Science.gov

Sample records for brain diseases metabolic

  1. Brain Iron Metabolism Dysfunction in Parkinson's Disease.

    PubMed

    Jiang, Hong; Wang, Jun; Rogers, Jack; Xie, Junxia

    2017-05-01

    Dysfunction of iron metabolism, which includes its uptake, storage, and release, plays a key role in neurodegenerative disorders, including Parkinson's disease (PD), Alzheimer's disease, and Huntington's disease. Understanding how iron accumulates in the substantia nigra (SN) and why it specifically targets dopaminergic (DAergic) neurons is particularly warranted for PD, as this knowledge may provide new therapeutic avenues for a more targeted neurotherapeutic strategy for this disease. In this review, we begin with a brief introduction describing brain iron metabolism and its regulation. We then provide a detailed description of how iron accumulates specifically in the SN and why DAergic neurons are especially vulnerable to iron in PD. Furthermore, we focus on the possible mechanisms involved in iron-induced cell death of DAergic neurons in the SN. Finally, we present evidence in support that iron chelation represents a plausable therapeutic strategy for PD.

  2. Metabolic profiling of Alzheimer's disease brains

    NASA Astrophysics Data System (ADS)

    Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa

    2013-08-01

    Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.

  3. BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE

    PubMed Central

    Cunnane, SC; Nugent, S; Roy, M; Courchesne-Loyer, A; Croteau, E; Tremblay, S; Castellano, A; Pifferi, F; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; Allard, M; Barberger-Gateau, P; Fulop, T; Rapoport, S

    2012-01-01

    Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may include defects in glucose transport at the blood-brain barrier, glycolysis, and/or mitochondrial function. Methodological issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization which, in turn, may increase the risk of declining brain glucose uptake, at least in some regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e. that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and, hence, reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to – (i) improve insulin sensitivity by improving systemic glucose utilization, or (ii) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia. PMID:21035308

  4. Metabolic resting-state brain networks in health and disease.

    PubMed

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  5. Typical cerebral metabolic patterns in neurodegenerative brain diseases.

    PubMed

    Teune, Laura K; Bartels, Anna L; de Jong, Bauke M; Willemsen, Antoon T M; Eshuis, Silvia A; de Vries, Jeroen J; van Oostrom, Joost C H; Leenders, Klaus L

    2010-10-30

    The differential diagnosis of neurodegenerative brain diseases on clinical grounds is difficult, especially at an early disease stage. Several studies have found specific regional differences of brain metabolism applying [(18)F]-fluoro-deoxyglucose positron emission tomography (FDG-PET), suggesting that this method can assist in early differential diagnosis of neurodegenerative brain diseases.We have studied patients who had an FDG-PET scan on clinical grounds at an early disease stage and included those with a retrospectively confirmed diagnosis according to strictly defined clinical research criteria. Ninety-six patients could be included of which 20 patients with Parkinson's disease (PD), 21 multiple system atrophy (MSA), 17 progressive supranuclear palsy (PSP), 10 corticobasal degeneration (CBD), 6 dementia with Lewy bodies (DLB), 15 Alzheimer's disease (AD), and 7 frontotemporal dementia (FTD). FDG PET images of each patient group were analyzed and compared to18 healthy controls using Statistical Parametric Mapping (SPM5).Disease-specific patterns of relatively decreased metabolic activity were found in PD (contralateral parietooccipital and frontal regions), MSA (bilateral putamen and cerebellar hemispheres), PSP (prefrontal cortex and caudate nucleus, thalamus, and mesencephalon), CBD (contralateral cortical regions), DLB (occipital and parietotemporal regions), AD (parietotemporal regions), and FTD (frontotemporal regions).The integrated method addressing a spectrum of various neurodegenerative brain diseases provided means to discriminate patient groups also at early disease stages. Clinical follow-up enabled appropriate patient inclusion. This implies that an early diagnosis in individual patients can be made by comparing each subject's metabolic findings with a complete database of specific disease related patterns.

  6. Modulators of nucleoside metabolism in the therapy of brain diseases.

    PubMed

    Boison, Detlev

    2011-01-01

    Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the "soft and smart" therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed.

  7. Modulators of Nucleoside Metabolism in the Therapy of Brain Diseases

    PubMed Central

    Boison, Detlev

    2010-01-01

    Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the “soft and smart” therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed. PMID:21401494

  8. Triheptanoin improves brain energy metabolism in patients with Huntington disease

    PubMed Central

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra

    2015-01-01

    Objective: Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. Methods: We performed an open-label study using 31P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed 31P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including 31P brain MRS scan. Results: At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls—reflecting increased adenosine triphosphate synthesis—followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). Conclusion: This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. Classification of evidence: This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. PMID:25568297

  9. Triheptanoin improves brain energy metabolism in patients with Huntington disease.

    PubMed

    Adanyeguh, Isaac Mawusi; Rinaldi, Daisy; Henry, Pierre-Gilles; Caillet, Samantha; Valabregue, Romain; Durr, Alexandra; Mochel, Fanny

    2015-02-03

    Based on our previous work in Huntington disease (HD) showing improved energy metabolism in muscle by providing substrates to the Krebs cycle, we wished to obtain a proof-of-concept of the therapeutic benefit of triheptanoin using a functional biomarker of brain energy metabolism validated in HD. We performed an open-label study using (31)P brain magnetic resonance spectroscopy (MRS) to measure the levels of phosphocreatine (PCr) and inorganic phosphate (Pi) before (rest), during (activation), and after (recovery) a visual stimulus. We performed (31)P brain MRS in 10 patients at an early stage of HD and 13 controls. Patients with HD were then treated for 1 month with triheptanoin after which they returned for follow-up including (31)P brain MRS scan. At baseline, we confirmed an increase in Pi/PCr ratio during brain activation in controls-reflecting increased adenosine triphosphate synthesis-followed by a return to baseline levels during recovery (p = 0.013). In patients with HD, we validated the existence of an abnormal brain energy profile as previously reported. After 1 month, this profile remained abnormal in patients with HD who did not receive treatment. Conversely, the MRS profile was improved in patients with HD treated with triheptanoin for 1 month with the restoration of an increased Pi/PCr ratio during visual stimulation (p = 0.005). This study suggests that triheptanoin is able to correct the bioenergetic profile in the brain of patients with HD at an early stage of the disease. This study provides Class III evidence that, for patients with HD, treatment with triheptanoin for 1 month restores an increased MRS Pi/PCr ratio during visual stimulation. © 2015 American Academy of Neurology.

  10. Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer's disease.

    PubMed

    Cisternas, Pedro; Inestrosa, Nibaldo C

    2017-06-15

    The brain is an organ that has a high demand for glucose. In the brain, glucose is predominantly used in energy production, with almost 70% of the energy used by neurons. The importance of the energy requirement in neurons is clearly demonstrated by the fact that all neurodegenerative disorders exhibit a critical metabolic impairment that includes decreased glucose uptake/utilization and decreased mitochondrial activity, with a consequent diminution in ATP production. In fact, in Alzheimer's disease, the measurement of the general metabolic rate of the brain has been reported to be an accurate tool for diagnosis. Additionally, the administration of metabolic activators such as insulin/glucagon-like peptide 1 can improve memory/learning performance. Despite the importance of energy metabolism in the brain, little is known about the cellular pathways involved in the regulation of this process. Several reports postulate a role for Wnt signaling as a general metabolic regulator. Thus, in the present review, we discuss the antecedents that support the relationship between Wnt signaling and energy metabolism in the Alzheimer's disease. Copyright © 2017. Published by Elsevier Ltd.

  11. Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0412 TITLE: Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Measuring Glial Metabolism in Repetitive Brain Trauma and Alzheimer’s Disease 5b. GRANT NUMBER WX81XWH-15...15. SUBJECT TERMS Repetitive brain trauma, glial metabolism, glutamate, multinuclear spectroscopy, chronic traumatic encephalopathy, Alzheimer’s

  12. A delicate balance: Iron metabolism and diseases of the brain

    PubMed Central

    Hare, Dominic; Ayton, Scott; Bush, Ashley; Lei, Peng

    2013-01-01

    Iron is the most abundant transition metal within the brain, and is vital for a number of cellular processes including neurotransmitter synthesis, myelination of neurons, and mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology for various electron transfer reactions essential to life, yet this same chemistry mediates deleterious reactions with oxygen that induce oxidative stress. Consequently, there is a precise and tightly controlled mechanism to regulate iron in the brain. When iron is dysregulated, both conditions of iron overload and iron deficiencies are harmful to the brain. This review focuses on how iron metabolism is maintained in the brain, and how an alteration to iron and iron metabolism adversely affects neurological function. PMID:23874300

  13. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network.

    PubMed

    Sertbaş, Mustafa; Ulgen, Kutlu; Cakır, Tunahan

    2014-01-01

    Network-oriented analysis is essential to identify those parts of a cell affected by a given perturbation. The effect of neurodegenerative perturbations in the form of diseases of brain metabolism was investigated by using a newly reconstructed brain-specific metabolic network. The developed stoichiometric model correctly represents healthy brain metabolism, and includes 630 metabolic reactions in and between astrocytes and neurons, which are controlled by 570 genes. The integration of transcriptome data of six neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia) with the model was performed to identify reporter features specific and common for these diseases, which revealed metabolites and pathways around which the most significant changes occur. The identified metabolites are potential biomarkers for the pathology of the related diseases. Our model indicated perturbations in oxidative stress, energy metabolism including TCA cycle and lipid metabolism as well as several amino acid related pathways, in agreement with the role of these pathways in the studied diseases. The computational prediction of transcription factors that commonly regulate the reporter metabolites was achieved through binding-site analysis. Literature support for the identified transcription factors such as USF1, SP1 and those from FOX families are known from the literature to have regulatory roles in the identified reporter metabolic pathways as well as in the neurodegenerative diseases. In essence, the reconstructed brain model enables the elucidation of effects of a perturbation on brain metabolism and the illumination of possible machineries in which a specific metabolite or pathway acts as a regulatory spot for cellular reorganization.

  14. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases.

    PubMed

    Bonvento, Gilles; Valette, Julien; Flament, Julien; Mochel, Fanny; Brouillet, Emmanuel

    2017-06-01

    Changes in energy metabolism are generally considered to play an important role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Whether these changes are causal or simply a part of self-defense mechanisms is a matter of debate. Furthermore, energy defects have often been discussed solely in the context of their probable neuronal origin without considering the cellular heterogeneity of the brain. Recent data point towards the existence of a tri-cellular compartmentation of brain energy metabolism between neurons, astrocytes, and oligodendrocytes, each cell type having a distinctive metabolic profile. Still, the number of methods to follow energy metabolism in patients is extremely limited and existing clinical techniques are blind to most cellular processes. There is a need to better understand how brain energy metabolism is regulated in health and disease through experiments conducted at different scales in animal models to implement new methods in the clinical setting. The purpose of this review is to offer a brief overview of the broad spectrum of methodological approaches that have emerged in recent years to probe energy metabolism in more detail. We conclude that multi-modal neuroimaging is needed to follow non-cell autonomous energy metabolism dysregulation in neurodegenerative diseases.

  15. AMPK-mediated regulation of neuronal metabolism and function in brain diseases.

    PubMed

    Liu, Yu-Ju; Chern, Yijuang

    2015-01-01

    The AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a key energy sensor in a wide variety of tissues. This kinase has been a major drug target for metabolic diseases (e.g., type 2 diabetes) and cancers. For example, metformin (an activator of AMPK) is a first-line diabetes drug that protects against cancers. Abnormal regulation of AMPK has been implicated in several brain diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke. Given the emerging importance of neurodegenerative diseases in our aging societies, this review features the recent studies that have delineated the functions of AMPK in brain diseases and discusses their potential clinical implications or roles as drug targets in brain diseases.

  16. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer's disease: Snapshot of a pervasive metabolic disorder

    PubMed Central

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; Hollywood, Katherine A.; Jüllig, Mia; Curtis, Maurice A.; Waldvogel, Henry J.; Faull, Richard L.M.; Unwin, Richard D.; Cooper, Garth J.S.

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that displays pathological characteristics including senile plaques and neurofibrillary tangles. Metabolic defects are also present in AD-brain: for example, signs of deficient cerebral glucose uptake may occur decades before onset of cognitive dysfunction and tissue damage. There have been few systematic studies of the metabolite content of AD human brain, possibly due to scarcity of high-quality brain tissue and/or lack of reliable experimental methodologies. Here we sought to: 1) elucidate the molecular basis of metabolic defects in human AD-brain; and 2) identify endogenous metabolites that might guide new approaches for therapeutic intervention, diagnosis or monitoring of AD. Brains were obtained from nine cases with confirmed clinical/neuropathological AD and nine controls matched for age, sex and post-mortem delay. Metabolite levels were measured in post-mortem tissue from seven regions: three that undergo severe neuronal damage (hippocampus, entorhinal cortex and middle-temporal gyrus); three less severely affected (cingulate gyrus, sensory cortex and motor cortex); and one (cerebellum) that is relatively spared. We report a total of 55 metabolites that were altered in at least one AD-brain region, with different regions showing alterations in between 16 and 33 metabolites. Overall, we detected prominent global alterations in metabolites from several pathways involved in glucose clearance/utilization, the urea cycle, and amino-acid metabolism. The finding that potentially toxigenic molecular perturbations are widespread throughout all brain regions including the cerebellum is consistent with a global brain disease process rather than a localized effect of AD on regional brain metabolism. PMID:26957286

  17. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  18. Unbiased Metabolomic Investigation of Alzheimer's Disease Brain Points to Dysregulation of Mitochondrial Aspartate Metabolism.

    PubMed

    Paglia, Giuseppe; Stocchero, Matteo; Cacciatore, Stefano; Lai, Steven; Angel, Peggi; Alam, Mohammad Tauqeer; Keller, Markus; Ralser, Markus; Astarita, Giuseppe

    2016-02-05

    Alzheimer's disease (AD) is the most common cause of adult dementia. Yet the complete set of molecular changes accompanying this inexorable, neurodegenerative disease remains elusive. Here we adopted an unbiased lipidomics and metabolomics approach to surveying frozen frontal cortex samples from clinically characterized AD patients (n = 21) and age-matched controls (n = 19), revealing marked molecular differences between them. Then, by means of metabolomic pathway analysis, we incorporated the novel molecular information into the known biochemical pathways and compared it with the results of a metabolomics meta-analysis of previously published AD research. We found six metabolic pathways of the central metabolism as well as glycerophospholipid metabolism predominantly altered in AD brains. Using targeted metabolomics approaches and MS imaging, we confirmed a marked dysregulation of mitochondrial aspartate metabolism. The altered metabolic pathways were further integrated with clinical data, showing various degrees of correlation with parameters of dementia and AD pathology. Our study highlights specific, altered biochemical pathways in the brains of individuals with AD compared with those of control subjects, emphasizing dysregulation of mitochondrial aspartate metabolism and supporting future venues of investigation.

  19. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease

    PubMed Central

    De Felice, Fernanda G.; Lourenco, Mychael V.

    2015-01-01

    Brain metabolic dysfunction is known to influence brain activity in several neurological disorders, including Alzheimer’s disease (AD). In fact, deregulation of neuronal metabolism has been postulated to play a key role leading to the clinical outcomes observed in AD. Besides deficits in glucose utilization in AD patients, recent evidence has implicated neuroinflammation and endoplasmic reticulum (ER) stress as components of a novel form of brain metabolic stress that develop in AD and other neurological disorders. Here we review findings supporting this novel paradigm and further discuss how these mechanisms seem to participate in synapse and cognitive impairments that are germane to AD. These deleterious processes resemble pathways that act in peripheral tissues leading to insulin resistance and glucose intolerance, in an intriguing molecular connection linking AD to diabetes. The discovery of detailed mechanisms leading to neuronal metabolic stress may be a key step that will allow the understanding how cognitive impairment develops in AD, thereby offering new avenues for effective disease prevention and therapeutic targeting. PMID:26042036

  20. Mitochondria: A crossroads for lipid metabolism defect in neurodegeneration with brain iron accumulation diseases.

    PubMed

    Aoun, Manar; Tiranti, Valeria

    2015-06-01

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of brain iron deposition syndromes that lead to mixed extrapyramidal features and progressive dementia. Exact pathologic mechanism of iron deposition in NBIA remains unknown. However, it is becoming increasingly evident that many neurodegenerative diseases are hallmarked by metabolic dysfunction that often involves altered lipid profile. Among the identified disease genes, four encode for proteins localized in mitochondria, which are directly or indirectly implicated in lipid metabolism: PANK2, CoASY, PLA2G6 and C19orf12. Mutations in PANK2 and CoASY, both implicated in CoA biosynthesis that acts as a fatty acyl carrier, lead, respectively, to PKAN and CoPAN forms of NBIA. Mutations in PLA2G6, which plays a key role in the biosynthesis and remodeling of membrane phospholipids including cardiolipin, lead to PLAN. Mutations in C19orf12 lead to MPAN, a syndrome similar to that caused by mutations in PANK2 and PLA2G6. Although the function of C19orf12 is largely unknown, experimental data suggest its implication in mitochondrial homeostasis and lipid metabolism. Altogether, the identified mutated proteins localized in mitochondria and associated with different NBIA forms support the concept that dysfunctions in mitochondria and lipid metabolism play a crucial role in the pathogenesis of NBIA. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.

  1. Brain metabolic dysfunction at the core of Alzheimer’s disease

    PubMed Central

    de la Monte, Suzanne M.; Tong, Ming

    2015-01-01

    Growing evidence supports the concept that Alzheimer’s disease (AD) is fundamentally a metabolic disease with molecular and biochemical features that correspond with diabetes mellitus and other peripheral insulin resistance disorders. Brain insulin/IGF resistance and its consequences can readily account for most of the structural and functional abnormalities in AD. However, disease pathogenesis is complicated by the fact that AD can occur as a separate disease process, or arise in association with systemic insulin resistance diseases, including diabetes, obesity, and non-alcoholic fatty liver disease. Whether primary or secondary in origin, brain insulin/IGF resistance initiates a cascade of neurodegeneration that is propagated by metabolic dysfunction, increased oxidative and ER stress, neuro-inflammation, impaired cell survival, and dysregulated lipid metabolism. These injurious processes compromise neuronal and glial functions, reduce neurotransmitter homeostasis, and cause toxic oligomeric pTau and (amyloid beta peptide of amyloid beta precursor protein) AβPP-Aβ fibrils and insoluble aggregates (neurofibrillary tangles and plaques) to accumulate in brain. AD progresses due to: (1) activation of a harmful positive feedback loop that progressively worsens the effects of insulin resistance; and (2) the formation of ROS- and RNS-related lipid, protein, and DNA adducts that permanently damage basic cellular and molecular functions. Epidemiologic data suggest that insulin resistance diseases, including AD, are exposure-related in etiology. Furthermore, experimental and lifestyle trend data suggest chronic low-level nitrosamine exposures are responsible. These concepts offer opportunities to discover and implement new treatments and devise preventive measures to conquer the AD and other insulin resistance disease epidemics. PMID:24380887

  2. Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions.

    PubMed

    Hermann, W; Barthel, H; Hesse, S; Grahmann, F; Kühn, H-J; Wagner, A; Villmann, T

    2002-07-01

    In Wilson's disease a disturbed glucose metabolism especially in striatal and cerebellar areas has been reported. This is correlated with the severity of extrapyramidal motor symptoms (EPS). These findings are only based on a small number of patients. Up to now it is unknown whether EPS are caused by various patterns of disturbed basal ganglia glucose metabolism. We investigated 37 patients and 9 normal volunteers to characterize the disturbed glucose metabolism in Wilson's disease more precisely. The glucose metabolism was determined in 5 cerebellar and cerebral areas (putamen, caput nuclei caudati, cerebellum, midbrain and thalamic area) by using (18)F-Fluorodesoxyglucose-Positron-Emission-Tomography ( [(18)F]FDG-PET). The database was evaluated by a cluster analysis. Additionally, the severity extrapyramidal motor symptoms were judged by a clinical score system. Three characteristic patterns of glucose metabolism in basal ganglia were obtained. Two of them may be assigned to patients with neurological symptoms whereas the third cluster corresponds to most patients without EPS or normal volunteers. The clusters can be identified by characteristic consumption rates in this 5 brain areas. The severity of EPS can not clearly be assigned to one of the clusters with disturbed glucose metabolism. However, the most severe cases are characterized by the lowest consumption in the striatal area. When there is marked improvement of EPS impaired glucose consumption reveals a persistent brain lesion. Finally, the neurological symptoms in Wilson's disease are caused by (at least) two different patterns of disturbed glucose metabolism in basal ganglia and cerebellum. The severity of EPS seems to be determined by a disturbed consumption in the striatal area.

  3. Glucose Metabolic Brain Networks in Early-Onset vs. Late-Onset Alzheimer's Disease

    PubMed Central

    Chung, Jinyong; Yoo, Kwangsun; Kim, Eunjoo; Na, Duk L.; Jeong, Yong

    2016-01-01

    Objective: Early-onset Alzheimer's disease (EAD) shows distinct features from late-onset Alzheimer's disease (LAD). To explore the characteristics of EAD, clinical, neuropsychological, and functional imaging studies have been conducted. However, differences between EAD and LAD are not clear, especially in terms of brain connectivity and networks. In this study, we investigated the differences in metabolic connectivity between EAD and LAD by adopting graph theory measures. Methods: We analyzed 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET) images to investigate the distinct features of metabolic connectivity between EAD and LAD. Using metabolic connectivity and graph theory analysis, metabolic network differences between LAD and EAD were explored. Results: Results showed the decreased connectivity centered in the cingulate gyri and occipital regions in EAD, whereas decreased connectivity in the occipital and temporal regions as well as increased connectivity in the supplementary motor area were observed in LAD when compared with age-matched control groups. Global efficiency and clustering coefficients were decreased in EAD but not in LAD. EAD showed progressive network deterioration as a function of disease severity and clinical dementia rating (CDR) scores, mainly in terms of connectivity between the cingulate gyri and occipital regions. Global efficiency and clustering coefficients were also decreased along with disease severity. Conclusion: These results indicate that EAD and LAD have distinguished features in terms of metabolic connectivity, with EAD demonstrating more extensive and progressive deterioration. PMID:27445800

  4. Apomorphine pump in advanced Parkinson's disease: Effects on motor and nonmotor symptoms with brain metabolism correlations.

    PubMed

    Auffret, Manon; Le Jeune, Florence; Maurus, Anne; Drapier, Sophie; Houvenaghel, Jean-François; Robert, Gabriel Hadrien; Sauleau, Paul; Vérin, Marc

    2017-01-15

    Patients with advanced Parkinson's disease (PD) and contraindications for subthalamic nucleus deep brain stimulation (DBS) could particularly benefit from subcutaneous infusion therapy with apomorphine. This original study was designed to evaluate the general efficacy of add-on apomorphine in motor and nonmotor symptoms in advanced PD, while characterizing the changes induced in brain glucose metabolism. The aim was to look at the underlying anatomical-functional pathways. 12 patients with advanced PD were assessed before and after 6months of add-on apomorphine, using resting-state (18)F-fluorodeoxyglucose positron emission tomography and exhaustive clinical assessments. After 6months of therapy, oral treatment was significantly reduced. Both motor and nonmotor scores improved, with a beneficial effect on executive functions, quality of life and apathy. Significant metabolic changes were observed, with overall increases in the right fusiform gyrus and hippocampus, alongside a decrease in the left middle frontal gyrus. Consistent correlations between significant changes in clinical scores and metabolism were established. Well tolerated, add-on apomorphine appears to be an interesting option for patients with fluctuations and contra-indications for DBS. Changes in brain metabolism, with beneficial effects on motor and nonmotor symptoms were observed after 6months. These preliminary results have to be confirmed by further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    PubMed

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain.

    PubMed

    Abolhassani, Nona; Leon, Julio; Sheng, Zijing; Oka, Sugako; Hamasaki, Hideomi; Iwaki, Toru; Nakabeppu, Yusaku

    2017-01-01

    In normal brain, neurons in the cortex and hippocampus produce insulin, which modulates glucose metabolism and cognitive functions. It has been shown that insulin resistance impairs glucose metabolism and mitochondrial function, thus increasing production of reactive oxygen species. Recent progress in Alzheimer's disease (AD) research revealed that insulin production and signaling are severely impaired in AD brain, thereby resulting in mitochondrial dysfunction and increased oxidative stress. Among possible oxidative DNA lesions, 8-oxoguanine (8-oxoG) is highly accumulated in the brain of AD patients. Previously we have shown that incorporating 8-oxoG in nuclear and mitochondrial DNA promotes MUTYH (adenine DNA glycosylase) dependent neurodegeneration. Moreover, cortical neurons prepared from MTH1 (8-oxo-dGTPase)/OGG1 (8-oxoG DNA glycosylase)-double deficient adult mouse brains is shown to exhibit significantly poor neuritogenesis in vitro with increased 8-oxoG accumulation in mitochondrial DNA in the absence of antioxidants. Therefore, 8-oxoG can be considered involved in the neurodegenerative process in AD brain. In mild cognitive impairment, mitochondrial dysfunction and oxidative damage may induce synaptic dysfunction due to energy failures in neurons thus resulting in impaired cognitive function. If such abnormality lasts long, it can lead to vicious cycles of oxidative damage, which may then trigger the neurodegenerative process seen in Alzheimer type dementia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions.

    PubMed

    Jiao, Qian; Du, Xixun; Li, Yong; Gong, Bing; Shi, Limin; Tang, Tingting; Jiang, Hong

    2017-02-01

    Ghrelin, a peptide released by the stomach that plays a major role in regulating energy metabolism, has recently been shown to have effects on neurobiological behaviors. Ghrelin enhances neuronal survival by reducing apoptosis, alleviating inflammation and oxidative stress, and accordingly improving mitochondrial function. Ghrelin also stimulates the proliferation, differentiation and migration of neural stem/progenitor cells (NS/PCs). Additionally, the ghrelin is benefit for the recovery of memory, mood and cognitive dysfunction after stroke or traumatic brain injury. Because of its neuroprotective and neurogenic roles, ghrelin may be used as a therapeutic agent in the brain to combat neurodegenerative disease. In this review, we highlight the pre-clinical evidence and the proposed mechanisms underlying the role of ghrelin in physiological and pathological brain function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy.

    PubMed

    Herminghaus, Sebastian; Frölich, Lutz; Gorriz, Corrina; Pilatus, Ullrich; Dierks, Thomas; Wittsack, Hans-Jörg; Lanfermann, Heinrich; Maurer, Konrad; Zanella, Friedhelm E

    2003-07-30

    Proton magnetic resonance spectroscopy (MRS) allows the assessment of various cerebral metabolites non-invasively in vivo. Among 1H MRS-detectable metabolites, N-acetyl-aspartate and N-acetyl-aspartyl-glutamate (tNAA), trimethylamines (TMA), creatine and creatine phosphate (tCr), inositol (Ins) and glutamate (Gla) are of particular interest, since these moieties can be assigned to specific neuronal and glial metabolic pathways, membrane constituents, and energy metabolism. In this study on 94 subjects from a memory clinic population, 1H MRS results (single voxel STEAM: TE 20 ms, TR 1500 ms) on the above metabolites were assessed for five different brain regions in probable vascular dementia (VD), probable Alzheimer's disease (AD), and age-matched healthy controls. In both VD and AD, ratios of tNAA/tCr were decreased, which may be attributed to neuronal atrophy and loss, and Ins/tCr-ratios were increased indicating either enhanced gliosis or alteration of the cerebral inositol metabolism. However, the topographical distribution of the metabolic alterations in both diseases differed, revealing a temporoparietal pattern for AD and a global, subcortically pronounced pattern for VD. Furthermore, patients suffering from vascular dementia (VD) had remarkably enhanced TMA/tCr ratios, potentially due to ongoing degradation of myelin. Thus, the metabolic alterations obtained by 1H MRS in vivo allow insights into the pathophysiology of the different dementias and may be useful for diagnostic classification.

  9. A disease-specific metabolic brain network associated with corticobasal degeneration.

    PubMed

    Niethammer, Martin; Tang, Chris C; Feigin, Andrew; Allen, Patricia J; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L; Meyer, Philipp T; Leenders, Klaus L; Eidelberg, David

    2014-11-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with (18)F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  10. Association Between Motor Symptoms and Brain Metabolism in Early Huntington Disease.

    PubMed

    Gaura, Véronique; Lavisse, Sonia; Payoux, Pierre; Goldman, Serge; Verny, Christophe; Krystkowiak, Pierre; Damier, Philippe; Supiot, Frédéric; Bachoud-Levi, Anne-Catherine; Remy, Philippe

    2017-09-01

    Brain hypometabolism is associated with the clinical consequences of the degenerative process, but little is known about regional hypermetabolism, sometimes observed in the brain of patients with clinically manifest Huntington disease (HD). Studying the role of regional hypermetabolism is needed to better understand its interaction with the motor symptoms of the disease. To investigate the association between brain hypometabolism and hypermetabolism with motor scores of patients with early HD. This study started in 2001, and analysis was completed in 2016. Sixty symptomatic patients with HD and 15 healthy age-matched control individuals underwent positron emission tomography to measure cerebral metabolism in this cross-sectional study. They also underwent the Unified Huntington's Disease Rating Scale motor test, and 2 subscores were extracted: (1) a hyperkinetic score, combining dystonia and chorea, and (2) a hypokinetic score, combining bradykinesia and rigidity. Statistical parametric mapping software (SPM5) was used to identify all hypo- and hypermetabolic regions in patients with HD relative to control individuals. Correlation analyses (P < .001, uncorrected) between motor subscores and brain metabolic values were performed for regions with significant hypometabolism and hypermetabolism. Among 60 patients with HD, 22 were women (36.7%), and the mean (SD) age was 44.6 (7.6) years. Of the 15 control individuals, 7 were women (46.7%), and the mean (SD) age was 42.2 (7.3) years. In statistical parametric mapping, striatal hypometabolism was significantly correlated with the severity of all motor scores. Hypermetabolism was negatively correlated only with hypokinetic scores in the cuneus (z score = 3.95, P < .001), the lingual gyrus (z score = 4.31, P < .001), and the crus I/II of the cerebellum (z score = 3.77, P < .001), a region connected to associative cortical areas. More severe motor scores were associated with higher metabolic

  11. Modulation of metabolic brain networks after subthalamic gene therapy for Parkinson's disease.

    PubMed

    Feigin, Andrew; Kaplitt, Michael G; Tang, Chengke; Lin, Tanya; Mattis, Paul; Dhawan, Vijay; During, Matthew J; Eidelberg, David

    2007-12-04

    Parkinson's disease (PD) is characterized by elevated expression of an abnormal metabolic brain network that is reduced by clinically effective treatment. We used fluorodeoxyglucose (FDG) positron emission tomography (PET) to determine the basis for motor improvement in 12 PD patients receiving unilateral subthalamic nucleus (STN) infusion of an adenoassociated virus vector expressing glutamic acid decarboxylase (AAV-GAD). After gene therapy, we observed significant reductions in thalamic metabolism on the operated side as well as concurrent metabolic increases in ipsilateral motor and premotor cortical regions. Abnormal elevations in the activity of metabolic networks associated with motor and cognitive functioning in PD patients were evident at baseline. The activity of the motor-related network declined after surgery and persisted at 1 year. These network changes correlated with improved clinical disability ratings. By contrast, the activity of the cognition-related network did not change after gene transfer. This suggests that modulation of abnormal network activity underlies the clinical outcome observed after unilateral STN AAV-GAD gene therapy. Network biomarkers may be used as physiological assays in early-phase trials of experimental therapies for PD and other neurodegenerative disease.

  12. A disease-specific metabolic brain network associated with corticobasal degeneration

    PubMed Central

    Niethammer, Martin; Tang, Chris C.; Feigin, Andrew; Allen, Patricia J.; Heinen, Lisette; Hellwig, Sabine; Amtage, Florian; Hanspal, Era; Vonsattel, Jean Paul; Poston, Kathleen L.; Meyer, Philipp T.; Leenders, Klaus L.

    2014-01-01

    Corticobasal degeneration is an uncommon parkinsonian variant condition that is diagnosed mainly on clinical examination. To facilitate the differential diagnosis of this disorder, we used metabolic brain imaging to characterize a specific network that can be used to discriminate corticobasal degeneration from other atypical parkinsonian syndromes. Ten non-demented patients (eight females/two males; age 73.9 ± 5.7 years) underwent metabolic brain imaging with 18F-fluorodeoxyglucose positron emission tomography for atypical parkinsonism. These individuals were diagnosed clinically with probable corticobasal degeneration. This diagnosis was confirmed in the three subjects who additionally underwent post-mortem examination. Ten age-matched healthy subjects (five females/five males; age 71.7 ± 6.7 years) served as controls for the imaging studies. Spatial covariance analysis was applied to scan data from the combined group to identify a significant corticobasal degeneration-related metabolic pattern that discriminated (P < 0.001) the patients from the healthy control group. This pattern was characterized by bilateral, asymmetric metabolic reductions involving frontal and parietal cortex, thalamus, and caudate nucleus. These pattern-related changes were greater in magnitude in the cerebral hemisphere opposite the more clinically affected body side. The presence of this corticobasal degeneration-related metabolic topography was confirmed in two independent testing sets of patient and control scans, with elevated pattern expression (P < 0.001) in both disease groups relative to corresponding normal values. We next determined whether prospectively computed expression values for this pattern accurately discriminated corticobasal degeneration from multiple system atrophy and progressive supranuclear palsy (the two most common atypical parkinsonian syndromes) on a single case basis. Based upon this measure, corticobasal degeneration was successfully distinguished from

  13. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography.

    PubMed

    Leenders, K L; Frackowiak, R S; Quinn, N; Marsden, C D

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilisation, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilisation paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-[18F]-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  14. Brain energy metabolism and dopaminergic function in Huntington's disease measured in vivo using positron emission tomography

    SciTech Connect

    Leenders, K.L.; Frackowiak, R.S.; Quinn, N.; Marsden, C.D.

    1986-01-01

    A 48-year-old man with typical Huntington's disease was investigated with computed tomography (CT) and positron emission tomography. Regional cerebral blood flow, oxygen extraction, oxygen and glucose utilization, L-Dopa uptake, and dopamine (D2) receptor binding were measured using several positron-labelled tracers. CT showed slight atrophy of the head of caudate but no cortical atrophy, although distinct frontal lobe dysfunction was present on psychometric testing. Oxygen and glucose metabolism and cerebral blood flow were decreased in the striata and to a lesser extent in frontal cortex. Cerebral blood flow was in the low normal range throughout the remainder of the brain. A normal metabolic ratio was found in all regions, since the changes in glucose utilization paralleled those in oxygen consumption. The capacity of the striatum to store dopamine as assessed by L-( YF)-fluorodopa uptake was normal, but dopamine (D2) receptor binding was decreased when compared to normal subjects.

  15. Brain metabolic correlates of fatigue in Parkinson's disease: A PET study.

    PubMed

    Zhang, Li; Li, Tiannv; Yuan, Yongsheng; Tong, Qing; Jiang, Siming; Wang, Min; Wang, Jianwei; Ding, Jian; Xu, Qinrong; Zhang, Kezhong

    2017-09-18

    The neural bases of fatigue in Parkinson's disease (PD) remain uncertain. We aimed to assess the brain metabolic correlates of fatigue in patients with PD. Twenty-seven PD patients without clinically relevant depression (17-item Hamilton Depression Rating Scale [HAMD] score ≥ 14), apathy (Apathy Scale [AS] score ≥ 14) and excessive daytime somnolence (Epworth Sleepiness Scale [ESS] score ≥ 10) were evaluated with Fatigue Severity Scale (FSS). Each patient had an F-18 fluorodeoxyglucose PET (FDG-PET) scan. Motor symptoms were measured with the Unified Parkinson's Disease Rating Scale (UPDRS) motor part. Levodopa equivalent daily dose (LEDD) for each patient was also calculated. The PET images were analyzed using statistical parametric mapping software. We introduced the age, educational level, HAMD scores, AS scores and ESS scores as covariates. High FSS scores were associated with brain hypermetabolism in areas including the right middle temporal gyrus (Brodmann area [BA] 37) and left middle occipital gyrus (BA 19). Increased FSS scores correlated with hypometabolism in regions such as the right precuneus (BA 23), left inferior frontal gyrus (BA 45) and left superior frontal gyrus (orbital part, BA 11). This study demonstrates that brain areas including frontal, temporal and parietal regions indicative of emotion, motivation and cognitive functions are involved in fatigue in PD patients.

  16. Multifunctional Roles of Enolase in Alzheimer Disease Brain: Beyond Altered Glucose Metabolism

    PubMed Central

    Butterfield, D. Allan; Bader Lange, Miranda L.

    2015-01-01

    Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, since there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified α-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD (EOAD), and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, α-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, EOAD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder. PMID:19780894

  17. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging.

    PubMed

    Teune, Laura K; Renken, Remco J; de Jong, Bauke M; Willemsen, Antoon T; van Osch, Matthias J; Roerdink, Jos B T M; Dierckx, Rudi A; Leenders, Klaus L

    2014-01-01

    Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Nineteen PD patients and seventeen healthy controls underwent [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients.

  18. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging

    PubMed Central

    Teune, Laura K.; Renken, Remco J.; de Jong, Bauke M.; Willemsen, Antoon T.; van Osch, Matthias J.; Roerdink, Jos B.T.M.; Dierckx, Rudi A.; Leenders, Klaus L.

    2014-01-01

    Introduction Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Methods Nineteen PD patients and seventeen healthy controls underwent [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Results Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. Conclusion We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients. PMID:25068113

  19. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease

    PubMed Central

    Fouquet, Marine; Desgranges, Béatrice; Landeau, Brigitte; Duchesnay, Edouard; Mézenge, Florence; De La Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Chételat, Gaël

    2009-01-01

    A sensitive marker for monitoring progression of early Alzheimer’s Disease (AD) would help to develop and test new therapeutic strategies. The present study aimed at investigating brain metabolism changes over time, as potential monitoring marker, in patients with amnestic Mild Cognitive Impairment (aMCI), according to their clinical outcome (converters or non-converters), and in relation to their cognitive decline. Seventeen aMCI patients underwent MRI and 18FDG-PET scans both at inclusion and 18 months later. Baseline and follow-up PET data were corrected for partial volume effects and spatially normalized using MRI data, scaled to the vermis and compared using SPM2. ‘PET-PAC’ maps reflecting metabolic percent annual changes were created for correlation analyses with cognitive decline. In the whole sample, the greatest metabolic decrease concerned the posterior cingulate-precuneus area. Converters had significantly greater metabolic decrease than nonconverters in two ventro-medial prefrontal areas, the subgenual (BA25) and anterior cingulate (BA24/32). PET-PAC in BA25 and BA24/32 combined allowed complete between-group discrimination. BA25 PET-PAC significantly correlated with both cognitive decline and PET-PAC in the hippocampal region and temporal pole, while BA24/32 PET-PAC correlated with posterior cingulate PET-PAC. Finally, the metabolic change in BA8/9/10 was inversely related to that in BA25 and showed relative increase with cognitive decline, suggesting that compensatory processes may occur in this dorso-medial prefrontal region. The observed ventro-medial prefrontal disruption is likely to reflect disconnection from the hippocampus, both indirectly through the cingulum bundle and posterior cingulate cortex for BA24/32, and directly through the uncinate fasciculus for BA25. Altogether, our findings emphasize the potential of 18FDG-PET for monitoring early AD progression. PMID:19477964

  20. Insights into Brain Glycogen Metabolism

    PubMed Central

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-01-01

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  1. Glucose Metabolism during Resting State Reveals Abnormal Brain Networks Organization in the Alzheimer’s Disease and Mild Cognitive Impairment

    PubMed Central

    Martínez-Montes, Eduardo

    2013-01-01

    This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356

  2. Metabolic management of brain cancer.

    PubMed

    Seyfried, Thomas N; Kiebish, Michael A; Marsh, Jeremy; Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna

    2011-06-01

    Malignant brain tumors are a significant health problem in children and adults. Conventional therapeutic approaches have been largely unsuccessful in providing long-term management. As primarily a metabolic disease, malignant brain cancer can be managed through changes in metabolic environment. In contrast to normal neurons and glia, which readily transition to ketone bodies (β-hydroxybutyrate) for energy under reduced glucose, malignant brain tumors are strongly dependent on glycolysis for energy. The transition from glucose to ketone bodies as a major energy source is an evolutionary conserved adaptation to food deprivation that permits the survival of normal cells during extreme shifts in nutritional environment. Only those cells with a flexible genome and normal mitochondria can effectively transition from one energy state to another. Mutations restrict genomic and metabolic flexibility thus making tumor cells more vulnerable to energy stress than normal cells. We propose an alternative approach to brain cancer management that exploits the metabolic flexibility of normal cells at the expense of the genetically defective and metabolically challenged tumor cells. This approach to brain cancer management is supported from recent studies in mice and humans treated with calorie restriction and the ketogenic diet. Issues of implementation and use protocols are presented for the metabolic management of brain cancer. Copyright © 2010. Published by Elsevier B.V.

  3. Cholesterol metabolism and homeostasis in the brain.

    PubMed

    Zhang, Juan; Liu, Qiang

    2015-04-01

    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  4. Dietary Omega-3 Fatty Acid Deficiency and High Fructose intake in the Development of Metabolic Syndrome Brain, Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Simopoulos, Artemis P.

    2013-01-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  5. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease.

    PubMed

    Simopoulos, Artemis P

    2013-07-26

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.

  6. Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases

    PubMed Central

    Shpakov, Alexander O; Derkach, Kira V; Berstein, Lev M

    2015-01-01

    The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed. PMID:28031898

  7. Identification of elevated urea as a severe, ubiquitous metabolic defect in the brain of patients with Huntington's disease.

    PubMed

    Patassini, Stefano; Begley, Paul; Reid, Suzanne J; Xu, Jingshu; Church, Stephanie J; Curtis, Maurice; Dragunow, Mike; Waldvogel, Henry J; Unwin, Richard D; Snell, Russell G; Faull, Richard L M; Cooper, Garth J S

    Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels.

  9. Brain transcriptomes of harbor seals demonstrate gene expression patterns of animals undergoing a metabolic disease and a viral infection

    PubMed Central

    Vega Thurber, Rebecca L.

    2016-01-01

    Diseases of marine mammals can be difficult to diagnose because of their life history and protected status. Stranded marine mammals have been a particularly useful resource to discover and comprehend the diseases that plague these top predators. Additionally, advancements in high-throughput sequencing (HTS) has contributed to the discovery of novel pathogens in marine mammals. In this study, we use a combination of HTS and stranded harbor seals (Phoca vitulina) to better understand a known and unknown brain disease. To do this, we used transcriptomics to evaluate brain tissues from seven neonatal harbor seals that expired from an unknown cause of death (UCD) and compared them to four neonatal harbor seals that had confirmed phocine herpesvirus (PhV-1) infections in the brain. Comparing the two disease states we found that UCD animals showed a significant abundance of fatty acid metabolic transcripts in their brain tissue, thus we speculate that a fatty acid metabolic dysregulation contributed to the death of these animals. Furthermore, we were able to describe the response of four young harbor seals with PhV-1 infections in the brain. PhV-1 infected animals showed a significant ability to mount an innate and adaptive immune response, especially to combat viral infections. Our data also suggests that PhV-1 can hijack host pathways for DNA packaging and exocytosis. This is the first study to use transcriptomics in marine mammals to understand host and viral interactions and assess the death of stranded marine mammals with an unknown disease. Furthermore, we show the value of applying transcriptomics on stranded marine mammals for disease characterization. PMID:28028481

  10. Insulin action in brain regulates systemic metabolism and brain function.

    PubMed

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.

  11. Ganglioside metabolism in a transgenic mouse model of Alzheimer's disease: expression of Chol-1α antigens in the brain.

    PubMed

    Ariga, Toshio; Yanagisawa, Makoto; Wakade, Chandramohan; Ando, Susumu; Buccafusco, Jerry J; McDonald, Michael P; Yu, Robert K

    2010-10-04

    The accumulation of Aβ (amyloid β-protein) is one of the major pathological hallmarks in AD (Alzheimer's disease). Gangliosides, sialic acid-containing glycosphingolipids enriched in the nervous system and frequently used as biomarkers associated with the biochemical pathology of neurological disorders, have been suggested to be involved in the initial aggregation of Aβ. In the present study, we have examined ganglioside metabolism in the brain of a double-Tg (transgenic) mouse model of AD that co-expresses mouse/human chimaeric APP (amyloid precursor protein) with the Swedish mutation and human presenilin-1 with a deletion of exon 9. Although accumulation of Aβ was confirmed in the double-Tg mouse brains and sera, no statistically significant change was detected in the concentration and composition of major ganglio-N-tetraosyl-series gangliosides in the double-Tg brain. Most interestingly, Chol-1α antigens (cholinergic neuron-specific gangliosides), such as GT1aα and GQ1bα, which are minor species in the brain, were found to be increased in the double-Tg mouse brain. We interpret that the occurrence of these gangliosides may represent evidence for generation of cholinergic neurons in the AD brain, as a result of compensatory neurogenesis activated by the presence of Aβ.

  12. Integrating Genome-Wide Association Study and Brain Expression Data Highlights Cell Adhesion Molecules and Purine Metabolism in Alzheimer's Disease.

    PubMed

    Xiang, Zimin; Xu, Meiling; Liao, Mingzhi; Jiang, Yongshuai; Jiang, Qinghua; Feng, Rennan; Zhang, Liangcai; Ma, Guoda; Wang, Guangyu; Chen, Zugen; Zhao, Bin; Sun, Tiansheng; Li, Keshen; Liu, Guiyou

    2015-08-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. However, a large proportion of AD heritability has yet to be explained. We previously identified the cell adhesion molecule (CAM) pathway as a consistent signal in two AD GWAS. However, it is unclear whether CAM is present in the Genetic and Environmental Risk for Alzheimer's Disease Consortium (GERAD) GWAS and brain expression GWAS. Meanwhile, we think integrating AD GWAS and AD brain expression datasets may provide complementary information to identify important pathways involved in AD. Here, we conducted a systems analysis using (1) KEGG pathways, (2) large-scale AD GWAS from GERAD (n = 11,789), (3) two brain expression GWAS datasets (n = 399) from the AD cerebellum and temporal cortex, and (4) previous results from pathway analysis of AD GWAS. Our results indicate that (1) CAM is a consistent signal in five AD GWAS; (2) CAM is the most significant signal in AD; (3) we confirmed previous AD risk pathways related to immune system and diseases, and cardiovascular disease, etc.; and (4) we highlighted the purine metabolism pathway in AD for the first time. We believe that our results may advance our understanding of AD mechanisms and will be very informative for future genetic studies in AD.

  13. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease

    PubMed Central

    Liao, Fan; Yoon, Hyejin; Kim, Jungsu

    2017-01-01

    Purpose of review APOE4 genotype is the strongest genetic risk factor for Alzheimer's disease. Prevailing evidence suggests that amyloid β plays a critical role in Alzheimer's disease. The objective of this article is to review the recent findings about the metabolism of apolipoprotein E (ApoE) and amyloid β and other possible mechanisms by which ApoE contributes to the pathogenesis of Alzheimer's disease. Recent findings ApoE isoforms have differential effects on amyloid β metabolism. Recent studies demonstrated that ApoE-interacting proteins, such as ATP-binding cassette A1 (ABCA1) and LDL receptor, may be promising therapeutic targets for Alzheimer's disease treatment. Activation of liver X receptor and retinoid X receptor pathway induces ABCA1 and other genes, leading to amyloid β clearance. Inhibition of the negative regulators of ABCA1, such as microRNA-33, also induces ABCA1 and decreases the levels of ApoE and amyloid β. In addition, genetic inactivation of an E3 ubiquitin ligase, myosin regulatory light chain interacting protein, increases LDL receptor levels and inhibits amyloid accumulation. Although amyloid β-dependent pathways have been extensively investigated, there have been several recent studies linking ApoE with vascular function, neuroinflammation, metabolism, synaptic plasticity, and transcriptional regulation. For example, ApoE was identified as a ligand for a microglial receptor, TREM2, and studies suggested that ApoE may affect the TREM2-mediated microglial phagocytosis. Summary Emerging data suggest that ApoE affects several amyloid β-independent pathways. These underexplored pathways may provide new insights into Alzheimer's disease pathogenesis. However, it will be important to determine to what extent each mechanism contributes to the pathogenesis of Alzheimer's disease. PMID:27922847

  14. Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Vitorica, Javier; Gómez-Ariza, José Luis

    2014-12-01

    Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide, but its etiology is still not completely understood. The identification of underlying pathological mechanisms is becoming increasingly important for the discovery of biomarkers and therapies, for which metabolomics presents a great potential. In this work, we studied metabolic alterations in different brain regions of the APP/PS1 mice by using a high-throughput metabolomic approach based on the combination of gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass spectrometry. Multivariate statistics showed that metabolomic perturbations are widespread, affecting mainly the hippocampus and the cortex, but are also present in regions not primarily associated with AD such as the striatum, cerebellum and olfactory bulbs. Multiple metabolic pathways could be linked to the development of AD-type disorders in this mouse model, including abnormal purine metabolism, bioenergetic failures, dyshomeostasis of amino acids and disturbances in membrane lipids, among others. Interestingly, region-specific alterations were observed for some of the potential markers identified, associated with abnormal fatty acid composition of phospholipids and sphingomyelins, or differential regulation of neurotransmitter amino acids (e.g. glutamate, glycine, serine, N-acetyl-aspartate), not previously described to our knowledge. Therefore, these findings could provide a new insight into brain pathology in Alzheimer's disease.

