Vallianatou, Theodosia; Strittmatter, Nicole; Nilsson, Anna; Shariatgorji, Mohammadreza; Hamm, Gregory; Pereira, Marcela; Källback, Patrik; Svenningsson, Per; Karlgren, Maria; Goodwin, Richard J A; Andrén, Per E
2018-05-15
There is a high need to develop quantitative imaging methods capable of providing detailed brain localization information of several molecular species simultaneously. In addition, extensive information on the effect of the blood-brain barrier on the penetration, distribution and efficacy of neuroactive compounds is required. Thus, we have developed a mass spectrometry imaging method to visualize and quantify the brain distribution of drugs with varying blood-brain barrier permeability. With this approach, we were able to determine blood-brain barrier transport of different drugs and define the drug distribution in very small brain structures (e.g., choroid plexus) due to the high spatial resolution provided. Simultaneously, we investigated the effect of drug-drug interactions by inhibiting the membrane transporter multidrug resistance 1 protein. We propose that the described approach can serve as a valuable analytical tool during the development of neuroactive drugs, as it can provide physiologically relevant information often neglected by traditional imaging technologies. Copyright © 2018. Published by Elsevier Inc.
Targeting Brain Tumors with Nanomedicines: Overcoming Challenges of Blood Brain Barrier.
Ningaraj, Nagendra S; Reddy, Polluru L; Khaitan, Divya
2018-04-12
This review elucidates ongoing research, which show improved delivery of anticancer drugs alone and/ or enclosed in carriers collectively called nanomedicines to cross the Blood brain barrier (BBB) / blood-brain tumor barrier (BTB) to kill tumor cells and impact patient survival. We highlighted various advances in understanding the mechanism of BTB function that impact on anticancer therapeutics delivery. We discussed latest breakthroughs in developing pharmaceutical strategies, including nanomedicines and delivering them across BTB for brain tumor management and treatment. We highlight various studies on regulation of BTB permeability regulation with respect to nanotech-based nanomedicines for targeted treatment of brain tumors. We have reviewed latest literature on development of specialized molecules and nanospheres for carrying pay load of anticancer agents to brain tumor cells across the BBB/ BTB and avoid drug efflux systems. We discuss identification and development of distinctive BTB biomarkers for targeted anti-cancer drug delivery to brain tumors. In addition, we discussed nanomedicines and multimeric molecular therapeutics that were encapsulated in nanospheres for treatment and monitoring of brain tumors. In this context, we highlight our research on calcium-activated potassium channels (KCa) and ATP-sensitive potassium channels (KATP) as portals of enhanced antineoplastic drugs delivery. This review might interest both academic and drug company scientists involved in drug delivery to brain tumors. We further seek to present evidence that BTB modulators can be clinically developed as combination drug or/ and as stand-alone anticancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Stimulating neuroregeneration as a therapeutic drug approach for traumatic brain injury
Mueller, Bernhard K; Mueller, Reinhold; Schoemaker, Hans
2009-01-01
Traumatic brain injury, a silent epidemic of modern societies, is a largely neglected area in drug development and no drug is currently available for the treatment of patients suffering from brain trauma. Despite this grim situation, much progress has been made over the last two decades in closely related medical indications, such as spinal cord injury, giving rise to a more optimistic approach to drug development in brain trauma. Fundamental insights have been gained with animal models of central nervous system (CNS) trauma and spinal cord injury. Neuroregenerative drug candidates have been identified and two of these have progressed to clinical development for spinal cord injury patients. If successful, these drug candidates may be used to treat brain trauma patients. Significant progress has also been made in understanding the fundamental molecular mechanism underlying irreversible axonal growth arrest in the injured CNS of higher mammals. From these studies, we have learned that the axonal retraction bulb, previously regarded as a marker for failure of regenerative growth, is not static but dynamic and, therefore, amenable to pharmacotherapeutic approaches. With the development of modified magnetic resonance imaging methods, fibre tracts can be visualised in the living human brain and such imaging methods will soon be used to evaluate the neuroregenerative potential of drug candidates. These significant advances are expected to fundamentally change the often hopeless situation of brain trauma patients and will be the first step towards overcoming the silent epidemic of brain injury. PMID:19422372
Strategies to improve drug delivery across the blood-brain barrier.
de Boer, Albertus G; Gaillard, Pieter J
2007-01-01
The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.
A method for evaluating nanoparticle transport through the blood-brain barrier in vitro.
Guarnieri, Daniela; Muscetti, Ornella; Netti, Paolo A
2014-01-01
Blood-brain barrier (BBB) represents a formidable barrier for many therapeutic drugs to enter the brain tissue. The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous system (CNS) diseases. In this context, nanoparticles are an emerging class of drug delivery systems that can be easily tailored to deliver drugs to various compartments of the body, including the brain. To identify, characterize, and validate novel nanoparticles applicable to brain delivery, in vitro BBB model systems have been developed. In this work, we describe a method to screen nanoparticles with variable size and surface functionalization in order to define the physicochemical characteristics underlying the design of nanoparticles that are able to efficiently cross the BBB.
Drugs, Biogenic Amine Targets and the Developing Brain
Frederick, Aliya L.; Stanwood, Gregg D.
2009-01-01
Defects in the development of the brain have profound impacts on mature brain functions and underlie psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetycholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple, diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by a variety of illicit drugs of abuse, neurotherapeutics, and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life. PMID:19372683
Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.
Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra
2005-06-01
Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.
Nano to micro delivery systems: targeting angiogenesis in brain tumors.
Gilert, Ariel; Machluf, Marcelle
2010-10-08
Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.
Nano to micro delivery systems: targeting angiogenesis in brain tumors
2010-01-01
Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain. PMID:20932320
Macrophages with cellular backpacks for targeted drug delivery to the brain.
Klyachko, Natalia L; Polak, Roberta; Haney, Matthew J; Zhao, Yuling; Gomes Neto, Reginaldo J; Hill, Michael C; Kabanov, Alexander V; Cohen, Robert E; Rubner, Michael F; Batrakova, Elena V
2017-09-01
Most potent therapeutics are unable to cross the blood-brain barrier following systemic administration, which necessitates the development of unconventional, clinically applicable drug delivery systems. With the given challenges, biologically active vehicles are crucial to accomplishing this task. We now report a new method for drug delivery that utilizes living cells as vehicles for drug carriage across the blood brain barrier. Cellular backpacks, 7-10 μm diameter polymer patches of a few hundred nanometers in thickness, are a potentially interesting approach, because they can act as drug depots that travel with the cell-carrier, without being phagocytized. Backpacks loaded with a potent antioxidant, catalase, were attached to autologous macrophages and systemically administered into mice with brain inflammation. Using inflammatory response cells enabled targeted drug transport to the inflamed brain. Furthermore, catalase-loaded backpacks demonstrated potent therapeutic effects deactivating free radicals released by activated microglia in vitro. This approach for drug carriage and release can accelerate the development of new drug formulations for all the neurodegenerative disorders. Copyright © 2017. Published by Elsevier Ltd.
Adolescent Brain Development and Drugs
ERIC Educational Resources Information Center
Winters, Ken C.; Arria, Amelia
2011-01-01
Research now suggests that the human brain is still maturing during adolescence. The developing brain may help explain why adolescents sometimes make decisions that are risky and can lead to safety or health concerns, including unique vulnerabilities to drug abuse. This article explores how this new science may be put to use in our prevention and…
Mind Over Matter: The Brain's Response to Drugs. Teacher's Guide.
ERIC Educational Resources Information Center
National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.
This teacher's guide aims to develop an understanding among students grades 5 through 9 of the physical reality of drug use. Contents include: (1) "Brain Anatomy"; (2) "Nerve Cells and Neurotransmission"; (3) "Effects of Drugs on the Brain"; (4) "Marijuana"; (5) "Opiates"; (6) "Inhalants"; (7) "Hallucinogens"; (8) "Steroids"; (9) "Stimulants";…
Acute organic brain syndrome due to drug-induced eosinophilia.
Ng, S C; Lee, M K; Teh, A
1989-11-01
A 72 year old man developed acute organic brain syndrome associated with marked eosinophilia following self medication with a variety of drugs. Investigations revealed no other known causes of eosinophilia. Withdrawal of drugs resulted in dramatic drop in eosinophil count paralleled by clinical resolution of neurological problems. To our knowledge drug-induced eosinophilia has not previously been associated with acute organic brain syndrome.
Acute organic brain syndrome due to drug-induced eosinophilia.
Ng, S. C.; Lee, M. K.; Teh, A.
1989-01-01
A 72 year old man developed acute organic brain syndrome associated with marked eosinophilia following self medication with a variety of drugs. Investigations revealed no other known causes of eosinophilia. Withdrawal of drugs resulted in dramatic drop in eosinophil count paralleled by clinical resolution of neurological problems. To our knowledge drug-induced eosinophilia has not previously been associated with acute organic brain syndrome. PMID:2616421
Drug delivery across the blood-brain barrier using focused ultrasound
Burgess, Alison; Hynynen, Kullervo H.
2015-01-01
Introduction The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a non-invasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. Areas Covered The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. Expert Opinion The introduction of MRI guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient, and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development. PMID:24650132
Drug delivery across the blood-brain barrier using focused ultrasound.
Burgess, Alison; Hynynen, Kullervo
2014-05-01
The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a noninvasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. The introduction of magnetic resonance imaging guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development.
Tools for studying drug transport and metabolism in the brain.
Pitcher, Meagan R; Quevedo, João
2016-01-01
Development of xenobiotics that cross the blood-brain barrier in therapeutically-relevant quantities is an expensive and time-consuming undertaking. However, central nervous system diseases are an under-addressed cause of high mortality and morbidity, and drug development in this field is a worthwhile venture. We aim to familiarize the reader with available methodologies for studying drug transport into the brain. Current understanding of the blood-brain barrier structure has been well-described in other manuscripts, and first we briefly review the path that xenobiotics take through the brain - from bloodstream, to endothelial cells of the blood-brain barrier, to interstitial space, to brain parenchymal cells, and then to an exit point from the central nervous system. The second half of the review discusses research tools available to determine if xenobiotics are making the journey through the brain successfully and offers commentary on the translational utility of each methodology. Theoretically, non-human mammalian and human blood-brain barriers are similar in composition; however, some findings demonstrate important differences across species. Translational methodologies may provide more reliable information about how a drug may act across species. The recent finding of lymphatic vessels within the central nervous system may provide new tools and strategies for drug delivery to the brain.
Prenatal exposure to drugs: effects on brain development and implications for policy and education
Thompson, Barbara L.; Levitt, Pat; Stanwood, Gregg D.
2009-01-01
The effects of prenatal exposure to drugs on brain development are complex and are modulated by the timing, dose, and route of drug exposure. It is difficult to assess these effects in clinical cohorts, which are beset with multiple exposures and difficulties in documenting use patterns. This can lead to misinterpretation of research findings by the general public, the media and policy makers, who may mistakenly assume that the legal or illegal status of a drug correlates with its biological impact on fetal brain development and long-term clinical outcomes. It is important to close the gap between what science tells us about the impact of prenatal drug exposure on the fetus and the mother, and what we do programmatically with regard to at-risk populations. PMID:19277053
Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System
Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.
2014-01-01
Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103
Can Functional Magnetic Resonance Imaging Improve Success Rates in CNS Drug Discovery?
Borsook, David; Hargreaves, Richard; Becerra, Lino
2011-01-01
Introduction The bar for developing new treatments for CNS disease is getting progressively higher and fewer novel mechanisms are being discovered, validated and developed. The high costs of drug discovery necessitate early decisions to ensure the best molecules and hypotheses are tested in expensive late stage clinical trials. The discovery of brain imaging biomarkers that can bridge preclinical to clinical CNS drug discovery and provide a ‘language of translation’ affords the opportunity to improve the objectivity of decision-making. Areas Covered This review discusses the benefits, challenges and potential issues of using a science based biomarker strategy to change the paradigm of CNS drug development and increase success rates in the discovery of new medicines. The authors have summarized PubMed and Google Scholar based publication searches to identify recent advances in functional, structural and chemical brain imaging and have discussed how these techniques may be useful in defining CNS disease state and drug effects during drug development. Expert opinion The use of novel brain imaging biomarkers holds the bold promise of making neuroscience drug discovery smarter by increasing the objectivity of decision making thereby improving the probability of success of identifying useful drugs to treat CNS diseases. Functional imaging holds the promise to: (1) define pharmacodynamic markers as an index of target engagement (2) improve translational medicine paradigms to predict efficacy; (3) evaluate CNS efficacy and safety based on brain activation; (4) determine brain activity drug dose-response relationships and (5) provide an objective evaluation of symptom response and disease modification. PMID:21765857
Georgieva, Julia V; Hoekstra, Dick; Zuhorn, Inge S
2014-11-17
The blood-brain barrier acts as a physical barrier that prevents free entry of blood-derived substances, including those intended for therapeutic applications. The development of molecular Trojan horses is a promising drug targeting technology that allows for non-invasive delivery of therapeutics into the brain. This concept relies on the application of natural or genetically engineered proteins or small peptides, capable of specifically ferrying a drug-payload that is either directly coupled or encapsulated in an appropriate nanocarrier, across the blood-brain barrier via receptor-mediated transcytosis. Specifically, in this process the nanocarrier-drug system ("Trojan horse complex") is transported transcellularly across the brain endothelium, from the blood to the brain interface, essentially trailed by a native receptor. Naturally, only certain properties would favor a receptor to serve as a transporter for nanocarriers, coated with appropriate ligands. Here we briefly discuss brain microvascular endothelial receptors that have been explored until now, highlighting molecular features that govern the efficiency of nanocarrier-mediated drug delivery into the brain.
Fridén, Markus; Ducrozet, Frederic; Middleton, Brian; Antonsson, Madeleine; Bredberg, Ulf; Hammarlund-Udenaes, Margareta
2009-06-01
New, more efficient methods of estimating unbound drug concentrations in the central nervous system (CNS) combine the amount of drug in whole brain tissue samples measured by conventional methods with in vitro estimates of the unbound brain volume of distribution (V(u,brain)). Although the brain slice method is the most reliable in vitro method for measuring V(u,brain), it has not previously been adapted for the needs of drug discovery research. The aim of this study was to increase the throughput and optimize the experimental conditions of this method. Equilibrium of drug between the buffer and the brain slice within the 4 to 5 h of incubation is a fundamental requirement. However, it is difficult to meet this requirement for many of the extensively binding, lipophilic compounds in drug discovery programs. In this study, the dimensions of the incubation vessel and mode of stirring influenced the equilibration time, as did the amount of brain tissue per unit of buffer volume. The use of cassette experiments for investigating V(u,brain) in a linear drug concentration range increased the throughput of the method. The V(u,brain) for the model compounds ranged from 4 to 3000 ml . g brain(-1), and the sources of variability are discussed. The optimized setup of the brain slice method allows precise, robust estimation of V(u,brain) for drugs with diverse properties, including highly lipophilic compounds. This is a critical step forward for the implementation of relevant measurements of CNS exposure in the drug discovery setting.
The blood-brain barrier and nasal drug delivery to the central nervous system.
Miyake, Marcel Menon; Bleier, Benjamin S
2015-01-01
The blood-brain barrier (BBB) is a highly efficient system that separates the central nervous system (CNS) from general circulation and promotes selective transport of molecules that are essential for brain function. However, it also limits the distribution of systemically administered therapeutics to the brain; therefore, there is a restricted number of drugs available for the treatment of brain disorders. Several drug-targeting strategies have been developed to attempt to bypass the BBB, but none has proved sufficiently effective in reaching the brain. The objective of this study is to generally review these strategies of drug administration to the CNS. Noninvasive methods of drug delivery, such as chemical and biologic transport systems, do not represent a feasible platform, whereas for most drugs, it is still not possible to achieve therapeutic levels within the brain tissue after intravenous or oral administration, and the use of higher potency or more concentrated doses may cause serious toxic side effects. Direct intrathecal drug delivery through a catheter into the CNS also presents several problems. Intranasal drug delivery is a potential alternative method due to the direct transport into the cerebrospinal fluid (CSF) compartment along the olfactory pathway, but the study's conclusions are controversial. An endoscopic intranasal surgical procedure using established skull base surgery reconstruction techniques based on the use of a nasal mucosa surgical flap as the only obstacle between the nose and the subarachnoid space has appeared as a potential solution to increase the absorption of intranasal drugs to the CNS. Despite extensive efforts to develop new techniques to cross the BBB, none has proved sufficiently effective in reaching the brain, whereas minimizing adverse effects and the endoscopic mucosal grafting technique offers new potential promise.
Vieira, Débora B; Gamarra, Lionel F
2016-01-01
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered. PMID:27799765
Vieira, Débora B; Gamarra, Lionel F
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood-brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer's, Parkinson's, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood-brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
ERIC Educational Resources Information Center
Cheng, Meng-Tzu
2009-01-01
In response to the solicitation of the National Institute on Drug Use (NIDA) (NIDA, 2006) for the "Development of a Virtual Reality Environment for Teaching about the Impact of Drug Abuse on the Brain," a virtual brain exhibit was developed by the joint venture of Entertainment Science, Inc. and Virtual Heroes, Inc.. This exhibit included a…
Development of drug-loaded polymer microcapsules for treatment of epilepsy.
Chen, Yu; Gu, Qi; Yue, Zhilian; Crook, Jeremy M; Moulton, Simon E; Cook, Mark J; Wallace, Gordon G
2017-09-26
Despite significant progress in developing new drugs for seizure control, epilepsy still affects 1% of the global population and is drug-resistant in more than 30% of cases. To improve the therapeutic efficacy of epilepsy medication, a promising approach is to deliver anti-epilepsy drugs directly to affected brain areas using local drug delivery systems. The drug delivery systems must meet a number of criteria, including high drug loading efficiency, biodegradability, neuro-cytocompatibility and predictable drug release profiles. Here we report the development of fibre- and sphere-based microcapsules that exhibit controllable uniform morphologies and drug release profiles as predicted by mathematical modelling. Importantly, both forms of fabricated microcapsules are compatible with human brain derived neural stem cells and differentiated neurons and neuroglia, indicating clinical compliance for neural implantation and therapeutic drug delivery.
Emerging Drugs for the Treatment of Breast Cancer Brain Metastasis: A Review of Patent Literature.
Anaya-Ruiz, Maricruz; Bandala, Cindy; Martinez-Morales, Patricia; Landeta, Gerardo; Martinez-Contreras, Rebeca D; Martinez-Montiel, Nancy; Perez-Santos, Martin
2018-04-29
Despite dramatic advances in cancer treatment that lead to long-term survival, there is an increasing number of patients presenting with clinical manifestations of cerebral metastasis in breast cancer, for whom only palliative treatment options exist. The present review aims to provide to identify recent patens of breast cancer brain metastasis that may have application in improving cancer treatment. Recent patents regarding the breast cancer brain metastasis were obtained from USPTO patent databases, Esp@cenet, Patentscope and Patent Inspiration®. A total of 55 patent documents and 35 drug targets were recovered. Of these, a total of 45 patents and 10 patents were biotech drugs and chemical drugs, respectively. Among the target drugs analyzed were neurotrophin-3, protocadherin 7, CXCR4, PTEN, GABA receptor 3, L1CAM, PI3K-Akt / mTOR, VEGFR2, Claudin-5, Occludin, and NKG2A, among others. In this study we found 35 drug targets for metastasis to the brain in breast cancer, with 60% of them including only one patent, which establishes that this area of research is very recent, and that these targets have recently been linked to metastasis to the brain. On the other hand, 19 drug targets, among them VEGF, VEGFR2, CXCL12, and CXCR4, have been addressed for the first time until 6 years ago, confirming that the development of drugs for brain metastasis in breast cancer is an incipient area, but with interesting potential. Interestingly, the stage of inside the brain, was the stage with the lowest amount of drug targets, which places it as a priority for research and drug development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Salunkhe, Sachin S; Bhatia, Neela M; Bhatia, Manish S
2016-05-01
The aim of present investigation was to formulate and develop lipid-based nanostructured carriers (NLCs) containing Idebenone (IDE) for delivery to brain. Attempts have been made to evaluate IDE NLCs for its pharmacokinetic and pharmacodynamic profile through the objective of enhancement in bioavailability and effectivity of drug. Nanoprecipitation technique was used for development of drug loaded NLCs. The components solid lipid Precirol ATO 5, oil Miglyol 840, surfactants Tween 80 and Labrasol have been screened out for formulation development by consideration of preformulation parameters including solubility, Required Hydrophilic lipophilic balance (HLB) of lipids and stability study. Developed IDE NLCs were subjected for particle size, zeta potential, entrapment efficiency (%EE), crystallographic investigation, transmission electron microscopy, in vitro drug release, pharmacokinetics, in vivo and stability study. Formulation under investigation has particle size 174.1 ± 2.6 nm, zeta potential -18.65 ± 1.13 mV and% EE 90.68 ± 2.90. Crystallographic studies exemplified for partial amorphization of IDE by molecularly dispersion within lipid crust. IDE NLCs showed drug release 93.56 ± 0.39% at end of 24 h by following Higuchi model which necessitates for appropriate drug delivery with enhancement in bioavailability of drug by 4.6-fold in plasma and 2.8-fold in brain over plain drug loaded aqueous dispersions. In vivo studies revealed that effect of drug was enhanced by prepared lipid nanocarriers. IDE lipid-based nanostructured carriers could have potential for efficient drug delivery to brain with enhancement in bioavailability of drug over the conventional formulations.
Brains Rule!: A Model Program for Developing Professional Stewardship among Neuroscientists
ERIC Educational Resources Information Center
Zardetto-Smith, Andrea M.; Mu, Keli; Carruth, Laura L.; Frantz, Kyle J.
2006-01-01
Brains Rule! Neuroscience Expositions, funded through a National Institute on Drug Abuse Science Education Drug Abuse Partnership Award, has developed a successful model for informal neuroscience education. Each Exposition is a "reverse science fair" in which neuroscientists present short neuroscience teaching modules to students. This…
Mind over Matter. Teacher's Guide.
ERIC Educational Resources Information Center
National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.
This teacher's guide aims to develop an understanding among students in grades 5-9 about the biological effects of drug use. The guide provides background information on the anatomy of the brain, nerve cells and neurotransmission, and the effects of drugs on the brain. Drugs described in this guide include marijuana, opiates, inhalants,…
Nano carriers for drug transport across the blood-brain barrier.
Li, Xinming; Tsibouklis, John; Weng, Tingting; Zhang, Buning; Yin, Guoqiang; Feng, Guangzhu; Cui, Yingde; Savina, Irina N; Mikhalovska, Lyuba I; Sandeman, Susan R; Howel, Carol A; Mikhalovsky, Sergey V
2017-01-01
Effective therapy lies in achieving a therapeutic amount of drug to the proper site in the body and then maintaining the desired drug concentration for a sufficient time interval to be clinically effective for treatment. The blood-brain barrier (BBB) hinders most drugs from entering the central nervous system (CNS) from the blood stream, leading to the difficulty of delivering drugs to the brain via the circulatory system for the treatment, diagnosis and prevention of brain diseases. Several brain drug delivery approaches have been developed, such as intracerebral and intracerebroventricular administration, intranasal delivery and blood-to-brain delivery, as a result of transient BBB disruption induced by biological, chemical or physical stimuli such as zonula occludens toxin, mannitol, magnetic heating and ultrasound, but these approaches showed disadvantages of being dangerous, high cost and unsuitability for most brain diseases and drugs. The strategy of vector-mediated blood-to-brain delivery, which involves improving BBB permeability of the drug-carrier conjugate, can minimize side effects, such as being submicrometre objects that behave as a whole unit in terms of their transport and properties, nanomaterials, are promising carrier vehicles for direct drug transport across the intact BBB as a result of their potential to enter the brain capillary endothelial cells by means of normal endocytosis and transcytosis due to their small size, as well as their possibility of being functionalized with multiple copies of the drug molecule of interest. This review provids a concise discussion of nano carriers for drug transport across the intact BBB, various forms of nanomaterials including inorganic/solid lipid/polymeric nanoparticles, nanoemulsions, quantum dots, nanogels, liposomes, micelles, dendrimers, polymersomes and exosomes are critically evaluated, their mechanisms for drug transport across the BBB are reviewed, and the future directions of this area are fully discussed.
The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design.
Bottelier, Marco A; Schouw, Marieke L J; Klomp, Anne; Tamminga, Hyke G H; Schrantee, Anouk G M; Bouziane, Cheima; de Ruiter, Michiel B; Boer, Frits; Ruhé, Henricus G; Denys, Damiaan; Rijsman, Roselyne; Lindauer, Ramon J L; Reitsma, Hans B; Geurts, Hilde M; Reneman, Liesbeth
2014-02-19
Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different approaches to determine whether there are related findings in humans. Animal studies were carried out to investigate age-related effects of psychotropic drugs and to validate new neuroimaging techniques. In addition, we set up two double-blind placebo controlled clinical trials with MPH in 50 boys (10-12 years) and 50 young men (23-40 years) suffering from ADHD (ePOD-MPH) and with FLX in 40 girls (12-14 years) and 40 young women (23-40 years) suffering from depression and anxiety disorders (ePOD-SSRI). Trial registration numbers are: Nederlands Trial Register NTR3103 and NTR2111. A cross-sectional cohort study on age-related effects of these psychotropic medications in patients who have been treated previously with MPH or FLX (ePOD-Pharmo) is also ongoing. The effects of psychotropic drugs on the developing brain are studied using neuroimaging techniques together with neuropsychological and psychiatric assessments of cognition, behavior and emotion. All assessments take place before, during (only in case of MPH) and after chronic treatment. The combined results of these approaches will provide new insight into the modulating effect of MPH and FLX on brain development.
The effects of Psychotropic drugs On Developing brain (ePOD) study: methods and design
2014-01-01
Background Animal studies have shown that methylphenidate (MPH) and fluoxetine (FLX) have different effects on dopaminergic and serotonergic system in the developing brain compared to the developed brain. The effects of Psychotropic drugs On the Developing brain (ePOD) study is a combination of different approaches to determine whether there are related findings in humans. Methods/Design Animal studies were carried out to investigate age-related effects of psychotropic drugs and to validate new neuroimaging techniques. In addition, we set up two double-blind placebo controlled clinical trials with MPH in 50 boys (10–12 years) and 50 young men (23–40 years) suffering from ADHD (ePOD-MPH) and with FLX in 40 girls (12–14 years) and 40 young women (23–40 years) suffering from depression and anxiety disorders (ePOD-SSRI). Trial registration numbers are: Nederlands Trial Register NTR3103 and NTR2111. A cross-sectional cohort study on age-related effects of these psychotropic medications in patients who have been treated previously with MPH or FLX (ePOD-Pharmo) is also ongoing. The effects of psychotropic drugs on the developing brain are studied using neuroimaging techniques together with neuropsychological and psychiatric assessments of cognition, behavior and emotion. All assessments take place before, during (only in case of MPH) and after chronic treatment. Discussion The combined results of these approaches will provide new insight into the modulating effect of MPH and FLX on brain development. PMID:24552282
Blood-brain barrier transport machineries and targeted therapy of brain diseases
Barar, Jaleh; Rafi, Mohammad A.; Pourseif, Mohammad M.; Omidi, Yadollah
2016-01-01
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes. Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting. Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs). Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain. PMID:28265539
Blood-brain barrier transport machineries and targeted therapy of brain diseases.
Barar, Jaleh; Rafi, Mohammad A; Pourseif, Mohammad M; Omidi, Yadollah
2016-01-01
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes. Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting. Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs). Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Design and Efficacy of Nanogels Formulations for Intranasal Administration.
Aderibigbe, Blessing A; Naki, Tobeka
2018-05-23
Nanogels are drug delivery systems that can bypass the blood-brain barrier and deliver drugs to the desired site when administered intranasally. They have been used as a drug delivery platform for the management of brain diseases such as Alzheimer disease, migraine, schizophrenia and depression. nanogels have also been developed as vaccine carriers for the protection of bacterial infections such as influenza, meningitis, pneumonia and as veterinary vaccine carriers for the protection of animals from encephalomyelitis and mouth to foot disease. It has been developed as vaccine carriers for the prevention of lifestyle disease such as obesity. Intranasal administration of therapeutics using nanogels for the management of brain diseases revealed that the drug transportation was via the olfactory nerve pathway resulting in rapid drug delivery to the brain with excellent neuroprotective effect. The application of nanogels as vaccine carriers also induced significant responses associated with protective immunity against selected bacterial and viral infections. This review provides a detailed information on the enhanced therapeutic effects, mechanisms and biological efficacy of nanogels for intranasal administration.
Pulicherla, K K; Verma, Mahendra Kumar
2015-04-01
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.
Joshi, Shailendra; Ellis, Jason A; Emala, Charles W
2014-05-01
For over six decades intra-arterial (IA) drugs have been sporadically used for the treatment of lethal brain diseases. In recent years considerable advance has been made in the IA treatment of retinoblastomas, liver and locally invasive breast cancers, but relatively little progress has been made in the treatment of brain cancers. High resting blood flow and the presence of the blood-brain barrier (BBB), makes IA delivery to the brain tissue far more challenging, compared to other organs. The lack of advance in the field is also partly due to the inability to understand the complex pharmacokinetics of IA drugs as it is difficult to track drug concentrations in sub-second time frame by conventional chemical methods. The advances in optical imaging now provide unprecedented insights into the pharmacokinetics of IA drug and optical tracer delivery. Novel delivery methods, improved IA drug formulations, and optical pharmacokinetics, present us with untested paradigms in pharmacology that could lead to new therapeutic interventions for brain cancers and stroke. The object of this review is to bring into focus the current practice, problems, and the potential of IA drug delivery for treating brain diseases. A concerted effort is needed at basic sciences (pharmacology and drug imaging), and translational (drug delivery techniques and protocol development) levels by the interventional neuroradiology community to advance the field.
Modeling the accumulation of degradable polymer drug carriers in the brain.
Bolwerk, Celine; Govers, Larissa P M W D; Knol, Hanna; Oostendorp, Thom F; Brock, Roland
2018-05-11
The blood brain barrier (BBB) limits the access of drugs to the brain. Intensive research is being conducted on the development of nanoparticulate drug carriers that mediate transfer across the BBB. A question that has been neglected so far is the potential accumulation of the carrier in the brain upon long-term exposure. Here, we address this question by implementing a kinetic model to relate drug loading, required concentration of drug in the brain and drug clearance to the degradation half-life of the carrier. As a test case with clinical relevance we chose poly-lactic-co-glycolic-acid (PLGA) as a carrier material and a chemotherapeutic for which the required parameters could be recovered from literature. For methotrexate with a drug load of 8.5 %, a required concentration of free drug of 1 µM, a release from PLGA of 6 hours, a drug clearance from the brain of 3 hours and a half-life of polymer degradation of 28 days, a steady state accumulation of 1.3 g polymer would be reached in the brain (1.5L) after 7 months. While this number is surprisingly small, further physiological research is warranted to assess to which degree this will be in a tolerable range. Insert abstract text here. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Papademetriou, Iason T; Porter, Tyrone
2015-01-01
Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood–brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future. PMID:26488496
Papademetriou, Iason T; Porter, Tyrone
2015-01-01
Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.
