria hitherto used for adults require several modifications before these can be applied to infants and children. According to the requirements of the new act, abused or neglected infants and children must be excluded from the category of donor candidates. Neonates and young infants below 12 weeks of corrected age will also be excluded, because neurological diagnosis of brain death is difficult in these individuals.
Wei, Rong; Zhang, Rufang; Xie, Yewei; Shen, Li; Chen, Fang
2015-01-01
Deep hypothermic circulatory arrest (DHCA) is a cerebral protection technique that has been used in the operations involving the aortic arch and brain aneurysm for decades. We previous showed that DHCA treated rats developed a significant oxidative stress and apoptosis in neurons. We here intend to investigate the protective the effect of hydrogen against oxidative stress-induced cell injury and the involved mechanisms using an in vitro experimental model of hypoxia/reoxygenation (H/R) on HT-22 cells. The model of H/R was established using an airtight culture container and the anaeropack. Measurement of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) production was used H2DCFDA and JC-1 staining. Western blot was used for the quantification of Akt, p-Akt, Bcl-2, Bax and cleaved caspase-3 proteins. The microRNA (miRNA) profile in hippocampal neurons from rat model of DHCA was determined by miRNA deep sequencing. The elevation of ROS and reduction of MMP were significantly induced by the treatment with hypoxia for 18 h followed by reoxygenation for 6 h. Hydrogen treatment significantly reduced H/R-caused cell death. The levels of p-Akt (Ser 473) and Bcl-2 were significantly increased while Bax and cleaved caspase-3 were decreased by hydrogen treatment on the model of H/R. The expression of miR-200 family was significantly elevated in model of DHCA and H/R. Hydrogen administration inhibited the H/R-induced expression of miR-200 family in HT-22 cells. In addition, inhibition of miR-200 family suppressed H/R-caused cell death through reducing ROS production. These results suggest that H/R causes oxidative stress-induced cell death and that the hydrogen protects against H/R-induced cell death in HT22 cells, in part, due to reducing expression of miR-200 family. © 2015 S. Karger AG, Basel.
Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei
2018-06-01
Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shin, Jin A; Jeong, Sae Im; Kim, Hye Won; Jang, Gyeonghui; Ryu, Dong-Ryeol; Ahn, Young-Ho; Choi, Ji Ha; Choi, Youn-Hee; Park, Eun-Mi
2018-06-01
The adenosine triphosphate-binding cassette efflux transporter ABCG2, which is located in the blood-brain barrier limits the entry of endogenous compounds and xenobiotics into the brain, and its expression and activity are regulated by estrogen. This study was aimed to define the role of ABCG2 in estrogen-mediated neuroprotection against ischemic injury. ABCG2 protein levels before and after ischemic stroke were increased in the brain of female mice by ovariectomy, which were reversed by estrogen replacement. In brain endothelial cell line bEnd.3, estrogen reduced the basal ABCG2 protein level and efflux activity and protected cells from ischemic injury without inducing ABCG2 expression. When bEnd.3 cells were transfected with ABCG2 small interfering RNA, ischemia-induced cell death was reduced, and the intracellular concentration of glutathione, an antioxidant that is transported by ABCG2, was increased. In addition, after ischemic stroke in ovariectomized mice, estrogen prevented the reduction of intracellular glutathione level in brain microvessels. These data suggested that the suppression of ABCG2 by estrogen is involved in neuroprotection against ischemic injury by increasing intracellular glutathione, and that the modulation of ABCG2 activity offers a therapeutic target for brain diseases in estrogen-deficient aged women. Copyright © 2018 Elsevier Inc. All rights reserved.
Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus.
Gonzalez-Riano, Carolina; Tapia-González, Silvia; García, Antonia; Muñoz, Alberto; DeFelipe, Javier; Barbas, Coral
2017-08-01
Understanding the human brain is the ultimate goal in neuroscience, but this is extremely challenging in part due to the fact that brain tissue obtained from autopsy is practically the only source of normal brain tissue and also since changes at different levels of biological organization (genetic, molecular, biochemical, anatomical) occur after death due to multiple mechanisms. Here we used metabolomic and anatomical techniques to study the possible relationship between post-mortem time (PT)-induced changes that may occur at both the metabolomics and anatomical levels in the same brains. Our experiments have mainly focused on the hippocampus of the mouse. We found significant metabolomic changes at 2 h PT, whereas the integrity of neurons and glia, at the anatomical/ neurochemical level, was not significantly altered during the first 5 h PT for the majority of histological markers.
Wu, Carol H. Y.; Chan, Julie Y. H.; Chan, Samuel H. H.; Chang, Alice Y. W.
2011-01-01
Background Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. Methodology/Principal Findings In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. Conclusions/Significance We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality. PMID:22110641
Ziad-Miller, Amna; Elamin, Elamin M.
2014-01-01
How one defines death may vary. It is important for clinicians to recognize those aspects of a patient’s religious beliefs that may directly influence medical care and how such practices may interface with local laws governing the determination of death. Debate continues about the validity and certainty of brain death criteria within Islamic traditions. A search of PubMed, Scopus, EMBASE, Web of Science, PsycNet, Sociological Abstracts, DIALOGUE ProQuest, Lexus Nexus, Google, and applicable religious texts was conducted to address the question of whether brain death is accepted as true death among Islamic scholars and clinicians and to discuss how divergent opinions may affect clinical care. The results of the literature review inform this discussion. Brain death has been acknowledged as representing true death by many Muslim scholars and medical organizations, including the Islamic Fiqh Academies of the Organization of the Islamic Conference and the Muslim World League, the Islamic Medical Association of North America, and other faith-based medical organizations as well as legal rulings by multiple Islamic nations. However, consensus in the Muslim world is not unanimous, and a sizable minority accepts death by cardiopulmonary criteria only. PMID:25287999
2014-01-01
Background Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas. Results Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2 × LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus. Conclusion Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes and subsequent long term neurological effects induced by nerve agents. PMID:24708580
Olgun, Gokhan; Newey, Christopher R; Ardelt, Agnieszka
2015-11-01
The determination of brain death in neonates, infants, children and adults relies on a clinical diagnosis based on the absence of neurological function with a known irreversible cause of brain injury. Evaluation of pupil size and non-reactivity is a requisite for determination of brain death. There are no studies in the literature that quantitatively assess pupil size in brain dead children and adults. Infants, children and adults diagnosed with brain death were included in the study. Pupils were measured with a quantitative pupillometer (Forsite; Neuroptics, Irvine, CA, USA). Median, minimum and maximum pupil sizes were documented and the results were adjudicated for age, vasopressor use and temperature. Median right and left pupil sizes were 5.01 ± 0.85 mm and 5.12 ± 0.87 mm, respectively, with a range between 3.69 and 7.34 mm. Paediatric pupils were larger than adult pupils (right pupil 5.53 vs 4.73 mm p: 0.018; left pupil 5.87 vs 4.77 mm P: 0.03), and there was no correlation of pupil size with temperature or increasing number of vasopressors. This is the first study in the literature objectively evaluating pupil sizes in infants, children and adults diagnosed with brain death. We observed variation between observed pupil size and that expected based on brain death determination guidelines.
Segura, T; Jiménez, P; Jerez, P; García, F; Córcoles, V
2002-04-01
Throughout the world, is fully accepted that a person is dead when brain death exists. In most situations, neurological criteria permit the diagnosis of brain death, but in some instances, as when high-dose barbiturate therapy has been used, confirmatory testing are required by law. We report the case of a 17 year-old women who suffered high-dose barbiturate therapy due to post traumatic intracranial hypertension. During the period of the barbiturate infusion and until six days after the suppression of this therapy, neurological exploration and EEG findings seem to confirm brain death, while transcranial Doppler (TCD) study remained normal. TCD is a fast, simple and accurate confirmatory testing in the determination of brain death and its findings are not affected by high-dose barbiturate therapy. We think that TCD must be present in all hospitals where mechanical ventilation and support of patients are carried out.
Use of Ancillary Tests When Determining Brain Death in Pediatric Patients in the United States.
Lewis, Ariane; Adams, Nellie; Chopra, Arun; Kirschen, Matthew P
2017-10-01
Although pediatric brain death guidelines stipulate when ancillary testing should be used during brain death determination, little is known about the way these recommendations are implemented in clinical practice. We conducted a survey of pediatric intensivists and neurologists in the United States on the use of ancillary testing. Although most respondents noted they only performed an ancillary test if the clinical examination and apnea test could not be completed, 20% of 195 respondents performed an ancillary test for other reasons, including (1) to convince a family that objected to the brain death determination that a patient is truly dead (n = 21), (2) personal preference (n = 14), and (3) institutional requirement (n = 5). Our findings suggest that pediatricians use ancillary tests for a variety of reasons during brain death determination. Medical societies and governmental regulatory bodies must reinforce the need for homogeneity in practice.
Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M
2017-04-25
Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.
Hu, Yingying; Wang, Zhouguang; Liu, Yanlong; Pan, Shulin; Zhang, Hao; Fang, Mingchu; Jiang, Huai; Yin, Jiayu; Zou, Shuangshuang; Li, Zhenmao; Zhang, Hongyu; Lin, Zhenlang; Xiao, Jian
2017-07-13
Melatonin has neuroprotective effects in many diseases, including neonatal hypoxic-ischaemic (HI) brain injury. The purpose of this study was to evaluate the neuroprotective effects of melatonin both in vivo and in vitro and associated molecular mechanisms behind these effects. Postnatal day 7 male and female rat pups were subjected to unilateral HI, melatonin was injected intraperitoneally 1h before HI and an additional six doses were administered at 24h intervals. The pups were sacrificed at 24h and 7 d after HI. Pre-treatment with melatonin significantly reduced brain damage at 7 d after HI, with 15mg/kg melatonin achieving over 30% recovery in tissue loss compared to vehicle-treated animals. Autophagy and apoptotic cell death as indicated by autophagy associated proteins, cleaved caspase 3 and Tunel staining, was significantly inhibited after melatonin treatment in vivo as well as in PC12 cells. Melatonin treatment also significantly increased the GAP43 in the cortex. In conclusion, melatonin treatment reduced neonatal rat brain injury after HI, and this appeared to be related to inhibiting autophagy as well as reducing apoptotic cell death. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng
2018-01-01
Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.
Uribe, Valeria; Wong, Bibiana K Y; Graham, Rona K; Cusack, Corey L; Skotte, Niels H; Pouladi, Mahmoud A; Xie, Yuanyun; Feinberg, Konstantin; Ou, Yimiao; Ouyang, Yingbin; Deng, Yu; Franciosi, Sonia; Bissada, Nagat; Spreeuw, Amanda; Zhang, Weining; Ehrnhoefer, Dagmar E; Vaid, Kuljeet; Miller, Freda D; Deshmukh, Mohanish; Howland, David; Hayden, Michael R
2012-05-01
Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.
Goñi-de-Cerio, Felipe; Alvarez, Antonia; Lara-Celador, Idoia; Alvarez, Francisco J; Alonso-Alconada, Daniel; Hilario, Enrique
2012-10-01
The aim of this work was to analyze the effect of MgSO(4) treatment in the brain after hypoxic-ischemic (HI) injury in premature fetal lambs. Injury was induced by partial occlusion of umbilical cord for 60 min, and then the preterm lambs (80-90% of gestation) were randomly assigned to one of the following groups: control group, in which the animals were managed by conventional mechanical ventilation for 3 hr; 3 hr postpartial cord occlusion (3-hr-PCO) group, in which injured animals were managed by ventilation and then sacrificed 3 hr after HI; and MgSO(4) group, in which animals received 400 mg/kg MgSO(4) for 20 min soon after HI was induced and were managed by ventilation for 3 hr. Brains were analyzed for apoptosis by TUNEL assay. Cell viability and intracellular state studies were assessed by flow cytometry. The delayed death index was significantly increased in the 3-hr-PCO group in comparison with control. Administration of MgSO(4) elicited a delay in cell death that was similar to that in the control group. The 3-hr-PCO group showed a significantly higher concentration of reactive oxygen species, mitochondrial damage, and intracellular calcium in comparison with control and MgSO(4) - treated groups. Our results suggest that MgSO(4) treatment might have potential therapeutic benefits after the HI event. Copyright © 2012 Wiley Periodicals, Inc.
Faria, Juliana; Barbosa, Joana; Leal, Sandra; Afonso, Luís Pedro; Lobo, João; Moreira, Roxana; Queirós, Odília; Carvalho, Félix; Dinis-Oliveira, Ricardo Jorge
2017-06-15
Tramadol and tapentadol are extensively prescribed for the treatment of moderate to severe pain. Although these drugs are very effective in pain treatment, the number of intoxications and deaths due to both opioids is increasing, and the underlying toxic mechanisms are not fully understood. The present work aimed to study the potential biochemical and histopathological alterations induced by acute effective (analgesic) doses of tramadol and tapentadol, in Wistar rats. Forty-two male Wistar rats were divided into different groups: a control, administered with normal saline solution, and tramadol- or tapentadol-treated groups (10, 25 or 50mg/kg - typical effective analgesic dose, intermediate and maximum recommended doses, respectively). 24h after intraperitoneal administration, biochemical and oxidative stress analyses were performed in blood, and specimens from brain, lung and heart were taken for histopathological and oxidative stress studies. Both drugs caused an increase in the AST/ALT ratio, in LDH, CK and CK-MB activities in serum samples, and an increase in lactate levels in serum and brain samples. Oxidative damage, namely protein oxidation, was found in heart and lung tissues. In histological analyses, tramadol and tapentadol were found to cause alterations in cell morphology, inflammatory cell infiltrates and cell death in all tissues under study, although tapentadol caused more damage than tramadol. Our results confirmed the risks of tramadol exposure, and demonstrated the higher risk of tapentadol, especially at high doses. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Qian; Wang, Binrong; Zhao, Tianzhi; Zhang, Xiangnan; Tao, Lei; Shi, Jinshan; Sun, Xude; Ding, Qian
2017-01-01
Brain ischemia leads to poor oxygen supply, and is one of the leading causes of brain damage and/or death. Neuroprotective agents are thus in great need for treatment purpose. Using both young and aged primary cultured hippocampal neurons as in vitro models, we investigated the effect of sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, on oxygen-glucose deprivation (OGD) damaged neurons that mimick focal cerebral ischemia/reperfusion (I/R) induced brain injury. NaHS treatment (250 μM) protected both young and aged hippocampal neurons, as indicated by restoring number of primary dendrites by 43.9 and 68.7%, number of dendritic end tips by 59.8 and 101.1%, neurite length by 36.8 and 66.7%, and spine density by 38.0 and 58.5% in the OGD-damaged young and aged neurons, respectively. NaHS treatment inhibited growth-associated protein 43 downregulation, oxidative stress in both young and aged hippocampal neurons following OGD damage. Further studies revealed that NaHS treatment could restore ERK1/2 activation, which was inhibited by OGD-induced protein phosphatase 2 (PP2A) upregulation. Our results demonstrated that NaHS has potent protective effects against neuron injury induced by OGD in both young and aged hippocampal neurons. PMID:28326019
2013-01-01
Background Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson’s disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD. Results We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53. Chromatin immunoprecipitation as well as gel-shift assays showed that parkin bound to the p53 promoter, and this binding was inhibited by S-nitrosylation of parkin. Additionally, nitrosative stress induced apoptosis in cells expressing parkin, and this death was, at least in part, dependent upon p53. In primary mesencephalic cultures, pesticide-induced apoptosis was prevented by inhibition of nitric oxide synthase (NOS). In a mouse model of pesticide-induced PD, both S-nitrosylated (SNO-)parkin and p53 protein levels were increased, while administration of a NOS inhibitor mitigated neuronal death in these mice. Moreover, the levels of SNO-parkin and p53 were simultaneously elevated in postmortem human PD brain compared to controls. Conclusions Taken together, our data indicate that S-nitrosylation of parkin, leading to p53-mediated neuronal cell death, contributes to the pathophysiology of sporadic PD. PMID:23985028
Nakajima, Yuko; Horiuchi, Yutaka; Kamata, Hiroshi; Yukawa, Masayoshi; Kuwabara, Masato; Tsubokawa, Takashi
2010-07-01
Secondary brain damage (SBD) is caused by apoptosis after traumatic brain injury that is classified into concussion and contusion. Brain concussion is temporary unconsciousness or confusion caused by a blow on the head without pathological changes, and contusion is a brain injury with hemorrhage and broad extravasations. In this study, we investigated the time-dependent changes of apoptosis in hippocampus after brain concussion and contusion using rat models. We generated the concussion by dropping a plumb on the dura from a height of 3.5 cm and the contusion by cauterizing the cerebral cortex. SBD was evaluated in the hippocampus by histopathological analyses and measuring caspase-3 activity that induces apoptotic neuronal cell death. The frequency of abnormal neuronal cells with vacuolation or nuclear condensation, or those with DNA fragmentation was remarkably increased at 1 hr after concussion (about 30% for each abnormality) from the pre-injury level (0%) and reached the highest level (about 50% for each) by 48 hrs, whereas the frequency of abnormal neuronal cells was increased at 1 hr after contusion (about 10%) and reached the highest level (about 40%) by 48 hrs. In parallel, caspase-3 activity was increased sevenfold in the hippocampus at 1 hr after concussion and returned to the pre-injury level by 48 hrs, whereas after contusion, caspase-3 activity was continuously increased to the highest level at 48 hrs (fivefold). Thus, anti-apoptotic-cell-death treatment to prevent SBD must be performed by 1 hr after concussion and at latest by 48 hrs after contusion.
Buchner, H; Ferbert, A
2016-02-01
Principally, in the fourth update of the rules for the procedure to finally determine the irreversible cessation of function of the cerebrum, the cerebellum and the brainstem, the importance of an electroencephalogram (EEG), somatosensory evoked potentials (SEP) and brainstem auditory evoked potentials (BAEP) are confirmed. This paper presents the reliability and validity of the electrophysiological diagnosis, discusses the amendments in the fourth version of the guidelines and introduces the practical application, problems and sources of error.An EEG is the best established supplementary diagnostic method for determining the irreversibility of clinical brain death syndrome. It should be noted that residual brain activity can often persist for many hours after the onset of brain death syndrome, particularly in patients with primary brainstem lesions. The derivation and analysis of an EEG requires a high level of expertise to be able to safely distinguish artefacts from primary brain activity. The registration of EEGs to demonstrate the irreversibility of clinical brain death syndrome is extremely time consuming.The BAEPs can only be used to confirm the irreversibility of brain death syndrome in serial examinations or in the rare cases of a sustained wave I or sustained waves I and II. Very often, an investigation cannot be reliably performed because of existing sound conduction disturbances or failure of all potentials even before the onset of clinical brain death syndrome. This explains why BAEPs are only used in exceptional cases.The SEPs of the median nerve can be very reliably derived, are technically simple and with few sources of error. A serial investigation is not required and the time needed for examination is short. For these reasons SEPs are given preference over EEGs and BAEPs for establishing the irreversibility of clinical brain death syndrome.