  15. Brain Diseases

    MedlinePlus

    The brain is the control center of the body. It controls thoughts, memory, speech, and movement. It regulates the function of many organs. When the brain is healthy, it works quickly and automatically. However, ...

  16. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: An 18F-FDG PET/CT study

    PubMed Central

    CHIARAVALLOTI, AGOSTINO; PAGANI, MARCO; CANTONETTI, MARIA; DI PIETRO, BARBARA; TAVOLOZZA, MARIO; TRAVASCIO, LAURA; DI BIAGIO, DANIELE; DANIELI, ROBERTA; SCHILLACI, ORAZIO

    2015-01-01

    The aim of the present study was to investigate brain glucose metabolism in patients with Hodgkin disease (HD) after diagnosis and during chemotherapy treatment. Following the administration of first-line doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy, 74 HD patients underwent 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography brain scans, both baseline (PET0) and interim (PET2) at the Department of Biomedicine and Prevention, University of Rome Tor Vergata (Rome, Italy). Fifty-seven patients were further evaluated 15±6 days after four additional cycles (PET6). Furthermore, a control group (CG) of 40 chemotherapy-naïve subjects was enrolled. Differences in brain 18F-FDG uptake between the CG, PET0, PET2 and PET6 scans were analyzed using statistical parametric mapping. Compared with the PET0 and CG scans, the PET2 scan demonstrated a higher metabolic activity in Brodmann area (BA) 39, and a metabolic reduction in BA 11 bilaterally and in left BA 32. All of these changes disappeared at PET6. The results of the present study indicate that ABVD chemotherapy has a limited impact on brain metabolism. PMID:25621038

  17. Impaired brain energy metabolism in the BACHD mouse model of Huntington's disease: critical role of astrocyte–neuron interactions

    PubMed Central

    Boussicault, Lydie; Hérard, Anne-Sophie; Calingasan, Noel; Petit, Fanny; Malgorn, Carole; Merienne, Nicolas; Jan, Caroline; Gaillard, Marie-Claude; Lerchundi, Rodrigo; Barros, Luis F; Escartin, Carole; Delzescaux, Thierry; Mariani, Jean; Hantraye, Philippe; Flint Beal, M; Brouillet, Emmanuel; Véga, Céline; Bonvento, Gilles

    2014-01-01

    Huntington's disease (HD) is caused by cytosine-adenine-guanine (CAG) repeat expansions in the huntingtin (Htt) gene. Although early energy metabolic alterations in HD are likely to contribute to later neurodegenerative processes, the cellular and molecular mechanisms responsible for these metabolic alterations are not well characterized. Using the BACHD mice that express the full-length mutant huntingtin (mHtt) protein with 97 glutamine repeats, we first demonstrated localized in vivo changes in brain glucose use reminiscent of what is observed in premanifest HD carriers. Using biochemical, molecular, and functional analyses on different primary cell culture models from BACHD mice, we observed that mHtt does not directly affect metabolic activity in a cell autonomous manner. However, coculture of neurons with astrocytes from wild-type or BACHD mice identified mutant astrocytes as a source of adverse non-cell autonomous effects on neuron energy metabolism possibly by increasing oxidative stress. These results suggest that astrocyte-to-neuron signaling is involved in early energy metabolic alterations in HD. PMID:24938402

  18. Multiple genetic imaging study of the association between cholesterol metabolism and brain functional alterations in individuals with risk factors for Alzheimer's disease

    PubMed Central

    Bai, Feng; Yuan, Yonggui; Shi, Yongmei; Zhang, Zhijun

    2016-01-01

    Alzheimer's disease (AD) is a clinically and genetically heterogeneous neurodegenerative disease. Genes involved in cholesterol metabolism may play a role in the pathological changes of AD. However, the imaging genetics-based endophenotypes derived from polymorphisms in multiple functionally related genes are unclear in individuals with risk factors for AD. Forty-three amnestic mild cognitive impairment (aMCI) subjects and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) measurements of brain topological organization. Thirty-three previously suggested tagging single nucleotide polymorphisms (SNPs) from 12 candidate genes in the cholesterol metabolism pathway were further investigated. A cholesterol metabolism pathway gene-based imaging genetics approach was then utilized to investigate disease-related differences between the groups based on genotype-by-aMCI interactions. The cholesterol metabolism pathway genes exerted widespread effects on the cortico-subcortical-cerebellar spontaneous brain activity. Meanwhile, left lateralization of global brain connectivity was associated with cholesterol metabolism pathway genes. The APOE rs429358 variation significantly influenced the brain network characteristics, affecting the activation of nodes as well as the connectivity of edges in aMCI subjects. The cholesterol metabolism pathway gene-based imaging genetics approach may provide new opportunities to understand the mechanisms underlying AD and suggested that APOE rs429358 is a core genetic variation that is associated with disease-related differences in brain function. PMID:26985771

  19. Relationship between baseline brain metabolism measured using [¹⁸F]FDG PET and memory and executive function in prodromal and early Alzheimer's disease.

    PubMed

    Habeck, Christian; Risacher, Shannon; Lee, Grace J; Glymour, M Maria; Mormino, Elizabeth; Mukherjee, Shubhabrata; Kim, Sungeun; Nho, Kwangsik; DeCarli, Charles; Saykin, Andrew J; Crane, Paul K

    2012-12-01

    Differences in brain metabolism as measured by FDG-PET in prodromal and early Alzheimer's disease (AD) have been consistently observed, with a characteristic parietotemporal hypometabolic pattern. However, exploration of brain metabolic correlates of more nuanced measures of cognitive function has been rare, particularly in larger samples. We analyzed the relationship between resting brain metabolism and memory and executive functioning within diagnostic group on a voxel-wise basis in 86 people with AD, 185 people with mild cognitive impairment (MCI), and 86 healthy controls (HC) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We found positive associations within AD and MCI but not in HC. For MCI and AD, impaired executive functioning was associated with reduced parietotemporal metabolism, suggesting a pattern consistent with known AD-related hypometabolism. These associations suggest that decreased metabolic activity in the parietal and temporal lobes may underlie the executive function deficits in AD and MCI. For memory, hypometabolism in similar regions of the parietal and temporal lobes were significantly associated with reduced performance in the MCI group. However, for the AD group, memory performance was significantly associated with metabolism in frontal and orbitofrontal areas, suggesting the possibility of compensatory metabolic activity in these areas. Overall, the associations between brain metabolism and cognition in this study suggest the importance of parietal and temporal lobar regions in memory and executive function in the early stages of disease and an increased importance of frontal regions for memory with increasing impairment.

  20. An innovative approach to the treatment of Gaucher disease and possibly other metabolic disorders of the brain.

    PubMed

    Brady, Roscoe O; Yang, Chunzhang; Zhuang, Zhengping

    2013-05-01

    The extraordinary benefit of enzyme replacement therapy (ERT) on the systemic manifestations of Gaucher disease was demonstrated in 1991. Since that time, investigators have devoted substantial effort to improve the delivery of enzymes to the brain because many hereditary metabolic disorders are characterized by extensive central nervous system involvement. Because the required supplemental enzyme is too large to cross the blood-brain barrier (BBB), ERT for central nervous system involvement was out of the question at that time. Several innovative strategies that have been reported to overcome this impediment are discussed. Recent investigations have provided additional insight concerning the pathogenesis of enzyme deficiency disorders. For many years it was presumed that alterations of the amino acid sequence of enzymes such as glucocerebrosidase reduced the catalytic activity of the enzyme. It has recently been shown that the decrease of glucocerebrosidase activity was the result of a quantitative loss of the amount of this enzyme. Significant increases of its activity were obtained with small molecule inhibitors of histone deacetylase that cross the BBB. The effect of such materials on neuronopathic Gaucher disease and other CNS metabolic disorders is discussed.

  1. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study.

    PubMed

    Snowden, Stuart G; Ebshiana, Amera A; Hye, Abdul; An, Yang; Pletnikova, Olga; O'Brien, Richard; Troncoso, John; Legido-Quigley, Cristina; Thambisetty, Madhav

    2017-03-01

    The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and "asymptomatic Alzheimer's disease" (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10-8, FC = 0.52, q = 1.03 x 10-6), linolenic acid (p = 2.5 x 10-4, FC = 0.84, q = 4.03 x 10-4), docosahexaenoic acid (p = 1.7 x 10-7, FC = 1.45, q = 1.24 x 10-6), eicosapentaenoic acid (p = 4.4 x 10-4, FC = 0.16, q = 6.48 x 10-4), oleic acid (p = 3.3 x 10-7, FC = 0.34, q = 1.46 x 10-6), and arachidonic acid (p = 2.98 x 10-5, FC = 0.75, q = 7.95 x 10-5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p < 0.0001, p = 0.0006), linolenic acid (p < 0.0001, p = 0.002), docosahexaenoic acid (p < 0.0001, p = 0.0024), eicosapentaenoic acid (p = 0.0002, p = 0.0008), oleic acid (p < 0.0001, p = 0.0003), and arachidonic acid (p = 0.0001, p = 0.001). Significant associations were also observed between the abundance of these UFAs with neuritic plaque and neurofibrillary tangle burden as

  2. Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease.

    PubMed

    Ribeiro, César A; Sgaravatti, Angela M; Rosa, Rafael B; Schuck, Patrícia F; Grando, Vanessa; Schmidt, Anna L; Ferreira, Gustavo C; Perry, Marcos L S; Dutra-Filho, Carlos S; Wajner, Moacir

    2008-01-01

    In the present work we investigated the in vitro effect of the branched-chain amino acids (BCAA) accumulating in maple syrup urine disease (MSUD) on some parameters of energy metabolism in cerebral cortex of rats. 14CO2 production from [1-14C]acetate, [1-5-14C]citrate and [U-14C]glucose, as well as glucose uptake by the brain were evaluated by incubating cortical prisms from 30-day-old rats in the absence (controls) or presence of leucine (Leu), valine (Val) or isoleucine (Ile). All amino acids significantly reduced 14CO2 production by around 20-55%, in contrast to glucose utilization, which was significantly increased by up to 90%. Furthermore, Leu significantly inhibited the activity of the respiratory chain complex IV, whereas Val and Ile markedly inhibited complexes II-III, III and IV by up to 40%. We also observed that trolox (alpha-tocopherol) and creatine totally prevented the inhibitory effects provoked by the BCAA on the respiratory chain complex activities, suggesting that free radicals were involved in these effects. The results indicate that the major metabolites accumulating in MSUD disturb brain aerobic metabolism by compromising the citric acid cycle and the electron flow through the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.

  3. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study

    PubMed Central

    An, Yang; Pletnikova, Olga; O’Brien, Richard; Troncoso, John; Legido-Quigley, Cristina; Thambisetty, Madhav

    2017-01-01

    Background The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. Methods and findings We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and “asymptomatic Alzheimer’s disease” (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10−8, FC = 0.52, q = 1.03 x 10−6), linolenic acid (p = 2.5 x 10−4, FC = 0.84, q = 4.03 x 10−4), docosahexaenoic acid (p = 1.7 x 10−7, FC = 1.45, q = 1.24 x 10−6), eicosapentaenoic acid (p = 4.4 x 10−4, FC = 0.16, q = 6.48 x 10−4), oleic acid (p = 3.3 x 10−7, FC = 0.34, q = 1.46 x 10−6), and arachidonic acid (p = 2.98 x 10−5, FC = 0.75, q = 7.95 x 10−5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p < 0.0001, p = 0.0006), linolenic acid (p < 0.0001, p = 0.002), docosahexaenoic acid (p < 0.0001, p = 0.0024), eicosapentaenoic acid (p = 0.0002, p = 0.0008), oleic acid (p < 0.0001, p = 0.0003), and arachidonic acid (p = 0.0001, p = 0.001). Significant associations were also observed between the abundance of these

  4. Interrogating Metabolism in Brain Cancer.

    PubMed

    Salzillo, Travis C; Hu, Jingzhe; Nguyen, Linda; Whiting, Nicholas; Lee, Jaehyuk; Weygand, Joseph; Dutta, Prasanta; Pudakalakatti, Shivanand; Millward, Niki Zacharias; Gammon, Seth T; Lang, Frederick F; Heimberger, Amy B; Bhattacharya, Pratip K

    2016-11-01

    This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ibogaine affects brain energy metabolism.

    PubMed

    Paskulin, Roman; Jamnik, Polona; Zivin, Marko; Raspor, Peter; Strukelj, Borut

    2006-12-15

    Ibogaine is an indole alkaloid present in the root of the plant Tabernanthe iboga. It is known to attenuate abstinence syndrome in animal models of drug addiction. Since the anti-addiction effect lasts longer than the presence of ibogaine in the body, some profound metabolic changes are expected. The aim of this study was to investigate the effect of ibogaine on protein expression in rat brains. Rats were treated with ibogaine at 20 mg/kg body weight i.p. and subsequently examined at 24 and 72 h. Proteins were extracted from whole brain and separated by two-dimensional (2-D) electrophoresis. Individual proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Enzymes of glycolysis and tricarboxylic acid (TCA) cycle namely glyceraldehyde-3-phosphate dehydrogenase, aldolase A, pyruvate kinase and malate dehydrogenase were induced. The results suggest that the remedial effect of ibogaine could be mediated by the change in energy availability. Since energy dissipating detoxification and reversion of tolerance to different drugs of abuse requires underlying functional and structural changes in the cell, higher metabolic turnover would be favourable. Understanding the pharmacodynamics of anti-addiction drugs highlights the subcellular aspects of addiction diseases, in addition to neurological and psychological perspectives.

  6. Early Life Nutrient Restriction Impairs Blood-Brain Metabolic Profile and Neurobehavior Predisposing to Alzheimer’s disease with Aging

    PubMed Central

    Tomi, Masatoshi; Zhao, Yuanzi; Thamotharan, Shanthie; Shin, Bo-Chul; Devaskar, Sherin U.

    2014-01-01

    Prenatal nutrient restriction (NR) culminating in intra-uterine growth restriction (IUGR) with postnatal catch up growth leads to diabesity. In contrast, postnatal NR with growth restriction (PNGR) superimposed on IUGR (IPGR) protects young and aging adults from this phenotype. We hypothesized that PNGR/IPGR will compromise the blood-brain metabolic profile impairing neurobehavior and predisposing to Alzheimer’s disease (AD). NR (50%) in late gestation followed by cross-fostering of rat pups to either ad lib fed (CON) or NR (50%) lactating mothers generated CON, IUGR, PNGR and IPGR male (M) and female (F) offspring that were examined through the life span. In PNGR/IPGR plasma/CSF glucose and lactate decreased while ketones increased in (M) and (F) (PN21, PN50). In addition increased brain glucose transporters, Glut1 & Glut3, greater brain derived neurotrophic factor (BDNF), reduced Glut4, with unchanged serotonin transporter concentrations were noted in (F) (PN50-60). While (F) displayed more hyperactivity, both (F) and (M) exhibited anxiety although socially and cognitively unimpaired (PN25-28&50). Aging (15-17m) (F) not (M), expressed low plasma insulin, reduced brain IRS-2, pAkt, and pGSK-3pSer9, unchanged pPDK1, pTau or lipoprotein receptor related protein 1 (LRP1), higher glial fibrillary acidic protein (GFAP) and spinophilin but a 10-fold increased amyloid-p42. We conclude that therapeutically superimposing PNGR on IUGR (IPGR) should be carefully weighed in light of unintended consequences related to perturbed neurobehavior and potential predilection for AD. PMID:23228723

  7. Neuroprotective Effects of Icariin on Brain Metabolism, Mitochondrial Functions, and Cognition in Triple-Transgenic Alzheimer's Disease Mice.

    PubMed

    Chen, Yi-Jing; Zheng, Hai-Yang; Huang, Xiu-Xian; Han, Shuang-Xue; Zhang, Dong-Sheng; Ni, Jia-Zuan; He, Xiao-Yang

    2016-01-01

    This study investigated the neuroprotective properties of icariin (an effective component of traditional Chinese herbal medicine Epimedium) on neuronal function and brain energy metabolism maintenance in a triple-transgenic mouse model of Alzheimer's disease (3 × Tg-AD). 3 × Tg-AD mice as well as primary neurons were subjected to icariin treatment. Morris water maze assay, magnetic resonance spectroscopy (MRS), Western blotting, ELISA, and immunohistochemistry analysis were used to evaluate the effects of icariin administration. Icariin significantly improved spatial learning and memory retention in 3 × Tg-AD mice, promoted neuronal cell activity as identified by the enhancement of brain metabolite N-acetylaspartate level and ATP production in AD mice, preserved the expressions of mitochondrial key enzymes COX IV, PDHE1α, and synaptic protein PSD95, reduced Aβ plaque deposition in the cortex and hippocampus of AD mice, and inhibited β-site APP cleavage enzyme 1 (BACE1) expression. Icariin treatment also decreased the levels of extracellular and intracellular Aβ1-42 in 3 × Tg-AD primary neurons, modulated the distribution of Aβ along the neurites, and protected against mitochondrial fragmentation in 3 × Tg-AD neurons. Icariin shows neuroprotective effects in 3 × Tg-AD mice and may be a promising multitarget drug in the prevention/protection against AD. © 2015 John Wiley & Sons Ltd.

  8. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  9. Brain Regulation of Energy Metabolism.

    PubMed

    Roh, Eun; Kim, Min Seon

    2016-12-01

    In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance.

  10. Brain Regulation of Energy Metabolism

    PubMed Central

    2016-01-01

    In healthy individuals, energy intake is in balance with energy expenditure, which helps to maintain a normal body weight. The brain's inability to control energy homeostasis underlies the pathology of hyperphagia and obesity. The brain detects body energy excess and deficit by sensing the levels of circulating metabolic hormones and nutrients and by receiving metabolic information from the periphery via the autonomic nervous system. A specialized neuronal network coordinates energy intake behavior and the metabolic processes affecting energy expenditure. Here, we briefly review neuronal mechanisms by which our body maintains energy balance. PMID:28029023

  11. Metabolism and functions of copper in brain.

    PubMed

    Scheiber, Ivo F; Mercer, Julian F B; Dringen, Ralf

    2014-05-01

    Copper is an important trace element that is required for essential enzymes. However, due to its redox activity, copper can also lead to the generation of toxic reactive oxygen species. Therefore, cellular uptake, storage as well as export of copper have to be tightly regulated in order to guarantee sufficient copper supply for the synthesis of copper-containing enzymes but also to prevent copper-induced oxidative stress. In brain, copper is of importance for normal development. In addition, both copper deficiency as well as excess of copper can seriously affect brain functions. Therefore, this organ possesses ample mechanisms to regulate its copper metabolism. In brain, astrocytes are considered as important regulators of copper homeostasis. Impairments of homeostatic mechanisms in brain copper metabolism have been associated with neurodegeneration in human disorders such as Menkes disease, Wilson's disease and Alzheimer's disease. This review article will summarize the biological functions of copper in the brain and will describe the current knowledge on the mechanisms involved in copper transport, storage and export of brain cells. The role of copper in diseases that have been connected with disturbances in brain copper homeostasis will also be discussed.

  12. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease

    PubMed Central

    Villain, Nicolas; Fouquet, Marine; Baron, Jean-Claude; Mézenge, Florence; Landeau, Brigitte; De La Sayette, Vincent; Viader, Fausto; Eustache, Francis; Desgranges, Béatrice; Chételat, Gaël

    2010-01-01

    Hippocampal atrophy, posterior cingulate and frontal glucose hypometabolism, and white-matter tract disruption are well-described early macroscopic events in Alzheimer’s disease. The relationships between these three types of alterations have been documented in previous studies, but their chronology still remains to be established. The present study used multi-modal Fluorodeoxyglucose - Positron Emission Tomography and Magnetic Resonance Imaging longitudinal data to address this question in patients with amnestic Mild Cognitive Impairment. We found unidirectional, specific sequential relationships between: i) baseline hippocampal atrophy and both cingulum bundle (r=0.70; p=3.10−3) and uncinate fasciculus (r=0.75; p=7.10−4) rate of atrophy; ii) baseline cingulum bundle atrophy and rate of decline of posterior (r=0.72; p=2.10−3) and anterior (r=0.74; p=1.10−3) cingulate metabolism; and iii) baseline uncinate white matter atrophy and subgenual metabolism rate of change (r=0.65; p=6.10−3). Baseline local grey matter atrophy was not found to contribute to hypometabolism progression within the posterior and anterior cingulate as well as subgenual cortices. These findings suggest that hippocampal atrophy progressively leads to disruption of the cingulum bundle and uncinate fasciculus, which in turn leads to glucose hypometabolism of the cingulate and subgenual cortices, respectively. This study reinforces the relevance of remote mechanisms above local interactions to account for the patterns of brain alteration observed in amnestic Mild Cognitive Impairment, and provides new avenues to assess the sequence of events in complex diseases characterized by multiple manifestations. PMID:20688814

  13. Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice.

    PubMed

    Sorolla, M Alba; Rodríguez-Colman, María José; Vall-Llaura, Núria; Vived, Celia; Fernández-Nogales, Marta; Lucas, José J; Ferrer, Isidre; Cabiscol, Elisa

    2016-06-01

    Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent.

  14. Characterization of hepatic and brain metabolism in young adults with glycogen storage disease type 1: a magnetic resonance spectroscopy study.

    PubMed

    Weghuber, D; Mandl, M; Krssák, M; Roden, M; Nowotny, P; Brehm, A; Krebs, M; Widhalm, K; Bischof, M G

    2007-11-01

    In glycogen storage disease type 1 (GSD1), children present with severe hypoglycemia, whereas the propensity for hypoglycemia may decrease with age in these patients. It was the aim of this study to elucidate the mechanisms for milder hypoglycemia symptoms in young adult GSD1 patients. Four patients with GSD1 [body mass index (BMI) 23.2 +/- 6.3 kg/m, age 21.3 +/- 2.9 yr] and four healthy controls matched for BMI (23.1 +/- 3.0 kg/m) and age (24.0 +/- 3.1 yr) were studied. Combined (1)H/(31)P nuclear magnetic resonance spectroscopy (NMRS) was used to assess brain metabolism. Before and after administration of 1 mg glucagon, endogenous glucose production (EGP) was measured with d-[6,6-(2)H(2)]glucose and hepatic glucose metabolism was examined by (1)H/(13)C/(31)P NMRS. At baseline, GSD1 patients exhibited significantly lower rates of EGP (0.53 +/- 0.04 vs. 1.74 +/- 0.03 mg.kg(-1).min(-1); P < 0.01) but an increased intrahepatic glycogen (502 +/- 89 vs. 236 +/- 11 mmol/l; P = 0.05) and lipid content (16.3 +/- 1.1 vs. 1.4 +/- 0.4%; P < 0.001). After glucagon challenge, EGP did not change in GSD1 patients (0.53 +/- 0.04 vs. 0.59 +/- 0.24 mg.kg(-1).min(-1); P = not significant) but increased in healthy controls (1.74 +/- 0.03 vs. 3.95 +/- 1.34; P < 0.0001). In GSD1 patients, we found an exaggerated increase of intrahepatic phosphomonoesters (0.23 +/- 0.08 vs. 0.86 +/- 0.19 arbitrary units; P < 0.001), whereas inorganic phosphate decreased (0.36 +/- 0.08 vs. -0.43 +/- 0.17 arbitrary units; P < 0.01). Intracerebral ratios of glucose and lactate to creatine were higher in GSD1 patients (P < 0.05 vs. control). Therefore, hepatic defects of glucose metabolism persist in young adult GSD1 patients. Upregulation of the glucose and lactate transport at the blood-brain barrier could be responsible for the amelioration of hypoglycemic symptoms.

  15. Cholesterol metabolism in Huntington disease.

    PubMed

    Karasinska, Joanna M; Hayden, Michael R

    2011-09-06

    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  16. Metabolic drift in the aging brain

    PubMed Central

    Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary

    2016-01-01

    Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841

  17. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease.

    PubMed

    Meek, Stephen; Thomson, Alison J; Sutherland, Linda; Sharp, Matthew G F; Thomson, Julie; Bishop, Valerie; Meddle, Simone L; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K; Gill, Andrew C; Burdon, Tom

    2016-05-17

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour.

  18. Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease

    PubMed Central

    Meek, Stephen; Thomson, Alison J.; Sutherland, Linda; Sharp, Matthew G. F.; Thomson, Julie; Bishop, Valerie; Meddle, Simone L.; Gloaguen, Yoann; Weidt, Stefan; Singh-Dolt, Karamjit; Buehr, Mia; Brown, Helen K.; Gill, Andrew C.; Burdon, Tom

    2016-01-01

    Lesch-Nyhan disease (LND) is a severe neurological disorder caused by loss-of-function mutations in the gene encoding hypoxanthine phosphoribosyltransferase (HPRT), an enzyme required for efficient recycling of purine nucleotides. Although this biochemical defect reconfigures purine metabolism and leads to elevated levels of the breakdown product urea, it remains unclear exactly how loss of HPRT activity disrupts brain function. As the rat is the preferred rodent experimental model for studying neurobiology and diseases of the brain, we used genetically-modified embryonic stem cells to generate an HPRT knock-out rat. Male HPRT-deficient rats were viable, fertile and displayed normal caged behaviour. However, metabolomic analysis revealed changes in brain biochemistry consistent with disruption of purine recycling and nucleotide metabolism. Broader changes in brain biochemistry were also indicated by increased levels of the core metabolite citrate and reduced levels of lipids and fatty acids. Targeted MS/MS analysis identified reduced levels of dopamine in the brains of HPRT-deficient animals, consistent with deficits noted previously in human LND patients and HPRT knock-out mice. The HPRT-deficient rat therefore provides a new experimental platform for future investigation of how HPRT activity and disruption of purine metabolism affects neural function and behaviour. PMID:27185277

  19. Metabolic Imaging in Parkinson Disease.

    PubMed

    Meles, Sanne K; Teune, Laura K; de Jong, Bauke M; Dierckx, Rudi A; Leenders, Klaus L

    2017-01-01

    This review focuses on recent human (18)F-FDG PET studies in Parkinson disease. First, an overview is given of the current analytic approaches to metabolic brain imaging data. Next, we discuss how (18)F-FDG PET studies have advanced understanding of the relation between distinct brain regions and associated symptoms in Parkinson disease, including cognitive decline. In addition, the value of (18)F-FDG PET studies in differential diagnosis, identifying prodromal patients, and the evaluation of treatment effects are reviewed. Finally, anticipated developments in the field are addressed. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. UCB Transplant of Inherited Metabolic Diseases With Administration of Intrathecal UCB Derived Oligodendrocyte-Like Cells

    ClinicalTrials.gov

    2017-04-03

    Adrenoleukodystrophy; Batten Disease; Mucopolysaccharidosis II; Leukodystrophy, Globoid Cell; Leukodystrophy, Metachromatic; Neimann Pick Disease; Pelizaeus-Merzbacher Disease; Sandhoff Disease; Tay-Sachs Disease; Brain Diseases, Metabolic, Inborn

  1. Monoamine metabolism in human brain.

    PubMed

    Robinson, D S; Sourkes, T L; Nies, A; Harris, L S; Spector, S; Bartlett, D L; Kaye, I S

    1977-01-01

    Norepinephrine (NE), dopamine (DA), tyrosine hydroxylase (TH), catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) levels were measured in human brain tissue obtained at autopsy from a series of 39 patients dying of various medical and accidental causes. The nine following brain areas were studied: globus pallidus, thalamus, hypothalamus, hippocampus, substantia nigra, floor of the fourth ventricle, orbital cortex, caudate nucleus, and mammillary bodies. Enzyme activity correlated positively with age in all brain areas for MAO (with both benzylamine and tryptamine substrates) but no consistent pattern of correlation was found for COMT and TH. Mean MAO activity was significantly higher in women than men. There is increased brain MAO activity during late childhood and adolescence. These data are consistent with previous evidence suggesting that age and sex are important determinants of amine metabolism in the human central nervous system.

  2. [The Idiopathic Parkinson's disease: A metabolic disease?].

    PubMed

    Rieu, I; Boirie, Y; Morio, B; Derost, P; Ulla, M; Marques, A; Debilly, B; Bannier, S; Durif, F

    2010-10-01

    Parkinson's disease is a neurodegenerative disorder clinically characterized by motor impairments (tremor, bradykinesia, rigidity and postural instability) associated or not with non-motor complications (cognitive disorders, dysautonomia). Most of patients loose weight during evolution of their disease. Dysregulations of hypothalamus, which is considered as the regulatory center of satiety and energy metabolism, could play a major role in this phenomenon. Deep brain stimulation of the subthalamic nucleus (NST) is an effective method to treat patients with advanced Parkinson's disease providing marked improvement of motor impairments. This chirurgical procedure also induces a rapid and strong body weight gain and sometimes obesity. This post-operative weight gain, which exceeds largely weight lost recorded in non-operated patient, could be responsible of metabolic disorders (such as diabetes) and cardiovascular diseases. This review describes body weight variations generated by Parkinson' disease and deep brain stimulation of the NST, and focuses on metabolic disorders capable to explain them. Finally, this review emphasizes on the importance of an adequate nutritional follow up care for parkinsonian patient.

  3. Elevation of brain glucose and polyol-pathway intermediates with accompanying brain-copper deficiency in patients with Alzheimer’s disease: metabolic basis for dementia

    PubMed Central

    Xu, Jingshu; Begley, Paul; Church, Stephanie J.; Patassini, Stefano; McHarg, Selina; Kureishy, Nina; Hollywood, Katherine A.; Waldvogel, Henry J.; Liu, Hong; Zhang, Shaoping; Lin, Wanchang; Herholz, Karl; Turner, Clinton; Synek, Beth J.; Curtis, Maurice A.; Rivers-Auty, Jack; Lawrence, Catherine B.; Kellett, Katherine A. B.; Hooper, Nigel M.; Vardy, Emma R. L. C.; Wu, Donghai; Unwin, Richard D.; Faull, Richard L. M.; Dowsey, Andrew W.; Cooper, Garth J. S.

    2016-01-01

    Impairment of brain-glucose uptake and brain-copper regulation occurs in Alzheimer’s disease (AD). Here we sought to further elucidate the processes that cause neurodegeneration in AD by measuring levels of metabolites and metals in brain regions that undergo different degrees of damage. We employed mass spectrometry (MS) to measure metabolites and metals in seven post-mortem brain regions of nine AD patients and nine controls, and plasma-glucose and plasma-copper levels in an ante-mortem case-control study. Glucose, sorbitol and fructose were markedly elevated in all AD brain regions, whereas copper was correspondingly deficient throughout (all P < 0.0001). In the ante-mortem case-control study, by contrast, plasma-glucose and plasma-copper levels did not differ between patients and controls. There were pervasive defects in regulation of glucose and copper in AD brain but no evidence for corresponding systemic abnormalities in plasma. Elevation of brain glucose and deficient brain copper potentially contribute to the pathogenesis of neurodegeneration in AD. PMID:27276998

  4. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis

    PubMed Central

    Im, Hyung-Jun; Hahm, Jarang; Kang, Hyejin; Choi, Hongyoon; Lee, Hyekyoung; Hwang, Do Won; Kim, E. Edmund; Chung, June-Key; Lee, Dong Soo

    2016-01-01

    Movement impairments in Parkinson’s disease (PD) are caused by the degeneration of dopaminergic neurons and the consequent disruption of connectivity in the cortico-striatal-thalamic loop. This study evaluated brain metabolic connectivity in a 6-Hydroxydopamine (6-OHDA)-induced mouse model of PD using 18F-fluorodeoxy glucose positron emission tomography (FDG PET). Fourteen PD-model mice and ten control mice were used for the analysis. Voxel-wise t-tests on FDG PET results yielded no significant regional metabolic differences between the PD and control groups. However, the PD group showed lower correlations between the right caudoputamen and the left caudoputamen and right visual cortex. Further network analyses based on the threshold-free persistent homology framework revealed that brain networks were globally disrupted in the PD group, especially between the right auditory cortex and bilateral cortical structures and the left caudoputamen. In conclusion, regional glucose metabolism of PD was preserved, but the metabolic connectivity of the cortico-striatal-thalamic loop was globally impaired in PD. PMID:27650055

  5. Ketone body metabolism and cardiovascular disease

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.

    2013-01-01

    Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states. PMID:23396451

  6. Aquaporin and brain diseases.

    PubMed

    Badaut, Jérôme; Fukuda, Andrew M; Jullienne, Amandine; Petry, Klaus G

    2014-05-01

    The presence of water channel proteins, aquaporins (AQPs), in the brain led to intense research in understanding the underlying roles of each of them under normal conditions and pathological conditions. In this review, we summarize some of the recent knowledge on the 3 main AQPs (AQP1, AQP4 and AQP9), with a special focus on AQP4, the most abundant AQP in the central nervous system. AQP4 was most studied in several brain pathological conditions ranging from acute brain injuries (stroke, traumatic brain injury) to the chronic brain disease with autoimmune neurodegenerative diseases. To date, no specific therapeutic agents have been developed to either inhibit or enhance water flux through these channels. However, experimental results strongly underline the importance of this topic for future investigation. Early inhibition of water channels may have positive effects in prevention of edema formation in brain injuries but at later time points during the course of a disease, AQP is critical for clearance of water from the brain into blood vessels. Thus, AQPs, and in particular AQP4, have important roles both in the formation and resolution of edema after brain injury. The dual, complex function of these water channel proteins makes them an excellent therapeutic target. This article is part of a Special Issue entitled Aquaporins. © 2013.

  7. Diseases of Phenylalanine Metabolism

    PubMed Central

    Parker, Charles E.

    1979-01-01

    Continuing investigation of the system that hydroxylates phenylalanine to tyrosine has led to new insights into diseases associated with the malfunction of this system. Good evidence has confirmed that phenylketonuria (PKU) is not caused by a simple lack of phenylalanine hydroxylase. Dihydropteridine reductase deficiency as well as defects in biopterin metabolism may also cause the clinical features of phenylketonuria. Furthermore, these diseases do not respond to the standard treatment for phenylketonuria. PMID:388868

  8. Sirtuins: from metabolic regulation to brain aging

    PubMed Central

    Duan, Wenzhen

    2013-01-01

    Brain aging is characterized by progressive loss of neurophysiological functions that is often accompanied by age-associated neurodegeneration. Calorie restriction has been linked to extension of lifespan and reduction of the risk of neurodegenerative diseases in experimental model systems. Several signaling pathways have been indicated to underlie the beneficial effects of calorie restriction, among which the sirtuin family has been suggested to play a central role. In mammals, it has been established that sirtuins regulate physiological responses to metabolism and stress, two key factors that affect the process of aging. Sirtuins represent a promising new class of conserved deacetylases that play an important role in regulating metabolism and aging. This review focuses on current understanding of the relation between metabolic pathways involving sirtuins and the brain aging process, with focus on SIRT1 and SIRT3. Identification of therapeutic agents capable of modulating the expression and/or activity of sirtuins is expected to provide promising strategies for ameliorating neurodegeneration. Future investigations regarding the concerted interplay of the different sirtuins will help us understand more about the aging process, and potentially lead to the development of therapeutic approaches for the treatment of age-related neurodegenerative diseases and promotion of successful aging. PMID:23888142

  9. Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of Huntington's Disease: A Targeted GC-MS/MS Sterol Analysis.

    PubMed

    Kreilaus, Fabian; Spiro, Adena S; Hannan, Anthony J; Garner, Brett; Jenner, Andrew M

    2015-01-01

    Cholesterol has essential functions in neurological processes that require tight regulation of synthesis and metabolism. Perturbed cholesterol homeostasis has been demonstrated in Huntington's disease, however the exact role of these changes in disease pathogenesis is not fully understood. This study aimed to comprehensively examine changes in cholesterol biosynthetic precursors, metabolites and oxidation products in the striatum and cortex of the R6/1 transgenic mouse model of Huntington's disease. We also aimed to characterise the progression of the physical phenotype in these mice. GC-MS/MS was used to quantify a broad range of sterols in the striatum and cortex of R6/1 and wild type mice at 6, 12, 20, 24 and 28 weeks of age. Motor dysfunction was assessed over 28 weeks using the RotaRod and the hind-paw clasping tests. 24(S)-Hydroxycholesterol and 27-hydroxycholesterol were the major cholesterol metabolites that significantly changed in R6/1 mice. These changes were specifically localised to the striatum and were detected at the end stages of the disease. Cholesterol synthetic precursors (lathosterol and lanosterol) were significantly reduced in the cortex and striatum by 6 weeks of age, prior to the onset of motor dysfunction, as well as the cognitive and affective abnormalities previously reported. Elevated levels of desmosterol, a substrate of delta(24)-sterol reductase (DHCR24), were also detected in R6/1 mice at the end time-point. Female R6/1 mice exhibited a milder weight loss and hind paw clasping phenotype compared to male R6/1 mice, however, no difference in the brain sterol profile was detected between sexes. Several steps in cholesterol biosynthetic and metabolic pathways are differentially altered in the R6/1 mouse brain as the disease progresses and this is most severe in the striatum. This provides further insights into early molecular mediators of HD onset and disease progression and identifies candidate molecular targets for novel therapeutic

  10. Metabolic signatures of Huntington's disease (HD): (1)H NMR analysis of the polar metabolome in post-mortem human brain.

    PubMed

    Graham, Stewart F; Kumar, Praveen K; Bjorndahl, Trent; Han, BeomSoo; Yilmaz, Ali; Sherman, Eric; Bahado-Singh, Ray O; Wishart, David; Mann, David; Green, Brian D

    2016-09-01

    Huntington's disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using (1)H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (p<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (p<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and l-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (p=0.02-0.03). They also included l-leucine which was reduced 1.54-1.69-fold (p=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (p<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first (1)H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Altered brain arginine metabolism in schizophrenia

    PubMed Central

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  12. Socially responsive effects of brain oxidative metabolism on aggression

    PubMed Central

    Li-Byarlay, Hongmei; Rittschof, Clare C.; Massey, Jonathan H.; Pittendrigh, Barry R.; Robinson, Gene E.

    2014-01-01

    Despite ongoing high energetic demands, brains do not always use glucose and oxygen in a ratio that produces maximal ATP through oxidative phosphorylation. In some cases glucose consumption exceeds oxygen use despite adequate oxygen availability, a phenomenon known as aerobic glycolysis. Although metabolic plasticity seems essential for normal cognition, studying its functional significance has been challenging because few experimental systems link brain metabolic patterns to distinct behavioral states. Our recent transcriptomic analysis established a correlation between aggression and decreased whole-brain oxidative phosphorylation activity in the honey bee (Apis mellifera), suggesting that brain metabolic plasticity may modulate this naturally occurring behavior. Here we demonstrate that the relationship between brain metabolism and aggression is causal, conserved over evolutionary time, cell type-specific, and modulated by the social environment. Pharmacologically treating honey bees to inhibit complexes I or V in the oxidative phosphorylation pathway resulted in increased aggression. In addition, transgenic RNAi lines and genetic manipulation to knock down gene expression in complex I in fruit fly (Drosophila melanogaster) neurons resulted in increased aggression, but knockdown in glia had no effect. Finally, honey bee colony-level social manipulations that decrease individual aggression attenuated the effects of oxidative phosphorylation inhibition on aggression, demonstrating a specific effect of the social environment on brain function. Because decreased neuronal oxidative phosphorylation is usually associated with brain disease, these findings provide a powerful context for understanding brain metabolic plasticity and naturally occurring behavioral plasticity. PMID:25092297

  13. The Effects of Conditions of Cerebral Anoxia, on Phospholipids, Metabolism, and Circulation of the Brain.

    DTIC Science & Technology

    Anoxia, *Phospholipids, Blood circulation, Pathology, Blood plasma , Erythrocytes, Patients, Metabolism, Blood chemistry, Brain, Experimental data, Dogs, Laboratory animals, Tables(Data), Blood diseases

  14. Brain Imaging in Alzheimer Disease

    PubMed Central

    Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.

    2012-01-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610

  15. Brain imaging in Alzheimer disease.

    PubMed

    Johnson, Keith A; Fox, Nick C; Sperling, Reisa A; Klunk, William E

    2012-04-01

    Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies.

  16. [Metabolic bone diseases].

    PubMed

    Jakob, F

    2007-10-01

    Osteomalacia is caused by impaired vitamin D receptor (VDR) signaling, calcium deficiency, and altered bone mineralization. This can be due to insufficient sunlight exposure, malabsorption, reduced D hormone activation in chronic kidney disease, and rare alterations of VDR signaling and phosphate metabolism. Leading symptoms are bone pain, muscular cramps, and increased incidence of falls in the elderly. The adequate respective countermeasures are to optimize the daily intake of calcium and vitamin D3 and to replace active D hormone and phosphate if deficient. Osteoporosis is characterized by bone fragility fractures upon minor physical impact. Indications for diagnosis and treatment can be established by estimating the absolute fracture risk, taking into account bone mineral density, age, gender, and individual risk factors. Exercise, intervention programs to avoid falls, and specific drugs are capable of substantially reducing fracture risk even in the elderly. Secondary osteoporosis primarily requires both bone-altering medications and effective treatment of underlying diseases.

  17. The impact of peripheral serotonin on leptin-brain serotonin axis, bone metabolism and strength in growing rats with experimental chronic kidney disease.

    PubMed

    Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna

    2017-08-07

    Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cerebral metabolic adaptation and ketone metabolism after brain injury.

    PubMed

    Prins, Mayumi L

    2008-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the 'post-weaned/adult' brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain's capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation.

  19. Regional metabolic alteration of Alzheimer's disease in mouse brain expressing mutant human APP-PS1 by 1H HR-MAS.

    PubMed

    Woo, Dong-Cheol; Lee, Sung-Ho; Lee, Do-Wan; Kim, Sang-Young; Kim, Goo-Young; Rhim, Hyang-Shuk; Choi, Chi-Bong; Kim, Hwi-Yool; Lee, Chang-Uk; Choe, Bo-Young

    2010-07-29

    This study aimed to find the most sensitive brain region of APP-PS1 mice in early-stage Alzheimer's disease (AD) and to compare the findings with wild-type mouse brain using (1)H high resolution magic angle spectroscopy (HR-MAS). At 18 and 35 weeks of age, the object recognition test was performed with both APP-PS1 and wild-type mice, and the metabolite concentrations were measured in six brain regions at 38-42 weeks using (1)H HR-MAS. Compared to that of wild-type mice, the memory index of the APP-PS1 mice at 18 weeks was not significantly different; however, the memory index of the APP-PS1 mice at 35 weeks was significantly lower. Similar to the results of the (1)H HR-MAS, the [N-acetyl aspartate (NAA)+acetate (Acet)] level in APP-PS1 mice was decreased in the hippocampus and temporal cortex, and the myo-inositol (mIns) level was increased in the entire brain. In addition, scyllo-inositol (sIns) was also elevated in the frontal, occipital, and parietal cortices, hippocampus and thalamus. These findings demonstrated that the behavioral abnormalities of the APP-PS1 mice started at about 30 weeks of age and that the hippocampus and temporal cortex were the most sensitive regions during early-stage AD. In addition, the results of this study confirmed that an increase of mIns and sIns precedes the reduction of the NAA level. These findings demonstrated that the metabolism of the APP-PS1 mouse was associated with early-stage AD. Furthermore, the regional neurochemical profile of APP-PS1 mouse can be used to investigate the pathophysiological mechanisms associated with AD.

  20. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.

    PubMed

    Bélanger, Mireille; Allaman, Igor; Magistretti, Pierre J

    2011-12-07

    The energy requirements of the brain are very high, and tight regulatory mechanisms operate to ensure adequate spatial and temporal delivery of energy substrates in register with neuronal activity. Astrocytes-a type of glial cell-have emerged as active players in brain energy delivery, production, utilization, and storage. Our understanding of neuroenergetics is rapidly evolving from a "neurocentric" view to a more integrated picture involving an intense cooperativity between astrocytes and neurons. This review focuses on the cellular aspects of brain energy metabolism, with a particular emphasis on the metabolic interactions between neurons and astrocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cerebral metabolic adaptation and ketone metabolism after brain injury

    PubMed Central

    Prins, Mayumi L

    2010-01-01

    The developing central nervous system has the capacity to metabolize ketone bodies. It was once accepted that on weaning, the ‘post-weaned/adult’ brain was limited solely to glucose metabolism. However, increasing evidence from conditions of inadequate glucose availability or increased energy demands has shown that the adult brain is not static in its fuel options. The objective of this review is to summarize the body of literature specifically regarding cerebral ketone metabolism at different ages, under conditions of starvation and after various pathologic conditions. The evidence presented supports the following findings: (1) there is an inverse relationship between age and the brain’s capacity for ketone metabolism that continues well after weaning; (2) neuroprotective potentials of ketone administration have been shown for neurodegenerative conditions, epilepsy, hypoxia/ischemia, and traumatic brain injury; and (3) there is an age-related therapeutic potential for ketone as an alternative substrate. The concept of cerebral metabolic adaptation under various physiologic and pathologic conditions is not new, but it has taken the contribution of numerous studies over many years to break the previously accepted dogma of cerebral metabolism. Our emerging understanding of cerebral metabolism is far more complex than could have been imagined. It is clear that in addition to glucose, other substrates must be considered along with fuel interactions, metabolic challenges, and cerebral maturation. PMID:17684514

  2. ¹H- and ¹³C-NMR spectroscopy of Thy-1-APPSL mice brain extracts indicates metabolic changes in Alzheimer's disease.

    PubMed

    Doert, A; Pilatus, U; Zanella, F; Müller, W E; Eckert, G P

    2015-04-01

    Biochemical alterations underlying the symptoms and pathomechanisms of Alzheimer's disease (AD) are not fully understood. However, alterations of glucose metabolism and mitochondrial dysfunction certainly play an important role. (1)H- and (13)C-NMR spectroscopy exhibits promising results in providing information about those alterations in vivo in patients and animals, especially regarding the mitochondrial tricarboxylic acid (TCA) cycle. Accordingly, transgenic mice expressing mutant human amyloid precursor protein (APP(SL))-serving as a model of neuropathological changes in AD-were examined with in vitro 1D (1)H- and 2D (1)H-(13)C-HSQC-NMR spectroscopy after oral administration of 1-(13)C-glucose and acquisition of brain material after 30 min. Perchloric acid extracts were measured using a 500 MHz spectrometer, providing more detailed information compared to in vivo spectra achievable nowadays. Area under curve (AUC) data of metabolite peaks were obtained and normalized in relation to the creatine signal, serving as internal reference. Besides confirming well-known metabolic alterations in AD like decreased N-acetylaspartate (NAA)/Creatine (Cr) ratio, new findings such as a decrease in phosphorylcholine (PC) are presented. Glutamate (Glu) and glutamine (Gln) concentrations were decreased while γ-aminobutyric acid (GABA) was elevated in Thy1-APP(SL) mice. (13)C-NMR spectroscopy revealed a shift in the Glx-2/Glx-4-ratio-where Glx represents a combined Glu/Gln-signal-towards Glx-2 in AD. These findings correlated well with the NAA/Cr-ratio. The Gln-4/Glu-4-ratio is altered in favor of Glu. Our findings suggest that glutamine synthetase (GS), which is predominantly present in glial cells may be impaired in the brain of Thy1-APP(SL) transgenic mice. Since GS is an ATP-dependent enzyme, mitochondrial dysfunction might contribute to reduced activity, which might also account for the increased metabolism of glutamate via the GABA shunt, a metabolic pathway to bypass

  3. Nuclear Receptors: Decoding Metabolic Disease

    PubMed Central

    Sonoda, Junichiro; Pei, Liming; Evans, Ronald M.

    2008-01-01

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that regulate development, reproduction, and metabolism of lipids, drugs and energy. The importance of this family of proteins in metabolic disease is exemplified by NR ligands used in the clinic or under exploratory development for the treatment of diabetes mellitus, dyslipidemia, hypercholesterolemia, or other metabolic abnormalities. Genetic studies in humans and rodents support the notion that NRs control a wide variety of metabolic processes by regulating the expression of genes encoding key enzymes, transporters and other proteins involved in metabolic homeostasis. Current knowledge of complex NR metabolic networks is summarized here. PMID:18023286

  4. Human ApoE Isoforms Differentially Modulate Glucose and Amyloid Metabolic Pathways in Female Brain: Evidence of the Mechanism of Neuroprotection by ApoE2 and Implications for Alzheimer's Disease Prevention and Early Intervention.