PROGRESS AND PROBLEMS IN THE APPLICATION OF FOCUSED ULTRASOUND FOR BLOOD-BRAIN BARRIER DISRUPTION
Vykhodtseva, Natalia; McDannold, Nathan; Hynynen, Kullervo
2008-01-01
Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood–brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized. PMID:18511095
Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok
2017-01-01
The blood–brain barrier (BBB) hinders drug delivery to the brain. Despite various efforts to develop preprogramed actuation schemes for magnetic drug delivery, the unmodeled aggregation phenomenon limits drug delivery performance. This paper proposes a novel scheme with an aggregation model for a feed-forward magnetic actuation design. A simulation platform for aggregated particle delivery is developed and an actuation scheme is proposed to deliver aggregated magnetic nanoparticles (MNPs) using a discontinuous asymmetrical magnetic actuation. The experimental results with a Y-shaped channel indicated the success of the proposed scheme in steering and disaggregation. The delivery performance of the developed scheme was examined using a realistic, three-dimensional (3D) vessel simulation. Furthermore, the proposed scheme enhanced the transport and uptake of MNPs across the BBB in mice. The scheme presented here facilitates the passage of particles across the BBB to the brain using an electromagnetic actuation scheme. PMID:29271927
Hoshiar, Ali Kafash; Le, Tuan-Anh; Amin, Faiz Ul; Kim, Myeong Ok; Yoon, Jungwon
2017-12-22
The blood-brain barrier (BBB) hinders drug delivery to the brain. Despite various efforts to develop preprogramed actuation schemes for magnetic drug delivery, the unmodeled aggregation phenomenon limits drug delivery performance. This paper proposes a novel scheme with an aggregation model for a feed-forward magnetic actuation design. A simulation platform for aggregated particle delivery is developed and an actuation scheme is proposed to deliver aggregated magnetic nanoparticles (MNPs) using a discontinuous asymmetrical magnetic actuation. The experimental results with a Y-shaped channel indicated the success of the proposed scheme in steering and disaggregation. The delivery performance of the developed scheme was examined using a realistic, three-dimensional (3D) vessel simulation. Furthermore, the proposed scheme enhanced the transport and uptake of MNPs across the BBB in mice. The scheme presented here facilitates the passage of particles across the BBB to the brain using an electromagnetic actuation scheme.
Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu
2016-03-30
In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization-MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research.
Aikawa, Hiroaki; Hayashi, Mitsuhiro; Ryu, Shoraku; Yamashita, Makiko; Ohtsuka, Naoto; Nishidate, Masanobu; Fujiwara, Yasuhiro; Hamada, Akinobu
2016-01-01
In the development of anticancer drugs, drug concentration measurements in the target tissue have been thought to be crucial for predicting drug efficacy and safety. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is commonly used for determination of average drug concentrations; however, complete loss of spatial information in the target tissue occurs. Mass spectrometry imaging (MSI) has been recently applied as an innovative tool for detection of molecular distribution of pharmacological agents in heterogeneous targets. This study examined the intra-brain transitivity of alectinib, a novel anaplastic lymphoma kinase inhibitor, using a combination of matrix-assisted laser desorption ionization–MSI and LC-MS/MS techniques. We first analyzed the pharmacokinetic profiles in FVB mice and then examined the effect of the multidrug resistance protein-1 (MDR1) using Mdr1a/b knockout mice including quantitative distribution of alectinib in the brain. While no differences were observed between the mice for the plasma alectinib concentrations, diffuse alectinib distributions were found in the brain of the Mdr1a/b knockout versus FVB mice. These results indicate the potential for using quantitative MSI for clarifying drug distribution in the brain on a microscopic level, in addition to suggesting a possible use in designing studies for anticancer drug development and translational research. PMID:27026287
Novel Nanotechnologies for Brain Cancer Therapeutics and Imaging.
Ferroni, Letizia; Gardin, Chiara; Della Puppa, Alessandro; Sivolella, Stefano; Brunello, Giulia; Scienza, Renato; Bressan, Eriberto; D'Avella, Domenico; Zavan, Barbara
2015-11-01
Despite progress in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of brain cancer, specifically malignant gliomas, does not yet exist. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood-brain barrier. Nanotechnology today offers a unique opportunity to develop more effective brain cancer imaging and therapeutics. In particular, the development of nanocarriers that can be conjugated with several functional molecules including tumor-specific ligands, anticancer drugs, and imaging probes, can provide new devices which are able to overcome the difficulties of the classical strategies. Nanotechnology-based approaches hold great promise for revolutionizing brain cancer medical treatments, imaging, and diagnosis.
Photoacoustic imaging for transvascular drug delivery to the rat brain
NASA Astrophysics Data System (ADS)
Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro
2015-03-01
Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.
de Lange, E. C.; Bouw, M. R.; Mandema, J. W.; Danhof, M.; de Boer, A. G.; Breimer, D. D.
1995-01-01
1. The purpose of the present study was to determine whether intracerebral microdialysis can be used for the assessment of local differences in drug concentrations within the brain. 2. Two transversal microdialysis probes were implanted in parallel into the frontal cortex of male Wistar rats, and used as a local infusion and detection device respectively. Within one rat, three different concentrations of atenolol or acetaminophen were infused in randomized order. By means of the detection probe, concentration-time profiles of the drug in the brain were measured at interprobe distances between 1 and 2 mm. 3. Drug concentrations were found to be dependent on the drug as well as on the interprobe distance. It was found that the outflow concentration from the detection probe decreased with increasing lateral spacing between the probes and this decay was much steeper for acetaminophen than for atenolol. A model was developed which allows estimation of kbp/Deff (transfer coefficient from brain to blood/effective diffusion coefficient in brain extracellular fluid), which was considerably larger for the more lipohilic drug, acetaminophen. In addition, in vivo recovery values for both drugs were determined. 4. The results show that intracerebral microdialysis is able to detect local differences in drug concentrations following infusion into the brain. Furthermore, the potential use of intracerebral microdialysis to obtain pharmacokinetic parameters of drug distribution in brain by means of monitoring local concentrations of drugs in time is demonstrated. PMID:8581296
The intersection of stress, drug abuse and development.
Thadani, Pushpa V
2002-01-01
Use or abuse of licit and illicit substances is often associated with environmental stress. Current clinical evidence clearly demonstrates neurobehavioral, somatic growth and developmental deficits in children born to drug-using mothers. However, the effects of environmental stress and its interaction with prenatal drug exposure on a child's development is unknown. Studies in pregnant animals under controlled conditions show drug-induced long-term alterations in brain structures and functions of the offspring. These cytoarchitecture alterations in the brain are often associated with perturbations in neurotransmitter systems that are intimately involved in the regulation of the stress responses. Similar abnormalities have been observed in the brains of animals exposed to other adverse exogenous (e.g., environmental stress) and/or endogenous (e.g., glucocorticoids) experiences during early life. The goal of this article is to: (1) provide evidence and a perspective that common neural systems are influenced during development both by perinatal drug exposure and early stress exposure; and (2) identify gaps and encourage new research examining the effects of early stress and perinatal drug exposure, in animal models, that would elucidate how stress- and drug-induced perturbations in neural systems influence later vulnerability to abused drugs in adult offspring.
Computational and Pharmacological Target of Neurovascular Unit for Drug Design and Delivery
2015-01-01
The blood-brain barrier (BBB) is a dynamic and highly selective permeable interface between central nervous system (CNS) and periphery that regulates the brain homeostasis. Increasing evidences of neurological disorders and restricted drug delivery process in brain make BBB as special target for further study. At present, neurovascular unit (NVU) is a great interest and highlighted topic of pharmaceutical companies for CNS drug design and delivery approaches. Some recent advancement of pharmacology and computational biology makes it convenient to develop drugs within limited time and affordable cost. In this review, we briefly introduce current understanding of the NVU, including molecular and cellular composition, physiology, and regulatory function. We also discuss the recent technology and interaction of pharmacogenomics and bioinformatics for drug design and step towards personalized medicine. Additionally, we develop gene network due to understand NVU associated transporter proteins interactions that might be effective for understanding aetiology of neurological disorders and new target base protective therapies development and delivery. PMID:26579539
Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs
Michinaga, Shotaro; Koyama, Yutaka
2015-01-01
Brain edema is a potentially fatal pathological state that occurs after brain injuries such as stroke and head trauma. In the edematous brain, excess accumulation of extracellular fluid results in elevation of intracranial pressure, leading to impaired nerve function. Despite the seriousness of brain edema, only symptomatic treatments to remove edema fluid are currently available. Thus, the development of novel anti-edema drugs is required. The pathogenesis of brain edema is classified as vasogenic or cytotoxic edema. Vasogenic edema is defined as extracellular accumulation of fluid resulting from disruption of the blood-brain barrier (BBB) and extravasations of serum proteins, while cytotoxic edema is characterized by cell swelling caused by intracellular accumulation of fluid. Various experimental animal models are often used to investigate mechanisms underlying brain edema. Many soluble factors and functional molecules have been confirmed to induce BBB disruption or cell swelling and drugs targeted to these factors are expected to have anti-edema effects. In this review, we discuss the mechanisms and involvement of factors that induce brain edema formation, and the possibility of anti-edema drugs targeting them. PMID:25941935
Thelin, Eric Peter; Carpenter, Keri L H; Hutchinson, Peter J; Helmy, Adel
2017-03-01
Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.
Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.
2017-01-01
Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201
Modarres, Hassan Pezeshgi; Janmaleki, Mohsen; Novin, Mana; Saliba, John; El-Hajj, Fatima; RezayatiCharan, Mahdi; Seyfoori, Amir; Sadabadi, Hamid; Vandal, Milène; Nguyen, Minh Dang; Hasan, Anwarul; Sanati-Nezhad, Amir
2018-03-10
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Drexler, B; Hentschke, H; Antkowiak, B; Grasshoff, C
2010-01-01
The development of neuroactive drugs is a time consuming procedure. Candidate drugs must be run through a battery of tests, including receptor studies and behavioural tests on animals. As a rule, numerous substances with promising properties as assessed in receptor studies must be eliminated from the development pipeline in advanced test phases because of unforeseen problems like intolerable side-effects or unsatisfactory performance in the whole organism. Clearly, test systems of intermediate complexity would alleviate this inefficiency. In this review, we propose cultured organotypic brain slices as model systems that could bridge the 'interpolation gap' between receptors and the brain, with a focus on the development of new general anaesthetics with lesser side effects. General anaesthesia is based on the modulation of neurotransmitter receptors and other conductances located on neurons in diverse brain regions, including cerebral cortex and spinal cord. It is well known that different components of general anaesthesia, e.g. hypnosis and immobility, are produced by the depression of neuronal activity in distinct brain regions. The ventral horn of the spinal cord is an important structure for the induction of immobility. Thus, the potentially immobilizing effects of a newly designed drug can be estimated from its depressant effect on neuronal network activity in cultured spinal slices. A drug's sedative and hypnotic potential can be examined in cortical cultures. Combined with genetically engineered mice, this approach can point to receptor subtypes most relevant to the drug's intended net effect and in return can help in the design of more selective drugs. In conclusion, the use of organotypic cultures permits predictions of neuroactive properties of newly designed drugs on an intermediate level, and should therefore open up avenues for a more creative and economic drug development process.
[Research of bornrol promote drugs through blood-brain barrier].
Lv, Xuxiao; Sun, Mingjiang; Sun, Fengzhi
2012-04-01
Malignant tumor, epilepsy, dementia, cerebral ischemia and other brain diseases have very high rates of disability and mortality. Currently, many drugs are developed to treat such diseases and the effect is obviously. But they can not achieve the purpose to control these diseases because many of the drugs can not pass through the blood-brain barrier (BBB). Therefore, the treatment is not good. Borneol as the represent of the aromatic resuscitation medicine, it has strong fat-soluble active ingredients, small molecular weight, volatile and through the BBB quickly. It can also promote other therapeutic drugs through the BBB. It has two-ways regulations on BBB permeability and the damage of brain tissue is small, this have important theoretical significances and application values.
Patching, Simon G
2017-03-01
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Zhang, Qun-Lin; Fu, Bingmei M; Zhang, Zhang-Jin
2017-11-01
The clinical application of central nervous system (CNS) drugs is limited by their poor bioavailability due to the blood-brain barrier (BBB). Borneol is a naturally occurring compound in a class of 'orifice-opening' agents often used for resuscitative purposes in traditional Chinese medicine. A growing body of evidence confirms that the 'orifice-opening' effect of borneol is principally derived from opening the BBB. Borneol is therefore believed to be an effective adjuvant that can improve drug delivery to the brain. The purpose of this paper is to provide a comprehensive review of information accumulated over the past two decades on borneol's chemical features, sources, toxic and kinetic profiles, enhancing effects on BBB permeability and their putative mechanisms, improvements in CNS drug delivery, and pharmaceutical forms. The BBB-opening effect of borneol is a reversible physiological process characterized by rapid and transient penetration of the BBB and highly specific brain regional distribution. Borneol also protects the structural integrity of the BBB against pathological damage. The enhancement of the BBB permeability is associated with the modulation of multiple ATP-binding cassette transporters, including P-glycoprotein; tight junction proteins; and predominant enhancement of vasodilatory neurotransmitters. Systemic co-administration with borneol improves drug delivery to the brain in a region-, dose- and time-dependent manner. Several pharmaceutical forms of borneol have been developed to improve the kinetic and toxic profiles of co-administered drugs and enhance their delivery to the brain. Borneol is a promising novel agent that deserves further development as a BBB permeation enhancer for CNS drug delivery.
Blood-brain barrier transport of drugs for the treatment of brain diseases.
Gabathuler, Reinhard
2009-06-01
The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.
The Blood Brain Barrier and its Role in Alzheimer's Therapy: An Overview.
Jakki, Satya Lavanya; Senthil, V; Yasam, Venkata Ramesh; Chandrasekar, M J N; Vijayaraghavan, C
2018-01-01
Alzheimer's disease (AD) is the most frequent age related neurodegenerative disorder. It represents 70% of all dementia. Millions of people have been affected by AD worldwide. It is a complex illness characterized pathologically by accumulation of protein aggregates of amyloid and neurofibrillary tangles containing hyperphosphorylated neuronal tau protein. AD requires drugs that can circumvent the blood-brain barrier (BBB) which is not a simple physical barrier between blood and brain, but acts as an iron curtain, allowing only selective molecules to enter the brain. Unfortunately, this dynamic barrier restricts transport of drugs to the brain; due to which, currently very few drugs are available for AD treatment. The present review focuses mainly on strategies used for administration of drug to the CNS by-passing BBB for the treatment of AD. Many studies have proved to be effective in overcoming BBB and targeting drugs to CNS by using different strategies. Here we have discussed some of the most important drug permeability and drug targeting approaches. In conclusion, concentrating solely in development of drug discovery programs is not enough but it is important to maintain balance between the drug discovery and drug delivery systems that are more specific and effective in targeting CNS of AD patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Halliday, Amy J; Campbell, Toni E; Razal, Joselito M; McLean, Karen J; Nelson, Timothy S; Cook, Mark J; Wallace, Gordon G
2012-02-01
Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is highly resistant to medication with up to 40% of patients continuing to experience seizures whilst taking oral antiepileptic drugs. Recent research suggests that this may be due to abnormalities in the blood-brain barrier, which prevent the passage of therapeutic substances into the brain. We sought to develop a drug delivery material that could be implanted within the brain at the origin of the seizures to release antiepileptic drugs locally and avoid the blood brain barrier. We produced poly-lactide-co-glycolide drop-cast films and wet-spun fibers loaded with the novel antiepileptic drug Levetiracetam, and investigated their morphology, in vitro drug release characteristics, and brain biocompatibility in adult rats. The best performing structures released Levetiracetam constantly for at least 5 months in vitro, and were found to be highly brain biocompatible following month-long implantations in the motor cortex of adult rats. These results demonstrate the potential of polymer-based drug delivery devices in the treatment of epilepsy and warrant their investigation in animal models of focal epilepsy. Copyright © 2011 Wiley Periodicals, Inc.
Thiollier, Thibaud; Wu, Caisheng; Contamin, Hugues; Li, Qin; Zhang, Jinlan; Bezard, Erwan
2016-06-01
Brain bioavailability of drugs developed to address central nervous system diseases is classically documented through cerebrospinal fluid collected in normal animals, i.e., through an approximation as there are fundamental differences between cerebrospinal fluid and tissue contents. The fact that disease might affect brain availability of drugs is almost never considered at this stage although several conditions are associated with blood-brain barrier damage. Building upon our expertise in Parkinson's disease translational research, the present study addressed this gap comparing plasma and cerebrospinal fluid bioavailability of l-3,4-dihydroxyphenylalanine, carbamazepine, quinidine, lovastatin, and simvastatin, in healthy and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated macaques, the gold standard model of Parkinson's disease. The drugs were selected based upon their differential transport across the blood-brain barrier. Interestingly, brain bioavailability of quinidine was decreased while others were unaffected. Pharmacokinetics and pharmacodynamics experiments of drugs addressing Parkinson's disease might thus be performed in healthy animals unless the drugs are known to interact with the organic cation transporter. © 2016 Wiley Periodicals, Inc.
Covalent nano delivery systems for selective imaging and treatment of brain tumors.
Ljubimova, Julia Y; Sun, Tao; Mashouf, Leila; Ljubimov, Alexander V; Israel, Liron L; Ljubimov, Vladimir A; Falahatian, Vida; Holler, Eggehard
2017-04-01
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mantle, Jennifer L; Min, Lie; Lee, Kelvin H
2016-12-05
A human cell-based in vitro model that can accurately predict drug penetration into the brain as well as metrics to assess these in vitro models are valuable for the development of new therapeutics. Here, human induced pluripotent stem cells (hPSCs) are differentiated into a polarized monolayer that express blood-brain barrier (BBB)-specific proteins and have transendothelial electrical resistance (TEER) values greater than 2500 Ω·cm 2 . By assessing the permeabilities of several known drugs, a benchmarking system to evaluate brain permeability of drugs was established. Furthermore, relationships between TEER and permeability to both small and large molecules were established, demonstrating that different minimum TEER thresholds must be achieved to study the brain transport of these two classes of drugs. This work demonstrates that this hPSC-derived BBB model exhibits an in vivo-like phenotype, and the benchmarks established here are useful for assessing functionality of other in vitro BBB models.
Facilitation of Drug Transport across the Blood-Brain Barrier with Ultrasound and Microbubbles.
Meairs, Stephen
2015-08-31
Medical treatment options for central nervous system (CNS) diseases are limited due to the inability of most therapeutic agents to penetrate the blood-brain barrier (BBB). Although a variety of approaches have been investigated to open the BBB for facilitation of drug delivery, none has achieved clinical applicability. Mounting evidence suggests that ultrasound in combination with microbubbles might be useful for delivery of drugs to the brain through transient opening of the BBB. This technique offers a unique non-invasive avenue to deliver a wide range of drugs to the brain and promises to provide treatments for CNS disorders with the advantage of being able to target specific brain regions without unnecessary drug exposure. If this method could be applied for a range of different drugs, new CNS therapeutic strategies could emerge at an accelerated pace that is not currently possible in the field of drug discovery and development. This article reviews both the merits and potential risks of this new approach. It assesses methods used to verify disruption of the BBB with MRI and examines the results of studies aimed at elucidating the mechanisms of opening the BBB with ultrasound and microbubbles. Possible interactions of this novel delivery method with brain disease, as well as safety aspects of BBB disruption with ultrasound and microbubbles are addressed. Initial translational research for treatment of brain tumors and Alzheimer's disease is presented.
Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective
Soni, Shringika; Ruhela, Rakesh Kumar; Medhi, Bikash
2016-01-01
Purpose: For the past few decades central nervous system disorders were considered as a major strike on human health and social system of developing countries. The natural therapeutic methods for CNS disorders limited for many patients. Moreover, nanotechnology-based drug delivery to the brain may an exciting and promising platform to overcome the problem of BBB crossing. In this review, first we focused on the role of the blood-brain barrier in drug delivery; and second, we summarized synthesis methods of nanomedicine and their role in different CNS disorder. Method: We reviewed the PubMed databases and extracted several kinds of literature on neuro nanomedicines using keywords, CNS disorders, nanomedicine, and nanotechnology. The inclusion criteria included chemical and green synthesis methods for synthesis of nanoparticles encapsulated drugs and, their in-vivo and in-vitro studies. We excluded nanomedicine gene therapy and nanomaterial in brain imaging. Results: In this review, we tried to identify a highly efficient method for nanomedicine synthesis and their efficacy in neuronal disorders. SLN and PNP encapsulated drugs reported highly efficient by easily crossing BBB. Although, these neuro-nanomedicine play significant role in therapeutics but some metallic nanoparticles reported the adverse effect on developing the brain. Conclusion: Although impressive advancement has made via innovative potential drug development, but their efficacy is still moderate due to limited brain permeability. To overcome this constraint,powerful tool in CNS therapeutic intervention provided by nanotechnology-based drug delivery methods. Due to its small and biofunctionalization characteristics, nanomedicine can easily penetrate and facilitate the drug through the barrier. But still, understanding of their toxicity level, optimization and standardization are a long way to go. PMID:27766216
Focused ultrasound-mediated drug delivery through the blood-brain barrier
Burgess, Alison; Shah, Kairavi; Hough, Olivia; Hynynen, Kullervo
2015-01-01
Despite recent advances in blood-brain barrier (BBB) research, it remains a significant hurdle for the pharmaceutical treatment of brain diseases. Focused ultrasound (FUS) is one method to transiently increase permeability of the BBB to promote drug delivery to specific brain regions. An introduction to the BBB and a brief overview of the methods which can be used to circumvent the BBB to promote drug delivery is provided. In particular, we discuss the advantages and limitations of FUS technology and the efficacy of FUS-mediated drug delivery in models of disease. MRI for targeting and evaluating FUS treatments, combined with administration of microbubbles, allows for transient, reproducible BBB opening. The integration of a real-time acoustic feedback controller has improved treatment safety. Successful clinical translation of FUS has the potential to transform the treatment of brain disease worldwide without requiring the development of new pharmaceutical agents. PMID:25936845
... Family More Drugs & Your Family Drugs & Your Family Social Media: Understanding a Teen's World Signs of Drug Use ... Consequences Consequences How Drugs Alter Brain Development and Affect Teens The Negative Health Effects of Marijuana Use State and Federal ...
Helms, Hans C; Abbott, N Joan; Burek, Malgorzata; Cecchelli, Romeo; Couraud, Pierre-Olivier; Deli, Maria A; Förster, Carola; Galla, Hans J; Romero, Ignacio A; Shusta, Eric V; Stebbins, Matthew J; Vandenhaute, Elodie; Weksler, Babette
2016-01-01
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described. PMID:26868179
Mind over Matter: The Brain's Response to Drugs. Teacher's Guide. Revision. Publication No. 05-3592
ERIC Educational Resources Information Center
US Department of Health and Human Services, 2005
2005-01-01
This is the teacher's guide for the "Mind Over Matter" series. This neuroscience education series, developed by the National Institute on Drug Abuse (NIDA), a component of the National Institutes of Health, is designed to encourage youngsters in grades 5-9 to learn about the biological effects of drug abuse on the body and the brain. The "Mind…
Roussotte, Florence; Soderberg, Lindsay
2010-01-01
Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse. PMID:20978945
Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe
2016-04-22
A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug concentration in whole brain tissue and provides continuous monitoring of extracellular concentrations of single chiral drug enantiomers along with its metabolites in specific brain regions at each selected time point for a desired period by using a single animal. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanobiomaterials' applications in neurodegenerative diseases.
Silva Adaya, Daniela; Aguirre-Cruz, Lucinda; Guevara, Jorge; Ortiz-Islas, Emma
2017-02-01
The blood-brain barrier is the interface between the blood and brain, impeding the passage of most circulating cells and molecules, protecting the latter from foreign substances, and maintaining central nervous system homeostasis. However, its restrictive nature constitutes an obstacle, preventing therapeutic drugs from entering the brain. Usually, a large systemic dose is required to achieve pharmacological therapeutic levels in the brain, leading to adverse effects in the body. As a consequence, various strategies are being developed to enhance the amount and concentration of therapeutic compounds in the brain. One such tool is nanotechnology, in which nanostructures that are 1-100 nm are designed to deliver drugs to the brain. In this review, we examine many nanotechnology-based approaches to the treatment of neurodegenerative diseases. The review begins with a brief history of nanotechnology, followed by a discussion of its definition, the properties of most reported nanomaterials, their biocompatibility, the mechanisms of cell-material interactions, and the current status of nanotechnology in treating Alzheimer's, Parkinson's diseases, and amyotrophic lateral sclerosis. Of all strategies to deliver drug to the brain that are used in nanotechnology, drug release systems are the most frequently reported.
Nanowired Drug Delivery Across the Blood-Brain Barrier in Central Nervous System Injury and Repair.
Sharma, Aruna; Menon, Preeti; Muresanu, Dafin F; Ozkizilcik, Asya; Tian, Z Ryan; Lafuente, José V; Sharma, Hari S
2016-01-01
The blood-brain barrier (BBB) is a physiological regulator of transport of essential items from blood to brain for the maintenance of homeostasis of the central nervous system (CNS) within narrow limits. The BBB is also responsible for export of harmful or metabolic products from brain to blood to keep the CNS fluid microenvironment healthy. However, noxious insults to the brain caused by trauma, ischemia or environmental/chemical toxins alter the BBB function to small as well as large molecules e.g., proteins. When proteins enter the CNS fluid microenvironment, development of brain edema occurs due to altered osmotic balance between blood and brain. On the other hand, almost all neurodegenerative diseases and traumatic insults to the CNS and subsequent BBB dysfunction lead to edema formation and cell injury. To treat these brain disorders suitable drug therapy reaching their brain targets is needed. However, due to edema formation or only a focal disruption of the BBB e.g., around brain tumors, many drugs are unable to reach their CNS targets in sufficient quantity. This results in poor therapeutic outcome. Thus, new technology such as nanodelivery is needed for drugs to reach their CNS targets and be effective. In this review, use of nanowires as a possible novel tool to enhance drug delivery into the CNS in various disease models is discussed based on our investigations. These data show that nanowired delivery of drugs may have superior neuroprotective ability to treat several CNS diseases effectively indicating their role in future therapeutic strategies.
Development of Purine-Derived 18F-Labeled Pro-drug Tracers for Imaging of MRP1 Activity with PET
2014-01-01
Multidrug resistance-associated protein 1 (MRP1) is a drug efflux transporter that has been implicated in the pathology of several neurological diseases and is associated with development of multidrug resistance. To enable measurement of MRP1 function in the living brain, a series of 6-halopurines decorated with fluorinated side chains have been synthesized and evaluated as putative pro-drug tracers. The tracers were designed to undergo conjugation with glutathione within the brain and hence form the corresponding MRP1 substrate tracers in situ. 6-Bromo-7-(2-[18F]fluoroethyl)purine showed good brain uptake and rapid metabolic conversion. Dynamic PET imaging demonstrated a marked difference in brain clearance rates between wild-type and mrp1 knockout mice, suggesting that the tracer can allow noninvasive assessment of MRP1 activity in vivo. PMID:24456310
Quetiapine Nanoemulsion for Intranasal Drug Delivery: Evaluation of Brain-Targeting Efficiency.
Boche, Mithila; Pokharkar, Varsha
2017-04-01
To evaluate the possibility of improved drug delivery of quetiapine fumarate (QTP), a nanoemulsion system was developed for intranasal delivery. Effects of different HLBs of Emalex LWIS 10, PEG 400 and Transcutol P, as co-surfactants, were studied on isotropic region of pseudoternary-phase diagrams of nanoemulsion system composed of capmul MCM (CPM) as oil phase, Tween 80 as surfactant and water. Phase behaviour, globule size, transmission electron microscope (TEM) photographs and brain-targeting efficiency of quetiapine nanoemulsion were investigated. In vitro dissolution study of optimised nanoemulsion formulation, with mean diameter 144 ± 0.5 nm, showed more than twofold increase in drug release as compared with pure drug. According to results of in vivo tissue distribution study in Wistar rats, intranasal administration of QTP-loaded nanoemulsion had shorter T max compared with that of intravenous administration. Higher drug transport efficiency (DTE%) and direct nose-to-brain drug transport (DTP%) was achieved by nanoemulsion. The nanoemulsion system may be a promising strategy for brain-targeted delivery of QTP.
Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.
Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen
2018-01-01
While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.
Kiyatkin, Eugene A; Ren, Suelynn E
2017-01-01
Psychomotor stimulants are frequently used by humans to intensify the subjective experience of different types of social interactions. Since psychomotor stimulants enhance metabolism and increase body temperatures, their use under conditions of physiological activation and in warm humid environments could result in pathological hyperthermia, a life-threatening symptom of acute drug intoxication. Here, we will describe the brain hyperthermic effects of MDMA, MDPV, and methylone, three structurally related recreational drugs commonly used by young adults during raves and other forms of social gatherings. After a short introduction on brain temperature and basic mechanisms underlying its physiological fluctuations, we will consider how MDMA, MDPV, and methylone affect brain and body temperatures in awake freely moving rats. Here, we will discuss the role of drug-induced heat production in the brain due to metabolic brain activation and diminished heat dissipation due to peripheral vasoconstriction as two primary contributors to the hyperthermic effects of these drugs. Then, we will consider how the hyperthermic effects of these drugs are modulated under conditions that model human drug use (social interaction and warm ambient temperature). Since social interaction results in brain and body heat production, coupled with skin vasoconstriction that impairs heat loss to the external environment, these physiological changes interact with drug-induced changes in heat production and loss, resulting in distinct changes in the hyperthermic effects of each tested drug. Finally, we present our recent data, in which we compared the efficacy of different pharmacological strategies for reversing MDMA-induced hyperthermia in both the brain and body. Specifically, we demonstrate increased efficacy of the centrally acting atypical neuroleptic compound clozapine over the peripherally acting vasodilator drug, carvedilol. These data could be important for understanding the potential dangers of MDMA in humans and the development of pharmacological tools to alleviate drug-induced hyperthermia - potentially saving the lives of highly intoxicated individuals.
GHB - Gamma-Hydroxybutyric Acid
... Family More Drugs & Your Family Drugs & Your Family Social Media: Understanding a Teen's World Signs of Drug Use ... Consequences Consequences How Drugs Alter Brain Development and Affect Teens The Negative Health Effects of Marijuana Use State and Federal ...
Analytical and Biological Methods for Probing the Blood-Brain Barrier
Sloan, Courtney D. Kuhnline; Nandi, Pradyot; Linz, Thomas H.; Aldrich, Jane V.; Audus, Kenneth L.; Lunte, Susan M.