Asai, Atsushi; Kadooka, Yasuhiro; Aizawa, Kuniko
2012-05-01
As of 2009, the number of donors in Japan is the lowest among developed countries. On July 13, 2009, Japan's Organ Transplant Law was revised for the first time in 12 years. The revised and old laws differ greatly on four primary points: the definition of death, age requirements for donors, requirements for brain-death determination and organ extraction, and the appropriateness of priority transplants for relatives. In the four months of deliberations in the National Diet before the new law was established, various arguments regarding brain death and organ transplantation were offered. An amazing variety of opinions continue to be offered, even after more than 40 years have elapsed since the first heart organ transplant in Japan. Some are of the opinion that with the passage of the revised law, Japan will finally become capable of performing transplants according to global standards. Contrarily, there are assertions that organ transplants from brain-dead donors are unacceptable because they result in organs being taken from living human beings. Considering the current conditions, we will organize and introduce the arguments for and against organ transplants from brain-dead donors in contemporary Japan. Subsequently, we will discuss the primary arguments against organ transplants from brain-dead donors from the perspective of contemporary Japanese views on life and death. After introducing the recent view that brain death should not be regarded as equivalent to the death of a human being, we would like to probe the deeply-rooted views on life and death upon which it is based. © 2010 Blackwell Publishing Ltd.
Villarreal, Alejandro; Rosciszewski, Gerardo; Murta, Veronica; Cadena, Vanesa; Usach, Vanina; Dodes-Traian, Martin M.; Setton-Avruj, Patricia; Barbeito, Luis H.; Ramos, Alberto J.
2016-01-01
Reactive gliosis involving activation and proliferation of astrocytes and microglia, is a widespread but largely complex and graded glial response to brain injury. Astroglial population has a previously underestimated high heterogeneity with cells differing in their morphology, gene expression profile, and response to injury. Here, we identified a subset of reactive astrocytes isolated from brain focal ischemic lesions that show several atypical characteristics. Ischemia-derived astrocytes (IDAs) were isolated from early ischemic penumbra and core. IDA did not originate from myeloid precursors, but rather from pre-existing local progenitors. Isolated IDA markedly differ from primary astrocytes, as they proliferate in vitro with high cell division rate, show increased migratory ability, have reduced replicative senescence and grow in the presence of macrophages within the limits imposed by the glial scar. Remarkably, IDA produce a conditioned medium that strongly induced activation on quiescent primary astrocytes and potentiated the neuronal death triggered by oxygen-glucose deprivation. When re-implanted into normal rat brains, eGFP-IDA migrated around the injection site and induced focal reactive gliosis. Inhibition of gamma secretases or culture on quiescent primary astrocytes monolayers facilitated IDA differentiation to astrocytes. We propose that IDA represent an undifferentiated, pro-inflammatory, highly replicative and migratory astroglial subtype emerging from the ischemic microenvironment that may contribute to the expansion of reactive gliosis. Main Points: Ischemia-derived astrocytes (IDA) were isolated from brain ischemic tissue IDA show reduced replicative senescence, increased cell division and spontaneous migration IDA potentiate death of oxygen-glucose deprived cortical neurons IDA propagate reactive gliosis on quiescent astrocytes in vitro and in vivo Inhibition of gamma secretases facilitates IDA differentiation to astrocytes PMID:27313509
Brain stem death and organ donation.
Davies, C
1996-01-01
Our understanding of the concept and definition of death has changed over time. The British contribution to the body of knowledge on the diagnosis of brain steam death was the publication by the medical royal colleges (1976) of diagnostic criteria. Most literature and research which explores the knowledge and attitudes of nurses towards the concept of brain stem death is from the USA. Several issues which arise from the literature are discussed in relation to organ donation. Further UK-based research is required.
Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.
Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun
2015-08-01
Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.
Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y
2015-07-09
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.
Protective effect of acetyl-L-carnitine on propofol-induced toxicity in embryonic neural stem cells.
Liu, Fang; Rainosek, Shuo W; Sadovova, Natalya; Fogle, Charles M; Patterson, Tucker A; Hanig, Joseph P; Paule, Merle G; Slikker, William; Wang, Cheng
2014-05-01
Propofol is a widely used general anesthetic. A growing body of data suggests that perinatal exposure to general anesthetics can result in long-term deleterious effects on brain function. In the developing brain there is evidence that general anesthetics can cause cell death, synaptic remodeling, and altered brain cell morphology. Acetyl-L-carnitine (L-Ca), an anti-oxidant dietary supplement, has been reported to prevent neuronal damage from a variety of causes. To evaluate the ability of L-Ca to protect against propofol-induced neuronal toxicity, neural stem cells were isolated from gestational day 14 rat fetuses and on the eighth day in culture were exposed for 24h to propofol at 10, 50, 100, 300 and 600 μM, with or without L-Ca (10 μM). Markers of cellular proliferation, mitochondrial health, cell death/damage and oxidative damage were monitored to determine: (1) the effects of propofol on neural stem cell proliferation; (2) the nature of propofol-induced neurotoxicity; (3) the degree of protection afforded by L-Ca; and (4) to provide information regarding possible mechanisms underlying protection. After propofol exposure at a clinically relevant concentration (50 μM), the number of dividing cells was significantly decreased, oxidative DNA damage was increased and a significant dose-dependent reduction in mitochondrial function/health was observed. No significant effect on lactase dehydrogenase (LDH) release was observed at propofol concentrations up to 100 μM. The oxidative damage at 50 μM propofol was blocked by L-Ca. Thus, clinically relevant concentrations of propofol induce dose-dependent adverse effects on rat embryonic neural stem cells by slowing or stopping cell division/proliferation and causing cellular damage. Elevated levels of 8-oxoguanine suggest enhanced oxidative damage [reactive oxygen species (ROS) generation] and L-Ca effectively blocks at least some of the toxicity of propofol, presumably by scavenging oxidative species and/or reducing their production. Published by Elsevier B.V.
2012-01-01
Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression, which decreased overproduction of reactive oxygen species, improved mitochondrial Complex I dysfunction, inhibited mitochondrial translocation of Bax and prevented cytosolic release of cytochrome c by stabilizing the mitochondrial transmembrane potential, leading to amelioration of apoptotic neuronal cell death in the hippocampus following status epilepticus. PMID:22849356
Ghoochani, Ali; Hatipoglu Majernik, Gökce; Sehm, Tina; Wach, Sven; Buchfelder, Michael; Taubert, Helge; Eyupoglu, Ilker Y; Savaskan, Nicolai
2016-06-21
Taxanes target microtubules and are clinically established chemotherapeutic agents with proven efficacy in human cancers. Cabazitaxel (XRP-6258, Jevtana®) is a second generation semisynthetic taxane with high chemotherapeutic potential in prostate cancer. There, cabazitaxel can overcome docetaxel-resistant prostate cancer. Here, we tested the effects of cabazitaxel on glioma cells, and non-transformed cells such as neurons and astrocytes. Cabazitaxel operates highly toxic in various human glioma cells at nanomolar concentrations. In contrast, primary astrocytes and neurons are not affected by this agent. Cabazitaxel disrupts cytoskeletal F-actin fibers and induces apoptotic cell death in gliomas. Moreover, cabazitaxel displayed highest efficacy in inhibiting glioma cell migration and invasion. Here we demonstrate that cabazitaxel inhibited tumor migration already at 1 nM. We also tested cabazitaxel in the ex vivo VOGiM assay. Cabazitaxel stalled glioma growth and at the same time inhibited tumor-induced angiogenesis. In summary, we found that cabazitaxel operates as an apoptosis-inducing gliomatoxic agent with strongest effects on migration and invasive growth. Thus, our report uncovered cabazitaxel actions on gliomas and on the brain tumor microenvironment. These data reveal novel aspects for adjuvant approaches when applied to brain tumor patients.
Ghoochani, Ali; Majernik, Gökce Hatipoglu; Sehm, Tina; Wach, Sven; Buchfelder, Michael; Taubert, Helge
2016-01-01
Taxanes target microtubules and are clinically established chemotherapeutic agents with proven efficacy in human cancers. Cabazitaxel (XRP-6258, Jevtana®) is a second generation semisynthetic taxane with high chemotherapeutic potential in prostate cancer. There, cabazitaxel can overcome docetaxel-resistant prostate cancer. Here, we tested the effects of cabazitaxel on glioma cells, and non-transformed cells such as neurons and astrocytes. Cabazitaxel operates highly toxic in various human glioma cells at nanomolar concentrations. In contrast, primary astrocytes and neurons are not affected by this agent. Cabazitaxel disrupts cytoskeletal F-actin fibers and induces apoptotic cell death in gliomas. Moreover, cabazitaxel displayed highest efficacy in inhibiting glioma cell migration and invasion. Here we demonstrate that cabazitaxel inhibited tumor migration already at 1 nM. We also tested cabazitaxel in the ex vivo VOGiM assay. Cabazitaxel stalled glioma growth and at the same time inhibited tumor-induced angiogenesis. In summary, we found that cabazitaxel operates as an apoptosis-inducing gliomatoxic agent with strongest effects on migration and invasive growth. Thus, our report uncovered cabazitaxel actions on gliomas and on the brain tumor microenvironment. These data reveal novel aspects for adjuvant approaches when applied to brain tumor patients. PMID:27203678
Murakami, Yayoi; Ito, Masafumi; Ohsawa, Ikuroh
2017-01-01
Inhalation of molecular hydrogen (H2) gas ameliorates oxidative stress-induced acute injuries in the brain. Consumption of water nearly saturated with H2 also prevents chronic neurodegenerative diseases including Parkinson's disease in animal and clinical studies. However, the molecular mechanisms underlying the remarkable effect of a small amount of H2 remain unclear. Here, we investigated the effect of H2 on mitochondria in cultured human neuroblastoma SH-SY5Y cells. H2 increased the mitochondrial membrane potential and the cellular ATP level, which were accompanied by a decrease in the reduced glutathione level and an increase in the superoxide level. Pretreatment with H2 suppressed H2O2-induced cell death, whereas post-treatment did not. Increases in the expression of anti-oxidative enzymes underlying the Nrf2 pathway in H2-treated cells indicated that mild stress caused by H2 induced increased resistance to exacerbated oxidative stress. We propose that H2 functions both as a radical scavenger and a mitohormetic effector against oxidative stress in cells.
Determination of Death and the Dead Donor Rule: A Survey of the Current Law on Brain Death
Nikas, Nikolas T.; Bordlee, Dorinda C.; Moreira, Madeline
2016-01-01
Despite seeming uniformity in the law, end-of-life controversies have highlighted variations among state brain death laws and their interpretation by courts. This article provides a survey of the current legal landscape regarding brain death in the United States, for the purpose of assisting professionals who seek to formulate or assess proposals for changes in current law and hospital policy. As we note, the public is increasingly wary of the role of organ transplantation in determinations of death, and of the variability of brain death diagnosing criteria. We urge that any attempt to alter current state statutes or to adopt a national standard must balance the need for medical accuracy with sound ethical principles which reject the utilitarian use of human beings and are consistent with the dignity of the human person. Only in this way can public trust be rebuilt. PMID:27097648
Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE
2010-01-01
Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j.1476-5381.2010.00663.x PMID:20218980
Causes of organ donation failure in Brazil.
Dell Agnolo, C M; de Freitas, R A; Toffolo, V J O; de Oliveira, M L F; de Almeida, D F; Carvalho, M D B; Pelloso, S M
2012-10-01
There has been a great improvement in transplantation medicine in Brazil in the last 2 decades. However, there remain several barriers regarding notification of brain and cardiac death as well as completion of the donation process. This retrospective study was performed between January 2008 and December 2010. We reviewed all deaths in a University Hospital, observing the causes of non-notification to the State Transplantation Authority and non-donations. There were 41 notifications of brain death resulting in donation in only 19.5% of those cases. Cardiac death was diagnosed in 21 patients, resulting in 52.4% donations. The main cause for non-donation were family refusal (37.2%), infectious diseases (30.2%), and clinical contraindications (32.6%). Most of the missed possible donors occurred during the night (54.8%) and in the emergency room (80.9%). There is an urgent need for better education of the Brazilian population about organ donation and brain death definitions. Other identified problems include lack of uniformity in brain death determinations among hospitals, rigid contraindications to donation in the State of Parana, physician unawareness or disbelief about brain death diagnostic criteria, and lack of structure of our Hospital. Copyright © 2012. Published by Elsevier Inc.
Progress in legal definition of brain death and consent to remove cadaver organs.
Stuart, F P
1977-01-01
The availability of cadaver kidneys for transplantation falls far short of the needs of a rapidly expanding population of patients on chronic hemodialysis. Kidneys with the least ischemic injury come from donors with fatal head injury or stroke; such kidneys can be removed from a "beating-heart" cadaver after declaring death on the basis of brain death. To clarify the legal status of brain death and to encourage salvage of transplantable kidneys with minimal ischemic injury, 12 states already have codified the concept of brain death. Although the first few laws were lengthy and included medical terms, six of the last seven laws have used one or two models proposed by the American Bar Association (ABA) and the Institute of Society, Ethics and Life Sciences, Hastings-on-Hudson, N. Y. The ABA proposal is the simpler of the two models and should provide the basis for future state laws. In addition, the National Conference of Commissioners on Uniform State Laws plans to present a model law to define death and the liabilities of a physician who declares death on the basis of brain death by mid 1977. While state legislatures have written laws that establish the legality of the concept of brain death, medical groups have sought to define the medical criteria for its determination. The most recent list of criteria comes from a National Institutes of Health-supported Collaborative Study on Cerebral Survival, as follows: (1) unresponsivity, (2) apnea, (3) dilated pupils and absent cephalic reflexes, (4) electrocerebral silence, (5) a confirmatory test of absent cerebral blood flow (angiography, isotope bolus curve, retinoscopy, or echoencephalography).
Donatelli, Luke A; Geocadin, Romergryko G; Williams, Michael A
2006-09-01
Cardiac arrest results in global hypoxic-ischemic brain injury from which there is a range of possible neurological outcomes. In most cases, patients may require a surrogate to make decisions regarding end-of-life care, including the withdrawal of life-sustaining therapies. This article reviews ethical considerations that arise in the clinical care of patients following cardiac arrest, including decisions to continue or withdraw life-sustaining therapies; brain death determination; and organ donation in the context of brain death and cardiac death (so-called non-heart-beating donation). This article also discusses ethical concerns pertaining to the design and conduct of resuscitation research that is necessary for the development of effective therapies to prevent anoxic brain injury or promote neurological recovery.
Never Declared Brain Dead Potential Organ Donors-An Additional Source of Donor Organs?
Webster, Patricia A; Markham, Lori E
2018-03-01
Patients never declared brain dead may represent an additional source of donor organs. To determine the number of likely brain dead potential donors who are never declared brain dead and to compare them with brain dead and donation after cardiac death potential organ donors. This study was a retrospective chart review of all catastrophically brain-injured patients referred to a single-organ procurement organization (OPO) over a 4-year period. This study identified 159 likely brain dead potential organ donors, 902 brain dead potential organ donors, and 357 potential donation after circulatory death donors over a 4-year period. None. This study did not predetermine outcome measures before data collection because the study group, likely brain dead potential organ donors, had not previously been described. Likely brain dead potential donors were significantly older than brain dead potential donors ( P < .0001) but were otherwise not different demographically. They were more likely to be a late referral to the OPO ( P < .0001) and less likely to be in the donor registry ( P < .0001). The most commonly identified factors associated with a failure to declare brain death were an unwillingness to continue supportive care by the family, premention of donation, a nontimely imminent death referral, known prior objection to donation, terminal instability, and a lack of cooperation with the OPO.
Ye, Zhi; Wang, Na; Xia, Pingping; Wang, E; Liao, Juan; Guo, Qulian
2013-04-01
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague-Dawley rats were administered parecoxib (10 or 30 mg kg(-1), IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.
Wani, Willayat Yousuf; Gudup, Satish; Sunkaria, Aditya; Bal, Amanjit; Singh, Parvinder Pal; Kandimalla, Ramesh J L; Sharma, Deep Raj; Gill, Kiran Dip
2011-12-01
Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes
2012-07-01
Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.
Nair-Collins, Michael
2017-01-01
The majority of transplantable human organs are retrieved from patients declared dead by neurological criteria, or "brain-dead." Since brain death is considered to be sufficient for death, the procurement of vital organs is not considered to harm or wrong such patients. In this essay I argue that this is not the case. After distinguishing welfare, experiential, and investment interests, and defining precedent autonomy and surviving interests, I argue that brain-dead patients can be, and many are, harmed and wronged by organ procurement as currently practiced. Indeed, with respect to precedent autonomy and surviving investment interests, the brain-dead are morally equivalent to patients with severe dementia, and thus can be harmed and wronged if and only if, and to the extent that, patients with severe dementia can. The "bright line" that separates brain death from all other conditions for clinical and legal purposes is not justified by any morally relevant distinctions.
Wang, Xin; Xu, Mei; Frank, Jacqueline A; Ke, Zun-Ji; Luo, Jia
2017-04-01
Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stem cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.
Albumin-induced apoptosis of tubular cells is modulated by BASP1
Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A
2015-01-01
Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria. PMID:25675304
A Thomistic defense of whole-brain death
Eberl, Jason T.
2015-01-01
Michel Accad critiques the currently accepted whole-brain criterion for determining the death of a human being from a Thomistic metaphysical perspective and, in so doing, raises objections to a particular argument defending the whole-brain criterion by Patrick Lee and Germain Grisez. In this paper, I will respond to Accad's critique of the whole-brain criterion and defend its continued validity as a criterion for determining when a human being's death has occurred in accord with Thomistic metaphysical principles. I will, however, join Accad in criticizing Lee and Grisez's proposed defense of the whole-brain criterion as potentially leading to erroneous conclusions regarding the determination of human death. Lay summary: Catholic physicians and bioethicists currently debate the legally accepted clinical standard for determining when a human being has died—known as the “wholebrain criterion”—which has also been morally affirmed by the Magisterium. This paper responds to physician Michel Accad’s critique of the whole-brain criterion based upon St. Thomas Aquinas’s metaphysical account of human nature as a union of a rational soul and a material body. I defend the whole-brain criterion from the same Thomistic philosophical perspective, while agreeing with Accad’s objection to an alternative Thomistic defense of whole-brain death by philosophers Patrick Lee and Germain Grisez. PMID:26912933
A Thomistic defense of whole-brain death.
Eberl, Jason T
2015-08-01
Michel Accad critiques the currently accepted whole-brain criterion for determining the death of a human being from a Thomistic metaphysical perspective and, in so doing, raises objections to a particular argument defending the whole-brain criterion by Patrick Lee and Germain Grisez. In this paper, I will respond to Accad's critique of the whole-brain criterion and defend its continued validity as a criterion for determining when a human being's death has occurred in accord with Thomistic metaphysical principles. I will, however, join Accad in criticizing Lee and Grisez's proposed defense of the whole-brain criterion as potentially leading to erroneous conclusions regarding the determination of human death. Lay summary: Catholic physicians and bioethicists currently debate the legally accepted clinical standard for determining when a human being has died-known as the "wholebrain criterion"-which has also been morally affirmed by the Magisterium. This paper responds to physician Michel Accad's critique of the whole-brain criterion based upon St. Thomas Aquinas's metaphysical account of human nature as a union of a rational soul and a material body. I defend the whole-brain criterion from the same Thomistic philosophical perspective, while agreeing with Accad's objection to an alternative Thomistic defense of whole-brain death by philosophers Patrick Lee and Germain Grisez.