    PubMed

    Keeney, Jeriel Thomas-Richard; Ibrahimi, Shaher; Zhao, Liqin

    2015-01-01

    Three major genetic isoforms of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4, exist in humans and lead to differences in susceptibility to Alzheimer's disease (AD). This study investigated the impact of human ApoE isoforms on brain metabolic pathways involved in glucose utilization and amyloid-β (Aβ) degradation, two major areas that are significantly perturbed in preclinical AD. Hippocampal RNA samples from middle-aged female mice with targeted human ApoE2, ApoE3, and ApoE4 gene replacement were comparatively analyzed with a qRT-PCR custom array for the expression of 85 genes involved in insulin/insulin-like growth factor (Igf) signaling. Consistent with its protective role against AD, ApoE2 brain exhibited the most metabolically robust profile among the three ApoE genotypes. When compared to ApoE2 brain, both ApoE3 and ApoE4 brains exhibited markedly reduced levels of Igf1, insulin receptor substrates (Irs), and facilitated glucose transporter 4 (Glut4), indicating reduced glucose uptake. Additionally, ApoE4 brain exhibited significantly decreased Pparg and insulin-degrading enzyme (Ide), indicating further compromised glucose metabolism and Aβ dysregulation associated with ApoE4. Protein analysis showed significantly decreased Igf1, Irs, and Glut4 in ApoE3 brain, and Igf1, Irs, Glut4, Pparg, and Ide in ApoE4 brain compared to ApoE2 brain. These data provide the first documented evidence that human ApoE isoforms differentially affect brain insulin/Igf signaling and downstream glucose and amyloid metabolic pathways, illustrating a potential mechanism for their differential risk in AD. A therapeutic strategy that enhances brain insulin/Igf1 signaling activity to a more robust ApoE2-like phenotype favoring both energy production and amyloid homeostasis holds promise for AD prevention and early intervention.

  5. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  6. Specific regions of the brain are capable of fructose metabolism.

    PubMed

    Oppelt, Sarah A; Zhang, Wanming; Tolan, Dean R

    2017-02-15

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and non-alcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5-10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15-150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production.

  7. Diet-Induced Metabolic Disturbances As Modulators of Brain Homeostasis

    PubMed Central

    Zhang, Le; Bruce-Keller, Annadora J.; Dasuri, Kalavathi; Nguyen, AnhThao; Liu, Dr Ying; Keller, Jeffrey N.

    2009-01-01

    A number of metabolic disturbances occur in response to the consumption of a high fat Western diet. Such metabolic disturbances can include the progressive development of hyperglycemia, hyperinsulemia, obesity, metabolic syndrome, and diabetes. Cumulatively, diet-induced disturbance in metabolism are known to promote increased morbidity and negatively impact life expectancy through a variety of mechanisms. While the impact of metabolic disturbances on the hepatic, endocrine, and cardiovascular systems are well established there remains a noticeable void in understanding the basis by which the central nervous system (CNS) becomes altered in response to diet-induced metabolic dysfunction. In particular, it remains to be fully elucidated which established features of diet-induced pathogenesis (observed in non-CNS tissues) are recapitulated in the brain, and identification as to whether the observed changes in the brain are a direct or indirect effect of peripheral metabolic disturbances. This review will focus on each of these key issues and identify some critical experimental questions which remain to be elucidated experimentally, as well as provide an outline of our current understanding for how diet-induced alterations in metabolism may impact the brain during aging and age-related diseases of the nervous system. PMID:18926905

  8. Evaluation of blood-brain barrier transport and CNS drug metabolism in diseased and control brain after intravenous L-DOPA in a unilateral rat model of Parkinson's disease

    PubMed Central

    2012-01-01

    Background Changes in blood-brain barrier (BBB) functionality have been implicated in Parkinson's disease. This study aimed to investigate BBB transport of L-DOPA transport in conjunction with its intra-brain conversion, in both control and diseased cerebral hemispheres in the unilateral rat rotenone model of Parkinson's disease. Methods In Lewis rats, at 14 days after unilateral infusion of rotenone into the medial forebrain bundle, L-DOPA was administered intravenously (10, 25 or 50 mg/kg). Serial blood samples and brain striatal microdialysates were analysed for L-DOPA, and the dopamine metabolites DOPAC and HVA. Ex-vivo brain tissue was analyzed for changes in tyrosine hydroxylase staining as a biomarker for Parkinson's disease severity. Data were analysed by population pharmacokinetic analysis (NONMEM) to compare BBB transport of L-DOPA in conjunction with the conversion of L-DOPA into DOPAC and HVA, in control and diseased cerebral hemisphere. Results Plasma pharmacokinetics of L-DOPA could be described by a 3-compartmental model. In rotenone responders (71%), no difference in L-DOPA BBB transport was found between diseased and control cerebral hemisphere. However, in the diseased compared with the control side, basal microdialysate levels of DOPAC and HVA were substantially lower, whereas following L-DOPA administration their elimination rates were higher. Conclusions Parkinson's disease-like pathology, indicated by a huge reduction of tyrosine hydroxylase as well as by substantially reduced levels and higher elimination rates of DOPAC and HVA, does not result in changes in BBB transport of L-DOPA. Taking the results of this study and that of previous ones, it can be concluded that changes in BBB functionality are not a specific characteristic of Parkinson's disease, and cannot account for the decreased benefit of L-DOPA at later stages of Parkinson's disease. PMID:22316420

  9. Patterns of Brain Injury in Inborn Errors of Metabolism

    PubMed Central

    Gropman, Andrea L.

    2013-01-01

    Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood–brain permeability and transport mechanisms in the etiology of these disorders will be discussed. PMID:23245553

  10. Compact energy metabolism model: brain controlled energy supply.

    PubMed

    Göbel, Britta; Langemann, Dirk; Oltmanns, Kerstin M; Chung, Matthias

    2010-06-21

    The regulation of the energy metabolism is crucial to ensure the functionality of the entire organism. Deregulations may lead to severe pathologies such as obesity and type 2 diabetes mellitus. The decisive role of the brain as the active controller and heavy consumer in the complex whole body energy metabolism is the matter of recent research. Latest studies suggest that the brain's energy supply has the highest priority while all organs in the organism compete for the available energy resources. In our novel mathematical model, we address these new findings. We integrate energy fluxes and their control signals such as glucose fluxes, insulin signals as well as the ingestion momentum in our new dynamical system. As a novel characteristic, the hormone insulin is regarded as central feedback signal of the brain. Hereby, our model particularly contains the competition for energy between brain and body periphery. The analytical investigation of the presented dynamical system shows a stable long-term behavior of the entire energy metabolism while short time observations demonstrate the typical oscillating blood glucose variations as a consequence of food intake. Our simulation results demonstrate a realistic behavior even in situations like exercise or exhaustion, and key elements like the brain's preeminence are reflected. The presented dynamical system is a step towards a systemic understanding of the human energy metabolism and thus may shed light to defects causing diseases based on deregulations in the energy metabolism. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Imbalanced cholesterol metabolism in Alzheimer's disease.

    PubMed

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu

    2016-05-01

    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  12. Diagnosis of metabolic bone disease

    SciTech Connect

    Grech, P.; Martin, T.J.; Barrington, N.A.; Ell, P.J.

    1986-01-01

    This book presents a reference on the radiologic evaluation, features, and differential diagnosis of metabolic diseases involving the whole skeleton, calcium deficiencies resulting from pharmacologic agents, and bone changes related to endocrine disturbances. It also stresses how radiology, nuclear medicine, and biochemistry - either alone or in concert - contribute to clinical diagnosis. It covers renal bone disease, Paget's disease, hyperphosphatasia, extraskeletal mineralization, metabolic bone disorders related to malnutrition, tumors, plus radionuclide studies including materials and methods.

  13. Brain glutamate metabolism during metabolic alkalosis and acidosis.

    PubMed

    Ang, R C; Hoop, B; Kazemi, H

    1992-12-01

    Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.

  14. Metabolic syndrome and eye diseases.

    PubMed

    Poh, Stanley; Mohamed Abdul, Riswana Banu Binte; Lamoureux, Ecosse L; Wong, Tien Y; Sabanayagam, Charumathi

    2016-03-01

    Metabolic syndrome is becoming a worldwide medical and public health challenge as it has been seen increasing in prevalence over the years. Age-related eye diseases, the leading cause of blindness globally and visual impairment in developed countries, are also on the rise due to aging of the population. Many of the individual components of the metabolic syndrome have been shown to be associated with these eye diseases. However, the association of metabolic syndrome with eye diseases is not clear. In this review, we reviewed the evidence for associations between metabolic syndrome and certain ocular diseases in populations. We also reviewed the association of individual metabolic syndrome components with ocular diseases due to a paucity of research in this area. Besides, we also summarised the current understanding of etiological mechanisms of how metabolic syndrome or the individual components lead to these ocular diseases. With increasing evidence of such associations, it may be important to identify patients who are at risk of developing metabolic syndrome as prompt treatment and intervention may potentially decrease the risk of developing certain ocular diseases.

  15. Phosphate Metabolism in Cardiorenal Metabolic Disease

    PubMed Central

    Gupta, Deepashree; Brietzke, Stephen; Hayden, M.R.; Kurukulasuriya, L. Romayne; Sowers, James R.

    2011-01-01

    Hyperphosphatemia is a major risk factor for cardiovascular disease, abnormalities of mineral metabolism and bone disease, and the progression of renal insufficiency in patients with chronic renal disease. In early renal disease, serum phosphate levels are maintained within the ‘normal laboratory range’ by compensatory increases in phosphaturic hormones such as fibroblast growth factor-23 (FGF-23). An important co-factor for FGF-23 is Klotho; a deficiency in Klotho plays an important role in the pathogenesis of hyperphosphatemia, renal tubulointerstitial disease, and parathyroid and bone abnormalities. Clinical hyperphosphatemia occurs when these phosphaturic mechanisms cannot counterbalance nephron loss. Hyperphosphatemia is associated with calcific uremic arteriolopathy and uremic cardiomyopathy, which may explain, in part, the epidemiologic connections between phosphate excess and cardiovascular disease. However, no clinical trials have been conducted to establish a causal relationship, and large, randomized trials with hard endpoints are urgently needed to prove or disprove the benefits and risks of therapy. In summary, hyperphosphatemia accelerates renal tubulointerstitial disease, renal osteodystrophy, as well as cardiovascular disease, and it is an important mortality risk factor in patients with chronic kidney disease. PMID:22096458

  16. [Metabolic bone and joint diseases].

    PubMed

    Endo, Itsuro

    2014-10-01

    Metabolic bone and joint diseases in adults include osteomalacia, rheumatoid arthritis, gouty arthritis. Recently, the newest molecular biology procedures and the clinical observation studies can produce good results for understanding of these diseases. From this perspective, the author introduced updated information of the pathophysiology, the latest diagnostic criteria and the therapy of these diseases.

  17. Lysophosphatidylinositol Signalling and Metabolic Diseases

    PubMed Central

    Arifin, Syamsul A.; Falasca, Marco

    2016-01-01

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis. PMID:26784247

  18. Lysophosphatidylinositol Signalling and Metabolic Diseases.

    PubMed

    Arifin, Syamsul A; Falasca, Marco

    2016-01-15

    Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.

  19. Feasibility of estimation of brain volume and 2-deoxy-2-(18)F-fluoro-D-glucose metabolism using a novel automated image analysis method: application in Alzheimer's disease.

    PubMed

    Musiek, Erik S; Saboury, Babak; Mishra, Shipra; Chen, Yufen; Reddin, Janet S; Newberg, Andrew B; Udupa, Jayaram K; Detre, John A; Hofheinz, Frank; Torigian, Drew; Alavi, Abass

    2012-01-01

    The development of clinically-applicable quantitative methods for the analysis of brain fluorine-18 fluoro desoxyglucose-positron emission tomography ((18)F-FDG-PET) images is a major area of research in many neurologic diseases, particularly Alzheimer's disease (AD). Region of interest visualization, evaluation, and image registration (ROVER) is a novel commercially-available software package which provides automated partial volume corrected measures of volume and glucose uptake from (18)F-FDG PET data. We performed a pilot study of ROVER analysis of brain (18)F-FDG PET images for the first time in a small cohort of patients with AD and controls. Brain (18)F-FDG-PET and volumetric magnetic resonance imaging (MRI) were performed on 14 AD patients and 18 age-matched controls. Images were subjected to ROVER analysis, and voxel-based analysis using SPM5. Volumes by ROVER were 35% lower than MRI volumes in AD patients (as hypometabolic regions were excluded in ROVER-derived volume measurement ) while average ROVER- and MRI-derived cortical volumes were nearly identical in control population. Whole brain volumes when ROVER-derived and whole brain metabolic volumetric products (MVP) were significantly lower in AD and accurately distinguished AD patients from controls (Area Under the Curve (AUC) of Receiver Operator Characteristic (ROC) curves 0.89 and 0.86, respectively). This diagnostic accuracy was similar to voxel-based analyses. Analysis by ROVER of (18)F-FDG-PET images provides a unique index of metabolically-active brain volume, and can accurately distinguish between AD patients and controls as a proof of concept. In conclusion, our findings suggest that ROVER may serve as a useful quantitative adjunct to visual or regional assessment and aid analysis of whole-brain metabolism in AD and other neurologic and psychiatric diseases.

  20. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  1. Mineral metabolism in heart disease.

    PubMed

    Heine, Gunnar H

    2015-07-01

    Strong experimental and clinical evidence points towards a substantial contribution of mineral metabolism disorders to the initiation and progression of cardiovascular disease. Vice versa, recent work suggests that cardiovascular disease may also cause mineral metabolism alterations. Experimental studies suggest that hyperphosphatemia, elevated plasma levels of phosphaturic hormones--parathyroid hormone and fibroblast growth factor-23 (FGF-23)--and hypovitaminosis D exert detrimental effects on vascular tissue and on the myocardium. Accordingly, in longitudinal clinical cohort studies, individuals with high plasma levels of phosphate, parathyroid hormone and FGF-23, and with low vitamin D levels, face worst cardiovascular prognosis.Notably, recent evidence suggests that cardiovascular disease may not only follow but also induce mineral metabolism disorders: severe derangements in mineral metabolism were observed in patients with acute heart failure, who face a tremendous increase in plasma FGF-23. Unfortunately, few prospective studies have been completed hitherto that specifically target components of the mineral metabolism for cardiovascular disease prevention or treatment. A bidirectional interaction exists between mineral metabolism disorders and cardiovascular disease. However, clinical evidence for a cardiovascular benefit of therapeutic interventions into mineral metabolism is outstanding.

  2. Inflammatory mechanisms linking obesity and metabolic disease.

    PubMed

    Saltiel, Alan R; Olefsky, Jerrold M

    2017-01-03

    There are currently over 1.9 billion people who are obese or overweight, leading to a rise in related health complications, including insulin resistance, type 2 diabetes, cardiovascular disease, liver disease, cancer, and neurodegeneration. The finding that obesity and metabolic disorder are accompanied by chronic low-grade inflammation has fundamentally changed our view of the underlying causes and progression of obesity and metabolic syndrome. We now know that an inflammatory program is activated early in adipose expansion and during chronic obesity, permanently skewing the immune system to a proinflammatory phenotype, and we are beginning to delineate the reciprocal influence of obesity and inflammation. Reviews in this series examine the activation of the innate and adaptive immune system in obesity; inflammation within diabetic islets, brain, liver, gut, and muscle; the role of inflammation in fibrosis and angiogenesis; the factors that contribute to the initiation of inflammation; and therapeutic approaches to modulate inflammation in the context of obesity and metabolic syndrome.

  3. Brain amino acid metabolism and ketosis.

    PubMed

    Yudkoff, M; Daikhin, Y; Nissim, I; Lazarow, A; Nissim, I

    2001-10-15

    The relationship between ketosis and brain amino acid metabolism was studied in mice that consumed a ketogenic diet (>90% of calories as lipid). After 3 days on the diet the blood concentration of 3-OH-butyrate was approximately 5 mmol/l (control = 0.06-0.1 mmol/l). In forebrain and cerebellum the concentration of 3-OH-butyrate was approximately 10-fold higher than control. Brain [citrate] and [lactate] were greater in the ketotic animals. The concentration of whole brain free coenzyme A was lower in ketotic mice. Brain [aspartate] was reduced in forebrain and cerebellum, but [glutamate] and [glutamine] were unchanged. When [(15)N]leucine was administered to follow N metabolism, this labeled amino acid accumulated to a greater extent in the blood and brain of ketotic mice. Total brain aspartate ((14)N + (15)N) was reduced in the ketotic group. The [(15)N]aspartate/[(15)N]glutamate ratio was lower in ketotic animals, consistent with a shift in the equilibrium of the aspartate aminotransferase reaction away from aspartate. Label in [(15)N]GABA and total [(15)N]GABA was increased in ketotic animals. When the ketotic animals were injected with glucose, there was a partial blunting of ketoacidemia within 40 min as well as an increase of brain [aspartate], which was similar to control. When [U-(13)C(6)]glucose was injected, the (13)C label appeared rapidly in brain lactate and in amino acids. Label in brain [U-(13)C(3)]lactate was greater in the ketotic group. The ratio of brain (13)C-amino acid/(13)C-lactate, which reflects the fraction of amino acid carbon that is derived from glucose, was much lower in ketosis, indicating that another carbon source, i.e., ketone bodies, were precursor to aspartate, glutamate, glutamine and GABA.

  4. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain.

    PubMed

    Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva

    2015-01-01

    Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues.

  5. Vitamin C in Health and Disease: Its Role in the Metabolism of Cells and Redox State in the Brain

    PubMed Central

    Figueroa-Méndez, Rodrigo; Rivas-Arancibia, Selva

    2015-01-01

    Ever since Linus Pauling published his studies, the effects of vitamin C have been surrounded by contradictory results. This may be because its effects depend on a number of factors such as the redox state of the body, the dose used, and also on the tissue metabolism. This review deals with vitamin C pharmacokinetics and its participation in neurophysiological processes, as well as its role in the maintenance of redox balance. The distribution and the concentration of vitamin C in the organs depend on the ascorbate requirements of each and on the tissue distribution of sodium-dependent vitamin C transporter 1 and 2 (SVCT1 and SVCT2). This determines the specific distribution pattern of vitamin C in the body. Vitamin C is involved in the physiology of the nervous system, including the support and the structure of the neurons, the processes of differentiation, maturation, and neuronal survival; the synthesis of catecholamine, and the modulation of neurotransmission. This antioxidant interacts with self-recycling mechanisms, including its participation in the endogenous antioxidant system. We conclude that the pharmacokinetic properties of ascorbate are related to the redox state and its functions and effects in tissues. PMID:26779027

  6. Uptake and metabolism of iron oxide nanoparticles in brain cells.

    PubMed

    Petters, Charlotte; Irrsack, Ellen; Koch, Michael; Dringen, Ralf

    2014-09-01

    Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

  7. Metabolic sensing in brain dopamine systems.

    PubMed

    de Araujo, Ivan E; Ren, Xueying; Ferreira, Jozélia G

    2010-01-01

    The gustatory system allows the brain to monitor the presence of chemicals in the oral cavity and initiate appropriate responses of acceptance or rejection. Among such chemicals are the nutrients that must be rapidly recognized and ingested for immediate oxidation or storage. In the periphery, the gustatory system consists of a highly efficient sensing mechanism, where distinct cell types express receptors that bind specifically to chemicals associated with one particular taste quality. These specialized receptors connect to the brain via dedicated pathways, the stimulation of which triggers stereotypic behavioral responses as well as neurotransmitter release in brain reward dopamine systems. However, evidence also exists in favor of the concept that the critical regulators of long-term nutrient choice are physiological processes taking place after ingestion and independently of gustation. We will appraise the hypothesis that organisms can develop preferences for nutrients independently of oral taste stimulation. Of particular interest are recent findings indicating that disrupting nutrient utilization interferes with activity in brain dopamine pathways. These findings establish the metabolic fate of nutrients as previously unanticipated reward signals that regulate the reinforcing value of foods. In particular, it suggests a role for brain dopamine reward systems as metabolic sensors, allowing for signals generated by the metabolic utilization of nutrients to regulate neurotransmitter release and food reinforcement.

  8. Expression of microRNA-34a in Alzheimer's disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity.

    PubMed

    Sarkar, S; Jun, S; Rellick, S; Quintana, D D; Cavendish, J Z; Simpkins, J W

    2016-09-01

    Polygenetic risk factors and reduced expression of many genes in late-onset Alzheimer's disease (AD) impedes identification of a target(s) for disease-modifying therapies. We identified a single microRNA, miR-34a that is over expressed in specific brain regions of AD patients as well as in the 3xTg-AD mouse model. Specifically, increased miR-34a expression in the temporal cortex region compared to age matched healthy control correlates with severity of AD pathology. miR-34a over expression in patient's tissue and forced expression in primary neuronal culture correlates with concurrent repression of its target genes involved in synaptic plasticity, oxidative phosphorylation and glycolysis. The repression of oxidative phosphorylation and glycolysis related proteins correlates with reduced ATP production and glycolytic capacity, respectively. We also found that miR-34a overexpressed neurons secrete miR-34a containing exosomes that are taken up by neighboring neurons. Furthermore, miR-34a targets dozens of genes whose expressions are known to be correlated with synchronous activity in resting state functional networks. Our analysis of human genomic sequences from the tentative promoter of miR-34a gene shows the presence of NFκB, STAT1, c-Fos, CREB and p53 response elements. Together, our results raise the possibilities that pathophysiology-induced activation of specific transcription factor may lead to increased expression of miR-34a gene and miR-34a mediated concurrent repression of its target genes in neural networks may result in dysfunction of synaptic plasticity, energy metabolism, and resting state network activity. Thus, our results provide insights into polygenetic AD mechanisms and disclose miR-34a as a potential therapeutic target for AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Competition between the Brain and Testes under Selenium-Compromised Conditions: Insight into Sex Differences in Selenium Metabolism and Risk of Neurodevelopmental Disease

    PubMed Central

    Kremer, Penny M.; Hashimoto, Ann C.; Torres, Daniel J.; Byrns, China N.; Williams, Christopher S.; Berry, Marla J.

    2015-01-01

    Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly−/−Sepp1−/− mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly−/−Sepp1−/− mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels. Moreover, castration also yields similar neuroprotective benefits to Sepp1−/− and wild-type mice challenged with Se-deficient diets. Our data show that, under Se-compromised conditions, the brain and testes compete for Se utilization, with concomitant effects on neurodevelopment and neurodegeneration. SIGNIFICANCE STATEMENT Selenium is an essential trace element that promotes male fertility and brain function. Herein, we report that prepubescent castration provides neuroprotection by increasing selenium-dependent antioxidant activity in the brain, revealing a competition between the brain and testes for selenium utilization. These findings provide novel insight into the interaction of sex and oxidative stress upon the developing brain and have potentially significant implications for the prevention of neurodevelopmental disorders characterized by aberrant excitatory/inhibitory balance, such as schizophrenia and epilepsy. PMID:26586820

  10. Metabolic syndrome in rheumatological diseases.

    PubMed

    Pereira, Rosa Maria Rodrigues; de Carvalho, Jozélio Freire; Bonfá, Eloísa

    2009-03-01

    Metabolic syndrome is characterized by a combination of various cardiovascular risk factors (age, gender, smoking, hypertension and dyslipidemia) that imply additional cardiovascular morbidity that is greater than the sum of the risks associated with each individual component. Herein, the authors review the rheumatological diseases in which metabolic syndrome has been studied: gout, osteoarthritis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and ankylosing spondylitis. The prevalence of metabolic syndrome in these disorders varies from 14% to 62.8%. The great majority of these studies demonstrated that this frequency was higher in rheumatological diseases than in the control populations, suggesting that either the presence or the treatment of those diseases seems to influence the risk of developing metabolic syndrome.

  11. Urinary Biomarkers of Brain Diseases

    PubMed Central

    An, Manxia; Gao, Youhe

    2016-01-01

    Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome. PMID:26751805

  12. Urinary Biomarkers of Brain Diseases.

    PubMed

    An, Manxia; Gao, Youhe

    2015-12-01

    Biomarkers are the measurable changes associated with a physiological or pathophysiological process. Unlike blood, urine is not subject to homeostatic mechanisms. Therefore, greater fluctuations could occur in urine than in blood, better reflecting the changes in human body. The roadmap of urine biomarker era was proposed. Although urine analysis has been attempted for clinical diagnosis, and urine has been monitored during the progression of many diseases, particularly urinary system diseases, whether urine can reflect brain disease status remains uncertain. As some biomarkers of brain diseases can be detected in the body fluids such as cerebrospinal fluid and blood, there is a possibility that urine also contain biomarkers of brain diseases. This review summarizes the clues of brain diseases reflected in the urine proteome and metabolome. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  13. Transgenerational inheritance of metabolic disease.

    PubMed

    Stegemann, Rachel; Buchner, David A

    2015-07-01

    Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from Caenorhabditis elegans to Mus musculus to Sus scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment.

  14. Transgenerational Inheritance of Metabolic Disease

    PubMed Central

    Stegemann, Rachel; Buchner, David A.

    2015-01-01

    Metabolic disease encompasses several disorders including obesity, type 2 diabetes, and dyslipidemia. Recently, the incidence of metabolic disease has drastically increased, driven primarily by a worldwide obesity epidemic. Transgenerational inheritance remains controversial, but has been proposed to contribute to human metabolic disease risk based on a growing number of proof-of-principle studies in model organisms ranging from C. elegans to M. musculus to S. scrofa. Collectively, these studies demonstrate that heritable risk is epigenetically transmitted from parent to offspring over multiple generations in the absence of a continued exposure to the triggering stimuli. A diverse assortment of initial triggers can induce transgenerational inheritance including high-fat or high-sugar diets, low-protein diets, various toxins, and ancestral genetic variants. Although the mechanistic basis underlying the transgenerational inheritance of disease risk remains largely unknown, putative molecules mediating transmission include small RNAs, histone modifications, and DNA methylation. Due to the considerable impact of metabolic disease on human health, it is critical to better understand the role of transgenerational inheritance of metabolic disease risk to open new avenues for therapeutic intervention and improve upon the current methods for clinical diagnoses and treatment. PMID:25937492

  15. Metabolism of steroids by human brain tumors.

    PubMed

    Weidenfeld, J; Schiller, H

    1984-01-01

    Hormonal steroids or their precursors can be metabolized in the CNS to products with altered hormonal activity. The importance of the intracerebral transformation of steroids has been demonstrated, particularly with regard to neuroendocrine regulation and sexual behavior. These studies were carried out on normal brain tissues, but the ability of neoplastic tissues of CNS origin to metabolize steroids is unknown. We investigated the in vitro metabolism of tritiated pregnenolone, testosterone, and estradiol-17 beta by homogenates of four brain tumors defined as astrocytomas. In three tumors of cortical origin, removed from adult patients, the only enzymic activity found was the conversion of estradiol to estrone. In one tumor of cerebellar origin removed from an 11-year-old boy, the following conversions were found: pregnenolone to progesterone, testosterone to either androstenedione or estradiol, and estradiol to estrone. These results demonstrate that human astrocytomas can transform steroids to compounds with modified hormonal activity. These compounds formed by the tumorous tissue can affect brain function, which may be of clinical significance. Furthermore, these results may add important parameters for biochemical characterization of neoplastic brain tissues.

  16. Cellular metabolism and disease: what do metabolic outliers teach us?

    PubMed Central

    DeBerardinis, Ralph J.; Thompson, Craig B.

    2012-01-01

    An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states – often genetically programmed – that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This review discusses the broad impact of metabolism in cellular function, how modern concepts of metabolism can inform our understanding of common diseases like cancer, and considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225

  17. Brain metabolism and blood flow during aging.

    PubMed

    Horwitz, B

    1987-01-01

    Recent studies of cerebral metabolism have suggested that although cerebral blood flow is reduced during rest in the healthy aged brain, there is little or no decline in resting glucose consumption. Intercorrelations between resting regional cerebral rates for glucose (rCMRglc), as determined by positron emission tomography using [18F]fluorodeoxyglucose, were shown to provide a measure of the functional associativity of brain regions. Partial correlation coefficients, controlling for whole brain glucose metabolism, were used in the analysis. Dividing the brain into 59 regions, we found, for 40 healthy males (21-83 years in age) in a state of reduced sensory input, that the strongest correlations generally were between bilaterally symmetric brain regions, and that there were many statistically significant correlations (P less than 0.01) among frontal and parietal lobe regions and also among temporal and occipital lobe areas, but few significant correlations between these two domains. The correlation analysis then was applied to two groups (15 healthy males each) of young (20-32 years old) and elderly (64-83 years old) subjects in the same resting state. Compared with the young group, we found that the elderly subjects have fewer statistically significant (P less than 0.01) correlations, with the most noteworthy reductions being between parietal and frontal lobe regions, and among parietal lobe areas. These findings indicated that cerebral functional interactions were reduced in the healthy elderly. The same analysis, applied to 21 mainly mildly-to-moderately impaired presumed Alzheimer subjects (and 21 age-matched controls), revealed fewer significant correlations between homologous brain regions which correspond to metabolic asymmetries linked to neuropsychological deficiencies.

  18. Alzheimer's as a metabolic disease.

    PubMed

    Demetrius, Lloyd A; Driver, Jane

    2013-12-01

    Empirical evidence indicates that impaired mitochondrial energy metabolism is the defining characteristic of almost all cases of Alzheimer's disease (AD). Evidence is reviewed supporting the general hypothesis that the up-regulation of OxPhos activity, a metabolic response to mitochondrial dysregulation, drives the cascade of events leading to AD. This mode of metabolic alteration, called the Inverse Warburg effect, is postulated as an essential compensatory mechanism of energy production to maintain the viability of impaired neuronal cells. This article appeals to the inverse comorbidity of cancer and AD to show that the amyloid hypothesis, a genetic and neuron-centric model of the origin of sporadic forms of AD, is not consistent with epidemiological data concerning the age-incidence rates of AD. A view of Alzheimer's as a metabolic disease-a condition consistent with mitochondrial dysregulation and the Inverse Warburg effect, will entail a radically new approach to diagnostic and therapeutic strategies.

  19. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Cancer as a metabolic disease

    PubMed Central

    2010-01-01

    Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation to meet energy demands. Evidence is reviewed supporting a general hypothesis that genomic instability and essentially all hallmarks of cancer, including aerobic glycolysis (Warburg effect), can be linked to impaired mitochondrial function and energy metabolism. A view of cancer as primarily a metabolic disease will impact approaches to cancer management and prevention. PMID:20181022

  1. Gene Therapy for Metabolic Diseases

    PubMed Central

    Chandler, Randy J.; Venditti, Charles P.

    2016-01-01

    SUMMARY Gene therapy has recently shown great promise as an effective treatment for a number of metabolic diseases caused by genetic defects in both animal models and human clinical trials. Most of the current success has been achieved using a viral mediated gene addition approach, but gene-editing technology has progressed rapidly and gene modification is being actively pursued in clinical trials. This review focuses on viral mediated gene addition approaches, because most of the current clinical trials utilize this approach to treat metabolic diseases. PMID:27853673

  2. Genetic disorders of thyroid metabolism and brain development

    PubMed Central

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  3. Genetic disorders of thyroid metabolism and brain development.

    PubMed

    Kurian, Manju A; Jungbluth, Heinz

    2014-07-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic 'brain-thyroid' disorders.

  4. Kynurenine pathway metabolism and neuroinflammatory disease

    PubMed Central

    Braidy, Nady; Grant, Ross

    2017-01-01

    Immune-mediated activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP) is a consistent finding in all inflammatory disorders. Several studies by our group and others have examined the neurotoxic potential of neuroreactive TRYP metabolites, including quinolinic acid (QUIN) in neuroinflammatory neurological disorders, including Alzheimer's disease (AD), multiple sclerosis, amylotropic lateral sclerosis (ALS), and AIDS related dementia complex (ADC). Our current work aims to determine whether there is any benefit to the affected individuals in enhancing the catabolism of TRYP via the KP during an immune response. Under physiological conditions, QUIN is metabolized to the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+), which represents an important metabolic cofactor and electron transporter. NAD+ also serves as a substrate for the DNA ‘nick sensor’ and putative nuclear repair enzyme, poly(ADP-ribose) polymerase (PARP). Free radical initiated DNA damage, PARP activation and NAD+ depletion may contribute to brain dysfunction and cell death in neuroinflammatory disease. PMID:28250737

  5. Kynurenine pathway metabolism and the microbiota-gut-brain axis.

    PubMed

    Kennedy, P J; Cryan, J F; Dinan, T G; Clarke, G

    2017-01-01

    It has become increasingly clear that the gut microbiota influences not only gastrointestinal physiology but also central nervous system (CNS) function by modulating signalling pathways of the microbiota-gut-brain axis. Understanding the neurobiological mechanisms underpinning the influence exerted by the gut microbiota on brain function and behaviour has become a key research priority. Microbial regulation of tryptophan metabolism has become a focal point in this regard, with dual emphasis on the regulation of serotonin synthesis and the control of kynurenine pathway metabolism. Here, we focus in detail on the latter pathway and begin by outlining the structural and functional dynamics of the gut microbiota and the signalling pathways of the brain-gut axis. We summarise preclinical and clinical investigations demonstrating that the gut microbiota influences CNS physiology, anxiety, depression, social behaviour, cognition and visceral pain. Pertinent studies are drawn from neurogastroenterology demonstrating the importance of tryptophan and its metabolites in CNS and gastrointestinal function. We outline how kynurenine pathway metabolism may be regulated by microbial control of neuroendocrine function and components of the immune system. Finally, preclinical evidence demonstrating direct and indirect mechanisms by which the gut microbiota can regulate tryptophan availability for kynurenine pathway metabolism, with downstream effects on CNS function, is reviewed. Targeting the gut microbiota represents a tractable target to modulate kynurenine pathway metabolism. Efforts to develop this approach will markedly increase our understanding of how the gut microbiota shapes brain and behaviour and provide new insights towards successful translation of microbiota-gut-brain axis research from bench to bedside. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.

  6. In Alzheimer’s Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

    PubMed Central

    Gejl, Michael; Gjedde, Albert; Egefjord, Lærke; Møller, Arne; Hansen, Søren B.; Vang, Kim; Rodell, Anders; Brændgaard, Hans; Gottrup, Hanne; Schacht, Anna; Møller, Niels; Brock, Birgitte; Rungby, Jørgen

    2016-01-01

    In animal models, the incretin hormone GLP-1 affects Alzheimer’s disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [11C]PIB (PIB), CMRglc with [18F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered. PMID:27252647

  7. Brain function, disease and dementia.

    PubMed

    Sandilyan, Malarvizhi Babu; Dening, Tom

    2015-05-27

    Dementia is a consequence of brain disease. This article, the second in this series on dementia, discusses normal brain function and how certain functions are localised to different areas of the brain. This is important in determining the symptoms of dementia, depending on which parts of the brain are most directly involved. The most common types of dementia - Alzheimer's disease, vascular dementia, dementia with Lewy bodies and frontotemporal dementia - affect the brain in different ways and cause different changes at the microscopic level. Dementia is affected by genetics, and recent advances in molecular techniques have improved our understanding of some of the mechanisms involved, which in turns suggests possibilities for new treatments in the future.

  8. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET

    PubMed Central

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-01-01

    Alzheimer’s disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer’s cognition after cognitive decline, at least in animals. PMID:27763550

  9. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using (18)F-FDG-PET.

    PubMed

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using (18)F-labed fluorodeoxyglucose ((18)F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  10. ASSOCIATION BETWEEN GAB2 HAPLOTYPE AND HIGHER GLUCOSE METABOLISM IN ALZHEIMER'S DISEASE-AFFECTED BRAIN REGIONS IN COGNITIVELY NORMAL APOEε4 CARRIERS

    PubMed Central

    Liang, Winnie S.; Chen, Kewei; Lee, Wendy; Sidhar, Kunal; Corneveaux, Jason J.; Allen, April N.; Myers, Amanda; Villa, Stephen; Meechoovet, Bessie; Pruzin, Jeremy; Bandy, Daniel; Fleisher, Adam S.; Langbaum, Jessica B.S.; Huentelman, Matthew J.; Jensen, Kendall; Dunckley, Travis; Caselli, Richard J.; Kaib, Susan; Reiman, Eric M.

    2010-01-01

    In a genome-wide association study (GWAS) of late-onset Alzheimer's disease (AD), we found an association between common haplotypes of the GAB2 gene and AD risk in carriers of the apolipoprotein E (APOE) ε4 allele, the major late-onset AD susceptibility gene. We previously proposed the use of fluorodeoxyglucose positron emission tomography (FDG-PET) measurements as a quantitative presymptomatic endophenotype, more closely related to disease risk than the clinical syndrome itself, to help evaluate putative genetic and non-genetic modifiers of AD risk. In this study, we examined the relationship between the presence or absence of the relatively protective GAB2 haplotype and PET measurements of regional-to-whole brain FDG uptake in several AD-affected brain regions in 158 cognitively normal late-middle-aged APOEε4 homozygotes, heterozygotes, and non-carriers. GAB2 haplotypes were characterized using Affymetrix Genome-Wide Human SNP 6.0 Array data from each of these subjects. As predicted, the possibly protective GAB2 haplotype was associated with higher regional-to-whole brain FDG uptake in AD-affected brain regions in APOEε4 carriers. While additional studies are needed, this study supports the association between the possibly protective GAB2 haplotype and the risk of late-onset AD in APOEε4 carriers. It also supports the use of brain-imaging endophenotypes to help assess possible modifiers of AD risk. PMID:20888920

  11. In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders.

    PubMed

    Sherry, Erica B; Lee, Phil; Choi, In-Young

    2015-12-01

    Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.

  12. Modulation of Abnormal Metabolic Brain Networks by Experimental Therapies in a Nonhuman Primate Model of Parkinson Disease: An Application to Human Retinal Pigment Epithelial Cell Implantation.

    PubMed

    Peng, Shichun; Ma, Yilong; Flores, Joseph; Cornfeldt, Michael; Mitrovic, Branka; Eidelberg, David; Doudet, Doris J

    2016-10-01

    Abnormal covariance pattern of regional metabolism associated with Parkinson disease (PD) is modulated by dopaminergic pharmacotherapy. Using high-resolution (18)F-FDG PET and network analysis, we previously derived and validated a parkinsonism-related metabolic pattern (PRP) in nonhuman primate models of PD. It is currently not known whether this network is modulated by experimental therapeutics. In this study, we examined changes in network activity by striatal implantation of human levodopa-producing retinal pigment epithelial (hRPE) cells in parkinsonian macaques and evaluated the reproducibility of network activity in a small test-retest study.

  13. Metabolic brain PET pattern underlying hyperkinetic seizures.

    PubMed

    Guedj, Eric; McGonigal, Aileen; Vaugier, Lisa; Mundler, Olivier; Bartolomei, Fabrice

    2012-09-01

    This study aims to contribute to the identification of selective brain regions involved in hyperkinetic behaviors. We studied the whole-brain voxel-based interictal metabolic 18FDG-PET pattern of 23 patients with hyperkinetic seizures, in comparison with both 15 healthy subjects similar for age and gender, and 23 patients without hyperkinetic seizures. Patients were in particular similar for the localization of the epileptogenic zone, this having been defined using stereoelectroencephalography (SEEG) when clinically indicated (15/23 patients with hyperkinetic seizures and 13/23 patients without hyperkinetic seizures). Using conjunction voxel-based analysis, patients with hyperkinetic seizures exhibited significant hypometabolism within bilateral midbrain and the right caudate head, in comparison both to healthy subjects (p<0.05, FDR-corrected for the voxel) and to patients without hyperkinetic seizures (p<0.0167, uncorrected for the voxel). Findings were secondarily confirmed separately in each subgroup of patients with frontal, temporal or posterior epilepsy. These findings argue for a specific subcortical metabolic impairment in patients with hyperkinetic seizures, within brain structures supposed to be involved in the generation of primitive motor programs.

  14. Metabolic Syndrome and Urologic Diseases

    PubMed Central

    Gorbachinsky, Ilya; Akpinar, Haluk; Assimos, Dean G

    2010-01-01

    Metabolic syndrome (MetS) is a complex entity consisting of multiple interrelated factors including insulin resistance, central adiposity, dyslipidemia, endothelial dysfunction and atherosclerotic disease, low-grade inflammation, and in males, low testosterone levels. MetS has been linked to a number of urologic diseases including nephrolithiasis, benign prostatic hyperplasia and lower urinary tract symptoms, erectile dysfunction, male infertility, female incontinence, and prostate cancer. This article reviews the relationships between MetS and these entities. Urologists need to be cognizant of the impact that MetS has on urologic diseases as well as on overall patient health. PMID:21234260

  15. Gut microbiome and metabolic diseases.

    PubMed

    Fukuda, Shinji; Ohno, Hiroshi

    2014-01-01

    The prevalence of obesity and obesity-related disorders is increasing worldwide. In the last decade, the gut microbiota has emerged as an important factor in the development of obesity and metabolic syndrome, through its interactions with dietary, environmental, and host genetic factors. Various studies have shown that alteration of the gut microbiota, shifting it toward increased energy harvest, is associated with an obese phenotype. However, the molecular mechanisms by which the gut microbiota affects host metabolism are still obscure. In this review, we discuss the complexity of the gut microbiota and its relationship to obesity and obesity-related diseases. Furthermore, we discuss the anti-obesity potential of probiotics and prebiotics.

  16. Brain Diseases - Multiple Languages

    MedlinePlus

    ... sharing features on this page, please enable JavaScript. Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (Af-Soomaali ) Spanish (español) Ukrainian (українська ) Hindi (हिन्दी) Expand Section Brain Scan - हिन्दी ( ...

  17. Mechanisms of action of brain insulin against neurodegenerative diseases.

    PubMed

    Ramalingam, Mahesh; Kim, Sung-Jin

    2014-06-01

    Insulin, a pancreatic hormone, is best known for its peripheral effects on the metabolism of glucose, fats and proteins. There is a growing body of evidence linking insulin action in the brain to neurodegenerative diseases. Insulin present in central nervous system is a regulator of central glucose metabolism nevertheless this glucoregulation is not the main function of insulin in the brain. Brain is known to be specifically vulnerable to oxidative products relative to other organs and altered brain insulin signaling may cause or promote neurodegenerative diseases which invalidates and reduces the quality of life. Insulin located within the brain is mostly of pancreatic origin or is produced in the brain itself crosses the blood-brain barrier and enters the brain via a receptor-mediated active transport system. Brain Insulin, insulin receptor and insulin receptor substrate-mediated signaling pathways play important roles in the regulation of peripheral metabolism, feeding behavior, memory and maintenance of neural functions such as neuronal growth and differentiation, neuromodulation and neuroprotection. In the present review, we would like to summarize the novel biological and pathophysiological roles of neuronal insulin in neurodegenerative diseases and describe the main signaling pathways in use for therapeutic strategies in the use of insulin to the cerebral tissues and their biological applications to neurodegenerative diseases.

  18. The Role of Metabolomics in Brain Metabolism Research.

    PubMed

    Ivanisevic, Julijana; Siuzdak, Gary

    2015-09-01

    This special edition of the Journal of Neuroimmune Pharmacology focuses on the leading edge of metabolomics in brain metabolism research. The topics covered include a metabolomic field overview and the challenges in neuroscience metabolomics. The workflow and utility of different analytical platforms to profile complex biological matrices that include biofluids, brain tissue and cells, are shown in several case studies. These studies demonstrate how global and targeted metabolite profiling can be applied to distinguish disease stages and to understand the effects of drug action on the central nervous system (CNS). Finally, we discuss the importance of metabolomics to advance the understanding of brain function that includes ligand-receptor interactions and new insights into the mechanisms of CNS disorders.

  19. Morphine metabolism, transport and brain disposition.

    PubMed

    De Gregori, Simona; De Gregori, Manuela; Ranzani, Guglielmina Nadia; Allegri, Massimo; Minella, Cristina; Regazzi, Mario

    2012-03-01

    The chemical structures of morphine and its metabolites are closely related to the clinical effects of drugs (analgesia and side-effects) and to their capability to cross the Blood Brain Barrier (BBB). Morphine-6-glucuronide (M6G) and Morphine-3-glucuronide (M3G) are both highly hydrophilic, but only M6G can penetrate the BBB; accordingly, M6G is considered a more attractive analgesic than the parent drug and the M3G. Several hypotheses have been made to explain these differences. In this review we will discuss recent advances in the field, considering brain disposition of M6G, UDP-glucoronosyltransferases (UGT) involved in morphine metabolism, UGT interindividual variability and transport proteins.

  20. Pathogenic role of ganglioside metabolism in neurodegenerative diseases.

    PubMed

    Ariga, Toshio

    2014-10-01

    Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood-brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease-specific proteins, such as α-synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper-zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases. © 2014 Wiley Periodicals, Inc.

  1. Alterations of lipid metabolism in Wilson disease

    PubMed Central

    2011-01-01

    Introduction Wilson disease (WD) is an inherited disorder of human copper metabolism, characterised by accumulation of copper predominantly in the liver and brain, leading to severe hepatic and neurological disease. Interesting findings in animal models of WD (Atp7b-/- and LEC rats) showed altered lipid metabolism with a decrease in the amount of triglycerides and cholesterol in the serum. However, serum lipid profile has not been investigated in large human WD patient cohorts to date. Patients and Methods This cohort study involved 251 patients examined at the Heidelberg and Dresden (Germany) University Hospitals. Patients were analysed on routine follow-up examinations for serum lipid profile, including triglycerides, cholesterol, high density lipoprotein (HDL) and low density lipoprotein (LDL). Data on these parameters at time of diagnosis were retrieved by chart review where available. For statistical testing, patients were subgrouped by sex, manifestation (hepatic, neurological, mixed and asymptomatic) and treatment (D-penicillamine, trientine, zinc or combination). Results A significant difference in total serum cholesterol was found in patients with hepatic symptoms, which diminished under therapy. No alterations were observed for HDL, LDL and triglycerides. Conclusion Contradictory to previous reports using WD animal models (Atp7b-/- and LEC rats), the most obvious alteration in our cohort was a lower serum cholesterol level in hepatic-affected patients, which might be related to liver injury. Our data suggested unimpaired cholesterol metabolism in Wilson disease under therapy, independent of the applied medical treatment. PMID:21595966

  2. Human astrocytes in the diseased brain.

    PubMed

    Dossi, Elena; Vasile, Flora; Rouach, Nathalie

    2017-02-13

    Astrocytes are key active elements of the brain that contribute to information processing. They not only provide neurons with metabolic and structural support, but also regulate neurogenesis and brain wiring. Furthermore, astrocytes modulate synaptic activity and plasticity in part by controlling the extracellular space volume, as well as ion and neurotransmitter homeostasis. These findings, together with the discovery that human astrocytes display contrasting characteristics with their rodent counterparts, point to a role for astrocytes in higher cognitive functions. Dysfunction of astrocytes can thereby induce major alterations in neuronal functions, contributing to the pathogenesis of several brain disorders. In this review we summarize the current knowledge on the structural and functional alterations occurring in astrocytes from the human brain in pathological conditions such as epilepsy, primary tumours, Alzheimer's disease, major depressive disorder and Down syndrome. Compelling evidence thus shows that dysregulations of astrocyte functions and interplay with neurons contribute to the development and progression of various neurological diseases. Targeting astrocytes is thus a promising alternative approach that could contribute to the development of novel and effective therapies to treat brain disorders.

  3. Pedophilic behavior from brain disease.

    PubMed

    Mendez, Mario; Shapira, Jill S

    2011-04-01

    Child molestation or other pedophilic behavior may result as a consequence of a brain disorder. To characterize the mechanisms of pedophilic behavior associated with neurological diseases. We report eight patients with pedophilic behavior as a manifestation of their brain disorder and review the literature. The sexual, neuropsychiatric, and neurological aspects of a series of patients. All eight developed sexual behavior toward prepubescent children in mid- to late-life coincident with the development of a neurological disorder. Five had limited insight, anxiety, or concern for their behavior and tended to have frontal lobe executive deficits. Most of this group had frontally predominant disorders. Two others retained insight and concern in the context of marked hypersexuality. This second group had treated Parkinson's disease and resembled reports of pedophilic behavior from subcortical lesions. The further presence of right temporal lobe-amygdala involvement may have predisposed to specific sexual preoccupation in some patients. Brain disorders may release a predisposition to sexual attraction for children through disinhibition with frontal disease, sexual preoccupation with right temporal disease, or hypersexuality with subcortical disease in non-motor basal ganglia, hypothalamus, or septal nuclei. Differentiating these mechanisms of pedophilic behavior from brain disease could facilitate targeted interventions. © 2011 International Society for Sexual Medicine.

  4. Sirtuin and metabolic kidney disease.

    PubMed

    Wakino, Shu; Hasegawa, Kazuhiro; Itoh, Hiroshi

    2015-10-01

    Sirtuin is a nicotinamide adenine dinucleotide-dependent deacetylase. One of its isoforms, Sirt1, is a key molecule in glucose, lipid, and energy metabolism. The renal protective effects of Sirt1 are found in various models of renal disorders with metabolic impairment, such as diabetic nephropathy. Protective effects include the maintenance of glomerular barrier function, anti-fibrosis effects, anti-oxidative stress effects, and regulation of mitochondria function and energy metabolism. Various target molecules subject to direct deacetylation or epigenetic gene regulation have been identified as effectors of the renal protective function of sirtuin. Recently, it was demonstrated that Sirt1 expression decreases in proximal tubules before albuminuria in a mouse model of diabetic nephropathy, and that albuminuria is suppressed in proximal tubule-specific mice overexpressing Sirt1. These findings suggest that decreased Sirt1 expression in proximal tubular cells causes abnormal nicotine metabolism and reduces the supply of nicotinamide mononucleotide from renal tubules to glomeruli. This further decreases expression of Sirt1 in glomerular podocytes and increases expression of a tight junction protein, claudin-1, which results in albuminuria. Activators of the sirtuin family of proteins, including resveratrol, may be important in the development of new therapeutic strategies for treating metabolic kidney diseases, including diabetic nephropathy.