2013-01-01
The blood-brain barrier (BBB) is an important interface between the peripheral and central nervous systems. It protects the brain against the infiltration of harmful substances and regulates the permeation of beneficial endogenous substances from the blood into the extracellular fluid of the brain. It can also present a major obstacle in the development of drugs that are targeted for the central nervous system. Several methods have been developed to investigate the transport and metabolism of drugs, peptides, and endogenous compounds at the BBB. In vivo methods include intravenous injection, brain perfusion, positron emission tomography, and microdialysis sampling. Researchers have also developed in vitro cell-culture models that can be employed to investigate transport and metabolism at the BBB without the complication of systemic involvement. All these methods require sensitive and selective analytical methods to monitor the transport and metabolism of the compounds of interest at the BBB. PMID:22708905
Xu, Gaixia; Mahajan, Supriya; Roy, Indrajit; Yong, Ken-Tye
2013-01-01
The blood–brain barrier (BBB) is a complex physiological checkpoint that restricts the free diffusion of circulating molecules from the blood into the central nervous system. Delivering of drugs and other active agents across the BBB is one of the major technical challenges faced by scientists and medical practitioners. Therefore, development of novel methodologies to address this challenge holds the key for both the diagnosis and treatment of brain diseases, such as HIV-associated encephalopathy. Bioconjugated quantum dots (QDs) are excellent fluorescent probes and nano-vectors, being designed to transverse across the BBB and visualize drug delivery inside the brain. This paper discusses the use of functionalized QDs for crossing the blood–brain barrier and treating brain disease. We highlight the guidelines for using in vitro BBB models for brain disease studies. The theranostic QDs offers a strategy to significantly improve the effective dosages of drugs to transverse across the BBB and orientate to the targets inside the brain. PMID:24298256
Anti-epileptic drugs in pediatric traumatic brain injury.
Tanaka, Tomoko; Litofsky, N Scott
2016-10-01
Pediatric post-traumatic epilepsy incidence varies depending on reporting mechanism and injury severity; anti-epileptic drug (AEDs) use also varies with lack of quality evidence-based data. Adverse AED effects are not negligible; some may negatively affect functional outcome. This review focuses on clarifying available data. This review discusses seizures associated with traumatic brain injury in children, including seizure incidence, relationship to severity of injury, potential detrimental effects of seizures, potential benefits of AED, adverse effects of AED, new developments in preventing epileptogenesis, and suggested recommendations for patient management. English language papers were identified from PubMed using search terms including but not excluding the following: adverse drug effects, anti-epileptic drugs, children, electroencephalogram, epilepsy, epileptogenesis, head injury, levetiracetam, pediatrics, phenytoin, post-traumatic epilepsy, prevention, prophylaxis, seizures, and traumatic brain injury. Expert commentary: Identification of high-risk patients for post-traumatic seizures is a key goal. Levetiracetam may prevent epileptogenesis, as may other developments.
Bioavailability and transport of peptides and peptide drugs into the brain.
Egleton, R D; Davis, T P
1997-01-01
Rational drug design and the targeting of specific organs has become a reality in modern drug development, with the emergence of molecular biology and receptor chemistry as powerful tools for the pharmacologist. A greater understanding of peptide function as one of the major extracellular message systems has made neuropeptides an important target in neuropharmaceutical drug design. The major obstacle to targeting the brain with therapeutics is the presence of the blood-brain barrier (BBB), which controls the concentration and entry of solutes into the central nervous system. Peptides are generally polar in nature, do not easily cross the blood-brain barrier by diffusion, and except for a small number do not have specific transport systems. Peptides can also undergo metabolic deactivation by peptidases of the blood, brain and the endothelial cells that comprise the BBB. In this review, we discuss a number of the recent strategies which have been used to promote peptide stability and peptide entry into the brain. In addition, we approach the subject of targeting specific transport systems that can be found on the brain endothelial cells, and describe the limitations of the methodologies that are currently used to study brain entry of neuropharmaceuticals.
Kristensen, Mie; Brodin, Birger
2017-09-01
A number of potent drugs for the treatment of brain diseases are available. However, in order for them to reach their target site of action, they must pass the blood-brain barrier (BBB). The capillary endothelium comprises the major barrier of the BBB and allows only passive permeation of some small lipophilic molecules. Brain delivery of the larger biopharmaceuticals, which today includes an increasing number of novel drug entities, is therefore restricted, both due to their molecular size and their hydrophilic nature. Thus, the development of novel drug entities intended for the treatment of brain diseases such as neurodegenerative diseases or brain cancers require a delivery strategy for overcoming the BBB before reaching its final target within the brain. Peptide-based delivery vector is an emerging tool as shuttles for drug delivery across the BBB and one may explore receptor-mediated transcytosis, adsorptive-mediated transcytosis, and the paracellular route. The latter, however, being controversial due to the risk of co-delivery of blood-borne potential harmful substances. On the other hand, a number of studies report on drug delivery across the BBB exploiting receptor-mediated transcytosis and adsorptive-mediated transcytosis, indicating that peptides and peptide vectors may be of use in a central nervous system delivery context. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Crossing the Blood-Brain Barrier: Recent Advances in Drug Delivery to the Brain.
Patel, Mayur M; Patel, Bhoomika M
2017-02-01
CNS disorders are on the rise despite advancements in our understanding of their pathophysiological mechanisms. A major hurdle to the treatment of these disorders is the blood-brain barrier (BBB), which serves as an arduous janitor to protect the brain. Many drugs are being discovered for CNS disorders, which, however fail to enter the market because of their inability to cross the BBB. This is a pronounced challenge for the pharmaceutical fraternity. Hence, in addition to the discovery of novel entities and drug candidates, scientists are also developing new formulations of existing drugs for brain targeting. Several approaches have been investigated to allow therapeutics to cross the BBB. As the molecular structure of the BBB is better elucidated, several key approaches for brain targeting include physiological transport mechanisms such as adsorptive-mediated transcytosis, inhibition of active efflux pumps, receptor-mediated transport, cell-mediated endocytosis, and the use of peptide vectors. Drug-delivery approaches comprise delivery from microspheres, biodegradable wafers, and colloidal drug-carrier systems (e.g., liposomes, nanoparticles, nanogels, dendrimers, micelles, nanoemulsions, polymersomes, exosomes, and quantum dots). The current review discusses the latest advancements in these approaches, with a major focus on articles published in 2015 and 2016. In addition, we also cover the alternative delivery routes, such as intranasal and convection-enhanced diffusion methods, and disruption of the BBB for brain targeting.
Novel treatment strategies for brain tumors and metastases
El-Habashy, Salma E.; Nazief, Alaa M.; Adkins, Chris E.; Wen, Ming Ming; El-Kamel, Amal H.; Hamdan, Ahmed M.; Hanafy, Amira S.; Terrell, Tori O.; Mohammad, Afroz S.; Lockman, Paul R.; Nounou, Mohamed Ismail
2015-01-01
This review summarizes patent applications in the past 5 years for the management of brain tumors and metastases. Most of the recent patents discuss one of the following strategies: the development of new drug entities that specifically target the brain cells, the blood–brain barrier and the tumor cells, tailor-designing a novel carrier system that is able to perform multitasks and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a US FDA approved drug with a targeting moiety, diagnostic moiety or PK modifying moiety, or the use of innovative nontraditional approaches such as genetic engineering, stem cells and vaccinations. Until now, there has been no optimal strategy to deliver therapeutic agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are actively ongoing to take brain tumor targeting, and novel and targeted CNS delivery systems to potential clinical application. PMID:24998288
NASA Astrophysics Data System (ADS)
Prabhu Verleker, Akshay; Fang, Qianqian; Choi, Mi-Ran; Clare, Susan; Stantz, Keith M.
2015-03-01
The purpose of this study is to develop an alternate empirical approach to estimate near-infra-red (NIR) photon propagation and quantify optically induced drug release in brain metastasis, without relying on computationally expensive Monte Carlo techniques (gold standard). Targeted drug delivery with optically induced drug release is a noninvasive means to treat cancers and metastasis. This study is part of a larger project to treat brain metastasis by delivering lapatinib-drug-nanocomplexes and activating NIR-induced drug release. The empirical model was developed using a weighted approach to estimate photon scattering in tissues and calibrated using a GPU based 3D Monte Carlo. The empirical model was developed and tested against Monte Carlo in optical brain phantoms for pencil beams (width 1mm) and broad beams (width 10mm). The empirical algorithm was tested against the Monte Carlo for different albedos along with diffusion equation and in simulated brain phantoms resembling white-matter (μs'=8.25mm-1, μa=0.005mm-1) and gray-matter (μs'=2.45mm-1, μa=0.035mm-1) at wavelength 800nm. The goodness of fit between the two models was determined using coefficient of determination (R-squared analysis). Preliminary results show the Empirical algorithm matches Monte Carlo simulated fluence over a wide range of albedo (0.7 to 0.99), while the diffusion equation fails for lower albedo. The photon fluence generated by empirical code matched the Monte Carlo in homogeneous phantoms (R2=0.99). While GPU based Monte Carlo achieved 300X acceleration compared to earlier CPU based models, the empirical code is 700X faster than the Monte Carlo for a typical super-Gaussian laser beam.
ERIC Educational Resources Information Center
Robinson, Emma S. J.
2011-01-01
Psychiatric disorders such as drug addiction represent one of the biggest challenges to society. This article reviews clinical and basic science research to illustrate how developments in research methodology have enabled neuroscientists to understand more about the brain mechanisms involved in addiction biology. Treating addiction represents a…
Song, Hui; Wei, Man; Zhang, Nan; Li, He; Tan, Xiaochuan; Zhang, Yujia; Zheng, Wensheng
2018-01-01
The incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood-brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy. Borneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica , can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study. The borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood-brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung. The present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood-brain barrier.
GABAA Receptors, Anesthetics and Anticonvulsants in Brain Development
Henschel, Oliver; Gipson, Keith E.; Bordey, Angelique
2008-01-01
GABA, acting via GABAA receptors, is well-accepted as the main inhibitory neurotransmitter of the mature brain, where it dampens neuronal excitability. The receptor's properties have been studied extensively, yielding important information about its structure, pharmacology, and regulation that are summarized in this review. Several GABAergic drugs have been commonly used as anesthetics, sedatives, and anticonvulsants for decades. However, findings that GABA has critical functions in brain development, in particular during the late embryonic and neonatal period, raise worthwhile questions regarding the side effects of GABAergic drugs that may lead to long-term cognitive deficits. Here, we will review some of these drugs in parallel with the control of CNS development that GABA exerts via activation of GABAA receptors. This review aims to provide a basic science and clinical perspective on the function of GABA and related pharmaceuticals acting at GABAA receptors. PMID:18537647
Psychedelics: Where we are now, why we got here, what we must do.
Belouin, Sean J; Henningfield, Jack E
2018-02-21
The purpose of this commentary is to provide an introduction to this special issue of Neuropharmacology with a historical perspective of psychedelic drug research, their use in psychiatric disorders, research-restricting regulatory controls, and their recent emergence as potential breakthrough therapies for several brain-related disorders. It begins with the discovery of lysergic acid diethylamide (LSD) and its promising development as a treatment for several types of mental illnesses during the 1940s. This was followed by its abuse and stigmatization in the 1960s that ultimately led to the placement of LSD and other psychedelic drugs into the most restrictively regulated drug schedule of the United States Controlled Substances Act (Schedule I) in 1970 and its international counterparts. These regulatory controls severely constrained development of psychedelic substances and their potential for clinical research in psychiatric disorders. Despite the limitations, there was continued research into brain mechanisms of action for psychedelic drugs with potential clinical applications which began during the 1990s and early 2000s. Finding pathways to accelerate clinical research in psychedelic drug development is supported by the growing body of research findings that are documented throughout this special issue of Neuropharmacology. Accumulated research to date suggests psychedelic drug assisted psychotherapy may emerge as a potential breakthrough treatment for several types of mental illnesses including depression, anxiety, post-traumatic stress disorder, and addiction that are refractory to current evidenced based therapies. This research equally shows promise in advancing the understanding of the brain, brain related functioning, and the consequential effects of untreated brain related diseases that have been implicated in causing and/or exacerbating numerous physical disease state conditions. The authors conclude that more must be done to effectively address mental illnesses and brain related diseases which have become so pervasive, destructive, and whose treatments are becoming increasingly resistant to current evidenced based therapies. Published by Elsevier Ltd.
Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound
2013-01-01
Brain diseases are notoriously difficult to treat due to the presence of the blood-brain barrier (BBB). Here, we review the development of focused ultrasound (FUS) as a noninvasive method for BBB disruption, aiding in drug delivery to the brain. FUS can be applied through the skull to a targeted region in the brain. When combined with microbubbles, FUS causes localized and reversible disruption of the BBB. The cellular mechanisms of BBB disruption are presented. Several therapeutic agents have been delivered to the brain resulting in significant improvements in pathology in models of glioblastoma and Alzheimer’s disease. The requirements for clinical translation of FUS will be discussed. PMID:23379618
Rezapour, Tara; Hatami, Javad; Farhoudian, Ali; Sofuoglu, Mehmet; Noroozi, Alireza; Daneshmand, Reza; Samiei, Ahmadreza; Ekhtiari, Hamed
2015-01-01
Despite extensive evidence for cognitive deficits associated with drug use and multiple publications supporting the efficacy of cognitive rehabilitation treatment (CRT) services for drug addictions, there are a few well-structured tools and organized programs to improve cognitive abilities in substance users. Most published studies on cognitive rehabilitation for drug dependent patients used rehabilitation tools, which have been previously designed for other types of brain injuries such as schizophrenia or traumatic brain injuries and not specifically designed for drug dependent patients. These studies also suffer from small sample size, lack of follow-up period assessments and or comprehensive treatment outcome measures. To address these limitations, we decided to develop and investigate the efficacy of a paper and pencil cognitive rehabilitation package called NECOREDA (Neurocognitive Rehabilitation for Disease of Addiction) to improve neurocognitive deficits associated with drug dependence particularly caused by stimulants (e.g. amphetamine type stimulants and cocaine) and opiates. To evaluate the feasibility of NECOREDA program, we conducted a pilot study with 10 opiate and methamphetamine dependent patients for 3 months in outpatient setting. NECOREDA was revised based on qualitative comments received from clients and treatment providers. Final version of NECOREDA is composed of brain training exercises called “Brain Gym” and psychoeducational modules called “Brain Treasures” which is implemented in 16 training sessions interleaved with 16 review and practice sessions. NECOREDA will be evaluated as an add-on intervention to methadone maintenance treatment in a randomized clinical trial among opiate dependent patients starting from August 2015. We discuss methodological features of NECOREDA development and evaluation in this article. PMID:26649167
Ohtsuki, Sumio; Hirayama, Mio; Ito, Shingo; Uchida, Yasuo; Tachikawa, Masanori; Terasaki, Tetsuya
2014-06-01
The blood-brain barrier (BBB) is formed by brain capillary endothelial cells linked together via complex tight junctions, and serves to prevent entry of drugs into the brain. Multiple transporters are expressed at the BBB, where they control exchange of materials between the circulating blood and brain interstitial fluid, thereby supporting and protecting the CNS. An understanding of the BBB is necessary for efficient development of CNS-acting drugs and to identify potential drug targets for treatment of CNS diseases. Quantitative targeted proteomics can provide detailed information on protein expression levels at the BBB. The present review highlights the latest applications of quantitative targeted proteomics in BBB research, specifically to evaluate species and in vivo-in vitro differences, and to reconstruct in vivo transport activity. Such a BBB quantitative proteomics approach can be considered as pharmacoproteomics.
Potential Pathways for CNS Drug Delivery Across the Blood-Cerebrospinal Fluid Barrier
Strazielle, Nathalie; Ghersi-Egea, Jean-François
2016-01-01
The blood-brain interfaces restrict the cerebral bioavailability of pharmacological compounds. Various drug delivery strategies have been developed to improve drug penetration into the brain. Most strategies target the microvascular endothelium forming the blood-brain barrier proper. Targeting the blood-cerebrospinal fluid (CSF) barrier formed by the epithelium of the choroid plexuses in addition to the blood-brain barrier may offer added-value for the treatment of central nervous system diseases. For instance, targeting the CSF spaces, adjacent tissue, or the choroid plexuses themselves is of interest for the treatment of neuroinflammatory and infectious diseases, cerebral amyloid angiopathy, selected brain tumors, hydrocephalus or neurohumoral dysregulation. Selected CSF-borne materials seem to reach deep cerebral structures by mechanisms that need to be understood in the context of chronic CSF delivery. Drug delivery through both barriers can reduce CSF sink action towards parenchymal drugs. Finally, targeting the choroid plexus-CSF system can be especially relevant in the context of neonatal and pediatric diseases of the central nervous system. Transcytosis appears the most promising mechanism to target in order to improve drug delivery through brain barriers. The choroid plexus epithelium displays strong vesicular trafficking and secretory activities that deserve to be explored in the context of cerebral drug delivery. Folate transport and exosome release into the CSF, plasma protein transport, and various receptor-mediated endocytosis pathways may prove useful mechanisms to exploit for efficient drug delivery into the CSF. This calls for a clear evaluation of transcytosis mechanisms at the blood-CSF barrier, and a thorough evaluation of CSF drug delivery rates. PMID:27464721
Role of Dopamine Signaling in Drug Addiction.
Chen, Wan; Nong, Zhihuan; Li, Yaoxuan; Huang, Jianping; Chen, Chunxia; Huang, Luying
2017-01-01
Addiction is a chronic, relapsing disease of the brain that includes drug-induced compulsive seeking behavior and consumption of drugs. Dopamine (DA) is considered to be critical in drug addiction due to reward mechanisms in the midbrain. In this article, we review the major animal models in addictive drug experiments in vivo and in vitro. We discuss the relevance of the structure and pharmacological function of DA receptors. To improve the understanding of the role of DA receptors in reward pathways, specific brain regions, including the Ventral tegmental area, Nucleus accumbens, Prefrontal cortex, and Habenula, are highlighted. These factors contribute to the development of novel therapeutic targets that act at DA receptors. In addiction, the development of neuroimaging method will increase our understanding of the mechanisms underlying drug addiction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Samala, Ramakrishna; Thorsheim, Helen R; Goda, Satyanarayana; Taskar, Kunal; Gril, Brunilde; Steeg, Patricia S; Smith, Quentin R
2016-12-01
To evaluate vinorelbine drug exposure and activity in brain metastases of the human MDA-MB-231BR breast cancer model using integrated imaging and analysis. Brain and systemic metastases were created by administration of cancer cells in female NuNu mice. After metastases developed, animals were administered vinorelbine at the maximal tolerated dose (12 mg/kg), and were evaluated thereafter for total and unbound drug pharmacokinetics, biomarker TUNEL staining, and barrier permeability to Texas red. Median brain metastasis drug exposure was 4-fold greater than normal brain, yet only ~8% of non-barrier systemic metastases, which suggests restricted brain exposure. Unbound vinorelbine tissue/plasma partition coefficient, K p,uu , equaled ~1.0 in systemic metastases, but 0.03-0.22 in brain metastases, documenting restricted equilibration. In select sub-regions of highest drug-uptake brain metastases, K p,uu approached 1.0, indicating complete focal barrier breakdown. Most vinorelbine-treated brain metastases exhibited little or no positive early apoptosis TUNEL staining in vivo. The in vivo unbound vinorelbine IC 50 for TUNEL-positive staining (56 nM) was 4-fold higher than that measured in vitro (14 nM). Consistent with this finding, P-glycoprotein expression was observed to be substantially upregulated in brain metastasis cells in vivo. Vinorelbine exposure at maximum tolerated dose was less than one-tenth that in systemic metastases in >70% of brain metastases, and was associated with negligible biomarker effect. In small subregions of the highest uptake brain metastases, compromise of blood-tumor barrier appeared complete. The results suggest that restricted delivery accounts for 80% of the compromise in drug efficacy for vinorelbine against this model.
Experimental methods and transport models for drug delivery across the blood-brain barrier.
Fu, Bingmei M
2012-06-01
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed.
Experimental Methods and Transport Models for Drug Delivery across the Blood-Brain Barrier
Fu, Bingmei M
2017-01-01
The blood-brain barrier (BBB) is a dynamic barrier essential for maintaining the micro-environment of the brain. Although the special anatomical features of the BBB determine its protective role for the central nervous system (CNS) from blood-born neurotoxins, however, the BBB extremely limits the therapeutic efficacy of drugs into the CNS, which greatly hinders the treatment of major brain diseases. This review summarized the unique structures of the BBB, described a variety of in vivo and in vitro experimental methods for determining the transport properties of the BBB, e.g., the permeability of the BBB to water, ions, and solutes including nutrients, therapeutic agents and drug carriers, and presented newly developed mathematical models which quantitatively correlate the anatomical structures of the BBB with its barrier functions. Finally, on the basis of the experimental observations and the quantitative models, several strategies for drug delivery through the BBB were proposed. PMID:22201587
A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors
NASA Astrophysics Data System (ADS)
Xu, Hui; Li, Zhongyu; Yu, Yue; Sizdahkhani, Saman; Ho, Winson S.; Yin, Fangchao; Wang, Li; Zhu, Guoli; Zhang, Min; Jiang, Lei; Zhuang, Zhengping; Qin, Jianhua
2016-11-01
The blood-brain barrier (BBB) restricts the uptake of many neuro-therapeutic molecules, presenting a formidable hurdle to drug development in brain diseases. We proposed a new and dynamic in vivo-like three-dimensional microfluidic system that replicates the key structural, functional and mechanical properties of the blood-brain barrier in vivo. Multiple factors in this system work synergistically to accentuate BBB-specific attributes-permitting the analysis of complex organ-level responses in both normal and pathological microenvironments in brain tumors. The complex BBB microenvironment is reproduced in this system via physical cell-cell interaction, vascular mechanical cues and cell migration. This model possesses the unique capability to examine brain metastasis of human lung, breast and melanoma cells and their therapeutic responses to chemotherapy. The results suggest that the interactions between cancer cells and astrocytes in BBB microenvironment might affect the ability of malignant brain tumors to traverse between brain and vascular compartments. Furthermore, quantification of spatially resolved barrier functions exists within a single assay, providing a versatile and valuable platform for pharmaceutical development, drug testing and neuroscientific research.
Shah, Brijesh; Khunt, Dignesh; Misra, Manju; Padh, Harish
2016-08-25
Systemic drug delivery in schizophrenia is a major challenge due to presence of obstacles like, blood-brain barrier and P-glycoprotein, which prohibit entry of drugs into the brain. Quetiapine fumarate (QF), a substrate to P-glycoprotein under goes extensive first pass metabolism leading to limited absorption thus necessitating frequent oral administration. The aim of this study was to develop QF based microemulsion (ME) with and without chitosan (CH) to investigate its potential use in improving the bioavailability and brain targeting efficiency following non-invasive intranasal administration. QF loaded ME and mucoadhesive ME (MME) showed globule size, pH and viscosity in the range of 29-47nm, 5.5-6.5 and 17-40cP respectively. CH-ME with spherical globules having mean size of 35.31±1.71nm, pH value of 5.61±0.16 showed highest ex-vivo nasal diffusion (78.26±3.29%) in 8h with no sign of structural damage upon histopathological examination. Circular plume with an ovality ratio closer to 1.3 for CH-ME depicted ideal spray pattern. Significantly higher brain/blood ratio of CH-ME in comparison to QF-ME and drug solution following intranasal administration revealed prolonged retention of QF at site of action suggesting superiority of CH as permeability enhancer. Following intranasal administration, 2.7 and 3.8 folds higher nasal bioavailability in brain with CH-ME compared to QF-ME and drug solution respectively is indicative of preferential nose to brain transport (80.51±6.46%) bypassing blood-brain barrier. Overall, the above finding shows promising results in the area of developing non-invasive intranasal route as an alternative to oral route for brain delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Siddiqui, Ruqaiyyah; Edwards-Smallbone, James; Flynn, Robin; Khan, Naveed Ahmed
2012-01-01
Transmigration of neuropathogens across the blood-brain barrier is a key step in the development of central nervous system infections, making it a prime target for drug development. The ability of neuropathogens to traverse the blood-brain barrier continues to inspire researchers to understand the specific strategies and molecular mechanisms that allow them to enter the brain. The availability of models of the blood-brain barrier that closely mimic the situation in vivo offers unprecedented opportunities for the development of novel therapeutics. PMID:21921682
de Lange, E C M; Hammarlund-Udenaes, M
2015-04-01
The development of CNS drugs is associated with high failure rates. It is postulated that too much focus has been put on BBB permeability and too little on understanding BBB transport, which is the main limiting factor in drug delivery to the brain. An integrated approach to collecting, understanding, and handling pharmacokinetic-pharmacodynamic information from early discovery stages to the clinic is therefore recommended in order to improve translation to human drug treatment. © 2015 American Society for Clinical Pharmacology and Therapeutics.
2013-01-01
Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the properties of ladostigil and similar neuroprotective activity to ladostigil, but is not a ChE inhibitor. M30 has a neurorestorative activity in post-lesion of nigrostriatal dopamine neurons in MPTP, lacatcystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity is related to the ability of the drug to activate hypoxia inducing factor (HIF) which induces the production of such neurotrophins as brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF) and erythropoietin as well as glia-derived neurotrophic factor (GDNF). The unique multiple actions of ladostigil and M30 make the potentially useful drugs for the treatment of dementia with Parkinsonian-like symptoms and depression. PMID:23585716
New experimental models of the blood-brain barrier for CNS drug discovery
Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca
2017-01-01
Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770
NASA Astrophysics Data System (ADS)
Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto
2018-04-01
In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.
Agrawal, Mukta; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Chougule, Mahavir Bhupal; Shoyele, Sunday A; Alexander, Amit
2018-07-10
According to the Alzheimer Association Report (2017), Alzheimer's disease (AD) is the 6th primary cause of death in the USA, which affects nearly 5.5 million people. In the year 2017 itself, the cost of AD treatment in the USA has been reported to rise to $259 billion. This statistic shows the severity of the disease in the USA which is very much similar across the globe. On the other hand, the treatment remains limited to a few conventional oral medications (approved by FDA). These are mainly acting superficially from mild to the moderate AD. The therapeutic efficacy of the drug is not only affected by its reduced concentration in the brain owing to the existence of blood-brain-barrier (BBB) but also due to its low brain permeability. In this context, the intranasal (IN) route of drug administration has emerged as an alternative route over the systemic (oral and parenteral) drug delivery to the brain. The delivery of the drug via an IN route offers various advantages over systemic drug delivery system, as it directly delivers the drug into the brain via olfactory route. Presence of drug in the olfactory bulb, in turn, increases the drug bioavailability in the brain and reduces the drug degradation as well as wastage of the drug through` systemic clearance. However, there is also some limitation associated with IN like poor drug permeation through the nasal mucosa and mucociliary clearance. The delivery system various through novel strategies (nano drug carrier system, colloidal carriers, mucoadhesive devices, controlled delivery system, pro-drug, etc.) are adapted to overcome the above-stated limitations. Although, after all, such successful research claims, very few of the nose-to-brain drug delivery of anti-AD drugs have gained market approval due to lack of sufficient clinical evidence. Onzetra Xsail® is one such marketed preparations approved for IN delivery used for the treatment of a brain disorder; migraine. In the field of patents also, no work is found which could present sufficient experimental findings to support its clinical safety profile. It also underlines the fact that majority of work related to the nose-to-brain delivery of anti-AD drugs is limited only up to preclinical studies. In this review article, we have discussed the latest works on various novel formulations loaded with various anti-Alzheimer agents. These agents include galantamine, deferoxamine, tacrine, tarenflurbil, rivastigmine, risperidone, curcumin, quercetin, piperine, insulin, etc. and various peptides towards the development of a promising IN drug delivery system for the treatment of AD. Through this review article, we want to drag the attention of the researchers working in this field towards the challenges and hurdles of practical applicability IN delivery of anti-AD drugs. Moreover, the attention towards the clinical studies will ease the approval process for the administration of anti-Alzheimer drugs via IN route. Copyright © 2018 Elsevier B.V. All rights reserved.
Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier
Upadhyay, Ravi Kant
2014-01-01
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634
Multifunctional nanomaterials for advanced molecular imaging and cancer therapy
NASA Astrophysics Data System (ADS)
Subramaniam, Prasad
Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on the synthesis and use of a biodegradable dendritic polypeptide-based nanocarrier for the delivery of multiple anticancer drugs and siRNA to brain tumor cells. The co-delivery of important anticancer agents using a single platform was shown to increase the efficacy of the drugs manyfold, ensuring the cancer cell-specific delivery and minimizing dose limiting toxicities of the individual drugs. This would be of immense importance when used in vivo.
Targeting Insulin Signaling for the Treatment of Alzheimer's Disease.
Chen, Yanxing; Zhang, Jianfang; Zhang, Baorong; Gong, Cheng-Xin
2016-01-01
Sporadic Alzheimer's disease (AD) is caused by multiple etiological factors, among which impaired brain insulin signaling and decreased brain glucose metabolism are important metabolic factors. Contrary to previous belief that insulin would not act in the brain, studies in the last three decades have proven important roles of insulin and insulin signaling in various biological functions in the brain. Impaired brain insulin signaling or brain insulin resistance and its role in the molecular pathogenesis of sporadic AD have been demonstrated. Thus, targeting brain insulin signaling for the treatment of cognitive impairment and AD has now attracted much attention in the field of AD drug discovery. This article reviews recent studies that target brain insulin signaling, especially those investigations on intranasal insulin administration and drugs that improve insulin sensitivity, including incretins, dipeptidyl peptidase IV inhibitors, thiazolidinediones, and metformin. These drugs have been previously approved for the treatment of diabetes mellitus, which could expedite their development for the treatment of AD. Although larger clinical trials are needed for validating their efficacy for the treatment of cognitive impairment and AD, results of animal studies and clinical trials available to date are encouraging.