Cerebral Autoregulation in Hypertension and Ischemic Stroke: A Mini Review
Shekhar, Shashank; Liu, Ruen; Travis, Olivia K; Roman, Richard J; Fan, Fan
2017-01-01
Aging and chronic hypertension are associated with dysfunction in vascular smooth muscle, endothelial cells, and neurovascular coupling. These dysfunctions induce impaired myogenic response and cerebral autoregulation, which diminish the protection of cerebral arterioles to the cerebral microcirculation from elevated pressure in hypertension. Chronic hypertension promotes cerebral focal ischemia in response to reductions in blood pressure that are often seen in sedentary elderly patients on antihypertensive therapy. Cerebral autoregulatory dysfunction evokes Blood-Brain Barrier (BBB) leakage, allowing the circulating inflammatory factors to infiltrate the brain to activate glia. The impaired cerebral autoregulation-induced inflammatory and ischemic injury could cause neuronal cell death and synaptic dysfunction which promote cognitive deficits. In this brief review, we summarize the pathogenesis and signaling mechanisms of cerebral autoregulation in hypertension and ischemic stroke-induced cognitive deficits, and discuss our new targets including 20-Hydroxyeicosatetraenoic acid (20-HETE), Gamma-Adducin (Add3) and Matrix Metalloproteinase-9 (MMP-9) that may contribute to the altered cerebral vascular function. PMID:29333537
Massieu, L; Haces, M L; Montiel, T; Hernández-Fonseca, K
2003-01-01
Glucose is the main substrate that fulfills energy brain demands. However, in some circumstances, such as diabetes, starvation, during the suckling period and the ketogenic diet, brain uses the ketone bodies, acetoacetate and beta-hydroxybutyrate, as energy sources. Ketone body utilization in brain depends directly on its blood concentration, which is normally very low, but increases substantially during the conditions mentioned above. Glutamate neurotoxicity has been implicated in neurodegeneration associated with brain ischemia, hypoglycemia and cerebral trauma, conditions related to energy failure, and to elevation of glutamate extracellular levels in brain. In recent years substantial evidence favoring a close relation between glutamate neurotoxic potentiality and cellular energy levels, has been compiled. We have previously demonstrated that accumulation of extracellular glutamate after inhibition of its transporters, induces neuronal death in vivo during energy impairment induced by glycolysis inhibition. In the present study we have assessed the protective potentiality of the ketone body, acetoacetate, against glutamate-mediated neuronal damage in the hippocampus of rats chronically treated with the glycolysis inhibitor, iodoacetate, and in hippocampal cultured neurons exposed to a toxic concentration of iodoacetate. Results show that acetoacetate efficiently protects against glutamate neurotoxicity both in vivo and in vitro probably by a mechanism involving its role as an energy substrate.
Kamarehei, Maryam; Yazdanparast, Razieh
2014-10-01
The brain in Alzheimer's disease is under increased oxidative stress, and this may have a role in the pathogenesis and neural death in this disorder. It has been verified that numerous signaling pathways involved in neurodegenerative disorders are activated in response to reactive oxygen species (ROS). EUK134, a synthetic salen-manganese antioxidant complex, has been found to possess many interesting pharmacological activities awaiting exploration. The present study is to characterize the role of Notch signaling in apoptotic cell death of SK-N-MC cells. The cells were treated with hydrogen peroxide (H2O2) or menadione to induce oxidative stress. The free-radical scavenging capabilities of EUK134 were studied through the MTT assay, glutathione peroxidase (GPx) enzyme activity assay, and glutathione (GSH) Levels. The extents of lipid peroxidation, protein carbonyl formation, and intracellular ROS levels, as markers of oxidative stress, were also studied. Our results showed that H2O2/menadione reduced GSH levels and GPx activity. However, EUK134 protected cells against ROS-induced cell death by down-regulation of lipid peroxidation and protein carbonyl formation as well as restoration of antioxidant enzymes activity. ROS induced apoptosis and increased NICD and HES1 expression. Inhibition of NICD production proved that Notch signaling is involved in apoptosis through p53 activation. Moreover, H2O2/menadione led to Numb protein down-regulation which upon EUK134 pretreatment, its level increased and subsequently prevented Notch pathway activation. We indicated that EUK134 can be a promising candidate in designing natural-based drugs for ROS-induced neurodegenerative diseases. Collectively, ROS activated Notch signaling in SK-N-MC cells leading to cell apoptosis.
Lee, Sook-Jeong; Koh, Jae-Young
2010-10-26
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
Brain death and true patient care
2016-01-01
The “brain death” standard as a criterion of death is closely associated with the need for transplantable organs from heart-beating donors. Are all of these potential donors really dead, or does the documented evidence of patients destined for organ harvesting who improve, or even recover to live normal lives, call into question the premise underlying “brain death”? The aim of this paper is to re-examine the notion of “brain death,” especially its clinical test-criteria, in light of a broad framework, including medical knowledge in the field of neuro-intensive care and the traditional ethics of the medical profession. I will argue that both the empirical medical evidence and the ethics of the doctor–patient relationship point to an alternative approach toward the severely comatose patient (potential brain-dead donor). Lay Summary: Though legally accepted and widely practiced, the “brain death” standard for the determination of death has remained a controversial issue, especially in view of the occurrence of “chronic brain death” survivors. This paper critically re-evaluates the clinical test-criteria for “brain death,” taking into account what is known about the neuro-critical care of severe brain injury. The medical evidence, together with the understanding of the moral role of the physician toward the patient present before him or her, indicate that an alternative approach should be offered to the deeply comatose patient. PMID:27833207
Brain death and Islam: the interface of religion, culture, history, law, and modern medicine.
Miller, Andrew C; Ziad-Miller, Amna; Elamin, Elamin M
2014-10-01
How one defines death may vary. It is important for clinicians to recognize those aspects of a patient's religious beliefs that may directly influence medical care and how such practices may interface with local laws governing the determination of death. Debate continues about the validity and certainty of brain death criteria within Islamic traditions. A search of PubMed, Scopus, EMBASE, Web of Science, PsycNet, Sociological Abstracts, DIALOGUE ProQuest, Lexus Nexus, Google, and applicable religious texts was conducted to address the question of whether brain death is accepted as true death among Islamic scholars and clinicians and to discuss how divergent opinions may affect clinical care. The results of the literature review inform this discussion. Brain death has been acknowledged as representing true death by many Muslim scholars and medical organizations, including the Islamic Fiqh Academies of the Organization of the Islamic Conference and the Muslim World League, the Islamic Medical Association of North America, and other faith-based medical organizations as well as legal rulings by multiple Islamic nations. However, consensus in the Muslim world is not unanimous, and a sizable minority accepts death by cardiopulmonary criteria only.
Yoo, Seung-Jun; Cho, Bongki; Lee, Deokho; Son, Gowoon; Lee, Yeong-Bae; Soo Han, Hyung; Kim, Eunjoo; Moon, Chanil; Moon, Cheil
2017-01-01
Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected side effects, including undesirable proliferative effects such as erythropoiesis and tumor growth. Therefore, the development of EPO analogs that would confer neuroprotection without adverse effects has been attempted. In this study, we examined the potential of a novel EPO-based short peptide, MK-X, as a novel drug for stroke treatment in comparison with EPO. We found that MK-X administration with reperfusion dramatically reduced brain injury in an in vivo mouse model of ischemic stroke induced by middle cerebral artery occlusion, whereas EPO had little effect. Similar to EPO, MK-X efficiently ameliorated mitochondrial dysfunction followed by neuronal death caused by glutamate-induced oxidative stress in cultured neurons. Consistent with this effect, MK-X significantly decreased caspase-3 cleavage and nuclear translocation of apoptosis-inducing factor induced by glutamate. MK-X completely mimicked the effect of EPO on multiple activation of JAK2 and its downstream PI3K/AKT and ERK1/2 signaling pathways, and this signaling process was involved in the neuroprotective effect of MK-X. Furthermore, MK-X and EPO induced similar changes in the gene expression patterns under glutamate-induced excitotoxicity. Interestingly, the most significant difference between MK-X and EPO was that MK-X better penetrated into the brain across the brain–blood barrier than did EPO. In conclusion, we suggest that MK-X might be used as a novel drug for protection from brain injury caused by ischemic stroke, which penetrates into the brain faster in comparison with EPO, even though MK-X and EPO have similar protective effects against excitotoxicity. PMID:28817120
Ahn, So Yoon; Chang, Yun Sil; Sung, Dong Kyung; Sung, Se In; Park, Won Soon
2018-05-16
Recently, we have demonstrated that concurrent hypothermia and mesenchymal stem cells (MSCs) transplantation synergistically improved severe neonatal hypoxic ischemic encephalopathy (HIE). The current study was designed to determine whether hypothermia could extend the therapeutic time window of MSC transplantation for severe neonatal HIE. To induce HIE, newborn rat pups were exposed to 8% oxygen for 2 h following unilateral carotid artery ligation on postnatal day (P) 7. After approving severe HIE involving >50% of the ipsilateral hemisphere volume, hypothermia (32 °C) for 2 days was started. MSCs were transplanted 2 days after HIE modeling. Follow-up brain MRI, sensorimotor function tests, assessment of inflammatory cytokines in the cerebrospinal fluid (CSF), and histological evaluation of peri-infarction area were performed. HIE induced progressively increasing brain infarction area over time, increased cell death, reactive gliosis and brain inflammation, and impaired sensorimotor function. All these damages observed in severe HIE showed better, robust improvement with a combination treatment of hypothermia and delayed MSC transplantation than with either stand-alone therapy. Hypothermia itself did not significantly reduce brain injury, but broadened the therapeutic time window of MSC transplantation for severe newborn HIE.
2017-05-05
The death rate for brain cancer, the most common cancer cause of death for children and teens aged 1-19 years, was 24% higher in males (0.73 per 100,000) than females (0.59) aged 1-19 years during 2013-2015. Death rates were higher for males than females for all age groups, but the difference did not reach statistical significance for the age group 5-9 years. Death rates caused by brain cancer were highest at ages 5-9 years (0.98 for males and 0.85 for females).
Ibogaine-associated cardiac arrest and death: case report and review of the literature.
Meisner, Jessica A; Wilcox, Susan R; Richards, Jeremy B
2016-04-01
A naturally occurring hallucinogenic plant alkaloid, ibogaine has been used as an adjuvant for opiate withdrawal for the past 50 years. In the setting of an escalating nationwide opiate epidemic, use of substances such as ibogaine may also increase. Therefore, familiarity with the mechanisms and potential adverse effects of ibogaine is important for clinicians. We present the case report of a man whose use of ibogaine resulted in cardiac arrest and death, complemented by a review of the literature regarding ibogaine's clinical effects. A 40-year-old man who used ibogaine for symptoms of heroin withdrawal suffered acute cardiac arrest leading to cerebral edema and brain death. His presentation was consistent with ibogaine-induced cardiotoxicity and ibogaine-induced cardiac arrest, and a review of the literature regarding the history, mechanisms, risks and clinical outcomes associated with ibogaine is presented. The case presented underscores the significant potential clinical risks of ibogaine. It is important the healthcare community be aware of the possible effects of ibogaine such that clinicians can provide informed counseling to their patients regarding the risks of attempting detoxification with ibogaine.
Ibogaine-associated cardiac arrest and death: case report and review of the literature
Meisner, Jessica A.; Wilcox, Susan R.; Richards, Jeremy B.
2016-01-01
A naturally occurring hallucinogenic plant alkaloid, ibogaine has been used as an adjuvant for opiate withdrawal for the past 50 years. In the setting of an escalating nationwide opiate epidemic, use of substances such as ibogaine may also increase. Therefore, familiarity with the mechanisms and potential adverse effects of ibogaine is important for clinicians. We present the case report of a man whose use of ibogaine resulted in cardiac arrest and death, complemented by a review of the literature regarding ibogaine’s clinical effects. A 40-year-old man who used ibogaine for symptoms of heroin withdrawal suffered acute cardiac arrest leading to cerebral edema and brain death. His presentation was consistent with ibogaine-induced cardiotoxicity and ibogaine-induced cardiac arrest, and a review of the literature regarding the history, mechanisms, risks and clinical outcomes associated with ibogaine is presented. The case presented underscores the significant potential clinical risks of ibogaine. It is important the healthcare community be aware of the possible effects of ibogaine such that clinicians can provide informed counseling to their patients regarding the risks of attempting detoxification with ibogaine. PMID:27141291
Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang
2016-01-12
The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.
In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease.
Selznick, L A; Holtzman, D M; Han, B H; Gökden, M; Srinivasan, A N; Johnson, E M; Roth, K A
1999-09-01
The mechanism by which cells die in Alzheimer disease (AD) is unknown. Several investigators speculate that much of the cell loss may be due to apoptosis, a highly regulated form of programmed cell death. Caspase-3 is a critical effector of neuronal apoptosis and may be inappropriately activated in AD. To address this possibility, we examined cortical and hippocampal brain sections from AD patients, as well as 2 animal models of AD, for in situ evidence of caspase-3 activation. We report here that senile plaques and neurofibrillary tangles in the AD brain are not associated with caspase-3 activation. Furthermore, amyloid beta (A beta) deposition in the APPsw transgenic mouse model of AD does not result in caspase-3 activation despite the ability of A beta to induce caspase-3 activation and neuronal apoptosis in vitro. AD brain sections do, however, exhibit caspase-3 activation in hippocampal neurons undergoing granulovacuolar degeneration. Our data suggests that caspase-3 does not have a significant role in the widespread neuronal cell death that occurs in AD, but may contribute to the specific loss of hippocampal neurons involved in learning and memory.
Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells.
Khan, Naveed Ahmed; Iqbal, Junaid; Siddiqui, Ruqaiyyah
2012-01-01
Pathophysiology of Escherichia coli sepsis is complex involving circulating bacterial products, cytokine release, and sustained bacteremia resulting in the damage of vascular endothelium. Here, it is shown that E. coli K1 produced cytopathogenicity of human brain microvascular endothelial cells (HBMEC), that constitute the blood-brain barrier. Whole bacteria or their conditioned medium produced severe HBMEC damage suggesting E. coli K1-cytopathogenicity is a contact-independent process. Using lipopolysaccharide (LPS) inhibitor, polymyxin B, purified LPS extracted from E. coli K1 as well as LPS mutant derived from E. coli K1, we showed that LPS is not the sole determinant of E. coli K1-mediated HBMEC death. Bacterial product(s) for HBMEC cytopathogenicity was heat-labile suggesting LPS-associated proteins. Several isogenic gene-deletion mutants (ΔompA, ΔibeA, ΔibeB, Δcnf1) exhibited HBMEC cytopathogenicity similar to that produced by wild type E. coli K1. E. coli K1-mediated HBMEC death was independent of phosphatidylinositol 3-kinase (PI3K) but dependent partially on focal adhesion kinase (FAK) using HBMEC expressing dominant negative FAK and PI3K. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Yong-Whan; Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr; Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul
2010-04-30
Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly,more » OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.« less
Mangiferin decreases inflammation and oxidative damage in rat brain after stress.
Márquez, Lucía; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C
2012-09-01
Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.
Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.
2015-01-01
Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789
DuBois, James M; Anderson, Emily E
2006-03-01
To examine attitudes toward death criteria and their relation to attitudes and behaviors regarding organ donation. This article reviews empirical studies on the attitudes of healthcare personnel and the general public regarding death criteria and organ donation. The review was restricted to studies that had as a primary focus attitudes toward 1 or more of the following 3 specific criteria for determining death: (1) brain death, the irreversible loss of all functions of the entire brain; (2) higher brain death, the loss of cerebral cortex function alone; and (3) the circulatory-respiratory criteria commonly used in donation after cardiac death. Studies consistently show that the general public and some medical personnel are inadequately familiar with the legal and medical status of brain death; attitudes toward the dead donor rule are strong predictors of willingness to donate organs using controversial criteria; concerns about donation after cardiac death surround the withdrawal of life support more than the actual death criteria used; and concerns about death criteria correlate with less favorable attitudes toward organ donation. Both general and ethical education may serve to guide policy and facilitate family member requests and informed consent dialogues. Furthermore, helping families to understand and accept not only medical and legal criteria for determining death, but also ethical criteria for withdrawing life support may help them be more comfortable with their decisions.
Edaravone Prevents Retinal Degeneration in Adult Mice Following Optic Nerve Injury.
Akiyama, Goichi; Azuchi, Yuriko; Guo, Xiaoli; Noro, Takahiko; Kimura, Atsuko; Harada, Chikako; Namekata, Kazuhiko; Harada, Takayuki
2017-09-01
To assess the therapeutic potential of edaravone, a free radical scavenger that is used for the treatment of acute brain infarction and amyotrophic lateral sclerosis, in a mouse model of optic nerve injury (ONI). Two microliters of edaravone (7.2 mM) or vehicle were injected intraocularly 3 minutes after ONI. Optical coherence tomography, retrograde labeling of retinal ganglion cells (RGCs), histopathology, and immunohistochemical analyses of phosphorylated apoptosis signal-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinase (MAPK) in the retina were performed after ONI. Reactive oxygen species (ROS) levels were assessed with a CellROX Green Reagent. Edaravone ameliorated ONI-induced ROS production, RGC death, and inner retinal degeneration. Also, activation of the ASK1-p38 MAPK pathway that induces RGC death following ONI was suppressed with edaravone treatment. The results of this study suggest that intraocular administration of edaravone may be a useful treatment for posttraumatic complications.
Neuroprotective and anti-inflammatory effects of lidocaine in kainic acid-injected rats.
Chiu, Kuan Ming; Lu, Cheng Wei; Lee, Ming Yi; Wang, Ming Jiuh; Lin, Tzu Yu; Wang, Su Jane
2016-05-04
Lidocaine, the most commonly used local anesthetic, inhibits glutamate release from nerve terminals. Given the involvement of glutamate neurotoxicity in the pathogenesis of various neurological disorders, this study investigated the role of lidocaine in hippocampal neuronal death and inflammatory events induced by an i.p. injection of kainic acid (KA) (15 mg/kg), a glutamate analog. The results showed that KA significantly led to neuronal death in the CA3 pyramidal layers of the hippocampus and this effect was attenuated by the systemic administration of lidocaine (0.8 or 4 mg/kg, i.p.) 30 min before KA injection. Moreover, KA-induced microglia activation and gene expression of proinflammatory cytokines, namely, interleukin-1β, interleukin-6, and tumor necrosis factor-α, in the hippocampus were reduced by the lidocaine pretreatment. Altogether, the results suggest that lidocaine can effectively treat glutamate excitotoxicity-related brain disorders.
Mizuno, Tetsuya; Kuno, Reiko; Nitta, Atsumi; Nabeshima, Toshitaka; Zhang, Guiqin; Kawanokuchi, Jun; Wang, Jinyan; Jin, Shijie; Takeuchi, Hideyuki; Suzumura, Akio
2005-12-20
We examined the neuroprotective role of nicergoline in neuron-microglia or neuron-astrocytes co-cultures. Nicergoline, an ergoline derivative, significantly suppressed the neuronal cell death induced by co-culture with activated microglia or astrocytes stimulated with lipopolysaccharide (LPS) and interferon (IFN)-gamma. To elucidate the mechanism by which nicergoline exerts a neuroprotective effect, we examined the production of inflammatory mediators and neurotrophic factors in activated microglia and astrocytes following nicergoline treatment. In microglia stimulated with LPS and IFN-gamma, nicergoline suppressed the production of superoxide anions, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha in a dose-dependent manner. In astrocytes, nicergoline also suppressed the production of proinflammatory cytokines and enhanced brain-derived neurotrophic factor (BDNF). Thus, nicergoline-mediated neuroprotection resulted primarily from the inhibition of inflammatory mediators and the upregulation of neurotrophic factors by glial cells.
Culture, brain death, and transplantation.