  5. PPARs: diverse regulators in energy metabolism and metabolic diseases.

    PubMed

    Wang, Yong-Xu

    2010-02-01

    The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.

  6. Fatigue in Parkinson's disease: The contribution of cerebral metabolic changes.

    PubMed

    Cho, Sang Soo; Aminian, Kelly; Li, Crystal; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P

    2017-01-01

    Fatigue is a common and disabling non-motor symptom in Parkinson's disease associated with a feeling of overwhelming lack of energy. The aim of this study was to identify the neural substrates that may contribute to the development of fatigue in Parkinson's disease. Twenty-three Parkinson's disease patients meeting UK Brain Bank criteria for the diagnosis of idiopathic Parkinson's disease were recruited and completed the 2-[(18) F]fluoro-2-deoxy-D-glucose (FDG)-PET scan. The metabolic activities of Parkinson's disease patients with fatigue were compared to those without fatigue using statistical parametric mapping analysis. The Parkinson's disease group exhibiting higher level of fatigue showed anti-correlated metabolic changes in cortical regions associated with the salience (i.e., right insular region) and default (i.e., bilateral posterior cingulate cortex) networks. The metabolic abnormalities detected in these brain regions displayed a significant correlation with level of fatigue and were associated with a disruption of the functional correlations with different cortical areas. These observations suggest that fatigue in Parkinson's disease may be the expression of metabolic abnormalities and impaired functional interactions between brain regions linked to the salience network and other neural networks. Hum Brain Mapp 38:283-292, 2017. © 2016 Wiley Periodicals, Inc.

  7. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    PubMed

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine.

  8. Glutathione metabolism and Parkinson's disease.

    PubMed

    Smeyne, Michelle; Smeyne, Richard Jay

    2013-09-01

    It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.

  9. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics.

    PubMed

    Di Domenico, Fabio; Barone, Eugenio; Perluigi, Marzia; Butterfield, D Allan

    2017-03-10

    Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and represents one of the most disabling conditions. AD shares many features in common with systemic insulin resistance diseases, suggesting that it can be considered as a metabolic disease, characterized by reduced insulin-stimulated growth and survival signaling, increased oxidative stress (OS), proinflammatory cytokine activation, mitochondrial dysfunction, impaired energy metabolism, and altered protein homeostasis. Recent Advances: Reduced glucose utilization and energy metabolism in AD have been associated with the buildup of amyloid-β peptide and hyperphosphorylated tau, increased OS, and the accumulation of unfolded/misfolded proteins. Mammalian target of rapamycin (mTOR), which is aberrantly activated in AD since early stages, plays a key role during AD neurodegeneration by, on one side, inhibiting insulin signaling as a negative feedback mechanism and, on the other side, regulating protein homeostasis (synthesis/clearance). It is likely that the concomitant and mutual alterations of energy metabolism-mTOR signaling-protein homeostasis might represent a self-sustaining triangle of harmful events that trigger the degeneration and death of neurons and the development and progression of AD. Intriguingly, the altered cross-talk between the components of such a triangle of death, beyond altering the redox homeostasis of the neuron, is further exacerbated by increased levels of OS that target and impair key components of the pathways involved. Redox proteomic studies in human samples and animal models of AD-like dementia led to identification of oxidatively modified components of the pathways composing the triangle of death, therefore revealing the crucial role of OS in fueling this aberrant vicious cycle. The identification of compounds able to restore the function of the pathways targeted by oxidative damage might represent a valuable therapeutic approach to slow or delay AD. Antioxid

  10. The role of glucose transporters in brain disease: diabetes and Alzheimer’s Disease.

    PubMed

    Shah, Kaushik; Desilva, Shanal; Abbruscato, Thomas

    2012-10-03

    The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain.

  11. The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease

    PubMed Central

    Shah, Kaushik; DeSilva, Shanal; Abbruscato, Thomas

    2012-01-01

    The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain. PMID:23202918

  12. Improved Mitochondrial Function in Brain Aging and Alzheimer Disease – the New Mechanism of Action of the Old Metabolic Enhancer Piracetam

    PubMed Central

    Leuner, Kristina; Kurz, Christopher; Guidetti, Giorgio; Orgogozo, Jean-Marc; Müller, Walter E.

    2010-01-01

    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, this new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions. PMID:20877425

  13. Brain PET in the diagnosis of Alzheimer's disease.

    PubMed

    Marcus, Charles; Mena, Esther; Subramaniam, Rathan M

    2014-10-01

    The aim of this article was to review the current role of brain PET in the diagnosis of Alzheimer dementia. The characteristic patterns of glucose metabolism on brain FDG-PET can help in differentiating Alzheimer's disease from other causes of dementia such as frontotemporal dementia and dementia of Lewy body. Amyloid brain PET may exclude significant amyloid deposition and thus Alzheimer's disease in appropriate clinical setting. FDG-PET and amyloid PET imaging are valuable in the assessment of patients with Alzheimer's disease.

  14. Brain PET in the Diagnosis of Alzheimer’s Disease

    PubMed Central

    Marcus, Charles; Mena, Esther; Subramaniam, Rathan M.

    2015-01-01

    Objectives The aim of this article was to review the current role of brain PET in the diagnosis of Alzheimer dementia. The characteristic patterns of glucose metabolism on brain FDG-PET can help in differentiating Alzheimer’s disease from other causes of dementia such as frontotemporal dementia and dementia of Lewy body. Amyloid brain PET may exclude significant amyloid deposition and thus Alzheimer’s disease in appropriate clinical setting. Conclusions FDG-PET and amyloid PET imaging are valuable in the assessment of patients with Alzheimer’s disease. PMID:25199063

  15. Mitochondrial diseases of the brain.

    PubMed

    Chaturvedi, Rajnish K; Flint Beal, M

    2013-10-01

    Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.

  16. Brain Metabolism Changes in Patients Infected with HTLV-1.

    PubMed

    Schütze, Manuel; Romanelli, Luiz C F; Rosa, Daniela V; Carneiro-Proietti, Anna B F; Nicolato, Rodrigo; Romano-Silva, Marco A; Brammer, Michael; de Miranda, Débora M

    2017-01-01

    The Human T-cell leukemia virus type-I (HTLV-1) is the causal agent of HTLV-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HAM/TSP is the result of demyelination and cell death in the spinal cord and disruption of the blood-brain barrier (BBB), mediated by a virus-induced inflammatory response. In this study, we applied Positron Emission Tomography with 18F-fluordeoxyglucose (18F-FDG PET) to evaluate brain metabolism in a group of 47 patients infected with HTLV-1, and 18 healthy controls. Patients were divided into three groups according to their neurological symptoms. A machine learning (ML) based Gaussian Processes classification algorithm (GPC) was applied to classify between patient groups and controls and also to organize the three patient groups, based on gray and white matter brain metabolism. We found that GPC was able to differentiate the HAM/TSP group from controls with 85% accuracy (p = 0.003) and the asymptomatic seropositive patients from controls with 85.7% accuracy (p = 0.001). The weight map suggests diffuse cortical hypometabolism in both patient groups when compared to controls. We also found that the GPC could separate the asymptomatic HTLV-1 patients from the HAM/TSP patients, but with a lower accuracy (72.7%, p = 0.026). The weight map suggests a diffuse pattern of lower metabolism in the asymptomatic group when compared to the HAM/TSP group. These results are compatible with distinctive patterns of glucose uptake into the brain of HTLV-1 patients, including those without neurological symptoms, which differentiate them from controls. Furthermore, our results might unveil surprising aspects of the pathophysiology of HAM/TSP and related diseases, as well as new therapeutic strategies.

  17. Brain Metabolism Changes in Patients Infected with HTLV-1

    PubMed Central

    Schütze, Manuel; Romanelli, Luiz C. F.; Rosa, Daniela V.; Carneiro-Proietti, Anna B. F.; Nicolato, Rodrigo; Romano-Silva, Marco A.; Brammer, Michael; de Miranda, Débora M.

    2017-01-01

    The Human T-cell leukemia virus type-I (HTLV-1) is the causal agent of HTLV-associated myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HAM/TSP is the result of demyelination and cell death in the spinal cord and disruption of the blood-brain barrier (BBB), mediated by a virus-induced inflammatory response. In this study, we applied Positron Emission Tomography with 18F-fluordeoxyglucose (18F-FDG PET) to evaluate brain metabolism in a group of 47 patients infected with HTLV-1, and 18 healthy controls. Patients were divided into three groups according to their neurological symptoms. A machine learning (ML) based Gaussian Processes classification algorithm (GPC) was applied to classify between patient groups and controls and also to organize the three patient groups, based on gray and white matter brain metabolism. We found that GPC was able to differentiate the HAM/TSP group from controls with 85% accuracy (p = 0.003) and the asymptomatic seropositive patients from controls with 85.7% accuracy (p = 0.001). The weight map suggests diffuse cortical hypometabolism in both patient groups when compared to controls. We also found that the GPC could separate the asymptomatic HTLV-1 patients from the HAM/TSP patients, but with a lower accuracy (72.7%, p = 0.026). The weight map suggests a diffuse pattern of lower metabolism in the asymptomatic group when compared to the HAM/TSP group. These results are compatible with distinctive patterns of glucose uptake into the brain of HTLV-1 patients, including those without neurological symptoms, which differentiate them from controls. Furthermore, our results might unveil surprising aspects of the pathophysiology of HAM/TSP and related diseases, as well as new therapeutic strategies. PMID:28293169

  18. Intestinal microflora and metabolic diseases.

    PubMed

    Serino, M; Luche, E; Chabo, C; Amar, J; Burcelin, R

    2009-09-01

    Recent advances in molecular sequencing technology have allowed researchers to answer major questions regarding the relationship between a vast genomic diversity-such as found in the intestinal microflora-and host physiology. Over the past few years, it has been established that, in obesity, type 1 diabetes and Crohn's disease-to cite but a few-the intestinal microflora play a pathophysiological role and can induce, transfer or prevent the outcome of such conditions. A few of the molecular vectors responsible for this regulatory role have been determined. Some are related to control of the immune, vascular, endocrine and nervous systems located in the intestines. However, more important is the fact that the intestinal microflora-to-host relationship is bidirectional, with evidence of an impact of the host genome on the intestinal microbiome. This means that the ecology shared by the host and gut microflora should now be considered a new player that can be manipulated, using pharmacological and nutritional approaches, to control physiological functions and pathological outcomes. What now remains is to demonstrate the molecular connection between the intestinal microflora and metabolic diseases. We propose here that the proinflammatory lipopolysaccharides play a causal role in the onset of metabolic disorders.

  19. Obesity and Metabolic Comorbidities: Environmental Diseases?

    PubMed Central

    Lubrano, Carla; Genovesi, Giuseppe; Specchia, Palma; Costantini, Daniela; Mariani, Stefania; Petrangeli, Elisa; Lenzi, Andrea; Gnessi, Lucio

    2013-01-01

    Obesity and metabolic comorbidities represent increasing health problems. Endocrine disrupting compounds (EDCs) are exogenous agents that change endocrine function and cause adverse health effects. Most EDCs are synthetic chemicals; some are natural food components as phytoestrogens. People are exposed to complex mixtures of chemicals throughout their lives. EDCs impact hormone-dependent metabolic systems and brain function. Laboratory and human studies provide compelling evidence that human chemical contamination can play a role in obesity epidemic. Chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes. EDCs can alter methylation patterns and normal epigenetic programming in cells. Oxidative stress may be induced by many of these chemicals, and accumulating evidence indicates that it plays important roles in the etiology of chronic diseases. The individual sensitivity to chemicals is variable, depending on environment and ability to metabolize hazardous chemicals. A number of genes, especially those representing antioxidant and detoxification pathways, have potential application as biomarkers of risk assessment. The potential health effects of combined exposures make the risk assessment process more complex compared to the assessment of single chemicals. Techniques and methods need to be further developed to fill data gaps and increase the knowledge on harmful exposure combinations. PMID:23577225

  20. Vascular and metabolic reserve in Alzheimer's disease.

    PubMed

    Nagata, K; Kondoh, Y; Atchison, R; Sato, M; Satoh, Y; Watahiki, Y; Hirata, Y; Yokoyama, E

    2000-01-01

    Vascular and metabolic reserve were analyzed in probable Alzheimer's disease (AD) and vascular dementia (VaD). Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)), and oxygen extraction fraction (OEF) were measured quantitatively with positron emission tomography (PET). Vascular reactivity (VR) was also calculated by comparing the CBF during 5% CO(2) inhalation with the CBF during normal breathing. Vascular transit time (VTT) that was calculated as a ratio of CBV/CBF and VR reflect vasodilating capacity of the small resistance vessels, whereas OEF designates metabolic (oxygen-extraction) reserve in threatening brain ischemia. Significant increase in OEF was seen in the parieto-temporal cortex and both VTT and VR were preserved in AD patients. By constrast, there was no significant increase in OEF whereas VTT was prolonged and VR was markedly depressed in VaD patients. The increase of OEF and preserved VTT and VR seen in AD patients indicate the possible participation of vascular factors in the pathogenesis of AD perhaps at the capillary level.

  1. Structural connectomics in brain diseases.

    PubMed

    Griffa, Alessandra; Baumann, Philipp S; Thiran, Jean-Philippe; Hagmann, Patric

    2013-10-15

    Imaging the connectome in vivo has become feasible through the integration of several rapidly developing fields of science and engineering, namely magnetic resonance imaging and in particular diffusion MRI on one side, image processing and network theory on the other side. This framework brings in vivo brain imaging closer to the real topology of the brain, contributing to narrow the existing gap between our understanding of brain structural organization on one side and of human behavior and cognition on the other side. Given the seminal technical progresses achieved in the last few years, it may be ready to tackle even greater challenges, namely exploring disease mechanisms. In this review we analyze the current situation from the technical and biological perspectives. First, we critically review the technical solutions proposed in the literature to perform clinical studies. We analyze for each step (i.e. MRI acquisition, network building and network statistical analysis) the advantages and potential limitations. In the second part we review the current literature available on a selected subset of diseases, namely, dementia, schizophrenia, multiple sclerosis and others, and try to extract for each disease the common findings and main differences between reports. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Nerve growth factor metabolic dysfunction in Down's syndrome brains.

    PubMed

    Iulita, M Florencia; Do Carmo, Sonia; Ower, Alison K; Fortress, Ashley M; Flores Aguilar, Lisi; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge; Cuello, A Claudio

    2014-03-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in pro

  3. Mathematical modeling of the human energy metabolism based on the Selfish Brain Theory.

    PubMed

    Chung, Matthias; Göbel, Britta

    2012-01-01

    Deregulations in the human energy metabolism may cause diseases such as obesity and type 2 diabetes mellitus. The origins of these pathologies are fairly unknown. The key role of the brain is the regulation of the complex whole body energy metabolism. The Selfish Brain Theory identifies the priority of brain energy supply in the competition for available energy resources within the organism. Here, we review mathematical models of the human energy metabolism supporting central aspects of the Selfish Brain Theory. First, we present a dynamical system modeling the whole body energy metabolism. This model takes into account the two central control mechanisms of the brain, i.e., allocation and appetite. Moreover, we present mathematical models of regulatory subsystems. We examine a neuronal model which specifies potential elements of the brain to sense and regulate cerebral energy content. We investigate a model of the HPA system regulating the allocation of energy within the organism. Finally, we present a robust modeling approach of appetite regulation. All models account for a systemic understanding of the human energy metabolism and thus do shed light onto defects causing metabolic diseases.

  4. In vitro effect of antipsychotics on brain energy metabolism parameters in the brain of rats.

    PubMed

    Scaini, Giselli; Rochi, Natália; Morais, Meline O S; Maggi, Débora D; De-Nês, Bruna T; Quevedo, João; Streck, Emilio L

    2013-02-01

    Typical and atypical antipsychotic drugs have been shown to have different clinical, biochemical and behavioural profiles. It is well described that impairment of metabolism, especially in the mitochondria, leads to oxidative stress and neuronal death and has been implicated in the pathogenesis of a number of diseases in the brain. In this context, we investigated the in vitro effect of antipsychotic drugs on energy metabolism parameters in the brain of rats. Clozapine (0.1, 0.5 and 1.0 mg/ml), olanzapine (0.1, 0.5 and 1.0 mg/ml) and aripiprazole (0.05, 0.15 and 0.3 mg/ml) were suspended in buffer and added to the reaction medium containing rat tissue homogenates and the respiratory chain complexes, succinate dehydrogenase and creatine kinase (CK) activities were evaluated. Our results showed that olanzapine and aripriprazole increased the activities of respiratory chain complexes. On the other hand, complex IV activity was inhibited by clozapine, olanzapine and aripriprazole. CK activity was increased by clozapine at 0.5 and 1.0 mg/ml in prefrontal cortex, cerebellum, striatum, hippocampus and posterior cortex of rats. Moreover, olanzapine and aripiprazole did not affect CK activity. In this context, if the hypothesis that metabolism impairment is involved in the pathophysiology of neuropsychiatric disorders is correct and these results also occur in vivo, we suggest that olanzapine may reverse a possible diminution of metabolism.

  5. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain.

    PubMed

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-06-30

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases.

  6. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain

    PubMed Central

    Venkat, Poornima; Chopp, Michael; Chen, Jieli

    2016-01-01

    The brain has high metabolic and energy needs and requires continuous cerebral blood flow (CBF), which is facilitated by a tight coupling between neuronal activity, CBF, and metabolism. Upon neuronal activation, there is an increase in energy demand, which is then met by a hemodynamic response that increases CBF. Such regional CBF increase in response to neuronal activation is observed using neuroimaging techniques such as functional magnetic resonance imaging and positron emission tomography. The mechanisms and mediators (eg, nitric oxide, astrocytes, and ion channels) that regulate CBF-metabolism coupling have been extensively studied. The neurovascular unit is a conceptual model encompassing the anatomical and metabolic interactions between the neurons, vascular components, and glial cells in the brain. It is compromised under disease states such as stroke, diabetes, hypertension, dementias, and with aging, all of which trigger a cascade of inflammatory responses that exacerbate brain damage. Hence, tight regulation and maintenance of neurovascular coupling is central for brain homeostasis. This review article also discusses the waste clearance pathways in the brain such as the glymphatic system. The glymphatic system is a functional waste clearance pathway that removes metabolic wastes and neurotoxins from the brain along paravascular channels. Disruption of the glymphatic system burdens the brain with accumulating waste and has been reported in aging as well as several neurological diseases. PMID:27374823

  7. Ageing, metabolism and cardiovascular disease.

    PubMed

    Costantino, Sarah; Paneni, Francesco; Cosentino, Francesco

    2016-04-15

    Age is one of the major risk factors associated with cardiovascular disease (CVD). About one-fifth of the world population will be aged 65 or older by 2030, with an exponential increase in CVD prevalence. It is well established that environmental factors (overnutrition, smoking, pollution, sedentary lifestyles) may lead to premature defects in mitochondrial functionality, insulin signalling, endothelial homeostasis and redox balance, fostering early senescent features. Over the last few years, molecular investigations have unveiled common signalling networks which may link the ageing process with deterioration of cardiovascular homeostasis and metabolic disturbances, namely insulin resistance. These different processes seem to be highly interconnected and their interplay may favour adverse vascular and cardiac phenotypes responsible for myocardial infarction, stroke and heart failure. In the present review, we carefully describe novel molecular cues underpinning ageing, metabolism and CVD. In particular, we describe a dynamic interplay between emerging pathways such as FOXOs, AMPK, SIRT1, p66(Shc) , JunD and NF-kB. This overview will provide the background for attractive molecular targets to prevent age-driven pathology in the vasculature and the heart. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. Ageing, metabolism and cardiovascular disease

    PubMed Central

    Costantino, Sarah; Paneni, Francesco

    2015-01-01

    Abstract Age is one of the major risk factors associated with cardiovascular disease (CVD). About one‐fifth of the world population will be aged 65 or older by 2030, with an exponential increase in CVD prevalence. It is well established that environmental factors (overnutrition, smoking, pollution, sedentary lifestyles) may lead to premature defects in mitochondrial functionality, insulin signalling, endothelial homeostasis and redox balance, fostering early senescent features. Over the last few years, molecular investigations have unveiled common signalling networks which may link the ageing process with deterioration of cardiovascular homeostasis and metabolic disturbances, namely insulin resistance. These different processes seem to be highly interconnected and their interplay may favour adverse vascular and cardiac phenotypes responsible for myocardial infarction, stroke and heart failure. In the present review, we carefully describe novel molecular cues underpinning ageing, metabolism and CVD. In particular, we describe a dynamic interplay between emerging pathways such as FOXOs, AMPK, SIRT1, p66Shc, JunD and NF‐kB. This overview will provide the background for attractive molecular targets to prevent age‐driven pathology in the vasculature and the heart. PMID:26391109

  9. Brain Stimulation in Alzheimer's Disease.

    PubMed

    Fried, Itzhak

    2016-09-06

    Deep brain stimulation has been successfully used in treatment of motor symptoms of Parkinson's disease and other movement disorders. In a recent multi-center prospectively randomized study, deep brain stimulation of the fornix was administered in order to ameliorate the cognitive symptoms and clinical course of Alzheimer's disease (AD). The study points to the possibility of modest slowing of the cognitive decline in AD in a subset of patients older than 65, while at the same time highlights the risk of stimulation in exacerbation of this decline in younger patients. The logic of conducting large clinical trials in the face of limited scientific understanding of the pathophysiology of AD and response of affected brain regions to electrical stimulation, is discussed with emphasis on the need to conduct: (i) animal studies in AD models, using precise focused stimulation; (ii) studies in patients who are implanted with depth electrodes for established clinical reasons (i.e., patients with epilepsy or movement disorders); and (iii) smaller adaptive studies in AD patients with systematic alterations of therapeutic parameters such as stimulation protocol.

  10. Hostility differentiates the brain metabolic effects of nicotine.

    PubMed

    Fallon, James H; Keator, David B; Mbogori, James; Turner, Jessica; Potkin, Steven G

    2004-01-01

    The brain mechanisms underlying the cause of nicotine dependence are unknown, however, hostility traits are associated with increased susceptibility to nicotine dependence. We used FDG PET to measure brain metabolic response to nicotine administered by patch while the subject performed the Bushman aggression task in 86 high- and low-hostility subjects. Low-hostility trait subjects demonstrated no significant change in brain metabolic response to nicotine. In marked contrast, high-hostility non-smokers subjects demonstrated dramatic metabolic changes to low dose (3.5 mg patch) as did high-hostility smokers to high dose nicotine (21 mg patch) throughout the brain bilaterally (p<0.025). Correlational analyses demonstrated greater metabolic changes in response to nicotine in subjects with greatest hostility trait measures. The observed differences were not a consequence of plasma nicotine or cotinine levels. These metabolic changes were not observed when subjects performed a sustained attentional task (continuous performance task; CPT). Behaviorally, high-hostility subjects had higher ratings of anger, impatience, irritability and nervousness, and lower ratings of happiness, relaxation and curiosity than low-hostility subjects. Smokers had significantly greater scores on impatience and restlessness than non-smokers. This PET study demonstrates a conspicuous lack of the brain metabolic response to nicotine in low-hostility non-smokers in contrast to a dramatic brain response to nicotine in high hostility subjects. This biological difference in brain metabolic response to nicotine between high and low hostility trait subjects may explain differences in susceptibility to nicotine dependence.

  11. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    PubMed

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  12. Opportunities for genetic improvement of metabolic diseases

    USDA-ARS?s Scientific Manuscript database

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors and status of gene...

  13. Large-scale in silico modeling of metabolic interactions between cell types in the human brain.

    PubMed

    Lewis, Nathan E; Schramm, Gunnar; Bordbar, Aarash; Schellenberger, Jan; Andersen, Michael P; Cheng, Jeffrey K; Patel, Nilam; Yee, Alex; Lewis, Randall A; Eils, Roland; König, Rainer; Palsson, Bernhard Ø

    2010-12-01

    Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimer's disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis.

  14. Brain glucose sensing, glucokinase and neural control of metabolism and islet function.

    PubMed

    Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L

    2014-09-01

    It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases.

  15. [Nutritional and metabolic aspects of neurological diseases].

    PubMed

    Planas Vilà, Mercè

    2014-01-01

    The central nervous system regulates food intake, homoeostasis of glucose and electrolytes, and starts the sensations of hunger and satiety. Different nutritional factors are involved in the pathogenesis of several neurological diseases. Patients with acute neurological diseases (traumatic brain injury, cerebral vascular accident hemorrhagic or ischemic, spinal cord injuries, and cancer) and chronic neurological diseases (Alzheimer's Disease and other dementias, amyotrophic lateral sclerosis, Parkinson's Disease) increase the risk of malnutrition by multiple factors related to nutrient ingestion, abnormalities in the energy expenditure, changes in eating behavior, gastrointestinal changes, and by side effects of drugs administered. Patients with acute neurological diseases have in common the presence of hyper metabolism and hyper catabolism both associated to a period of prolonged fasting mainly for the frequent gastrointestinal complications, many times as a side effect of drugs administered. During the acute phase, spinal cord injuries presented a reduction in the energy expenditure but an increase in the nitrogen elimination. In order to correct the negative nitrogen balance increase intakes is performed with the result of a hyper alimentation that should be avoided due to the complications resulting. In patients with chronic neurological diseases and in the acute phase of cerebrovascular accident, dysphagia could be present which also affects intakes. Several chronic neurological diseases have also dementia, which lead to alterations in the eating behavior. The presence of malnutrition complicates the clinical evolution, increases muscular atrophy with higher incidence of respiratory failure and less capacity to disphagia recuperation, alters the immune response with higher rate of infections, increases the likelihood of fractures and of pressure ulcers, increases the incapacity degree and is an independent factor to increase mortality. The periodic nutritional

  16. Hematopoietic Gene Therapies for Metabolic and Neurologic Diseases.

    PubMed

    Biffi, Alessandra

    2017-10-01

    Increasingly, patients affected by metabolic diseases affecting the central nervous system and neuroinflammatory disorders receive hematopoietic cell transplantation (HCT) in the attempt to slow the course of their disease, delay or attenuate symptoms, and improve pathologic findings. The possible replacement of brain-resident myeloid cells by the transplanted cell progeny contributes to clinical benefit. Genetic engineering of the cells to be transplanted (hematopoietic stem cell) may endow the brain myeloid progeny of these cells with enhanced or novel functions, contributing to therapeutic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Metabolic Flux and Compartmentation Analysis in the Brain In vivo

    PubMed Central

    Lanz, Bernard; Gruetter, Rolf; Duarte, João M. N.

    2013-01-01

    Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, 1H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, 13C MRS with the infusion of 13C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of 13C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons. PMID:24194729

  18. 24S-hydroxycholesterol: a marker of brain cholesterol metabolism.

    PubMed

    Lütjohann, D; von Bergmann, K

    2003-09-01

    The enzymatic conversion of CNS cholesterol to 24S-hydroxycholesterol, which readily crosses the blood-brain barrier, is the major pathway for brain cholesterol elimination and brain cholesterol homeostasis maintenance. The enzyme mediating this conversion has been characterized at the molecular level (CYP46) and is mainly located in neurons. Like other oxysterols, 24S-hydroxycholesterol is efficiently converted into normal bile acids or excreted in bile in its sulfated and glucuronidated form. Levels of 24S-hydroxycholesterol in the circulation decrease with age in infants and children. In adults, however, the levels appear to be stable. There is accumulating evidence pointing toward a potentially important link between cholesterol, beta-amyloid, and Alzheimer's disease. Concentrations of 24S-hydroxycholesterol in plasma and cerebrospinal fluid (CSF) are significantly higher in Alzheimer's disease and vascular demented patients at early stages of the disease compared to healthy subjects. Variations in genetic background, time of disease onset, and severity of dementia are potential sources of variance. Inhibitors of cholesterol biosynthesis, also termed statins, seem to have a reductive influence on the generation of the amyloid precursor protein, the neuronal secretion of beta-amyloid, and on de novo cholesterol synthesis. Recent epidemiological studies indicate that the prevalence of diagnosed AD and vascular dementia is reduced among people taking statins for a longer period of time. High-dose simvastatin treatment (80 mg/day) in patients with hypercholesterolemia leads to a significant decrease in brain-specific serum 24S-hydroxycholesterol concentrations and indicates a diminished cholesterol metabolism in the brain. CSF levels of cholesterol and lathosterol, a cholesterol precursor considered to be an indicator for cholesterol neogenesis, were significantly decreased in statin-treated subjects compared to non-treated normo- and hypercholesterolemic subjects

  19. Metabolic costs and evolutionary implications of human brain development.

    PubMed

    Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas

    2014-09-09

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.

  20. Mental Illness And Brain Disease.

    PubMed

    Bedrick, Jeffrey D

    2014-01-01

    It has become common to say psychiatric illnesses are brain diseases. This reflects a conception of the mental as being biologically based, though it is also thought that thinking of psychiatric illness this way will reduce the stigma attached to psychiatric illness. If psychiatric illnesses are brain diseases, however, it is not clear why psychiatry should not collapse into neurology, and some argue for this course. Others try to maintain a distinction by saying that neurology deals with abnormalities of neural structure while psychiatry deals with specific abnormalities of neural functioning. It is not clear that neurologists would accept this division, nor that they should. I argue that if we take seriously the notion that psychiatric illnesses are mental illnesses we can draw a more defensible boundary between psychiatry and neurology. As mental illnesses, psychiatric illnesses must have symptoms that affect our mental capacities and that the sufferer is capable of being aware of, even if they are not always self-consciously aware of them. Neurological illnesses, such as stroke or multiple sclerosis, may be diagnosed even if they are silent, just as the person may not be aware of having high blood pressure or may suffer a silent myocardial infarction. It does not make sense to speak of panic disorder if the person has never had a panic attack, however, or of bipolar disorder in the absence of mood swings. This does not mean psychiatric illnesses are not biologically based. Mental illnesses are illnesses of persons, whereas other illnesses are illnesses of biological individuals.

  1. Altered lipid metabolism in brain injury and disorders.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, J F

    2008-01-01

    Deregulated lipid metabolism may be of particular importance for CNS injuries and disorders, as this organ has the highest lipid concentration next to adipose tissue. Atherosclerosis (a risk factor for ischemic stroke) results from accumulation of LDL-derived lipids in the arterial wall. Pro-inflammatory cytokines (TNF-alpha and IL-1), secretory phospholipase A2 IIA and lipoprotein-PLA2 are implicated in vascular inflammation. These inflammatory responses promote atherosclerotic plaques, formation and release of the blood clot that can induce ischemic stroke. TNF-alpha and IL-1 alter lipid metabolism and stimulate production of eicosanoids, ceramide, and reactive oxygen species that potentiate CNS injuries and certain neurological disorders. Cholesterol is an important regulator of lipid organization and the precursor for neurosteroid biosynthesis. Low levels of neurosteroids were related to poor outcome in many brain pathologies. Apolipoprotein E is the principal cholesterol carrier protein in the brain, and the gene encoding the variant Apolipoprotein E4 is a significant risk factor for Alzheimer's disease. Parkinson's disease is to some degree caused by lipid peroxidation due to phospholipases activation. Niemann-Pick diseases A and B are due to acidic sphingomyelinase deficiency, resulting in sphingomyelin accumulation, while Niemann-Pick disease C is due to mutations in either the NPC1 or NPC2 genes, resulting in defective cholesterol transport and cholesterol accumulation. Multiple sclerosis is an autoimmune inflammatory demyelinating condition of the CNS. Inhibiting phospholipase A2 attenuated the onset and progression of experimental autoimmune encephalomyelitis. The endocannabinoid system is hypoactive in Huntington's disease. Ethyl-eicosapetaenoate showed promise in clinical trials. Amyotrophic lateral sclerosis causes loss of motorneurons. Cyclooxygenase-2 inhibition reduced spinal neurodegeneration in amyotrophic lateral sclerosis transgenic mice

  2. A cellular perspective on brain energy metabolism and functional imaging.

    PubMed

    Magistretti, Pierre J; Allaman, Igor

    2015-05-20

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and point at a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Ethanol, not metabolized in brain, significantly reduces brain metabolism, probably via specific GABA(A) receptors

    PubMed Central

    Rae, Caroline D.; Davidson, Joanne E.; Maher, Anthony D.; Rowlands, Benjamin D.; Kashem, Mohammed A.; Nasrallah, Fatima A.; Rallapalli, Sundari K.; Cook, James M; Balcar, Vladimir J.

    2014-01-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we used an indirect approach, measuring the effect of alcohol on metabolism of [3-13C]pyruvate in the adult Guinea pig brain cortical tissue slice and comparing the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-13C]ethanol. Ethanol (10, 30 and 60 mM) significantly reduced metabolic flux into all measured isotopomers and reduced all metabolic pool sizes. The metabolic profiles of these three concentrations of ethanol were similar and clustered with that of the α4β3δ positive allosteric modulator DS2 (4-Chloro-N-[2-(2-thienyl)imidazo[1,2a]-pyridin-3-yl]benzamide). Ethanol at a very low concentration (0.1 mM) produced a metabolic profile which clustered with those from inhibitors of GABA uptake, and ligands showing affinity for α5, and to a lesser extent, α1-containing GABA(A)R. There was no measureable metabolism of [1,2-13C]ethanol with no significant incorporation of 13C from [1,2-13C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabeled ethanol. The reduction in metabolism seen in the presence of ethanol is therefore likely to be due to its actions at neurotransmitter receptors, particularly α4β3δ receptors, and not because ethanol is substituting as a substrate or because of the effects of ethanol catabolites acetaldehyde or acetate. We suggest that the stimulatory effects of very low concentrations of ethanol are due to release of GABA via GAT1 and the subsequent interaction of this GABA with local α5-containing, and to a lesser extent, α1-containing GABA(A)R. PMID:24313287

  4. Linking neuronal brain activity to the glucose metabolism

    PubMed Central

    2013-01-01

    Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084

  5. Lipidomics of human brain aging and Alzheimer's disease pathology.

    PubMed

    Naudí, Alba; Cabré, Rosanna; Jové, Mariona; Ayala, Victoria; Gonzalo, Hugo; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2015-01-01

    Lipids stimulated and favored the evolution of the brain. Adult human brain contains a large amount of lipids, and the largest diversity of lipid classes and lipid molecular species. Lipidomics is defined as "the full characterization of lipid molecular species and of their biological roles with respect to expression of proteins involved in lipid metabolism and function, including gene regulation." Therefore, the study of brain lipidomics can help to unravel the diversity and to disclose the specificity of these lipid traits and its alterations in neural (neurons and glial) cells, groups of neural cells, brain, and fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of human brain aging and Alzheimer disease. This review will discuss the lipid composition of the adult human brain. We first consider a brief approach to lipid definition, classification, and tools for analysis from the new point of view that has emerged with lipidomics, and then turn to the lipid profiles in human brain and how lipids affect brain function. Finally, we focus on the current status of lipidomics findings in human brain aging and Alzheimer's disease pathology. Neurolipidomics will increase knowledge about physiological and pathological functions of brain cells and will place the concept of selective neuronal vulnerability in a lipid context. © 2015 Elsevier Inc. All rights reserved.

  6. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    PubMed Central

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  7. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  8. Mapping Metabolic Brain Activity in Three Models of Hepatic Encephalopathy

    PubMed Central

    Méndez, Marta; Fidalgo, Camino; Aller, María Ángeles; Arias, Jaime; Arias, Jorge L.

    2013-01-01

    Cirrhosis is a common disease in Western countries. Liver failure, hyperammonemia, and portal hypertension are the main factors that contribute to human cirrhosis that frequently leads to a neuropsychiatric disorder known as hepatic encephalopathy (HE). In this study, we examined the differential contribution of these leading factors to the oxidative metabolism of diverse brain limbic system regions frequently involved in memory process by histochemical labelling of cytochrome oxidase (COx). We have analyzed cortical structures such as the infralimbic and prelimbic cotices, subcortical structures such as hippocampus and ventral striatum, at thalamic level like the anterodorsal, anteroventral, and mediodorsal thalamus, and, finally, the hypothalamus, where the mammillary nuclei (medial and lateral) were measured. The severest alteration is found in the model that mimics intoxication by ammonia, followed by the thioacetamide-treated group and the portal hypertension group. No changes were found at the mammillary bodies for any of the experimental groups. PMID:23573412

  9. Bone scan in metabolic bone diseases. Review.

    PubMed

    Abdelrazek, Saeid; Szumowski, Piotr; Rogowski, Franciszek; Kociura-Sawicka, Agnieszka; Mojsak, Małgorzata; Szorc, Małgorzata

    2012-08-25

    Metabolic bone disease encompasses a number of disorders that tend to present a generalized involvement of the whole skeleton. The disorders are mostly related to increased bone turnover and increased uptake of radiolabelled diphosphonate. Skeletal uptake of 99mTc-labelled diphosphonate depends primarily upon osteoblastic activity, and to a lesser extent, skeletal vascularity. A bone scan image therefore presents a functional display of total skeletal metabolism and has valuable role to play in the assessment of patients with metabolic bone disorders. However, the bone scan appearances in metabolic bone disease are often non-specific, and their recognition depends on increased tracer uptake throughout the whole skeleton. It is the presence of local lesions, as in metastatic disease, that makes a bone scan appearance obviously abnormal. In the early stages, there will be difficulty in evaluating the bone scans from many patients with metabolic bone disease. However, in the more severe cases scan appearances can be quite striking and virtually diagnostic.

  10. Brain-Reactive Antibodies and Disease

    PubMed Central

    Diamond, B.; Honig, G.; Mader, S.; Brimberg, L.; Volpe, B.T.

    2015-01-01

    Autoimmune diseases currently affect 5–7% of the world's population; in most diseases there are circulating autoantibodies. Brain-reactive antibodies are present in approximately 2–3% of the general population but do not usually contribute to brain pathology. These antibodies penetrate brain tissue only early in development or under pathologic conditions. This restriction on their pathogenicity and the lack of correlation between serum titers and brain pathology have, no doubt, contributed to a delayed appreciation of the contribution of autoantibodies in diseases of the central nervous system. Nonetheless, it is increasingly clear that antibodies can cause damage in the brain and likely initiate or aggravate multiple neurologic conditions; brain-reactive antibodies contribute to symptomatology in autoimmune disease, infectious disease, and malignancy. PMID:23516983

  11. Metabolic costs and evolutionary implications of human brain development

    PubMed Central

    Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas

    2014-01-01

    The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149

  12. Retinal Oximetry Discovers Novel Biomarkers in Retinal and Brain Diseases.

    PubMed

    Stefánsson, Einar; Olafsdottir, Olof Birna; Einarsdottir, Anna Bryndis; Eliasdottir, Thorunn Scheving; Eysteinsson, Thor; Vehmeijer, Wouter; Vandewalle, Evelien; Bek, Toke; Hardarson, Sveinn Hakon

    2017-05-01

    Biomarkers for several eye and brain diseases are reviewed, where retinal oximetry may help confirm diagnosis or measure severity of disease. These include diabetic retinopathy, central retinal vein occlusion (CRVO), retinitis pigmentosa, glaucoma, and Alzheimer's disease. Retinal oximetry is based on spectrophotometric fundus imaging and measures oxygen saturation in retinal arterioles and venules in a noninvasive, quick, safe manner. Retinal oximetry detects changes in oxygen metabolism, including those that result from ischemia or atrophy. In diabetic retinopathy, venous oxygen saturation increases and arteriovenous difference decreases. Both correlate with diabetic retinopathy severity as conventionally classified on fundus photographs. In CRVO, vein occlusion causes hypoxia, which is measured directly by retinal oximetry to confirm the diagnosis and measure severity. In both diseases, the change in oxygen levels is a consequence of disturbed blood flow with resulting tissue hypoxia and vascular endothelial growth factor (VEGF) production. In atrophic diseases, such as retinitis pigmentosa and glaucoma, retinal oxygen consumption is reduced and this is detected by retinal oximetry. Retinal oximetry correlates with visual field damage and retinal atrophy. It is an objective metabolic measure of the degree of retinal atrophy. Finally, the retina is part of the central nervous system tissue and reflects central nervous system diseases. In Alzheimer's disease, a change in retinal oxygen metabolism has been discovered. Retinal oximetry is a novel, noninvasive technology that opens the field of metabolic imaging of the retina. Biomarkers in metabolic, ischemic, and atrophic diseases of the retina and central nervous system have been discovered.

  13. Cholesterol in brain disease: sometimes determinant and frequently implicated

    PubMed Central

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  14. Metabolic connectomics targeting brain pathology in dementia with Lewy bodies.

    PubMed

    Caminiti, Silvia P; Tettamanti, Marco; Sala, Arianna; Presotto, Luca; Iannaccone, Sandro; Cappa, Stefano F; Magnani, Giuseppe; Perani, Daniela

    2017-04-01

    Dementia with Lewy bodies is characterized by α-synuclein accumulation and degeneration of dopaminergic and cholinergic pathways. To gain an overview of brain systems affected by neurodegeneration, we characterized the [18F]FDG-PET metabolic connectivity in 42 dementia with Lewy bodies patients, as compared to 42 healthy controls, using sparse inverse covariance estimation method and graph theory. We performed whole-brain and anatomically driven analyses, targeting cholinergic and dopaminergic pathways, and the α-synuclein spreading. The first revealed substantial alterations in connectivity indexes, brain modularity, and hubs configuration. Namely, decreases in local metabolic connectivity within occipital cortex, thalamus, and cerebellum, and increases within frontal, temporal, parietal, and basal ganglia regions. There were also long-range disconnections among these brain regions, all supporting a disruption of the functional hierarchy characterizing the normal brain. The anatomically driven analysis revealed alterations within brain structures early affected by α-synuclein pathology, supporting Braak's early pathological staging in dementia with Lewy bodies. The dopaminergic striato-cortical pathway was severely affected, as well as the cholinergic networks, with an extensive decrease in connectivity in Ch1-Ch2, Ch5-Ch6 networks, and the lateral Ch4 capsular network significantly towards the occipital cortex. These altered patterns of metabolic connectivity unveil a new in vivo scenario for dementia with Lewy bodies underlying pathology in terms of changes in whole-brain metabolic connectivity, spreading of α-synuclein, and neurotransmission impairment.

  15. Brain hydrogen sulfide is severely decreased in Alzheimer's disease.

    PubMed

    Eto, Ko; Asada, Takashi; Arima, Kunimasa; Makifuchi, Takao; Kimura, Hideo

    2002-05-24

    Although hydrogen sulfide (H2S) is generally thought of in terms of a poisonous gas, it is endogenously produced in the brain from cysteine by cystathionine beta-synthase (CBS). H2S functions as a neuromodulator as well as a smooth muscle relaxant. Here we show that the levels of H2S are severely decreased in the brains of Alzheimer's disease (AD) patients compared with the brains of the age matched normal individuals. In addition to H2S production CBS also catalyzes another metabolic pathway in which cystathionine is produced from the substrate homocysteine. Previous findings, which showed that S-adenosyl-l-methionine (SAM), a CBS activator, is much reduced in AD brain and that homocysteine accumulates in the serum of AD patients, were confirmed. These observations suggest that CBS activity is reduced in AD brains and the decrease in H2S may be involved in some aspects of the cognitive decline in AD.

  16. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling

    PubMed Central

    Malinovskaya, Natalia A.; Komleva, Yulia K.; Salmin, Vladimir V.; Morgun, Andrey V.; Shuvaev, Anton N.; Panina, Yulia A.; Boitsova, Elizaveta B.; Salmina, Alla B.

    2016-01-01

    Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies. PMID:27990124

  17. Effects of brain evolution on human nutrition and metabolism.

    PubMed

    Leonard, William R; Snodgrass, J Josh; Robertson, Marcia L

    2007-01-01

    The evolution of large human brain size has had important implications for the nutritional biology of our species. Large brains are energetically expensive, and humans expend a larger proportion of their energy budget on brain metabolism than other primates. The high costs of large human brains are supported, in part, by our energy- and nutrient-rich diets. Among primates, relative brain size is positively correlated with dietary quality, and humans fall at the positive end of this relationship. Consistent with an adaptation to a high-quality diet, humans have relatively small gastrointestinal tracts. In addition, humans are relatively "undermuscled" and "over fat" compared with other primates, features that help to offset the high energy demands of our brains. Paleontological evidence indicates that rapid brain evolution occurred with the emergence of Homo erectus 1.8 million years ago and was associated with important changes in diet, body size, and foraging behavior.

  18. Aluminium in brain tissue in familial Alzheimer's disease.

    PubMed

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease.

  19. Circadian rhythms in liver metabolism and disease

    PubMed Central

    Ferrell, Jessica M.; Chiang, John Y.L.

    2015-01-01

    Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease. PMID:26579436

  20. Circadian rhythms in liver metabolism and disease.

    PubMed

    Ferrell, Jessica M; Chiang, John Y L

    2015-03-01

    Mounting research evidence demonstrates a significant negative impact of circadian disruption on human health. Shift work, chronic jet lag and sleep disturbances are associated with increased incidence of metabolic syndrome, and consequently result in obesity, type 2 diabetes and dyslipidemia. Here, these associations are reviewed with respect to liver metabolism and disease.

  1. Aging elevates metabolic gene expression in brain cholinergic neurons.

    PubMed

    Baskerville, Karen A; Kent, Caroline; Personett, David; Lai, Weil R; Park, Peter J; Coleman, Paul; McKinney, Michael

    2008-12-01

    The basal forebrain (BF) cholinergic system is selectively vulnerable in human brain diseases, while the cholinergic groups in the upper pons of the brainstem (BS) resist neurodegeneration. Cholinergic neurons (200 per region per animal) were laser-microdissected from five young (8 months) and five aged (24 months) F344 rats from the BF and the BS pontine lateral dorsal tegmental/pedunculopontine nuclei (LDTN/PPN) and their expression profiles were obtained. The bioinformatics program SigPathway was used to identify gene groups and pathways that were selectively affected by aging. In the BF cholinergic system, aging most significantly altered genes involved with a variety of metabolic functions. In contrast, BS cholinergic neuronal age effects included gene groupings related to neuronal plasticity and a broad range of normal cellular functions. Transcription factor GA-binding protein alpha (GABPalpha), which controls expression of nuclear genes encoding mitochondrial proteins, was more strongly upregulated in the BF cholinergic neurons (+107%) than in the BS cholinergic population (+40%). The results suggest that aging elicits elevates metabolic activity in cholinergic populations and that this occurs to a much greater degree in the BF group than in the BS group.

  2. Brain natriuretic peptide administered to man: actions and metabolism.

    PubMed

    McGregor, A; Richards, M; Espiner, E; Yandle, T; Ikram, H

    1990-04-01

    To investigate the effects and metabolism of brain natriuretic peptide (BNP) in man, eight normal subjects received 3-h infusions of synthetic porcine BNP (2 pmol/kg.min) in a placebo-controlled study. The MCR and plasma half-life of BNP were 2.69 L/min and 3.1 min, respectively. BNP clearly suppressed PRA to less than 50% of placebo values (P less than 0.001). Plasma aldosterone concentrations were also significantly reduced by 30% (P less than 0.05). Urinary sodium excretion tended to rise (P = 0.054), and urinary cGMP excretion was clearly enhanced (P less than 0.01). Systemic and renal hemodynamics, hematocrit, plasma protein concentrations, plasma ACTH, arginine vasopressin, PRL, and catecholamines were unchanged. Porcine BNP has a similar range of effects and is similarly metabolized in man as human ANP. Further elucidation of the possible role of BNP as a circulating hormone in man awaits measurement of tissue and plasma concentrations of human BNP in health and disease and provision of fuller dose-response data for human as well as porcine BNP.

  3. Targeting energy metabolism in brain cancer: review and hypothesis.

    PubMed

    Seyfried, Thomas N; Mukherjee, Purna

    2005-10-21

    Malignant brain tumors are a significant health problem in children and adults and are often unmanageable. As a metabolic disorder involving the dysregulation of glycolysis and respiration, malignant brain cancer is potentially manageable through changes in metabolic environment. A radically different approach to brain cancer management is proposed that combines metabolic control analysis with the evolutionarily conserved capacity of normal cells to survive extreme shifts in physiological environment. In contrast to malignant brain tumors that are largely dependent on glycolysis for energy, normal neurons and glia readily transition to ketone bodies (beta-hydroxybutyrate) for energy in vivo when glucose levels are reduced. The bioenergetic transition from glucose to ketone bodies metabolically targets brain tumors through integrated anti-inflammatory, anti-angiogenic, and pro-apoptotic mechanisms. The approach focuses more on the genomic flexibility of normal cells than on the genomic defects of tumor cells and is supported from recent studies in orthotopic mouse brain tumor models and in human pediatric astrocytoma treated with dietary energy restriction and the ketogenic diet.