Lombardi, Giuseppe; Di Stefano, Anna Luisa; Farina, Patrizia; Zagonel, Vittorina; Tabouret, Emeline
2014-09-01
The frequency of metastatic brain tumors has increased over recent years; the primary tumors most involved are breast cancer, lung cancer, melanoma and renal cell carcinoma. While radiation therapy and surgery remain the mainstay treatment in selected patients, new molecular drugs have been developed for brain metastases. Studies so far report interesting results. This review focuses on systemic cytotoxic drugs and, in particular, on new targeted therapies and their clinically relevant activities in brain metastases from solid tumors in adults. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design of Drug Delivery Methods for the Brain and Central Nervous System
NASA Astrophysics Data System (ADS)
Lueshen, Eric
Due to the impermeability of the blood-brain barrier (BBB) to macromolecules delivered systemically, drug delivery to the brain and central nervous system (CNS) is quite difficult and has become an area of intense research. Techniques such as convection-enhanced intraparenchymal delivery and intrathecal magnetic drug targeting offer a means of circumventing the blood-brain barrier for targeted delivery of therapeutics. This dissertation focuses on three aspects of drug delivery: pharmacokinetics, convection-enhanced delivery, and intrathecal magnetic drug targeting. Classical pharmacokinetics mainly uses black-box curve fitting techniques without biochemical or biological basis. This dissertation advances the state-of-the-art of pharmacokinetics and pharmacodynamics by incorporating first principles and biochemical/biotransport mechanisms in the prediction of drug fate in vivo. A whole body physiologically-based pharmacokinetics (PBPK) modeling framework is engineered which creates multiscale mathematical models for entire organisms composed of organs, tissues, and a detailed vasculature network to predict drug bioaccumulation and to rigorously determine kinetic parameters. These models can be specialized to account for species, weight, gender, age, and pathology. Systematic individual therapy design using the proposed mechanistic PBPK modeling framework is also a possibility. Biochemical, anatomical, and physiological scaling laws are also developed to accurately project drug kinetics in humans from small animal experiments. Our promising results demonstrate that the whole-body mechanistic PBPK modeling approach not only elucidates drug mechanisms from a biochemical standpoint, but offers better scaling precision. Better models can substantially accelerate the introduction of drug leads to clinical trials and eventually to the market by offering more understanding of the drug mechanisms, aiding in therapy design, and serving as an accurate dosing tool. Convection-enhanced drug delivery (CED) is a technique used to bypass the BBB via direct intracranial injection using a catheter driven by a positive pressure gradient from an infusion pump. Although CED boasts the advantage of achieving larger drug distribution volumes compared to diffusion driven methods, difficulty in predicting drug spread and preventing backflow along the catheter shaft commonly occur. In this dissertation, a method for predicting drug distributions in the brain using diffusion tensor imaging (DTI) data is employed to show how small variations in catheter placement can lead to drastically different volumes of drug distribution in vivo. The impact that microfluid flow has on deformable brain phantom gel is studied in order to elucidate the causes of backflow, and the results are used to develop backflow-free catheters with safe volumetric flow rates up to 10 ?l/min. Through implementation of our backflow-free catheter designs, physicians will be able to target specific regions of the brain with improved accuracy, increased drug concentration, and larger drug distribution geometries. Intrathecal (IT) drug delivery involves direct drug infusion into the spinal canal and has become standard practice for treating many CNS diseases. Although IT drug delivery boasts the advantage of reduced systemic toxicity compared to oral and intravenous techniques, current IT delivery protocols lack a means of sufficient drug targeting at specific locations of interest within the CNS. In this dissertation, the method of intrathecal magnetic drug targeting (IT-MDT) is developed to overcome the limited targeting capabilities of standard IT drug delivery protocols. The basic idea behind IT-MDT is to guide intrathecally-injected, drug-functionalized magnetic nanoparticles (MNPs) using an external magnetic field to diseased regions within the spinal canal. Cerebrospinal fluid (CSF) transport phenomena are studied, and in vitro human spine surrogates are built. Experiments are run on the in vitro human spine model to determine the feasibility of IT-MDT and to develop novel treatment therapies. Computer simulations are performed to optimize magnetic field placement and/or implant design for generating high gradient magnetic fields, as well as to study how these fields aid in therapeutic nanoparticle localization. Large collection efficiencies of MNPs were achieved during in vitro IT-MDT and implant-assisted IT-MDT experiments with concentration levels nearly nine times that of the control when no magnetic field was present. Testing different magnetizable implants showed that implant design is a key factor in achieving the largest MNP collection efficiency within the targeting region. Knowledge gained from the in vitro IT-MDT experiments and simulations will be used in the future to develop IT-MDT methods in animals and humans.
Gil, Eun Seok; Wu, Linfeng; Xu, Lichong; Lowe, Tao Lu
2012-11-12
Novel biodegradable polymeric nanoparticles composed of β-cyclodextrin and poly(β-amino ester) segments have been developed for sustained drug delivery across the blood-brain barrier (BBB). The nanoparticles have been synthesized by cross-linking β-cyclodextrin with poly(β-amino ester) via the Michael addition method. The chemical, physical, and degradation properties of the nanoparticles have been characterized by matrix-assisted laser desoption/ionization time-of-flight, attenuated total reflectance Fourier transform infrared spectroscopy, nuclear magnetic resonance, dynamic light scattering, and atomic force microscopy techniques. Bovine and human brain microvascular endothelial cell monolayers have been constructed as in vitro BBB models. Preliminary results show that the nanoparticles do not affect the integrity of the in vitro BBB models, and the nanoparticles have much higher permeability than dextran control across the in vitro BBB models. Doxorubicin has been loaded into the nanoparticles with a loading efficiency of 86%, and can be released from the nanoparticles for at least one month. The developed β-cyclodextrin-poly(β-amino ester) nanoparticles might be useful as drug carriers for transporting drugs across the BBB to treat chronic diseases in the brain.
Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection
DeMarino, Catherine; Schwab, Angela; Pleet, Michelle; Mathiesen, Allison; Friedman, Joel; El-Hage, Nazira; Kashanchi, Fatah
2016-01-01
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV. PMID:27372507
Katare, Yogesh K; Daya, Ritesh P; Sookram Gray, Christal; Luckham, Roger E; Bhandari, Jayant; Chauhan, Abhay S; Mishra, Ram K
2015-09-08
Delivery of therapeutics to the brain is challenging because many organic molecules have inadequate aqueous solubility and limited bioavailability. We investigated the efficiency of a dendrimer-based formulation of a poorly aqueous soluble drug, haloperidol, in targeting the brain via intranasal and intraperitoneal administration. Aqueous solubility of haloperidol was increased by more than 100-fold in the developed formulation. Formulation was assessed via different routes of administration for behavioral (cataleptic and locomotor) responses, and for haloperidol distribution in plasma and brain tissues. Dendrimer-based formulation showed significantly higher distribution of haloperidol in the brain and plasma compared to a control formulation of haloperidol administered via intraperitoneal injection. Additionally, 6.7 times lower doses of the dendrimer-haloperidol formulation administered via the intranasal route produced behavioral responses that were comparable to those induced by haloperidol formulations administered via intraperitoneal injection. This study demonstrates the potential of dendrimer in improving the delivery of water insoluble drugs to brain.
Biodegradable Nanoparticles for Delivery of Therapeutics in CNS Infection.
DeMarino, Catherine; Schwab, Angela; Pleet, Michelle; Mathiesen, Allison; Friedman, Joel; El-Hage, Nazira; Kashanchi, Fatah
2017-03-01
Despite the significant advances in neurological medicine, it remains difficult to treat ailments directly involving the brain. The blood brain barrier (BBB) is a tightly regulated, selectively permeable barrier that restricts access from the blood into the brain extracellular fluid (BEF). Many conditions such as tumors or infections in the brain are difficult to treat due to the fact that drugs and other therapeutic agents are unable to easily pass through this relatively impermeable barrier. Human Immunodeficiency Virus (HIV) presents a particular problem as it is able to remain dormant in the brain for years protected from antiretroviral drugs by the BBB. The development of nanoscale carriers over the past few decades has made possible the delivery of therapies with the potential to overcome membrane barriers and provide specific, targeted delivery. This review seeks to provide a comprehensive overview of the various aspects of nanoparticle formulation and their applications in improving the delivery efficiency of drugs, specifically antiretroviral therapeutics to the brain to treat HIV.
Laksitorini, Marlyn; Prasasty, Vivitri D.; Kiptoo, Paul K.; Siahaan, Teruna J.
2015-01-01
One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including (a) blocking the efflux pumps to improve transcellular delivery and (b) modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers are still in the investigational stage. PMID:25418271
Abdelmonem, Rehab; El Nabarawi, Mohamed; Attia, Alshaimaa
2018-11-01
The aim of this study was to formulate granisetron hydrochloride (GH) spanlastic in mucoadhesive gels and lyophilized inserts for intranasal administration to improve GH bioavailability and brain targeting. Carpapol 934 and HPMC were incorporated in GH spanlastic in nasal gels (GHSpNGs). Gelatin and HPMC as matrix former, glycine as a collapse protecting and mannitol as an insert filler and sweeting agent were used to prepare GH spanlastic loaded in lyophilized inserts (GHSpNIs). The prepared GHSpNGs were characterized for pH measurement, drug content, rheology, and in vitro drug release. The prepared GHSpNIs were characterized for drug content, surface pH, GH release, and mucoadhesion. Biological investigations including pharmacokinetics studies and brain drug targeting efficiency dimensions were performed on rats (LC-MS/MS). The results showed thixotropic pseudoplastic gels and white insert with pH values in a physiological range, drug content (89.9-98.6%), (82.4-98.38%) for gel and insert, respectively and rapid release rate of GH. Biological studies showed that C max and AUC 0-6 h in brain and plasma after intranasal administration of gel and insert were higher compared to IV administration of GH solution. A high brain targeting efficiency (199.3%, 230%) for gel and insert, respectively and a direct nose to brain transport (49.8%, 56.95%) for gel and insert, respectively confirmed that there is a direct nose to brain transport of GH following nasal administration of GH spanlastic loaded in nasal gel and insert. GHSpNIs can be considered as potential novel drug delivery system intended for brain targeting via the nasal rout of administration than GHSpNGs.
Nanoparticle transport across in vitro olfactory cell monolayers.
Gartziandia, Oihane; Egusquiaguirre, Susana Patricia; Bianco, John; Pedraz, José Luis; Igartua, Manoli; Hernandez, Rosa Maria; Préat, Véronique; Beloqui, Ana
2016-02-29
Drug access to the CNS is hindered by the presence of the blood-brain barrier (BBB), and the intranasal route has risen as a non-invasive route to transport drugs directly from nose-to-brain avoiding the BBB. In addition, nanoparticles (NPs) have been described as efficient shuttles for direct nose-to-brain delivery of drugs. Nevertheless, there are few studies describing NP nose-to-brain transport. Thus, the aim of this work was (i) to develop, characterize and validate in vitro olfactory cell monolayers and (ii) to study the transport of polymeric- and lipid-based NPs across these monolayers in order to estimate NP access into the brain using cell penetrating peptide (CPPs) moieties: Tat and Penetratin (Pen). All tested poly(d,l-lactide-co-glycolide) (PLGA) and nanostructured lipid carrier (NLC) formulations were stable in transport buffer and biocompatible with the olfactory mucosa cells. Nevertheless, 0.7% of PLGA NPs was able to cross the olfactory cell monolayers, whereas 8% and 22% of NLC and chitosan-coated NLC (CS-NLC) were transported across them, respectively. Moreover, the incorporation of CPPs to NLC surface significantly increased their transport, reaching 46% of transported NPs. We conclude that CPP-CS-NLC represent a promising brain shuttle via nose-to-brain for drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
Prenatal cocaine effects on brain structure in early infancy.
Grewen, Karen; Burchinal, Margaret; Vachet, Clement; Gouttard, Sylvain; Gilmore, John H; Lin, Weili; Johns, Josephine; Elam, Mala; Gerig, Guido
2014-11-01
Prenatal cocaine exposure (PCE) is related to subtle deficits in cognitive and behavioral function in infancy, childhood and adolescence. Very little is known about the effects of in utero PCE on early brain development that may contribute to these impairments. The purpose of this study was to examine brain structural differences in infants with and without PCE. We conducted MRI scans of newborns (mean age = 5 weeks) to determine cocaine's impact on early brain structural development. Subjects were three groups of infants: 33 with PCE co-morbid with other drugs, 46 drug-free controls and 40 with prenatal exposure to other drugs (nicotine, alcohol, marijuana, opiates, SSRIs) but without cocaine. Infants with PCE exhibited lesser total gray matter (GM) volume and greater total cerebral spinal fluid (CSF) volume compared with controls and infants with non-cocaine drug exposure. Analysis of regional volumes revealed that whole brain GM differences were driven primarily by lesser GM in prefrontal and frontal brain regions in infants with PCE, while more posterior regions (parietal, occipital) did not differ across groups. Greater CSF volumes in PCE infants were present in prefrontal, frontal and parietal but not occipital regions. Greatest differences (GM reduction, CSF enlargement) in PCE infants were observed in dorsal prefrontal cortex. Results suggest that PCE is associated with structural deficits in neonatal cortical gray matter, specifically in prefrontal and frontal regions involved in executive function and inhibitory control. Longitudinal study is required to determine whether these early differences persist and contribute to deficits in cognitive functions and enhanced risk for drug abuse seen at school age and in later life. Copyright © 2014 Elsevier Inc. All rights reserved.
Targeted Delivery of Drugs to Brain Tumors (LBNL Summer Lecture Series)
Forte, Trudy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division; ChildrenâÂÂs Hospital Oakland Research Inst. (CHORI), Oakland, CA (United States)
2017-12-15
Summer Lecture Series 2007: Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs.
Implementation and clinical characteristics of a posttraumatic stress disorder brain collection.
Mighdoll, Michelle I; Deep-Soboslay, Amy; Bharadwaj, Rahul A; Cotoia, John A; Benedek, David M; Hyde, Thomas M; Kleinman, Joel E
2018-01-01
A postmortem human brain collection to study posttraumatic stress disorder (PTSD) is critical for uncovering the molecular mechanisms that contribute to this psychiatric disorder. We describe here the PTSD brain collection at the Lieber Institute for Brain Development in Baltimore, Maryland, consisting of postmortem brain donations acquired between 2012 and 2017. Thus far, 87 brains from individuals meeting DSM-5 criteria for PTSD were collected after consent was obtained from legal next-of-kin, and subsequently clinically characterized for molecular studies. PTSD brain donors had high rates of comorbid diagnoses, including depression (62.1%), substance abuse (74.7%), drug-related death (69.0%), and suicide completion (17.2%). PTSD cases were subdivided into two categories: combat-related PTSD (n = 24) and noncombat/domestic PTSD (n = 63). The major differences between the combat-related and domestic PTSD cohorts were sex, drug-related death, and the prevalence of bipolar disorder (BPD) comorbidity. The combat-related group was entirely male, with only one BPD subject (4.2%), and had significantly fewer drug-related deaths (45.8%) in contrast to the domestic group (31.8% male, 36.5% bipolar, and 77.8% drug-related deaths). Medical examiners' offices, particularly in areas with higher military populations, are an excellent source for PTSD brain donations of both combat-related and domestic PTSD. © 2017 Wiley Periodicals, Inc.
Brain penetrant kinase inhibitors: Learning from kinase neuroscience discovery.
Shi, Yuan; Mader, Mary
2018-06-15
A recent review of kinase inhibitors in clinical trials for brain cancer noted differences in the properties of these compounds relative to the mean property parameters associated with drugs marketed for CNS-associated conditions. However, many of these kinase drugs arose from opportunistic observations of brain activity, rather than design or flow schemes focused on optimizing CNS penetration. Thus, this digest examines kinase inhibitors that have been developed specifically for neurodegenerative indications such as Alzheimer's or Parkinson's disease, and considers design, flow scheme, and the physicochemical properties associated with compounds that have demonstrated brain penetrance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biological and medical applications of a brain-on-a-chip
2016-01-01
The desire to develop and evaluate drugs as potential countermeasures for biological and chemical threats requires test systems that can also substitute for the clinical trials normally crucial for drug development. Current animal models have limited predictivity for drug efficacy in humans as the large majority of drugs fails in clinical trials. We have limited understanding of the function of the central nervous system and the complexity of the brain, especially during development and neuronal plasticity. Simple in vitro systems do not represent physiology and function of the brain. Moreover, the difficulty of studying interactions between human genetics and environmental factors leads to lack of knowledge about the events that induce neurological diseases. Microphysiological systems (MPS) promise to generate more complex in vitro human models that better simulate the organ’s biology and function. MPS combine different cell types in a specific three-dimensional (3D) configuration to simulate organs with a concrete function. The final aim of these MPS is to combine different “organoids” to generate a human-on-a-chip, an approach that would allow studies of complex physiological organ interactions. The recent discovery of induced pluripotent stem cells (iPSCs) gives a range of possibilities allowing cellular studies of individuals with different genetic backgrounds (e.g., human disease models). Application of iPSCs from different donors in MPS gives the opportunity to better understand mechanisms of the disease and can be a novel tool in drug development, toxicology, and medicine. In order to generate a brain-on-a-chip, we have established a 3D model from human iPSCs based on our experience with a 3D rat primary aggregating brain model. After four weeks of differentiation, human 3D aggregates stain positive for different neuronal markers and show higher gene expression of various neuronal differentiation markers compared to 2D cultures. Here we present the applications and challenges of this emerging technology. PMID:24912505
Drugs of abuse that cause developing neurons to commit suicide.
Farber, Nuri B; Olney, John W
2003-12-30
When neuronal activity is abnormally suppressed during the developmental period of synaptogenesis, the timing and sequence of synaptic connections is disrupted, and this causes nerve cells to receive an internal signal to commit suicide, a form of cell death known as "apoptosis". By altering glutamate and GABA transmission alcohol suppresses neuronal activity, causing millions of nerve cells to commit suicide in the developing brain. This proapoptotic effect of alcohol provides a likely explanation for the diminished brain size and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome. These findings have public health significance, not only in relation to fetal alcohol syndrome, but also in relation to several other drugs of abuse and various drugs used in obstetric and pediatric medicine, because these additional drugs (e.g. phencyclidine, ketamine, benzodiazepines, barbiturates) also suppress neuronal activity and drive developing neurons to commit suicide.
ENDOCANNABINOID INFLUENCE IN DRUG REINFORCEMENT, DEPENDENCE AND ADDICTION-RELATED BEHAVIORS
Serrano, Antonia; Parsons, Loren H.
2011-01-01
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed. PMID:21798285
Giordano, Carmen; Albani, Diego; Gloria, Antonio; Tunesi, Marta; Rodilossi, Serena; Russo, Teresa; Forloni, Gianluigi; Ambrosio, Luigi; Cigada, Alberto
2011-12-01
Neurodegenerative disorders are expected to strike social and health care systems of developed countries heavily in the coming decades. Alzheimer's and Parkinson's diseases (AD/PD) are the most prevalent neurodegenerative pathologies, and currently their available therapy is only symptomatic. However, innovative potential drugs are actively under development, though their efficacy is sometimes limited by poor brain bioavailability and/or sustained peripheral degradation. To partly overcome these constraints, the development of drug delivery devices made by biocompatible and easily administrable materials might be a great adjuvant. In particular, materials science can provide a powerful tool to design hydrogels and nanoparticles as basic components of more complex nanocomposites that might ameliorate drug or cell delivery in AD/PD. This kind of approach is particularly promising for intranasal delivery, which might increase brain targeting of neuroprotective molecules or proteins. Here we review these issues, with a focus on nanoparticles as nanocomponents able to carry and tune drug release in the central nervous system, without ignoring warnings concerning their potential toxicity.
Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M
2006-04-01
By multi-lead computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (QEEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping or topography), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ, the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects and therapeutic efficacy will be discussed. Imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be shown for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently. By considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. Thus, pharmaco-EEG topography and tomography are valuable methods in human neuropsychopharmacology, clinical psychiatry and neurology.
Therapeutic approaches for HER2-positive brain metastases: Circumventing the blood–brain barrier
Mehta, Ankit I.; Brufsky, Adam M.; Sampson, John H.
2015-01-01
We aim to summarize data from studies of trastuzumab in patients with human epidermal growth factor receptor 2 (HER2)–positive metastatic breast cancer (MBC) and brain metastasis and to describe novel methods being developed to circumvent the blood–brain barrier (BBB). A literature search was conducted to obtain data on the clinical efficacy of trastuzumab and lapatinib in patients with HER2-positive MBC and brain metastasis, as well as the transport of therapeutic molecules across the BBB. Trastuzumab-based therapy is the standard of care for patients with HER2-positive MBC. Post hoc and retrospective analyses show that trastuzumab significantly prolongs overall survival when given after the diagnosis of central nervous system (CNS) metastasis; this is probably attributable to its control of extracranial disease, although trastuzumab may have a direct effect on CNS disease in patients with local or general perturbation of the BBB. In patients without a compromised BBB, trastuzumab is thought to have limited access to the brain, because of its relatively large molecular size. Several approaches are being developed to enhance the delivery of therapeutic agents to the brain. These include physical or pharmacologic disruption of the BBB, direct intracerebral drug delivery, drug manipulation, and coupling drugs to transport vectors. Available data suggest that trastuzumab extends survival in patients with HER2-positive MBC and brain metastasis. Novel methods for delivery of therapeutic agents into the brain could be used in the future to enhance access to the CNS by trastuzumab, thereby improving its efficacy in this setting. PMID:22727691
Development and characterization of niosomal formulations of doxorubicin aimed at brain targeting.
Bragagni, Marco; Mennini, Natascia; Ghelardini, Carla; Mura, Paola
2012-01-01
The aim of the present work was the development and characterization of a niosomal formulation functionalized with the glucose-derivative N-palmitoylglucosamine (NPG) to obtain a potential brain targeted delivery system for the anticancer agent doxorubicin. Five different methods have been examined for vesicle preparation. Light scattering and transmission electron microscopy were used for vesicle characterization, in terms of mean size, homogeneity and Zeta potential, and selection of the best composition and preparation conditions for developing NPG-functionalized niosomes. Drug entrapment efficiency was determined after separation of loaded from unloaded drug by size exclusion chromatography or dialysis. Preliminary in vivo studies were performed on rats, injected i.v. with 12 mg/kg of doxorubicin as commercial solution (Ebewe, 2 mg/mL) or NPG-niosomal formulation. Drug amounts in the blood and in the major organs of the animals, sacrificed 60 min post injection, were determined by HPLC. The selected formulation consisted in Span:cholesterol:Solulan:NPG (50:40:10:10 mol ratio) vesicles obtained by thin-layer evaporation, leading to homogeneous vesicles of less than 200 nm diameter. This formulation was used for preparation of NPG-niosomes loaded with doxorubicin (mean size 161±4 nm, encapsulation efficacy 57.8±1.8%). No significant changes (P>0.05) in vesicle dimensions, Zeta potential or entrapment efficiency were observed after six months storage at room temperature, indicative of good stability. I.v. administration to rats of the NPG-niosomal formulation allowed for reducing drug accumulation in the heart and keeping it longer in the blood circulation with respect to the commercial formulation. Moreover, a doxorubicin brain concentration of 2.9±0.4 μg/g was achieved after 60 min, while the commercial solution yielded undetectable drug brain concentrations (<0.1 μg/g). The developed NPG-niosomal formulation gave rise to stable, nano-sized vesicles, able to improve doxorubicin brain delivery. Positive results of preliminary in vivo studies require future pharmacokinetic studies to gain more insight into the mechanism of drug transport of functionalized niosomes.
Ghadiri, Maryam; Vasheghani-Farahani, Ebrahim; Atyabi, Fatemeh; Kobarfard, Farzad; Mohamadyar-Toupkanlou, Farzaneh; Hosseinkhani, Hossein
2017-10-01
Application of many vital hydrophilic medicines have been restricted by blood-brain barrier (BBB) for treatment of brain diseases. In this study, a targeted drug delivery system based on dextran-spermine biopolymer was developed for drug transport across BBB. Drug loaded magnetic dextran-spermine nanoparticles (DS-NPs) were prepared via ionic gelation followed by transferrin (Tf) conjugation as targeting moiety. The characteristics of Tf conjugated nanoparticles (TDS-NPs) were analyzed by different methods and their cytotoxicity effects on U87MG cells were tested. The superparamagnetic characteristic of TDS-NPs was verified by vibration simple magnetometer. Capecitabine loaded TDS-NPs exhibited pH-sensitive release behavior with enhanced cytotoxicity against U87MG cells, compared to DS-NPs and free capecitabine. Prussian-blue staining and TEM-imaging showed the significant cellular uptake of TDS-NPs. Furthermore, a remarkable increase of Fe concentrations in brain was observed following their biodistribution and histological studies in vivo, after 1 and 7 days of post-injection. Enhanced drug transport across BBB and pH-triggered cellular uptake of TDS-NPs indicated that these theranostic nanocarriers are promising candidate for the brain malignance treatment. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2851-2864, 2017. © 2017 Wiley Periodicals, Inc.
Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B; Eagle, Cheyenne Sun; Williams, Todd D; Siahaan, Teruna J
2016-02-01
Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.
Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.
2015-01-01
Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088
The hidden side of drug action: Brain temperature changes induced by neuroactive drugs
Kiyatkin, Eugene A.
2013-01-01
Rationale Most neuroactive drugs affect brain metabolism as well as systemic and cerebral blood flow, thus altering brain temperature. Although this aspect of drug action usually remains in the shadows, drug-induced alterations in brain temperature reflect their metabolic neural effects and affect neural activity and neural functions. Objectives Here, I review brain temperature changes induced by neuroactive drugs, which are used therapeutically (general anesthetics), as a research tool (dopamine agonists and antagonists), and self-administered to induce desired psychic effects (cocaine, methamphetamine, ecstasy). I consider the mechanisms underlying these temperature fluctuations and their influence on neural, physiological, and behavioral effects of these drugs. Results By interacting with neural mechanisms regulating metabolic activity and heat exchange between the brain and the rest of the body, neuroactive drugs either increase or decrease brain temperatures both within (35-39°C) and exceeding the range of physiological fluctuations. These temperature effects differ drastically depending upon the environmental conditions and activity state during drug administration. This state-dependence is especially important for drugs of abuse that are usually taken by humans during psycho-physiological activation and in environments that prevent proper heat dissipation from the brain. Under these conditions, amphetamine-like stimulants induce pathological brain hyperthermia (>40°C) associated with leakage of the blood-brain barrier and structural abnormalities of brain cells. Conclusions The knowledge on brain temperature fluctuations induced by neuroactive drugs provides new information to understand how they influence metabolic neural activity, why their effects depend upon the behavioral context of administration, and the mechanisms underlying adverse drug effects including neurotoxicity PMID:23274506
Towards nanomedicines for neuro-AIDS
Sagar, Vidya; Pilakka-Kanthikeel, Sudheesh; Pottathil, Ravi; Saxena, Shailendra K; Nair, Madhavan
2014-01-01
Although Highly Active Antiretroviral Therapy (HAART) has resulted in remarkable decline in the morbidity and mortality in AIDS Patients, controlling HIV infections still remain a global health priority. HIV access to the central nervous system (CNS) serves as the natural viral preserve because most anti-retro viral (ARV) drugs possess inadequate or zero delivery across the brain barriers. Thus, development of target-specific, effective, safe and controllable drug-delivery approach is an important health priority for global elimination of AIDS progression. Emergence of nanotechnology in medicine has shown exciting prospect for development of novel drug delivery systems to administer the desired therapeutic levels of ARV drugs in the CNS. Neuron-resuscitating and/or anti-dependence agents may also be delivered in the brain though nanocarriers to countercheck the rate of neuronal degradation during HIV infection. Several nanovehicles such as liposomes, dendrimers, polymeric nanoparticles, micelles, solid lipid nanoparticles, etc. have been intensively explored. Recently, magnetic nanoparticles and monocytes/macrophages have also been used as carrier to improve the delivery of nanoformulated ARV drugs across the blood-brain barrier (BBB). Nevertheless, more rigorous research-homework has to be elucidated to sort out the shortcomings that affect the target specificity, delivery, release and/or bioavailability of desired amount of drugs for treatment of neuroAIDS. PMID:24395761
Neurobiological signatures associated with alcohol and drug use in the human adolescent brain
Silveri, Marisa M.; Dager, Alecia D.; Cohen-Gilbert, Julia E.; Sneider, Jennifer T.
2017-01-01
Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alteration reported across substance used and MR modalities is in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life. PMID:27377691
Neurobiological signatures associated with alcohol and drug use in the human adolescent brain.
Silveri, Marisa M; Dager, Alecia D; Cohen-Gilbert, Julia E; Sneider, Jennifer T
2016-11-01
Magnetic resonance (MR) techniques provide opportunities to non-invasively characterize neurobiological milestones of adolescent brain development. Juxtaposed to the critical finalization of brain development is initiation of alcohol and substance use, and increased frequency and quantity of use, patterns that can lead to abuse and addiction. This review provides a comprehensive overview of existing MR studies of adolescent alcohol and drug users. The most common alterations reported across substance used and MR modalities are in the frontal lobe (63% of published studies). This is not surprising, given that this is the last region to reach neurobiological adulthood. Comparatively, evidence is less consistent regarding alterations in regions that mature earlier (e.g., amygdala, hippocampus), however newer techniques now permit investigations beyond regional approaches that are uncovering network-level vulnerabilities. Regardless of whether neurobiological signatures exist prior to the initiation of use, this body of work provides important direction for ongoing prospective investigations of adolescent brain development, and the significant impact of alcohol and substance use on the brain during the second decade of life. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Tianzhi; Martin, Paige; Fogarty, Brittany; Brown, Alison; Schurman, Kayla; Phipps, Roger; Yin, Viravuth P; Lockman, Paul; Bai, Shuhua
2015-06-01
The blood-brain barrier (BBB) essentially restricts therapeutic drugs from entering into the brain. This study tests the hypothesis that brain endothelial cell derived exosomes can deliver anticancer drug across the BBB for the treatment of brain cancer in a zebrafish (Danio rerio) model. Four types of exosomes were isolated from brain cell culture media and characterized by particle size, morphology, total protein, and transmembrane protein markers. Transport mechanism, cell uptake, and cytotoxicity of optimized exosome delivery system were tested. Brain distribution of exosome delivered anticancer drugs was evaluated using transgenic zebrafish TG (fli1: GFP) embryos and efficacies of optimized formations were examined in a xenotransplanted zebrafish model of brain cancer model. Four exosomes in 30-100 diameters showed different morphologies and exosomes derived from brain endothelial cells expressed more CD63 tetraspanins transmembrane proteins. Optimized exosomes increased the uptake of fluorescent marker via receptor mediated endocytosis and cytotoxicity of anticancer drugs in cancer cells. Images of the zebrafish showed exosome delivered anticancer drugs crossed the BBB and entered into the brain. In the brain cancer model, exosome delivered anticancer drugs significantly decreased fluorescent intensity of xenotransplanted cancer cells and tumor growth marker. Brain endothelial cell derived exosomes could be potentially used as a carrier for brain delivery of anticancer drug for the treatment of brain cancer.
Prenatal Influences on the Brain.
ERIC Educational Resources Information Center
Eliot, Lise
2002-01-01
Gives an overview of embryology and prenatal brain, sensory, and motor development. Includes discussion of maternal nutrition, chemical exposure, prenatal drug and alcohol hazards, cigarette smoking, and some causes of neural tube defects and premature birth. (Author/KB)
Ferris, Mark J.; Mactutus, Charles F.; Booze, Rosemarie M.