Bowman, Kerry W; Richard, Shawn A
2003-09-01
From the social sciences, we know the space between life and death is historically and culturally constructed, fluid and open to dispute. The definition of death has cultural, legal, and political dimensions. As healthcare becomes more culturally diverse, the interface between culture and the delivery of healthcare will increase. In our increasingly pluralistic, interdependent society, there is a growing demand to integrate healthcare, including transplantation, into a broader context that respects both individual and cultural diversity. It is important that we first consider and explore what elements of Western healthcare practices including definitions and advances, such as brain death and organ donation, are culturally influenced. This article highlights some of the cultural influences on brain death by focusing on Western and Japanese perspectives on the permissibility of organ procurement from brain-dead persons. It also offers 4 recommendations for healthcare workers working cross-culturally.
Brain Death and Transplant in Islamic Countries.
Altınörs, Nur; Haberal, Mehmet
2016-11-01
The aim of this study was to investigate the present status regarding brain death, its consequences, and transplant activities in Islamic countries. A thorough literature survey was conducted about transplant activities in Islamic countries, and the Turkish Ministry of Health Web site was analyzed. Expert opinions about the issue were obtained. The present status of brain death and transplant activities has shown a heterogeneous appearance in the Islamic world. Our literature survey clearly revealed that transplant is still in its early stages in many Islamic states. The legislative framework, infrastructure, and related education needs radical improvements in these states. The concept of death has to be redefined and a consensus should be reached about brain death. The pioneer countries like Turkey, Iran, and Saudi Arabia. which already have considerable experience in transplant, should share their expertise and knowledge with the countries that need guidance.
Feng, Guibo; Jiang, Guohui; Li, Zhiwei; Wang, Xuefeng
2016-06-01
Cardiac arrest (CA) patients can experience neurological sequelae or even death after successful cardiopulmonary resuscitation (CPR) due to cerebral hypoxia- and ischemia-reperfusion-mediated brain injury. Thus, it is important to perform early prognostic evaluations in CA patients. Electroencephalography (EEG) is an important tool for determining the prognosis of hypoxic-ischemic encephalopathy due to its real-time measurement of brain function. Based on EEG, burst suppression, a burst suppression ratio >0.239, periodic discharges, status epilepticus, stimulus-induced rhythmic, periodic or ictal discharges, non-reactive EEG, and the BIS value based on quantitative EEG may be associated with the prognosis of CA after successful CPR. As measures of neural network integrity, the values of small-world characteristics of the neural network derived from EEG patterns have potential applications.
Where's Waldo? The 'decapitation gambit' and the definition of death.
Lizza, John P
2011-12-01
The 'decapitation gambit' holds that, if physical decapitation normally entails the death of the human being, then physiological decapitation, evident in cases of total brain failure, entails the death of the human being. This argument has been challenged by Franklin Miller and Robert Truog, who argue that physical decapitation does not necessarily entail the death of human beings and that therefore, by analogy, artificially sustained human bodies with total brain failure are living human beings. They thus challenge the current neurological criterion for determining death and argue for a return to the traditional criterion of the irreversible loss of circulation and respiration. In this paper, I defend the decapitation gambit and total brain failure as a criterion for determining death against Miller and Truog's criticism.
2015-01-15
chemical warfare agent that irreversibly inhibits acetylcholinesterase in the periphery and central nervous system. Soman induces status epilepticus ...of signs and symptoms including status epilepticus and death. The neuropathology leads to severe cognitive performance, including long-term cognitive... status epilepticus and excessive synaptic accumulation of acetylcholine affects other organ systems beside the brain causing hypersecretions
Kara, I; Pampal, H K; Yildirim, F; Dilekoz, E; Emmez, G; U, F P; Kocabiyik, M; Demirel, C B
Increased intracranial pressure following trauma and subsequent possible development of brain death are important factors for morbidity and mortality due to ischemic changes. We aimed to establish the role of ischemic modified albumin (IMA) in the early diagnosis of the process, starting with increased intracranial pressure and ending with brain death. Eighteen Wistar-Albino rats were divided into three groups; control (CG, n = 6), increased intracranial pressure (ICPG, n = 6), and brain death (BDG, n = 6). Intracranial pressure elevation and brain death were constituted with the inflation of a balloon of a Fogarty catheter in the epidural space. In all three groups, blood samples were drawn before the procedure, and at minutes 150 and 240 for IMA and malondialdehyde (MDA) analysis. Serum IMA levels at 150 and 240 minutes were higher in ICPG than in CG (p < 0.05). IMA levels were similar in ICPG and BDG. Serum MDA levels at 150 and 240 minutes increased in ICPG and BDG groups compared to CG (p < 0.05). MDA levels were similar in ICP and BD groups. IMA should be considered as a biochemical parameter in the process starting from increased intracranial pressure elevation and ending at brain death (Tab. 3, Fig. 5, Ref. 31).
Death revisited: rethinking death and the dead donor rule.
Iltis, Ana Smith; Cherry, Mark J
2010-06-01
Traditionally, people were recognized as being dead using cardio-respiratory criteria: individuals who had permanently stopped breathing and whose heart had permanently stopped beating were dead. Technological developments in the middle of the twentieth century and the advent of the intensive care unit made it possible to sustain cardio-respiratory and other functions in patients with severe brain injury who previously would have lost such functions permanently shortly after sustaining a brain injury. What could and should physicians caring for such patients do? Significant advances in human organ transplantation also played direct and indirect roles in discussions regarding the care of such patients. Because successful transplantation requires that organs be removed from cadavers shortly after death to avoid organ damage due to loss of oxygen, there has been keen interest in knowing precisely when people are dead so that organs could be removed. Criteria for declaring death using neurological criteria developed, and today a whole brain definition of death is widely used and recognized by all 50 states in the United States as an acceptable way to determine death. We explore the ongoing debate over definitions of death, particularly over brain death or death determined using neurological criteria, and the relationship between definitions of death and organ transplantation.
Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.
Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad
2016-10-01
Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.
Wen, Jing; Chen, Chris; Stock, Ariel; Doerner, Jessica; Gulinello, Maria; Putterman, Chaim
2016-01-01
Fn14, the sole known signaling receptor for the TNF family member TWEAK, is inducibly expressed in the central nervous system (CNS) in endothelial cells, astrocytes, microglia, and neurons. There is increasing recognition of the importance of the TWEAK/Fn14 pathway in autoimmune neurologic conditions, including experimental autoimmune encephalomyelitis and neuropsychiatric lupus. Previously, we had found that Fn14 knockout lupus-prone MRL/lpr mice display significantly attenuated neuropsychiatric manifestations. To investigate whether this improvement in disease is secondary to inhibition of TWEAK/Fn14 signaling within the CNS or the periphery, and determine whether TWEAK-mediated neuropsychiatric effects are strain dependent, we performed intracerebroventricular (ICV) injection of Fc-TWEAK or an isotype matched control protein to C57Bl6/J non-autoimmune mice. We found that Fc-TWEAK injected C57Bl6/J mice developed significant depression-like behavior and cognitive dysfunction. Inflammatory mediators associated with lupus brain disease, including CCL2, C3, and iNOS, were significantly elevated in the brains of Fc-TWEAK treated mice. Furthermore, Fc-TWEAK directly increased blood brain barrier (BBB) permeability, as demonstrated by increased IgG deposition in the brain and reduced aquaporin-4 expression. Finally, Fc-TWEAK increased apoptotic cell death in the cortex and hippocampus. In conclusion, TWEAK can contribute to lupus-associated neurobehavioral deficits including depression and cognitive dysfunction by acting within the CNS to enhance production of inflammatory mediators, promote disruption of the BBB, and induce apoptosis in resident brain cells. Our study provides further support that the TWEAK/Fn14 signaling pathway may be a potential therapeutic target for inflammatory diseases involving the CNS. PMID:26721417
Lindberg, Olle R.; Brederlau, Anke; Kuhn, H. Georg
2014-01-01
Summary One of the major components of the subventricular zone (SVZ) neurogenic niche is the specialized vasculature. The SVZ vasculature is thought to be important in regulating progenitor cell proliferation and migration. Epidermal growth factor (EGF) is a mitogen with a wide range of effects. When stem and progenitor cells in the rat SVZ are treated with EGF, using intracerebroventricular infusion, dysplastic polyps are formed. Upon extended infusion, blood vessels are recruited into the polyps. In the current study we demonstrate how polyps develop through distinct stages leading up to angiogenesis. As polyps progress, microglia/macrophages accumulate in the polyp core concurrent with increasing cell death. Both microglia/macrophage accumulation and cell death peak during angiogenesis and subsequently decline following polyp vascularization. This model of inducible angiogenesis in the SVZ neurogenic niche suggests involvement of microglia/macrophages in acquired angiogenesis and can be used in detail to study angiogenesis in the adult brain. PMID:24749069
The degree of certainty in brain death: probability in clinical and Islamic legal discourse.
Qazi, Faisal; Ewell, Joshua C; Munawar, Ayla; Asrar, Usman; Khan, Nadir
2013-04-01
The University of Michigan conference "Where Religion, Policy, and Bioethics Meet: An Interdisciplinary Conference on Islamic Bioethics and End-of-Life Care" in April 2011 addressed the issue of brain death as the prototype for a discourse that would reflect the emergence of Islamic bioethics as a formal field of study. In considering the issue of brain death, various Muslim legal experts have raised concerns over the lack of certainty in the scientific criteria as applied to the definition and diagnosis of brain death by the medical community. In contrast, the medical community at large has not required absolute certainty in its process, but has sought to eliminate doubt through cumulative diagnostic modalities and supportive scientific evidence. This has recently become a principal model, with increased interest in data analysis and evidence-based medicine with the intent to analyze and ultimately improve outcomes. Islamic law has also long employed a systematic methodology with the goal of eliminating doubt from rulings regarding the question of certainty. While ample criticism of the scientific criteria of brain death (Harvard criteria) by traditional legal sources now exists, an analysis of the legal process in assessing brain death, geared toward informing the clinician's perspective on the issue, is lacking. In this article, we explore the role of certainty in the diagnostic modalities used to establish diagnoses of brain death in current medical practice. We further examine the Islamic jurisprudential approach vis-à-vis the concept of certainty (yaqīn). Finally, we contrast the two at times divergent philosophies and consider what each perspective may contribute to the global discourse on brain death, understanding that the interdependence that exists between the theological, juridical, ethical, and medical/scientific fields necessitates an open discussion and active collaboration between all parties. We hope that this article serves to continue the discourse that was successfully begun by this initial interdisciplinary endeavor at the University of Michigan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, Natascia; Laudati, Giusy; Galgani, Mario
Phthalates, phthalic acid esters, are widely used as plasticizers to produce polymeric materials in industrial production of plastics and daily consumable products. Animal studies have shown that di(2-ethylhexyl)phthalate (DEHP) may cause toxic effects in the rat brain. In the present study, chronic exposure to DEHP (0.1–100 μM) caused dose-dependent cell death via the activation of caspase-3 in neuroblastoma cells. Intriguingly, this harmful effect was prevented by the pan-histone deacetylase (HDAC) inhibitor trichostatin A, by the class II HDAC inhibitor MC-1568, but not by the class I HDAC inhibitor MS-275. Furthermore, DEHP reduced specificity protein 3 (Sp3) gene expression, but notmore » Sp3 mRNA, after 24 and 48 h exposures. However, Sp3 protein reduction was prevented by pre-treatment with MC-1568, suggesting the involvement of class II HDACs in causing this effect. Then, we investigated the possible relationship between DEHP-induced neuronal death and the post-translational mechanisms responsible for the down-regulation of Sp3. Interestingly, DEHP-induced Sp3 reduction was associated to its deacetylation and polyubiquitination. Co-immunoprecipitation studies showed that Sp3 physically interacted with HDAC4 after DEHP exposure, while HDAC4 inhibition by antisense oligodeoxynucleotide reverted the DEHP-induced degradation of Sp3. Notably, Sp3 overexpression was able to counteract the detrimental effect induced by DEHP. Taken together, these results suggest that DEHP exerts its toxic effect by inducing deacetylation of Sp3 via HDAC4, and afterwards, Sp3-polyubiquitination. - Highlights: • Di(2-ethylhexyl)phthalate (DEHP) is cytotoxic to SH-SY5Y cells and cortical neurons. • DEHP-induced cytotoxicity is mediated by apoptosis. • DEHP-induced apoptotic cell death is inhibited by class II HDAC MC-1568. • DEHP neurotoxicity is caused by HDAC4-mediated Sp3 degradation by ubiquitin.« less
Wang, Cai-Ping; Li, Gui-Cai; Shi, Yun-Wei; Zhang, Xiao-Chuan; Li, Jian-Long; Wang, Zhi-Wei; Ding, Fei; Liang, Xin-Miao
2014-09-01
Brain ischemia appears to be associated with innate immunity. Recent reports showed that C3a and C5a, as potent targets, might protect against ischemia induced cell death. In traditional Chinese medicine, the fruit of Schizandra chinesis Baill (Fructus schizandrae) has been widely used as a tonic. In the present study, we sought to evaluate the neuroprotective effects of schizandrin A, a composition of S. chinesis Baill, against oxygen and glucose deprivation followed by reperfusion (OGD/R)-induced cell death in primary culture of rat cortical neurons, and to test whether C3a and C5a affected cortical neuron recovery from ischemic injury after schizandrin A treatment. The results showed that schizandrin A significantly reduced cell apoptosis and necrosis, increased cell survival, and decreased intracellular calcium concentration ([Ca(2+)]i) and lactate dehydrogenase (LDH) release in primary culture of rat cortical neurons after OGD/R. Mechanism studies suggested that the modulation of extracellular-regulated kinase (ERK), c-Jun NH2-terminal kinases (JNK), and p38, as well as caspase-3 activity played an important role on the progress of neuronal apoptosis. C5aR participated in the neuroprotective effect of schizandrin A in primary culture of rat cortical neurons after OGD/R. Our findings suggested that schizandrin A might act as a candidate therapeutic target drug used for brain ischemia and related diseases.
Jimenez-Mateos, Eva M.; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C.; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A.; Simon, Roger P.; Stallings, Raymond L.; Henshall, David C.
2011-01-01
When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. PMID:21945804
Do not resuscitate, brain death, and organ transplantation: Islamic perspective
Chamsi-Pasha, Hassan; Albar, Mohammed Ali
2017-01-01
Muslim patients and families are often reluctant to discuss and accept fatal diagnoses and prognoses. In many instances, aggressive therapy is requested by a patient's family, prolonging the life of the patient at all costs. Islamic law permits the withdrawal of futile treatment, including life support, from terminally ill patients allowing death to take its natural course. “Do not resuscitate” is permitted in Islamic law in certain situations. Debate continues about the certainty of brain death criteria within Islamic scholars. Although brain death is accepted as true death by the majority of Muslim scholars and medical organizations, the consensus in the Muslim world is not unanimous, and some scholars still accept death only by cardiopulmonary criteria. Organ transplantation has been accepted in Islamic countries (with some resistance from some jurists). Many fatwas (decrees) of Islamic Jurisprudence Councils have been issued and allowed organs to be donated from living competent adult donor; and from deceased (cadavers), provided that they have agreed to donate or their families have agreed to donate after their death (usually these are brain-dead cases). A clear and well-defined policy from the ministry of health regarding do not resuscitate, brain death, and other end-of-life issues is urgently needed for all hospitals and health providers in most (if not all) Muslim and Arab countries. PMID:28469984
The role of nitrous oxide in stroke
Zhang, Zhu-wei; Zhang, Dong-ping; Li, Hai-ying; Wang, Zhong; Chen, Gang
2017-01-01
Stroke that is caused by poor blood flow into the brain results in cell death, including ischemia stroke due to lack of blood into brain tissue, and hemorrhage due to bleeding. Both of them will give rise to the dysfunction of brain. In general, the signs and symptoms of stroke are the inability of feeling or moving on one side of body, sometimes loss of vision to one side. Above symptoms will appear soon after the stroke has happened. If the symptoms and signs happen in 1 or 2 hours, we often call them as transient ischemic attack. Moreover, hemorrhagic stroke often leads to severe headache. It is known that neuronal death can happen after stroke, and it depends upon the activation of N-methyl-D-aspartate (NMDA) excitatory glutamate receptor which is the goal for a lot of neuroprotective agents. Nitrous oxide was discovered by Joseph Priestley in 1772, and then he and his friends, including the poet Coleridge and Robert Sauce, experimented with the gas. They found this gas could make patients loss the sense of pain and still maintain consciousness after inhalation. Shortly the gas was used as an anesthetic, especially in the field of dentists. Now, accroding to theme of Helene N. David and other scientists, both of nitrous oxide at 75 vol% and xenon at 50 vol% could reduce ischemic neuronal death in the cortex by 70% and decrease NMDA-induced Ca2+ influx by 30%. Therefore, more clinical and experimental studies are important to illuminate the mechanisms of how nitrous oxide protects brain tissue and to explore the best protocol of this gas in stroke treatment. PMID:29497489
Ha, Grace K; Parikh, Shivani; Huang, Zhi; Petitto, John M
2008-08-13
The temporal relationship between severity of peripheral axonal injury and T lymphocyte trafficking to the neuronal cell bodies of origin in the brain has been unclear. We sought to test the hypothesis that greater neuronal death induced by disparate forms of peripheral nerve injury would result in differential patterns of T cell infiltration and duration at the cell bodies of origin in the brain and that these measures would correlate with the magnitude of neuronal death over time and cumulative neuronal loss. To test this hypothesis, we compared the time course of CD3(+) T cell infiltration and neuronal death (assessed by CD11b(+) perineuronal microglial phagocytic clusters) following axonal crush versus axonal resection injuries, two extreme variations of facial nerve axotomy that result in mild versus severe neuronal loss, respectively, in the facial motor nucleus. We also quantified the number of facial motor neurons present at 49 days post-injury to determine whether differences in the levels of neuronal death between nerve crush and resection correlated with differences in cumulative neuronal loss. Between 1 and 7 days post-injury when levels of neuronal death were minimal, we found that the rate of accumulation and magnitude of the T cell response was similar following nerve crush and resection. Differences in the T cell response were apparent by 14 days post-injury when the level of neuronal death following resection was substantially greater than that seen in crush injury. For nerve resection, the peak of neuronal death at 14 days post-resection was followed by a maximal T cell response one week later at 21 days. Differences in the level of neuronal death between the two injuries across the time course tested reflected differences in cumulative neuronal loss at 49 days post-injury. Altogether, these data suggest that the trafficking of T cells to the injured FMN is dependent upon the severity of peripheral nerve injury and associated neuronal death.
Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR
Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong
2016-01-01
Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655
Hypoglycemia-Induced Changes in the Electroencephalogram
Blaabjerg, Lykke; Juhl, Claus B.
2016-01-01
Hypoglycemia is defined by an abnormally low blood glucose level. The condition develops when rates of glucose entry into the systematic circulation are reduced relative to the glucose uptake by the tissues. A cardinal manifestation of hypoglycemia arises from inadequate supply of glucose to the brain, where glucose is the primary metabolic fuel. The brain is one of the first organs to be affected by hypoglycemia. Shortage of glucose in the brain, or neuroglycopenia, results in a gradual loss of cognitive functions causing slower reaction time, blurred speech, loss of consciousness, seizures, and ultimately death, as the hypoglycemia progresses. The electrical activity in the brain represents the metabolic state of the brain cells and can be measured by electroencephalography (EEG). An association between hypoglycemia and changes in the EEG has been demonstrated, although blood glucose levels alone do not seem to predict neuroglycopenia. This review provides an overview of the current literature regarding changes in the EEG during episodes of low blood glucose. PMID:27464753
Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young
2016-08-01
Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.