  4. Reproducibility of regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |

    1996-10-01

    Changes in regional brain glucose metabolism in response to benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men underwent scanning with PET and [{sup 18}F]fluorodeoxyglucose (FDG) twice: before placebo and before lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 wk later on the men to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained from the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased both whole-brain metabolism and the magnitude. The regional pattern of the changes were comparable for both studies (12.3% {plus_minus} 6.9% and 13.7% {plus_minus} 7.4%). Lorazepam effects were the largest in the thalamus (22.2% {plus_minus} 8.6% and 22.4% {plus_minus} 6.9%) and occipital cortex (19% {plus_minus} 8.9% and 21.8% {plus_minus} 8.9%). Relative metabolic measures were highly reproducible both for pharmacolgic and replication condition. This study measured the test-retest reproducibility in regional brain metabolic responses, and although the global and regional metabolic values were significantly lower for the repeated evaluation, the response to lorazepam was highly reproducible. 1613 refs., 3 figs., 3 tabs.

  5. Devastating metabolic brain disorders of newborns and young infants.

    PubMed

    Yoon, Hyun Jung; Kim, Ji Hye; Jeon, Tae Yeon; Yoo, So-Young; Eo, Hong

    2014-01-01

    Metabolic disorders of the brain that manifest in the neonatal or early infantile period are usually associated with acute and severe illness and are thus referred to as devastating metabolic disorders. Most of these disorders may be classified as organic acid disorders, amino acid metabolism disorders, primary lactic acidosis, or fatty acid oxidation disorders. Each disorder has distinctive clinical, biochemical, and radiologic features. Early diagnosis is important both for prompt treatment to prevent death or serious sequelae and for genetic counseling. However, diagnosis is often challenging because many findings overlap and may mimic those of more common neonatal conditions, such as hypoxic-ischemic encephalopathy and infection. Ultrasonography (US) may be an initial screening method for the neonatal brain, and magnetic resonance (MR) imaging is the modality of choice for evaluating metabolic brain disorders. Although nonspecific imaging findings are common in early-onset metabolic disorders, characteristic patterns of brain involvement have been described for several disorders. In addition, diffusion-weighted images may be used to characterize edema during an acute episode of encephalopathy, and MR spectroscopy depicts changes in metabolites that may help diagnose metabolic disorders and assess response to treatment. Imaging findings, including those of advanced MR imaging techniques, must be closely reviewed. If one of these rare disorders is suspected, the appropriate biochemical test or analysis of the specific gene should be performed to confirm the diagnosis.

  6. Influence of Metabolism on Epigenetics and Disease

    PubMed Central

    Kaelin, William G.; McKnight, Steven L.

    2013-01-01

    Chemical modifications of histones and DNA, such as histone methylation, histone acetylation, and DNA methylation, play critical roles in epigenetic gene regulation. Many of the enzymes that add or remove such chemical modifications are known, or might be suspected, to be sensitive to changes in intracellular metabolism. This knowledge provides a conceptual foundation for understanding how mutations in the metabolic enzymes SDH, FH, and IDH can result in cancer and, more broadly, for how alterations in metabolism and nutrition might contribute to disease. Here, we review literature pertinent to hypothetical connections between metabolic and epigenetic states in eukaryotic cells. PMID:23540690

  7. Drosophila melanogaster as a Model Organism of Brain Diseases

    PubMed Central

    Jeibmann, Astrid; Paulus, Werner

    2009-01-01

    Drosophila melanogaster has been utilized to model human brain diseases. In most of these invertebrate transgenic models, some aspects of human disease are reproduced. Although investigation of rodent models has been of significant impact, invertebrate models offer a wide variety of experimental tools that can potentially address some of the outstanding questions underlying neurological disease. This review considers what has been gleaned from invertebrate models of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, metabolic diseases such as Leigh disease, Niemann-Pick disease and ceroid lipofuscinoses, tumor syndromes such as neurofibromatosis and tuberous sclerosis, epilepsy as well as CNS injury. It is to be expected that genetic tools in Drosophila will reveal new pathways and interactions, which hopefully will result in molecular based therapy approaches. PMID:19333415

  8. Abnormal erythrocyte metabolism in hepatic disease.

    PubMed

    Smith, J R; Kay, N E; Gottlieb, A J; Oski, F A

    1975-12-01

    Erythrocyte (RBC) metabolic studies were done on 114 patients with severe hepatic disease. Heinz body formation after incubation of RBCs with acetyl phenylhydrazine was found to be significantly higher in patients than in controls. RBC-reduced glutathione levels were lower than those of controls both before and after incubation with acetyl phenylhydrazine, and patients with the highest Heinz body counts had the lowest reduced glutathione levels. RBC methylene blue-stimulated hexose monophosphate (HMP) shunt metabolism and glucose recycling through the shunt were significantly lower in patients with active hepatic disease than in controls. There was no difference in resting HMP shunt activity or in resting recycling of glucose. Despite impairment of shunt metabolism, total glucose consumption was greater in patients than in controls. The patients with the lowest stimulated HMP shunt metabolism and glucose recycling had the highest Heinz body counts, lowest reduced glutathione, and highest total glucose consumption. A continuum of abnormal shunt metabolism was seen, from a mild reduction of stimulated HMP shunt activity to a severe combined decrease in both the HMP shunt and glucose recycling. When measured, glutathione reductase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, and transketolase were normal or increased. Sequential studies were done on 11 patients who had abnormal metabolic studies. Coincident with improvement of HMP shunt metabolism, the Heinz body counts became lower, reduced glutathione higher, hematocrit higher, and liver function improved. Impaired HMP shunt metabolism appears to be a common, acquired RBC abnormality in patients with severe, active liver disease.

  9. The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain.

    PubMed

    García-Suástegui, W A; Ramos-Chávez, L A; Rubio-Osornio, M; Calvillo-Velasco, M; Atzin-Méndez, J A; Guevara, J; Silva-Adaya, D

    2017-01-01

    Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism.

  10. The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain

    PubMed Central

    García-Suástegui, W. A.; Ramos-Chávez, L. A.; Rubio-Osornio, M.; Calvillo-Velasco, M.; Atzin-Méndez, J. A.; Guevara, J.

    2017-01-01

    Organisms have metabolic pathways that are responsible for removing toxic agents. We always associate the liver as the major organ responsible for detoxification of the body; however this process occurs in many tissues. In the same way, as in the liver, the brain expresses metabolic pathways associated with the elimination of xenobiotics. Besides the detoxifying role of CYP2E1 for compounds such as electrophilic agents, reactive oxygen species, free radical products, and the bioactivation of xenobiotics, CYP2E1 is also related in several diseases and pathophysiological conditions. In this review, we describe the presence of phase I monooxygenase CYP2E1 in regions of the brain. We also explore the conditions where protein, mRNA, and the activity of CYP2E1 are induced. Finally, we describe the relation of CYP2E1 in brain disorders, including the behavioral relations for alcohol consumption via CYP2E1 metabolism. PMID:28163821

  11. The metabolism of malate by cultured rat brain astrocytes

    SciTech Connect

    McKenna, M.C.; Tildon, J.T.; Couto, R.; Stevenson, J.H.; Caprio, F.J. )

    1990-12-01

    Since malate is known to play an important role in a variety of functions in the brain including energy metabolism, the transfer of reducing equivalents and possibly metabolic trafficking between different cell types; a series of biochemical determinations were initiated to evaluate the rate of 14CO2 production from L-(U-14C)malate in rat brain astrocytes. The 14CO2 production from labeled malate was almost totally suppressed by the metabolic inhibitors rotenone and antimycin A suggesting that most of malate metabolism was coupled to the electron transport system. A double reciprocal plot of the 14CO2 production from the metabolism of labeled malate revealed biphasic kinetics with two apparent Km and Vmax values suggesting the presence of more than one mechanism of malate metabolism in these cells. Subsequent experiments were carried out using 0.01 mM and 0.5 mM malate to determine whether the addition of effectors would differentially alter the metabolism of high and low concentrations of malate. Effectors studied included compounds which could be endogenous regulators of malate metabolism and metabolic inhibitors which would provide information regarding the mechanisms regulating malate metabolism. Both lactate and aspartate decreased 14CO2 production from malate equally. However, a number of effectors were identified which selectively altered the metabolism of 0.01 mM malate including aminooxyacetate, furosemide, N-acetylaspartate, oxaloacetate, pyruvate and glucose, but had little or no effect on the metabolism of 0.5 mM malate. In addition, alpha-ketoglutarate and succinate decreased 14CO2 production from 0.01 mM malate much more than from 0.5 mM malate. In contrast, a number of effectors altered the metabolism of 0.5 mM malate more than 0.01 mM. These included methionine sulfoximine, glutamate, malonate, alpha-cyano-4-hydroxycinnamate and ouabain.

  12. Regulation of pyruvate metabolism and human disease.

    PubMed

    Gray, Lawrence R; Tompkins, Sean C; Taylor, Eric B

    2014-07-01

    Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.

  13. Metabolic Disturbances in Diseases with Neurological Involvement

    PubMed Central

    Duarte, João M. N.; Schuck, Patrícia F.; Wenk, Gary L.; Ferreira, Gustavo C.

    2014-01-01

    Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites. In this review we shall discuss some metabolic alterations related to the pathophysiology of diseases with neurological involvement and aging process. These findings may help identifying early disease biomarkers and lead to more effective therapies to improve the quality of life of the patients affected by these devastating illnesses. PMID:25110608

  14. [Hearing and balance in metabolic bone diseases].

    PubMed

    Zatoński, Tomasz; Temporale, Hanna; Krecicki, Tomasz

    2012-03-01

    There are reports that hearing loss is one of the clinical manifestations of metabolic bone diseases. Demineralization can lead to a reduction in ossicular mass. Paget's disease can reveal loss of mineral density of the cochlear bone. Ear bone remodeling in osteoporosis is similar to the changes in otosclerosis. Moreover, osteoporosis, osteogenesis imperfecta and otosclerosis have a similar genetic mechanism. According to some researchers osteopenia and osteoporosis may well be associated with idiopathic benign positional vertigo (BPV). Dysfunction of the organ of hearing and balance in patients with renal insufficiency may be due to disturbances in calcium phosphate balance and renal osteodystrophy in the course of the disease. Proving the presence of hearing loss in patients with metabolic bone diseases may lead to determining the new indications for bone densitometry in some patients with hearing impairment. Furthermore, audiological examination in patients with osteoporosis may be important because of the impact of hearing loss on prognosis for patients with metabolic bone diseases.

  15. Altered cholesterol and fatty acid metabolism in Huntington disease.

    PubMed

    Block, Robert C; Dorsey, E Ray; Beck, Christopher A; Brenna, J Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.

  16. Altered Cholesterol and Fatty Acid Metabolism in Huntington Disease

    PubMed Central

    Block, Robert C.; Dorsey, E. Ray; Beck, Christopher A.; Brenna, J. Thomas; Shoulson, Ira

    2010-01-01

    Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease. PMID:20802793

  17. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    PubMed Central

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively decoupled by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area had a clear vascular pattern and spread wider than the somatosensory region. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism. PMID:22940116

  18. Brain areas and pathways in the regulation of glucose metabolism.

    PubMed

    Diepenbroek, Charlene; Serlie, Mireille J; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes in plasma glucose concentrations, the brain controls a daily rhythm in glucose concentrations. The various nuclei within the hypothalamus that are involved in the control of both these processes are well known. However, novel studies indicate an additional role for brain areas that are originally appreciated in other processes than glucose metabolism. Therefore, besides the classic hypothalamic pathways, we will review cortico-limbic brain areas and their role in glucose metabolism.

  19. Blood-brain barrier dysfunction in brain diseases: clinical experience.

    PubMed

    Schoknecht, Karl; Shalev, Hadar

    2012-11-01

    The blood-brain barrier, a unique feature of the cerebral vasculature, is gaining attention as a feature in common neurologic disorders including stroke, traumatic brain injury, epilepsy, and schizophrenia. Although acute blood-brain barrier dysfunction can induce cerebral edema, seizures, or neuropsychiatric symptoms, epileptogenesis and cognitive decline are among the chronic effects. The mechanisms underlying blood-brain barrier dysfunction are diverse and may range from physical endothelial damage in traumatic brain injury to degradation of extracellular matrix proteins via matrix metalloproteinases as part of an inflammatory response. Clinically, blood-brain barrier dysfunction is often detected using contrast-enhanced imaging. However, these techniques do not give any insights into the underlying mechanism. Elucidating the specific pathways of blood-brain barrier dysfunction at different time points and in different brain diseases using novel imaging techniques promises a more accurate blood-brain barrier terminology as well as new treatment options and personalized treatment. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  20. The burden of brain diseases in Europe.

    PubMed

    Olesen, J; Leonardi, M

    2003-09-01

    The burden [as defined by the World Health Organisation (WHO)] of brain diseases (neurological, neurosurgical and psychiatric diseases together) is very high and yet resources spent on these diseases are not necessarily commensurate with the extent of this burden. However, hard data on the burden of brain diseases in Europe have not previously been easily accessible. The Global Burden of Disease (GBD) 1990 study conducted jointly by the WHO, Harvard University and the World Bank provided new measures that are now becoming universally accepted and have been used also in a repeat study: The GBD 2000. The key parameter of the study is disability adjusted life years (DALY), which is the sum of years of life lost (YLL) caused by premature death and years of life lived with disability (YLD). In the present report, data from the GBD 2000 study and from the World Health Report 2001 on brain diseases is extracted for the territory of Europe. This territory corresponds roughly to the membership countries of the European Federation of Neurological Societies. The WHO's Report has a category called neuropsychiatric diseases, which comprises the majority but not all the brain diseases. In order to gather all brain diseases, stroke, meningitis, half of the burden of injuries and half of the burden of congenital abnormalities are added. Throughout Europe, 23% of the years of healthy life is lost and 50% of YLD are caused by brain diseases. Regarding the key summary measure of lost health, DALY, 35% are because of brain diseases. The fact that approximately one-third of all burden of disease is caused by brain diseases should have an impact on resource allocation to teaching, reasearch, health care and prevention. Although other factors are also of importance, it seems reasonable that one-third of the curriculum at medical school should deal with the brain and that one-third of life science funding should go to basic and clinical neuroscience. In addition, resource allocation to

  1. Brain lactate metabolism: the discoveries and the controversies.

    PubMed

    Dienel, Gerald A

    2012-07-01

    Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an 'opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain.

  2. The metabolic comparison of HPD in normal brain tissue and s180 sarcoma in brain

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhu, Jing; Zhang, Huiguo

    2005-07-01

    Objective: Search The Metabolic Comparision of HPD in Normal Brain Tissue and S180 sarcoma in brain. Methods: Xe laser photoradiation of normal brain tissue and S180 sarcoma in brain to excite fluorescence was performed at different time after the injection of hematoporphyrin derivative (HpD) in normal rats and rats with S180 sarcoma of Brain. We analysed HPD fluorescence lifetime imaging (wavelength: 630 nm and 690 nm) of two rat team with OMA. Result: We concluded the peak intensity of HPD fluorescence fell obviously in normal brain three hours later after injection, while it still retained high HPD concentration in sarcoma of Brain. Conclusion: first-rank time the 4~5 hours after injection of HPD is first-rank time 0f PDT and photosensitive diagnose in sarcoma of Brain of rat

  3. Neurosteroid metabolism in the human brain.

    PubMed

    Stoffel-Wagner, B

    2001-12-01

    This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now firmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase in human brain. The functions attributed to specific neurosteroids include modulation of gamma-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The first clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and their actions on the brain seems to open new perspectives in the understanding of the physiology of the human brain as well as in the pharmacological treatment of its disturbances.

  4. CYP-mediated drug metabolism in the brain impacts drug response.

    PubMed

    McMillan, Douglas M; Tyndale, Rachel F

    2017-10-09

    The functional role of cytochrome P450 (CYP) enzymes in the brain is an exciting and evolving field of research. CYPs are present and active in the brain, with heterogeneous patterns of expression, activity, and sensitivity to modulation across cell types, regions, and species. Despite total brain CYP expression being a fraction of hepatic CYP expression, the expanding literature of in vitro and in vivo experiments have provided evidence that brain CYPs can impact acute and chronic drug response, susceptibility to damage by neurotoxins, and are associated with altered personality, behaviour, and risk of neurological disease. They may also play a role in endogenous neurotransmitter and neurosteroid homeostasis. This review goes through the characterization of brain CYPs across species, the patterns of susceptibility of brain CYPs to exogenous induction, and recent preclinical evidence of the potential role of brain CYPs in vivo (e.g. CYP2D), along with the development of experiment paradigms that allow modulation of brain CYP activity without affecting CYP activity in the liver. Understanding brain CYP function, and changes therein, may provide unique strategies for the development of CNS-acting therapeutics metabolized locally in the brain, as well as therapeutics to target brain CYPs directly. Copyright © 2017. Published by Elsevier Inc.

  5. Brain Metabolic Changes in Rats following Acoustic Trauma.

    PubMed

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive "tinnitus-causing" network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine

  6. Brain Metabolic Changes in Rats following Acoustic Trauma

    PubMed Central

    He, Jun; Zhu, Yejin; Aa, Jiye; Smith, Paul F.; De Ridder, Dirk; Wang, Guangji; Zheng, Yiwen

    2017-01-01

    Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive “tinnitus-causing” network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine

  7. Ethanol effects on rat brain phosphoinositide metabolism

    SciTech Connect

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  8. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    PubMed

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Increased serum brain-derived neurotrophic factor in male schizophrenic patients with metabolic syndrome

    PubMed Central

    Lin, Chin-Chuen; Hung, Yi-Yung; Tsai, Meng-Chang; Huang, Tiao-Lai

    2017-01-01

    Abstract Increased prevalence of metabolic syndrome was found in patients with schizophrenia. Brain-derived neurotrophic factor (BDNF) was involved in energy metabolism and the pathophysiology of schizophrenia, but differently in males and females. We aimed to investigate the serum BDNF levels in patients with schizophrenia with and without metabolic syndrome. Patients with schizophrenia were recruited. Their demographic data were collected. Metabolic profiles and serum BDNF levels were measured. Clinical symptoms were evaluated with Positive and Negative Syndrome Scale. Metabolic syndrome was determined with the criteria provided by Ministry of Health and Welfare of Taiwan. Framingham Risk Score (FRS) for estimate of 10-year risk for coronary heart disease was provided by National Institutes of Health. Of the 81 participants, 40.7% had metabolic syndrome. Those with metabolic syndrome had higher FRS. Using analysis of covariance adjusted for age and body mass index, male patients with schizophrenia with metabolic syndrome had higher serum BDNF levels than those without (4.6 ± 4.7 vs 3.3 ± 3.8 ng/mL, P = .022). No statistical difference was found between female patients with and without metabolic syndrome. Significant differences of serum BDNF levels were found between male patients with schizophrenia with and without metabolic syndrome, but not in females. This finding suggested the gender difference behind the mechanism of BDNF in metabolic syndrome in schizophrenia. PMID:28562580

  10. Modeling neurodegenerative disease pathophysiology in thiamine deficiency: consequences of impaired oxidative metabolism.

    PubMed

    Jhala, Shivraj S; Hazell, Alan S

    2011-02-01

    Emerging evidence suggests that thiamine deficiency (TD), the cause of Wernicke's encephalopathy, produces alterations in brain function and structural damage that closely model a number of maladies in which neurodegeneration is a characteristic feature, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, along with alcoholic brain disease, stroke, and traumatic brain injury. Impaired oxidative metabolism in TD due to decreased activity of thiamine-dependent enzymes leads to a multifactorial cascade of events in the brain that include focal decreases in energy status, oxidative stress, lactic acidosis, blood-brain barrier disruption, astrocyte dysfunction, glutamate-mediated excitotoxicity, amyloid deposition, decreased glucose utilization, immediate-early gene induction, and inflammation. This review describes our current understanding of the basis of these abnormal processes in TD, their interrelationships, and why this disorder can be useful for our understanding of how decreased cerebral energy metabolism can give rise to cell death in different neurodegenerative disease states.

  11. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis

    PubMed Central

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-01-01

    Metabolic homeostasis is regulated by the brain, whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipids levels. Importantly, this function of metabolic learning requires not only the mushroom body but the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis. PMID:25848677

  12. Metabolic learning and memory formation by the brain influence systemic metabolic homeostasis.

    PubMed

    Zhang, Yumin; Liu, Gang; Yan, Jingqi; Zhang, Yalin; Li, Bo; Cai, Dongsheng

    2015-04-07

    Metabolic homeostasis is regulated by the brain, but whether this regulation involves learning and memory of metabolic information remains unexplored. Here we use a calorie-based, taste-independent learning/memory paradigm to show that Drosophila form metabolic memories that help in balancing food choice with caloric intake; however, this metabolic learning or memory is lost under chronic high-calorie feeding. We show that loss of individual learning/memory-regulating genes causes a metabolic learning defect, leading to elevated trehalose and lipid levels. Importantly, this function of metabolic learning requires not only the mushroom body but also the hypothalamus-like pars intercerebralis, while NF-κB activation in the pars intercerebralis mimics chronic overnutrition in that it causes metabolic learning impairment and disorders. Finally, we evaluate this concept of metabolic learning/memory in mice, suggesting that the hypothalamus is involved in a form of nutritional learning and memory, which is critical for determining resistance or susceptibility to obesity. In conclusion, our data indicate that the brain, and potentially the hypothalamus, direct metabolic learning and the formation of memories, which contribute to the control of systemic metabolic homeostasis.

  13. Nutrient sensing and inflammation in metabolic diseases.

    PubMed

    Hotamisligil, Gökhan S; Erbay, Ebru

    2008-12-01

    The proper functioning of the pathways that are involved in the sensing and management of nutrients is central to metabolic homeostasis and is therefore among the most fundamental requirements for survival. Metabolic systems are integrated with pathogen-sensing and immune responses, and these pathways are evolutionarily conserved. This close functional and molecular integration of the immune and metabolic systems is emerging as a crucial homeostatic mechanism, the dysfunction of which underlies many chronic metabolic diseases, including type 2 diabetes and atherosclerosis. In this Review we provide an overview of several important networks that sense and manage nutrients and discuss how they integrate with immune and inflammatory pathways to influence the physiological and pathological metabolic states in the body.

  14. Small molecules and Alzheimer's disease: misfolding, metabolism and imaging.

    PubMed

    Patel, Viharkumar; Zhang, Xueli; Tautiva, Nicolas A; Nyabera, Akwe N; Owa, Opeyemi O; Baidya, Melvin; Sung, Hee Chang; Taunk, Pardeep S; Abdollahi, Shahrzad; Charles, Stacey; Gonnella, Rachel A; Gadi, Nikhita; Duong, Karen T; Fawver, Janelle N; Ran, Chongzhao; Jalonen, Tuula O; Murray, Ian V J

    2015-01-01

    Small molecule interactions with amyloid proteins have had a huge impact in Alzheimer's disease (AD), especially in three specific areas: amyloid folding, metabolism and brain imaging. Amyloid plaque amelioration or prevention have, until recently, driven drug development, and only a few drugs have been advanced for use in AD. Amyloid proteins undergo misfolding and oligomerization via intermediates, eventually forming protease resistant amyloid fibrils. These fibrils accumulate to form the hallmark amyloid plaques and tangles of AD. Amyloid binding compounds can be grouped into three categories, those that: i) prevent or reverse misfolding, ii) halt misfolding or trap intermediates, and iii) accelerate the formation of stable and inert amyloid fibrils. Such compounds include hydralazine, glycosaminoglycans, curcumin, beta sheet breakers, catecholamines, and ATP. The versatility of amyloid binding compounds suggests that the amyloid structure may serve as a scaffold for the future development of sensors to detect such compounds. Metabolic dysfunction is one of the earliest pathological features of AD. In fact, AD is often referred to as type 3 diabetes due to the presence of insulin resistance in the brain. A recent study indicates that altering metabolism improves cognitive function. While metabolic reprogramming is one therapeutic avenue for AD, it is more widely used in some cancer therapies. FDA approved drugs such as metformin, dichloroacetic acid (DCA), and methylene blue can alter metabolism. These drugs can therefore be potentially applied in alleviating metabolic dysfunction in AD. Brain imaging has made enormous strides over the past decade, offering a new window to the mind. Recently, there has been remarkable development of compounds that have the ability to image both types of pathological amyloids: tau and amyloid beta. We have focused on the low cost, simple to use, near infrared fluorescence (NIRF) imaging probes for amyloid beta (Aβ), with

  15. Fats for thoughts: An update on brain fatty acid metabolism.

    PubMed

    Romano, Adele; Koczwara, Justyna Barbara; Gallelli, Cristina Anna; Vergara, Daniele; Micioni Di Bonaventura, Maria Vittoria; Gaetani, Silvana; Giudetti, Anna Maria

    2017-03-01

    Brain fatty acid (FA) metabolism deserves a close attention not only for its energetic aspects but also because FAs and their metabolites/derivatives are able to influence many neural functions, contributing to brain pathologies or representing potential targets for pharmacological and/or nutritional interventions. Glucose is the preferred energy substrate for the brain, whereas the role of FAs is more marginal. In conditions of decreased glucose supply, ketone bodies, mainly formed by FA oxidation, are the alternative main energy source. Ketogenic diets or medium-chain fatty acid supplementations were shown to produce therapeutic effects in several brain pathologies. Moreover, the positive effects exerted on brain functions by short-chain FAs and the consideration that they can be produced by intestinal flora metabolism contributed to the better understanding of the link between "gut-health" and "brain-health". Finally, attention was paid also to the regulatory role of essential polyunsaturated FAs and their derivatives on brain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hepatic diseases related to triglyceride metabolism.

    PubMed

    Aguilera-Méndez, Asdrubal; Álvarez-Delgado, Carolina; Hernández-Godinez, Daniel; Fernandez-Mejia, Cristina

    2013-10-01

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplastic cells. One of the main medical concerns vis-a-vis hepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis.

  17. Expensive Brains: "Brainy" Rodents have Higher Metabolic Rate.

    PubMed

    Sobrero, Raúl; May-Collado, Laura J; Agnarsson, Ingi; Hernández, Cristián E

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur.

  18. Paternal epigenetic programming: evolving metabolic disease risk.

    PubMed

    Hur, Suzy S J; Cropley, Jennifer E; Suter, Catherine M

    2017-04-01

    Parental health or exposures can affect the lifetime health outcomes of offspring, independently of inherited genotypes. Such 'epigenetic' effects occur over a broad range of environmental stressors, including defects in parental metabolism. Although maternal metabolic effects are well documented, it has only recently been established that that there is also an independent paternal contribution to long-term metabolic health. Both paternal undernutrition and overnutrition can induce metabolic phenotypes in immediate offspring, and in some cases, the induced phenotype can affect multiple generations, implying inheritance of an acquired trait. The male lineage transmission of metabolic disease risk in these cases implicates a heritable factor carried by sperm. Sperm-based transmission provides a tractable system to interrogate heritable epigenetic factors influencing metabolism, and as detailed here, animal models of paternal programming have already provided some significant insights. Here, we review the evidence for paternal programming of metabolism in humans and animal models, and the available evidence on potential underlying mechanisms. Programming by paternal metabolism can be observed in multiple species across animal phyla, suggesting that this phenomenon may have a unique evolutionary significance.

  19. Abnormal regional brain function in Parkinson's disease: truth or fiction?

    PubMed

    Ma, Yilong; Tang, Chengke; Moeller, James R; Eidelberg, David

    2009-04-01

    Normalization of regional measurements by the global mean is commonly employed to minimize inter-subject variability in functional imaging studies. This practice is based on the assumption that global values do not substantially differ between patient and control groups. In this issue of NeuroImage, Borghammer and colleagues challenge the validity of this assumption. They focus on Parkinson's disease (PD) and use computer simulations to show that lower global values can produce spurious increases in subcortical brain regions. The authors speculate that the increased signal observed in these areas in PD is artefactual and unrelated to localized changes in brain function. In this commentary, we summarize what is currently known of the relationship between regional and global metabolic activity in PD and experimental parkinsonism. We found that early stage PD patients exhibit global values that are virtually identical to those of age-matched healthy subjects. SPM analysis revealed increased normalized metabolic activity in a discrete set of biologically relevant subcortical brain regions. Because of their higher variability, the corresponding absolute regional measures did not differ across the two groups. Longitudinal imaging studies in this population showed that the subcortical elevations in normalized metabolism appeared earlier and progressed faster than did focal cortical or global metabolic reductions. The observed increases in subcortical activity, but not the global changes, correlated with independent clinical measures of disease progression. Multivariate analysis with SSM/PCA further confirmed that the abnormal spatial covariance structure of early PD is dominated by these subcortical increases as opposed to network-related reductions in cortical metabolic activity or global changes. Thus, increased subcortical activity in PD cannot be regarded as a simple artefact of global normalization. Moreover, stability of the normalized measurements, particularly at

  20. Metabolic therapy: a new paradigm for managing malignant brain cancer.

    PubMed

    Seyfried, Thomas N; Flores, Roberto; Poff, Angela M; D'Agostino, Dominic P; Mukherjee, Purna

    2015-01-28

    Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.

  1. China Brain Project: Basic Neuroscience, Brain Diseases, and Brain-Inspired Computing.

    PubMed

    Poo, Mu-Ming; Du, Jiu-Lin; Ip, Nancy Y; Xiong, Zhi-Qi; Xu, Bo; Tan, Tieniu

    2016-11-02

    The China Brain Project covers both basic research on neural mechanisms underlying cognition and translational research for the diagnosis and intervention of brain diseases as well as for brain-inspired intelligence technology. We discuss some emerging themes, with emphasis on unique aspects. Copyright © 2016. Published by Elsevier Inc.

  2. Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome.

    PubMed

    Hoffman, Jared D; Parikh, Ishita; Green, Stefan J; Chlipala, George; Mohney, Robert P; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M S; Lin, Ai-Ling

    2017-01-01

    Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer's disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5-6 months of age) and compared those to old mice (18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the

  3. Peripheral cholesterol, metabolic disorders and Alzheimer's disease.

    PubMed

    Ledesma, Maria Dolores; Dotti, Carlos Gerardo

    2012-01-01

    Strong correlations have been made between high levels of blood cholesterol and the risk to suffer Alzheimer's disease (AD). The question arises on how a peripheral event contributes to a disease that so severely affects the integrity and function of the Central Nervous System. Hypercholesterolemia has been also associated to peripheral metabolic disorders like diabetes, obesity or atherosclerosis that, in turn, predispose to AD. Here we review data, which point to alterations in blood cholesterol levels as a link between these metabolic disorders and AD. We describe and discuss common, cholesterol-related, molecular mechanisms and strategies to fight these conditions that, altogether, constitute a major cause of death in our societies.

  4. Control of metabolism by nutrient-regulated nuclear receptors acting in the brain.

    PubMed

    Bantubungi, Kadiombo; Prawitt, Janne; Staels, Bart

    2012-07-01

    Today, we are witnessing a rising incidence of obesity worldwide. This increase is due to a sedentary life style, an increased caloric intake and a decrease in physical activity. Obesity contributes to the appearance of type 2 diabetes, dyslipidemia and cardiovascular complications due to atherosclerosis, and nephropathy. Therefore, the development of new therapeutic strategies may become a necessity. Given the metabolism controlling properties of nuclear receptors in peripheral organs (such as liver, adipose tissues, pancreas) and their implication in various processes underlying metabolic diseases, they constitute interesting therapeutic targets for obesity, dyslipidemia, cardiovascular disease and type 2 diabetes. The recent identification of the central nervous system as a player in the control of peripheral metabolism opens new avenues to our understanding of the pathophysiology of obesity and type 2 diabetes and potential novel ways to treat these diseases. While the metabolic functions of nuclear receptors in peripheral organs have been extensively investigated, little is known about their functions in the brain, in particular with respect to brain control of energy homeostasis. This review provides an overview of the relationships between nuclear receptors in the brain, mainly at the hypothalamic level, and the central regulation of energy homeostasis. In this context, we will particularly focus on the role of PPARα, PPARγ, LXR and Rev-erbα. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Focally perfused succinate potentiates brain metabolism in head injury patients.

    PubMed

    Jalloh, Ibrahim; Helmy, Adel; Howe, Duncan J; Shannon, Richard J; Grice, Peter; Mason, Andrew; Gallagher, Clare N; Stovell, Matthew G; van der Heide, Susan; Murphy, Michael P; Pickard, John D; Menon, David K; Carpenter, T Adrian; Hutchinson, Peter J; Carpenter, Keri Lh

    2016-01-01

    Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism. Microdialysis perfused disodium 2,3-(13)C2 succinate (12 mmol/L) for 24 h into nine sedated traumatic brain injury patients' brains, with simultaneous microdialysate collection for ISCUS analysis of energy metabolism biomarkers (nine patients) and nuclear magnetic resonance of (13)C-labelled metabolites (six patients). Metabolites 2,3-(13)C2 malate and 2,3-(13)C2 glutamine indicated tricarboxylic acid cycle metabolism, and 2,3-(13)C2 lactate suggested tricarboxylic acid cycle spinout of pyruvate (by malic enzyme or phosphoenolpyruvate carboxykinase and pyruvate kinase), then lactate dehydrogenase-mediated conversion to lactate. Versus baseline, succinate perfusion significantly decreased lactate/pyruvate ratio (p = 0.015), mean difference -12%, due to increased pyruvate concentration (+17%); lactate changed little (-3%); concentrations decreased for glutamate (-43%) (p = 0.018) and glucose (-15%) (p = 0.038). Lower lactate/pyruvate ratio suggests better redox status: cytosolic NADH recycled to NAD(+) by mitochondrial shuttles (malate-aspartate and/or glycerol 3-phosphate), diminishing lactate dehydrogenase-mediated pyruvate-to-lactate conversion, and lowering glutamate. Glucose decrease suggests improved utilisation. Direct tricarboxylic acid cycle supplementation with 2,3-(13)C2 succinate improved human traumatic brain injury brain chemistry, indicated by biomarkers and (13)C-labelling patterns in metabolites.

  6. Phosphatidylserine in the brain: metabolism and function.

    PubMed

    Kim, Hee-Yong; Huang, Bill X; Spector, Arthur A

    2014-10-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.

  7. Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation.

    PubMed

    Solis, Ernesto; Bola, R Aaron; Fasulo, Bradley J; Kiyatkin, Eugene A

    2017-02-15

    Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.

  8. Neurodegenerative disorders and metabolic disease.

    PubMed

    Pierre, Germaine

    2013-08-01

    Most genetic causes of neurodegenerative disorders in childhood are due to neurometabolic disease. There are over 200 disorders, including aminoacidopathies, creatine disorders, mitochondrial cytopathies, peroxisomal disorders and lysosomal storage disorders. However, diagnosis can pose a challenge to the clinician when patients present with non-specific problems like epilepsy, developmental delay, autism, dystonia and ataxia. The variety of specialist tests involved can also be daunting. This review aims to give a practical approach to the investigation and diagnosis of neurometabolic disease from the neonatal period to late childhood while prioritising disorders where there are therapeutic options. In particular, patients who have a complex clinical picture of several neurological and non-neurological features should be investigated.

  9. Impaired Brain Creatine Kinase Activity in Huntington's Disease

    PubMed Central

    Zhang, S.F.; Hennessey, T.; Yang, L.; Starkova, N.N.; Beal, M.F.; Starkov, A.A.

    2011-01-01

    Background Huntington's disease (HD) is associated with impaired energy metabolism in the brain. Creatine kinase (CK) catalyzes ATP-dependent phosphorylation of creatine (Cr) into phosphocreatine (PCr), thereby serving as readily available high-capacity spatial and temporal ATP buffering. Objective: Substantial evidence supports a specific role of the Cr/PCr system in neurodegenerative diseases. In the brain, the Cr/PCr ATP-buffering system is established by a concerted operation of the brain-specific cytosolic enzyme BB-CK and ubiquitous mitochondrial uMt-CK. It is not yet established whether the activity of these CK isoenzymes is impaired in HD. Methods We measured PCr, Cr, ATP and ADP in brain extracts of 3 mouse models of HD – R6/2 mice, N171-82Q and HdhQ111 mice – and the activity of CK in cytosolic and mitochondrial brain fractions from the same mice. Results The PCr was significantly increased in mouse HD brain extracts as compared to nontransgenic littermates. We also found an approximately 27% decrease in CK activity in both cytosolic and mitochondrial fractions of R6/2 and N171-82Q mice, and an approximately 25% decrease in the mitochondria from HdhQ111 mice. Moreover, uMt-CK and BB-CK activities were approximately 63% lower in HD human brain samples as compared to nondiseased controls. Conclusion Our findings lend strong support to the role of impaired energy metabolism in HD, and point out the potential importance of impairment of the CK-catalyzed ATP-buffering system in the etiology of HD. PMID:21124007

  10. Impaired brain creatine kinase activity in Huntington's disease.

    PubMed

    Zhang, S F; Hennessey, T; Yang, L; Starkova, N N; Beal, M F; Starkov, A A

    2011-01-01

    Huntington's disease (HD) is associated with impaired energy metabolism in the brain. Creatine kinase (CK) catalyzes ATP-dependent phosphorylation of creatine (Cr) into phosphocreatine (PCr), thereby serving as readily available high-capacity spatial and temporal ATP buffering. Substantial evidence supports a specific role of the Cr/PCr system in neurodegenerative diseases. In the brain, the Cr/PCr ATP-buffering system is established by a concerted operation of the brain-specific cytosolic enzyme BB-CK and ubiquitous mitochondrial uMt-CK. It is not yet established whether the activity of these CK isoenzymes is impaired in HD. We measured PCr, Cr, ATP and ADP in brain extracts of 3 mouse models of HD - R6/2 mice, N171-82Q and HdhQ(111) mice - and the activity of CK in cytosolic and mitochondrial brain fractions from the same mice. The PCr was significantly increased in mouse HD brain extracts as compared to nontransgenic littermates. We also found an approximately 27% decrease in CK activity in both cytosolic and mitochondrial fractions of R6/2 and N171-82Q mice, and an approximately 25% decrease in the mitochondria from HdhQ(111) mice. Moreover, uMt-CK and BB-CK activities were approximately 63% lower in HD human brain samples as compared to nondiseased controls. Our findings lend strong support to the role of impaired energy metabolism in HD, and point out the potential importance of impairment of the CK-catalyzed ATP-buffering system in the etiology of HD. Copyright © 2010 S. Karger AG, Basel.

  11. Effects of Simvastatin on Cholesterol Metabolism and Alzheimer Disease Biomarkers

    PubMed Central

    Serrano-Pozo, Alberto; Vega, Gloria L.; Lütjohann, Dieter; Locascio, Joseph J.; Tennis, Marsha K.; Deng, Amy; Atri, Alireza; Hyman, Bradley T.; Irizarry, Michael C.; Growdon, John H.

    2013-01-01

    Preclinical and epidemiologic studies suggest a protective effect of statins on Alzheimer disease (AD). Experimental evidence indicates that some statins can cross the blood-brain barrier, alter brain cholesterol metabolism, and may ultimately decrease the production of amyloid-β (Aβ) peptide. Despite these promising leads, clinical trials have yielded inconsistent results regarding the benefits of statin treatment in AD. Seeking to detect a biological signal of statins effect on AD, we conducted a 12-week open-label trial with simvastatin 40 mg/d and then 80 mg/d in 12 patients with AD or amnestic mild cognitive impairment and hypercholesterolemia. We quantified cholesterol precursors and metabolites and AD biomarkers of Aβ and tau in both plasma and cerebrospinal fluid at baseline and after the 12-week treatment period. We found a modest but significant inhibition of brain cholesterol biosynthesis after simvastatin treatment, as indexed by a decrease of cerebrospinal fluid lathosterol and plasma 24S-hydroxycholesterol. Despite this effect, there were no changes in AD biomarkers. Our findings indicate that simvastatin treatment can affect brain cholesterol metabolism within 12 weeks, but did not alter molecular indices of AD pathology during this short-term treatment. PMID:20473136

  12. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage

    PubMed Central

    2014-01-01

    Introduction Elevated brain potassium levels ([K+]) are associated with neuronal damage in experimental models. The role of brain extracellular [K+] in patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH) and its association with hemorrhage load, metabolic dysfunction and outcome has not been studied so far. Methods Cerebral microdialysis (CMD) samples from 28 poor grade aSAH patients were analyzed for CMD [K+] for 12 consecutive days after ictus, and time-matched to brain metabolic and hemodynamic parameters as well as corresponding plasma [K+]. Statistical analysis was performed using a generalized estimating equation with an autoregressive function to handle repeated observations of an individual patient. Results CMD [K+] did not correlate with plasma [K+] (Spearman’s ρ = 0.114, P = 0.109). Higher CMD [K+] was associated with the presence of intracerebral hematoma on admission head computed tomography, CMD lactate/pyruvate ratio >40 and CMD lactate >4 mmol/L (P < 0.05). In vitro retrodialysis data suggest that high CMD [K+] was of brain cellular origin. Higher CMD [K+] was significantly associated with poor 3-month outcome, even after adjusting for age and disease severity (P < 0.01). Conclusions The results of this pilot study suggest that brain extracellular [K+] may serve as a biomarker for brain tissue injury in poor-grade aSAH patients. Further studies are needed to elucidate the relevance of brain interstitial K+ levels in the pathophysiology of secondary brain injury after aSAH. PMID:24920041

  13. Metabolic actions of Rho-kinase in periphery and brain

    PubMed Central

    Huang, Hu; Lee, Dae-Ho; Zabolotny, Janice M; Kim, Young-Bum

    2013-01-01

    Obesity has increased at an alarming rate in recent years and is now a worldwide public health problem. Elucidating the mechanisms behind the metabolic dysfunctions associated with obesity is of high priority. The metabolic function of Rho-kinase (ROCK) has been the subject of a great deal of investigation in metabolic-related diseases. It appears that inhibition of ROCK activity is beneficial for the treatment of a wide range of cardiovascular-related diseases. However, recent studies with genetic models of ROCK demonstrate that ROCK plays a positive role in insulin and leptin signaling. Here we discuss the newly identified functions of ROCK in regulating glucose and energy metabolism, with particularly emphasis on metabolic actions of insulin and leptin. PMID:23938132

  14. Metabolomics reveals metabolic biomarkers of Crohn's disease

    SciTech Connect

    Jansson, J.K.; Willing, B.; Lucio, M.; Fekete, A.; Dicksved, J.; Halfvarson, J.; Tysk, C.; Schmitt-Kopplin, P.

    2009-06-01

    The causes and etiology of Crohn's disease (CD) are currently unknown although both host genetics and environmental factors play a role. Here we used non-targeted metabolic profiling to determine the contribution of metabolites produced by the gut microbiota towards disease status of the host. Ion Cyclotron Resonance Fourier Transform Mass Spectrometry (ICR-FT/MS) was used to discern the masses of thousands of metabolites in fecal samples collected from 17 identical twin pairs, including healthy individuals and those with CD. Pathways with differentiating metabolites included those involved in the metabolism and or synthesis of amino acids, fatty acids, bile acids and arachidonic acid. Several metabolites were positively or negatively correlated to the disease phenotype and to specific microbes previously characterized in the same samples. Our data reveal novel differentiating metabolites for CD that may provide diagnostic biomarkers and/or monitoring tools as well as insight into potential targets for disease therapy and prevention.

  15. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I

    2012-02-10

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A(2) (PLA(2)) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M(1,3,5), serotonergic 5-HT(2A/2C), dopaminergic D(2)-like (D(2), D(3), D(4)) or glutamatergic N-methyl-d-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. Published by Elsevier Inc.

  16. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  17. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  18. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation.

    PubMed

    Bola, R Aaron; Kiyatkin, Eugene A

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be

  19. A Metabolic Study of Huntington's Disease.

    PubMed

    Nambron, Rajasree; Silajdžić, Edina; Kalliolia, Eirini; Ottolenghi, Chris; Hindmarsh, Peter; Hill, Nathan R; Costelloe, Seán J; Martin, Nicholas G; Positano, Vincenzo; Watt, Hilary C; Frost, Chris; Björkqvist, Maria; Warner, Thomas T

    2016-01-01

    Huntington's disease patients have a number of peripheral manifestations suggestive of metabolic and endocrine abnormalities. We, therefore, investigated a number of metabolic factors in a 24-hour study of Huntington's disease gene carriers (premanifest and moderate stage II/III) and controls. Control (n = 15), premanifest (n = 14) and stage II/III (n = 13) participants were studied with blood sampling over a 24-hour period. A battery of clinical tests including neurological rating and function scales were performed. Visceral and subcutaneous adipose distribution was measured using magnetic resonance imaging. We quantified fasting baseline concentrations of glucose, insulin, cholesterol, triglycerides, lipoprotein (a), fatty acids, amino acids, lactate and osteokines. Leptin and ghrelin were quantified in fasting samples and after a standardised meal. We assessed glucose, insulin, growth hormone and cortisol concentrations during a prolonged oral glucose tolerance test. We found no highly significant differences in carbohydrate, protein or lipid metabolism markers between healthy controls, premanifest and stage II/III Huntington's disease subjects. For some markers (osteoprotegerin, tyrosine, lysine, phenylalanine and arginine) there is a suggestion (p values between 0.02 and 0.05) that levels are higher in patients with premanifest HD, but not moderate HD. However, given the large number of statistical tests performed interpretation of these findings must be cautious. Contrary to previous studies that showed altered levels of metabolic markers in patients with Huntington's disease, our study did not demonstrate convincing evidence of abnormalities in any of the markers examined. Our analyses were restricted to Huntington's disease patients not taking neuroleptics, anti-depressants or other medication affecting metabolic pathways. Even with the modest sample sizes studied, the lack of highly significant results, despite many being tested, suggests that the majority

  20. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  1. Regional cerebral glucose metabolism after pridopidine (ACR16) treatment in patients with Huntington disease.

    PubMed

    Esmaeilzadeh, Mouna; Kullingsjö, Johan; Ullman, Henrik; Varrone, Andrea; Tedroff, Joakim

    2011-01-01

    Huntington disease is a hereditary neurodegenerative disorder resulting in loss of motor, cognitive, and behavioral functions and is characterized by a distinctive pattern of cerebral metabolic abnormalities. Pridopidine (ACR16) belongs to a novel class of central nervous system compounds in development for the treatment of Huntington disease. The objective of the study was to investigate the metabolic changes in patients with Huntington disease before and after pridopidine treatment. [(18)F]Fluorodeoxyglucose positron emission tomographic imaging was used to measure the regional cerebral metabolic rate of glucose at baseline and after 14 days of open-label pridopidine treatment in 8 patients with Huntington disease. Clinical assessments were performed using the Unified Huntington's Disease Rating Scale. Statistical parametric mapping analysis showed increased metabolic activity in several brain regions such as the precuneus and the mediodorsal thalamic nucleus after treatment. In addition, after pridopidine treatment, the correlation between the clinical status and the cerebral metabolic activity was strengthened. Our findings suggest that pridopidine induces metabolic changes in brain regions implicated as important for mediating compensatory mechanisms in Huntington disease. In addition, the finding of a strong relationship between clinical severity and metabolic activity after treatment also suggests that pridopidine treatment targets a Huntington disease-related metabolic activity pattern.

  2. Modeling brain disease in a dish: really?

    PubMed

    Marchetto, Maria C; Gage, Fred H

    2012-06-14

    Cellular programming and reprogramming technology (CPART) presents a novel approach for understanding disease progression and mechanism. In addition, CPART provides an innovative opportunity for developing diagnostic tools and novel drug candidates for therapy. In this Forum, we will discuss obstacles and solutions for modeling brain disease using CPART.

  3. Electroacupuncture Treatment Improves Learning-Memory Ability and Brain Glucose Metabolism in a Mouse Model of Alzheimer's Disease: Using Morris Water Maze and Micro-PET

    PubMed Central

    Jiang, Jing; Gao, Kai; Zhou, Yuan; Xu, Anping; Shi, Suhua; Liu, Gang; Li, Zhigang

    2015-01-01

    Introduction. Alzheimer's disease (AD) causes progressive hippocampus dysfunctions leading to the impairment of learning and memory ability and low level of uptake rate of glucose in hippocampus. What is more, there is no effective treatment for AD. In this study, we evaluated the beneficial and protective effects of electroacupuncture in senescence-accelerated mouse prone 8 (SAMP8). Method. In the electroacupuncture paradigm, electroacupuncture treatment was performed once a day for 15 days on 7.5-month-old SAMP8 male mice. In the normal control paradigm and AD control group, 7.5-month-old SAMR1 male mice and SAMP8 male mice were grabbed and bandaged while electroacupuncture group therapy, in order to ensure the same treatment conditions, once a day, 15 days. Results. From the Morris water maze (MWM) test, we found that the treatment of electroacupuncture can improve the spatial learning and memory ability of SAMP8 mouse, and from the micro-PET test, we proved that after the electroacupuncture treatment the level of uptake rate of glucose in hippocampus was higher than normal control group. Conclusion. These results suggest that the treatment of electroacupuncture may provide a viable treatment option for AD. PMID:25821477

  4. microRNA-33 Regulates ApoE Lipidation and Amyloid-β Metabolism in the Brain

    PubMed Central

    Kim, Jaekwang; Yoon, Hyejin; Horie, Takahiro; Burchett, Jack M.; Restivo, Jessica L.; Rotllan, Noemi; Ramírez, Cristina M.; Verghese, Philip B.; Ihara, Masafumi; Hoe, Hyang-Sook; Esau, Christine; Fernández-Hernando, Carlos; Holtzman, David M.