2008-01-01
There are roughly 30 to 40 million HIV infected individuals in the world as of December 2007, and drug abuse directly contributes to one-third of all HIV-infections in the United States. Antiretroviral therapy has increased the lifespan of HIV-seropositives, but CNS function often remains diminished, effectively decreasing quality of life. A modest proportion may develop HIV-associated dementia, the severity and progression of which is increased with drug abuse. HIV and drugs of abuse in the CNS target subcortical brain structures and DA systems in particular. This toxicity is mediated by a number of neurotoxic mechanisms, including but not limited to, aberrant immune response and oxidative stress. Therefore, novel therapeutic strategies must be developed that can address a wide variety of disparate neurotoxic mechanisms and apoptotic cascades. This paper reviews the research pertaining to the where, what, and how of HIV and cocaine/methamphetamine toxicity in the CNS. Specifically, where these toxins most affect the brain, what aspects of the virus are neurotoxic, and how these toxins mediate neurotoxicity. PMID:18430470
Ugarte, Ana; Corbacho, David; Aymerich, María S; García-Osta, Ana; Cuadrado-Tejedor, Mar; Oyarzabal, Julen
2018-04-19
Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.
Monoamine oxidase: Radiotracer chemistry and human studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, Joanna S.; Logan, Jean; Shumay, Elena
Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less
Monoamine oxidase: Radiotracer chemistry and human studies
Fowler, Joanna S.; Logan, Jean; Shumay, Elena; ...
2015-03-01
Monoamine oxidase (MAO) oxidizes amines from both endogenous and exogenous sources thereby regulating the concentration of neurotransmitter amines such as serot onin, norepinephrine and dopamine as well as many xenobiotics. MAO inhibitor drugs are used in the treatment of Parkinson’s disease and in depression stimulating the development of radiotracer tools to probe the role of MAO in normal human biology and in disease. Over the past 30 since the first radiotracers were developed and the first PET images of MAO in humans were carried out, PET studies of brain MAO in healthy volunteers and in patients have identified different variablesmore » which have contributed to different MAO levels in brain and in peripheral organs. MAO radiotracers and PET have also been used to study the current and developing MAO inhibitor drugs including the selection of doses for clinical trials. In this article, we describe (1) the development of MAO radiotracers; (2) human studies including the relationship of brain MAO levels to genotype, personality, neurological and psychiatric disorders; (3) examples of the use of MAO radiotracers in drug research and development. We will conclude with outstanding needs to improve the radiotracers which are currently used and possible new applications.« less
Storck, Steffen E; Pietrzik, Claus U
2017-12-01
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Sharma, Hari Shanker; Muresanu, Dafin F; Lafuente, José V; Nozari, Ala; Patnaik, Ranjana; Skaper, Stephen D; Sharma, Aruna
2016-01-01
The blood-brain barrier (BBB) plays a pivotal role in the maintenance of central nervous system function in health and disease. Thus, in almost all neurodegenerative, traumatic or metabolic insults BBB breakdown occurs, allowing entry of serum proteins into the brain fluid microenvironment with subsequent edema formation and cellular injury. Accordingly, pharmacological restoration of BBB function will lead to neurorepair. However, brain injury which occurs following blast, bullet wounds, or knife injury appears to initiate different sets of pathophysiological responses. Moreover, other local factors at the time of injury such as cold or elevated ambient temperatures could also impact the final outcome. Obviously, drug therapy applied to different kinds of brain trauma occurring at either cold or hot environments may respond differently. This is largely due to the fact that internal defense mechanisms of the brain, gene expression, release of neurochemicals and binding of drugs to specific receptors are affected by external ambient temperature changes. These factors may also affect BBB function and development of edema formation after brain injury. In this review, the effects of seasonal exposure to heat and cold on traumatic brain injury using different models i.e., concussive brain injury and cerebral cortical lesion, on BBB dysfunction in relation to drug therapy are discussed. Our observations clearly suggest that closed head injury and open brain injury are two different entities and the external hot or cold environments affect both of them remarkably. Thus, effective pharmacological therapeutic strategies should be designed with these views in mind, as military personnel often experience blunt or penetrating head injuries in either cold or hot environments.
Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen
2012-01-01
Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775
Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen
2012-01-01
The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.
Polymer Nanoparticles as Smart Carriers for the Enhanced Release of Therapeutic Agents to the CNS.
Gagliardi, Mariacristina; Borri, Claudia
2017-01-01
The brain is the most protected organ in the human body; its protective shield, relying on a complex system of cells, proteins and transporters, prevents potentially harmful substances from entering the brain from the bloodstream but, on the other hand, it also stops drugs administered via the systemic route. To improve the efficacy of pharmacological treatments, targeted drug delivery by means of polymer nanoparticles is a challenging but, at the same time, efficient strategy. Thanks to a highly multidisciplinary approach, several ways to overcome the brain protection have provided effective solutions to treat a large number of diseases. Important advances in polymer science, together with the development of novel techniques for nanocarrier preparation, and the discovery of novel targeting ligands and molecules, allow a fine-tuning of size, shape, chemicophysical properties and surface chemistry of functional particulate systems; it enables the improvement of the therapeutic performances for several drugs, also toward districts that are difficult to be treated, such as the brain. This review focuses on the great strides made from scientists and doctors in the development of polymer nano-sized drug delivery systems for brain diseases. Even though the optimal nanocarrier was not yet discovered, important advances were made to strive for safer, performant and successful systems, with the expectation to find soon better solutions to cure some still untreatable pathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K
2012-07-01
Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Among High School Seniors, Driving After Marijuana Use Surpasses Drunk Driving
... Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain ... Brain College-Age and Young Adults Comorbidity Criminal Justice Drug Testing Drugged Driving Evidence-Based Practices Genetics ...
Dufour, Suzie; Atchia, Yaaseen; Gad, Raanan; Ringuette, Dene; Sigal, Iliya; Levi, Ofer
2013-01-01
The integrity of the blood brain barrier (BBB) can contribute to the development of many brain disorders. We evaluate laser speckle contrast imaging (LSCI) as an intrinsic modality for monitoring BBB disruptions through simultaneous fluorescence and LSCI with vertical cavity surface emitting lasers (VCSELs). We demonstrated that drug-induced BBB opening was associated with a relative change of the arterial and venous blood velocities. Cross-sectional flow velocity ratio (veins/arteries) decreased significantly in rats treated with BBB-opening drugs, ≤0.81 of initial values. PMID:24156049
Alcohol and Drug Use and the Developing Brain
Gray, Kevin M.
2016-01-01
Adolescence is an important neurodevelopmental period marked by rapidly escalating rates of alcohol and drug use. Over the past decade, research has attempted to disentangle pre- and post-substance use effects on brain development by using sophisticated longitudinal designs. This review focuses on recent, prospective studies and addresses the following important questions: (1) what neuropsychological and neural features predate adolescent substance use, making youth more vulnerable to engage in heavy alcohol or drug use, and (2) how does heavy alcohol and drug use affect normal neural development and cognitive functioning? Findings suggest that pre-existing neural features that relate to increased substance use during adolescence include poorer neuropsychological functioning on tests of inhibition and working memory, smaller gray and white matter volume, changes in white matter integrity, and altered brain activation during inhibition, working memory, reward, and resting state. After substance use is initiated, alcohol and marijuana use are associated with poorer cognitive functioning on tests of verbal memory, visuospatial functioning, psychomotor speed, working memory, attention, cognitive control, and overall IQ. Heavy alcohol use during adolescence is related to accelerated decreases in gray matter and attenuated increases in white matter volume, as well as increased brain activation during tasks of inhibition and working memory, relative to controls. Larger longitudinal studies with more diverse samples are needed to better understand the interactive effects of alcohol, marijuana, and other substances, as well as the role of sex, co-occurring psychopathology, genetics, sleep, and age of initiation on substance use. PMID:26984684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Y.; Rubenstein, R.; Price, R.W.
1984-06-01
To develop a new approach to the diagnosis of herpes simplex encephalitis, we used a radiolabeled antiviral drug, 2'-fluoro-5-methyl-1-beta-D-arabinosyluracil labeled with carbon 14 ((14C)FMAU), as a probe for selectively imaging brain infection in a rat model by quantitative autoradiography. A high correlation was found between focal infection, as defined by immunoperoxidase viral antigen staining, and increased regional (14C)FMAU uptake in brain sections. Two potential sources of false-positive imaging were defined: high concentrations of drug in the choroid plexus because of its higher permeability compared with brain, and drug sequestration by proliferating uninfected cell populations. Our results support the soundness ofmore » the proposed strategy of using a labeled antiviral drug that is selectively phosphorylated by herpes simplex virus type 1 thymidine kinase in conjunction with scanning methods for human diagnosis, and also define some of the factors that must be taken into account when planning clinical application.« less
Dube, Taru; Chibh, Sonika; Mishra, Jibanananda; Panda, Jiban Jyoti
2017-10-18
The window of neurological maladies encompasses 600 known neurological disorders. In the past few years, an inordinate upsurge in the incidences of neuronal ailments with increased mortality rate has been witnessed globally. Despite noteworthy research in the discovery and development of neural therapeutics, brain drug delivery still encounters limited success due to meager perviousness of most of the drug molecules through the blood-brain barrier (BBB), a tight layer of endothelial cells that selectively impedes routing of the molecules across itself. In this Review, we have tried to present a comprehensive idea on the recent developments in nanoparticle based BBB delivery systems, with a focus on the advancements in receptor targeted polymeric nanoparticles pertaining to BBB delivery. We have also attempted to bridge the gap between conventional brain delivery strategies and nanoparticle based BBB delivery for in-depth understanding. Various strategies are being explored for simplifying delivery of molecules across the BBB; however, they have their own limitations such as invasiveness and need for hospitalization and surgery. Introduction of nanotechnology can impressively benefit brain drug delivery. Though many nanoparticles are being explored, there are still several issues that need to be analyzed scrupulously before a real and efficient BBB traversing nanoformulation is realized.
Improving drug delivery technology for treating neurodegenerative diseases.
Choonara, Yahya E; Kumar, Pradeep; Modi, Girish; Pillay, Viness
2016-07-01
Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.
Fortuna, Ana; Alves, Gilberto; Soares-da-Silva, Patrício; Falcão, Amílcar
2013-11-01
In silico approaches to predict absorption, distribution, metabolism and excretion (ADME) of new drug candidates are gaining a relevant importance in drug discovery programmes. When considering particularly the pharmacokinetics during the development of oral antiepileptic drugs (AEDs), one of the most prominent goals is designing compounds with good bioavailability and brain penetration. Thus, it is expected that in silico models able to predict these features may be applied during the early stages of AEDs discovery. The present investigation was mainly carried out in order to generate in vivo pharmacokinetic data that can be utilized for development and validation of in silico models. For this purpose, a single dose of each compound (1.4mmol/kg) was orally administered to male CD-1 mice. After quantifying the parent compound and main metabolites in plasma and brain up to 12h post-dosing, a non-compartmental pharmacokinetic analysis was performed and the corresponding brain/plasma ratios were calculated. Moreover the plasma protein binding was estimated in vitro applying the ultrafiltration procedure. The present in vivo pharmacokinetic characterization of the test compounds and corresponding metabolites demonstrated that the metabolism extensively compromised the in vivo activity of CBZ derivatives and their toxicity. Furthermore, it was clearly evidenced that the time to reach maximum peak concentration, bioavailability (given by the area under the curve) and metabolic stability (given by the AUC0-12h ratio of the parent compound and total systemic drug) influenced the in vivo pharmacological activities and must be considered as primary parameters to be investigated. All the test compounds presented brain/plasma ratios lower than 1.0, suggesting that the blood-brain barrier restricts drug entry into the brain. In agreement with in vitro studies already performed within our research group, CBZ, CBZ-10,11-epoxide and oxcarbazepine exhibited the highest brain/plasma ratios (>0.50), followed by eslicarbazepine, R-licarbazepine, trans-diol and BIA 2-024 (ratios within 0.05-0.50). BIA 2-265 was not found in the biophase, probably due to its high plasma-protein bound fraction (>90%) herein revealed for the first time. The comparative in vivo pharmacokinetic data obtained in the present work might be usefully applied in the context of discovery of new antiepileptic drugs that are derivatives of CBZ. Copyright © 2013 Elsevier B.V. All rights reserved.
Adolescent silymarin treatment increases anxiety-like behaviors in adult mice.
Kosari-Nasab, Morteza; Rabiei, Afshin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar
2014-08-01
Adolescence is one of the most important periods of brain development in mammals. There is increasing evidence that some medicines during this period can affect brain and behavioral functions in adulthood. Silymarin (SM), a mixture of flavonolignans extracted from the milk thistle Silybum marianum, is known as a hepatoprotective, anti-inflammatory, and neuroprotective drug. Although researchers have extensively studied the effects of SM during adulthood, to date there is no information on the effects of this drug during the stages of brain development on behavioral functions in adulthood. In the current study, we investigated the effects of adolescent SM treatment on body weight and anxiety-like behaviors in adult male and female mice. Adolescent NMRI mice (postnatal day 30-50) were treated orally with water or SM (50 and 100 mg/kg). Animals were weighed during drug treatment and were then subjected to open field, elevated plus maze, and light-dark box tests from postnatal day 70. The results indicated that adolescent SM treatment increased anxiety-like behaviors in open field, elevated plus maze, and light-dark box in adult mice, while not altering body weight. Collectively, these findings suggest that adolescent SM treatment may have profound effects on the development of brain and behavior in adulthood.
Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging
Pike, Victor W.
2017-01-01
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets. PMID:27087244
Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders.
Ong, Wei-Yi; Shalini, Suku-Maran; Costantino, Luca
2014-01-01
Many potential drugs for the treatment of neurological diseases are unable to reach the brain in sufficient enough concentrations to be therapeutic because of the blood brain barrier. On the other hand, direct delivery of drugs to the brain provides the possibility of a greater therapeutic-toxic ratio than with systemic drug delivery. The use of intranasal delivery of therapeutic agents to the brain provides a means of bypassing the blood brain barrier in a non-invasive manner. In this respect, nanosized drug carriers were shown to enhance the delivery of drugs to CNS compared to equivalent drug solution formulations. Neurological conditions that have been studied in animal models that could benefit from nose-to-brain delivery of nanotherapeutics include pain, epilepsy, neurodegenerative disease and infectious diseases. The delivery of drugs to the brain via the nose-to-brain route holds great promise, on the basis of preclinical research by means of drug delivery systems such as polymeric nanoparticles and clinical data related to intranasal delivery to CNS of large molecular weight biologics administered in solution, but safety issues about toxicity on nasal mucosa, Np transport into the brain, delivery only to specific brain regions and variability in the adsorbed dose still represent research topics that need to be considered, with a view of clinical translation of these delivery systems.
Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556
Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.
ERIC Educational Resources Information Center
National Institutes of Health (DHHS), Bethesda, MD.
This booklet explores various aspects of drug addiction, with a special focus on drugs' effects on the brain. A brief introduction presents information on the rampant use of drugs in society and elaborates the distinction between drug abuse and drug addiction. Next, a detailed analysis of the brain and its functions is given. Drugs target the more…
Taccola, Camille; Cartot-Cotton, Sylvaine; Valente, Delphine; Barneoud, Pascal; Aubert, Catherine; Boutet, Valérie; Gallen, Fabienne; Lochus, Murielle; Nicolic, Sophie; Dodacki, Agnès; Smirnova, Maria; Cisternino, Salvatore; Declèves, Xavier; Bourasset, Fanchon
2018-05-30
Efficacy of drugs aimed at treating central nervous system (CNS) disorders rely partly on their ability to cross the cerebral endothelium, also called the blood-brain barrier (BBB), which constitutes the main interface modulating exchanges of compounds between the brain and blood. In this work, we used both, conventional pharmacokinetics (PK) approach and in situ brain perfusion technique to study the blood and brain PK of PKRinh, an inhibitor of the double-stranded RNA-dependent protein kinase (PKR) activation, in mice. PKRinh showed a supra dose-proportional blood exposure that was not observed in the brain, and a brain to blood AUC ratio of unbound drug smaller than 1 at all tested doses. These data suggested the implication of an active efflux at the BBB. Using in situ brain perfusion technique, we showed that PKRinh has a very high brain uptake clearance which saturates with increasing concentrations. Fitting the data to a Michaelis-Menten equation revealed that PKRinh transport through the BBB is composed of a passive unsaturable flux and an active saturable protein-mediated efflux with a k m of ≅ 3 μM. We were able to show that the ATP-binding cassette (ABC) transporter P-gp (Abcb1), but not Bcrp (Abcg2), was involved in the brain to blood efflux of PKRinh. At the circulating PKRinh concentrations of this study, the P-gp was not saturated, in accordance with the linear brain PKRinh PK. Finally, PKRinh had high brain uptake clearance (14 μl/g/s) despite it is a good P-gp substrate (P-gp Efflux ratio ≅ 3.6), and reached similar values than the cerebral blood flow reference, diazepam, in P-gp saturation conditions. With its very unique brain transport properties, PKRinh improves our knowledge about P-gp-mediated efflux across the BBB for the development of new CNS directed drugs. Copyright © 2018. Published by Elsevier B.V.
The Next Step: 25 Discoveries That Could Change Our Lives.
ERIC Educational Resources Information Center
Science85, 1985
1985-01-01
Describes (in separate articles) 25 developments in science, technology, and medicine that have potential impact on the near future. They include discoveries related to space butterflies, drugs, twenty-first century software, experimental mathematics, brain drugs, egg development, ultrasmall microchips, the biology of birth, cancer-causing genes,…
Substance use modulates stress reactivity: Behavioral and physiological outcomes.
Fosnocht, Anne Q; Briand, Lisa A
2016-11-01
Drug addiction is a major public health concern in the United States costing taxpayers billions in health care costs, lost productivity and law enforcement. However, the availability of effective treatment options remains limited. The development of novel therapeutics will not be possible without a better understanding of the addicted brain. Studies in both clinical and preclinical models indicate that chronic drug use leads to alterations in the body and brain's response to stress. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis may shed light on the ability of stress to increase vulnerability to relapse. Further, within both the HPA axis and limbic brain regions, corticotropin-releasing factor (CRF) is critically involved in the brain's response to stress. Alterations in both central and peripheral CRF activity seen following chronic drug use provide a mechanism by which substance use can alter stress reactivity, thus mediating addictive phenotypes. While many reviews have focused on how stress alters drug-mediated changes in physiology and behavior, the goal of this review is to focus on how substance use alters responses to stress. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Anand, Prachi; O'Neil, Alison; Lin, Emily; Douglas, Trevor; Holford, Mandë
2015-08-01
The blood brain barrier (BBB) is often an insurmountable obstacle for a large number of candidate drugs, including peptides, antibiotics, and chemotherapeutic agents. Devising an adroit delivery method to cross the BBB is essential to unlocking widespread application of peptide therapeutics. Presented here is an engineered nanocontainer for delivering peptidic drugs across the BBB encapsulating the analgesic marine snail peptide ziconotide (Prialt®). We developed a bi-functional viral nanocontainer based on the Salmonella typhimurium bacteriophage P22 capsid, genetically incorporating ziconotide in the interior cavity, and chemically attaching cell penetrating HIV-Tat peptide on the exterior of the capsid. Virus like particles (VLPs) of P22 containing ziconotide were successfully transported in several BBB models of rat and human brain microvascular endothelial cells (BMVEC) using a recyclable noncytotoxic endocytic pathway. This work demonstrates proof in principle for developing a possible alternative to intrathecal injection of ziconotide using a tunable VLP drug delivery nanocontainer to cross the BBB.
Drugs Approved for Brain Tumors
... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) ...
Qosa, Hisham; Mohamed, Loqman A; Al Rihani, Sweilem B; Batarseh, Yazan S; Duong, Quoc-Viet; Keller, Jeffrey N; Kaddoumi, Amal
2016-07-06
The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins, and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimer's disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76-4.56 μM. Of these 7 drugs, 5 were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron, and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD.
Qosa, Hisham; Mohamed, Loqman A.; Al Rihani, Sweilem B.; Batarseh, Yazan S.; Duong, Quoc-Viet; Keller, Jeffrey N.; Kaddoumi, Amal
2016-01-01
The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimer’s disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76–4.56 μM. Of these 7 drugs, five were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD. PMID:27392852
Brain talk: power and negotiation in children’s discourse about self, brain and behaviour
Singh, Ilina
2013-01-01
This article examines children’s discourse about self, brain and behaviour, focusing on the dynamics of power, knowledge and responsibility articulated by children. The empirical data discussed in this article are drawn from the study of Voices on Identity, Childhood, Ethics and Stimulants, which included interviews with 151 US and UK children, a subset of whom had a diagnosis of attention deficit/hyperactivity disorder. Despite their contact with psychiatric explanations and psychotropic drugs for their behaviour, children’s discursive engagements with the brain show significant evidence of agency and negotiated responsibility. These engagements suggest the limitations of current concepts that describe a collapse of the self into the brain in an age of neurocentrism. Empirical investigation is needed in order to develop agent-centred conceptual and theoretical frameworks that describe and evaluate the harms and benefits of treating children with psychotropic drugs and other brain-based technologies. PMID:23094965
[Immunotherapies for drug addictions].
Montoya, Ivan
2008-01-01
Immunotherapies in the form of vaccines (active immunization) or monoclonal antibodies (passive immunization) appear safe and a promising treatment approaches for some substance-related disorders. The mechanism of action of the antibody therapy is by preventing the rapid entry of drugs of abuse into the central nervous system. In theory, immunotherapies could have several clinical applications. Monoclonal antibodies may be useful to treat drug overdoses and prevent the neurotoxic effects of drugs by blocking the access of drugs to the brain. Vaccines may help to prevent the development of addiction, initiate drug abstinence in those already addicted to drugs, or prevent drug use relapse by reducing the pharmacological effects and rewarding properties of the drugs of abuse on the brain. Passive immunization with monoclonal antibodies has been investigated for cocaine, methamphetamine, nicotine, and phencyclidine (PCP). Active immunization with vaccines has been studied for cocaine, heroin, methamphetamine, and nicotine. These immunotherapies seem promising therapeutic tools and are at different stages in their development before they can be approved by regulatory agencies for the treatment of substance-related disorders. The purpose of this article is to review the current immunotherapy approaches with emphasis on the risks and benefits for the treatment of these disorders.
Inmunoterapias para las adicciones a las drogas Immunotherapies for Drug Addictions
Montoya, Iván D.
2008-01-01
Immunotherapies in the form of vaccines (active immunization) or monoclonal antibodies (passive immunization) appear safe and a promising treatment approaches for some substance-related disorders. The mechanism of action of the antibody therapy is by preventing the rapid entry of drugs of abuse into the central nervous system. In theory, immunotherapies could have several clinical applications. Monoclonal antibodies may be useful to treat drug overdoses and prevent the neurotoxic effects of drugs by blocking the access of drugs to the brain. Vaccines may help to prevent the development of addiction, initiate drug abstinence in those already addicted to drugs, or prevent drug use relapse by reducing the pharmacological effects and rewarding properties of the drugs of abuse on the brain. Passive immunization with monoclonal antibodies has been investigated for cocaine, methamphetamine, nicotine, and phencyclidine (PCP). Active immunization with vaccines has been studied for cocaine, heroin, methamphetamine, and nicotine. These immunotherapies seem promising therapeutic tools and are at different stages in their development before they can be approved by regulatory agencies for the treatment of substance-related disorders. The purpose of this article is to review the current immunotherapy approaches with emphasis on the risks and benefits for the treatment of these disorders. PMID:18551223
Assessing the place of neurobiological explanations in accounts of a family member's addiction.
Meurk, Carla; Fraser, Doug; Weier, Megan; Lucke, Jayne; Carter, Adrian; Hall, Wayne
2016-07-01
The brain disease model of addiction posits that addiction is a persistent form of neural dysfunction produced by chronic drug use, which makes it difficult for addicted persons to become and remain abstinent. As part of an anticipatory policy analysis of addiction neuroscience, we engaged family members of addicted individuals to assess their views on the place and utility of brain-based accounts of addiction. Fifteen in-depth qualitative interviews were conducted and used to develop a quantitative online survey that was completed by 55 family members. This article reports responses on what addiction is and how it is caused and responses to explanations of the brain disease model of addiction. Participants gave multiple reasons for their family members developing an addiction and there was no single dominant belief about the best way to describe addiction. Participants emphasised the importance of both scientific and non-scientific perspectives on addiction by providing multifactorial explanations of their family members' addictions. Most family members acknowledged that repeated drug use can cause changes to the brain, but they varied in their reactions to labelling addiction a 'brain disease'. They believed that understanding addiction, and how it is caused, could help them support their addicted relative. Participants' beliefs about neurobiological information and the brain disease model of addiction appeared to be driven by empathetic, utilitarian considerations rather than rationalist ones. We discuss the importance of providing information about the nature and causes of addiction. [Meurk C, Fraser D, Weier M, Lucke J, Carter A, Hall W. Assessing the place of neurobiological explanations in accounts of a family member's addiction. Drug Alcohol Rev 2016;35:461-469]. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Bhaskar, Sonu; Tian, Furong; Stoeger, Tobias; Kreyling, Wolfgang; de la Fuente, Jesús M; Grazú, Valeria; Borm, Paul; Estrada, Giovani; Ntziachristos, Vasilis; Razansky, Daniel
2010-03-03
Nanotechnology has brought a variety of new possibilities into biological discovery and clinical practice. In particular, nano-scaled carriers have revolutionalized drug delivery, allowing for therapeutic agents to be selectively targeted on an organ, tissue and cell specific level, also minimizing exposure of healthy tissue to drugs. In this review we discuss and analyze three issues, which are considered to be at the core of nano-scaled drug delivery systems, namely functionalization of nanocarriers, delivery to target organs and in vivo imaging. The latest developments on highly specific conjugation strategies that are used to attach biomolecules to the surface of nanoparticles (NP) are first reviewed. Besides drug carrying capabilities, the functionalization of nanocarriers also facilitate their transport to primary target organs. We highlight the leading advantage of nanocarriers, i.e. their ability to cross the blood-brain barrier (BBB), a tightly packed layer of endothelial cells surrounding the brain that prevents high-molecular weight molecules from entering the brain. The BBB has several transport molecules such as growth factors, insulin and transferrin that can potentially increase the efficiency and kinetics of brain-targeting nanocarriers. Potential treatments for common neurological disorders, such as stroke, tumours and Alzheimer's, are therefore a much sought-after application of nanomedicine. Likewise any other drug delivery system, a number of parameters need to be registered once functionalized NPs are administered, for instance their efficiency in organ-selective targeting, bioaccumulation and excretion. Finally, direct in vivo imaging of nanomaterials is an exciting recent field that can provide real-time tracking of those nanocarriers. We review a range of systems suitable for in vivo imaging and monitoring of drug delivery, with an emphasis on most recently introduced molecular imaging modalities based on optical and hybrid contrast, such as fluorescent protein tomography and multispectral optoacoustic tomography. Overall, great potential is foreseen for nanocarriers in medical diagnostics, therapeutics and molecular targeting. A proposed roadmap for ongoing and future research directions is therefore discussed in detail with emphasis on the development of novel approaches for functionalization, targeting and imaging of nano-based drug delivery systems, a cutting-edge technology poised to change the ways medicine is administered.
Delivery of Fluorescent Nanoparticles to the Brain.
Shimoni, Olga; Shi, Bingyang; Adlard, Paul A; Bush, Ashley I
2016-11-01
Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.
Studies of the brain cannabinoid system using positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatley, S.J.; Volkow, N.D.
Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies ofmore » cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.« less
Zhang, Chun; Ling, Cheng-li; Pang, Liang; Wang, Qi; Liu, Jing-xin; Wang, Bing-shan; Liang, Jian-ming; Guo, Yi-zhen; Qin, Jing; Wang, Jian-xin
2017-01-01
Delivery of macromolecular drugs to the brain is impeded by the blood brain barrier. The recruitment of leukocytes to lesions in the brain, a typical feature of neuroinflammation response which occurs in cerebral ischemia, offers a unique opportunity to deliver drugs to inflammation sites in the brain. In the present study, cross-linked dendrigraft poly-L-lysine (DGL) nanoparticles containing cis-aconitic anhydride-modified catalase and modified with PGP, an endogenous tripeptide that acts as a ligand with high affinity to neutrophils, were developed to form the cl PGP-PEG-DGL/CAT-Aco system. Significant binding efficiency to neutrophils, efficient protection of catalase enzymatic activity from degradation and effective transport to receiver cells were revealed in the delivery system. Delivery of catalase to ischemic subregions and cerebral neurocytes in MCAO mice was significantly enhanced, which obviously reducing infarct volume in MCAO mice. Thus, the therapeutic outcome of cerebral ischemia was greatly improved. The underlying mechanism was found to be related to the inhibition of ROS-mediated apoptosis. Considering that neuroinflammation occurs in many neurological disorders, the strategy developed here is not only promising for treatment of cerebral ischemia but also an effective approach for various CNS diseases related to inflammation. PMID:28900508
MONOAMINE OXIDASE: RADIOTRACER DEVELOPMENT AND HUMAN STUDIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FOWLER,J.S.; LOGAN,J.; VOLKOW,N.D.
PET is uniquely capable of providing information on biochemical transformations in the living human body. Although most of the studies of monoamine oxidase (MAO) have focused on measurements in the brain, the role of peripheral MAO as a phase 1 enzyme for the metabolism of drugs and xenobiotics is gaining attention (Strolin Benedetti and Tipton, 1998; Castagnoli et al., 1997.). MAO is well suited for this role because its concentration in organs such as kidneys, liver and digestive organs is high sometimes exceeding that in the brain. Knowledge of the distribution of the MAO subtypes within different organs and differentmore » cells is important in determining which substrates (and which drugs and xenobiotics) have access to which MAO subtypes. The highly variable subtype distribution with different species makes human studies even more important. In addition, the deleterious side effects of combining MAO inhibitors with other drugs and with foodstuffs makes it important to know the MAO inhibitory potency of different drugs both in the brain and in peripheral organs (Ulus et al., 2000). Clearly PET can play a role in answering these questions, in drug research and development and in discovering some of the factors which contribute to the highly variable MAO levels in different individuals.« less
Assessment of blood-brain barrier penetration: in silico, in vitro and in vivo.
Feng, Meihua Rose
2002-12-01
The amount of drug achieved and maintained in the brain after systemic administration is determined by the agent's permeability at blood-brain barrier (BBB), potential involvement of transport systems, and the distribution, metabolism and elimination properties. Passive diffusion permeability may be predicted by an in silico method based on a molecule's structure property. In vitro cell culture is another useful tool for the assessment of passive permeability and BBB transports (e.g. PGP, MRP). In situ or in vivo techniques like carotid artery single injection or perfusion, brain microdialysis, autoradiography, and others are used at various stages of drug discovery and development to estimate CNS penetration and PK/PD correlation. Each technique has its own application with specific advantages and limitations.
Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid
2016-09-20
Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (<200nm) as determined by dynamic light scattering technique and transmission electron microscopy, assured transcellular transport across olfactory axons whose diameter was ≈200nm and then paving a direct path to brain. TFB-NPs and TFB-SLNs resulted in 64.11±2.21% and 57.81±5.32% entrapment efficiencies respectively which again asserted protection of drug from chemical and biological degradation in nasal cavity. In vitro release studies proved the sustained release of TFB from TFB-NPs and TFB-SLNs in comparison with pure drug, indicating prolonged residence times of drug at targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2017-10-15
Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
Envisioning the future of polymer therapeutics for brain disorders.