Koh, Phil-Ok
2013-01-01
Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830
Weaver, Jessica Lee; Matheson, Paul J; Matheson, Amy; Graham, Victoria S; Downard, Cynthia; Garrison, Richard Neal; Smith, Jason W
2018-04-18
Brain death is associated with significant inflammation within the kidneys, which may contribute to reduced graft survival. Direct peritoneal resuscitation (DPR) has been shown to reduce systemic inflammation after brain death. To determine its effects, brain dead rats were resuscitated with normal saline (targeted intravenous fluid, TIVF) to maintain a mean arterial pressure of 80 mmHg and DPR animals also received 30cc of intraperitoneal peritoneal dialysis solution. Rats were euthanized at zero, two, four, and six hours after brain death. Pro-inflammatory cytokines were measured using ELISA. Levels of IL-1β, TNF-α, and IL-6 in the kidney were significantly increased as early as two hours after brain death and significantly decreased with DPR. Levels of leukocyte adhesion molecules ICAM and VCAM increased after brain death and were decreased with DPR (ICAM 2.33{plus minus}0.14 v 0.42{plus minus}0.04 p=0.002, VCAM 82.6{plus minus}5.8 v 37.3{plus minus}1.9 p=0.002 at four hours) as were E-selectin and P-selectin (E-selectin 25605 v 16144 p=0.005, P-selectin 82.5{plus minus}3.3 v 71.0{plus minus}2.3 p=0.009 at four hours). Use of DPR reduces inflammation and adhesion molecule expression in the kidneys, and is associated with reduced macrophages and neutrophils on immunohistochemistry. Using DPR in brain dead donors has the potential to reduce the immunologic activity of transplanted kidneys and could improve graft survival.
Wijdicks, Eelco F M; Varelas, Panayiotis N; Gronseth, Gary S; Greer, David M
2010-06-08
To provide an update of the 1995 American Academy of Neurology guideline with regard to the following questions: Are there patients who fulfill the clinical criteria of brain death who recover neurologic function? What is an adequate observation period to ensure that cessation of neurologic function is permanent? Are complex motor movements that falsely suggest retained brain function sometimes observed in brain death? What is the comparative safety of techniques for determining apnea? Are there new ancillary tests that accurately identify patients with brain death? A systematic literature search was conducted and included a review of MEDLINE and EMBASE from January 1996 to May 2009. Studies were limited to adults. In adults, there are no published reports of recovery of neurologic function after a diagnosis of brain death using the criteria reviewed in the 1995 American Academy of Neurology practice parameter. Complex-spontaneous motor movements and false-positive triggering of the ventilator may occur in patients who are brain dead. There is insufficient evidence to determine the minimally acceptable observation period to ensure that neurologic functions have ceased irreversibly. Apneic oxygenation diffusion to determine apnea is safe, but there is insufficient evidence to determine the comparative safety of techniques used for apnea testing. There is insufficient evidence to determine if newer ancillary tests accurately confirm the cessation of function of the entire brain.
Abe, Tsutomu; Takagi, Norio; Nakano, Midori; Tanonaka, Kouichi; Takeo, Satoshi
2004-04-01
A possible involvement of inhibitory effects of monobromobimane (MBM), a thiol reagent, on the swelling and the release of cytochrome c in the isolated brain mitochondria was examined. MBM dose-dependently inhibited the calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome c release. Significant relationships between mitochondrial swelling and cytochrome c release were detected. Furthermore, effects of in vivo treatment with MBM on neuronal cell damage after transient (15 min) global ischemia in rats were examined. Infusion of MBM (1 or 3 microg/animal) to cerebral ventricles attenuated an increased number of TUNEL-positive cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion. These results suggest that MBM may have an ability to inhibit mitochondria-associated apoptotic pathways through attenuation of the mitochondrial swelling and the release of cytochrome c.
Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia
Lee, Jae-Chul; Park, Joon Ha; Park, Ok Kyu; Kim, In Hye; Yan, Bing Chun; Ahn, Ji Hyeon; Kwon, Seung-Hae; Choi, Jung Hoon
2013-01-01
Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications. PMID:24179693
METHAMPHETAMINE TOXICITY AND MESSENGERS OF DEATH
Krasnova, Irina N.; Cadet, Jean Lud
2009-01-01
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity. PMID:19328213
Traumatic brain injury: a risk factor for neurodegenerative diseases.
Gupta, Rajaneesh; Sen, Nilkantha
2016-01-01
Traumatic brain injury (TBI), a major global health and socioeconomic problem, is now established as a chronic disease process with a broad spectrum of pathophysiological symptoms followed by long-term disabilities. It triggers multiple and multidirectional biochemical events that lead to neurodegeneration and cognitive impairment. Recent studies have presented strong evidence that patients with TBI history have a tendency to develop proteinopathy, which is the pathophysiological feature of neurodegenerative disorders such as Alzheimer disease (AD), chronic traumatic encephalopathy (CTE), and amyotrophic lateral sclerosis (ALS). This review mainly focuses on mechanisms related to AD, CTE, and ALS that are induced after TBI and their relevance to the advancement of these neurodegenerative diseases. This review encompasses acute effects and chronic neurodegenerative consequences after TBI for a better understanding of TBI-induced neuronal death and to design therapies that will effectively treat patients in the primary or secondary progressive stages.
Vanatta, Jason M; Dean, Amanda G; Hathaway, Donna K; Nair, Satheesh; Modanlou, Kian A; Campos, Luis; Nezakatgoo, Nosratollah; Satapathy, Sanjaya K; Eason, James D
2013-04-01
Organ donation after cardiac death remains an available resource to meet the demand for transplant. However, concern persists that outcomes associated with donation after cardiac death liver allografts are not equivalent to those obtained with organ donation after brain death. The aim of this matched case control study was to determine if outcomes of liver transplants with donation after cardiac death donors is equivalent to outcomes with donation after brain death donors by controlling for careful donor and recipient selection, surgical technique, and preservation solution. A retrospective, matched case control study of adult liver transplant recipients at the University of Tennessee/Methodist University Hospital Transplant Institute, Memphis, Tennessee was performed. Thirty-eight donation after cardiac death recipients were matched 1:2, with 76 donation after brain death recipients by recipient age, recipient laboratory Model for End Stage Liver Disease score, and donor age to form the 2 groups. A comprehensive approach that controlled for careful donor and recipient matching, surgical technique, and preservation solution was used to minimize warm ischemia time, cold ischemia time, and ischemia-reperfusion injury. Patient and graft survival rates were similar in both groups at 1 and 3 years (P = .444 and P = .295). There was no statistically significant difference in primary nonfunction, vascular complications, or biliary complications. In particular, there was no statistically significant difference in ischemic-type diffuse intrahepatic strictures (P = .107). These findings provide further evidence that excellent patient and graft survival rates expected with liver transplants using organ donation after brain death donors can be achieved with organ donation after cardiac death donors without statistically higher rates of morbidity or mortality when a comprehensive approach that controls for careful donor and recipient matching, surgical technique, and preservation solution is used.
Developmental neurotoxicity screening using human embryonic stem cells.
Bosnjak, Zeljko J
2012-09-01
Research in the area of stem cell biology and regenerative medicine, along with neuroscience, will further our understanding of drug-induced death of neurons during their development. With the development of an in vitro model of stem cell-derived human neural cell lines investigators can, under control conditions and during intense neuronal growth, examine molecular mechanisms of various drugs and conditions on early developmental neuroapoptosis in humans. If the use of this model will lead to fewer risks, or identification of drugs and anesthetics that are less likely to cause the death of neurons, this approach will be a major stride toward assuring the safety of drugs during the brain development. The ultimate goal would be not only to find the trigger for the catastrophic chain of events, but also to prevent neuronal cell death itself. Copyright © 2012. Published by Elsevier Inc.
Police Officers' Knowledge and Attitudes Toward Brain Death and Organ Donation in Korea.
Kim, H S; Yoo, Y S; Cho, O-H; Lee, C E; Choi, Y-H; Kim, H J; Park, J Y; Park, H S; Kwon, Y J
2018-05-01
Administrative processing by the police may affect the process involved in organ donation in the event of an accidental brain injury. The purpose of this study was to evaluate the knowledge and attitude of police toward brain-dead donors and organ donation. This was a descriptive research study using a 41-item questionnaire. As of July 19, 2017, 11 police stations in Seoul had collected questionnaires completed by 115 police officers. Data were analyzed using SAS (version 9.4) software. There were statistically significant differences in the scores on knowledge about brain death/donation according to religion (P = .022). Attitude was significantly positively correlated with the knowledge about brain-death organ donation (P = .029). It is necessary to understand and cooperate with the police when processing brain death organs from accidents. Education about organ donation can enhance the information and knowledge of the police and can also help to establish a positive attitude about organ donation. Copyright © 2018 Elsevier Inc. All rights reserved.
Ho, Chi-Kung; Yang, Ya-Hui; Yang, Chun-Yuh
2011-01-01
The objectives of this study were to (1) examine the relationship between nitrate levels in public water supplies and risk of death from brain cancer and (2) determine whether calcium (Ca) and magnesium (Mg) levels in drinking water might modify the influence of nitrates on development of brain cancer. A matched cancer case-control study was used to investigate the relationship between the risk of death from brain cancer and exposure to nitrates in drinking water in Taiwan. All brain cancer deaths of Taiwan residents from 2003 through 2008 were obtained from the Bureau of Vital Statistics of the Taiwan Provincial Department of Health. Controls were deaths from other causes and were pair-matched to cancer cases by gender, year of birth, and year of death. Information on the levels of nitrate-nitrogen (NO₃-N), Ca, and Mg in drinking water was obtained from Taiwan Water Supply Corporation (TWSC). The municipality of residence for cancer cases and controls was presumed to be the source of the subject's NO₃-N, Ca, and Mg exposure via drinking water. Relative to individuals whose NO₃-N exposure level was <0.38 ppm, the adjusted OR (95% CI) for brain cancer occurrence was 1.04 (0.85-1.27) for individuals who resided in municipalities served by drinking water with a NO₃-N exposure ≥ 0.38 ppm. No marked effect modification was observed due to Ca and Mg intake via drinking water on brain cancer occurrence.
Kuo, Hsing-Chun; Lu, Chien-Chang; Shen, Chien-Heng; Tung, Shui-Yi; Hsieh, Meng Chiao; Lee, Ko-Chao; Lee, Li-Ya; Chen, Chin-Chu; Teng, Chih-Chuan; Huang, Wen-Shih; Chen, Te-Chuan; Lee, Kam-Fai
2016-03-18
Hericium erinaceus is an edible mushroom; its various pharmacological effects which have been investigated. This study aimed to demonstrate whether efficacy of oral administration of H. erinaceus mycelium (HEM) and its isolated diterpenoid derivative, erinacine A, can act as an anti-neuroinflammatory agent to bring about neuroprotection using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease, which results in motor disturbances, in addition to elucidating the mechanisms involved. Mice were treated with and without HEM or erinacine A, after MPTP injection for brain injuries by the degeneration of dopaminergic nigrostriatal neurons. The efficacy of oral administration of HEM improved MPTP-induced loss of tyrosine hydroxylase positive neurons and brain impairment in the substantia nigra pars compacta as measured by brain histological examination. Treatment with HEM reduced MPTP-induced dopaminergic cell loss, apoptotic cell death induced by oxidative stress, as well as the level of glutathione, nitrotyrosine and 4-hydroxy-2-nonenal (4-HNE). Furthermore, HEM reversed MPTP-associated motor deficits, as revealed by the analysis of rotarod assessment. Our results demonstrated that erinacine A decreases the impairment of MPP-induced neuronal cell cytotoxicity and apoptosis, which were accompanied by ER stress-sustained activation of the IRE1α/TRAF2, JNK1/2 and p38 MAPK pathways, the expression of C/EBP homologous protein (CHOP), IKB-β and NF-κB, as well as Fas and Bax. These physiological and brain histological changes provide HEM neuron-protective insights into the progression of Parkinson's disease, and this protective effect seems to exist both in vivo and in vitro.
Somatic survival and organ donation among brain-dead patients in the state of Qatar.
George, Saibu; Thomas, Merlin; Ibrahim, Wanis H; Abdussalam, Ahmed; Chandra, Prem; Ali, Husain Shabbir; Raza, Tasleem
2016-10-31
The Qatari law, as in many other countries, uses brain death as the main criteria for organ donation and cessation of medical support. By contrast, most of the public in Qatar do not agree with the limitation or withdrawal of medical care until the time of cardiac death. The current study aims to examine the duration of somatic survival after brain death, organ donation rate in brain-dead patients as well as review the underlying etiologies and level of support provided in the state of Qatar. This is a retrospective study of all patients diagnosed with brain death over a 10-year period conducted at the largest tertiary center in Qatar (Hamad General Hospital). Among the 53 patients who were diagnosed with brain death during the study period, the median and mean somatic survivals of brain-dead patients in the current study were 3 and 4.5 days respectively. The most common etiology was intracranial hemorrhage (45.3 %) followed by ischemic stroke (17 %). Ischemic stroke patients had a median survival of 11 days. Organ donation was accepted by only two families (6.6 %) of the 30 brain dead patients deemed suitable for organ donation. The average somatic survival of brain-dead patients is less than one week irrespective of supportive measures provided. Organ donation rate was extremely low among brain-dead patients in Qatar. Improved public education may lead to significant improvement in resource utilization as well as organ transplant donors and should be a major target area of future health care policies.
Medical and ethical dilemma in brain death.
Streba, Irina; Damian, Simona; Ioan, Beatrice
2012-01-01
For centuries, death has been defined, medically speaking, as the irreversible cessation of breathing and of nervous and cardiac activity. What radically changed this definition was the introduction of the concept "brain death" in 1968, by the "Ad Hoc Committee of the Harvard Medical School". According to it, the irreversible coma was associated with brain death and considered to be a criterion for the diagnosis of the deceased individual. The evergrowing need for transplant organs (provided this respects the dead honor rule, stipulating that organs can't be harvested unless someone is deceased) lead to making arbitrary decisions regarding the establishment of the exact time of death during the process of "losing life". What actually triggers the controversy related to the concept of brain death is the dilemma of associating this concept with that of biologic death or death of the person, the difference between the two being made by whether the mental characteristics are accepted or not in defining and individualizing the death of the human being. Given these circumstances, a dilemma appears--that of defining the death of the individual: we define death, as it has been for centuries, as the moment when the cardio-respiratory function no longer exists, which leads to the loss of tens of thousands of lives that might have been saved through transplant. Yet, this may lead to manipulating the border between life and death, with the risk of trespassing each individual's right to life.
Wang, Xiaowan; Li, Hailong; Ding, Shinghua
2014-01-01
NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075
Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.
2001-01-01
Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.
Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.
Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun
2015-07-01
Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.
Örd, Tiit; Innos, Jürgen; Lilleväli, Kersti; Tekko, Triin; Sütt, Silva; Örd, Daima; Kõks, Sulev; Vasar, Eero; Örd, Tõnis
2014-01-01
Tribbles homolog 3 (TRIB3) is a mammalian pseudokinase that is induced in neuronal cell cultures in response to cell death-inducing stresses, including neurotrophic factor deprivation. TRIB3 is an inhibitor of activating transcription factor 4 (ATF4), the central transcriptional regulator in the eukaryotic translation initiation factor 2α (eIF2α) phosphorylation pathway that is involved in the cellular stress response and behavioral processes. In this article, we study the expression of Trib3 in the mouse brain, characterize the brain morphology of mice with a genetic ablation of Trib3 and investigate whether Trib3 deficiency alters eIF2α-dependent cognitive abilities. Our data show that the consumption of a leucine-deficient diet induces Trib3 expression in the anterior piriform cortex, the brain region responsible for detecting essential amino acid intake imbalance. However, the aversive response to leucine-devoid diet does not differ in Trib3 knockout and wild type mice. Trib3 deletion also does not affect long-term spatial memory and reversal learning in the Morris water maze and auditory or contextual fear conditioning. During embryonic development, Trib3 expression increases in the brain and persists in the early postnatal stadium. Neuroanatomical characterization of mice lacking Trib3 revealed enlarged lateral ventricles. Thus, although the absence of Trib3 does not alter the eIF2α pathway-dependent cognitive functions of several areas of the brain, including the hippocampus, amygdala and anterior piriform cortex, Trib3 may serve a role in other central nervous system processes and molecular pathways. PMID:24732777
Ruder, Avima M.; Hein, Misty J.; Nilsen, Nancy; Waters, Martha A.; Laber, Patricia; Davis-King, Karen; Prince, Mary M.; Whelan, Elizabeth
2006-01-01
An Indiana capacitor-manufacturing cohort (n = 3,569) was exposed to polychlorinated biphenyls (PCBs) from 1957 to 1977. The original study of mortality through 1984 found excess melanoma and brain cancer; other studies of PCB-exposed individuals have found excess non-Hodgkin lymphoma and rectal, liver, biliary tract, and gallbladder cancer. Mortality was updated through 1998. Analyses have included standardized mortality ratios (SMRs) and 95% confidence intervals (CIs) using rates for Indiana and the United States, standardized rate ratios (SRRs), and Poisson regression rate ratios (RRs). Estimated cumulative exposure calculations used a new job–exposure matrix. Mortality overall was reduced (547 deaths; SMR, 0.81; 95% CI, 0.7–0.9). Non-Hodgkin lymphoma mortality was elevated (9 deaths; SMR, 1.23; 95% CI, 0.6–2.3). Melanoma remained in excess (9 deaths; SMR, 2.43; 95% CI, 1.1–4.6), especially in the lowest tertile of estimated cumulative exposure (5 deaths; SMR, 3.72; 95% CI, 1.2–8.7). Seven of the 12 brain cancer deaths (SMR, 1.91; 95% CI, 1.0–3.3) occurred after the original study. Brain cancer mortality increased with exposure (in the highest tertile, 5 deaths; SMR, 2.71; 95% CI, 0.9–6.3); the SRR dose–response trend was significant (p = 0.016). Among those working ≥90 days, both melanoma (8 deaths; SMR, 2.66; 95% CI, 1.1–5.2) and brain cancer (11 deaths; SMR, 2.12; 95% CI, 1.1–3.8) were elevated, especially for women: melanoma, 3 deaths (SMR, 5.99; 95% CI, 1.2–17.5); brain cancer, 3 deaths (SMR, 2.87; 95% CI, 0.6–8.4). These findings of excess melanoma and brain cancer mortality confirm results of the original study. Melanoma mortality was not associated with estimated cumulative exposure. Brain cancer mortality did not demonstrate a clear dose–response relationship with estimated cumulative exposure. PMID:16393652
Gan, Lu; Wang, Zhenhua; Si, Jing; Zhou, Rong; Sun, Chao; Liu, Yang; Ye, Yancheng; Zhang, Yanshan; Liu, Zhiyuan; Zhang, Hong
2018-02-15
Exposure to iron ion 56 Fe radiation (IR) during space missions poses a significant risk to the central nervous system and radiation exposure is intimately linked to the production of reactive oxygen species (ROS). MitoQ is a mitochondria-targeted antioxidant that has been shown to decrease oxidative damage and lower mitochondrial ROS in a number of animal models. Therefore, the present study aimed to investigate role of the mitochondrial targeted antioxidant MitoQ against 56 Fe particle irradiation-induced oxidative damage and mitochondria dysfunction in the mouse brains. Increased ROS levels were observed in mouse brains after IR compared with the control group. Enhanced ROS production leads to disruption of cellular antioxidant defense systems, mitochondrial respiration dysfunction, altered mitochondria dynamics and increased release of cytochrome c (cyto c) from mitochondria into cytosol resulting in apoptotic cell death. MitoQ reduced IR-induced oxidative stress (decreased ROS production and increased SOD, CAT activities) with decreased lipid peroxidation as well as reduced protein and DNA oxidation. MitoQ also protected mitochondrial respiration after IR. In addition, MitoQ increased the expression of mitofusin2 (Mfn2) and optic atrophy gene1 (OPA1), and decreased the expression of dynamic-like protein (Drp1). MitoQ also suppressed mitochondrial DNA damage, cyto c release, and caspase-3 activity in IR-treated mice compared to the control group. These results demonstrate that MitoQ may protect against IR-induced brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Transplanting hearts after death measured by cardiac criteria: the challenge to the dead donor rule.