    2015-01-01

    Dysregulation of amyloid-β (Aβ) metabolism is critical for Alzheimer's disease (AD) pathogenesis. Mounting evidence suggests that apolipoprotein E (ApoE) is involved in Aβ metabolism. ATP-binding cassette transporter A1 (ABCA1) is a key regulator of ApoE lipidation, which affects Aβ levels. Therefore, identifying regulatory mechanisms of ABCA1 expression in the brain may provide new therapeutic targets for AD. Here, we demonstrate that microRNA-33 (miR-33) regulates ABCA1 and Aβ levels in the brain. Overexpression of miR-33 impaired cellular cholesterol efflux and dramatically increased extracellular Aβ levels by promoting Aβ secretion and impairing Aβ clearance in neural cells. In contrast, genetic deletion of mir-33 in mice dramatically increased ABCA1 levels and ApoE lipidation, but it decreased endogenous Aβ levels in cortex. Most importantly, pharmacological inhibition of miR-33 via antisense oligonucleotide specifically in the brain markedly decreased Aβ levels in cortex of APP/PS1 mice, representing a potential therapeutic strategy for AD. SIGNIFICANCE STATEMENT Brain lipid metabolism, in particular Apolipoprotein E (ApoE) lipidation, is critical to Aβ metabolism and Alzheimer's disease (AD). Brain lipid metabolism is largely separated from the periphery due to blood–brain barrier and different repertoire of lipoproteins. Therefore, identifying the novel regulatory mechanism of brain lipid metabolism may provide a new therapeutic strategy for AD. Although there have been studies on brain lipid metabolism, its regulation, in particular by microRNAs, is relatively unknown. Here, we demonstrate that inhibition of microRNA-33 increases lipidation of brain ApoE and reduces Aβ levels by inducing ABCA1. We provide a unique approach for AD therapeutics to increase ApoE lipidation and reduce Aβ levels via pharmacological inhibition of microRNA in vivo. PMID:26538644

  5. microRNA-33 Regulates ApoE Lipidation and Amyloid-β Metabolism in the Brain.

    PubMed

    Kim, Jaekwang; Yoon, Hyejin; Horie, Takahiro; Burchett, Jack M; Restivo, Jessica L; Rotllan, Noemi; Ramírez, Cristina M; Verghese, Philip B; Ihara, Masafumi; Hoe, Hyang-Sook; Esau, Christine; Fernández-Hernando, Carlos; Holtzman, David M; Cirrito, John R; Ono, Koh; Kim, Jungsu

    2015-11-04

    Dysregulation of amyloid-β (Aβ) metabolism is critical for Alzheimer's disease (AD) pathogenesis. Mounting evidence suggests that apolipoprotein E (ApoE) is involved in Aβ metabolism. ATP-binding cassette transporter A1 (ABCA1) is a key regulator of ApoE lipidation, which affects Aβ levels. Therefore, identifying regulatory mechanisms of ABCA1 expression in the brain may provide new therapeutic targets for AD. Here, we demonstrate that microRNA-33 (miR-33) regulates ABCA1 and Aβ levels in the brain. Overexpression of miR-33 impaired cellular cholesterol efflux and dramatically increased extracellular Aβ levels by promoting Aβ secretion and impairing Aβ clearance in neural cells. In contrast, genetic deletion of mir-33 in mice dramatically increased ABCA1 levels and ApoE lipidation, but it decreased endogenous Aβ levels in cortex. Most importantly, pharmacological inhibition of miR-33 via antisense oligonucleotide specifically in the brain markedly decreased Aβ levels in cortex of APP/PS1 mice, representing a potential therapeutic strategy for AD. Brain lipid metabolism, in particular Apolipoprotein E (ApoE) lipidation, is critical to Aβ metabolism and Alzheimer's disease (AD). Brain lipid metabolism is largely separated from the periphery due to blood-brain barrier and different repertoire of lipoproteins. Therefore, identifying the novel regulatory mechanism of brain lipid metabolism may provide a new therapeutic strategy for AD. Although there have been studies on brain lipid metabolism, its regulation, in particular by microRNAs, is relatively unknown. Here, we demonstrate that inhibition of microRNA-33 increases lipidation of brain ApoE and reduces Aβ levels by inducing ABCA1. We provide a unique approach for AD therapeutics to increase ApoE lipidation and reduce Aβ levels via pharmacological inhibition of microRNA in vivo. Copyright © 2015 the authors 0270-6474/15/3514718-10$15.00/0.

  6. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S.

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  7. Brain metabolic markers reflect susceptibility status in cytokine gene knockout mice with murine cerebral malaria.

    PubMed

    Parekh, Sapan B; Bubb, William A; Hunt, Nicholas H; Rae, Caroline

    2006-11-01

    Treatment of cerebral malaria, a complication of the world's most significant parasitic disease, remains problematic due to lack of understanding of its pathogenesis. Metabolic changes, along with cytokine expression alterations and blood cell sequestration in the brain, have previously been reported during severe disease in human infection and mouse models leading to the "cytopathic hypoxia" and "sequestration" theories of pathogenesis. Here, to determine the robustness of the metabolic changes and their relationship to disease development, we investigated changes in cerebral metabolic markers in a mouse model of cerebral malaria (CM) in wildtype (C57BL/6) and cytokine knockout (TNF(-/-), IFNgamma(-/-) and LTalpha(-/-)) mice using multinuclear magnetic resonance spectroscopy. Mice susceptible to CM (wildtype, TNF(-/-)) showed decreased cerebral glucose use, decreased Krebs cycle metabolism and decreased high-energy phosphates. Conversely, mice resistant to CM (IFNgamma(-/-), LTalpha(-/-)) showed little sign of these effects, despite identical levels of parasitemia. Previously reported changes in lactate were shown to be strain dependent. Elevated glutamine and decreased phosphorylation potential emerged as robust metabolic markers of susceptibility, further implicating the trytophan/NAD(+) pathway in disease development. Thus these metabolic changes are firmly linked both to the immune system response to malaria and to the occurrence of pathogenic changes in experimental CM.

  8. Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease

    PubMed Central

    Liu, Joanne J.; Green, Pnina; Mann, J. John; Rapoport, Stanley I.; Sublette, M. Elizabeth

    2014-01-01

    Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease. PMID:25498862

  9. Longitudinal MR Spectroscopy Shows Altered Metabolism in Traumatic Brain Injury.

    PubMed

    Maudsley, Andrew A; Govind, Varan; Saigal, Gaurav; Gold, Stuart G; Harris, Leo; Sheriff, Sulaiman

    2017-07-23

    Brain trauma is known to result in heterogeneous patterns of tissue damage and altered neuronal and glial metabolism that evolve over time following injury; however, little is known on the longitudinal evolution of these changes. In this study, magnetic resonance spectroscopic imaging (MRSI) was used to map the distributions of altered metabolism in a single subject at five time points over a period of 28 months following injury. Magnetic resonance imaging and volumetric MRSI data were acquired in a subject that had experienced a moderate traumatic brain injury (Glasgow Coma Scale 13) at five time points, from 7 weeks to 28 months after injury. Maps of N-acetylaspartate (NAA), total choline (Cho), and total creatine signal were generated and differences from normal control values identified using a z-score image analysis method. The z-score metabolite maps revealed areas of significantly reduced NAA and increased Cho, predominately located in frontal and parietal white matter, which evolved over the complete course of the study. A map of the ratio of Cho/NAA showed the greatest sensitivity to change, which indicated additional metabolic changes throughout white matter. The metabolic changes reduced over time following injury, though with abnormal values remaining in periventricular regions. The use of z-score image analysis for MRSI provides a method for visualizing diffuse changes of tissue metabolism in the brain. This image visualization method is of particularly effective for visualizing widespread and diffuse metabolic changes, such as that due to traumatic injury. Copyright © 2017 by the American Society of Neuroimaging.

  10. Unpredictable Chronic Stress Alters Adenosine Metabolism in Zebrafish Brain.

    PubMed

    Zimmermann, F F; Altenhofen, S; Kist, L W; Leite, C E; Bogo, M R; Cognato, G P; Bonan, C D

    2016-05-01

    Stress is considered a risk factor for several human disorders. Despite the broad knowledge of stress responses in mammals, data on the relationship between unpredictable chronic stress (UCS) and its effects on purinergic signaling are limited. ATP hydrolysis by ectonucleotidases is an important source of adenosine, and adenosine deaminase (ADA) contributes to the control of the nucleoside concentrations. Considering that some stress models could affect signaling systems, the objective of this study was to investigate whether UCS alters ectonucleotidase and ADA pathway in zebrafish brain. Additionally, we analyzed ATP metabolism as well as ada1, ada2.1, ada2.2, adaL, and adaasi gene expression in zebrafish brain. Our results have demonstrated that UCS did not alter ectonucleotidase and soluble ADA activities. However, ecto-ADA activity was significantly decreased (26.8%) in brain membranes of animals exposed to UCS when compared to the control group. Quantitative reverse transcription PCR (RT-PCR) analysis did not show significant changes on ADA gene expression after the UCS exposure. The brain ATP metabolism showed a marked increase in adenosine levels (ADO) in animals exposed to UCS. These data suggest an increase on extracellular adenosine levels in zebrafish brain. Since this nucleoside has neuromodulatory and anxiolytic effects, changes in adenosine levels could play a role in counteracting the stress, which could be related to a compensatory mechanism in order to restore the homeostasis.

  11. MAGNETIC RESONANCE IMAGING FINDINGS IN SMALL RUMINANTS WITH BRAIN DISEASE.

    PubMed

    Ertelt, Katrin; Oevermann, Anna; Precht, Christina; Lauper, Josiane; Henke, Diana; Gorgas, Daniela

    2016-01-01

    Brain disease is an important cause of neurologic deficits in small ruminants, however few MRI features have been described. The aim of this retrospective, case series study was to describe MRI characteristics in a group of small ruminants with confirmed brain disease. A total of nine small ruminants (six sheep and three goats) met inclusion criteria. All had neurologic disorders localized to the brain and histopathologic confirmation. In animals with toxic-metabolic diseases, there were bilaterally symmetric MRI lesions affecting either the gray matter (one animal with polioencephalomalacia) or the white matter (two animals with enterotoxemia). In animals with suppurative inflammation, asymmetric focal brainstem lesions were present (two animals with listeric encephalitis), or lesions typical of an intra-axial (one animal) or dural abscess (one animal), respectively. No MRI lesions were detected in one animal with suspected viral cerebellitis and one animal with parasitic migration tracts. No neoplastic or vascular lesions were identified in this case series. Findings from the current study supported the use of MRI for diagnosing brain diseases in small ruminants.

  12. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects.

  13. Regional brain metabolism in a murine systemic lupus erythematosus model

    PubMed Central

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-01-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood–brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb− mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb− mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  14. Brain oscillations in neuropsychiatric disease.

    PubMed

    Başar, Erol

    2013-09-01

    The term "brain (or neural) oscillations" refers to the rhythmic and/or repetitive electrical activity generated spontaneously and in response to stimuli by neural tissue in the central nervous system. The importance of brain oscillations in sensory-cognitive processes has become increasingly evident. It has also become clear that event-related oscillations are modified in many types of neuropathology, in particular in cognitive impairment. This review discusses methods such as evoked/event-related oscillations and spectra, coherence analysis, and phase locking. It gives examples of applications of essential methods and concepts in bipolar disorder that provide a basis for fundamental notions regarding neurophysiologic biomarkers in cognitive impairment. The take-home message is that in the development of diagnostic and pharmacotherapeutic strategies, neurophysiologic data should be analyzed in a framework that uses a multiplicity of methods and frequency bands.

  15. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    PubMed

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  16. Metabolic connectivity mapping reveals effective connectivity in the resting human brain

    PubMed Central

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P.; Drzezga, Alexander; Sorg, Christian

    2016-01-01

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using “eyes open” versus “eyes closed” conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders. PMID:26712010

  17. Inflammasomes link vascular disease with neuroinflammation and brain disorders.

    PubMed

    Lénárt, Nikolett; Brough, David; Dénes, Ádám

    2016-10-01

    The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and neurodegeneration, such as seen in Alzheimer's or Parkinson's disease. Both central and systemic inflammatory actions have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a promising therapeutic target.

  18. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  19. The ketogenic diet: metabolic influences on brain excitability and epilepsy

    PubMed Central

    Lutas, Andrew; Yellen, Gary

    2012-01-01

    A dietary therapy for pediatric epilepsy known as the ketogenic diet has seen a revival in its clinical use in the past decade. Though the diet’s underlying mechanism remains unknown, modern scientific approaches like genetic disruption of glucose metabolism are allowing for more detailed questions to be addressed. Recent work indicates that several mechanisms may exist for the ketogenic diet including disruption of glutamatergic synaptic transmission, inhibition of glycolysis, and activation of ATP-sensitive potassium channels. Here we describe on-going work in these areas that is providing a better understanding of metabolic influences on brain excitability and epilepsy. PMID:23228828

  20. Robust gene dysregulation in Alzheimer's disease brains.

    PubMed

    Feng, Xuemei; Bai, Zhouxian; Wang, Jiajia; Xie, Bin; Sun, Jiya; Han, Guangchun; Song, Fuhai; Crack, Peter J; Duan, Yong; Lei, Hongxing

    2014-01-01

    The brain transcriptome of Alzheimer's disease (AD) reflects the prevailing disease mechanism at the gene expression level. However, thousands of genes have been reported to be dysregulated in AD brains in existing studies, and the consistency or discrepancy among these studies has not been thoroughly examined. Toward this end, we conducted a comprehensive survey of the brain transcriptome datasets for AD and other neurological diseases. We first demonstrated that the frequency of observed dysregulation in AD was highly correlated with the reproducibility of the dysregulation. Based on this observation, we selected 100 genes with the highest frequency of dysregulation to illustrate the core perturbation in AD brains. The dysregulation of these genes was validated in several independent datasets for AD. We further identified 12 genes with strong correlation of gene expression with disease progression. The relevance of these genes to disease progression was also validated in an independent dataset. Interestingly, we found a transcriptional "cushion" for these 100 genes in the less vulnerable visual cortex region, which may be a critical component of the protection mechanism for less vulnerable brain regions. To facilitate the research in this field, we have provided the expression information of ~8000 relevant genes on a publicly accessible web server AlzBIG (http://alz.big.ac.cn).

  1. Brain biopsy in benign neurological disease.

    PubMed

    Gilkes, C E; Love, S; Hardie, R J; Edwards, R J; Scolding, N J; Rice, C M

    2012-05-01

    Brain biopsy is well established in clinical practice when there is suspicion of CNS malignancy. However, there is little consensus regarding the indications for brain biopsy in non-malignant neurological disease. This is due in no small part to limitations in the available literature pertaining to diagnostic brain biopsies. The published evidence largely comprises small, retrospective, single-centre analyses performed over long time periods, including non-homogeneous patient groups with considerable variation in reported outcomes. Here we present pragmatic guidance for those clinicians considering diagnostic brain biopsy in a patient with non-neoplastic neurological disease and highlight practice points with the aim of maximising the probability of gaining clinically useful information from the procedure.

  2. [Serum sclerostin levels and metabolic bone diseases].

    PubMed

    Yamauchi, Mika; Sugimoto, Toshitsugu

    2013-06-01

    Serum sclerostin levels are being investigated in various metabolic bone diseases. Since serum sclerostin levels are decreased in primary hyperparathyroidism and elevated in hypoparathyroidism, parathyroid hormone (PTH) is thought to be a regulatory factor for sclerostin. Serum sclerostin levels exhibit a significant positive correlation with bone mineral density. On the other hand, a couple of studies on postmenopausal women have shown that high serum sclerostin levels are a risk factor for fracture. Although glucocorticoid induced osteoporosis and diabetes are both diseases that reduce bone formation, serum sclerostin levels have been reported to be decreased in the former and elevated in the latter, suggesting differences in the effects of sclerostin in the two diseases. Serum sclerostin levels are correlated with renal function, and increase with reduction in renal function. Serum sclerostin level may be a new index of bone assessment that differs from bone mineral density and bone metabolic markers.

  3. Tools for studying drug transport and metabolism in the brain.

    PubMed

    Pitcher, Meagan R; Quevedo, João

    2016-01-01

    Development of xenobiotics that cross the blood-brain barrier in therapeutically-relevant quantities is an expensive and time-consuming undertaking. However, central nervous system diseases are an under-addressed cause of high mortality and morbidity, and drug development in this field is a worthwhile venture. We aim to familiarize the reader with available methodologies for studying drug transport into the brain. Current understanding of the blood-brain barrier structure has been well-described in other manuscripts, and first we briefly review the path that xenobiotics take through the brain - from bloodstream, to endothelial cells of the blood-brain barrier, to interstitial space, to brain parenchymal cells, and then to an exit point from the central nervous system. The second half of the review discusses research tools available to determine if xenobiotics are making the journey through the brain successfully and offers commentary on the translational utility of each methodology. Theoretically, non-human mammalian and human blood-brain barriers are similar in composition; however, some findings demonstrate important differences across species. Translational methodologies may provide more reliable information about how a drug may act across species. The recent finding of lymphatic vessels within the central nervous system may provide new tools and strategies for drug delivery to the brain.

  4. Does acute caffeine ingestion alter brain metabolism in young adults?

    PubMed Central

    Xu, Feng; Liu, Peiying; Pekar, James J.; Lu, Hanzhang

    2015-01-01

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (p<0.001), global CMRO2 did not change significantly. Instead, the oxygen extraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain’s response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine’s effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  5. Gut-Brain Cross-Talk in Metabolic Control.

    PubMed

    Clemmensen, Christoffer; Müller, Timo D; Woods, Stephen C; Berthoud, Hans-Rudolf; Seeley, Randy J; Tschöp, Matthias H

    2017-02-23

    Because human energy metabolism evolved to favor adiposity over leanness, the availability of palatable, easily attainable, and calorically dense foods has led to unprecedented levels of obesity and its associated metabolic co-morbidities that appear resistant to traditional lifestyle interventions. However, recent progress identifying the molecular signaling pathways through which the brain and the gastrointestinal system communicate to govern energy homeostasis, combined with emerging insights on the molecular mechanisms underlying successful bariatric surgery, gives reason to be optimistic that novel precision medicines that mimic, enhance, and/or modulate gut-brain signaling can have unprecedented potential for stopping the obesity and type 2 diabetes pandemics. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Expensive Brains: “Brainy” Rodents have Higher Metabolic Rate

    PubMed Central

    Sobrero, Raúl; May-Collado, Laura J.; Agnarsson, Ingi; Hernández, Cristián E.

    2011-01-01

    Brains are the centers of the nervous system of animals, controlling the organ systems of the body and coordinating responses to changes in the ecological and social environment. The evolution of traits that correlate with cognitive ability, such as relative brain size is thus of broad interest. Brain mass relative to body mass (BM) varies among mammals, and diverse factors have been proposed to explain this variation. A recent study provided evidence that energetics play an important role in brain evolution (Isler and van Schaik, 2006). Using composite phylogenies and data drawn from multiple sources, these authors showed that basal metabolic rate (BMR) correlates with brain mass across mammals. However, no such relationship was found within rodents. Here we re-examined the relationship between BMR and brain mass within Rodentia using a novel species-level phylogeny. Our results are sensitive to parameter evaluation; in particular how species mass is estimated. We detect no pattern when applying an approach used by previous studies, where each species BM is represented by two different numbers, one being the individual that happened to be used for BMR estimates of that species. However, this approach may compromise the analysis. When using a single value of BM for each species, whether representing a single individual, or available species mean, our findings provide evidence that brain mass (independent of BM) and BMR are correlated. These findings are thus consistent with the hypothesis that large brains evolve when the payoff for increased brain mass is greater than the energetic cost they incur. PMID:21811456

  7. Human brain disease recreated in mice

    SciTech Connect

    Marx, J.

    1990-12-14

    In the early 1980s, neurologist Stanley Prusiner suggested that scrapie, an apparently infectious degenerative brain disease of sheep, could be transmitted by prions, infectious particles made just of protein - and containing no nucleic acids. But prion research has come a long way since then. In 1985, the cloning of the gene encoding the prion protein proved that it does in fact exist. And the gene turned out to be widely expressed in the brains of higher organisms, a result suggesting that the prion protein has a normal brain function that can somehow be subverted, leading to brain degeneration. Then studies done during the past 2 years suggested that specific mutations in the prion gene might cause two similar human brain diseases, Gerstmann-Straeussler-Scheinker syndrome (GSS) and Creutzfelt-Jakob disease. Now, Prusiner's group at the University of California, San Francisco, has used genetic engineering techniques to recreate GSS by transplanting the mutated prion gene into mice. Not only will the animal model help neurobiologists answer the many remaining questions about prions and how they work, but it may also shed some light on other neurodegenerative diseases as well.

  8. Cerebral energy metabolism and the brain's functional network architecture: an integrative review

    PubMed Central

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-01-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's ‘functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks. PMID:23756687

  9. Brain-targeted proanthocyanidin metabolites for Alzheimer's disease treatment.

    PubMed

    Wang, Jun; Ferruzzi, Mario G; Ho, Lap; Blount, Jack; Janle, Elsa M; Gong, Bing; Pan, Yong; Gowda, G A Nagana; Raftery, Daniel; Arrieta-Cruz, Isabel; Sharma, Vaishali; Cooper, Bruce; Lobo, Jessica; Simon, James E; Zhang, Chungfen; Cheng, Alice; Qian, Xianjuan; Ono, Kenjiro; Teplow, David B; Pavlides, Constantine; Dixon, Richard A; Pasinetti, Giulio M

    2012-04-11

    While polyphenolic compounds have many health benefits, the potential development of polyphenols for the prevention/treatment of neurological disorders is largely hindered by their complexity as well as by limited knowledge regarding their bioavailability, metabolism, and bioactivity, especially in the brain. We recently demonstrated that dietary supplementation with a specific grape-derived polyphenolic preparation (GP) significantly improves cognitive function in a mouse model of Alzheimer's disease (AD). GP is comprised of the proanthocyanidin (PAC) catechin and epicatechin in monomeric (Mo), oligomeric, and polymeric forms. In this study, we report that following oral administration of the independent GP forms, only Mo is able to improve cognitive function and only Mo metabolites can selectively reach and accumulate in the brain at a concentration of ∼400 nM. Most importantly, we report for the first time that a biosynthetic epicatechin metabolite, 3'-O-methyl-epicatechin-5-O-β-glucuronide (3'-O-Me-EC-Gluc), one of the PAC metabolites identified in the brain following Mo treatment, promotes basal synaptic transmission and long-term potentiation at physiologically relevant concentrations in hippocampus slices through mechanisms associated with cAMP response element binding protein (CREB) signaling. Our studies suggest that select brain-targeted PAC metabolites benefit cognition by improving synaptic plasticity in the brain, and provide impetus to develop 3'-O-Me-EC-Gluc and other brain-targeted PAC metabolites to promote learning and memory in AD and other forms of dementia.

  10. Mitochondria: mitochondrial RNA metabolism and human disease.

    PubMed

    Nicholls, Thomas J; Rorbach, Joanna; Minczuk, Michal

    2013-04-01

    Post-transcriptional control of RNA stability, processing, modification, and degradation is key to the regulation of gene expression in all living cells. In mitochondria, these post-transcriptional processes are also vital for proper expression of the thirteen proteins encoded by the mitochondrial genome, as well as mitochondrial tRNAs and rRNAs. Our knowledge on mitochondrial RNA (mt-RNA) metabolic pathways, however, is far from complete. All the proteins involved in mt-RNA metabolism are encoded by the nucleus, and must be imported into the organelle. Mutations in these nuclear genes can lead to perturbations in mitochondrial RNA processing, modification, stability and decay and thus are a cause of human mitochondrial disease. This review summarises the current knowledge on mt-RNA metabolism and its links with human mitochondrial pathologies.

  11. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease.

    PubMed

    Delitala, Alessandro P; Fanciulli, Giuseppe; Maioli, Margherita; Delitala, Giuseppe

    2017-03-01

    Subclinical hypothyroidism is defined by elevated serum thyrotropin in presence of normal free thyroid hormones. Lipid metabolism is influenced by thyroid hormone and many reports showed that lipids status worsen along with TSH level. Subclinical hypothyroidism has been also linked to other cardiovascular risk factors such as alteration in blood pressure and increased atherosclerosis. Further evidences suggested that mild dysfunction of thyroid gland is associated with metabolic syndrome and heart failure. Thyrotropin level seems the best predictor of cardiovascular disease, in particular when its levels are above 10mU/L. However, despite these observations, there is no clear evidence that levothyroxine therapy in subjects with milder form of subclinical hypothyroidism could improve lipid status and the other cardiovascular risk factors. In this review, we address the effect of thyroid hormone and cardiovascular risk, with a focus on lipid metabolism.

  12. 2011 CCNP Heinz Lehmann Award paper: Cytochrome P450–mediated drug metabolism in the brain

    PubMed Central

    Miksys, Sharon; Tyndale, Rachel F.

    2013-01-01

    Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse. PMID:23199531

  13. Endogenously Nitrated Proteins in Mouse Brain: Links To Neurodegenerative Disease

    SciTech Connect

    Sacksteder, Colette A.; Qian, Weijun; Knyushko, Tanya V.; Wang, Haixing H.; Chin, Mark H.; Lacan, Goran; Melega, William P.; Camp, David G.; Smith, Richard D.; Smith, Desmond J.; Squier, Thomas C.; Bigelow, Diana J.

    2006-07-04

    Increased nitrotyrosine modification of proteins has been documented in multiple pathologies in a variety of tissue types; emerging evidence suggests its additional role in redox regulation of normal metabolism. In order to identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic dataset identifying 7,792 proteins from whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in identification of 31 unique nitrotyrosine sites within 29 different proteins. Over half of the nitrated proteins identified have been reported to be involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces increased nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, characteristics consistent with peroxynitrite-induced tyrosine modification. More striking is the five-fold greater nitration of tyrosines having nearby basic sidechains, suggesting electrostatic attraction of basic groups with the negative charge of peroxynitrite. Together, these results suggest that elevated peroxynitrite generation plays a role in neurodegenerative changes in the brain and provides a predictive tool of functionally important sites of nitration.

  14. The rationale for deep brain stimulation in Alzheimer's disease.

    PubMed

    Mirzadeh, Zaman; Bari, Ausaf; Lozano, Andres M

    2016-07-01

    Alzheimer's disease is a major worldwide health problem with no effective therapy. Deep brain stimulation (DBS) has emerged as a useful therapy for certain movement disorders and is increasingly being investigated for treatment of other neural circuit disorders. Here we review the rationale for investigating DBS as a therapy for Alzheimer's disease. Phase I clinical trials of DBS targeting memory circuits in Alzheimer's disease patients have shown promising results in clinical assessments of cognitive function, neurophysiological tests of cortical glucose metabolism, and neuroanatomical volumetric measurements showing reduced rates of atrophy. These findings have been supported by animal studies, where electrical stimulation of multiple nodes within the memory circuit have shown neuroplasticity through stimulation-enhanced hippocampal neurogenesis and improved performance in memory tasks. The precise mechanisms by which DBS may enhance memory and cognitive functions in Alzheimer's disease patients and the degree of its clinical efficacy continue to be examined in ongoing clinical trials.

  15. The Intestinal Microbiota in Metabolic Disease

    PubMed Central

    Woting, Anni; Blaut, Michael

    2016-01-01

    Gut bacteria exert beneficial and harmful effects in metabolic diseases as deduced from the comparison of germfree and conventional mice and from fecal transplantation studies. Compositional microbial changes in diseased subjects have been linked to adiposity, type 2 diabetes and dyslipidemia. Promotion of an increased expression of intestinal nutrient transporters or a modified lipid and bile acid metabolism by the intestinal microbiota could result in an increased nutrient absorption by the host. The degradation of dietary fiber and the subsequent fermentation of monosaccharides to short-chain fatty acids (SCFA) is one of the most controversially discussed mechanisms of how gut bacteria impact host physiology. Fibers reduce the energy density of the diet, and the resulting SCFA promote intestinal gluconeogenesis, incretin formation and subsequently satiety. However, SCFA also deliver energy to the host and support liponeogenesis. Thus far, there is little knowledge on bacterial species that promote or prevent metabolic disease. Clostridium ramosum and Enterococcus cloacae were demonstrated to promote obesity in gnotobiotic mouse models, whereas bifidobacteria and Akkermansia muciniphila were associated with favorable phenotypes in conventional mice, especially when oligofructose was fed. How diet modulates the gut microbiota towards a beneficial or harmful composition needs further research. Gnotobiotic animals are a valuable tool to elucidate mechanisms underlying diet–host–microbe interactions. PMID:27058556

  16. Metabolic syndrome and chronic kidney disease.

    PubMed

    Bhowmik, D; Tiwari, S C

    2008-01-01

    Obesity is fast becoming a bane for the present civilization, as a result of sedentary lifestyle, atherogenic diet, and a susceptible thrifty genotype. The concept of metabolic syndrome, which is a constellation of metabolic disturbances, has crystallized over the last 80 years with the aim of identifying those at greater risk of developing type 2 diabetes and cardiovascular disease. These patients have visceral obesity and insulin resistance characterized by hypertyriglyceridemia. Recently, it has been realized that they are also at an increased risk of chronic renal disease. Release of adipocytokines leads to endothelial dysfunction. There is also activation of systemic and local renin-angiotensin-aldosterone system, oxidative stress, and impaired fibrinolysis. This leads to glomerular hyperfiltration, proteinuria, focal segmental glomerulosclerosis (FSGS), and ultimately end-stage renal disease (ESRD). Treatment consists of lifestyle modifications along with optimal control of blood pressure, blood sugar and lipids. Metformin and thiazolidenidiones reduce insulin resistance; while angiotensin converting enzyme inhibitors and angiotensin receptor blockers reduce proteinuria and have a renoprotective effect. Exciting new medical therapies on the horizon include rimonabant a cannabinoid receptor type 1 antagonist, soy proteins, and peroxisome proliferator-activated receptor (PPAR) agonist. Bariatric surgery for morbid obesity has also been shown to be effective in treating metabolic syndrome.

  17. Glutathione Metabolism and Parkinson’s Disease

    PubMed Central

    Smeyne, Michelle

    2013-01-01

    It has been established that oxidative stress, defined as the condition when the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson’s disease. Glutathione is a ubiquitous thiol tripeptide that acts alone, or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals and peroxynitrites. In this review, we examine the synthesis, metabolism and functional interactions of glutathione, and discuss how this relates to protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson’s disease. PMID:23665395

  18. Neurovascular coupling and energy metabolism in the developing brain

    PubMed Central

    Kozberg, M.; Hillman, E.

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. PMID:27130418

  19. Neurovascular coupling and energy metabolism in the developing brain.

    PubMed

    Kozberg, M; Hillman, E

    2016-01-01

    In the adult brain, increases in local neural activity are almost always accompanied by increases in local blood flow. However, many functional imaging studies of the newborn and developing human brain have observed patterns of hemodynamic responses that differ from adult responses. Among the proposed mechanisms for the observed variations is that neurovascular coupling itself is still developing in the perinatal brain. Many of the components thought to be involved in actuating and propagating this hemodynamic response are known to still be developing postnatally, including perivascular cells such as astrocytes and pericytes. Both neural and vascular networks expand and are then selectively pruned over the first year of human life. Additionally, the metabolic demands of the newborn brain are still evolving. These changes are highly likely to affect early postnatal neurovascular coupling, and thus may affect functional imaging signals in this age group. This chapter will discuss the literature relating to neurovascular development. Potential effects of normal and aberrant development of neurovascular coupling on the newborn brain will also be explored, as well as ways to effectively utilize imaging techniques that rely on hemodynamic modulation such as fMRI and NIRS in younger populations. © 2016 Elsevier B.V. All rights reserved.

  20. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration.

    PubMed

    Yin, Fei; Boveris, Alberto; Cadenas, Enrique

    2014-01-10

    The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. This review focuses on a coordinated metabolic network-cytosolic signaling, transcriptional regulation, and mitochondrial function-that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration.

  1. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration

    PubMed Central

    Yin, Fei; Boveris, Alberto

    2014-01-01

    Abstract Significance: The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. Recent Advances: The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. Critical Issues: This review focuses on a coordinated metabolic network—cytosolic signaling, transcriptional regulation, and mitochondrial function—that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. Future Directions: Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration. Antioxid. Redox Signal. 20, 353–371. PMID:22793257

  2. Disturbed Tryptophan Metabolism in Cardiovascular Disease

    PubMed Central

    Mangge, H.; Stelzer, I.; Reininghaus, E.; Weghuber, D.; Postolache, T.T.; Fuchs, D.

    2016-01-01

    Atherosclerosis (AS), a major pathologic consequence of obesity, is the main etiological factor of cardiovascular disease (CVD), which is the most common cause of death in the western world. A systemic chronic low grade immune-mediated inflammation (scLGI) is substantially implicated in AS and its consequences. In particular, pro-inflammatory cytokines play a major role, with Th1-type cytokine interferon-γ (IFN-γ) being a key mediator. Among various other molecular and cellular effects, IFN- γ activates the enzyme indoleamine 2,3-dioxygenase (IDO) in monocyte-derived macrophages, dendritic, and other cells, which, in turn, decreases serum levels of the essential amino acid tryptophan (TRP). Thus, people with CVD often have increased serum kynurenine to tryptophan ratios (KYN/TRP), a result of an increased TRP breakdown. Importantly, increased KYN/TRP is associated with a higher likelihood of fatal cardiovascular events. A scLGI with increased production of the proinflammatory adipokine leptin, in combination with IFN-γ and interleukin-6 (IL-6), represents another central link between obesity, AS, and CVD. Leptin has also been shown to contribute to Th1-type immunity shifting, with abdominal fat being thus a direct contributor to KYN/TRP ratio. However, TRP is not only an important source for protein production but also for the generation of one of the most important neurotransmitters, 5-hydroxytryptamine (serotonin), by the tetrahydrobiopterin-dependent TRP 5-hydroxylase. In prolonged states of scLGI, availability of free serum TRP is strongly diminished, affecting serotonin synthesis, particularly in the brain. Additionally, accumulation of neurotoxic KYN metabolites such as quinolinic acid produced by microglia, can contribute to the development of depression via NMDA glutamatergic stimulation. Depression had been reported to be associated with CVD endpoints, but it most likely represents only a secondary loop connecting excess adipose tissue, scLGI and

  3. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs.

    PubMed

    Toselli, Francesca; Dodd, Peter R; Gillam, Elizabeth M J

    2016-08-01

    P450s in the human brain were originally considered unlikely to contribute significantly to the clearance of drugs and other xenobiotic chemicals, since their overall expression was a small fraction of that found in the liver. However, it is now recognized that P450s play substantial roles in the metabolism of both exogenous and endogenous chemicals in the brain, but in a highly cell type- and region-specific manner, in line with the greater functional heterogeneity of the brain compared to the liver. Studies of brain P450 expression and the characterization of the catalytic activity of specific forms expressed as recombinant enzymes have suggested possible roles for xenobiotic-metabolizing P450s in the brain. It is now possible to confirm these roles through the use of intracerebroventricular administration of selective P450 inhibitors in animal models, coupled with brain sampling techniques to measure drug concentrations in vivo, and modern neuroimaging techniques. The purpose of this review is to discuss the evidence behind the functional importance of P450s from the "xenobiotic-metabolizing" families, CYP1, CYP2 and CYP3 in the brain. Approaches used to define the quantitative and qualitative significance of these P450s in determining tissue-specific levels of xenobiotics in brain will be considered. Finally, the possible roles of these enzymes in brain biochemistry will be examined in light of the demonstrated activity of these enzymes in vitro and the association of particular P450 forms with disease states.

  4. Computational modeling of neurostimulation in brain diseases.

    PubMed

    Wang, Yujiang; Hutchings, Frances; Kaiser, Marcus

    2015-01-01

    Neurostimulation as a therapeutic tool has been developed and used for a range of different diseases such as Parkinson's disease, epilepsy, and migraine. However, it is not known why the efficacy of the stimulation varies dramatically across patients or why some patients suffer from severe side effects. This is largely due to the lack of mechanistic understanding of neurostimulation. Hence, theoretical computational approaches to address this issue are in demand. This chapter provides a review of mechanistic computational modeling of brain stimulation. In particular, we will focus on brain diseases, where mechanistic models (e.g., neural population models or detailed neuronal models) have been used to bridge the gap between cellular-level processes of affected neural circuits and the symptomatic expression of disease dynamics. We show how such models have been, and can be, used to investigate the effects of neurostimulation in the diseased brain. We argue that these models are crucial for the mechanistic understanding of the effect of stimulation, allowing for a rational design of stimulation protocols. Based on mechanistic models, we argue that the development of closed-loop stimulation is essential in order to avoid inference with healthy ongoing brain activity. Furthermore, patient-specific data, such as neuroanatomic information and connectivity profiles obtainable from neuroimaging, can be readily incorporated to address the clinical issue of variability in efficacy between subjects. We conclude that mechanistic computational models can and should play a key role in the rational design of effective, fully integrated, patient-specific therapeutic brain stimulation. © 2015 Elsevier B.V. All rights reserved.

  5. Iron metabolism: from health to disease.

    PubMed

    Oliveira, Fernando; Rocha, Sara; Fernandes, Rúben

    2014-05-01

    Iron is vital for almost all living organisms by participating in a wide range of metabolic processes. However, iron concentration in body tissues must be tightly regulated since excessive iron may lead to microbial infections or cause tissue damage. Disorders of iron metabolism are among the most common human diseases and cover several conditions with varied clinical manifestations. An extensive literature review on the basic aspects of iron metabolism was performed, and the most recent findings on this field were highlighted as well. New insights on iron metabolism have shed light into its real complexity, and its role in both healthy and pathological states has been recognized. Important discoveries about the iron regulatory machine and imbalances in its regulation have been made, which may lead in a near future to the development of new therapeutic strategies against iron disorders. Besides, the toxicity of free iron and its association with several pathologies has been addressed, although it requires further investigations. This review will provide students in the fields of biochemistry and health sciences a brief and clear overview of iron physiology and toxicity, as well as imbalances in the iron homeostasis and associated pathological conditions. © 2014 Wiley Periodicals, Inc.

  6. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-05

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.

  7. Brain imaging of neurovascular dysfunction in Alzheimer’s disease

    PubMed Central

    Montagne, Axel; Nation, Daniel A.; Pa, Judy; Sweeney, Melanie D.; Toga, Arthur W.; Zlokovic, Berislav V.

    2017-01-01

    Neurovascular dysfunction, including blood–brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer’s disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other. PMID:27038189

  8. Brain imaging of neurovascular dysfunction in Alzheimer's disease.

    PubMed

    Montagne, Axel; Nation, Daniel A; Pa, Judy; Sweeney, Melanie D; Toga, Arthur W; Zlokovic, Berislav V

    2016-05-01

    Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.

  9. Addiction and the Brain-Disease Fallacy

    PubMed Central

    Satel, Sally; Lilienfeld, Scott O.

    2014-01-01

    From Brainwashed: The Seductive Appeal of Mindless Neuroscience by Sally Satel and Scott Lilienfeld, copyright © 2013. Reprinted by permission of Basic Books, a member of The Perseus Books Group. The notion that addiction is a “brain disease” has become widespread and rarely challenged. The brain-disease model implies erroneously that the brain is necessarily the most important and useful level of analysis for understanding and treating addiction. This paper will explain the limits of over-medicalizing – while acknowledging a legitimate place for medication in the therapeutic repertoire – and why a broader perspective on the problems of the addicted person is essential to understanding addiction and to providing optimal care. In short, the brain-disease model obscures the dimension of choice in addiction, the capacity to respond to incentives, and also the essential fact people use drugs for reasons (as consistent with a self-medication hypothesis). The latter becomes obvious when patients become abstinent yet still struggle to assume rewarding lives in the realm of work and relationships. Thankfully, addicts can choose to recover and are not helpless victims of their own “hijacked brains.” PMID:24624096

  10. Physical activity, brain plasticity, and Alzheimer's disease.

    PubMed

    Erickson, Kirk I; Weinstein, Andrea M; Lopez, Oscar L

    2012-11-01

    In this review we summarize the epidemiological, cross-sectional, and interventional studies examining the association between physical activity and brain volume, function, and risk for Alzheimer's disease. The epidemiological literature provides compelling evidence that greater amounts of physical activity are associated with a reduced risk of dementia in late life. In addition, randomized interventions using neuroimaging tools have reported that participation in physical activity increases the size of prefrontal and hippocampal brain areas, which may lead to a reduction in memory impairments. Consistent with these findings, longitudinal studies using neuroimaging tools also find that the volume of prefrontal and hippocampal brain areas are larger in individuals who engaged in more physical activity earlier in life. We conclude from this review that there is convincing evidence that physical activity has a consistent and robust association with brain regions implicated in age-related cognitive decline and Alzheimer's disease. In addition to summarizing this literature we provide recommendations for future research on physical activity and brain health. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  11. Localisation of phencyclidine-induced changes in brain energy metabolism.

    PubMed

    Meibach, R C; Glicks, D; Cox, R; Maayani, S

    1979-12-06

    The abuse of phencyclidine [1(1-phencylohexyl)piperidine, PCP], commonly referred to as angel dust or hog, is rapidly reaching epidemic proportions. PCP users often appear violent and increases in PCP-implicated homicides and suicides have been reported. In animal studies PCP has been demonstrated in brain up to 48 h after administration, long after blood levels become undetectable. However, there is little further information on the distribution of PCP within the central nervous system with regard to the possible sites of action. Recently, Sokoloff and associates described a new technique which can be used to visualise possible sites of drug action. The technique is based on the premise that neuronal activity is closely related to energy metabolism. Therefore, by directly monitoring 2-deoxy-D-glucose consumption before and after a pharmacological stimulus, we can obtain autoradiographic evidence of changes in neuronal activity in discrete areas brain as a response to that stimulus. Using this procedure, we now report that PCP causes dramatic changes in glucose metabolism in very specific regions of the rat brain.

  12. Brain metabolism and spatial memory are affected by portal hypertension.

    PubMed

    Arias, Natalia; Méndez, Marta; Arias, Jaime; Arias, Jorge L

    2012-06-01

    Portal hypertension is a major complication of cirrhosis that frequently leads to a neuropsychiatric disorder that affects cognition. The present study was undertaken in order to compare the performance of sham-operated rats (SHAM) and portal hypertension rats (PH) in reference memory tasks in the Morris water maze (MWM). Two groups of animals were used: SHAM group (n=12) was used as a control group and PH group (n=12) by the triple portal vein ligation method was used as an animal model of early evolutive phase of PH. The portal pressure was measured in the splenic parenchyma. Our work shows that spatial learning in the MWM is not impaired in PH group although this group showed a one-day delay in the task acquisition compared to the SHAM group. We assessed the brain metabolic activity of the animals by means of cytochrome c-oxidase (COx) histochemistry. Significant changes were found in the CA3, dentate gyrus, basolateral, medial, lateral and central amygdala, showing lower COx activity in the PH group as compared to the SHAM group in all cases. We found no changes in metabolic activity in prefrontal cortex and CA1 area between groups. In fact, different neural networks were shown according to the execution level of the subjects. The early PH evolution induced changes in brain metabolic activity without biggest alterations in spatial memory.

  13. Disease and the brain's dark energy.

    PubMed

    Zhang, Dongyang; Raichle, Marcus E

    2010-01-01

    Brain function has traditionally been studied in terms of physiological responses to environmental demands. This approach, however, ignores the fact that much of the brain's energy is devoted to intrinsic neuronal signaling. Recent studies indicate that intrinsic neuronal activity manifests as spontaneous fluctuations in the blood oxygen level-dependent (BOLD) functional MRI (fMRI) signal. The study of such fluctuations could potentially provide insight into the brain's functional organization. In this article, we begin by presenting an overview of the strategies used to explore intrinsic neuronal activity. Considering the possibility that intrinsic signaling accounts for a large proportion of brain activity, we then examine whether the functional architecture of intrinsic activity is altered in neurological and psychiatric diseases. We also review a clinical application of brain mapping, in which intrinsic activity is employed for the preoperative localization of functional brain networks in patients undergoing neurosurgery. To end the article, we explore some of the basic science pursuits that have been undertaken to further understand the physiology behind intrinsic activity as imaged with BOLD fMRI.

  14. Dietary supplementation with decaffeinated green coffee improves diet-induced insulin resistance and brain energy metabolism in mice.

    PubMed

    Ho, Lap; Varghese, Merina; Wang, Jun; Zhao, Wei; Chen, Fei; Knable, Lindsay Alexis; Ferruzzi, Mario; Pasinetti, Giulio M

    2012-01-01

    There is accumulating evidence that coffee consumption may reduce risk for type 2 diabetes, a known risk factor for Alzheimer's and other neurological diseases. Coffee consumption is also associated with reduced risk for Alzheimer's disease and non-Alzheimer's dementias. However, preventive and therapeutic development of coffee is complicated by the cardiovascular side effects of caffeine intake. As coffee is also a rich source of chlorogenic acids and many bioactive compounds other than caffeine, we hypothesized that decaffeinated coffee drinks may exert beneficial effects on the brain. We have investigated whether dietary supplementation with a standardized decaffeinated green coffee preparation, Svetol®, might modulate diet-induced insulin resistance and brain energy metabolism dysfunction in a high-fat diet mouse model. As expected, dietary supplementation with Svetol® significantly attenuated the development of high-fat diet-induced deficits in glucose-tolerance response. We have also found that Svetol®) treatment improved brain mitochondrial energy metabolism as determined by oxygen consumption rate. Consistent with this evidence, follow-up gene expression profiling with Agilent whole-genome microarray revealed that the decaffeinated coffee treatment modulated a number of genes in the brain that are implicated in cellular energy metabolism. Our evidence is the first demonstration that dietary supplementation with a decaffeinated green coffee preparation may beneficially influence the brain, in particular promoting brain energy metabolic processes.

  15. Metabolic Syndrome: Nonalcoholic Fatty Liver Disease.

    PubMed

    Williams, Tracy

    2015-08-01

    Although nonalcoholic fatty liver disease (NAFLD) is not one of the defining criteria for metabolic syndrome, it is a common hepatic manifestation. NAFLD includes a spectrum of histologic findings ranging from simple steatosis, known as nonalcoholic fatty liver, to nonalcoholic steatohepatitis (NASH). To make the diagnosis of NAFLD, other etiologies of steatosis or hepatitis, such as hepatotoxic drugs, excessive alcohol intake, congenital errors of metabolism, or viral hepatitis, must be ruled out. After ruling out other conditions, the diagnosis of NAFLD often is made clinically, but a definitive diagnosis of NASH requires liver biopsy. As with other complications of metabolic syndrome, insulin resistance is thought to be an underlying etiology of NAFLD. Management strategies attempt to reverse or improve insulin resistance while minimizing liver damage. The strongest evidence supports lifestyle modifications with weight loss, but there is some evidence to support bariatric surgery, medical therapy with insulin-sensitizing agents, and/or pharmacotherapy to promote weight loss. Cardiovascular disease is the major cause of mortality in patients with NAFLD, so management must include modification of cardiovascular risk factors. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  16. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls.

    PubMed

    Sampedro, Frederic; Vilaplana, Eduard; de Leon, Mony J; Alcolea, Daniel; Pegueroles, Jordi; Montal, Victor; Carmona-Iragui, María; Sala, Isabel; Sánchez-Saudinos, María-Belén; Antón-Aguirre, Sofía; Morenas-Rodríguez, Estrella; Camacho, Valle; Falcón, Carles; Pavía, Javier; Ros, Domènec; Clarimón, Jordi; Blesa, Rafael; Lleó, Alberto; Fortea, Juan

    2015-09-29

    The APOE effect on Alzheimer Disease (AD) risk is stronger in women than in men but its mechanisms have not been established. We assessed the APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in healthy elderly control individuals (HC). Cross-sectional study. HC from the Alzheimer's Disease Neuroimaging Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-PET analyses (n = 328) were selected. CSF amyloid-β1-42 (Aβ1-42), total-tau (t-tau) and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance (ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was measured by FreeSurfer. FDG and CTh difference maps were derived from interaction and group analyses. APOE4 carriers had lower CSF Aβ1-42 and higher CSF p-tau181p values than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The APOE-by-sex interaction on brain metabolism and brain structure was significant. Sex stratification showed that female APOE4 carriers presented widespread brain hypometabolism and cortical thinning compared to female non-carriers whereas male APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical thickening compared to male non-carriers. The impact of APOE4 on brain metabolism and structure is modified by sex. Female APOE4 carriers show greater hypometabolism and atrophy than male carriers. This APOE-by-sex interaction should be considered in clinical trials in preclinical AD where APOE4 status is a selection criterion.

  17. Phosphatidylethanolamine Metabolism in Health and Disease

    PubMed Central

    Calzada, Elizabeth; Onguka, Ouma; Claypool, Steven M.

    2016-01-01

    Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms. PMID:26811286

  18. Polyamine metabolism in Menkes kinky hair disease.

    PubMed

    Rennert, O M; Chan, W Y; Hidalgo, H; Cushing, W; Griesmann, G

    1980-05-09

    Clinical investigations of the urinary excretion of putrescine and the polyamines spermidine and spermine in a patient with Menkes kinky hair disease are reported. This disorder, characterized by intra- and extracellular copper deficiency, is associated with significant depression of diamine oxidase and monoamine oxidase activity. Urinary excretion of diamine and polyamines, monitored over a 2-month interval in a 4-month old patient with Menkes kinky hair disease, documented a 3- to 10-fold increase in the excretion of free putrescine, spermidine and spermine as well as the conjugated derivatives of putrescine and spermidine. These observations suggest that abnormalities in diamine and polyamine concentration occur in disease states in which the metabolic transformation of these compounds is impaired.