Rodriguez-Otormin, Fernanda; Duro-Castano, Aroa; Conejos-Sánchez, Inmaculada; Vicent, María J
2018-06-14
The growing incidence of brain-related pathologies and the problems that undermine the development of efficient and effective treatments have prompted both researchers and the pharmaceutical industry to search for novel therapeutic alternatives. Polymer therapeutics (PT) display properties well suited to the treatment of neuro-related disorders, which help to overcome the many hidden obstacles on the journey to the central nervous system (CNS). The inherent features of PT, derived from drug(s) conjugation, in parallel with the progress in synthesis and analytical methods, the increasing knowledge in molecular basis of diseases, and collected clinical data through the last four decades, have driven the translation from "bench to bedside" for various biomedical applications. However, since the approval of Gliadel® wafers, little progress has been made in the CNS field, even though brain targeting represents an ever-growing challenge. A thorough assessment of the steps required for successful brain delivery via different administration routes and the consideration of the disease-specific hallmarks are essential to progress in the field. Within this review, we hope to summarize the latest developments, successes, and failures and discuss considerations on designs and strategies for PT in the treatment of CNS disorders. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease. © 2018 Wiley Periodicals, Inc.
Saunders, Norman R.; Habgood, Mark D.; Møllgård, Kjeld; Dziegielewska, Katarzyna M.
2016-01-01
Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells) in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC) transporters, that provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor. In addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary. PMID:26998242
Current Strategies for Brain Drug Delivery
Dong, Xiaowei
2018-01-01
The blood-brain barrier (BBB) has been a great hurdle for brain drug delivery. The BBB in healthy brain is a diffusion barrier essential for protecting normal brain function by impeding most compounds from transiting from the blood to the brain; only small molecules can cross the BBB. Under certain pathological conditions of diseases such as stroke, diabetes, seizures, multiple sclerosis, Parkinson's disease and Alzheimer disease, the BBB is disrupted. The objective of this review is to provide a broad overview on current strategies for brain drug delivery and related subjects from the past five years. It is hoped that this review could inspire readers to discover possible approaches to deliver drugs into the brain. After an initial overview of the BBB structure and function in both healthy and pathological conditions, this review re-visits, according to recent publications, some questions that are controversial, such as whether nanoparticles by themselves could cross the BBB and whether drugs are specifically transferred to the brain by actively targeted nanoparticles. Current non-nanoparticle strategies are also reviewed, such as delivery of drugs through the permeable BBB under pathological conditions and using non-invasive techniques to enhance brain drug uptake. Finally, one particular area that is often neglected in brain drug delivery is the influence of aging on the BBB, which is captured in this review based on the limited studies in the literature. PMID:29556336
Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.
Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia
2014-11-01
Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally. Copyright © 2014 Elsevier Inc. All rights reserved.
Development of optical neuroimaging to detect drug-induced brain functional changes in vivo
NASA Astrophysics Data System (ADS)
Du, Congwu; Pan, Yingtian
2014-03-01
Deficits in prefrontal function play a crucial role in compulsive cocaine use, which is a hallmark of addiction. Dysfunction of the prefrontal cortex might result from effects of cocaine on neurons as well as from disruption of cerebral blood vessels. However, the mechanisms underlying cocaine's neurotoxic effects are not fully understood, partially due to technical limitations of current imaging techniques (e.g., PET, fMRI) to differentiate vascular from neuronal effects at sufficiently high temporal and spatial resolutions. We have recently developed a multimodal imaging platform which can simultaneously characterize the changes in cerebrovascular hemodynamics, hemoglobin oxygenation and intracellular calcium fluorescence for monitoring the effects of cocaine on the brain. Such a multimodality imaging technique (OFI) provides several uniquely important merits, including: 1) a large field-of-view, 2) high spatiotemporal resolutions, 3) quantitative 3D imaging of the cerebral blood flow (CBF) networks, 4) label-free imaging of hemodynamic changes, 5) separation of vascular compartments (e.g., arterial and venous vessels) and monitoring of cortical brain metabolic changes, 6) discrimination of cellular (neuronal) from vascular responses. These imaging features have been further advanced in combination with microprobes to form micro-OFI that allows quantification of drug effects on subcortical brain. In addition, our ultrahigh-resolution ODT (μODT) enables 3D microangiography and quantitative imaging of capillary CBF networks. These optical strategies have been used to investigate the effects of cocaine on brain physiology to facilitate the studies of brain functional changes induced by addictive substance to provide new insights into neurobiological effects of the drug on the brain.
Developmental Consequences of Fetal Exposure to Drugs: What We Know and What We Still Must Learn
Ross, Emily J; Graham, Devon L; Money, Kelli M; Stanwood, Gregg D
2015-01-01
Most drugs of abuse easily cross the placenta and can affect fetal brain development. In utero exposures to drugs thus can have long-lasting implications for brain structure and function. These effects on the developing nervous system, before homeostatic regulatory mechanisms are properly calibrated, often differ from their effects on mature systems. In this review, we describe current knowledge on how alcohol, nicotine, cocaine, amphetamine, Ecstasy, and opiates (among other drugs) produce alterations in neurodevelopmental trajectory. We focus both on animal models and available clinical and imaging data from cross-sectional and longitudinal human studies. Early studies of fetal exposures focused on classic teratological methods that are insufficient for revealing more subtle effects that are nevertheless very behaviorally relevant. Modern mechanistic approaches have informed us greatly as to how to potentially ameliorate the induced deficits in brain formation and function, but conclude that better delineation of sensitive periods, dose–response relationships, and long-term longitudinal studies assessing future risk of offspring to exhibit learning disabilities, mental health disorders, and limited neural adaptations are crucial to limit the societal impact of these exposures. PMID:24938210
The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study.
Betzer, Oshra; Shilo, Malka; Opochinsky, Renana; Barnoy, Eran; Motiei, Menachem; Okun, Eitan; Yadid, Gal; Popovtzer, Rachela
2017-07-01
Our goal was to develop an efficient nanoparticle-based system that can overcome the restrictive mechanism of the blood-brain barrier (BBB) by targeting insulin receptors and would thus enable drug delivery to the brain. Insulin-coated gold nanoparticles (INS-GNPs) were synthesized to serve as a BBB transport system. The effect of nanoparticle size (20, 50 and 70 nm) on their ability to cross the BBB was quantitatively investigated in Balb/C mice. The most widespread biodistribution and highest accumulation within the brain were observed using 20 nm INS-GNPs, 2 h post injection. In vivo CT imaging revealed that particles migrated to specific brain regions, which are involved in neurodegenerative and neuropsychiatric disorders. These findings promote the optimization of nanovehicles for transport of drugs through the BBB. The insulin coating of the particles enabled targeting of specific brain regions, suggesting the potential use of INS-GNPs for delivery of various treatments for brain-related disorders.
Patel, Prerak J; Acharya, Niyati S; Acharya, Sanjeev R
2013-01-01
The glutathione-conjugated bovine serum albumin (BSA) nanoparticles were constructed in the present exploration as a novel biodegradable carrier for brain-specific drug delivery with evaluation of its in vitro and in vivo delivery properties. BSA nanocarriers were activated and conjugated to the distal amine functions of the glutathione via carbodiimide chemistry using EDAC as a mediator. These nanoparticles were characterized for particle shape, average size, SPAN value, drug entrapment and in vitro drug release. Further, presence of glutathione on the surface of BSA nanoparticles was confirmed by Ellman's assay, which has suggested that approximately 750 units of glutathione were conjugated per BSA nanoparticle. To evaluate the brain delivery properties of the glutathione-conjugated BSA nanoparticles fluorescein sodium was used as a model hydrophilic compound. Permeability and neuronal uptake properties of developed formulations were evaluated against the MDCK-MDR1 endothelial and neuro-glial cells, respectively. The permeability of glutathione-conjugated BSA nanoparticles across the monolayer of MDCK-MDR1 endothelial tight junction was shown significantly higher than that of unconjugated nanoparticles and fluorescein sodium solution. Similarly, glutathione-conjugated nanoparticles exhibited considerably higher uptake by neuro-glial cells which was inferred by high fluorescence intensity under microscope in comparison to unconjugated nanoparticles and fluorescein sodium solution. Following an intravenous administration, nearly three folds higher fluorescein sodium was carried to the rat brain by glutathione-conjugated nanoparticles as compared to unconjugated nanoparticles. The significant in vitro and in vivo results suggest that glutathione-conjugated BSA nanoparticles is a promising brain drug delivery system with low toxicity.
PET evaluation of the dopamine system of the human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Fowler, J.S.; Gatley, S.
1996-07-01
Dopamine plays a pivotal role in the regulation and control of movement, motivation and cognition. It also is closely linked to reward, reinforcement and addiction. Abnormalities in brain dopamine are associated with many neurological and psychiatric disorders including Parkinson`s disease, schizophrenia and substance abuse. This close association between dopamine and neurological and psychiatric diseases and with substance abuse make it an important topic in research in the neurosciences and an important molecular target in drug development. PET enables the direct measurement of components of the dopamine system in the living human brain. It relies on radiotracers which label dopamine receptors,more » dopamine transporters, precursors of dopamine or compounds which have specificity for the enzymes which degrade dopamine. Additionally, by using tracers that provide information on regional brain metabolism or blood flow as well as neurochemically specific pharmacological interventions, PET can be used to assess the functional consequences of change in brain dopamine activity. PET dopamine measurements have been used to investigate the normal human brain and its involvement in psychiatric and neurological diseases. It has also been used in psychopharmacological research to investigate dopamine drugs used in the treatment of Parkinson`s disease and of schizophrenia as well as to investigate the effects of drugs of abuse on the dopamine system. Since various functional and neurochemical parameters can be studied in the same subject, PET enables investigation of the functional integrity of the dopamine system in the human brain and investigation of the interactions of dopamine with other neurotransmitters. This paper summarizes the different tracers and experimental strategies developed to evaluate the various elements of the dopamine system in the human brain with PET and their applications to clinical research. 254 refs., 7 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Cheng, Meng-Tzu
In response to the solicitation of the National Institute on Drug Use (NIDA) (NIDA, 2006) for the Development of a Virtual Reality Environment for Teaching about the Impact of Drug Abuse on the Brain, a virtual brain exhibit was developed by the joint venture of Entertainment Science, Inc. and Virtual Heroes, Inc.. This exhibit included a virtual reality learning environment combined with a video game, aiming at improving the neuroscience literacy of the general public, conveying knowledge about the impacts of methamphetamine abuse on the brain to the population, and establishing a stronger concept of drug use prevention among children. This study investigated the effectiveness of this interactive exhibit on middle school students' understanding and attitudes toward drug use. Three main research questions are addressed: (1) What do students learn about basic concepts of neuroscience and the impact of methamphetamine abuse on the brain via the exhibit? (2) How are students' attitudes toward methamphetamine use changed after exposure to the exhibit? (3) What are students' experiences and perceptions of using the exhibit to learn the impact of methamphetamine abuse on the brain? A mixed-method design, including pre/post/delayed-post test instruments, interviews, and video recordings, was conducted for 98 middle school students ranging from sixth to eighth grades to investigate these questions. The results show that students' understanding of the impact of methamphetamine abuse on the brain significantly improved after exposure to the exhibit regardless of grade or gender. Their pre-existing knowledge and their understanding after the exhibit indicated a tendency of progression. Most of the students consistently expressed negative attitudes toward general methamphetamine use regardless of whether it was before or after exposure to the exhibit. However, this exhibit gave them a better reason and made them feel more confident to refuse drugs. Finally, student learning experiences through using the exhibit was a self-regulated learning process. This exhibit possessed several intrinsic values that motivated students to participate and persist in the activity, whereby students performed several cognitive and metacognitive strategies to help the learning activity to best fit individual learning styles and to make the cognitive processes more efficient.
Nanobiotechnology-based drug delivery in brain targeting.
Dinda, Subas C; Pattnaik, Gurudutta
2013-01-01
Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity of specific receptors expressed across the BBB. It is found that the low density lipoproteins related protein (LPR) with engineered peptide compound (EpiC) formed the platform incorporating the Angiopep peptide as a new effective therapeutics. The current challenges are to design and develop the drug delivery careers, which must be able to deliver the drug across the BBB at a safe and effective manner. Nanoparticles are found to be effective careers in delivery of conventional drugs, recombinant proteins, vaccines as well as nucleotides. Nanoparticlulate drug delivery systems are found to be improving in the pharmacokinetic strategies of the drug molecules such as biodistribution, bioavailability and drug release characteristics in a controlled and effective manner with site specific drug delivery targeting to tissue or cell with reduction in toxic manifestation. Therefore, the use of nanotechnology in the field of pharmaceutical biotechnology helps in improving the drug delivery strategy including the kinetics and therapeutic index to solve the delivery problems of some biotech drugs including the recombinant proteins and oligonucleotides. This review is made to provide an insight to the role of nanobiotechnology in drug delivery and drug targeting to brain and its recent advances in the field of drug delivery systems.
Nose-to-brain peptide delivery - The potential of nanotechnology.
Samaridou, Eleni; Alonso, Maria José
2018-06-01
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of immunopharmacotherapy against drugs of abuse.
Meijler, Michael M; Matsushita, Masayuki; Wirsching, Peter; Janda, Kim D
2004-01-01
Drug addiction is a major worldwide medical and social problem that continues to escalate. The addiction syndrome is remarkably similar between different drugs of abuse, and can be characterized as a chronic relapsing brain disorder with neurobiological changes that lead to a compulsion to take a drug with loss of control over drug intake. Presently used medications for the treatment of dependence disorders are based on drugs that are either agonists or antagonists of drugs of abuse, and have yielded only limited success. Immunopharmacotherapy is based on the generation or administration of antibodies that are capable of binding the targeted drug before it can reach the brain, whereas replacement strategies based on agonists or antagonists of these drugs generally cause many undesired side effects. A large amount of data has been gathered in recent years on the effects of active and passive immunization against cocaine, nicotine, PCP and methamphetamine in animal models, suggesting potential efficacy of these treatments in humans; and clinical trials are currently underway for vaccines against cocaine and nicotine.
Addiction is a Reward Deficit and Stress Surfeit Disorder
Koob, George F.
2013-01-01
Drug addiction can be defined by a three-stage cycle – binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation – that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction. PMID:23914176
NASA Astrophysics Data System (ADS)
Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan
2012-02-01
Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.
A Military-Centered Approach to Neuroprotection for Traumatic Brain Injury
Shear, Deborah A.; Tortella, Frank C.
2013-01-01
Studies in animals show that many compounds and therapeutics have the potential to greatly reduce the morbidity and post-injury clinical sequela for soldiers experiencing TBI. However, to date there are no FDA approved drugs for the treatment of TBI. In fact, expert opinion suggests that combination therapies will be necessary to treat any stage of TBI recovery. Our approach to this research effort is to conduct comprehensive pre-clinical neuroprotection studies in military-relevant animal models of TBI using the most promising neuroprotective agents. In addition, emerging efforts incorporating novel treatment strategies such as stem cell based therapies and alternative therapeutic approaches will be discussed. The development of a non-surgical, non-invasive brain injury therapeutic clearly addresses a major, unresolved medical problem for the Combat Casualty Care Research Program. Since drug discovery is too expensive to be pursued by DOD in the TBI arena, this effort capitalizes on partnerships with the Private Sector (Pharmaceutical Companies) and academic collaborations (Operation Brain Trauma Therapy Consortium) to study therapies already under advanced development. Candidate therapies selected for research include drugs that are aimed at reducing the acute and delayed effects of the traumatic incident, stem cell therapies aimed at brain repair, and selective brain cooling to stabilize cerebral metabolism. Each of these efforts can also focus on combination therapies targeting multiple mechanisms of neuronal injury. PMID:23781213
Immunotherapy for the treatment of drug abuse.
Kosten, Thomas; Owens, S Michael
2005-10-01
Antibody therapy (as either active or passive immunization) is designed primarily to prevent drugs of abuse from entering the central nervous system (CNS). Antidrug antibodies reduce rush, euphoria, and drug distribution to the brain at doses that exceed the apparent binding capacity of the antibody. This is accomplished through a pharmacokinetic antagonism, which reduces the amount of drug in the brain, the rate of clearance across the blood-brain barrier, and the volume of drug distribution. Because the antibodies remain primarily in the circulatory system, they have no apparent central nervous system side effects. Active immunization with drug-protein conjugate vaccines has been tested for cocaine, heroin, methamphetamine, and nicotine in animal, with 1 cocaine and 3 nicotine vaccines in Phase 2 human trials. Passive immunization with high affinity monoclonal antibodies has been tested for cocaine, methamphetamine, nicotine, and phencyclidine (PCP) in preclinical animal models. Antibodies have 2 immediate clinical applications in drug abuse treatment: to treat drug overdose and to reduce relapse to drug use in addicted patients. The specificity of the therapies, the lack of addiction liability, minimal side effects, and long-lasting protection against drug use offer major therapeutic benefit over conventional small molecule agonists and antagonists. Immunotherapies can also be combined with other antiaddiction medications and enhance behavioral therapies. Current immunotherapies already show efficacy, but improved antigen design and antibody engineering promise highly specific and rapidly developed treatments for both existing and future addictions.
Revisiting atenolol as a low passive permeability marker.
Chen, Xiaomei; Slättengren, Tim; de Lange, Elizabeth C M; Smith, David E; Hammarlund-Udenaes, Margareta
2017-10-31
Atenolol, a hydrophilic beta blocker, has been used as a model drug for studying passive permeability of biological membranes such as the blood-brain barrier (BBB) and the intestinal epithelium. However, the extent of S-atenolol (the active enantiomer) distribution in brain has never been evaluated, at equilibrium, to confirm that no transporters are involved in its transport at the BBB. To assess whether S-atenolol, in fact, depicts the characteristics of a low passive permeable drug at the BBB, a microdialysis study was performed in rats to monitor the unbound concentrations of S-atenolol in brain extracellular fluid (ECF) and plasma during and after intravenous infusion. A pharmacokinetic model was developed, based on the microdialysis data, to estimate the permeability clearance of S-atenolol into and out of brain. In addition, the nonspecific binding of S-atenolol in brain homogenate was evaluated using equilibrium dialysis. The steady-state ratio of unbound S-atenolol concentrations in brain ECF to that in plasma (i.e., K p,uu,brain ) was 3.5% ± 0.4%, a value much less than unity. The unbound volume of distribution in brain (V u, brain ) of S-atenolol was also calculated as 0.69 ± 0.10 mL/g brain, indicating that S-atenolol is evenly distributed within brain parenchyma. Lastly, equilibrium dialysis showed limited nonspecific binding of S-atenolol in brain homogenate with an unbound fraction (f u,brain ) of 0.88 ± 0.07. It is concluded, based on K p,uu,brain being much smaller than unity, that S-atenolol is actively effluxed at the BBB, indicating the need to re-consider S-atenolol as a model drug for passive permeability studies of BBB transport or intestinal absorption.
Jampilek, Josef; Zaruba, Kamil; Oravec, Michal; Kunes, Martin; Babula, Petr; Ulbrich, Pavel; Brezaniova, Ingrid; Opatrilova, Radka; Triska, Jan; Suchy, Pavel
2015-01-01
The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain.
Zaruba, Kamil; Kunes, Martin; Ulbrich, Pavel; Brezaniova, Ingrid; Triska, Jan; Suchy, Pavel
2015-01-01
The blood-brain barrier prevents the passage of many drugs that target the central nervous system. This paper presents the preparation and characterization of silica-based nanocarriers loaded with piracetam, pentoxifylline, and pyridoxine (drugs from the class of nootropics), which are designed to enhance the permeation of the drugs from the circulatory system through the blood-brain barrier. Their permeation was compared with non-nanoparticle drug substances (bulk materials) by means of an in vivo model of rat brain perfusion. The size and morphology of the nanoparticles were characterized by transmission electron microscopy. The content of the drug substances in silica-based nanocarriers was analysed by elemental analysis and UV spectrometry. Microscopic analysis of visualized silica nanocarriers in the perfused brain tissue was performed. The concentration of the drug substances in the tissue was determined by means of UHPLC-DAD/HRMS LTQ Orbitrap XL. It was found that the drug substances in silica-based nanocarriers permeated through the blood brain barrier to the brain tissue, whereas bulk materials were not detected in the brain. PMID:26075264
The evolution of the EGFRvIII (rindopepimut) immunotherapy for glioblastoma multiforme patients.
Paff, Michelle; Alexandru-Abrams, Daniela; Hsu, Frank P K; Bota, Daniela A
2014-01-01
Glioblastoma Multiforme (GBM) is the most common type of brain tumor and it is uniformly fatal. The community standard of treatment for this disease is gross or subtotal resection of the tumor, followed by radiation and temozolomide. At recurrence bevacizumab can be added for increased progression free survival. Many challenges are encountered while trying to devise new drugs to treat GBM, such as the presence of the blood brain barrier which is impermeable to most drugs. Therefore in the past few years attention was turned to immunological means for the treatment of this devastating disease. EGFRvIII targeting has proven a good way to attack glioblastoma cells by using the immune system. Although in still in development, this approach holds the promise as a great first step toward immune-tailored drugs for the treatment of brain cancers.
Development and characterization of lysine-methotrexate conjugate for enhanced brain delivery.
Singh, Vijay Kumar; Subudhi, Bharat Bhusan
2016-09-01
Methotrexate (MTX), an anticancer drug of choice, has poor permeability across blood-brain barrier (BBB) making it unsuitable for brain tumor application. Its brain availability and scope of application was improved by preparation of reversible conjugate with lysine by capitalizing the endogenous transport system of lysine at BBB. To enhance its delivery to brain, MTX was reversibly conjugated with l-Lysine by an amide linkage. It was characterized by advanced spectroscopy techniques including IR, NMR and MS. Furthermore, conjugate was assessed for stability, toxicity and drug release ability. In vivo distribution studies were done by radioscintigraphy study using 99m Tc radioisotope. The structure of prodrug was confirmed by 1 H-NMR, 13 C-NMR and Mass. The m/e (mass to charge ratio) fragment was found at [M + H] 711.32 in Mass spectra. Stability and metabolic studies suggested that conjugate was stable at physiological pH (in Phosphate buffer pH 7.4 t 1/2 is 70.25 ± 2.17 h and in plasma t 1/2 is 193.57 ± 2.03 min) and circulated adequately to release MTX slowly in brain. In vivo biodistribution study showed that prodrug significantly increased the level of MTX in brain when compared with pharmacokinetic parameter of parent drug. The brain permeability of MTX was enhanced significantly by this conjugate.
Organoid technology for brain and therapeutics research.
Wang, Zhi; Wang, Shu-Na; Xu, Tian-Ying; Miao, Zhu-Wei; Su, Ding-Feng; Miao, Chao-Yu
2017-10-01
Brain is one of the most complex organs in human. The current brain research is mainly based on the animal models and traditional cell culture. However, the inherent species differences between humans and animals as well as the gap between organ level and cell level make it difficult to study human brain development and associated disorders through traditional technologies. Recently, the brain organoids derived from pluripotent stem cells have been reported to recapitulate many key features of human brain in vivo, for example recapitulating the zone of putative outer radial glia cells. Brain organoids offer a new platform for scientists to study brain development, neurological diseases, drug discovery and personalized medicine, regenerative medicine, and so on. Here, we discuss the progress, applications, advantages, limitations, and prospects of brain organoid technology in neurosciences and related therapeutics. © 2017 John Wiley & Sons Ltd.
Saletu, B; Anderer, P; Saletu-Zyhlarz, G M; Arnold, O; Pascual-Marqui, R D
2002-01-01
Utilizing computer-assisted quantitative analyses of human scalp-recorded electroencephalogram (EEG) in combination with certain statistical procedures (quantitative pharmaco-EEG) and mapping techniques (pharmaco-EEG mapping), it is possible to classify psychotropic substances and objectively evaluate their bioavailability at the target organ: the human brain. Specifically, one may determine at an early stage of drug development whether a drug is effective on the central nervous system (CNS) compared with placebo, what its clinical efficacy will be like, at which dosage it acts, when it acts and the equipotent dosages of different galenic formulations. Pharmaco-EEG profiles and maps of neuroleptics, antidepressants, tranquilizers, hypnotics, psychostimulants and nootropics/cognition-enhancing drugs will be described in this paper. Methodological problems, as well as the relationships between acute and chronic drug effects, alterations in normal subjects and patients, CNS effects, therapeutic efficacy and pharmacokinetic and pharmacodynamic data will be discussed. In recent times, imaging of drug effects on the regional brain electrical activity of healthy subjects by means of EEG tomography such as low-resolution electromagnetic tomography (LORETA) has been used for identifying brain areas predominantly involved in psychopharmacological action. This will be demonstrated for the representative drugs of the four main psychopharmacological classes, such as 3 mg haloperidol for neuroleptics, 20 mg citalopram for antidepressants, 2 mg lorazepam for tranquilizers and 20 mg methylphenidate for psychostimulants. LORETA demonstrates that these psychopharmacological classes affect brain structures differently.
Mandlik, Satish K; Ranpise, Nisharani S; Mohanty, Bhabani S; Chaudhari, Pradip R
2018-06-01
The present investigation deals with preparation and characterization of anti-migraine zolmitriptan (ZMT) nanostructured polymeric carriers for nose to brain drug targeting. The drug-loaded colloidal nanocarriers of ZMT were prepared by modified ionic gelation of cationic chitosan with anionic sodium tripolyphosphate and characterized for particle size, zeta potential, and entrapment efficiency. Further, in order to investigate nose to brain drug targeting, biodistribution, and brain kinetics studies were performed using 99m technetium radiolabeled nanocarriers ( 99m Tc-ZMTNP) in Swiss albino mice. The results were compared with intranasal pure drug solution ( 99m Tc-ZMT) and intravenous nanocarriers ( 99m Tc-ZMTNP). A single photon emission computerized tomography (SPECT) radioimaging studies were also carried out to visualize and confirm brain uptake of nanocarriers. The optimized nanocarriers showed particle size of 161 nm, entrapment efficiency of 80.6%, and zeta potential of + 23.7 mV. The pharmacokinetic parameters, C max , and AUC 0-∞ values for ZMT concentration in the brain expressed as percent radioactivity per gram of brain in intranasal and intravenous route of administration were calculated. The brain C max and AUC 0-∞ values found in three groups, intranasal 99m Tc-ZMTNP, intranasal 99m Tc-ZMT, and intravenous 99m Tc-ZMTNP were (0.427 and 1.889), (0.272 and 0.7157), and (0.204 and 0.9333), respectively. The higher C max values of intranasal 99m Tc-ZMTNP suggests better brain uptake as compared to other routes of administration. The significant higher values of nose to brain targeting parameters namely, drug targeting index (5.57), drug targeting efficiency (557.08%), and nose to brain drug direct transport (82.05%) confirmed drug targeting to brain via nasal route. The coupled bimodal SPECT-CT scintigrams confirm the brain uptake of intranasal 99m Tc-ZMTNP demonstrating major radioactivity accumulation in brain. This study conclusively demonstrated the greater uptake of ZMT-loaded nanocarriers by nose to brain drug targeting, which proves promising drug delivery system.
Kita, Hideki; Matsuo, Hirotami; Takanaga, Hitomi; Kawakami, Junichi; Yamamoto, Koujirou; Iga, Tatsuji; Naito, Mikihiko; Tsuruo, Takashi; Asanuma, Atsushi; Yanagisawa, Keiji; Sawada, Yasufumi
1999-01-01
We investigated the correlation between an in vivo isobologram based on the concentrations of new quinolones (NQs) in brain tissue and the administration of nonsteroidal anti-inflammatory drugs (NSAIDs) for the occurrence of convulsions in mice and an in vitro isobologram based on the concentrations of both drugs for changes in the γ-aminobutyric acid (GABA)-induced current response in Xenopus oocytes injected with mRNA from mouse brains in the presence of NQs and/or NSAIDs. After the administration of enoxacin (ENX) in the presence or absence of felbinac (FLB), ketoprofen (KTP), or flurbiprofen (FRP), a synergistic effect was observed in the isobologram based on the threshold concentration in brain tissue between mice with convulsions and those without convulsions. The three NSAIDs did not affect the pharmacokinetic behavior of ENX in the brain. However, the ENX-induced inhibition of the GABA response in the GABAA receptor expressed in Xenopus oocytes was enhanced in the presence of the three NSAIDs. The inhibition ratio profiles of the GABA responses for both drugs were analyzed with a newly developed toxicodynamic model. The inhibitory profiles for ENX in the presence of NSAIDs followed the order KTP (1.2 μM) > FRP (0.3 μM) > FLB (0.2 μM). These were 50- to 280-fold smaller than those observed in the absence of NSAIDs. The inhibition ratio (0.01 to 0.02) of the GABAA receptor in the presence of both drugs was well-fitted to the isobologram based on threshold concentrations of both drugs in brain tissue between mice with convulsions and those without convulsions, despite the presence of NSAIDs. In mice with convulsions, the inhibitory profiles of the threshold concentrations of both drugs in brain tissue of mice with convulsions and those without convulsions can be predicted quantitatively by using in vitro GABA response data and toxicodynamic model. PMID:10223919
Agarwal, Varsha; Kommaddi, Reddy P.; Valli, Khader; Ryder, Daniel; Hyde, Thomas M.; Kleinman, Joel E.; Strobel, Henry W.; Ravindranath, Vijayalakshmi
2008-01-01
Cytochrome P450 (P450) is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP) in brain and liver, relatively more α-hydroxy alprazolam (α-OHALP) is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both α-OHALP and 4-hydroxy alprazolam (4-OHALP) while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of α-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of α-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action. PMID:18545703
Drug Delivery to the Brain in Alzheimer’s Disease: Consideration of the Blood-brain Barrier
Banks, William A.
2012-01-01
The successful treatment of Alzheimer’s disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population. PMID:22202501
The Effect of Molecular Diagnostics on the Treatment of Glioma.
Bush, Nancy Ann Oberheim; Butowski, Nicholas
2017-04-01
This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.
Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.
Clark, D E
2001-09-01
This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.
Chaichana, Kaisorn L; Pinheiro, Leon; Brem, Henry
2015-01-01
Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy. PMID:25853310
Chaichana, Kaisorn L; Pinheiro, Leon; Brem, Henry
2015-03-01
Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.
Hampel, Harald; Prvulovic, David; Teipel, Stefan J; Bokde, Arun L W
2011-12-01
The objective of this review is to evaluate recent advances in functional magnetic resonance imaging (fMRI) research in Alzheimer's disease for the development of therapeutic agents. The basic building block underpinning cognition is a brain network. The measured brain activity serves as an integrator of the various components, from genes to structural integrity, that impact the function of networks underpinning cognition. Specific networks can be interrogated using cognitive paradigms such as a learning task or a working memory task. In addition, recent advances in our understanding of neural networks allow one to investigate the function of a brain network by investigating the inherent coherency of the brain networks that can be measured during resting state. The coherent resting state networks allow testing in cognitively impaired patients that may not be possible with the use of cognitive paradigms. In particular the default mode network (DMN) includes the medial temporal lobe and posterior cingulate, two key regions that support episodic memory function and are impaired in the earliest stages of Alzheimer's disease (AD). By investigating the effects of a prospective drug compound on this network, it could illuminate the specificity of the compound with a network supporting memory function. This could provide valuable information on the methods of action at physiological and behaviourally relevant levels. Utilizing fMRI opens up new areas of research and a new approach for drug development, as it is an integrative tool to investigate entire networks within the brain. The network based approach provides a new independent method from previous ones to translate preclinical knowledge into the clinical domain. Copyright © 2011 Elsevier Ltd. All rights reserved.