Veatch, Robert M
2010-06-01
The current definition of death used for donation after cardiac death relies on a determination of the irreversible cessation of the cardiac function. Although this criterion can be compatible with transplantation of most organs, it is not compatible with heart transplantation since heart transplants by definition involve the resuscitation of the supposedly "irreversibly" stopped heart. Subsequently, the definition of "irreversible" has been altered so as to permit heart transplantation in some circumstances, but this is unsatisfactory. There are three available strategies for solving this "irreversibility problem": altering the definition of death so as to rely on circulatory irreversibility, rather than cardiac; defining death strictly on the basis of brain death (either whole-brain or more pragmatically some higher brain criteria); or redefining death in traditional terms and simultaneously legalizing some limited instances of medical killing to procure viable hearts. The first two strategies are the most ethically justifiable and practical.
Chan, Hsien W; Liu, Tianbing; Verdile, Giuseppe; Bishop, Glenda; Haasl, Ryan J; Smith, Mark A; Perry, George; Martins, Ralph N; Atwood, Craig S
2008-01-01
The basic mechanism(s) by which altered Cu homeostasis is toxic to hepatocytes and neurons, the two major cell types affected in copper storage diseases such as Wilson's disease (WD), remain unclear. Using human M17 neuroblastoma cells as a model to examine Cu toxicity, we found that there was a time- and concentration-dependent induction of neuronal death, such that at 24 h there was a approximately 50 % reduction in viability with 25 muM Cu-glycine(2). Cu-glycine(2) (25:50 muM) treatment for 24 h significantly altered the expression of 296 genes, including 8 genes involved with apoptosis (BCL2-associated athanogene 3, BCL2/adenovirus E1B 19kDa interacting protein caspase 5, regulator of Fas-induced apoptosis, V-jun sarcoma virus 17 oncogene homolog, claudin 5, prostaglandin E receptor 3 and protein tyrosine phosphatase, non-receptor type 6). Surprisingly, changes in the expression of more 'traditional' apoptotic genes (Bcl-2, Bax, Bak and Bad) did not vary more than 20 %. To test whether the induction of apoptosis in neuroblastoma cells was via post-translational mechanisms, we measured the protein expression of these apoptotic markers in M17 neuroblastoma cells treated with Cu-glycine(2) (0-100 muM) for 24-48 h. Compared with glycine treated cells, Cu-glycine(2) reduced Bcl-2 expression by 50 %, but increased Bax and Bak expression by 130% and 400 %, respectively. To assess whether Cu also induced apoptotic cell death in a mouse model of WD, we measured the expression of these apoptotic markers in the liver and brain of mice expressing an ATP7b gene mutation (tx(J) mice) at 10 months of age (near the end of their lives when overt liver pathology is displayed). Changes in the liver expression of these apoptotic markers in tx(J) mice compared to background mice mirrored those of Cu treated neuroblastoma cells. In contrast, few changes in apoptotic protein expression were detected in the brain between tx(J) and background mice, indicating the tx(J) mouse is a good model of hepatic, but not brain, Cu toxicity. Our results indicate that Cu-induction of neuronal apoptosis does not require de novo synthesis or degradation of apoptotic genes, and that Cu accumulation in the aged tx(J) mouse brain is insufficient to induce apoptosis.
Lin, Ming-Wei; Lei, Yen-Ping; Lin, Anya Maan-yuh
2014-01-01
Macroautophagy (also known as autophagy) is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS) neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium)-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN). At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II) as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain. PMID:24646838
Milanovic, Desanka; Pesic, Vesna; Loncarevic-Vasiljkovic, Natasa; Pavkovic, Zeljko; Popic, Jelena; Kanazir, Selma; Jevtovic-Todorovic, Vesna; Ruzdijic, Sabera
2016-10-01
A number of experimental studies have reported that exposure to common, clinically used anesthetics induce extensive neuroapoptosis and cognitive impairment when applied to young rodents, up to 2 weeks old, in phase of rapid synaptogenesis. Propofol is the most used general anesthetic in clinical practice whose mechanisms of neurotoxicity on the developing brain remains to be examined in depth. This study investigated effects of different exposures to propofol anesthesia on Fas receptor and Fas ligand expressions, which mediate proapoptotic and proinflammation signaling in the brain. Propofol (20 mg/kg) was administered to 7-day-old rats in multiple doses sufficient to maintain 2-, 4- and 6-h duration of anesthesia. Animals were sacrificed at 0, 4, 16 and 24 h after termination of anesthesia. It was found that propofol anesthesia induced Fas/FasL and downstream caspase-8 expression more prominently in the thalamus than in the cortex. Opposite, Bcl-2 and caspase-9, markers of intrinsic pathway activation, were shown to be more influenced by propofol treatment in the cortex. Further, we have established upregulation of caspase-1 and IL-1β cytokine transcription as well as subsequent activation of microglia that is potentially associated with brain inflammation. Behavioral analyses revealed that P35 and P60 animals, neonatally exposed to propofol, had significantly higher motor activity during three consecutive days of testing in the open field, though formation of the intersession habituation was not prevented. This data, together with our previous results, contributes to elucidation of complex mechanisms of propofol toxicity in developing brain.
Mechanisms of Virus-Induced Neural Cell Death
2002-09-01
55: 1031-1032 84. Tyler KL, Tedder DG, Yamamoto LJ, Klapper JA, Ashley R, Lichtenstein KA , Levin MJ (1995) Recurrent brainstem encephalitis associated...nervous system Roberta L. DeBiasi a,b,* B.K. Kleinschmidt-DeMasters b,c Adriana Weinberg a,f g, Kenneth L. Tyler b,d,ef a Department of Pediatrics...application of polymerase chain reaction to Lichtenstein KA , Levin MJ. Recurrent brainstem en- cerebrospinal fluid from brain-biopsied patients and corre
Kim, Eun A; Choi, So Eun
2015-12-01
The purpose of this study was to test and validate a model to predict living and brain death organ donation intention in nursing students. The conceptual model was based on the theory planned behavior. Quota sampling methodology was used to recruit 921 nursing students from all over the country and data collection was done from October 1 to December 20, 2013. The model fit indices for the hypothetical model were suitable for the recommended level. Knowledge, attitude, subjective norm and perceived behavioral control explained 40.2% and 40.1% respectively for both living and brain death organ donation intention. Subjective norm was the most direct influential factor for organ donation intention. Knowledge had significant direct effect on attitude and indirect effect on subjective norm and perceived behavioral control. These effects were higher in brain death organ donation intention than in living donation intention. The overall findings of this study suggest the need to develop systematic education programs to increases knowledge about brain death organ donation. The development, application, and evaluation of intervention programs are required to improve subjective norm.
Brain aging and neurodegeneration: from a mitochondrial point of view.
Grimm, Amandine; Eckert, Anne
2017-11-01
Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid". © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.
Sedeyn, Jonathan C.; Wu, Hao; Hobbs, Reilly D.; Levin, Eli C.; Nagele, Robert G.; Venkataraman, Venkat
2015-01-01
Among the top ten causes of death in the United States, Alzheimer's disease (AD) is the only one that cannot be cured, prevented, or even slowed down at present. Significant efforts have been exerted in generating model systems to delineate the mechanism as well as establishing platforms for drug screening. In this study, a promising candidate model utilizing primary mouse brain organotypic (MBO) cultures is reported. For the first time, we have demonstrated that the MBO cultures exhibit increased blood brain barrier (BBB) permeability as shown by IgG leakage into the brain parenchyma, astrocyte activation as evidenced by increased expression of glial fibrillary acidic protein (GFAP), and neuronal damage-response as suggested by increased vimentin-positive neurons occur upon histamine treatment. Identical responses—a breakdown of the BBB, astrocyte activation, and neuronal expression of vimentin—were then demonstrated in brains from AD patients compared to age-matched controls, consistent with other reports. Thus, the histamine-treated MBO culture system may provide a valuable tool in combating AD. PMID:26697497
NASA Astrophysics Data System (ADS)
Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.
2013-02-01
We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.
Domínguez-Gil, B; Coll, E; Pont, T; Lebrón, M; Miñambres, E; Coronil, A; Quindós, B; Herrero, J E; Liébanas, C; Marcelo, B; Sanmartín, A M; Matesanz, R
2017-04-01
To describe end-of-life care practices relevant to organ donation in patients with devastating brain injury in Spain. A multicenter prospective study of a retrospective cohort. 1 November 2014 to 30 April 2015. Sixty-eight hospitals authorized for organ procurement. Patients dying from devastating brain injury (possible donors). Age: 1 month-85 years. Type of care, donation after brain death, donation after circulatory death, intubation/ventilation, referral to the donor coordinator. A total of 1,970 possible donors were identified, of which half received active treatment in an Intensive Care Unit (ICU) until brain death (27%), cardiac arrest (5%) or the withdrawal of life-sustaining therapy (19%). Of the rest, 10% were admitted to the ICU to facilitate organ donation, while 39% were not admitted to the ICU. Of those patients who evolved to a brain death condition (n=695), most transitioned to actual donation (n=446; 64%). Of those who died following the withdrawal of life-sustaining therapy (n=537), 45 (8%) were converted into actual donation after circulatory death donors. The lack of a dedicated donation after circulatory death program was the main reason for non-donation. Thirty-seven percent of the possible donors were not intubated/ventilated at death, mainly because the professional in charge did not consider donation alter discarding therapeutic intubation. Thirty-six percent of the possible donors were never referred to the donor coordinator. Although deceased donation is optimized in Spain, there are still opportunities for improvement in the identification of possible donors outside the ICU and in the consideration of donation after circulatory death in patients who die following the withdrawal of life-sustaining therapy. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Zhu, Judy P.Q.; Xu, Wenjing; Angulo, Nieves; Angulo, Jesus A.
2010-01-01
Methamphetamine (METH) is a psychostimulant that induces neural damage in experimental animals and humans. A binge (usually in the 5–10 mg/kg dose range 4× at 2 h intervals) and the acute bolus drug administration (20–40 mg/kg) of METH have been employed frequently to study neurotoxicity in the brain. In this study we have compared these drug delivery schedules to determine their efficacy to induce striatal apoptosis. Exposure of male mice to a binge of METH at 10 mg/kg 4× at 2 h intervals (cumulative dose of 40 mg/kg) was approximately four times less effective in inducing apoptotic cell death (TUNEL staining) 24 h after METH treatment in the striatum than a single bolus administration of 30 mg/kg of METH. The residual TUNEL staining observed three days after METH treatment is proportionately equivalent between a binge and the acute bolus drug administration. Interestingly, a binge of METH induces a hyperthermic response of longer duration. This study demonstrates that an acute bolus drug administration of METH is more effective inducing striatal apoptosis in mice, and therefore, is more suitable for studies assessing the impact of METH on sites post-synaptic to the striatonigral dopamine terminals. PMID:16165214
Wu, Yan-Yan; Zhou, Ting; Wang, Qiang; Dai, Ping-Li; Xu, Shu-Fa; Jia, Hui-Ru; Wang, Xing
2015-08-01
Honey bees are at an unavoidable risk of exposure to neonicotinoid pesticides, which are used worldwide. Compared with the well-studied roles of these pesticides in nontarget site (including midgut, ovary, or salivary glands), little has been reported in the target sites, the brain. In the current study, laboratory-reared adult worker honey bees (Apis mellifera L.) were treated with sublethal doses of imidacloprid. Neuronal apoptosis was detected using the TUNEL technique for DNA labeling. We observed significantly increased apoptotic markers in dose- and time-dependent manners in brains of bees exposed to imidacloprid. Neuronal activated caspase-3 and mRNA levels of caspase-1, as detected by immunofluorescence and real-time quantitative PCR, respectively, were significantly increased, suggesting that sublethal doses of imidacloprid may induce the caspase-dependent apoptotic pathway. Additionally, the overlap of apoptosis and autophagy in neurons was confirmed by transmission electron microscopy. It further suggests that a relationship exists between neurotoxicity and behavioral changes induced by sublethal doses of imidacloprid, and that there is a need to determine reasonable limits for imidacloprid application in the field to protect pollinators. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yang, Tien-Chun; Wu, Pei-Chun; Chung, I-Fang; Jiang, Jhih-Hang; Fann, Ming-Ji; Kao, Lung-Sen
2016-10-01
The pathogenesis of Parkinson's disease (PD) is not completely understood, Zinc (Zn(2+) ) and dopamine (DA) have been shown to involve in the degeneration of dopaminergic cells. By microarray analysis, we identified Gadd45b as a candidate molecule that mediates Zn(2+) and DA-induced cell death; the mRNA and protein levels of Gadd45b are increased by Zn(2+) treatment and raised to an even higher level by Zn(2+) plus DA treatment. Zn(2+) plus DA treatment-induced PC12 cell death was enhanced when there was over-expression of Gadd45b and was decreased by knock down of Gadd45b. MAPK p38 and JNK signaling was able to cross-talk with Gadd45b during Zn(2+) and DA treatment. The synergistic effects of Zn(2+) and DA on PC12 cell death can be accounted for by an activation of the Gadd45b-induced cell death pathway and an inhibition of p38/JNK survival pathway. Furthermore, the in vivo results show that the levels of Gadd45b protein expression and phosphorylation of p38 were increased in the substantia nigra by the infusion of Zn(2+) /DA in the mouse brain and the level of Gadd45b mRNA is significantly higher in the substantia nigra of male PD patients than normal controls. The novel role of Gadd45b and its interactions with JNK and p38 will help our understanding of the pathogenesis of PD and help the development of future treatments for PD. Zinc and dopamine are implicated in the degeneration of dopaminergic neurons. We previously demonstrated that zinc and dopamine induced synergistic effects on PC12 cell death. Results from this study show that these synergistic effects can be accounted for by activation of the Gadd45b-induced cell death pathway and inhibition of the p38/JNK survival pathway. We provide in vitro and in vivo evidence to support a novel role for Gadd45b in the pathogenesis of Parkinson's disease. © 2016 International Society for Neurochemistry.
Sari, Youssef; Chiba, Tomohiro; Yamada, Marina; Rebec, George V.; Aiso, Sadakazu
2009-01-01
Fetal alcohol exposure is known to induce cell death through apoptosis. We found that colivelin (CLN), a novel peptide with the sequence SALLRSIPAPAGASRLLLLTGEIDLP, prevents this apoptosis. Our initial experiment revealed that CLN enhanced the viability of primary cortical neurons exposed to alcohol. We then used a mouse model of fetal alcohol exposure to identify the intracellular mechanisms underlying these neuroprotective effects. On embryonic day 7 (E7), weight-matched pregnant females were assigned to the following groups: (1) ethanol liquid diet (ALC) 25% (4.49%, v/v) ethanol derived calories; (2) pair-fed control; (3) normal chow; (4) ALC combined with administration (i.p.) of CLN (20 μg/20 g body weight); and (5) pair-fed combined with administration (i.p.) of CLN (20 μg/20 g body weight). On E13, fetal brains were collected and assayed for TUNEL staining, caspase-3 colorimetric assay, ELISA, and MSD electrochemiluminescence. CLN blocked the alcohol-induced decline in brain weight and prevented alcohol-induced: apoptosis, activation of caspase-3 and increases of cytosolic cytochrome c, and decreases of mitochondrial cytochrome c. Analysis of proteins in the upstream signaling pathway revealed that CLN down-regulated the phosphorylation of the c-Jun N-terminal kinase. Moreover, CLN prevented alcohol-induced reduction in phosphorylation of BAD protein. Thus, CLN appears to act directly on upstream signaling proteins to prevent alcohol-induced apoptosis. Further assessment of these proteins and their signaling mechanisms is likely to enhance development of neuroprotective therapies. PMID:19782727
Lavezzi, Anna Maria; Mecchia, Donatella; Matturri, Luigi
2012-01-26
The area postrema is a densely vascularized small protuberance at the inferoposterior limit of the fourth ventricle, outside of the blood-brain barrier. This structure, besides to induce emetic reflex in the presence of noxious chemical stimulation, has a multifunctional integrative capacity to send major and minor efferents to a variety of brain centers particularly involved in autonomic control of the cardiovascular and respiratory activities. In this study we aimed to focus on the area postrema, which is so far little studied in humans, in a large sample of subjects aged from 25 gestational weeks to 10 postnatal months, who died of unknown (sudden unexplained perinatal and infant deaths) and known causes (controls). Besides we investigated a possible link between alterations of this structure, sudden unexplained fetal and infant deaths and maternal smoking. By the application of morphological and immunohistochemical methods, we observed a significantly high incidence of alterations of the area postrema in fetal and infant victims of sudden death as compared with age-matched controls. These pathological findings, including hypoplasia, lack of vascularization, cystic formations and reactive gliosis, were related to maternal smoking. We hypothesize that components from maternal cigarette smoke, particularly in pregnancy, could affect neurons of the area postrema connected with specific nervous centers involved in the control of vital functions. In conclusion, we suggest that the area postrema should be in depth examined particularly in victims of sudden fetal or infant death with smoker mothers. Copyright © 2011 Elsevier B.V. All rights reserved.
Role of microglia in ethanol’s apoptotic action on hypothalamic neuronal cells in primary cultures
Boyadjieva, Nadka I.; Sarkar, Dipak K.