  19. Lipoprotein metabolism in nonalcoholic fatty liver disease

    PubMed Central

    Jiang, Zhenghui Gordon; Robson, Simon C.; Yao, Zemin

    2013-01-01

    Nonalcoholic fatty liver disease (NAFLD), an escalating health problem worldwide, covers a spectrum of pathologies characterized by fatty accumulation in hepatocytes in early stages, with potential progression to liver inflammation, fibrosis, and failure. A close, yet poorly understood link exists between NAFLD and dyslipidemia, a constellation of abnormalities in plasma lipoproteins including triglyceride-rich very low density lipoproteins. Apolipoproteins are a group of primarily liver-derived proteins found in serum lipoproteins; they not only play an extracellular role in lipid transport between vital organs through circulation, but also play an important intracellular role in hepatic lipoprotein assembly and secretion. The liver functions as the central hub for lipoprotein metabolism, as it dictates lipoprotein production and to a significant extent modulates lipoprotein clearance. Lipoprotein metabolism is an integral component of hepatocellular lipid homeostasis and is implicated in the pathogenesis, potential diagnosis, and treatment of NAFLD. PMID:23554788

  20. AMPK/Mitochondria in Metabolic Diseases.

    PubMed

    Bullon, Pedro; Marin-Aguilar, Fabiola; Roman-Malo, Lourdes

    The obtaining of nutrients is the most important task in our lives. Energy is central to life's evolutions; this was one of the aspect that induced the selection of the more adaptable and more energetically profitable species. Nowadays things have changed in our modern society. A high proportion of people has access to plenty amount of food and the obesity appear as one of the pathological characteristics of our society. Energy is obtained essentially in the mitochondria with the transfer of protons across the inner membrane that produce ATP. The exactly regulation of the synthesis and degradation of ATP (ATP ↔ ADP + phosphate) is essential to all form of life. This task is performed by the 5' adenosine monophosphate-activated protein kinase (AMPK). mtDNA is highly exposed to oxidative damage and could play a central role in human health and disease. This high potential rate of abnormalities is controlled by one of the most complex mechanism: the autophagy. AMPK appears to be the key cellular energy sensor involved in multiple cellular mechanisms and is essential to have a good metabolic homeostasis to face all the aggression and start the inflammatory reaction. Therefore its disturbances have been related with multiple diseases. Recent findings support the role of AMPK in inflammation and immunity such as Metabolic Syndrome, Obesity and Diabetes. All these Metabolic Disorders are considered pandemics and they need an adequate control and prevention. One important way to achieve it is deepen in the pathogenic mechanisms. Mitochondria and AMPK are the key elements through which it happen, their knowledge and research allow us to a better management. The discovery and use of drugs that can modulate them is imperative to improve our way of manage the metabolic disorders.

  1. The impairment of cholesterol metabolism in Huntington disease.

    PubMed

    Leoni, Valerio; Caccia, Claudio

    2015-08-01

    Huntington disease (HD), an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG trinucleotide repeat in the Huntingtin (HTT) gene, is characterized by extensive neurodegeneration of striatum and cortex and severe diffuse atrophy at MRI. The expression of genes involved in the cholesterol biosynthetic pathway and the amount of cholesterol, lanosterol, lathosterol and 24S-hydroxycholesterol were reduced in murine models of HD. In case of HD-patients, the decrease of plasma 24OHC follows disease progression proportionally to motor and neuropsychiatric dysfunction and MRI brain atrophy, together with lanosterol and lathosterol (markers of cholesterol synthesis), and 27-hydroxycholesterol. A significant reduction of total plasma cholesterol was observed only in advanced stages. It is likely that mutant HTT decreases the maturation of SREBP and the up-regulation LXR and LXR-targeted genes (SREBP, ABCG1 and ABCG4, HMGCoA reductase, ApoE) resulting into a lower synthesis and transport of cholesterol from astrocytes to neurons via ApoE. In primary oligodendrocytes, mutant HTT inhibited the regulatory effect of PGC1α on cholesterol metabolism and on the expression of MBP. HTT seems to play a regulatory role in lipid metabolism. The impairment of the cholesterol metabolism was found to be proportional to the CAG repeat length and to the load of mutant HTT. A dysregulation on PGC1α and mitochondria dysfunction may be involved in an overall reduction of acetyl-CoA and ATP synthesis, contributing to the cerebral and whole body cholesterol impairment. This article is part of a Special Issue entitled Brain Lipids.

  2. Metabolic imaging of rat brain during pharmacologically-induced tinnitus.

    PubMed

    Paul, A K; Lobarinas, E; Simmons, R; Wack, D; Luisi, John C; Spernyak, J; Mazurchuk, R; Abdel-Nabi, H; Salvi, R

    2009-01-15

    Although much is known about the perceptual characteristics of tinnitus, its neural origins remain poorly understood. We investigated the pattern of neural activation in central auditory structures using positron emission tomography (PET) imaging in a rat model of salicylate-induced tinnitus. Awake rats were injected with the metabolic tracer, fluorine-18 fluorodeoxyglucose (FDG), once in a quiet state (baseline) and once during salicylate-induced tinnitus. Tinnitus was verified using a behavioral technique. Brain imaging was performed using a high-resolution microPET scanner. Rats underwent magnetic resonance imaging (MRI) and reconstructed MRI and microPET images were fused to identify brain structures. FDG activity in brain regions of interest were quantified and compared. MicroPET imaging showed that FDG activity in the frontal pole was stable between baseline and tinnitus conditions, suggesting it was metabolically inert during tinnitus. Inferior colliculi (p=0.03) and temporal cortices (p=0.003) showed significantly increased FDG activity during tinnitus relative to baseline; activity in the colliculi and temporal cortices increased by 17%+/-21% and 29%+/-20%, respectively. FDG activity in the thalami also increased during tinnitus, but the increase did not reach statistical significance (p=0.07). Our results show increased metabolic activity consistent with neuronal activation in inferior colliculi and auditory cortices of rats during salicylate-induced tinnitus. These results are the first to show that microPET imaging can be used to identify central auditory structures involved in tinnitus and suggest that microPET imaging might be used to evaluate the therapeutic potential of drugs to treat tinnitus.

  3. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  4. Measurement of Postreplicative DNA Metabolism and Damage in the Rodent Brain.

    PubMed

    Patel, Jay P; Sowers, Mark L; Herring, Jason L; Theruvathu, Jacob A; Emmett, Mark R; Hawkins, Bridget E; Zhang, Kangling; DeWitt, Douglas S; Prough, Donald S; Sowers, Lawrence C

    2015-12-21

    The DNA of all organisms is metabolically active due to persistent endogenous DNA damage, repair, and enzyme-mediated base modification pathways important for epigenetic reprogramming and antibody diversity. The free bases released from DNA either spontaneously or by base excision repair pathways constitute DNA metabolites in living tissues. In this study, we have synthesized and characterized the stable-isotope standards for a series of pyrimidines derived from the normal DNA bases by oxidation and deamination. We have used these standards to measure free bases in small molecule extracts from rat brain. Free bases are observed in extracts, consistent with both endogenous DNA damage and 5-methylcytosine demethylation pathways. The most abundant free base observed is uracil, and the potential sources of uracil are discussed. The free bases measured in tissue extracts constitute the end product of DNA metabolism and could be used to reveal metabolic disturbances in human disease.

  5. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.

    PubMed

    O'Mahony, S M; Clarke, G; Borre, Y E; Dinan, T G; Cryan, J F

    2015-01-15

    The brain-gut axis is a bidirectional communication system between the central nervous system and the gastrointestinal tract. Serotonin functions as a key neurotransmitter at both terminals of this network. Accumulating evidence points to a critical role for the gut microbiome in regulating normal functioning of this axis. In particular, it is becoming clear that the microbial influence on tryptophan metabolism and the serotonergic system may be an important node in such regulation. There is also substantial overlap between behaviours influenced by the gut microbiota and those which rely on intact serotonergic neurotransmission. The developing serotonergic system may be vulnerable to differential microbial colonisation patterns prior to the emergence of a stable adult-like gut microbiota. At the other extreme of life, the decreased diversity and stability of the gut microbiota may dictate serotonin-related health problems in the elderly. The mechanisms underpinning this crosstalk require further elaboration but may be related to the ability of the gut microbiota to control host tryptophan metabolism along the kynurenine pathway, thereby simultaneously reducing the fraction available for serotonin synthesis and increasing the production of neuroactive metabolites. The enzymes of this pathway are immune and stress-responsive, both systems which buttress the brain-gut axis. In addition, there are neural processes in the gastrointestinal tract which can be influenced by local alterations in serotonin concentrations with subsequent relay of signals along the scaffolding of the brain-gut axis to influence CNS neurotransmission. Therapeutic targeting of the gut microbiota might be a viable treatment strategy for serotonin-related brain-gut axis disorders.

  6. Protecting against vascular disease in brain

    PubMed Central

    2011-01-01

    Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467

  7. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    PubMed

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  8. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism

    PubMed Central

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-01-01

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832

  9. Inflammatory links between obesity and metabolic disease

    PubMed Central

    Lumeng, Carey N.; Saltiel, Alan R.

    2011-01-01

    The obesity epidemic has forced us to evaluate the role of inflammation in the health complications of obesity. This has led to a convergence of the fields of immunology and nutrient physiology and the understanding that they are inextricably linked. The reframing of obesity as an inflammatory condition has had a wide impact on our conceptualization of obesity-associated diseases. In this Review, we highlight the cellular and molecular mechanisms at play in the generation of obesity-induced inflammation. We also emphasize how defining the immune regulation in metabolic tissues has broadened the understanding of the diversity of inflammatory responses. PMID:21633179

  10. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    PubMed Central

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders. PMID:22548651

  11. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health.

    PubMed

    Rothman, Sarah M; Griffioen, Kathleen J; Wan, Ruiqian; Mattson, Mark P

    2012-08-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor (BDNF) plays a critical role in the integration and optimization of behavioral and metabolic responses to environments with limited energy resources and intense competition. In particular, BDNF signaling mediates adaptive responses of the central, autonomic, and peripheral nervous systems from exercise and DER. In the hypothalamus, BDNF inhibits food intake and increases energy expenditure. By promoting synaptic plasticity and neurogenesis in the hippocampus, BDNF mediates exercise- and DER-induced improvements in cognitive function and neuroprotection. DER improves cardiovascular stress adaptation by a mechanism involving enhancement of brainstem cholinergic activity. Collectively, findings reviewed in this paper provide a rationale for targeting BDNF signaling for novel therapeutic interventions in a range of metabolic and neurological disorders.

  12. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease.

    PubMed

    Dumas, Marc-Emmanuel; Kinross, James; Nicholson, Jeremy K

    2014-01-01

    Metabolic syndrome, a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease, is becoming an increasing global health concern. Insulin resistance is often associated with metabolic syndrome and also typical hepatic manifestations such as nonalcoholic fatty liver disease. Profiling of metabolic products (metabolic phenotyping or metabotyping) has provided new insights into metabolic syndrome and nonalcoholic fatty liver disease. Data from nuclear magnetic resonance spectroscopy and mass spectrometry combined with statistical modeling and top-down systems biology have allowed us to analyze and interpret metabolic signatures in terms of metabolic pathways and protein interaction networks and to identify the genomic and metagenomic determinants of metabolism. For example, metabolic phenotyping has shown that relationships between host cells and the microbiome affect development of the metabolic syndrome and fatty liver disease. We review recent developments in metabolic phenotyping and systems biology technologies and how these methodologies have provided insights into the mechanisms of metabolic syndrome and nonalcoholic fatty liver disease. We discuss emerging areas of research in this field and outline our vision for how metabolic phenotyping could be used to study metabolic syndrome and fatty liver disease. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Metabolism and Skeletal Muscle Homeostasis in Lung Disease.

    PubMed

    Ceco, Ermelinda; Weinberg, Samuel E; Chandel, Navdeep S; Sznajder, Jacob I

    2017-07-01

    There is increased awareness that patients with lung diseases develop muscle dysfunction. Muscle dysfunction is a major contributor to a decreased quality of life in patients with chronic pulmonary diseases. Furthermore, muscle dysfunction exacerbates lung disease outcome, as a decrease in muscle mass and function are associated with increased morbidity, often long after critical illness or lung disease has been resolved. As we are learning more about the role of metabolism in health and disease, we are appreciating more the direct role of metabolism in skeletal muscle homeostasis. Altered metabolism is associated with numerous skeletal muscle pathologies and, conversely, skeletal muscle diseases are associated with significant changes in metabolic pathways. In this review, we highlight the role of metabolism in the regulation of skeletal muscle homeostasis. Understanding the metabolic pathways that underlie skeletal muscle wasting is of significant clinical interest for critically ill patients as well as patients with chronic lung disease, in which proper skeletal muscle function is essential to disease outcome.

  14. [Development of gene therapy in major brain diseases].

    PubMed

    Fan, Li; Jiang, Xin-guo

    2010-09-01

    In recent years, the development of molecular biology and medicine has prompted the research of gene therapy for brain diseases. In this review, we summarized the current gene therapy approaches of major brain diseases. Against the pathogenesis of major brain diseases, including brain tumors, Parkinson's disease, Alzheimer's disease and cerebrovascular disorders, there are several effective gene therapy strategies. It is no doubt that, gene therapy, as a novel treatment, is of great significance for understanding the causes, as well as comprehensive treatment for brain diseases.

  15. MR Anatomy of Deep Brain Nuclei with Special Reference to Specific Diseases and Deep Brain Stimulation Localization

    PubMed Central

    Telford, Ryan; Vattoth, Surjith

    2014-01-01

    Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832

  16. Chromium in metabolic and cardiovascular disease.

    PubMed

    Hummel, M; Standl, E; Schnell, O

    2007-10-01

    Chromium is an essential mineral that appears to have a beneficial role in the regulation of insulin action, metabolic syndrome, and cardiovascular disease. There is growing evidence that chromium may facilitate insulin signaling and chromium supplementation therefore may improve systemic insulin sensitivity. Tissue chromium levels of subjects with diabetes are lower than those of normal control subjects, and a correlation exists between low circulating levels of chromium and the incidence of type 2 diabetes. Controversy still exists as to the need for chromium supplementation. However, supplementation with chromium picolinate, a stable and highly bioavailable form of chromium, has been shown to reduce insulin resistance and to help reduce the risk of cardiovascular disease and type 2 diabetes. Since chromium supplementation is a safe treatment, further research is necessary to resolve the confounding data. The existing data suggest to concentrate future studies on certain forms as chromium picolinate and doses as at least 200 mcg per day.

  17. Carotid body, insulin, and metabolic diseases: unraveling the links

    PubMed Central

    Conde, Sílvia V.; Sacramento, Joana F.; Guarino, Maria P.; Gonzalez, Constancio; Obeso, Ana; Diogo, Lucilia N.; Monteiro, Emilia C.; Ribeiro, Maria J.

    2014-01-01

    The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future. PMID:25400585

  18. Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice.

    PubMed

    Wang, Pengwen; Su, Caixin; Feng, Huili; Chen, Xiaopei; Dong, Yunfang; Rao, Yingxue; Ren, Ying; Yang, Jinduo; Shi, Jing; Tian, Jinzhou; Jiang, Shucui

    2017-03-01

    Recent studies have shown the therapeutic potential of curcumin in Alzheimer's disease (AD). In 2014, our lab found that curcumin reduced Aβ40, Aβ42 and Aβ-derived diffusible ligands in the mouse hippocampus, and improved learning and memory. However, the mechanisms underlying this biological effect are only partially known. There is considerable evidence in brain metabolism studies indicating that AD might be a brain-specific type of diabetes with progressive impairment of glucose utilisation and insulin signalling. We hypothesised that curcumin might target both the glucose metabolism and insulin signalling pathways. In this study, we monitored brain glucose metabolism in living APPswe/PS1dE9 double transgenic mice using a micro-positron emission tomography (PET) technique. The study showed an improvement in cerebral glucose uptake in AD mice. For a more in-depth study, we used immunohistochemical (IHC) staining and western blot techniques to examine key factors in both glucose metabolism and brain insulin signalling pathways. The results showed that curcumin ameliorated the defective insulin signalling pathway by upregulating insulin-like growth factor (IGF)-1R, IRS-2, PI3K, p-PI3K, Akt and p-Akt protein expression while downregulating IR and IRS-1. Our study found that curcumin improved spatial learning and memory, at least in part, by increasing glucose metabolism and ameliorating the impaired insulin signalling pathways in the brain.

  19. Basal and learning task-related brain oxidative metabolism in cirrhotic rats.

    PubMed

    Méndez, Marta; Méndez-López, Magdalena; López, Laudino; Aller, María Angeles; Arias, Jaime; Arias, Jorge L

    2009-03-16

    Hepatic encephalopathy is a neurological complication observed in patients with liver disease. Subjects with hepatic encephalopathy can develop memory alterations. In order to investigate brain oxidative metabolism in an animal model of chronic cirrhosis and its modification after spatial working memory task, we determined the neural metabolic activity of several brain limbic system regions by cytochrome oxidase (COx) histochemistry and assessed the spatial working memory in the Morris water maze of rats with cirrhosis by administration of thioacetamide. This COx histochemistry was done in cirrhotic and control rats under basal conditions and after the spatial working memory task. The histochemical results showed differences in basal COx activity between control and cirrhotic rats in hippocampal and thalamic regions. In cirrhotic rats basal COx activity was increased in the CA1 and CA3 areas of the hippocampus and reduced in the anterodorsal and anteroventral thalamic nuclei. We found impaired spatial working memory in animals with cirrhosis. These animals showed absence of metabolic activation of the CA3 hippocampal subfield and the lateral mammillary nucleus and disturbance of COx activity in the medial mammillary nucleus and the anteroventral thalamus. These findings suggest that cirrhotic rats show spatial working memory deficits that could be related to the alteration of metabolic activity of neural regions thought to be involved in the processing of spatial memories.

  20. [Microbiotes and metabolic diseases: the bases for therapeutic strategies].

    PubMed

    Burcelin, Rémy; Nicolas, Simon; Blasco-Baque, Vincent

    2016-11-01

    After more than one and a half century, i.e. since Louis Pasteur work on microbes, fermentation, and diseases, biological science has made a giant step in bacteria knowledge. Thanks to an ultra-powerful "microscope", i.e. ultra-fast DNA sequencing, scientists have been able to read and group within a catalog over the last decade, the gene code of bacteria, i.e. the metagenome at the surface of our epithelia. More recently, live bacteria within adipose tissue, defining a tissue microbiota, as well as bacterial fragments such as DNA within the liver, the brain and the blood have been identified. Metagenomic analyses from large cohorts of patients have uncovered tight correlations between bacterial genes within our intestine and mouth and diseases such as metabolic diseases, diabetes, obesity, some liver diseases, kidney and heart failure as well as vascular diseases. Some causal mechanisms have been proposed in rodents and can set the soil for novel therapeutic strategies that could interfere with both the microbes and the corresponding host targets.

  1. Systemic glucose and brain energy metabolism after subarachnoid hemorrhage.

    PubMed

    Helbok, Raimund; Schmidt, J Michael; Kurtz, Pedro; Hanafy, Khalid A; Fernandez, Luis; Stuart, R Morgan; Presciutti, Mary; Ostapkovich, Noeleen D; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A; Claassen, Jan

    2010-06-01

    Brain energy metabolic crisis (MC) and lactate-pyruvate ratio (LPR) elevations have been linked to poor outcome in comatose patients. We sought to determine if MC and LPR elevations after subarachnoid hemorrhage (SAH) are associated with acute reductions in serum glucose. Twenty-eight consecutive comatose SAH patients that underwent multimodality monitoring with intracranial pressure and microdialysis were studied. MC was defined as lactate/pyruvate ratio (LPR) > or = 40 and brain glucose < 0.7 mmol/l. Time-series data were analyzed using a multivariable general linear model with a logistic link function for dichotomized outcomes. Multimodality monitoring included 3,178 h of observation (mean 114 +/- 65 h per patient). In exploratory analysis, serum glucose significantly decreased from 8.2 +/- 1.8 mmol/l (148 mg/dl) 2 h before to 6.9 +/- 1.9 mmol/l (124 mg/dl) at the onset of MC (P < 0.001). Reductions in serum glucose of 25% or more were significantly associated with new onset MC (adjusted odds ratio [OR] 3.6, 95% confidence interval [CI] 2.2-6.0). Acute reductions in serum glucose of 25% or more were also significantly associated with an LPR rise of 25% or more (adjusted OR 1.6, 95% CI 1.1-2.4). All analyses were adjusted for significant covariates including Glasgow Coma Scale and cerebral perfusion pressure. Acute reductions in serum glucose, even to levels within the normal range, may be associated with brain energy metabolic crisis and LPR elevation in poor-grade SAH patients.

  2. Exchange transamination and the metabolism of glutamate in brain

    PubMed Central

    Balázs, R.; Haslam, R. J.

    1965-01-01

    1. Experiments were performed to throw light on why the incorporation of 14C from labelled carbohydrate precursors into glutamate has been found to be more marked in brain than in other tissues. 2. Rapid isotope exchange between labelled glutamate and unlabelled α-oxoglutarate was demonstrated in brain and liver mitochondrial preparations. In the presence but not in the absence of α-oxoglutarate the yield of 14CO2 from [1-14C]glutamate exceeded the net glutamate removal, and the final relative specific activities of the two substrates indicated that complete isotopic equilibration had occurred. Also, when in a brain preparation net glutamate removal was inhibited by malonate, isotope exchange between [1-14C]glutamate and α-oxoglutarate and the formation of 14CO2 were unaffected. 3. The time-course of isotope exchange between labelled glutamate and unlabelled α-oxoglutarate was followed in uncoupled brain and liver mitochondrial fractions, and the rate of exchange calculated by a computer was found to be 3–8 times more rapid than the maximal rate of utilization of the two substrates. 4. The physiological situation was imitated by the continuous infusion of small amounts of α-oxo[1-14C]glutarate into brain homogenate containing added glutamate. The fraction of 14C infused that was retained in the glutamate pool depended on the size of the latter, and the final relative specific activities of the two substrates indicated almost complete isotope exchange. Isotopic equilibration also occurred when α-oxoglutarate was generated from pyruvate through the tricarboxylic acid cycle in a brain mitochondrial preparation containing [1-14C]glutamate. 5. The differences in the incorporation of 14C from labelled glucose into the glutamate of brain and liver are discussed in terms of the rates of isotope exchange, the glutamate pool sizes and the rates of formation of labelled α-oxoglutarate in the two tissues. It is concluded that the differences between tissues in the

  3. EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN.

    PubMed

    BALAZS, R; HASLAM, J

    1965-01-01

    1. Experiments were performed to throw light on why the incorporation of (14)C from labelled carbohydrate precursors into glutamate has been found to be more marked in brain than in other tissues. 2. Rapid isotope exchange between labelled glutamate and unlabelled alpha-oxoglutarate was demonstrated in brain and liver mitochondrial preparations. In the presence but not in the absence of alpha-oxoglutarate the yield of (14)CO(2) from [1-(14)C]glutamate exceeded the net glutamate removal, and the final relative specific activities of the two substrates indicated that complete isotopic equilibration had occurred. Also, when in a brain preparation net glutamate removal was inhibited by malonate, isotope exchange between [1-(14)C]glutamate and alpha-oxoglutarate and the formation of (14)CO(2) were unaffected. 3. The time-course of isotope exchange between labelled glutamate and unlabelled alpha-oxoglutarate was followed in uncoupled brain and liver mitochondrial fractions, and the rate of exchange calculated by a computer was found to be 3-8 times more rapid than the maximal rate of utilization of the two substrates. 4. The physiological situation was imitated by the continuous infusion of small amounts of alpha-oxo[1-(14)C]glutarate into brain homogenate containing added glutamate. The fraction of (14)C infused that was retained in the glutamate pool depended on the size of the latter, and the final relative specific activities of the two substrates indicated almost complete isotope exchange. Isotopic equilibration also occurred when alpha-oxoglutarate was generated from pyruvate through the tricarboxylic acid cycle in a brain mitochondrial preparation containing [1-(14)C]glutamate. 5. The differences in the incorporation of (14)C from labelled glucose into the glutamate of brain and liver are discussed in terms of the rates of isotope exchange, the glutamate pool sizes and the rates of formation of labelled alpha-oxoglutarate in the two tissues. It is concluded that

  4. Adipokines, Metabolic Syndrome and Rheumatic Diseases

    PubMed Central

    Abella, Vanessa; Scotece, Morena; López, Verónica; Lazzaro, Verónica; Pino, Jesús; Gómez-Reino, Juan J.; Gualillo, Oreste

    2014-01-01

    The metabolic syndrome (MetS) is a cluster of cardiometabolic disorders that result from the increasing prevalence of obesity. The major components of MetS include insulin resistance, central obesity, dyslipidemia, and hypertension. MetS identifies the central obesity with increased risk for cardiovascular diseases (CVDs) and type-2 diabetes mellitus (T2DM). Patients with rheumatic diseases, such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis, have increased prevalence of CVDs. Moreover, CVD risk is increased when obesity is present in these patients. However, traditional cardiovascular risk factors do not completely explain the enhanced cardiovascular risk in this population. Thus, MetS and the altered secretion patterns of proinflammatory adipokines present in obesity could be the link between CVDs and rheumatic diseases. Furthermore, adipokines have been linked to the pathogenesis of MetS and its comorbidities through their effects on vascular function and inflammation. In the present paper, we review recent evidence of the role played by adipokines in the modulation of MetS in the general population, and in patients with rheumatic diseases. PMID:24741591

  5. Adipokines, metabolic syndrome and rheumatic diseases.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; López, Verónica; Lazzaro, Verónica; Pino, Jesús; Gómez-Reino, Juan J; Gualillo, Oreste

    2014-01-01

    The metabolic syndrome (MetS) is a cluster of cardiometabolic disorders that result from the increasing prevalence of obesity. The major components of MetS include insulin resistance, central obesity, dyslipidemia, and hypertension. MetS identifies the central obesity with increased risk for cardiovascular diseases (CVDs) and type-2 diabetes mellitus (T2DM). Patients with rheumatic diseases, such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis, have increased prevalence of CVDs. Moreover, CVD risk is increased when obesity is present in these patients. However, traditional cardiovascular risk factors do not completely explain the enhanced cardiovascular risk in this population. Thus, MetS and the altered secretion patterns of proinflammatory adipokines present in obesity could be the link between CVDs and rheumatic diseases. Furthermore, adipokines have been linked to the pathogenesis of MetS and its comorbidities through their effects on vascular function and inflammation. In the present paper, we review recent evidence of the role played by adipokines in the modulation of MetS in the general population, and in patients with rheumatic diseases.

  6. Nutrigenomic programming of cardiovascular and metabolic diseases.

    PubMed

    Ozanne, Susan

    2014-10-01

    Over twenty five years ago epidemiological studies revealed that there was a relationship between patterns of early growth and subsequent risk of diseases such as type 2 diabetes, cardiovascular disease and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, discordant siblings and animal models have provided strong evidence that the early environment plays an important role in mediating these relationships. Early nutrition is one such important environmental factor. The concept of early life programming is therefore widely accepted and the underlying mechanisms starting to emerge. These include: (1) Permanent structural changes in an organ due to exposure to suboptimal levels of essential hormones or nutrients during a critical period of development leading to permanent changes in tissue function (2) Persistent epigenetic changes such as DNA methylation and histone modifications and miRNAs leading to changes in gene expression. (3) Permanent effects on regulation of cellular ageing through increases in oxidative stress and mitochondrial dysfunction leading to DNA damage and telomere shortening. Further understanding of these processes will enable the development of preventative and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease.

  7. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  8. Contribution of gut bacterial metabolism to human metabolic disease.

    PubMed

    Bain, M D; Jones, M; Borriello, S P; Reed, P J; Tracey, B M; Chalmers, R A; Stacey, T E

    1988-05-14

    Metronidazole, an antibiotic with specific activity against anaerobic bacteria, was of clinical and biochemical benefit in two patients with methylmalonic aciduria. The virtual elimination of propionic acid from the stool suggested that propionic acid derived from faecal bacterial metabolism contributes substantially to methylmalonate production. These findings point to a novel avenue of treatment for these disorders of intermediary metabolism, and indicate the importance of microbial gut flora in normal human metabolism.

  9. Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure.

    PubMed

    Baranowska-Bosiacka, Irena; Falkowska, Anna; Gutowska, Izabela; Gąssowska, Magdalena; Kolasa-Wołosiuk, Agnieszka; Tarnowski, Maciej; Chibowska, Karina; Goschorska, Marta; Lubkowska, Anna; Chlubek, Dariusz

    2017-09-12

    Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease.

    PubMed

    Sacksteder, Colette A; Qian, Wei-Jun; Knyushko, Tatyana V; Wang, Haixing; Chin, Mark H; Lacan, Goran; Melega, William P; Camp, David G; Smith, Richard D; Smith, Desmond J; Squier, Thomas C; Bigelow, Diana J

    2006-07-04

    Increased abundance of nitrotyrosine modifications of proteins have been documented in multiple pathologies in a variety of tissue types and play a role in the redox regulation of normal metabolism. To identify proteins sensitive to nitrating conditions in vivo, a comprehensive proteomic data set identifying 7792 proteins from a whole mouse brain, generated by LC/LC-MS/MS analyses, was used to identify nitrated proteins. This analysis resulted in the identification of 31 unique nitrotyrosine sites within 29 different proteins. More than half of the nitrated proteins that have been identified are involved in Parkinson's disease, Alzheimer's disease, or other neurodegenerative disorders. Similarly, nitrotyrosine immunoblots of whole brain homogenates show that treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), an experimental model of Parkinson's disease, induces an increased level of nitration of the same protein bands observed to be nitrated in brains of untreated animals. Comparing sequences and available high-resolution structures around nitrated tyrosines with those of unmodified sites indicates a preference of nitration in vivo for surface accessible tyrosines in loops, a characteristic consistent with peroxynitrite-induced tyrosine modification. In addition, most sequences contain cysteines or methionines proximal to nitrotyrosines, contrary to suggestions that these amino acid side chains prevent tyrosine nitration. More striking is the presence of a positively charged moiety near the sites of nitration, which is not observed for non-nitrated tyrosines. Together, these observations suggest a predictive tool of functionally important sites of nitration and that cellular nitrating conditions play a role in neurodegenerative changes in the brain.

  11. Brain Tissue Oxygenation and Cerebral Metabolic Patterns in Focal and Diffuse Traumatic Brain Injury

    PubMed Central

    Purins, Karlis; Lewén, Anders; Hillered, Lars; Howells, Tim; Enblad, Per

    2014-01-01

    Introduction: Neurointensive care of traumatic brain injury (TBI) patients is currently based on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) targeted protocols. There are reasons to believe that knowledge of brain tissue oxygenation (BtipO2) would add information with the potential of improving patient outcome. The aim of this study was to examine BtipO2 and cerebral metabolism using the Neurovent-PTO probe and cerebral microdialysis (MD) in TBI patients. Methods: Twenty-three severe TBI patients with monitoring of physiological parameters, ICP, CPP, BtipO2, and MD for biomarkers of energy metabolism (glucose, lactate, and pyruvate) and cellular distress (glutamate, glycerol) were included. Patients were grouped according to injury type (focal/diffuse) and placement of the Neurovent-PTO probe and MD catheter (injured/non-injured hemisphere). Results: We observed different patterns in BtipO2 and MD biomarkers in diffuse and focal injury where placement of the probe also influenced the results (ipsilateral/contralateral). In all groups, despite fairly normal levels of ICP and CPP, increased MD levels of glutamate, glycerol, or the L/P ratio were observed at BtipO2 <5 mmHg, indicating increased vulnerability of the brain at this level. Conclusion: Monitoring of BtipO2 adds important information in addition to traditional ICP and CPP surveillance. Because of the different metabolic responses to very low BtipO2 in the individual patient groups we submit that brain tissue oximetry is a complementary tool rather than an alternative to MD monitoring. PMID:24817863

  12. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations.

    PubMed

    Rae, Caroline D; Davidson, Joanne E; Maher, Anthony D; Rowlands, Benjamin D; Kashem, Mohammed A; Nasrallah, Fatima A; Rallapalli, Sundari K; Cook, James M; Balcar, Vladimir J

    2014-04-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.

  13. Chronic Endocrinopathies in Traumatic Brain Injury Disease.

    PubMed

    Masel, Brent E; Urban, Randy

    2015-12-01

    The aim of this review was to explain the role played by pituitary hormonal deficiencies in the traumatic brain injury (TBI) disease process. Chronic dysfunction of the pituitary axis is observed in approximately 35% of individuals who sustain a moderate-to-severe TBI. The most common deficiency is that of growth hormone, followed by gonadotropin, cortisol, and thyroid. The medical, psychological, and psychiatric consequences of untreated hypopituitarism are extensive and can be devastating. Many of the consequences of a chronic symptomatic TBI have, in the past, been solely attributed to the brain injury per se. Analysis of the signs and symptoms of pituitary axis dysfunction suggests that many of these consequences can be attributed to post-traumatic hypopituitarism (PTH). PTH may well play a significant role in the progressive signs and symptoms that follow a chronic TBI.

  14. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy

    PubMed Central

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-01-01

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood−brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse−chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855

  15. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy.

    PubMed

    Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing

    2016-05-10

    Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood-brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse-chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation.

  16. Podocyte energy metabolism and glomerular diseases.

    PubMed

    Imasawa, Toshiyuki; Rossignol, Rodrigue

    2013-09-01

    Mitochondria are crucial organelles that produce and deliver adenosine triphosphate (ATP), by which all cellular processes are driven. Although the mechanisms that control mitochondrial biogenesis, function and dynamics are complex process and vary among different cell types, recent studies provided many new discoveries in this field. Podocyte injury is a crucial step in the development of a large number of glomerular diseases. Glomerular podocytes are unique cells with complex foot processes that cover the outer layer of the glomerular basement membrane, and are the principle cells composing filtration barriers of glomerular capillaries. Little is known on the modalities and the regulation of podocyte's energetics as well as the type of energy substrate primarily used for their activity, recent studies revealed that dysfunction of energy transduction in podocytes may underlie the podocyte injury associated with numerous glomerular diseases. We herein review and discuss the importance of a fine regulation of energy metabolism in podocytes for maintaining their cellular structure and related kidney function. In the future, understanding these mechanisms will open up new areas of treatment for glomerular diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Immune regulation of metabolic homeostasis in health and disease

    PubMed Central

    Brestoff, Jonathan R.; Artis, David

    2015-01-01

    Obesity is an increasingly prevalent disease worldwide. While genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases, emerging studies indicate that innate and adaptive immune cell responses in adipose tissue have critical roles in the regulation of metabolic homeostasis. In the lean state, type 2 cytokine-associated immune cell responses predominate in white adipose tissue and protect against weight gain and insulin resistance through direct effects on adipocytes and elicitation of beige adipose. In obesity, these metabolically beneficial immunologic pathways become dysregulated, and adipocytes and other factors initiate metabolically deleterious type 1 inflammation that impairs glucose metabolism. This review discusses our current understanding of the functions of different types of adipose tissue, how immune cells regulate adipocyte function and metabolic homeostasis in the context of health and disease, and highlights the potential of targeting immuno-metabolic pathways as a therapeutic strategy to treat obesity and associated diseases. PMID:25815992

  18. Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment.

    PubMed

    Tota, Santoshkumar; Kamat, Pradeep Kumar; Shukla, Rakesh; Nath, Chandishwar

    2011-08-01

    Recently, silibinin, a clinically used hepatoprotectant, has been reported to prevent amyloid beta induced memory impairment by reducing oxidative stress and inflammation in mice brain. However, the exact mechanism of neuroprotective effect of silibinin has not been properly studied especially in context of brain energy metabolism and cholinergic functions, the essential factors that undergo impairment in Alzheimer's disease. Therefore, the present study investigated the effect of silibinin on impairment in memory, brain energy metabolism and cholinergic function following intracerebral (IC) streptozotocin (STZ) administration in mice. STZ (0.5mg/kg), administered twice at an interval of 48h, caused significant memory impairment tested by Morris water maze. Further, STZ significantly decreased ATP and increased synaptosomal calcium level in mice brain. Increased oxidative and nitrosative stress was also observed in IC STZ injected mice brain. STZ IC induced memory impairment is associated with increased activity and mRNA expression of acetylcholinesterase (AChE) and decreased α-7 nicotinic acetylcholine receptor (α-7-nAChR) mRNA expression in mice brain. Pretreatment with silibinin (100 and 200mg/kg, po) attenuated STZ induced memory impairment by reducing oxidative and nitrosative stress and synaptosomal calcium ion level. Further, silibinin dose dependently restored ATP level indicating improvement in brain energy metabolism. The activity and mRNA expression of AChE was restored by silibinin. Moreover, α-7-nAChR mRNA expression was significantly increased by silibinin in STZ treated mice brain. The present study clearly demonstrates that beneficial effects of silibinin in STZ induced memory impairment in mice is due to improvement in brain energy metabolism and cholinergic function. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Blood monoamine metabolism in Huntington's disease.

    PubMed

    Belendiuk, K; Belendiuk, G W; Freedman, D X

    1980-03-01

    In 25 patients with Huntington's disease (HD), the mean blood concentration of serotonin (5-HT) and percentage of plasma free tryptophan were significantly increased while plasma concentrations of total and protein-bound tryptophan were significantly decreased. The pattern of changes in tryptophan concentrations was related to clinical severity but not to 5-HT levels. Platelet monoamine oxidase (MAO) activity was significantly increased in patients with HD; kinetic and marker enzyme studies suggested an increased enzyme concentration. Offspring at risk for HD also had elevated platelet MAO activity but normal concentrations of blood 5-HT and plasma tryptophan. In ten patients, plasma epinephrine concentrations were significantly increased; plasma dopamine and norepinephrine concentrations were positively related to MAO activity. The finding of peripheral neurotransmitter abnormalities in HD raises the question of an interaction between CNS and peripheral processes or a systemic disorder of neurotransmitter metabolism.

  20. Leukocyte set points in metabolic disease.

    PubMed

    Odegaard, Justin I; Chawla, Ajay

    2012-01-01

    Vertebrate tissues comprise precise admixtures of parenchymal and hematopoietic cells, whose interactions are vital to proper tissue function. By regulating this interaction, vertebrates are able to mitigate environmental stress and coordinate dramatic physiologic adaptations. For instance, under conditions of chronic nutrient excess, leukocyte recruitment and activation increase in an effort to decrease excess nutrient storage and alleviate adipocyte stress. While basal equilibria may be reestablished upon normalization of nutrient intake, a new set point characterized by insulin resistance and chronic inflammation is established if the stress persists. Consequently, although this response is adaptive in settings of acute overfeeding and infection, it has catastrophic health consequences in the modern context of obesity. Understanding how leukocyte set points (numbers and activation status) are established, maintained, and regulated in tissues is, thus, critical to our understanding of, and intervention in, chronic metabolic diseases, such as obesity and diabetes.

  1. Oral manifestations of metabolic bone disease: vitamin D and osteoporosis.

    PubMed

    Zachariasen, R

    1990-10-01

    Metabolic bone diseases are disorders of bone remodeling and characteristically involve the entire bony skeleton. Metabolic bone diseases exhibit their effects throughout all skeletal tissue, and very often are first diagnosed from abnormalities appearing in the oral cavity or on dental radiographs. This article presents major metabolic bone diseases that are often manifested in the oral cavity. It discusses the physiology of vitamin D and the major bone disorders associated with abnormal levels of this hormone. Osteoporosis, the most common metabolic bone disease in elderly patients, also will be discussed. With the expanding older population, osteoporosis has become a major health problem and poses special concerns for the dental practitioner.

  2. Metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline

    PubMed Central

    Wang, Maggie; Norman, Jennifer E; Srinivasan, Vivek J; Rutledge, John C

    2016-01-01

    White Matter Disease is increasingly being recognized as an important cause of cognitive decline and dementia. Various investigations have linked chronic diet-related conditions to the development of white matter lesions, which appear as white matter hyperintensities on T2-weighted magnetic resonance imaging (MRI) scans of the brain. Thus, it can be postulated that the metabolic, inflammatory, and microvascular changes accompanying a western diet, hyperlipidemia, hypertension, and diabetes mellitus type II (DMII) are potential mediators in the development and progression of white matter disease, which in turn contributes to the development and progression of cognitive decline. This review will examine evidence for potential metabolic, inflammatory, and microvascular determinants of white matter disease and cognitive decline. Specifically, we will focus on the effects of altered insulin signaling in diabetes, obesity-induced oxidative stress, neuroinflammation, arterial stiffness due to hypertension, ischemia secondary to cerebral small vessel disease, and blood brain barrier disturbances. PMID:28078193

  3. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    PubMed

    Agarwal, Varsha; Kommaddi, Reddy P; Valli, Khader; Ryder, Daniel; Hyde, Thomas M; Kleinman, Joel E; Strobel, Henry W; Ravindranath, Vijayalakshmi

    2008-06-11

    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  4. Drug Metabolism in Human Brain: High Levels of Cytochrome P4503A43 in Brain and Metabolism of Anti-Anxiety Drug Alprazolam to Its Active Metabolite

    PubMed Central

    Agarwal, Varsha; Kommaddi, Reddy P.; Valli, Khader; Ryder, Daniel; Hyde, Thomas M.; Kleinman, Joel E.; Strobel, Henry W.; Ravindranath, Vijayalakshmi

    2008-01-01

    Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more α-hydroxy alprazolam (α-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both α-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of α-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of α-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action. PMID:18545703

  5. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc.

  6. Clinical Factors Associated with Cerebral Metabolism in Term Neonates with Congenital Heart Disease.

    PubMed

    Harbison, Anna Lonyai; Votava-Smith, Jodie K; Del Castillo, Sylvia; Kumar, S Ram; Lee, Vince; Schmithorst, Vincent; Lai, Hollie A; O'Neil, Sharon; Bluml, Stefan; Paquette, Lisa; Panigrahy, Ashok

    2017-04-01

    To determine associations between patient and clinical factors with postnatal brain metabolism in term neonates with congenital heart disease (CHD) via the use of quantitative magnetic resonance spectroscopy. Neonates with CHD were enrolled prospectively to undergo pre- and postoperative 3T brain magnetic resonance imaging. Short-echo single-voxel magnetic resonance spectroscopy of parietal white matter was used to quantify metabolites related to brain maturation (n-acetyl aspartate, choline, myo- inositol), neurotransmitters (glutamate and gamma-aminobutyric acid), energy metabolism (glutamine, citrate, glucose, and phosphocreatine), and injury/apoptosis (lactate and lipids). Multivariable regression was performed to search for associations between (1) patient-specific/prenatal/preoperative factors with concurrent brain metabolism and (2) intraoperative and postoperative factors with postoperative brain metabolism. A total of 83 magnetic resonance images were obtained on 55 subjects. No patient-specific, prenatal, or preoperative factors associated with concurrent metabolic brain dysmaturation or elevated lactate could be identified. Chromosome 22q11 microdeletion and age at surgery were predictive of altered concurrent white matter phosphocreatine (P < .0055). The only significant intraoperative association found was increased deep hypothermic circulatory arrest time with reduced postoperative white matter glutamate and gamma-aminobutyric acid (P < .0072). Multiple postoperative factors, including increased number of extracorporeal membrane oxygenation days (P < .0067), intensive care unit, length of stay (P < .0047), seizures in the intensive care unit (P < .0009), and home antiepileptic use (P < .0002), were associated with reduced postoperative white matter n-acetyl aspartate. Multiple postoperative factors were found to be associated with altered brain metabolism in term infants with CHD, but not patient-specific, preoperative, or

  7. Metabolic syndrome and cardiovascular diseases in Korea.

    PubMed

    Suh, Sunghwan; Lee, Moon-Kyu

    2014-01-01

    There has been a rapid increase in the prevalence of obesity, type 2 diabetes and metabolic syndrome(MetS) over the past two to three decades in most Asian countries. According to the Korean National Health and Nutrition Examination Survey(KNHANES), the prevalence of MetS significantly increased from 24.9% to 31.3% between 1998 and 2007. The clinical significance of MetS is based on the increased risk for the development of cardiovascular disease(CVD). We analyzed the 8-year follow-up data of 2,435 healthy subjects and found that MetS was associated with an increased risk of CVD in both men and women(OR: 1.98, 95% CI: 1.30-3.03 in men; OR: 4.04, 95% CI: 1.78-9.14 in women). MetS was significantly associated with the risk for future coronary heart disease(CHD) in men(OR: 3.68; 95% CI: 1.93-7.01) and stroke in women(OR: 3.96; 95% CI: 1.58- 9.94). We also analyzed the echocardiographic findings of 1,600 healthy subjects to evaluate the relationship between metabolic syndrome and left ventricular diastolic dysfunction(LVDD). The patients with MetS exhibited significant differences in parameters of cardiac structure and the LV diastolic function compared to that observed in the patients without MetS. MetS was associated with an increased risk of LVDD(OR: 1.67; 95% CI: 1.18-2.37). These results suggest that the presence of MetS is associated with an increased risk for the development of serious CVD and abnormal changes in the LV structure and diastolic function, even before the development of overt CVD.

  8. Dual Mechanism of Brain Injury and Novel Treatment Strategy in Maple Syrup Urine Disease

    ERIC Educational Resources Information Center

    Zinnanti, William J.; Lazovic, Jelena; Griffin, Kathleen; Skvorak, Kristen J.; Paul, Harbhajan S.; Homanics, Gregg E.; Bewley, Maria C.; Cheng, Keith C.; LaNoue, Kathryn F.; Flanagan, John M.

    2009-01-01

    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children…

  9. Dual Mechanism of Brain Injury and Novel Treatment Strategy in Maple Syrup Urine Disease

    ERIC Educational Resources Information Center

    Zinnanti, William J.; Lazovic, Jelena; Griffin, Kathleen; Skvorak, Kristen J.; Paul, Harbhajan S.; Homanics, Gregg E.; Bewley, Maria C.; Cheng, Keith C.; LaNoue, Kathryn F.; Flanagan, John M.

    2009-01-01

    Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with life-threatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children…

  10. The Implications of Relationships between Human Diseases and Metabolic Subpathways

    PubMed Central

    Li, Jing; Han, Junwei; Miao, Yingbo; Wang, Yan; Wang, Qianghu; Li, Wei; Wu, Chao; Zhang, Yunpeng; Li, Xiang; Yao, Qianlan

    2011-01-01

    One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the “k-clique” subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN). Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play significantly

  11. Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1. 5 Tesla

    SciTech Connect

    Bottomley, P.A.; Hart, H.R. Jr.; Edelstein, W.A.; Schenck, J.F.; Smith, L.S.; Leue, W.M.; Mueller, O.M.; Redington, R.W.

    1984-02-01

    Proton magnetic resonance (MR) images were obtained of the human head in magnetic fields as high as 1.5 Tesla (T) using slotted resonator high radio-frequency (RF) detection coils. The images showed no RF field penetration problems and exhibited an 11 (+/-1)-fold improvement in signal-to-noise ratio over a .12-T imaging system. The first localized phosphorus 31, carbon 13, and proton MR chemical shift spectra recorded with surface coils from the head and body in the same instrument showed relative concentrations of phosphorus metabolites, triglycerides, and, when correlated with proton images, negligible lipid (-CH/sub 2/-) signal from brain tissue on the time scale of the imaging experiment. Sugar phosphate and phosphodiester concentrations were significantly elevated in the head compared with muscle. This method should allow the combined assessment of anatomy, metabolism, and biochemistry in both the normal and diseased brain.

  12. Brain energy metabolism and blood flow differences in healthy aging

    PubMed Central

    Aanerud, Joel; Borghammer, Per; Chakravarty, M Mallar; Vang, Kim; Rodell, Anders B; Jónsdottir, Kristjana Y; Møller, Arne; Ashkanian, Mahmoud; Vafaee, Manouchehr S; Iversen, Peter; Johannsen, Peter; Gjedde, Albert

    2012-01-01

    Cerebral metabolic rate of oxygen consumption (CMRO2), cerebral blood flow (CBF), and oxygen extraction fraction (OEF) are important indices of healthy aging of the brain. Although a frequent topic of study, changes of CBF and CMRO2 during normal aging are still controversial, as some authors find decreases of both CBF and CMRO2 but increased OEF, while others find no change, and yet other find divergent changes. In this reanalysis of previously published results from positron emission tomography of healthy volunteers, we determined CMRO2 and CBF in 66 healthy volunteers aged 21 to 81 years. The magnitudes of CMRO2 and CBF declined in large parts of the cerebral cortex, including association areas, but the primary motor and sensory areas were relatively spared. We found significant increases of OEF in frontal and parietal cortices, excluding primary motor and somatosensory regions, and in the temporal cortex. Because of the inverse relation between OEF and capillary oxygen tension, increased OEF can compromise oxygen delivery to neurons, with possible perturbation of energy turnover. The results establish a possible mechanism of progression from healthy to unhealthy brain aging, as the regions most affected by age are the areas that are most vulnerable to neurodegeneration. PMID:22373642

  13. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior.