Myburgh, Elmarie; Coles, Jonathan A.; Ritchie, Ryan; Kennedy, Peter G. E.; McLatchie, Alex P.; Rodgers, Jean; Taylor, Martin C.; Barrett, Michael P.; Brewer, James M.; Mottram, Jeremy C.
2013-01-01
Human African trypanosomiasis (HAT) manifests in two stages of disease: firstly, haemolymphatic, and secondly, an encephalitic phase involving the central nervous system (CNS). New drugs to treat the second-stage disease are urgently needed, yet testing of novel drug candidates is a slow process because the established animal model relies on detecting parasitemia in the blood as late as 180 days after treatment. To expedite compound screening, we have modified the GVR35 strain of Trypanosoma brucei brucei to express luciferase, and have monitored parasite distribution in infected mice following treatment with trypanocidal compounds using serial, non-invasive, bioluminescence imaging. Parasites were detected in the brains of infected mice following treatment with diminazene, a drug which cures stage 1 but not stage 2 disease. Intravital multi-photon microscopy revealed that trypanosomes enter the brain meninges as early as day 5 post-infection but can be killed by diminazene, whereas those that cross the blood-brain barrier and enter the parenchyma by day 21 survived treatment and later caused bloodstream recrudescence. In contrast, all bioluminescent parasites were permanently eliminated by treatment with melarsoprol and DB829, compounds known to cure stage 2 disease. We show that this use of imaging reduces by two thirds the time taken to assess drug efficacy and provides a dual-modal imaging platform for monitoring trypanosome infection in different areas of the brain. PMID:23991236
Samiotaki, Gesthimani; Karakatsani, Maria Eleni; Buch, Amanda; Papadopoulos, Stephanos; Wu, Shih Ying; Jambawalikar, Sachin; Konofagou, Elisa E.
2016-01-01
Purpose Focused Ultrasound (FUS) in conjunction with systemically administered microbubbles has been shown to open the Blood-Brain Barrier (BBB) locally, non-invasively and reversibly in rodents and non-human primates (NHP), suggesting the immense potential of this technique. The objective of this study entailed the investigation of the physiologic changes in the brain following the FUS-induced BBB opening and their relationship with the underlying anatomy. Materials and Methods Pharmacokinetic analysis was implemented in NHP’s that received FUS at various acoustic pressures. Relaxivity mapping enabled the robust quantitative detection of the BBB opening as well as gray and white matter segmentation. Drug delivery efficiency was measured for pre-clinical validation of the technique. Results Based on our results, the opening volume and the amount of the gadolinium delivered were found mostly contained in the grey matter, while FUS-induced permeability and drug concentration varied depending upon the underlying brain inhomogeneity, and increased with the acoustic pressure. Conclusions Overall, apart from the in vivo protocols for BBB analysis developed here, this study also suggests the important role that FUS can have in efficient drug delivery via localized and transient BBB opening. PMID:27916657
A Role for Brain Stress Systems in Addiction
Koob, George F.
2009-01-01
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry. PMID:18614026
Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe
2014-03-01
The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.
Rajendran, Kavitha; Anwar, Ayaz; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah
2017-12-20
The overall aim of this study was to determine whether conjugation with silver nanoparticles enhances effects of available drugs against primary amoebic meningoencephalitis due to Naegleria fowleri. Amphotericin B, Nystatin, and Fluconazole were conjugated with silver nanoparticles, and synthesis was confirmed using UV-visible spectrophotometry. Atomic force microscopy determined their size in range of 20-100 nm. To determine amoebicidal effects, N. fowleri were incubated with drugs-conjugated silver nanoparticles, silver nanoparticles alone, and drugs alone. The findings revealed that silver nanoparticles conjugation significantly enhanced antiamoebic effects of Nystatin and Amphotericin B but not Fluconazole at micromolar concentrations, compared with the drugs alone. For the first time, our findings showed that silver nanoparticle conjugation enhances efficacy of antiamoebic drugs against N. fowleri. Given the rarity of the disease and challenges in developing new drugs, it is hoped that modifying existing drugs to enhance their antiamoebic effects is a useful avenue that holds promise in improving the treatment of brain-eating amoebae infection due to N. fowleri.
Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids
Kuramoto, Kenta; Wang, Nan; Fan, Yuying; Zhang, Weiran; Schoenen, Frank J.; Frankowski, Kevin J.; Marugan, Juan; Zhou, Yifa; Huang, Sui; He, Congcong
2016-01-01
ABSTRACT Cannabinoids and related drugs generate profound behavioral effects (such as analgesic effects) through activating CNR1 (cannabinoid receptor 1 [brain]). However, repeated cannabinoid administration triggers lysosomal degradation of the receptor and rapid development of drug tolerance, limiting the medical use of marijuana in chronic diseases. The pathogenic mechanisms of cannabinoid tolerance are not fully understood, and little is known about its prevention. Here we show that a protein involved in macroautophagy/autophagy (a conserved lysosomal degradation pathway), BECN2 (beclin 2), mediates cannabinoid tolerance by preventing CNR1 recycling and resensitization after prolonged agonist exposure, and deletion of Becn2 rescues CNR1 activity in mouse brain and conveys resistance to analgesic tolerance to chronic cannabinoids. To target BECN2 therapeutically, we established a competitive recruitment model of BECN2 and identified novel synthetic, natural or physiological stimuli of autophagy that sequester BECN2 from its binding with GPRASP1, a receptor protein for CNR1 degradation. Co-administration of these autophagy inducers effectively restores the level and signaling of brain CNR1 and protects mice from developing tolerance to repeated cannabinoid usage. Overall, our findings demonstrate the functional link among autophagy, receptor signaling and animal behavior regulated by psychoactive drugs, and develop a new strategy to prevent tolerance and improve medical efficacy of cannabinoids by modulating the BECN2 interactome and autophagy activity. PMID:27305347
Braun, Clemens; Sakamoto, Atsushi; Fuchs, Holger; Ishiguro, Naoki; Suzuki, Shinobu; Cui, Yunhai; Klinder, Klaus; Watanabe, Michitoshi; Terasaki, Tetsuya; Sauer, Achim
2017-10-02
Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. K p,uu,brain and K p,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, K p,uu,brain for the BCRP substrates was low. In contrast, K p,uu,CSF for both BCRP substrates was close to unity, resulting in K p,uu,CSF /K p,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences in the expression profiles, and that CSF is not a suitable surrogate for unbound brain concentrations of BCRP substrates in dogs.
Blood–brain barrier dysfunction and epilepsy: Pathophysiologic role and therapeutic approaches
Marchi, Nicola; Granata, Tiziana; Ghosh, Chaitali; Janigro, Damir
2016-01-01
The blood–brain barrier (BBB) is located within a unique anatomic interface and has functional ramifications to most of the brain and blood cells. In the past, the BBB was considered a pharmacokinetic impediment to antiepileptic drug penetration into the brain; nowadays it is becoming increasingly evident that targeting of the damaged or dysfunctional BBB may represent a therapeutic approach to reduce seizure burden. Several studies have investigated the mechanisms linking the onset and sustainment of seizures to BBB dysfunction. These studies have shown that the BBB is at the crossroad of a multifactorial pathophysiologic process that involves changes in brain milieu, altered neuroglial physiology, development of brain inflammation, leukocyte–endothelial interactions, faulty angiogenesis, and hemodynamic changes leading to energy mismatch. A number of knowledge gaps, conflicting points of view, and discordance between clinical and experimental data currently characterize this field of neuroscience. As more pieces are added to this puzzle, it is apparent that each mechanism needs to be validated in an appropriate clinical context. We now offer a BBB-centric view of seizure disorders, linking several aspects of seizures and epilepsy physiopathology to BBB dysfunction. We have reviewed the therapeutic, antiseizure effect of drugs that promote BBB repair. We also present BBB neuroimaging as a tool to correlate BBB restoration to seizure mitigation. Add-on cerebrovascular drug could be of efficacy in reducing seizure burden when used in association with neuronal antiepileptic drugs. PMID:22905812
Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse.
Korpi, Esa R; den Hollander, Bjørnar; Farooq, Usman; Vashchinkina, Elena; Rajkumar, Ramamoorthy; Nutt, David J; Hyytiä, Petri; Dawe, Gavin S
2015-10-01
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Just Say Know: Talking with Kids about Drugs and Alcohol.
ERIC Educational Resources Information Center
Kuhn, Cynthia; Swartzwelder, Scott; Wilson, Wilkie
This book offers suggestions on how to guide children to develop a healthy respect for their bodies and brains in order to avoid the lure of drugs. The information provided is designed to enable parents and teachers to speak knowledgeably and effectively about drugs with their children and students. The first chapter focuses on how to communicate…
CCR investigators and colleagues have developed an anti-HIV drug, GRL-142, which at low concentrations block the replication of various wild-type and multidrug-resistant HIV strains. The drug also reaches high concentrations in a rat’s brain, suggesting it may prevent HIV-associated neurocognitive disorders. Read more…
Brain talk: power and negotiation in children's discourse about self, brain and behaviour.
Singh, Ilina
2013-07-01
This article examines children's discourse about self, brain and behaviour, focusing on the dynamics of power, knowledge and responsibility articulated by children. The empirical data discussed in this article are drawn from the study of Voices on Identity, Childhood, Ethics and Stimulants, which included interviews with 151 US and UK children, a subset of whom had a diagnosis of attention deficit/hyperactivity disorder. Despite their contact with psychiatric explanations and psychotropic drugs for their behaviour, children's discursive engagements with the brain show significant evidence of agency and negotiated responsibility. These engagements suggest the limitations of current concepts that describe a collapse of the self into the brain in an age of neurocentrism. Empirical investigation is needed in order to develop agent-centred conceptual and theoretical frameworks that describe and evaluate the harms and benefits of treating children with psychotropic drugs and other brain-based technologies. © 2012 The Author. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.
Castañeda-Gill, JM; Ranjan, AP; Vishwanatha, JK
2017-01-01
Glioblastoma (GBM) is an aggressive, grade IV brain tumor that develops from astrocytes located within the cerebrum, resulting in poor prognosis and survival rates following an accepted treatment regimen of surgery, radiation, and temozolomide. Thus, development of new therapeutics is necessary. During the last two decades, methylene blue (MB) has received increased attention as a potential neurotherapeutic due to its duality in brain cancers and neurodegenerative diseases. While MB is capable of easily permeating the blood-brain barrier, its therapeutic concentrations in GBM are known to induce off-target cytotoxicity and thus, another mode of drug delivery must be considered. To this end, encapsulation of formerly unusable compounds into nanoparticles (NPs) made from the biodegradable/biocompatible, FDA approved co-polymer poly (lactide-co-glycolide) (PLGA) has been more commonplace when developing novel therapeutics. In this study, we formulated and characterized Pluronic F68-coated PLGA NPs containing a sodium oleate conjugate of MB (MBOS) via solvent displacement. Conjugation of sodium oleate to MB was shown to reduce its release from PLGA NPs compared to unmodified MB, leading to potential improvements in drug accumulation and therapeutic effectiveness. Our drug-loaded NP preparations, which were ~170 nm in size and had drug loading values of ~2%, were shown to reduce cell viability and cell compartment-specific, as well as overall cell, functions equivalenty, if not more so, when compared to free drug in two GBM cell lines. Following bio-distribution analysis of free MBOS compared to its nano-encapsulated counterpart, drug-loaded NPs were shown to more effectively permeate the BBB, which could lead to improvements in therapeutic effectiveness upon further examination in a tumor-bearing mouse model. Based on these results, we believe that the further development and eventual utilization of this nanoformulation could lead to an effective GBM therapy that could extend patient survival rates. PMID:29034126
Benamor, Leila
2014-01-01
Background Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in school aged children. Functional abnormalities have been reported in brain imaging studies in ADHD populations. Psychostimulants are considered as the first line treatment for ADHD. However, little is known of the effect of stimulants on brain metabolites in ADHD patients. Objectives To compare the brain metabolite concentrations in children with ADHD and on stimulants with those of drug naïve children with ADHD, versus typically developed children, in a homogenous genetic sample of French Canadians. Methods Children with ADHD on stimulants (n=57) and drug naïve children with ADHD (n=45) were recruited, as well as typically developed children (n=38). The presence or absence of ADHD diagnosis (Diagnostic and Statistical Manual of Mental Disorders IV criteria) was based on clinical evaluation and The Diagnostic Interview Schedule for Children IV. All children (n=140) underwent a proton magnetic resonance spectroscopy session to measure the ratio of N-acetyl-aspartate, choline, glutamate, and glutamate–glutamine to creatine, respectively, in the left and right prefrontal and striatal regions of the brain, as well as in the left cerebellum. Results When compared with drug naïve children with ADHD, children with ADHD on stimulants and children typically developed were found to have higher choline ratios in the left prefrontal region (P=0.04) and lower N-acetyl-aspartate ratios in the left striatum region (P=0.01), as well as lower glutamate–glutamine ratios in the left cerebellum (P=0.05). In these three regions, there was no difference between children with ADHD on stimulants and typically developed children. Conclusion Therapeutic psychostimulant effects in children with ADHD may be mediated by normalization of brain metabolite levels, particularly in the left fronto-striato-cerebellar regions. PMID:24476627
Biomaterial-based technologies for brain anti-cancer therapeutics and imaging.
Orive, G; Ali, O A; Anitua, E; Pedraz, J L; Emerich, D F
2010-08-01
Treating malignant brain tumors represents one of the most formidable challenges in oncology. Contemporary treatment of brain tumors has been hampered by limited drug delivery across the blood-brain barrier (BBB) to the tumor bed. Biomaterials are playing an increasingly important role in developing more effective brain tumor treatments. In particular, polymer (nano)particles can provide prolonged drug delivery directly to the tumor following direct intracerebral injection, by making them physiochemically able to cross the BBB to the tumor, or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be systemically administered but still specifically target the tumor endothelium or tumor cells themselves. Biomaterials can also serve as targeted delivery devices for novel therapies including gene therapy, photodynamic therapy, anti-angiogenic and thermotherapy. Nanoparticles also have the potential to play key roles in the diagnosis and imaging of brain tumors by revolutionizing both preoperative and intraoperative brain tumor detection, allowing early detection of pre-cancerous cells, and providing real-time, longitudinal, non-invasive monitoring/imaging of the effects of treatment. Additional efforts are focused on developing biomaterial systems that are uniquely capable of delivering tumor-associated antigens, immunotherapeutic agents or programming immune cells in situ to identify and facilitate immune-mediated tumor cell killing. The continued translation of current research into clinical practice will rely on solving challenges relating to the pharmacology of nanoparticles but it is envisioned that novel biomaterials will ultimately allow clinicians to target tumors and introduce multiple, pharmaceutically relevant entities for simultaneous targeting, imaging, and therapy in a unique and unprecedented manner. Copyright 2010 Elsevier B.V. All rights reserved.
Addiction as a Stress Surfeit Disorder
Koob, George F.; Buck, Cara L.; Cohen, Ami; Edwards, Scott; Park, Paula E.; Schlosburg, Joel E.; Schmeichel, Brooke; Vendruscolo, Leandro F.; Wade, Carrie L.; Whitfield, Timothy W.; George, Olivier
2013-01-01
Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress/anti-reward system that contributes to compulsive drug seeking. Thus, brain stress response systems are hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the development and persistence of addiction. The recruitment of anti-reward systems provides a powerful neurochemical basis for the negative emotional states that are responsible for the dark side of addiction. PMID:23747571
Impact of Blood-Brain Barrier Integrity on Tumor Growth and Therapy Response in Brain Metastases.
Osswald, Matthias; Blaes, Jonas; Liao, Yunxiang; Solecki, Gergely; Gömmel, Miriam; Berghoff, Anna S; Salphati, Laurent; Wallin, Jeffrey J; Phillips, Heidi S; Wick, Wolfgang; Winkler, Frank
2016-12-15
The role of blood-brain barrier (BBB) integrity for brain tumor biology and therapy is a matter of debate. We developed a new experimental approach using in vivo two-photon imaging of mouse brain metastases originating from a melanoma cell line to investigate the growth kinetics of individual tumor cells in response to systemic delivery of two PI3K/mTOR inhibitors over time, and to study the impact of microregional vascular permeability. The two drugs are closely related but differ regarding a minor chemical modification that greatly increases brain penetration of one drug. Both inhibitors demonstrated a comparable inhibition of downstream targets and melanoma growth in vitro In vivo, increased BBB permeability to sodium fluorescein was associated with accelerated growth of individual brain metastases. Melanoma metastases with permeable microvessels responded similarly to equivalent doses of both inhibitors. In contrast, metastases with an intact BBB showed an exclusive response to the brain-penetrating inhibitor. The latter was true for macro- and micrometastases, and even single dormant melanoma cells. Nuclear morphology changes and single-cell regression patterns implied that both inhibitors, if extravasated, target not only perivascular melanoma cells but also those distant to blood vessels. Our study provides the first direct evidence that nonpermeable brain micro- and macrometastases can effectively be targeted by a drug designed to cross the BBB. Small-molecule inhibitors with these optimized properties are promising agents in preventing or treating brain metastases in patients. Clin Cancer Res; 22(24); 6078-87. ©2016 AACRSee related commentary by Steeg et al., p. 5953. ©2016 American Association for Cancer Research.
Bleier, Benjamin S; Kohman, Richie E; Feldman, Rachel E; Ramanlal, Shreshtha; Han, Xue
2013-01-01
Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson's disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS.
Bleier, Benjamin S.; Kohman, Richie E.; Feldman, Rachel E.; Ramanlal, Shreshtha; Han, Xue
2013-01-01
Utilization of neuropharmaceuticals for central nervous system(CNS) disease is highly limited due to the blood-brain barrier(BBB) which restricts molecules larger than 500Da from reaching the CNS. The development of a reliable method to bypass the BBB would represent an enormous advance in neuropharmacology enabling the use of many potential disease modifying therapies. Previous attempts such as transcranial catheter implantation have proven to be temporary and associated with multiple complications. Here we describe a novel method of creating a semipermeable window in the BBB using purely autologous tissues to allow for high molecular weight(HMW) drug delivery to the CNS. This approach is inspired by recent advances in human endoscopic transnasal skull base surgical techniques and involves engrafting semipermeable nasal mucosa within a surgical defect in the BBB. The mucosal graft thereby creates a permanent transmucosal conduit for drugs to access the CNS. The main objective of this study was to develop a murine model of this technique and use it to evaluate transmucosal permeability for the purpose of direct drug delivery to the brain. Using this model we demonstrate that mucosal grafts allow for the transport of molecules up to 500 kDa directly to the brain in both a time and molecular weight dependent fashion. Markers up to 40 kDa were found within the striatum suggesting a potential role for this technique in the treatment of Parkinson’s disease. This proof of principle study demonstrates that mucosal engrafting represents the first permanent and stable method of bypassing the BBB thereby providing a pathway for HMW therapeutics directly into the CNS. PMID:23637885
Lotfipour, Shahrdad; Ferguson, Eamonn; Leonard, Gabriel; Perron, Michel; Pike, Bruce; Richer, Louis; Séguin, Jean R; Toro, Roberto; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomás
2009-11-01
Prenatal exposure to maternal cigarette smoking (PEMCS) may affect brain development and behavior in adolescent offspring. To evaluate the involvement of the orbitofrontal cortex (OFC) in mediating the relationship between PEMCS and substance use. Cross-sectional analyses from the Saguenay Youth Study aimed at evaluating the effects of PEMCS on brain development and behavior among adolescents. Nonexposed adolescents were matched with adolescents exposed prenatally to cigarette smoking by maternal educational level. A French Canadian founder population of the Saguenay-Lac-Saint-Jean region of Quebec, Canada. The behavioral data set included 597 adolescents (275 sibships; 12-18 years of age), half of whom were exposed in utero to maternal cigarette smoking. Analysis of cortical thickness and genotyping were performed using available data from 314 adolescents. The likelihood of substance use was assessed with the Diagnostic Interview Schedule for Children Predictive Scales. The number of different drugs tried by each adolescent was assessed using another questionnaire. Thickness of the OFC was estimated from T1-weighted magnetic resonance images using FreeSurfer software. Prenatal exposure to maternal cigarette smoking is associated with an increased likelihood of substance use. Among exposed adolescents, the likelihood of drug experimentation correlates with the degree of OFC thinning. In nonexposed adolescents, the thickness of the OFC increases as a function of the number of drugs tried. The latter effect is moderated by a brain-derived neurotrophic factor (BDNF) genotype (Val66Met). We speculate that PEMCS interferes with the development of the OFC and, in turn, increases the likelihood of drug use among adolescents. In contrast, we suggest that, among nonexposed adolescents, drug experimentation influences the OFC thickness via processes akin to experience-induced plasticity.
In Vitro Cerebrovascular Modeling in the 21st Century: Current and Prospective Technologies
Palmiotti, Christopher A.; Prasad, Shikha; Naik, Pooja; Abul, Kaisar MD; Sajja, Ravi K.; Achyuta, Anilkumar H.; Cucullo, Luca
2014-01-01
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-Brain Barrier. PMID:25098812
In vitro cerebrovascular modeling in the 21st century: current and prospective technologies.
Palmiotti, Christopher A; Prasad, Shikha; Naik, Pooja; Abul, Kaisar M D; Sajja, Ravi K; Achyuta, Anilkumar H; Cucullo, Luca
2014-12-01
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-brain Barrier.
Garbayo, E; Ansorena, E; Blanco-Prieto, M J
2013-11-01
Current treatments for Parkinson's disease (PD) are aimed at addressing motor symptoms but there is no therapy focused on modifying the course of the disease. Successful treatment strategies have been so far limited and brain drug delivery remains a major challenge that restricts its treatment. This review provides an overview of the most promising emerging agents in the field of PD drug discovery, discussing improvements that have been made in brain drug delivery for PD. It will be shown that new approaches able to extend the length of the treatment, to release the drug in a continuous manner or to cross the blood-brain barrier and target a specific region are still needed. Overall, the results reviewed here show that there is an urgent need to develop both symptomatic and disease-modifying treatments, giving priority to neuroprotective treatments. Promising perspectives are being provided in this field by rasagiline and by neurotrophic factors like glial cell line-derived neurotrophic factor. The identification of disease-relevant genes has also encouraged the search for disease-modifying therapies that function by identifying molecularly targeted drugs. The advent of new molecular and cellular targets like α-synuclein, leucine-rich repeat serine/threonine protein kinase 2 or parkin, among others, will require innovative delivery therapies. In this regard, drug delivery systems (DDS) have shown great potential for improving the efficacy of conventional and new PD therapy and reducing its side effects. The new DDS discussed here, which include microparticles, nanoparticles and hydrogels among others, will probably open up possibilities that extend beyond symptomatic relief. However, further work needs to be done before DDS become a therapeutic option for PD patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Fang, Jen-Hung; Chiu, Tsung-Lang; Huang, Wei-Chen; Lai, Yen-Ho; Hu, Shang-Hsiu; Chen, You-Yin; Chen, San-Yuan
2016-03-01
Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers (PDNCs) delivery system modified with lactoferrin (Lf) is developed. The PDNCs are synthesized using the ultraviolet (UV) cross-linkable 10,12-pentacosadiynoic acid (PCDA) monomers through spontaneous assembling onto the surface of superparamagnetic iron oxide (SPIO) nanoparticles to form micelles-polymerized structures. The results demonstrate that PDNCs will reduce the drug leakage and further control the drug release, and display self-responsive fluorescence upon intracellular uptake for cell trafficking and imaging-guided tumor treatment. The magnetic Lf-modified PDNCs with magnetic resonance imaging (MRI) and dual-targeting ability can enhance the transportation of the PDNCs across the BBB for tracking and targeting gliomas. An enhanced therapeutic efficiency can be obtained using Lf-Cur (Curcumin)-PDNCs by improving the retention time of the encapsulated Cur and producing fourfold higher Cur amounts in the brain compared to free Cur. Animal studies also confirm that Lf targeting and controlled release act synergistically to significantly suppress tumors in orthotopic brain-bearing rats. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting
Marianecci, Carlotta; Rinaldi, Federica; Hanieh, Patrizia Nadia; Di Marzio, Luisa; Paolino, Donatella; Carafa, Maria
2017-01-01
The blood–brain barrier (BBB) plays a fundamental role in protecting and maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much more difficult than that to other compartments of the body. In order to bypass or cross the BBB, many strategies have been developed: invasive techniques, such as temporary disruption of the BBB or direct intraventricular and intracerebral administration of the drug, as well as noninvasive techniques. Preliminary results, reported in the large number of studies on the potential strategies for brain delivery, are encouraging, but it is far too early to draw any conclusion about the actual use of these therapeutic approaches. Among the most recent, but still pioneering, approaches related to the nasal mucosa properties, the permeabilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It should be emphasized that this surgical procedure is quite invasive, but the implication for patient outcome needs to be compared to the gold standard of direct intracranial injection, and evaluated whilst keeping in mind that central nervous system diseases and lysosomal storage diseases are chronic and severely debilitating and that up to now no therapy seems to be completely successful. PMID:28184152
Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin
2016-01-01
MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.
Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin
2016-01-01
MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results. PMID:26105141
Zou, Dan; Wang, Wei; Lei, Daoxi; Yin, Ying; Ren, Peng; Chen, Jinju; Yin, Tieying; Wang, Bochu; Wang, Guixue; Wang, Yazhou
2017-01-01
For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood-brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.
CNS Anticancer Drug Discovery and Development Conference White Paper
Levin, Victor A.; Tonge, Peter J.; Gallo, James M.; Birtwistle, Marc R.; Dar, Arvin C.; Iavarone, Antonio; Paddison, Patrick J.; Heffron, Timothy P.; Elmquist, William F.; Lachowicz, Jean E.; Johnson, Ted W.; White, Forest M.; Sul, Joohee; Smith, Quentin R.; Shen, Wang; Sarkaria, Jann N.; Samala, Ramakrishna; Wen, Patrick Y.; Berry, Donald A.; Petter, Russell C.
2015-01-01
Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric “Accelerating Drug Discovery and Development for Brain Tumors,” further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward. PMID:26403167
Addictive drugs and brain stimulation reward.
Wise, R A
1996-01-01
Direct electrical or chemical stimulation of specific brain regions can establish response habits similar to those established by natural rewards such as food or sexual contact. Cocaine, mu and delta opiates, nicotine, phencyclidine, and cannabis each have actions that summate with rewarding electrical stimulation of the medial forebrain bundle (MFB). The reward-potentiating effects of amphetamine and opiates are associated with central sites of action where these drugs also have their direct rewarding effects, suggesting common mechanisms for drug reward per se and for drug potentiation of brain stimulation reward. The central sites at which these and perhaps other drugs of abuse potentiate brain stimulation reward and are rewarding in their own right are consistent with the hypothesis that the laboratory reward of brain stimulation and the pharmacological rewards of addictive drugs are habit forming because they act in the brain circuits that subserve more natural and biologically significant rewards.
Thongrangsalit, Sirigul; Phaechamud, Thawatchai; Lipipun, Vimolmas; Ritthidej, Garnpimol C
2015-07-01
Both low solubility and high hepatic metabolism cause low oral bioavailability of bromocriptine mesylate (BM) leading to very low drug amount in brain. Self-microemulsion (SME) tablets were developed to improve solubility, stimulate lipoprotein synthesis to promote lymphatic transport, avoid hepatic metabolism and target drug to brain. SME liquid containing castor oil, Tween(®) 80 and Cremophor(®) EL was prepared and then adsorbed onto solid carries, Aerosil(®)200, Aeroperl(®)300 or NeusilinUS2(®), yielding SME powders. The optimal ratios of SME liquid to carriers determined from flowability and scanning electron photomicrographs before tableting were 1.5:1, 2:1 and 2.5:1 for Aerosil(®)200, Aeroperl(®)300 and NeusilinUS2(®), respectively. Only Aeroperl(®)300 SME tablet had comparable dissolution to BM commercial tablet. From in vitro study in Caco-2 cells, fluorescein loaded SME tablet showed higher uptake than fluorescein loaded in either oil or surfactant. Although significantly lower amount of drug was permeated from SME tablet than from commercial tablet, higher drug uptake was obviously observed (P<0.05). In addition, higher lipoprotein synthesis expressing as content of apolipoprotein B (apo-B) found in secreted chylomicron resulted in higher drug uptake in co-culture of brain endothelial cells (bEnd.3) and astrocytes (CTX TNA2) from drug loaded SME tablet when compared to commercial tablet (P<0.05) due to binding of apo-B to LDL receptors expressed on the surface of endothelial cells. Therefore, tablet of SME adsorbed onto porous carrier potentially delivered BM to brain via lymphatic transport by increasing the lipoprotein synthesis. Copyright © 2015. Published by Elsevier B.V.
Urban, Kimberly R.; Gao, Wen-Jun
2013-01-01
Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate’s actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD. PMID:24095262
Xu, Li-Xiao; Wang, Tian-Tian; Geng, Yin-Yin; Wang, Wen-Yan; Li, Yin; Duan, Xiao-Kun; Xu, Bin; Liu, Charles C; Liu, Wan-Hui
2017-09-01
The direct analysis of drug distribution of rotigotine-loaded microspheres (RoMS) from tissue sections by liquid extraction surface analysis (LESA) coupled with tandem mass spectrometry (MS/MS) was demonstrated. The RoMS distribution in rat tissues assessed by the ambient LESA-MS/MS approach without extensive or tedious sample pretreatment was compared with that obtained by a conventional liquid chromatography tandem mass spectrometry (LC-MS/MS) method in which organ excision and subsequent solvent extraction were commonly employed before analysis. Results obtained from the two were well correlated for a majority of the organs, such as muscle, liver, stomach, and hippocampus. The distribution of RoMS in the brain, however, was found to be mainly focused in the hippocampus and striatum regions as shown by the LESA-imaged profiles. The LESA approach we developed is sensitive enough, with an estimated LLOQ at 0.05 ng/mL of rotigotine in brain tissue, and information-rich with minimal sample preparation, suitable, and promising in assisting the development of new drug delivery systems for controlled drug release and protection. Graphical abstract Workflow for the LESA-MS/MS imaging of brain tissue section after intramuscular RoMS administration.
DOT National Transportation Integrated Search
1979-05-01
Accurate control of eye movements and rapid detection of unexpected events in the periphery of the visual field are critically important in the aviation environment. We have studied the effects of certain drugs and environmental pollutants on brain m...