2010-01-01
Background Microglia are the major inflammatory cells in the central nervous system and play a role in brain injuries as well as brain diseases. In this study, we determined the role of microglia in ethanol’s apoptotic action on neuronal cells obtained from the mediobasal hypothalamus and maintained in primary cultures. We also tested the effect of cAMP, a signaling molecule critically involved in hypothalamic neuronal survival, on microglia-mediated ethanol’s neurotoxic action. Methods Ethanol’s neurotoxic action was determined on enriched fetal mediobasal hypothalamic neuronal cells with or without microglia cells or ethanol-activated microglia conditioned media. Ethanol’s apoptotic action was determined using nucleosome assay. Microglia activation was determined using OX6 histochemistry and by measuring inflammatory cytokines secretion from microglia in cultures using enzyme-linked immunosorbent assay (ELISA). An immunoneutralization study was conducted to identify the role of a cytokine involved in ethanol’s apoptotic action. Results We show here that ethanol at a dose range of 50 and 100 mM induces neuronal death by an apoptotic process. Ethanol’s ability to induce an apoptotic death of neurons is increased by the presence of ethanol-activated microglia conditioned media. In the presence of ethanol, microglia showed elevated secretion of various inflammatory cytokines, of which TNF-α shows significant apoptotic action on mediobasal hypothalamic neuronal cells. Ethanol’s neurotoxic action was completely prevented by cAMP. The cell-signaling molecule also prevented ethanol-activated microglial production of TNF-α. Immunoneutralization of TNF-α prevented microglia-derived media’s ability to induce neuronal death. Conclusions These results suggest that ethanol’s apoptotic action on hypothalamic neuronal cells might be mediated via microglia, possibly via increased production of TNF-α. Furthermore, cAMP reduces TNF-α production from microglia to prevent ethanol’s neurotoxic action. PMID:20662807
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ming-Chung; Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Chen, Chia-Ling
An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-likemore » cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase in peritoneal vascular permeability.« less
Nayak, Vanishri S; Kumar, Nitesh; D'Souza, Antony S; Nayak, Sunil S; Cheruku, Sri P; Pai, K Sreedhara Ranganath
2017-12-13
Stroke is considered to be one of the most important causes of death worldwide. Global ischemia causes widespread brain injury and infarctions in various regions of the brain. Oxidative stress can be considered an important factor in the development of tissue damage, which is caused because of arterial occlusion with subsequent reperfusion. Kapikacchu or Mucuna pruriens, commonly known as velvet bean, is well known for its aphrodisiac activities. It is also used in the treatment of snakebites, depressive neurosis, and Parkinson's disease. Although this plant has different pharmacological actions, its neuroprotective activity has received minimal attention. Thus, this study was carried out with the aim of evaluating the neuroprotective action of M. pruriens in bilateral carotid artery occlusion-induced global cerebral ischemia in Wistar rats. The carotid arteries of both sides were occluded for 30 min and reperfused to induce global cerebral ischemia. The methanolic plant extract was administered to the study animals for 10 days. The brains of the Wistar rats were isolated by decapitation and observed for histopathological and biochemical changes. Cerebral ischemia resulted in significant neurological damage in the brains of the rats that were not treated by M. pruriens. The group subjected to treatment by the M. pruriens extract showed significant protection against brain damage compared with the negative control group, which indicates the therapeutic potential of this plant in ischemia.
Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah
2017-07-17
Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a useful material for preventing impairment of learning and memory.
Jeon, K O; Kim, B N; Kim, H S; Byeon, N-I; Hong, J J; Bae, S H; Son, S Y
2012-05-01
The practice of retrieving vital organs from brain-dead donors is legally and medically accepted in Korea, but health care professionals' beliefs and opinions regarding these matters have not been sufficiently explored. The purpose of this study was to evaluate the knowledge and attitudes of health care professionals to the concepts of brain death and organ retrieval. Data were collected using a 41-item questionnaire during a week in June 2011. Sixty-one doctors and 109 nurses from five hospitals with more than 2000 beds in Seoul, Korea, participated in the survey. The data was analyzed using SPSS version 17.0 (SPSS Inc. Chicago, Illinois, USA). There were statistically significant differences in the scores on knowledge according to marital status (P = .001) education level (P = .019), whether the participants were informed about organ donation from a brain-dead donor (P = .002), and the participant's experience managing potential brain-dead patients (P = .037). There were statistically significant differences in the scores on the attitude according to gender (P < .001), age (P < .001), marital status (P < .001), education level (P = .003), job position (P < .001), and the participant's experience referring brain-dead patients to the hospital-based organ procurement organization (P = .001). Significantly, attitude's positively correlated with knowledge about brain-dead organ donation (P < .001). Compared with previous studies, the knowledge and attitudes of health care professionals' regarding brain death and organ retrieval were not improved. There are passive attitudes to brain death and organ retrieval. More research must be performed to promote knowledge and understanding toward brain death and organ retrieval among health care professionals. Copyright © 2012 Elsevier Inc. All rights reserved.
Determination of Death and the Dead Donor Rule: A Survey of the Current Law on Brain Death.
Nikas, Nikolas T; Bordlee, Dorinda C; Moreira, Madeline
2016-06-01
Despite seeming uniformity in the law, end-of-life controversies have highlighted variations among state brain death laws and their interpretation by courts. This article provides a survey of the current legal landscape regarding brain death in the United States, for the purpose of assisting professionals who seek to formulate or assess proposals for changes in current law and hospital policy. As we note, the public is increasingly wary of the role of organ transplantation in determinations of death, and of the variability of brain death diagnosing criteria. We urge that any attempt to alter current state statutes or to adopt a national standard must balance the need for medical accuracy with sound ethical principles which reject the utilitarian use of human beings and are consistent with the dignity of the human person. Only in this way can public trust be rebuilt. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.
Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung
2017-08-16
Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.
Lee, Jae-Chul; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Kim, In Hye; Won, Moo-Ho; Cho, Geum-Sil; Shin, Bich-Na; Hwang, In Koo; Park, Joon Ha; Ahn, Ji Hyeon; Kang, Il Jun; Lee, Young Joo; Kim, Yang Hee
2017-01-01
Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei (NeuN) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia (39.5 ± 0.2°C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1–3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults. PMID:29089991
Schmidt, Matthew Q; Schraml, Frank V
2017-12-01
A 55-year old woman presented in an obtunded state and was found to have a subarachnoid hemorrhage. After endovascular repair, her condition deteriorated, and brain death was suspected. A Tc bicisate brain blood flow study was performed, which showed a complete absence of blood flow to the cerebellum despite intact circulation to the cerebral hemispheres. These atypical findings are likely a result of a transient intracranial pressure differential and the timing of the study. A timely and accurate declaration of brain death has important psychosocial and ethical implications, particularly when organ donation is being considered.
Lu, Xiufang; Gu, Renjun; Hu, Weimin; Sun, Zhitang; Wang, Gaiqing; Wang, Li; Xu, Yuming
2018-06-01
The aim of the present study was to identify the effect of heme oxygenase (HO)-1 gene on cerebral ischemia-reperfusion injury. Sprague-Dawley rats were divided randomly into four groups: Sham group, vehicle group, empty adenovirus vector (Ad) group and recombinant HO-1 adenovirus (Ad-HO-1) transfection group. Rats in the vehicle, Ad and Ad-HO-1 groups were respectively injected with saline, Ad or Ad-HO-1 for 3 days prior to cerebral ischemia-reperfusion injury. Subsequently, the middle cerebral artery occlusion method was used to establish the model of cerebral ischemia-reperfusion injury. Following the assessment of neurological function, rats were sacrificed, and the infarction volume and apoptotic index in rat brains were measured. Furthermore, the protein expression levels of HO-1 in brain tissues were detected using western blot analysis. Results indicated that the neurological score of the Ad-HO-1 group was significantly increased compared with the Ad or vehicle groups, respectively (P<0.001). The volume of cerebral infarction and the index score of neuronal apoptosis in the vehicle and Ad groups was significantly increased compared with the Ad-HO-1 group (P<0.01). The death of neuronal cells following cerebral ischemia-reperfusion injury reduced remarkably induced by over-expression of HO-1. These findings suggest a neuroprotective role of HO-1 against brain injury induced by transient cerebral ischemia-reperfusion injury.
Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator
Xie, B-W; Park, D; Van Beek, E R; Blankevoort, V; Orabi, Y; Que, I; Kaijzel, E L; Chan, A; Hogg, P J; Löwik, C W G M
2013-01-01
Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions. PMID:23348587
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-12-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination.
Diagnosis of brain death by transcranial Doppler sonography.
Bode, H; Sauer, M; Pringsheim, W
1988-01-01
The blood flow velocities in the basal cerebral arteries can be recorded at any age by transcranial Doppler sonography. We examined nine children with either initial or developing clinical signs of brain death. Soon after successful resuscitation increased diastolic flow velocities indicated a probable decrease in cerebrovascular resistance; this was of no particular prognostic importance. As soon as there was a clinical deterioration, there was a reduction in flow velocities with retrograde flow during early diastole, probably due to an increase in cerebrovascular resistance; this indicated a doubtful prognosis. In eight of the nine children with clinical signs of brain death a typical reverberating flow pattern was found, which was characterised by a counterbalancing short forward flow in systole and a short retrograde flow in early diastole. This indicated arrest of cerebral blood flow. One newborn showed normal systolic and end diastolic flow velocities in the basal cerebral arteries for two days despite clinical and electroencephalographic signs of brain death. Shunting of blood through the circle of Willis without effective cerebral perfusion may explain this phenomenon. No patient had the typical reverberating flow pattern without being clinically brain dead. Transcranial Doppler sonography is a reliable technique, which can be used at the bedside for the confirmation or the exclusion of brain death in children in addition to the clinical examination. PMID:3069052
Vercelli, A; Biggi, S; Sclip, A; Repetto, I E; Cimini, S; Falleroni, F; Tomasi, S; Monti, R; Tonna, N; Morelli, F; Grande, V; Stravalaci, M; Biasini, E; Marin, O; Bianco, F; di Marino, D; Borsello, T
2015-01-01
Excitotoxicity following cerebral ischemia elicits a molecular cascade, which leads to neuronal death. c-Jun-N-terminal kinase (JNK) has a key role in excitotoxic cell death. We have previously shown that JNK inhibition by a specific cell-permeable peptide significantly reduces infarct size and neuronal death in an in vivo model of cerebral ischemia. However, systemic inhibition of JNK may have detrimental side effects, owing to blockade of its physiological function. Here we designed a new inhibitor peptide (growth arrest and DNA damage-inducible 45β (GADD45β-I)) targeting mitogen-activated protein kinase kinase 7 (MKK7), an upstream activator of JNK, which exclusively mediates JNK's pathological activation. GADD45β-I was engineered by optimizing the domain of the GADD45β, able to bind to MKK7, and by linking it to the TAT peptide sequence, to allow penetration of biological membranes. Our data clearly indicate that GADD45β-I significantly reduces neuronal death in excitotoxicity induced by either N-methyl-D-aspartate exposure or by oxygen–glucose deprivation in vitro. Moreover, GADD45β-I exerted neuroprotection in vivo in two models of ischemia, obtained by electrocoagulation and by thromboembolic occlusion of the middle cerebral artery (MCAo). Indeed, GADD45β-I reduced the infarct size when injected 30 min before the lesion in both models. The peptide was also effective when administrated 6 h after lesion, as demonstrated in the electrocoagulation model. The neuroprotective effect of GADD45β-I is long lasting; in fact, 1 week after MCAo the infarct volume was still reduced by 49%. Targeting MKK7 could represent a new therapeutic strategy for the treatment of ischemia and other pathologies involving MKK7/JNK activation. Moreover, this new inhibitor can be useful to further dissect the physiological and pathological role of the JNK pathway in the brain. PMID:26270349
Kavitha, Chandagirikoppal V.; Jain, Anil K.; Agarwal, Chapla; Pierce, Angela; Keating, Amy; Huber, Kendra M.; Serkova, Natalie J.; Wempe, Michael F.; Agarwal, Rajesh; Deep, Gagan
2014-01-01
Glioblastoma multiforme (GBM) is an untreatable malignancy. Existing therapeutic options are insufficient, and adversely affect functional and non-cancerous cells in the brain impairing different functions of the body. Therefore, there is an urgent need for additional preventive and therapeutic non-toxic drugs against GBM. Asiatic acid (AsA; 2,3,23-trihydroxy-12-ursen-28-oic acid, C30H48O5) is a natural small molecule widely used to treat various neurological disorders, and the present research investigates AsA’s efficacy against GBM both in vitro and in vivo. Results showed that AsA treatment (10–100 μM) decreased the human GBM cell (LN18, U87MG, and U118MG) viability, with better efficacy than temozolomide at equimolar doses. Orally administered AsA (30 mg/kg/day) strongly decreased tumor volume in mice when administered immediately after ectopic U87MG xenograft implantation (54% decrease, p≤0.05) or in mice with established xenografts (48% decrease, p≤0.05) without any apparent toxicity. Importantly, AsA feeding (30 mg/kg/twice a day) also decreased the orthotopic U87MG xenografts growth in nude mice as measured by magnetic resonance imaging. Using LC/MS-MS methods, AsA was detected in mice plasma and brain tissue, confirming that AsA crosses blood-brain barrier. Mechanistic studies showed that AsA induces apoptotic death by modulating the protein expression of several apoptosis regulators (caspases, Bcl2 family members, and survivin) in GBM cells. Furthermore, AsA induced ER stress (increased GRP78 and Calpain, and decreased Calnexin and IRE1α expression), enhanced free intra-cellular calcium, and damaged cellular organization in GBM cells. These experimental results demonstrate that AsA is effective against GBM, and advocate further pre-clinical and clinical evaluations of AsA against GBM. PMID:25252179
Neuroimmunological Blood Brain Barrier Opening in Experimental Cerebral Malaria
Baer, Kerstin; Mikolajczak, Sebastian A.; Kappe, Stefan H. I.; Frevert, Ute
2012-01-01
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. PMID:23133375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niwinska, Anna, E-mail: alphaonetau@poczta.onet.p; Tacikowska, Malgorzata; Murawska, Magdalena
2010-07-15
Purpose: The aim of the study is to evaluate disease-free survival, survival from the detection of brain metastases, overall survival, and cause of death in patients with occult brain metastases (Group I) vs. patients with symptomatic brain metastases (Group II). Methods and Materials: In 80 HER2-positive breast cancer patients, treated with trastuzumab and cytostatic agents for metastatic disease, magnetic resonance imaging screening of the brain was performed, and in 29 patients (36%) occult brain metastasis was detected (Group I). Whole-brain radiotherapy was delivered to Group I. This first group was compared with 52 patients who had symptomatic brain metastases (Groupmore » II) and was treated the same way, at the same clinic, during the same time period. Results: Median disease-free survival was 17 months in Group I and 19.9 months in Group II (p = 0.58). The median time interval between the dissemination of the disease and the detection of occult or symptomatic brain metastases was 9 and 15 months, respectively (p = 0.11). When the brain metastases were detected, the median survival was 9 and 8.78 months, respectively (p = 0.80). The median overall survival was 53 and 51 months, respectively (p = 0.94). In the group with occult brain metastases (Group I) 16% of patients died because of progression within the brain. In the group with symptomatic brain metastases (Group II) the rate of cerebral death was 48% (p = 0.009). Conclusions: Whole-brain radiotherapy of occult brain metastases in HER2-positive breast cancer patients with visceral dissemination produces a three-fold decrease in cerebral deaths but does not prolong survival.« less
Choi, Doo Jin; Kim, Sun-Lim; Choi, Ji Won; Park, Yong Il
2014-07-25
Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated. Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting. Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5-50 μg/ml) for 2h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells. These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Exposure to benzidine caused apoptosis and malformation of telencephalon region in zebrafish.
Chen, Mark Hung-Chih; Hsu, Li-Chi; Wu, Jia-Lun; Yeh, Chi-Wei; Tsai, Jen-Ning; Hseu, You-Cheng; Hsu, Li-Sung
2014-12-01
Exposure to benzidine has been known to induce human cancers, particularly bladder carcinomas. In this study, the zebrafish model was used to investigate the developmental toxicity of benzidine. Embryos at 6 h postfertilization (hpf) that were exposed to benzidine exhibited embryonic death in a dose- and time-dependent manner. Benzidine induced malformations in zebrafish, such as small brain development, shorter axes, and a slight pericardial edema. High concentrations (50, 100, and 200 µM) of benzidine triggered widespread apoptosis in the brain and dorsal neurons, as evidenced by acridine orange and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays. Real-time polymerase chain reaction analysis also showed that benzidine treatment affected p53, bax, and noxa expression. Decreases in specific brain markers, such as emx1 in the telencephalon, ngn1 in differentiated neurons, and otx2 in the midbrain, were observed in benzidine-treated embryos at 24 hpf. Conversely, no overt changes to pax2.1 expression in the midbrain-hindbrain boundary were found. Moreover, the use of Tg(HuC:GFP) zebrafish showed that benzidine caused a malformation of the telencephalon region. Our findings show that benzidine exposure triggers widespread apoptosis in the zebrafish brain and dorsal neurons, resulting in the development of an abnormal telencephalon. © 2013 Wiley Periodicals, Inc.
Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy.
Roger, Mathilde; Clavreul, Anne; Huynh, Ngoc Trinh; Passirani, Catherine; Schiller, Paul; Vessières, Anne; Montero-Menei, Claudia; Menei, Philippe
2012-02-14
The prognosis of patients with malignant glioma remains extremely poor despite surgery and improvements in radio- and chemo-therapies. Thus, treatment strategies that specifically target these tumors have the potential to greatly improve therapeutic outcomes. "Marrow-isolated adult multilineage inducible" cells (MIAMI cells) are a subpopulation of mesenchymal stromal cells (MSCs) which possess the ability to migrate to brain tumors. We have previously shown that MIAMI cells were able to efficiently incorporate lipid nanocapsules (LNCs) without altering either their stem cell properties or their migration capacity. In this study, we assessed whether the cytotoxic effects of MIAMI cells loaded with LNCs containing an organometallic complex (ferrociphenol or Fc-diOH) could be used to treat brain tumors. The results showed that MIAMI cells internalized Fc-diOH-LNCs and that this internalization did not induce MIAMI cell death. Furthermore, Fc-diOH-LNC-loaded MIAMI cells produced a cytotoxic effect on U87MG glioma cells in vitro. This cytotoxic effect was validated in vivo after intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells in a heterotopic U87MG glioma model in nude mice. These promising results open up a new field of treatment in which cellular vehicles and nanoparticles can be combined to treat brain tumors. Copyright © 2011 Elsevier B.V. All rights reserved.
Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain?