    PubMed

    Notarangelo, Francesca M; Pocivavsek, Ana

    2017-01-01

    The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-d-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Control of metabolic and cardiovascular function by the leptin-brain melanocortin pathway.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Dubinion, John; Sessums, Price O; Ebaady, Sabira H; Wang, Zhen; Hall, John E

    2013-08-01

    Obesity is recognized as a major worldwide health problem. Excess weight gain is the most common cause of elevated blood pressure (BP) and markedly increases the risk of metabolic, cardiovascular and renal diseases. Although the mechanisms linking obesity with hypertension have not been fully elucidated, increased sympathetic nervous system (SNS) activity contributes to elevated BP in obese subjects. Recent evidence indicates that leptin and the central nervous system (CNS) melanocortin system, including melanocortin 4 receptors (MC4R), play a key role in linking obesity with increased SNS activity and hypertension. Leptin, a peptide-hormone produced by adipose tissue, crosses the blood-brain barrier and activates brain centers that control multiple metabolic functions as well as SNS activity and BP via the CNS melanocortin system. The crosstalk between peripheral signals (e.g., leptin) and activation of CNS pathways (e.g., MC4R) that regulate energy balance, SNS activity and BP represents an important target for treating obesity and its metabolic and cardiovascular consequences. © 2013 International Union of Biochemistry and Molecular Biology.

  15. Tyrosine Metabolism in Patients with Liver Disease*

    PubMed Central

    Levine, Robert J.; Conn, Harold O.

    1967-01-01

    Plasma levels of tyrosine were assayed in the fasting state and after oral administration of either tyrosine (tyrosine tolerance test) or phenylalanine (phenlyalanine conversion test) in normal subjects and in patients with hepatitis, biliary obstruction, or cirrhosis. Fasting tyrosine levels tended to be slightly increased in patients with hepatitis and biliary obstruction and markedly increased in patients with cirrhosis. Tyrosine tolerance tests in patients with cirrhosis were characterized by larger than normal increments in tyrosine levels and by delayed returns toward fasting levels. The results of phenylalanine conversion tests were abnormal in approximately one-half of patients with either hepatitis or biliary obstruction and four-fifths of patients with cirrhosis. Abnormalities were characterized by elevated fasting plasma tyrosine levels, or small and delayed increments in tyrosine levels, or both. Abnormal phenylalanine conversion test results in patients with cirrhosis did not correlate closely with any clinical feature of cirrhosis or with the results of any standard liver function test; there was positive correlation only with abnormal ammonia tolerance, a test of portalsystemic shunting. Tests of tyrosine metabolism do not appear to be useful for routine clinical assessment of liver function. Tyrosine tolerance tests and phenylalanine conversion tests done for purposes of diagnosis of other diseases may yield misleading results in patients with liver disease. PMID:6074004

  16. Omentin: linking metabolic syndrome and cardiovascular disease.

    PubMed

    Zhou, Ji-Yin; Chan, Lawrence; Zhou, Shi-Wen

    2014-01-01

    Omentin is an adipokine preferentially produced by visceral adipose tissue with insulin-sensitizing effects. Its expression is reduced in obesity, insulin resistance and type 2 diabetes. Omentin is also positively related with adiponectin, high-density lipoprotein levels and negatively related with body mass index, waist circumference, insulin resistance, triglyceride and leptin levels. Lower plasma omentin levels contribute to the pathogenesis of insulin resistance, type 2 diabetes and cardiovascular diseases in obese or overweight patients. Omentin has anti-inflammatory, antiatherogenic, anti-cardiovascular disease and antidiabetic properties. With respect to vascular biology, omentin causes vasodilatation of blood vessels and attenuates C-reactive protein-induced angiogenesis. The ability of omentin to reduce insulin resistance in conjunction with its anti-inflammatory and anti-atherogenic properties makes it a promising therapeutic target. Thus, omentin may have beneficial effects on the metabolic syndrome and could potentially be used as a biologic marker and/or pharmacologic agent/target in this respect.

  17. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease

    PubMed Central

    Popescu, Bogdan Florin Gh; Nichol, Helen

    2013-01-01

    The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe2+, Cu1+) and oxidized (Fe3+, Cu2+) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain. PMID:20553312

  18. Glutaric acid moderately compromises energy metabolism in rat brain.

    PubMed

    da C Ferreira, Gustavo; Viegas, Carolina M; Schuck, Patrícia F; Latini, Alexandra; Dutra-Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Vargas, Carmen R; Wajner, Moacir

    2005-12-01

    Glutaric acidemia type I is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly glutaric acid (GA). Affected patients present frontotemporal hypotrophy, as well as caudate and putamen injury following acute encephalopathic crises. Considering that the underlying mechanisms of basal ganglia damage in this disorder are poorly known, in the present study we tested the effects of glutaric acid (0.2-5mM) on critical enzyme activities of energy metabolism, namely the respiratory chain complexes I-IV, succinate dehydrogenase and creatine kinase in midbrain of developing rats. Glutaric acid significantly inhibited creatine kinase activity (up to 26%) even at the lowest dose used in the assays (0.2mM). We also observed that CK inhibition was prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of GA was possibly mediated by oxidation of essential thiol groups of the enzyme. In addition, the activities of the respiratory chain complex I-III and of succinate dehydrogenase were also significantly inhibited by 20 and 30%, respectively, at the highest glutaric acid concentration tested (5mM). In contrast, complexes II-III and IV activities of the electron transport chain were not affected by the acid. The effect of glutaric acid on the rate of oxygen consumption in intact mitochondria from the rat cerebrum was also investigated. Glutaric acid (1mM) significantly lowered the respiratory control ratio (state III/state IV) up to 40% in the presence of the respiratory substrates glutamate/malate or succinate. Moreover, state IV respiration linked to NAD and FAD substrates was significantly increased in GA-treated mitochondria while state III was significantly diminished. The results indicate that the major metabolite accumulating in glutaric acidemia type I moderately compromises brain energy metabolism in vitro.

  19. Human brain dopamine metabolism in levodopa-induced dyskinesia and wearing-off.

    PubMed

    Rajput, Ali H; Fenton, Mark E; Di Paolo, Thérèse; Sitte, Harold; Pifl, Christian; Hornykiewicz, Oleh

    2004-06-01

    The objective of this study was to identify dopamine (DA) metabolism pattern in Lewy body Parkinson's disease (PD) patients with dyskinesia (Dysk) only, with wearing-off (WO) only, or no motor complications (NMC) induced by levodopa (LD). DA, homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 3-methoxytyramine (3-MT) were measured individual basal ganglia nuclei of nine PD patients who received LD for 6-18 years. Three patients had only Dysk, three only WO, and three had neither Dysk nor WO. Biochemical measurements in PD brains were compared with four non-neurological control brains from individuals matched for age and post-mortem retrieval time. DA levels in the PD were reduced in the caudate by 87% and putamen by 99%. In the caudates, the HVA/DA molar ratio as an index of DA metabolism was similar in the WO and the Dysk patients. However, in the putamen, the ratio of HVA/DA was significantly higher in the WO compared with the Dysk (p = 0.03)and the NMC (p = 0.04) groups of patients. In the putamen, the DOPAC levels were higher in the WO cases while in the Dysk cases, 3-MT levels were higher. The results suggest that in the WO only cases, the putaminal DA was in large measure metabolized intraneuronally while the DA metabolism in our Dysk only patients was mainly extraneuronal. We conclude that the magnitude and the site (intra vs. extraneuronal) of the synaptic DA metabolism in the putamen plays a significant role in LD-induced Dysk and WO.

  20. Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    Bronstein, Jeff M.; Tagliati, Michele; Alterman, Ron L.; Lozano, Andres M.; Volkmann, Jens; Stefani, Alessandro; Horak, Fay B.; Okun, Michael S.; Foote, Kelly D.; Krack, Paul; Pahwa, Rajesh; Henderson, Jaimie M.; Hariz, Marwan I.; Bakay, Roy A.; Rezai, Ali; Marks, William J.; Moro, Elena; Vitek, Jerrold L.; Weaver, Frances M.; Gross, Robert E.; DeLong, Mahlon R.

    2015-01-01

    Objective To provide recommendations to patients, physicians, and other health care providers on several issues involving deep brain stimulation (DBS) for Parkinson disease (PD). Data Sources and Study Selection An international consortium of experts organized, reviewed the literature, and attended the workshop. Topics were introduced at the workshop, followed by group discussion. Data Extraction and Synthesis A draft of a consensus statement was presented and further edited after plenary debate. The final statements were agreed on by all members. Conclusions (1) Patients with PD without significant active cognitive or psychiatric problems who have medically intractable motor fluctuations, intractable tremor, or intolerance of medication adverse effects are good candidates for DBS. (2) Deep brain stimulation surgery is best performed by an experienced neurosurgeon with expertise in stereotactic neurosurgery who is working as part of a interprofessional team. (3) Surgical complication rates are extremely variable, with infection being the most commonly reported complication of DBS. (4) Deep brain stimulation programming is best accomplished by a highly trained clinician and can take 3 to 6 months to obtain optimal results. (5) Deep brain stimulation improves levodopa-responsive symptoms, dyskinesia, and tremor; benefits seem to be long-lasting in many motor domains. (6) Subthalamic nuclei DBS may be complicated by increased depression, apathy, impulsivity, worsened verbal fluency, and executive dysfunction in a subset of patients. (7) Both globus pallidus pars interna and subthalamic nuclei DBS have been shown to be effective in addressing the motor symptoms of PD. (8) Ablative therapy is still an effective alternative and should be considered in a select group of appropriate patients. PMID:20937936

  1. Periodontal disease: the influence of metabolic syndrome

    PubMed Central

    2012-01-01

    Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors that include obesity, impaired glucose tolerance or diabetes, hyperinsulinemia, hypertension, and dyslipidemia. Recently, more attention has been reserved to the correlation between periodontitis and systemic health. MetS is characterized by oxidative stress, a condition in which the equilibrium between the production and the inactivation of reactive oxygen species (ROS) becomes disrupted. ROS have an essential role in a variety of physiological systems, but under a condition of oxidative stress, they contribute to cellular dysfunction and damage. Oxidative stress may act as a common link to explain the relationship between each component of MetS and periodontitis. All those conditions show increased serum levels of products derived from oxidative damage, promoting a proinflammatory state. Moreover, adipocytokines, produced by the fat cells of fat tissue, might modulate the balance between oxidant and antioxidant activities. An increased caloric intake involves a higher metabolic activity, which results in an increased production of ROS, inducing insulin resistance. At the same time, obese patients require more insulin to maintain blood glucose homeostasis – a state known as hyperinsulinemia, a condition that can evolve into type 2 diabetes. Oxidation products can increase neutrophil adhesion and chemotaxis, thus favoring oxidative damage. Hyperglycemia and an oxidizing state promote the genesis of advanced glycation end-products, which could also be implicated in the degeneration and damage of periodontal tissue. Thus, MetS, the whole of interconnected factors, presents systemic and local manifestations, such as cardiovascular disease and periodontitis, related by a common factor known as oxidative stress. PMID:23009606

  2. Nerve growth factor metabolic dysfunction in Down’s syndrome brains

    PubMed Central

    Iulita, M. Florencia; Do Carmo, Sonia; Ower, Alison K.; Fortress, Ashley M.; Aguilar, Lisi Flores; Hanna, Michael; Wisniewski, Thomas; Granholm, Ann-Charlotte; Buhusi, Mona; Busciglio, Jorge

    2014-01-01

    Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer’s disease and Down’s syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer’s disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF’s extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down’s syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down’s syndrome and age-matched controls (age range 31–68 years). We further examined primary cultures of human foetal Down’s syndrome cortex (17–21 gestational age weeks) and brains from Ts65Dn mice (12–22 months), a widely used animal model of Down’s syndrome. We report a significant increase in proNGF levels in human and mouse Down’s syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down’s syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down’s syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic

  3. NLRP3 inflammasomes link inflammation and metabolic disease.

    PubMed

    De Nardo, Dominic; Latz, Eicke

    2011-08-01

    A strong link between inflammation and metabolism is becoming increasingly evident. A number of recent landmark studies have implicated the activation of the NLRP3 inflammasome, an interleukin-1β family cytokine-activating protein complex, in a variety of metabolic diseases including obesity, atherosclerosis and type 2 diabetes. Here, we review these new developments and discuss their implications for a better understanding of inflammation in metabolic disease, and the prospects of targeting the NLRP3 inflammasome for therapeutic intervention.

  4. Focally Elevated Creatine Detected in Amyloid Precursor Protein (APP) Transgenic Mice and Alzheimer Disease Brain Tissue

    SciTech Connect

    Gallant,M.; Rak, M.; Szeghalmi, A.; Del Bigio, M.; Westaway, D.; Yang, J.; Julian, R.; Gough, K.

    2006-01-01

    The creatine/phosphocreatine system, regulated by creatine kinase, plays an important role in maintaining energy balance in the brain. Energy metabolism and the function of creatine kinase are known to be affected in Alzheimer diseased brain and in cells exposed to the {beta}-amyloid peptide. We used infrared microspectroscopy to examine hippocampal, cortical, and caudal tissue from 21-89-week-old transgenic mice expressing doubly mutant (K670N/M671L and V717F) amyloid precursor protein and displaying robust pathology from an early age. Microcrystalline deposits of creatine, suggestive of perturbed energetic status, were detected by infrared microspectroscopy in all animals with advanced plaque pathology. Relatively large creatine deposits were also found in hippocampal sections from post-mortem Alzheimer diseased human brain, compared with hippocampus from non-demented brain. We therefore speculate that this molecule is a marker of the disease process.

  5. Brain pyruvate recycling and peripheral metabolism: an NMR analysis ex vivo of acetate and glucose metabolism in the rat.

    PubMed

    Serres, Sébastien; Bezancon, Eric; Franconi, Jean-Michel; Merle, Michel

    2007-06-01

    The occurrence of pyruvate recycling in the rat brain was studied in either pentobarbital anesthetized animals or awake animals receiving a light analgesic dose of morphine, which were infused with either [1-13C]glucose + acetate or glucose + [2-13C]acetate for various periods of time. Metabolite enrichments in the brain, blood and the liver were determined from NMR analyses of tissue extracts. They indicated that: (i) Pyruvate recycling was revealed in the brain of both the anesthetized and awake animals, as well as from lactate and alanine enrichments as from glutamate isotopomer composition, but only after infusion of glucose + [2-13C]acetate. (ii) Brain glucose was labelled from [2-13C]acetate at the same level in anaesthetized and awake rats (approximately 4%). Comparing its enrichment with that of blood and liver glucose indicated that brain glucose labelling resulted from hepatic gluconeogenesis. (iii) Analysing glucose 13C-13C coupling in the brain, blood and the liver confirmed that brain glucose could be labelled in the liver through the activities of both pyruvate recycling and gluconeogenesis. (iv) The rate of appearance and the amount of brain glutamate C4-C5 coupling, a marker of pyruvate recycling when starting from [2-13C]acetate, were lower than those of brain glucose labelling from hepatic metabolism. (v) The evaluation of the contributions of glucose and acetate to glutamate metabolism revealed that more than 60% of brain glutamate was synthesized from glucose whereas only 7% was from acetate and that glutamate C4-C5 coupling was mainly due to the metabolism of glucose labelled through hepatic gluconeogenesis. All these results indicate that, under the present conditions, the pyruvate recycling observed through the labelling of brain metabolites mainly originates from peripheral metabolism.

  6. Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer Disease model.

    PubMed

    Fong, Sheng; Teo, Emelyne; Ng, Li Fang; Chen, Ce-Belle; Lakshmanan, Lakshmi Narayanan; Tsoi, Sau Yee; Moore, Philip Keith; Inoue, Takao; Halliwell, Barry; Gruber, Jan

    2016-09-22

    Alzheimer Disease (AD) is a progressive neurological disorder characterized by the deposition of amyloid beta (Aβ), predominantly the Aβ1-42 form, in the brain. Mitochondrial dysfunction and impaired energy metabolism are important components of AD pathogenesis. However, the causal and temporal relationships between them and AD pathology remain unclear. Using a novel C. elegans AD strain with constitutive neuronal Aβ1-42 expression that displays neuromuscular defects and age-dependent behavioural dysfunction reminiscent of AD, we have shown that mitochondrial bioenergetic deficit is an early event in AD pathogenesis, preceding dysfunction of mitochondrial electron transfer chain (ETC) complexes and the onset of global metabolic failure. These results are consistent with an emerging view that AD may be a metabolic neurodegenerative disease, and also confirm that Aβ-driven metabolic and mitochondrial effects can be reproduced in organisms separated by large evolutionary distances.

  7. Hippocampus neuronal metabolic gene expression outperforms whole tissue data in accurately predicting Alzheimer's disease progression.

    PubMed

    Stempler, Shiri; Waldman, Yedael Y; Wolf, Lior; Ruppin, Eytan

    2012-09-01

    Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer's disease (AD). Here we use gene expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes' expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects. All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption plays a major role in AD.

  8. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation

    PubMed Central

    Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674

  9. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation.

    PubMed

    Pruimboom, Leo; Raison, Charles L; Muskiet, Frits A J

    2015-01-01

    In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.

  10. Metabolic changes during successful medical therapy for brain hydatid cyst: case report.

    PubMed

    Seckin, Hakan; Yagmurlu, Banu; Yigitkanli, Kazim; Kars, H Zafer

    2008-08-01

    Medical therapy for hydatid disease of the brain has been reported with encouraging results especially in small or medium-sized cysts. To date, no other case correlating the metabolite levels of the cyst with albendazole treatment has been reported. A 52-year-old woman presented with left hemiparesis and seizure. Cranial magnetic resonance revealed a right frontal cystic mass lesion. A diagnosis of hydatid cyst was made, and she was put on medical therapy with albendazole. An MRS before the medical therapy was begun revealed the typical findings of a hydatid cyst with resonance of alanine, acetate, and succinate that were specific for hydatid disease, and additional nonspecific lactate peaks with an additional small peak of choline. Comparison between the multiple MRS examinations was made by comparing the metabolite ratios specific for hydatid disease to choline, which seemed stable from the beginning. Two sequential MRS imaging revealed a prominent decrease of the succinate and acetate resonance, accompanied by a smaller decline of the alanine resonance progressively, correlated with the conventional MRI findings of the cyst, which had a smaller size with blurred margins in the meantime. After 5 months of medical treatment, the cyst had completely disappeared. The patient has been monitored for 5 years and remains well without recurrence. This case provides additional proof that the brain hydatid cyst is a medically treatable disease in appropriate cases. Furthermore, the changes in the metabolic profile of the cyst, especially those regarding succinate and acetate may represent the efficacy of the medical treatment.

  11. Defects in RNA metabolism in mitochondrial disease.

    PubMed

    Siira, Stefan J; Shearwood, Anne-Marie J; Bracken, Cameron P; Rackham, Oliver; Filipovska, Aleksandra

    2017-04-01

    The expression of mitochondrially-encoded genes requires the efficient processing of long precursor RNAs at the 5' and 3' ends of tRNAs, a process which, when disrupted, results in disease. Two such mutations reside within mt-tRNA(Leu(UUR)); a m.3243A>G transition, which is the most common cause of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), and m.3302A>G which often causes mitochondrial myopathy (MM). We used parallel analysis of RNA ends (PARE) that captures the 5' terminal end of 5'-monophosphorylated mitochondrial RNAs to compare the effects of the m.3243A>G and m.3302A>G mutations on mitochondrial tRNA processing and downstream RNA metabolism. We confirmed previously identified RNA processing defects, identified common internal cleavage sites and new sites unique to the m.3243A>G mutants that do not correspond to transcript ends. These sites occur in regions of predicted RNA secondary structure, or are in close proximity to such regions, and may identify regions of importance to the processing of mtRNAs.

  12. [Metabolic syndrome in inflammatory rheumatic diseases].

    PubMed

    Malesci, D; Valentini, G; La Montagna, G

    2006-01-01

    Toward the end of the last century a better knowledge of cardiovascular (CV) risk factors and their associations led investigators to propose the existence of a unique pathophysiological condition called "metabolic" or "insulin resistance syndrome". Among all, insulin-resistance and compensatory hyperinsulinemia are considered its most important treatment targets. Different definitions have been provided by World Health Organization (WHO) and by The Third Report of The National Cholesterol Education Program's Adult Treatment Panel (NCEP-ATP III). In particular, abdominal obesity, hypertension, low HDL cholesterol and hyperglicemia are the most common items used for its definition. The presence of MetS is effective in predicting the future risk of diabetes and coronaropathies. The evidence of a higher CV risk rate among different rheumatic inflammatory diseases has recently been associated with high prevalence of MetS in some cases. Rheumatoid or psoriatic arthritis have the large series among arthritis, whereas systemic lupus erythematosus among connective tissue disorders. This review analyses all most important studies about the evidence of MetS in rheumatic patients and the main clinical and prognostic significance of this relation.

  13. Inflammasomes and Metabolic Disorders: Old Genes in Modern Diseases

    PubMed Central

    Robbins, Gregory R.; Wen, Haitao; Ting, Jenny P.-Y.

    2014-01-01

    Summary Modern medical and hygienic practices have greatly improved human health and longevity; however, increased human lifespan occurs concomitantly with the emergence of metabolic and age-related diseases. Studies over the past decade have strongly linked host inflammatory responses to the etiology of several metabolic diseases including atherosclerosis, type 2 diabetes (T2D), obesity and gout. A common immunological factor to these diseases is the activation of the inflammasome and release of pro-inflammatory cytokines that promote disease progression. Here we review the molecular mechanism(s) of inflammasome activation in response to metabolic damage associated molecular patterns (DAMPs) and discuss potential targets for therapeutic intervention. PMID:24766894

  14. Metabolic alterations in developing brain after injury – knowns and unknowns

    PubMed Central

    McKenna, Mary C.; Scafidi, Susanna; Robertson, Courtney L.

    2016-01-01

    Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed. PMID:26148530

  15. Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis.

    PubMed

    Houdebine, Léo; Gallelli, Cristina Anna; Rastelli, Marialetizia; Sampathkumar, Nirmal Kumar; Grenier, Julien

    2017-10-01

    Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental Periodontitis Results in Prediabetes and Metabolic Alterations in Brain, Liver and Heart: Global Untargeted Metabolomic Analyses

    PubMed Central

    Ilievski, Vladimir; Kinchen, Jason M; Prabhu, Ramya; Rim, Fadi; Leoni, Lara; Unterman, Terry G.; Watanabe, Keiko

    2016-01-01

    Results from epidemiological studies suggest that there is an association between periodontitis and prediabetes, however, causality is not known. The results from our previous studies suggest that induction of periodontitis leads to hyperinsulinemia glucose intolerance and insulin resistance, all hallmarks of prediabetes. However, global effects of periodontitis on critical organs in terms of metabolic alterations are unknown. We determined the metabolic effects of periodontitis on brain, liver, heart and plasma resulting from Porphyromonas gingivalis induced periodontitis in mice. Periodontitis was induced by oral application of the periodontal pathogen, Porphyromonas gingivalis for 22 weeks. Global untargeted biochemical profiles in samples from these organs/plasma were determined by liquid and gas chromatography/mass spectrometry and compared between controls and animals with periodontitis. Oral application of Porphyromonas gingivalis induced chronic periodontitis and hallmarks of prediabetes. The results of sample analyses indicated a number of changes in metabolic readouts, including changes in metabolites related to glucose and arginine metabolism, inflammation and redox homeostasis. Changes in biochemicals suggested subtle systemic effects related to periodontal disease, with increases in markers of inflammation and oxidative stress most prominent in the liver. Signs of changes in redox homeostasis were also seen in the brain and heart. Elevated bile acids in liver were suggestive of increased biosynthesis, which may reflect changes in liver function. Interestingly, signs of decreasing glucose availability were seen in the brain. In all three organs and plasma, there was a significant increase in the microbiome-derived bioactive metabolite 4-ethylphenylsulfate sulfate in animals with periodontitis. The results of metabolic profiling suggest that periodontitis/bacterial products alter metabolomic signatures of brain, heart, liver, and plasma in the

  17. Brain size, life history, and metabolism at the marsupial/placental dichotomy

    PubMed Central

    Weisbecker, Vera; Goswami, Anjali

    2010-01-01

    The evolution of mammalian brain size is directly linked with the evolution of the brain's unique structure and performance. Both maternal life history investment traits and basal metabolic rate (BMR) correlate with relative brain size, but current hypotheses regarding the details of these relationships are based largely on placental mammals. Using encephalization quotients, partial correlation analyses, and bivariate regressions relating brain size to maternal investment times and BMR, we provide a direct quantitative comparison of brain size evolution in marsupials and placentals, whose reproduction and metabolism differ extensively. Our results show that the misconception that marsupials are systematically smaller-brained than placentals is driven by the inclusion of one large-brained placental clade, Primates. Marsupial and placental brain size partial correlations differ in that marsupials lack a partial correlation of BMR with brain size. This contradicts hypotheses stating that the maintenance of relatively larger brains requires higher BMRs. We suggest that a positive BMR–brain size correlation is a placental trait related to the intimate physiological contact between mother and offspring during gestation. Marsupials instead achieve brain sizes comparable to placentals through extended lactation. Comparison with avian brain evolution suggests that placental brain size should be constrained due to placentals’ relative precociality, as has been hypothesized for precocial bird hatchlings. We propose that placentals circumvent this constraint because of their focus on gestation, as opposed to the marsupial emphasis on lactation. Marsupials represent a less constrained condition, demonstrating that hypotheses regarding placental brain size evolution cannot be generalized to all mammals. PMID:20823252

  18. Brain size, life history, and metabolism at the marsupial/placental dichotomy.

    PubMed

    Weisbecker, Vera; Goswami, Anjali

    2010-09-14

    The evolution of mammalian brain size is directly linked with the evolution of the brain's unique structure and performance. Both maternal life history investment traits and basal metabolic rate (BMR) correlate with relative brain size, but current hypotheses regarding the details of these relationships are based largely on placental mammals. Using encephalization quotients, partial correlation analyses, and bivariate regressions relating brain size to maternal investment times and BMR, we provide a direct quantitative comparison of brain size evolution in marsupials and placentals, whose reproduction and metabolism differ extensively. Our results show that the misconception that marsupials are systematically smaller-brained than placentals is driven by the inclusion of one large-brained placental clade, Primates. Marsupial and placental brain size partial correlations differ in that marsupials lack a partial correlation of BMR with brain size. This contradicts hypotheses stating that the maintenance of relatively larger brains requires higher BMRs. We suggest that a positive BMR-brain size correlation is a placental trait related to the intimate physiological contact between mother and offspring during gestation. Marsupials instead achieve brain sizes comparable to placentals through extended lactation. Comparison with avian brain evolution suggests that placental brain size should be constrained due to placentals' relative precociality, as has been hypothesized for precocial bird hatchlings. We propose that placentals circumvent this constraint because of their focus on gestation, as opposed to the marsupial emphasis on lactation. Marsupials represent a less constrained condition, demonstrating that hypotheses regarding placental brain size evolution cannot be generalized to all mammals.

  19. Limited brain metabolism changes differentiate between the progression and clearance of rabies virus.

    PubMed

    Schutsky, Keith; Portocarrero, Carla; Hooper, D Craig; Dietzschold, Bernhard; Faber, Milosz

    2014-01-01

    Central nervous system (CNS) metabolic profiles were examined from rabies virus (RABV)-infected mice that were either mock-treated or received post-exposure treatment (PET) with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.

  20. Selective response of various brain cell types during neurodegeneration induced by mild impairment of oxidative metabolism.

    PubMed

    Ke, Zun-Ji; Gibson, Gary E

    2004-01-01

    Age-related neurodegenerative diseases are characterized by selective neuron loss, glial activation, inflammation and abnormalities in oxidative metabolism. Thiamine deficiency (TD) is a model of neurodegeneration induced by impairment of oxidative metabolism. TD produces a time-dependent, selective neuronal death in specific brain regions, while other cell types are either activated or unaffected. TD-induced neurodegeneration occurs first in a small, well-defined brain region, the submedial thalamic nucleus (SmTN). This discrete localization permits careful analysis of the relationship between neuronal loss and the response of other cell types. The temporal analysis of the changes in the region in combination with the use of transgenic mice permits testing of proposed mechanisms of how the interaction of neurons with other cell types produces neurodegeneration. Loss of neurons and elevation in markers of neurodegeneration are accompanied by changes in microglia including increased redox active iron, the induction of nitric oxide synthase (NOS) and hemeoxygenase-1, a marker of oxidative stress. Endothelial cells also show changes in early stages of TD including induction of intracellular adhesion molecule-1 (ICAM-1) and endothelial NOS. The number of degranulating mast cells also increases in early stages of TD. Alterations in astrocytes and neutrophils occur at later stages of TD. Studies with transgenic knockouts indicate that the endothelial cell changes are particularly important. We hypothesize that TD-induced abnormalities in oxidative metabolism promote release of neuronal inflammatory signals that activate microglia, astrocytes and endothelial cells. Although at early stages the responses of non-neuronal cells may be neuroprotective, at late phases they lead to entry of peripheral inflammatory cells into the brain and promote neurodegeneration.

  1. Childhood brain tumors, residential insecticide exposure, and pesticide metabolism genes.

    PubMed

    Searles Nielsen, Susan; McKean-Cowdin, Roberta; Farin, Federico M; Holly, Elizabeth A; Preston-Martin, Susan; Mueller, Beth A

    2010-01-01

    Insecticides that target the nervous system may play a role in the development of childhood brain tumors (CBTs). Constitutive genetic variation affects metabolism of these chemicals. We analyzed population-based case-control data to examine whether CBT is associated with the functional genetic polymorphisms PON1C-108T, PON1Q192R, PON1L55M, BCHEA539T, FMO1C-9536A, FMO3E158K, ALDH3A1S134A, and GSTT1 (null). DNA was obtained from newborn screening archives for 201 cases and 285 controls, metabolic polymorphisms with CBT risk. However, we observed strong interactions between genotype and insecticide exposure during childhood. Among exposed children, CBT risk increased per PON1-108T allele [odds ratio (OR) = 1.8; 95% confidence interval (CI), 1.1-3.0] and FMO1-9536A (*6) allele (OR = 2.7; 95% CI, 1.2-5.9), whereas among children never exposed, CBT risk was not increased (PON1: OR = 0.7; 95% CI, 0.5-1.0, interaction p = 0.005; FMO1: OR = 1.0; 95% CI, 0.6-1.6, interaction p = 0.009). We observed a similar but statistically nonsignificant interaction between childhood exposure and BCHEA539T (interaction p = 0.08). These interactions were present among both Hispanic and non-Hispanic white children. Based on known effects of these variants, these results suggest that exposure in childhood to organophosphorus and perhaps to carbamate insecticides in combination with a reduced ability to detoxify them may be associated with CBT. Confirmation in other studies is required.

  2. Marking of metabolites in the diagnostics of metabolic diseases and in the investigation of xenobiotics metabolism using NMR spectroscopy.

    PubMed

    Krawczyk, Hanna

    2016-10-25

    There are currently no sound estimates of the number of children born with a serious congenital disorder attributable to genetic or environmental causes (World Health Organization) but there is a supposed number of babies born with birth defects per year: in the world approximately 7.9 million children (6% of births). There is conducted population-based screening by the individual countries. The specialised methods are used when it is not possible to diagnose disease in screening. In recent years in the diagnostics of these disorders the methods of Magnetic Resonance Spectroscopy of the brain (in vivo(1)H-MRS) and high resolution NMR spectroscopy gain in importance. The manuscript focused on developing the method of marking the metabolic diseases markers of various origins using NMR spectroscopy (including synthesis of markers). Considering the disorders occurring among children, according to Hoffman, Zschocke, Nyhan, there are three following groups of inherited metabolic diseases: disorders of intermediary metabolism, disorders of the biosynthesis and breakdown of complex molecules and neurotransmitter defects and related disorders. The presented investigation is focused on: a study of selected compounds that cause disorders of intermediary metabolism, a study of compounds that cause disorders of the biosynthesis and breakdown of complex molecules and a study of compounds that cause neurotransmitter defects and related disorders. In the subsequent chapter of manuscript there are presented the results of investigation concerning the metabolism of xenobiotics that could potentially be used in therapy of inherited metabolic diseases, basing on stilbene derivatives. In the last chapter there are presented the results of experiments with creatinine- the metabolite produced in muscles. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Deep Brain Stimulation in Parkinson's Disease

    PubMed Central

    Groiss, S. J.; Wojtecki, L.; Südmeyer, M.

    2009-01-01

    During the last 15 years deep brain stimulation (DBS) has been established as a highly-effective therapy for advanced Parkinson's disease (PD). Patient selection, stereotactic implantation, postoperative stimulator programming and patient care requires a multi-disciplinary team including movement disorders specialists in neurology and functional neurosurgery. To treat medically refractory levodopa-induced motor complications or resistant tremor the preferred target for high-frequency DBS is the subthalamic nucleus (STN). STN-DBS results in significant reduction of dyskinesias and dopaminergic medication, improvement of all cardinal motor symptoms with sustained long-term benefits, and significant improvement of quality of life when compared with best medical treatment. These benefits have to be weighed against potential surgery-related adverse events, device-related complications, and stimulus-induced side effects. The mean disease duration before initiating DBS in PD is currently about 13 years. It is presently investigated whether the optimal timing for implantation may be at an earlier disease-stage to prevent psychosocial decline and to maintain quality of life for a longer period of time. PMID:21180627

  4. Using Bioconductor Package BiGGR for Metabolic Flux Estimation Based on Gene Expression Changes in Brain

    PubMed Central

    Murrell, Paul; van Beek, Johannes H. G. M.

    2015-01-01

    Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer

  5. Using bioconductor package BiGGR for metabolic flux estimation based on gene expression changes in brain.

    PubMed

    Gavai, Anand K; Supandi, Farahaniza; Hettling, Hannes; Murrell, Paul; Leunissen, Jack A M; van Beek, Johannes H G M

    2015-01-01

    Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer

  6. The blood brain barrier in Alzheimer's disease.

    PubMed

    Chakraborty, A; de Wit, N M; van der Flier, W M; de Vries, H E

    2017-02-01

    Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people worldwide. One of the prominent causative factors of AD pathogenesis is cerebral vascular dysfunction, which results in diminished cerebral perfusion. Moreover, due to the loss of the protective function of the blood-brain barrier (BBB), impaired clearance of excess neurotoxic amyloid beta (Aβ) occurs, causing vascular perturbation and diminished cognitive functioning. The relationship between the prevalence of AD and vascular risk factors is complex and not fully understood. In this review we illustrate the vascular risk factors, their effects on BBB function and their contributions to the onset of AD. Additionally, we discuss the underlying factors that may lead to altered neurovascular function and/or cerebral hypoperfusion in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Metabolic syndrome in rheumatic diseases: epidemiology, pathophysiology, and clinical implications.

    PubMed

    Sidiropoulos, Prodromos I; Karvounaris, Stylianos A; Boumpas, Dimitrios T

    2008-01-01

    Subjects with metabolic syndrome--a constellation of cardiovascular risk factors of which central obesity and insulin resistance are the most characteristic--are at increased risk for developing diabetes mellitus and cardiovascular disease. In these subjects, abdominal adipose tissue is a source of inflammatory cytokines such as tumor necrosis factor-alpha, known to promote insulin resistance. The presence of inflammatory cytokines together with the well-documented increased risk for cardiovascular diseases in patients with inflammatory arthritides and systemic lupus erythematosus has prompted studies to examine the prevalence of the metabolic syndrome in an effort to identify subjects at risk in addition to that conferred by traditional cardiovascular risk factors. These studies have documented a high prevalence of metabolic syndrome which correlates with disease activity and markers of atherosclerosis. The correlation of inflammatory disease activity with metabolic syndrome provides additional evidence for a link between inflammation and metabolic disturbances/vascular morbidity.

  8. Agmatine : metabolic pathway and spectrum of activity in brain.

    PubMed

    Halaris, Angelos; Plietz, John

    2007-01-01

    Agmatine is an endogenous neuromodulator that, based on animal studies, has the potential for new drug development. As an endogenous aminoguanidine compound (1-amino-4-guanidinobutane), it is structurally unique compared with other monoamines. Agmatine was long thought to be synthesised only in lower life forms, until its biosynthetic pathway (decarboxylation of arginine) was described in the mammalian brain in 1994. Human arginine decarboxylase has been cloned and shown to have 48% identity to ornithine decarboxylase. In neurons of the brain and spinal cord, agmatine is packaged into synaptic vesicles and released upon neuronal depolarisation. Other evidence of a neuromodulation role for agmatine is the presence of a specific cellular uptake mechanism and a specific metabolic enzyme (agmatinase; which forms putrescine).Initially, agmatine was conceptualised as an endogenous clonidine-displacing substance of imidazoline receptors; however, it has now been established to have affinity for several transmembrane receptors, such as alpha(2)-adrenergic, imidazoline I(1) and glutamatergic NMDA receptors. In addition to activity at these receptors, agmatine irreversibly inhibits neuronal nitric oxide synthase and downregulates inducible nitric oxide synthase. Endogenous agmatine is induced in response to stress and/or inflammation. Stressful conditions that induce agmatine include hypoxic-ischaemia and cold-restraint stress of ulcerogenic proportion. Induction of agmatine in the brain seems to occur in astrocytes, although neurons also synthesise agmatine. The effects of injected agmatine in animals include anticonvulsant-, antineurotoxic- and antidepressant-like actions. Intraperitoneal or intracerebroventricular injections of agmatine rapidly elicit antidepressant-like behavioural changes in the rodent forced swim test and tail suspension test. Intraperitoneal injections of agmatine into rats and mice also elicit acute anxiolytic-like behavioural changes in the elevated

  9. Beneficial effects of herbs, spices and medicinal plants on the metabolic syndrome, brain and cognitive function.

    PubMed

    Panickar, Kiran S

    2013-03-01

    Herbs and spices have been used since ancient times to not only improve the flavor of edible food but also to prevent and treat chronic health maladies. While the scientific evidence for the use of such common herbs and medicinal plants then had been scarce or lacking, the beneficial effects observed from such use were generally encouraging. It is, therefore, not surprising that the tradition of using such herbs, perhaps even after the advent of modern medicine, has continued. More recently, due to an increased interest in understanding the nutritional effects of herbs/spices more comprehensively, several studies have examined the cellular and molecular modes of action of the active chemical components in herbs and their biological properties. Beneficial actions of herbs/spices include anti-inflammatory, antioxidant, anti-hypertensive, gluco-regulatory, and anti-thrombotic effects. One major component of herbs and spices is the polyphenols. Some of the aforementioned properties are attributed to the polyphenols and they are associated with attenuating the metabolic syndrome. Detrimental changes associated with the metabolic syndrome over time affect brain and cognitive function. Metabolic syndrome and type-2 diabetes are also risk factors for Alzheimer's disease and stroke. In addition, the neuroprotective effects of herbs and spices have been demonstrated and, whether directly or indirectly, such beneficial effects may also contribute to an improvement in cognitive function. This review evaluates the current evidence available for herbs/spices in potentially improving the metabolic syndrome, as well as their neuroprotective effects on the brain, and cognitive function in animal and human studies.

  10. [Bone and calcium metabolism in life-style related diseases].

    PubMed

    Kanazawa, Ippei; Sugimoto, Toshitsugu

    2016-03-01

    Accumulating evidence shows that life-style related diseases such as diabetes mellitus, hypertension, dyslipidemia are associated with bone and calcium metabolism. Patients with diabetes mellitus have increased fracture risks, independently of bone mineral density, with abnormality of parathyroid hormone secretion and impaired osteoblastic function. On the other hand, osteocalcin secreted from bone is reported to regulate glucose metabolism. Thus, bone, calcium and glucose metabolism may be deeply associated with each other. In this review, we describe the association between life-style related diseases, especially diabetes mellitus, and metabolism of bone and calcium.

  11. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  12. Regional cerebral brain metabolism correlates of neuroticism and extraversion.

    PubMed

    Deckersbach, Thilo; Miller, Karen K; Klibanski, Anne; Fischman, Alan; Dougherty, Darin D; Blais, Mark A; Herzog, David B; Rauch, Scott L

    2006-01-01

    Factor-analytic approaches to human personality have consistently identified several core personality traits, such as Extraversion/Introversion, Neuroticism, Agreeableness, Consciousness, and Openness. There is an increasing recognition that certain personality traits may render individuals vulnerable to psychiatric disorders, including anxiety disorders and depression. Our purpose in this study was to explore correlates between the personality dimensions neuroticism and extraversion as assessed by the NEO Five-Factor Inventory (NEO-FFI) and resting regional cerebral glucose metabolism (rCMRglu) in healthy control subjects. Based on the anxiety and depression literatures, we predicted correlations with a network of brain structures, including ventral and medial prefrontal cortex (encompassing anterior cingulate cortex and orbitofrontal cortex), insular cortex, anterior temporal pole, ventral striatum, and the amygdala. Twenty healthy women completed an (18F)FDG (18F-fluorodeoxyglucose) positron emission tomography (PET) scan at rest and the NEO-FFI inventory. We investigated correlations between scores on NEO-FFI Neuroticism and Extraversion and rCMRglu using statistical parametric mapping (SPM99). Within a priori search territories, we found significant negative correlations between Neuroticism and rCMRglu in the insular cortex and positive correlations between Extraversion and rCMRglu in the orbitofrontal cortex. No significant correlations were found involving anterior cingulate, amygdala, or ventral striatum. Neuroticism and Extraversion are associated with activity in insular cortex and orbitofrontal cortex, respectively.

  13. Brain Metabolism during Hallucination-Like Auditory Stimulation in Schizophrenia

    PubMed Central

    Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C.; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia. PMID:24416328

  14. Brain metabolism during hallucination-like auditory stimulation in schizophrenia.

    PubMed

    Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia.

  15. Brain polyphosphoinositide metabolism during focal ischemia in rat cortex

    SciTech Connect

    Lin, T.N.; Liu, T.H.; Xu, J.; Hsu, C.Y.; Sun, G.Y. )

    1991-04-01

    Using a rat model of stroke, we examined the effects of focal cerebral ischemia on the metabolism of polyphosphoinositides by injecting {sup 32}Pi into both the left and right cortices. After equilibration of the label for 2-3 hours, ischemia induced a significant decrease (p less than 0.001) in the concentrations of labeled phosphatidyl 4,5-bisphosphates (66-78%) and phosphatidylinositol 4-phosphate (64-67%) in the right middle cerebral artery cortex of four rats. The phospholipid labeling pattern in the left middle cerebral artery cortex, which sustained only mild ischemia and no permanent tissue damage, was not different from that of two sham-operated controls. However, when {sup 32}Pi was injected 1 hour after the ischemic insult, there was a significant decrease (p less than 0.01) in the incorporation of label into the phospholipids in both cortices of four ischemic rats compared with four sham-operated controls. Furthermore, differences in the phospholipid labeling pattern were observed in the left cortex compared with the sham-operated controls. The change in labeling pattern was attributed to the partial reduction in blood flow following ligation of the common carotid arteries. We provide a sensitive procedure for probing the effects of focal cerebral ischemia on the polyphosphoinositide signaling pathway in the brain, which may play an important role in the pathogenesis of tissue injury.

  16. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome.

    PubMed

    Lonardo, Amedeo; Ballestri, Stefano; Marchesini, Giulio; Angulo, Paul; Loria, Paola

    2015-03-01

    The conventional paradigm of nonalcoholic fatty liver disease representing the "hepatic manifestation of the metabolic syndrome" is outdated. We identified and summarized longitudinal studies that, supporting the association of nonalcoholic fatty liver disease with either type 2 diabetes mellitus or metabolic syndrome, suggest that nonalcoholic fatty liver disease precedes the development of both conditions. Online Medical databases were searched, relevant articles were identified, their references were further assessed and tabulated data were checked. Although several cross-sectional studies linked nonalcoholic fatty liver disease to either diabetes and other components of the metabolic syndrome, we focused on 28 longitudinal studies which provided evidence for nonalcoholic fatty liver disease as a risk factor for the future development of diabetes. Moreover, additional 19 longitudinal reported that nonalcoholic fatty liver disease precedes and is a risk factor for the future development of the metabolic syndrome. Finally, molecular and genetic studies are discussed supporting the view that aetiology of steatosis and lipid intra-hepatocytic compartmentation are a major determinant of whether fatty liver is/is not associated with insulin resistance and metabolic syndrome. Data support the novel paradigm of nonalcoholic fatty liver disease as a strong determinant for the development of the metabolic syndrome, which has potentially relevant clinical implications for diagnosing, preventing and treating metabolic syndrome.

  17. BOLD-based Techniques for Quantifying Brain Hemodynamic and Metabolic Properties – Theoretical Models and Experimental Approaches

    PubMed Central

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; He, Xiang

    2012-01-01

    Quantitative evaluation of brain hemodynamics and metabolism, particularly the relationship between brain function and oxygen utilization, is important for understanding normal human brain operation as well as pathophysiology of neurological disorders. It can also be of great importance for evaluation of hypoxia within tumors of the brain and other organs. A fundamental discovery by Ogawa and co-workers of the BOLD (Blood Oxygenation Level Dependent) contrast opened a possibility to use this effect to study brain hemodynamic and metabolic properties by means of MRI measurements. Such measurements require developing theoretical models connecting MRI signal to brain structure and functioning and designing experimental techniques allowing MR measurements of salient features of theoretical models. In our review we discuss several such theoretical models and experimental methods for quantification brain hemodynamic and metabolic properties. Our review aims mostly at methods for measuring oxygen extraction fraction, OEF, based on measuring blood oxygenation level. Combining measurement of OEF with measurement of CBF allows evaluation of oxygen consumption, CMRO2. We first consider in detail magnetic properties of blood – magnetic susceptibility, MR relaxation and theoretical models of intravascular contribution to MR signal under different experimental conditions. Then, we describe a “through-space” effect – the influence of inhomogeneous magnetic fields, created in the extravascular space by intravascular deoxygenated blood, on the MR signal formation. Further we describe several experimental techniques taking advantage of these theoretical models. Some of these techniques - MR susceptometry, and T2-based quantification of oxygen OEF – utilize intravascular MR signal. Another technique – qBOLD – evaluates OEF by making use of through-space effects. In this review we targeted both scientists just entering the MR field and more experienced MR researchers

  18. RNA metabolism in the pathogenesis of Parkinson׳s disease.

    PubMed

    Lu, Bingwei; Gehrke, Stephan; Wu, Zhihao

    2014-10-10

    Neurodegenerative diseases such as Parkinson׳s disease are progressive disorders of the nervous system that affect the function and maintenance of specific neuronal populations. While most disease cases are sporadic with no known cause, a small percentage of disease cases are caused by inherited genetic mutations. The identification of genes associated with the familial forms of the diseases and subsequent studies of proteins encoded by the disease genes in cellular or animal models have offered much-needed insights into the molecular and cellular mechanisms underlying disease pathogenesis. Recent studies of the familial Parkinson׳s disease genes have emphasized the importance of RNA metabolism, particularly mRNA translation, in the disease process. It is anticipated that continued studies on the role of RNA metabolism in Parkinson׳s disease will offer unifying mechanisms for understanding the cause of neuronal dysfunction and degeneration and facilitate the development of novel and rational strategies for treating this debilitating disease.

  19. Metabolic diseases and pro- and prebiotics: Mechanistic insights.

    PubMed

    Nakamura, Yukiko K; Omaye, Stanley T

    2012-06-19

    Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual's behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases.

  20. Metabolic diseases and pro- and prebiotics: Mechanistic insights

    PubMed Central

    2012-01-01

    Metabolic diseases, such as obesity and type 2 diabetes, are world-wide health problems. The prevalence of metabolic diseases is associated with dynamic changes in dietary macronutrient intake during the past decades. Based on national statistics and from a public health viewpoint, traditional approaches, such as diet and physical activity, have been unsuccessful in decreasing the prevalence of metabolic diseases. Since the approaches strongly rely on individual’s behavior and motivation, novel science-based strategies should be considered for prevention and therapy for the diseases. Metabolism and immune system are linked. Both overnutrition and infection result in inflammation through nutrient and pathogen sensing systems which recognize compounds with structural similarities. Dietary macronutrients (fats and sugars) can induce inflammation through activation of an innate immune receptor, Toll-like receptor 4 (TLR4). Long-term intake of diets high in fats and meats appear to induce chronic systemic low-grade inflammation, endotoxicity, and metabolic diseases. Recent investigations support the idea of the involvement of intestinal bacteria in host metabolism and preventative and therapeutic potentials of probiotic and prebiotic interventions for metabolic diseases. Specific intestinal bacteria seem to serve as lipopolysaccharide (LPS) sources through LPS and/or bacterial translocation into the circulation due to a vulnerable microbial barrier and increased intestinal permeability and to play a role in systemic inflammation and progression of metabolic diseases. This review focuses on mechanistic links between metabolic diseases (mainly obesity and type 2 diabetes), chronic systemic low-grade inflammation, intestinal environment, and nutrition and prospective views of probiotic and prebiotic interventions for the diseases. PMID:22713169