Saas, P; Walker, P R; Hahne, M; Quiquerez, A L; Schnuriger, V; Perrin, G; French, L; Van Meir, E G; de Tribolet, N; Tschopp, J; Dietrich, P Y
1997-01-01
Astrocytomas are among the most common brain tumors that are usually fatal in their malignant form. They appear to progress without significant impedance from the immune system, despite the presence of intratumoral T cell infiltration. To date, this has been thought to be the result of T cell immunosuppression induced by astrocytoma-derived cytokines. Here, we propose that cell contact-mediated events also play a role, since we demonstrate the in vivo expression of Fas ligand (FasL/CD95L) by human astrocytoma and the efficient killing of Fas-bearing cells by astrocytoma lines in vitro and by tumor cells ex vivo. Functional FasL is expressed by human, mouse, and rat astrocytoma and hence may be a general feature of this nonlymphoid tumor. In the brain, astrocytoma cells can potentially deliver a death signal to Fas+ cells which include infiltrating leukocytes and, paradoxically, astrocytoma cells themselves. The expression of FasL by astrocytoma cells may extend the processes that are postulated to occur in normal brain to maintain immune privilege, since we also show FasL expression by neurons. Overall, our findings suggest that FasL-induced apoptosis by astrocytoma cells may play a significant role in both immunosuppression and the regulation of tumor growth within the central nervous system. PMID:9077524
Hou, Xunyao; Jin, Yan; Chen, Jian; Hong, Yan; Luo, Dingzhen; Yin, Qingqing; Liu, Xueping
2017-01-10
Amyloid-β-peptide (Aβ) is considered to be the toxic species in AD and causes cell death in the affected areas of patient's brain. Insulin-like growth factor 1 (IGF-1) has been reported to attenuate Aβ toxicity in neuronal cells. However, the molecular mechanisms involved in the neuroprotective function of IGF-1 remain largely unknown. In the present study, we for the first time demonstrated that IGF-1 protects against Aβ-induced neurotoxicity via inhibition of PUMA expression and Bax activation. We found that IGF-1 could activate Akt, which in turn inhibited Aβ-induced FOXO3a nuclear translocation and thus decreased the binding ability of FOXO3a to PUMA promoter, leading to decreased PUMA expression. In addition, IGF-1 inhibited the translocation of Bax to the mitochondria induced by Aβ. Notably, addition of wortmannin, a specific inhibitor of PI3K, significantly abolished the neuroprotective effect of IGF-1, suggesting that IGF-1 exerts its anti-apoptotic effect depend on PI3K activity. Our findings may provide new insights into molecular mechanisms mediated by IGF-1 in cell survival against Aβ-induced apoptosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Koh, Phil-Ok
2015-02-19
Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Farrell, M M; Levin, D L
1993-12-01
To detail the origins of the definition of death, the development of the criterion of whole brain death as fulfilling the definition of death, and the tests used to fulfill that criterion. A review of the literature was performed. No Institutional Review Board approval was necessary. In 1959, patients were described as being in "coma dépassé" or beyond coma. In 1967, the first successful heart transplantation took place, with the organ coming from a brain-dead, beating-heart donor. However, anxiety over the definitions of death did not begin with the modern, technological era, and death itself has never been definable in objective terms. It has always been a subjective and value-based construct. During ancient times, most people agreed that death occurred when a person's heartbeat and breathing stopped. For the Greeks, the heart was the center of life; for the ancient Hebrews and Christians, the breath was the center of life. In the 12th century, Maimonides pointed toward the head, and the loss thereof, as the reason for lack of central guidance of the soul. Physicians neither diagnosed nor certified death. During the Enlightenment, the necessity of heartbeat, breath, and consciousness for the definition of life was questioned, leading to questioning regarding the definition of death. Tests to fulfill the criteria of death, and tests to determine the absence of integration between functions of respiration, circulation, and neurology were introduced. Sensorimotor potential was becoming recognized as defining life, rather than heartbeat and respiration. As new tests were devised to fulfill criteria of death, the physician developed a professional monopoly on meeting the criteria of brain death. In the modern era, the boundary between life and death has been blurred, but the intensive care unit straddles this boundary. We may have situations where the patient is alive but in a coma, without functioning heart, lungs, kidneys, or gastrointestinal tract, with a transplanted liver, a reversed coagulation system, a blocked immune system, and a paralyzed musculoskeletal system. A human being is a man, woman, or child who is a composite of two intricately related but conceptually distinguishable components: the biological entity and the person. Therefore, human beings can suffer more than one death: a biological death and decay, and another death. Biological death is a cessation of processes of biological synthesis and replication, and is an irreversible loss of integration of the biological units. The reasons for having criteria for death are to diagnose death and pronounce a person dead. Society can then begin to engage in grief, religious rites, funerals, and burials, and accept biological death. Wills can be read, property distributed, insurance claimed, individuals can remarry, succession can take place, and legal proceedings can begin. Also, organ donation can take place, which entails difficult ethical decisions. The Harvard criteria of 1968 were devised to set forth brain-death criteria with whole brain death in mind. Currently, there are several controversies regarding these criteria: a) whether they apply to infants and children; b) whether ancillary tests are necessary; c) what the intervals of observation and testing are; and d) are there exceptions to the whole brain death criteria. Concerning the use of the adult criteria for infants and children, most researchers now agree that the adult criteria apply to infants and children who are full term and > 7 days of age. Concerning ancillary tests, there has been, in our machine- and technology-oriented profession, a great deal of emphasis on the different tests and their ability to fulfill the criteria of whole brain death. However, clinical examination and the apnea test are usually sufficient to fulfill the criteria. Ancillary tests may be desired in some cases, and a variety of these tests is available. (ABSTRACT TR
Xu, Liming; Dan, Mo; Shao, Anliang; Cheng, Xiang; Zhang, Cuiping; Yokel, Robert A; Takemura, Taro; Hanagata, Nobutaka; Niwa, Masami; Watanabe, Daisuke
2015-01-01
Silver nanoparticles (Ag-NPs) can enter the brain and induce neurotoxicity. However, the toxicity of Ag-NPs on the blood-brain barrier (BBB) and the underlying mechanism(s) of action on the BBB and the brain are not well understood. To investigate Ag-NP suspension (Ag-NPS)-induced toxicity, a triple coculture BBB model of rat brain microvascular endothelial cells, pericytes, and astrocytes was established. The BBB permeability and tight junction protein expression in response to Ag-NPS, NP-released Ag ions, and polystyrene-NP exposure were investigated. Ultrastructural changes of the microvascular endothelial cells, pericytes, and astrocytes were observed using transmission electron microscopy (TEM). Global gene expression of astrocytes was measured using a DNA microarray. A triple coculture BBB model of primary rat brain microvascular endothelial cells, pericytes, and astrocytes was established, with the transendothelial electrical resistance values >200 Ω·cm(2). After Ag-NPS exposure for 24 hours, the BBB permeability was significantly increased and expression of the tight junction (TJ) protein ZO-1 was decreased. Discontinuous TJs were also observed between microvascular endothelial cells. After Ag-NPS exposure, severe mitochondrial shrinkage, vacuolations, endoplasmic reticulum expansion, and Ag-NPs were observed in astrocytes by TEM. Global gene expression analysis showed that three genes were upregulated and 20 genes were downregulated in astrocytes treated with Ag-NPS. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the 23 genes were associated with metabolic processes, biosynthetic processes, response to stimuli, cell death, the MAPK pathway, and so on. No GO term and KEGG pathways were changed in the released-ion or polystyrene-NP groups. Ag-NPS inhibited the antioxidant defense of the astrocytes by increasing thioredoxin interacting protein, which inhibits the Trx system, and decreasing Nr4a1 and Dusp1. Meanwhile, Ag-NPS induced inflammation and apoptosis through modulation of the MAPK pathway or B-cell lymphoma-2 expression or mTOR activity in astrocytes. These results draw our attention to the importance of Ag-NP-induced toxicity on the neurovascular unit and provide a better understanding of its toxicological mechanisms on astrocytes.
... or brain. If not treated, TB disease can cause death. HIV weakens the immune system , increasing the risk ... spine, or brain. If not treated, TB can cause death. How does TB spread from person to person? ...
Care pathways for organ donation after brain death: guidance from available literature?
Hoste, Pieter; Vanhaecht, Kris; Ferdinande, Patrick; Rogiers, Xavier; Eeckloo, Kristof; Blot, Stijn; Hoste, Eric; Vogelaers, Dirk; Vandewoude, Koenraad
2016-10-01
A discussion of the literature concerning the impact of care pathways in the complex and by definition multidisciplinary process of organ donation following brain death. Enhancing the quality and safety of organs for transplantation has become a central concern for governmental and professional organizations. At the local hospital level, a donor coordinator can use a range of interventions to improve the donation and procurement process. Care pathways have been proven to represent an effective intervention in several settings for optimizing processes and outcomes. A discussion paper. A systematic review of the Medline, CINAHL, EMBASE and The Cochrane Library databases was conducted for articles published until June 2015, using the keywords donation after brain death and care pathways. Each paper was reviewed to investigate the effects of existing care pathways for donation after brain death. An additional search for unpublished information was conducted. Although literature supports care pathways as an effective intervention in several settings, few studies have explored its use and effectiveness for complex care processes such as donation after brain death. Nurses should be aware of their role in the donation process. Care pathways have the potential to support them, but their effectiveness has been insufficiently explored. Further research should focus on the development and standardization of the clinical content of a care pathway for donation after brain death and the identification of quality indicators. These should be used in a prospective effectiveness assessment of the proposed pathway. © 2016 John Wiley & Sons Ltd.
Kundrotiene, Jurgita; Wägner, Anna; Liljequist, Sture
2004-01-01
Cerebral ischemia was produced by moderate compression for 30 min of a specific brain area in the sensorimotor cortex of Sprague-Dawley rats. On day 1, that is 24 h after the transient sensorimotor compression, ischemia-exposed animals displayed a marked focal neurological deficit documented as impaired beam walking performance. This functional disturbance was mainly due to contralateral fore- and hind-limb paresis. As assessed by daily beam walking tests it was shown that there was a spontaneous recovery of motor functions over a period of five to seven days after the ischemic event. Using histopathological analysis (Nissl staining) we have previously reported that the present experimental paradigm does not produce pannecrosis (tissue cavitation) despite the highly reproducible focal neurological deficit. We now show how staining with fluorescent markers for neuronal death, that is Fluoro-Jade and TUNEL, respectively, identifies regional patterns of selective neuronal death. These observations add further support to the working hypothesis that the brain damage caused by cortical compression-induced ischemia consists of scattered, degenerating neurons in specific brain regions. Postsurgical administration of the AMPA receptor specific antagonist, LY326325 (30 mg/kg; i.p., 70 min after compression), not only improved beam walking performance on day 1 to 3, respectively but also significantly reduced the number of Fluoro-Jade stained neurons on day 5. These results suggest that enhanced AMPA/glutamate receptor activity is at least partially responsible for the ischemia-produced brain damage detected by the fluorescent marker Fluoro-Jade.
Lu, Qing; Harris, Valerie A; Rafikov, Ruslan; Sun, Xutong; Kumar, Sanjiv; Black, Stephen M
2015-12-01
We have recently shown that increased hydrogen peroxide (H2O2) generation is involved in hypoxia-ischemia (HI)-mediated neonatal brain injury. H2O2 can react with free iron to form the hydroxyl radical, through Fenton Chemistry. Thus, the objective of this study was to determine if there was a role for the hydroxyl radical in neonatal HI brain injury and to elucidate the underlying mechanisms. Our data demonstrate that HI increases the deposition of free iron and hydroxyl radical formation, in both P7 hippocampal slice cultures exposed to oxygen-glucose deprivation (OGD), and the neonatal rat exposed to HI. Both these processes were found to be nitric oxide (NO) dependent. Further analysis demonstrated that the NO-dependent increase in iron deposition was mediated through increased transferrin receptor expression and a decrease in ferritin expression. This was correlated with a reduction in aconitase activity. Both NO inhibition and iron scavenging, using deferoxamine administration, reduced hydroxyl radical levels and neuronal cell death. In conclusion, our results suggest that increased NO generation leads to neuronal cell death during neonatal HI, at least in part, by altering iron homeostasis and hydroxyl radical generation. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Time trends in organ donation after neurologic determination of death: a cohort study
Kramer, Andreas H.; Baht, Ryan; Doig, Christopher J.
2017-01-01
Background: The cause of brain injury may influence the number of organs that can be procured and transplanted with donation following neurologic determination of death. We investigated whether the distribution of causes responsible for neurologic death has changed over time and, if so, whether this has had an impact on organ quality, transplantation rates and recipient outcomes. Methods: We performed a cohort study involving consecutive brain-dead organ donors in southern Alberta between 2003 and 2014. For each donor, we determined last available measures of organ injury and number of organs transplanted, and compared these variables for various causes of neurologic death. We compared trends to national Canadian data for 2000-2013 (2000-2011 for Quebec). Results: There were 226 brain-dead organ donors over the study period, of whom 100 (44.2%) had anoxic brain injury, 63 (27.9%) had stroke, and 51 (22.6%) had traumatic brain injury. The relative proportion of donors with traumatic brain injury decreased over time (> 30% in 2003-2005 v. 6%-23% in 2012-2014) (p = 0.004), whereas that with anoxic brain injury increased (14%-37% v. 46%-80%, respectively) (p < 0.001). Nationally, the annual number of brain-dead donors with traumatic brain injury decreased from 4.4 to less than 3 per million population between 2000 and 2013, and that with anoxic brain injury increased from 1.1 to 3.1 per million. Donors with anoxic brain injury had higher concentrations of creatinine, alanine aminotransferase and troponin T, and lower PaO2/FIO2 and urine output than donors with other diagnoses. The average number of organs transplanted per donor was 3.6 with anoxic brain injury versus 4.5 with traumatic brain injury or stroke (p = 0.002). Interpretation: Anoxic brain injury has become a leading cause of organ donation after neurologic determination of death in Canada. Organs from donors with anoxic brain injury have a greater degree of injury, and fewer are transplanted. These findings have implications for availability of organs for transplantation in patients with end-stage organ failure. PMID:28401114
Lu, Gang; Ren, Shuxun; Korge, Paavo; Choi, Jayoung; Dong, Yuan; Weiss, James; Koehler, Carla; Chen, Jau-nian; Wang, Yibin
2007-01-01
Mitochondria play a central role in the regulation of programmed cell death signaling. Here, we report the finding of a mitochondrial matrix-targeted protein phosphatase 2C family member (PP2Cm) that regulates mitochondrial membrane permeability transition pore (MPTP) opening and is essential for cell survival, embryonic development, and cardiac function. PP2Cm is highly conserved among vertebrates, with the highest expression levels detected in the heart and brain. Small hairpin RNA (shRNA)-mediated knockdown of PP2Cm resulted in cell death associated with loss of mitochondrial membrane potential in cultured cardiac mycoytes and an induction of hepatocyte apoptosis in vivo. PP2Cm-deficient mitochondria showed elevated susceptibility to calcium-induced MPTP opening, whereas mitochondrial oxidative phosphorylation activities were not affected. Finally, inactivation of PP2Cm in developing zebrafish embryos caused abnormal cardiac and neural development as well as heart failure associated with induced apoptosis. These data suggest that PP2Cm is a novel mitochondrial protein phosphatase that has a critical function in cell death and survival, and may play a role in regulating the MPTP opening. PMID:17374715
Interacting partners of macrophage-secreted cathepsin B contribute to HIV-induced neuronal apoptosis
CANTRES-ROSARIO, Yisel M.; HERNANDEZ, Natalia; NEGRON, Karla; PEREZ-LASPIUR, Juliana; LESZYK, John; SHAFFER, Scott A.; MELENDEZ, Loyda M.
2015-01-01
Objective HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. Design We identified macrophage secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. Methods Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days post-infection. The cathepsin B interactome was quantified by label-free tandem mass spectrometry and compared to uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of post-mortem brain tissue samples from healthy, HIV-infected, and Alzheimer’s disease patients was performed to observe the ex vivo expression of the proteins identified. Results Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid p component (SAPC) -cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9) -cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not protective. SAPC was over-expressed in post-mortem brain tissue from HIV-positive neurocognitive impaired patients compared to HIV positive with normal cognition and healthy controls, while MMP-9 expression was similar in all tissues. Conclusions Inhibiting SAPC-cathepsin B interaction protects against HIV–induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders. PMID:26208400
Delattre, Ana Marcia; Carabelli, Bruno; Mori, Marco Aurélio; Kempe, Paula G; Rizzo de Souza, Luiz E; Zanata, Silvio M; Machado, Ricardo B; Suchecki, Deborah; Andrade da Costa, Belmira L S; Lima, Marcelo M S; Ferraz, Anete C
2017-04-01
Evidence suggests that idiopathic Parkinson's disease (PD) is the consequence of a neurodevelopmental disruption, rather than strictly a consequence of aging. Thus, we hypothesized that maternal supplement of omega-3 polyunsaturated fatty acids (ω-3 PUFA) may be associated with neuroprotection mechanisms in a self-sustaining cycle of neuroinflammation and neurodegeneration in lipopolysaccharide (LPS)-model of PD. To test this hypothesis, behavioral and neurochemical assay were performed in prenatally LPS-exposed offspring at postnatal day 21. To further determine whether prenatal LPS exposure and maternal ω-3 PUFAs supplementation had persisting effects, brain injury was induced on PN 90 rats, following bilateral intranigral LPS injection. Pre- and postnatal inflammation damage not only affected dopaminergic neurons directly, but it also modified critical features, such as activated microglia and astrocyte cells, disrupting the support provided by the microenvironment. Unexpectedly, our results failed to show any involvement of caspase-dependent and independent apoptosis pathway in neuronal death mechanisms. On the other hand, learning and memory deficits detected with a second toxic exposure were significantly attenuated in maternal ω-3 PUFAs supplementation group. In addition, ω-3 PUFAs promote beneficial effect on synaptic function, maintaining the neurochemical integrity in remaining neurons, without necessarily protect them from neuronal death. Thus, our results suggest that ω-3 PUFAs affect the functional ability of the central nervous system in a complex way in a multiple inflammation-induced neurotoxicity animal model of PD and they disclose new ways of understanding how these fatty acids control responses of the brain to different challenges.
Jimenez-Mateos, Eva M; Bray, Isabella; Sanz-Rodriguez, Amaya; Engel, Tobias; McKiernan, Ross C; Mouri, Genshin; Tanaka, Katsuhiro; Sano, Takanori; Saugstad, Julie A; Simon, Roger P; Stallings, Raymond L; Henshall, David C
2011-11-01
When an otherwise harmful insult to the brain is preceded by a brief, noninjurious stimulus, the brain becomes tolerant, and the resulting damage is reduced. Epileptic tolerance develops when brief seizures precede an episode of prolonged seizures (status epilepticus). MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators of gene expression. We investigated how prior seizure preconditioning affects the miRNA response to status epilepticus evoked by intra-amygdalar kainic acid in mice. The miRNA was extracted from the ipsilateral CA3 subfield 24 hours after focal-onset status epilepticus in animals that had previously received either seizure preconditioning (tolerance) or no preconditioning (injury), and mature miRNA levels were measured using TaqMan low-density arrays. Expression of 21 miRNAs was increased, relative to control, after status epilepticus alone, and expression of 12 miRNAs was decreased. Increased miR-132 levels were matched with increased binding to Argonaute-2, a constituent of the RNA-induced silencing complex. In tolerant animals, expression responses of >40% of the injury-group-detected miRNAs differed, being either unchanged relative to control or down-regulated, and this included miR-132. In vivo microinjection of locked nucleic acid-modified oligonucleotides (antagomirs) against miR-132 depleted hippocampal miR-132 levels and reduced seizure-induced neuronal death. Thus, our data strongly suggest that miRNAs are important regulators of seizure-induced neuronal death. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Molecular mechanisms of neuroprotective action of immunosuppressants--facts and hypotheses.
Kaminska, Bozena; Gaweda-Walerych, Katarzyna; Zawadzka, Malgorzata
2004-01-01
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target--calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.
Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia
2016-01-01
Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.
Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia
2016-01-01
Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534
Kanemitsu, H; Yamauchi, H; Komatsu, M; Yamamoto, S; Okazaki, S; Uchida, K; Nakayama, H
2009-01-01
6-mercaptopurine (6-MP), a DNA-damaging agent, induces apoptosis of neural progenitor cells, and causes malformation in the fetal brain. The aim of the present study is to clarify the molecular pathway of 6-MP-induced apoptosis of neural progenitor cells in the fetal telencephalon of rats and mice. p53 protein is activated by DNA damage and induces apoptosis through either the intrinsic pathway involving the mitochondria or the extrinsic pathway triggered by death receptors. In this study, the expression of puma and cleaved caspase-9 proteins, which are specific intrinsic pathway factors, increased in the rat telencephalon after 6-MP treatment. 6-MP-induced apoptosis of neural progenitor cells was completely absent in p53-deficient mice. On the other hand, the expression of Fas protein, an extrinsic pathway factor, did not change throughout the experimental period in the rat telencephalon treated with 6-MP. The number of apoptotic neural progenitor cells was similar among Fas-mutated lpr/lpr and wild-type mice, suggesting that the Fas pathway does not play a significant role in 6-MP-induced apoptosis of neural progenitor cells. These results may suggest that the p53-mediated intrinsic pathway is essential for 6-MP-induced apoptosis of neural progenitor cells in the developing telencephalon of rats and mice.