Nour, Samia A; Abdelmalak, Nevine S; Naguib, Marianne J; Rashed, Hassan M; Ibrahim, Ahmed B
2016-11-01
Clonazepam (CZ) is an anti-epileptic drug used mainly in status epilepticus (SE). The drug belongs to Class II according to BCS classification with very limited solubility and high permeability and it suffers from extensive first-pass metabolism. The aim of the present study was to develop CZ-loaded polymeric micelles (PM) for direct brain delivery allowing immediate control of SE. PM were prepared via thin film hydration (TFH) technique adopting a central composite face-centered design (CCFD). The seventeen developed formulae were evaluated in terms of entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro release. For evaluating the in vivo behavior of the optimized formula, both biodistrbution using 99m Tc-radiolabeled CZ and pharmacodynamics studies were done in addition to ex vivo cytotoxicty. At a drug:Pluronic® P123:Pluronic® L121 ratio of 1:20:20 (PM7), a high EE, ZP, Q8h, and a low PDI was achieved. The biodistribution studies revealed that the optimized formula had significantly higher drug targeting efficiency (DTE = 242.3%), drug targeting index (DTI = 144.25), and nose-to-brain direct transport percentage (DTP = 99.30%) and a significant prolongation of protection from seizures in comparison to the intranasally administered solution with minor histopathological changes. The declared results reveal the ability of the developed PM to be a strong potential candidate for the emergency treatment of SE.
Kohlmeier, K A
2015-06-01
Prenatal exposure to nicotine, occurring either via maternal smoking or via use of transdermal nicotine patches to facilitate cigarette abstinence by pregnant women, is associated with ∼ 13% of pregnancies worldwide. Nicotine exposure during gestation has been correlated with several negative physiological and psychosocial outcomes, including heightened risk for aberrant behaviors involving alterations in processing of attention as well as an enhanced liability for development of drug dependency. Nicotine is a terotogen, altering neuronal development of various neurotransmitter systems, and it is likely these alterations participate in postnatal deficits in attention control and facilitate development of drug addiction. This review discusses the alterations in neuronal development within the brain's major neurotransmitter systems, with special emphasis placed on alterations within the laterodorsal tegmental nucleus, in light of the role this cholinergic nucleus plays in attention and addiction. Changes induced within this nucleus by gestational exposure to nicotine, in combination with changes induced in other brain regions, are likely to contribute to the transgenerational burden imposed by nicotine. Although neuroplastic changes induced by nicotine are not likely to act in isolation, and are expected to interact with epigenetic changes induced by preconception exposure to drugs of abuse, unraveling these changes within the developing brain will facilitate eventual development of targeted treatments for the unique vulnerability for arousal disorders and development of addiction within the population of individuals who have been prenatally exposed to nicotine.
Adolescent Neurocognitive Development, Self-Regulation, and School-Based Drug Use Prevention
Herzog, Thaddeus A.; Black, David S.; Zaman, Adnin; Riggs, Nathaniel R.; Sussman, Steve
2014-01-01
Adolescence is marked by several key development-related changes, including neurocognitive changes. Cognitive abilities associated with self-regulation are not fully developed until late adolescence or early adulthood whereas tendencies to take risks and seek thrilling and novel experience seem to increase significantly throughout this phase, resulting in a discrepancy between increased susceptibility to poor regulation and lower ability to exercise self-control. Increased vulnerability to drug use initiation, maintenance, and dependence during adolescence may be explained based on this imbalance in the self-regulation system. In this paper, we highlight the relevance of schools as a setting for delivering adolescent drug use prevention programs that are based on recent findings from neuroscience concerning adolescent brain development. We discuss evidence from school-based as well as laboratory research that suggests that suitable training may improve adolescents’ executive brain functions that underlie self-regulation abilities and, as a result, help prevent drug use and abuse. We note that considerable further research is needed in order (1) to determine that self-regulation training has effects at the neurocognitive level and (2) to effectively incorporate self-regulation training based on neuropsychological models into school-based programming. PMID:23408284
Adolescent neurocognitive development, self-regulation, and school-based drug use prevention.
Pokhrel, Pallav; Herzog, Thaddeus A; Black, David S; Zaman, Adnin; Riggs, Nathaniel R; Sussman, Steve
2013-06-01
Adolescence is marked by several key development-related changes, including neurocognitive changes. Cognitive abilities associated with self-regulation are not fully developed until late adolescence or early adulthood whereas tendencies to take risks and seek thrilling and novel experience seem to increase significantly throughout this phase, resulting in a discrepancy between increased susceptibility to poor regulation and lower ability to exercise self-control. Increased vulnerability to drug use initiation, maintenance, and dependence during adolescence may be explained based on this imbalance in the self-regulation system. In this paper, we highlight the relevance of schools as a setting for delivering adolescent drug use prevention programs that are based on recent findings from neuroscience concerning adolescent brain development. We discuss evidence from school-based as well as laboratory research that suggests that suitable training may improve adolescents' executive brain functions that underlie self-regulation abilities and, as a result, help prevent drug use and abuse. We note that considerable further research is needed in order (1) to determine that self-regulation training has effects at the neurocognitive level and (2) to effectively incorporate self-regulation training based on neuropsychological models into school-based programming.
Treatment of Invasive Brain Tumors Using a Chain-like Nanoparticle.
Peiris, Pubudu M; Abramowski, Aaron; Mcginnity, James; Doolittle, Elizabeth; Toy, Randall; Gopalakrishnan, Ramamurthy; Shah, Shruti; Bauer, Lisa; Ghaghada, Ketan B; Hoimes, Christopher; Brady-Kalnay, Susann M; Basilion, James P; Griswold, Mark A; Karathanasis, Efstathios
2015-04-01
Glioblastoma multiforme is generally recalcitrant to current surgical and local radiotherapeutic approaches. Moreover, systemic chemotherapeutic approaches are impeded by the blood-tumor barrier. To circumvent limitations in the latter area, we developed a multicomponent, chain-like nanoparticle that can penetrate brain tumors, composed of three iron oxide nanospheres and one drug-loaded liposome linked chemically into a linear chain-like assembly. Unlike traditional small-molecule drugs or spherical nanotherapeutics, this oblong-shaped, flexible nanochain particle possessed a unique ability to gain access to and accumulate at glioma sites. Vascular targeting of nanochains to the αvβ3 integrin receptor resulted in a 18.6-fold greater drug dose administered to brain tumors than standard chemotherapy. By 2 hours after injection, when nanochains had exited the blood stream and docked at vascular beds in the brain, the application of an external low-power radiofrequency field was sufficient to remotely trigger rapid drug release. This effect was produced by mechanically induced defects in the liposomal membrane caused by the oscillation of the iron oxide portion of the nanochain. In vivo efficacy studies conducted in two different mouse orthotopic models of glioblastoma illustrated how enhanced targeting by the nanochain facilitates widespread site-specific drug delivery. Our findings offer preclinical proof-of-concept for a broadly improved method for glioblastoma treatment. ©2015 American Association for Cancer Research.
Dual roles of dopamine in food- and drug-seeking: the drive-reward paradox
Wise, Roy A.
2012-01-01
The question of whether (or to what degree) obesity reflects addiction to high energy foods often narrows to the question of whether the overeating of these foods causes the same long-term neuroadaptations as are identified with the late stages of addiction. Of equal or perhaps greater interest is the question of whether common brain mechanisms mediate the acquisition and development of eating and drug-taking habits. The earliest evidence on this question is rooted in early studies of brain stimulation reward. Lateral hypothalamic electrical stimulation can be reinforcing in some conditions and can motivate feeding in others. That stimulation of the same brain region should be both reinforcing and drive-inducing is paradoxical; why should an animal work to induce a drive-like state such as hunger? This is known as the “drive-reward paradox.” Insights into the substrates of the drive-reward paradox suggest an answer to the controversial question of whether the dopamine system—a system “downstream” from the stimulated fibers of the lateral hypothalamus—is more critically involved in “wanting” or in “liking” of various rewards including food and addictive drugs. That the same brain circuitry is implicated in the motivation for and the reinforcement by both food and addictive drugs extends the argument for a common mechanism underlying compulsive overeating and compulsive drug-taking. PMID:23044182
Non-invasive optical modulation of local vascular permeability
NASA Astrophysics Data System (ADS)
Choi, Myunghwan; Choi, Chulhee
2011-03-01
For a systemically administered drug to act, it first needs to cross the vascular wall. This step represents a bottleneck for drug development, especially in the brain or retina, where tight junctions between endothelial cells form physiological barriers. Here, we demonstrate that femtosecond pulsed laser irradiation focused on the blood vessel wall induces transient permeabilization of plasma. Nonlinear absorption of the pulsed laser enabled the noninvasive modulation of vascular permeability with high spatial selectivity in three dimensions. By combining this method with systemic injection, we could locally deliver molecular probes in various tissues, such as brain cortex, meninges, ear, striated muscle, and bone. We suggest this method as a novel delivery tool for molecular probes or drugs.
Self-averaging in complex brain neuron signals
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Fukayama, D.; Yadid, G.
2002-12-01
Nonlinear statistical properties of Ventral Tegmental Area (VTA) of limbic brain are studied in vivo. VTA plays key role in generation of pleasure and in development of psychological drug addiction. It is shown that spiking time-series of the VTA dopaminergic neurons exhibit long-range correlations with self-averaging behavior. This specific VTA phenomenon has no relation to VTA rewarding function. Last result reveals complex role of VTA in limbic brain.
Mychasiuk, Richelle; Metz, Gerlinde A S
2016-11-01
Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andersen, Susan L.; Navalta, Carryl P.
2010-01-01
Our aim is to present a working model that may serve as a valuable heuristic to predict enduring effects of drugs when administered during development. Our primary tenet is that a greater understanding of neurodevelopment can lead to improved treatment that intervenes early in the progression of a given disorder and prevents symptoms from manifesting. The immature brain undergoes significant changes during the transitions between childhood, adolescence, and adulthood. Such changes in innervation, neurotransmitter levels, and their respective signaling mechanisms have profound and observable changes on typical behavior, but also increase vulnerability to psychiatric disorders when the maturational process goes awry. Given the remarkable plasticity of the immature brain to adapt to its external milieu, preventive interventions may be possible. We intend for this review to initiate a discussion of how currently used psychotropic agents can influence brain development. Drug exposure during sensitive periods may have beneficial long-term effects, but harmful delayed consequences may be possible as well. Regardless of the outcome, this information needs to be used to improve or develop alternative approaches for the treatment of childhood disorders. With this framework in mind, we present what is known about the effects of stimulants, antidepressants, and antipsychotics on brain maturation (including animal studies that use more clinically-relevant dosing paradigms or relevant animal models). We endeavor to provocatively set the stage for altering treatment approaches for improving mental health in non-adult populations. PMID:21309771
The Role of Abcb5 Alleles in Susceptibility to Haloperidol-Induced Toxicity in Mice and Humans
Zheng, Ming; Zhang, Haili; Dill, David L.; Clark, J. David; Tu, Susan; Yablonovitch, Arielle L.; Tan, Meng How; Zhang, Rui; Rujescu, Dan; Wu, Manhong; Tessarollo, Lino; Vieira, Wilfred; Gottesman, Michael M.; Deng, Suhua; Eberlin, Livia S.; Zare, Richard N.; Billard, Jean-Martin; Gillet, Jean-Pierre; Li, Jin Billy; Peltz, Gary
2015-01-01
Background We know very little about the genetic factors affecting susceptibility to drug-induced central nervous system (CNS) toxicities, and this has limited our ability to optimally utilize existing drugs or to develop new drugs for CNS disorders. For example, haloperidol is a potent dopamine antagonist that is used to treat psychotic disorders, but 50% of treated patients develop characteristic extrapyramidal symptoms caused by haloperidol-induced toxicity (HIT), which limits its clinical utility. We do not have any information about the genetic factors affecting this drug-induced toxicity. HIT in humans is directly mirrored in a murine genetic model, where inbred mouse strains are differentially susceptible to HIT. Therefore, we genetically analyzed this murine model and performed a translational human genetic association study. Methods and Findings A whole genome SNP database and computational genetic mapping were used to analyze the murine genetic model of HIT. Guided by the mouse genetic analysis, we demonstrate that genetic variation within an ABC-drug efflux transporter (Abcb5) affected susceptibility to HIT. In situ hybridization results reveal that Abcb5 is expressed in brain capillaries, and by cerebellar Purkinje cells. We also analyzed chromosome substitution strains, imaged haloperidol abundance in brain tissue sections and directly measured haloperidol (and its metabolite) levels in brain, and characterized Abcb5 knockout mice. Our results demonstrate that Abcb5 is part of the blood-brain barrier; it affects susceptibility to HIT by altering the brain concentration of haloperidol. Moreover, a genetic association study in a haloperidol-treated human cohort indicates that human ABCB5 alleles had a time-dependent effect on susceptibility to individual and combined measures of HIT. Abcb5 alleles are pharmacogenetic factors that affect susceptibility to HIT, but it is likely that additional pharmacogenetic susceptibility factors will be discovered. Conclusions ABCB5 alleles alter susceptibility to HIT in mouse and humans. This discovery leads to a new model that (at least in part) explains inter-individual differences in susceptibility to a drug-induced CNS toxicity. PMID:25647612
Gao, Wei; Liu, Yongchun; Jing, Guixia; Li, Ke; Zhao, Yuan; Sha, Baoyong; Wang, Qiang; Wu, Daocheng
2017-01-01
A novel strategy of rapid transport across the blood-brain barrier (BBB) via phosphatidylethanolamine-triggered release is developed through both molecular dynamics (MD) simulation and experiments. Hydrophobic drugs, namely, propofol, iodine, and 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide, were loaded with propionylated amylose helix (HLPAH) nanoclusters to form PLPAH, ILPAH, and DLPAH nanoclusters, respectively. These clusters were subjected to MD simulation, structure measurement, in vitro triggered study, in vivo DLPAH imaging, and analysis of PLPAH sedative effects on rabbits. Results indicated that HLPAH nanoclusters were initially located on the BBB, and the helix was unfolded to release the loaded hydrophobic drugs. The released drugs crossed the BBB and performed their functions in the central nervous system (CNS) through concentration gradient and hydrophobicity. This mechanism of HLPAH across the BBB featured high membrane permeability and specificity, rapid onset, short maintenance, rapid recovery, and lower dosage of drugs. Hence, this novel strategy is very meaningful for the development of CNS drug carriers and the proposed system could be used to improve the therapeutic effects of CNS diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.
Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M
2018-03-28
Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.
Agrawal, Mukta; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Hamano, Nobuhito; Li, Shyh-Dar; Chougule, Mahavir; Shoyele, Sunday A; Gupta, Umesh; Ajazuddin; Alexander, Amit
2018-06-01
Brain is supposed to be the most complicated part of the body which is very far from the reach of drug moieties. The drug entry in to the brain region depends upon various factors, and among those, the blood-brain-barrier remains the most prominent one. This barrier restricts the entry of almost all the drug and most of the essential biological components like proteins, peptides, etc. and hinders treatment of the CNS disorders. Alzheimer Disease (AD) is one such brain disorder, more specifically a neurodegenerative disorder which primarily affects the older adults. Areas covered: From solubility enhancement to targeted delivery, the nanoparticulate system became the answer for almost all the criticality related to drug delivery. Hence, nanoparticulate drug carrier system has been widely utilizing to remove the hurdles of brain drug delivery. Keeping this in mind, we have underlined the proficiencies of the nanocarrier systems which claim to improve the drug efficacy for the treatment of the AD. Expert opinion: The nanotechnological approaches are highly exploited by the researchers to enhance the drug permeation across the BBB to improve its bioavailability and efficacy by protecting the drug from peripheral degradation. However, still in this area of drug targeting provides vast scope for discoveries towards the enhancement of drug efficacy through surface modifications, site specification, reduced toxicity of the nanocarrier system and so on.
Delivery of peptide and protein drugs over the blood-brain barrier.
Brasnjevic, Ivona; Steinbusch, Harry W M; Schmitz, Christoph; Martinez-Martinez, Pilar
2009-04-01
Peptide and protein (P/P) drugs have been identified as showing great promises for the treatment of various neurodegenerative diseases. A major challenge in this regard, however, is the delivery of P/P drugs over the blood-brain barrier (BBB). Intense research over the last 25 years has enabled a better understanding of the cellular and molecular transport mechanisms at the BBB, and several strategies for enhanced P/P drug delivery over the BBB have been developed and tested in preclinical and clinical-experimental research. Among them, technology-based approaches (comprising functionalized nanocarriers and liposomes) and pharmacological strategies (such as the use of carrier systems and chimeric peptide technology) appear to be the most promising ones. This review combines a comprehensive overview on the current understanding of the transport mechanisms at the BBB with promising selected strategies published so far that can be applied to facilitate enhanced P/P drug delivery over the BBB.
Surface modified PLGA nanoparticles for brain targeting of Bacoside-A.
Jose, S; Sowmya, S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B
2014-10-15
The present paper focuses on the development and in vitro/in vivo characterization of nanoparticles composed of poly-(D,L)-Lactide-co-Glycolide (PLGA) loading Bacoside-A, as a new approach for the brain delivery of the neuroprotective drug for the treatment of neurodegenerative disorders (e.g. Alzheimer Disease). Bacoside-A-loaded PLGA nanoparticles were prepared via o/w emulsion solvent evaporation technique. Surface of the nanoparticles were modified by coating with polysorbate 80 to facilitate the crossing of the blood brain barrier (BBB), and the processing parameters (i.e. sonication time, the concentration of polymer (PLGA) and surfactant (polysorbate 80), and drug-polymer ratio) were optimized with the aim to achieve a high production yield. Brain targeting potential of the nanoparticles was evaluated by in vivo studies using Wistar albino rats. The nanoparticles produced by optimal formulation were within the nanosized range (70-200 nm) with relatively low polydispersity index (0.391 ± 1.2). The encapsulation efficiency of Bacoside-A in PLGA nanoparticles was 57.11 ± 7.11%, with a drug loading capacity of 20.5 ± 1.98%. SEM images showed the spherical shape of the PLGA nanoparticles, whereas their low crystallinity was demonstrated by X-ray studies, which also confirmed no chemical interactions between the drug and polymer molecules. The in vitro release of Bacoside-A from the PLGA nanoparticles followed a sustained release pattern with a maximum release of up to 83.04 ± 2.55% in 48 h. When compared to pure drug solution (2.56 ± 1.23 μg/g tissue), in vivo study demonstrated higher brain concentration of Bacoside-A (23.94 ± 1.74 μg/g tissue) suggesting a significant role of surface coated nanoparticles on brain targeting. The results indicate the potential of surface modified PLGA nanoparticles for the delivery of Bacoside-A to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.
Batra, Vinita; Guerin, Glenn F.; Goeders, Nicholas E.; Wilden, Jessica A.
2016-01-01
Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug. PMID:26863392
Mihajlica, Nebojsa; Betsholtz, Christer; Hammarlund-Udenaes, Margareta
2018-06-19
Pericytes are perivascular cells that play important roles in the regulation of the blood-brain barrier (BBB) properties. Pericyte-deficiency causes compromised BBB integrity and increase in permeability to different macromolecules mainly by upregulated transcytosis. The aim of the present study was to investigate pericyte involvement in the extent of small-molecular drug transport across the BBB. This was performed with five compounds: diazepam, digoxin, levofloxacin, oxycodone and paliperidone. Compounds were administered at low doses via subcutaneous injections as a cassette (simultaneously) to pericyte-deficient Pdgfb ret/ret mice and corresponding WT controls. Total drug partitioning across the BBB was calculated as the ratio of total drug exposures in brain tissue and plasma (K p,brain ). In addition, equilibrium dialysis experiments were performed to estimate unbound drug fractions in brain (f u,brain ) and plasma (f u,plasma ). This enabled estimation of unbound drug partitioning coefficients (K p,uu,brain ). The results indicated slight tendencies towards increase of total brain exposures in Pdgfb ret/ret mice as reflected in K p,brain values, which were within the 2-fold limit. Part of these differences could be explained by differences in plasma protein binding. No difference was found in brain tissue binding. The combined in vivo and in vitro data resulted in no differences in BBB transport in pericyte-deficiency, as described by similar K p,uu,brain values in Pdgfb ret/ret and control mice. In conclusion, these findings imply no influence of pericytes on the extent of BBB transport of small-molecular drugs, and suggest preserved BBB features relevant for handling of this type of molecules irrespective of pericyte presence at the brain endothelium. Copyright © 2018. Published by Elsevier B.V.
Addiction and brain reward and antireward pathways.
Gardner, Eliot L
2011-01-01
Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly), and that they enhance the functioning of the reward circuitry of the brain (producing the 'high' that the drug user seeks). The core reward circuitry consists of an 'in-series' circuit linking the ventral tegmental area, nucleus accumbens and ventral pallidum via the medial forebrain bundle. Although originally believed to simply encode the set point of hedonic tone, these circuits are now believed to be functionally far more complex, also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. 'Hedonic dysregulation' within these circuits may lead to addiction. The 'second-stage' dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dop-aminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g. opiates), tolerance to the euphoric effects develops with chronic use. Postuse dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get high, but simply to get back to normal ('get straight'). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the 'bio-psycho-social' model of etiology holds very well for addiction. Addiction appears to correlate with a hypodopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are (a) reexposure to addictive drugs, (b) stress, and (c) reexposure to environmental cues (people, places, things) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves (a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter corticotrophin-releasing factor, and (b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising. Copyright © 2011 S. Karger AG, Basel.
Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.
2012-01-01
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217
Weinstein, Aviv; Lejoyeux, Michel
2015-03-01
There is emerging evidence that the psychobiological mechanisms underlying behavioral addictions such as internet and videogame addiction resemble those of addiction for substances of abuse. Review of brain imaging, treatment and genetic studies on videogame and internet addiction. Literature search of published articles between 2009 and 2013 in Pubmed using "internet addiction" and "videogame addiction" as the search word. Twenty-nine studies have been selected and evaluated under the criteria of brain imaging, treatment, and genetics. Brain imaging studies of the resting state have shown that long-term internet game playing affected brain regions responsible for reward, impulse control and sensory-motor coordination. Brain activation studies have shown that videogame playing involved changes in reward and loss of control and that gaming pictures have activated regions similarly to those activated by cue-exposure to drugs. Structural studies have shown alterations in the volume of the ventral striatum possible as result of changes in reward. Furthermore, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and that there were faulty inhibitory control and reward mechanisms videogame addicted individuals. Finally, treatment studies using fMRI have shown reduction in craving for videogames and reduced associated brain activity. Videogame playing may be supported by similar neural mechanisms underlying drug abuse. Similar to drug and alcohol abuse, internet addiction results in sub-sensitivity of dopamine reward mechanisms. Given the fact that this research is in its early stage it is premature to conclude that internet addiction is equivalent to substance addictions. © American Academy of Addiction Psychiatry.
Potential use of polymeric nanoparticles for drug delivery across the blood-brain barrier.
Tosi, G; Bortot, B; Ruozi, B; Dolcetta, D; Vandelli, M A; Forni, F; Severini, G M
2013-01-01
Nanomedicine is certainly one of the scientific and technological challenges of the coming years. In particular, biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted delivery of different agents, including recombinant proteins, plasmid DNA, and low molecular weight compounds. PLGA NPs present some very attractive properties such as biodegradability and biocompatibility, protection of drug from degradation, possibility of sustained release, and the possibility to modify surface properties to target nanoparticles to specific organs or cells. Moreover, PLGA NPs have received the FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, thus reducing the time for human clinical applications. This review in particular deals on surface modification of PLGA NPs and their possibility of clinical applications, including treatment for brain pathologies such as brain tumors and Lysosomal Storage Disorders with neurological involvement. Since a great number of pharmacologically active molecules are not able to cross the Blood-Brain Barrier (BBB) and reach the Central Nervous System (CNS), new brain targeted polymeric PLGA NPs modified with glycopeptides (g7- NPs) have been recently produced. In this review several in vivo biodistribution studies and pharmacological proof-of evidence of brain delivery of model drugs are reported, demonstrating the ability of g7-NPs to create BBB interaction and trigger an efficacious BBB crossing. Moreover, another relevant development of NPs surface engineering was achieved by conjugating to the surface of g7-NPs, some specific and selective antibodies to drive NPs directly to a specific cell type once inside the CNS parenchyma.
Kallem, Rajareddy; Kulkarni, Chetan P; Patel, Dakshay; Thakur, Megha; Sinz, Michael; Singh, Sheelendra P; Mahammad, S Shahe; Mandlekar, Sandhya
2012-06-01
In the present study we have developed a simple, time, and cost effective in vivo rodent protocol to screen the susceptibility of a test compound for P-glycoprotein (P-gp) mediated efflux at the blood brain barrier (BBB) during early drug discovery. We used known P-gp substrates as test compounds (quinidine, digoxin, and talinolol) and elacridar (GF120918) as a chemical inhibitor to establish the model. The studies were carried out in both mice and rats. Elacridar was dosed intravenously at 5 mg/kg, 0.5 h prior to probe substrate administration. Plasma and brain samples were collected and analyzed using UPLC-MS/MS. In the presence of elacridar, the ratio of brain to plasma area under the curve (B/P) in mouse increased 2, 4, and 38-fold, respectively, for talinolol, digoxin, and quinidine; whereas in rat, a 70-fold increase was observed for quinidine. Atenolol, a non P-gp substrate, exhibited poor brain penetration in the presence or absence of elacridar in both species (B/P ratio ~ 0.1). Elacridar had no significant effect on the systemic clearance of digoxin or quinidine; however, a trend towards increasing volume of distribution and half life was observed. Our results support the utility of elacridar in evaluation of the influence of P-gp mediated efflux on drug distribution to the brain. Our protocol employing a single intravenous dose of elacridar and test compound provides a cost effective alternative to expensive P-gp knockout mice models during early drug discovery.
Dynamic vaccine blocks relapse to compulsive intake of heroin
Schlosburg, Joel E.; Vendruscolo, Leandro F.; Bremer, Paul T.; Lockner, Jonathan W.; Wade, Carrie L.; Nunes, Ashlee A. K.; Stowe, G. Neil; Edwards, Scott; Janda, Kim D.; Koob, George F.
2013-01-01
Heroin addiction, a chronic relapsing disorder characterized by excessive drug taking and seeking, requires constant psychotherapeutic and pharmacotherapeutic interventions to minimize the potential for further abuse. Vaccine strategies against many drugs of abuse are being developed that generate antibodies that bind drug in the bloodstream, preventing entry into the brain and nullifying psychoactivity. However, this strategy is complicated by heroin’s rapid metabolism to 6-acetylmorphine and morphine. We recently developed a “dynamic” vaccine that creates antibodies against heroin and its psychoactive metabolites by presenting multihaptenic structures to the immune system that match heroin’s metabolism. The current study presents evidence of effective and continuous sequestration of brain-permeable constituents of heroin in the bloodstream following vaccination. The result is efficient blockade of heroin activity in treated rats, preventing various features of drugs of abuse: heroin reward, drug-induced reinstatement of drug seeking, and reescalation of compulsive heroin self-administration following abstinence in dependent rats. The dynamic vaccine shows the capability to significantly devalue the reinforcing and motivating properties of heroin, even in subjects with a history of dependence. In addition, targeting a less brain-permeable downstream metabolite, morphine, is insufficient to prevent heroin-induced activity in these models, suggesting that heroin and 6-acetylmorphine are critical players in heroin’s psychoactivity. Because the heroin vaccine does not target opioid receptors or common opioid pharmacotherapeutics, it can be used in conjunction with available treatment options. Thus, our vaccine represents a promising adjunct therapy for heroin addiction, providing continuous heroin antagonism, requiring minimal medical monitoring and patient compliance. PMID:23650354
Gustafsson, Sofia; Lindström, Veronica; Ingelsson, Martin; Hammarlund-Udenaes, Margareta; Syvänen, Stina
2018-01-01
Pathophysiological impairment of the neurovascular unit, including the integrity and dynamics of the blood-brain barrier (BBB), has been denoted both a cause and consequence of neurodegenerative diseases. Pathological impact on BBB drug delivery has also been debated. The aim of the present study was to investigate BBB drug transport, by determining the unbound brain-to-plasma concentration ratio (K p,uu,brain ), in aged AβPP-transgenic mice, α-synuclein transgenic mice, and wild type mice. Mice were dosed with a cassette of five compounds, including digoxin, levofloxacin (1 mg/kg, s.c.), paliperidone, oxycodone, and diazepam (0.25 mg/kg, s.c.). Brain and blood were collected at 0.5, 1, or 3 h after dosage. Drug concentrations were measured using LC-MS/MS. The total brain-to-plasma concentration ratio was calculated and equilibrium dialysis was used to determine the fraction of unbound drug in brain and plasma for all compounds. Together, these three measures were used to determine the K p,uu,brain value. Despite Aβ or α-synuclein pathology in the current animal models, no difference was observed in the extent of drug transport across the BBB compared to wild type animals for any of the compounds investigated. Hence, the present study shows that the concept of a leaking barrier within neurodegenerative conditions has to be interpreted with caution when estimating drug transport into the brain. The capability of the highly dynamic BBB to regulate brain drug exposure still seems to be intact despite the presence of pathology. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Phenobarbital and midazolam increase neonatal seizure-associated neuronal injury.
Torolira, Daniel; Suchomelova, Lucie; Wasterlain, Claude G; Niquet, Jerome
2017-07-01
Status epilepticus is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. γ-Aminobutyric acidergic (GABAergic) drugs, the standard treatment for neonatal seizures, can have excitatory effects in the neonatal brain, which may worsen the seizures and their effects. Using a recently developed model of status epilepticus in postnatal day 7 rat pups that results in widespread neuronal injury, we found that the GABA A agonists phenobarbital and midazolam significantly increased status epilepticus-associated neuronal injury in various brain regions. Our results suggest that more research is needed into the possible deleterious effects of GABAergic drugs on neonatal seizures and on excitotoxic neuronal injury in the immature brain. Ann Neurol 2017;82:115-120. © 2017 American Neurological Association.
Marklund, Niklas; Hillered, Lars
2011-01-01
Traumatic brain injury (TBI) is the leading cause of death and disability in young adults. Survivors of TBI frequently suffer from long-term personality changes and deficits in cognitive and motor performance, urgently calling for novel pharmacological treatment options. To date, all clinical trials evaluating neuroprotective compounds have failed in demonstrating clinical efficacy in cohorts of severely injured TBI patients. The purpose of the present review is to describe the utility of animal models of TBI for preclinical evaluation of pharmacological compounds. No single animal model can adequately mimic all aspects of human TBI owing to the heterogeneity of clinical TBI. To successfully develop compounds for clinical TBI, a thorough evaluation in several TBI models and injury severities is crucial. Additionally, brain pharmacokinetics and the time window must be carefully evaluated. Although the search for a single-compound, ‘silver bullet’ therapy is ongoing, a combination of drugs targeting various aspects of neuroprotection, neuroinflammation and regeneration may be needed. In summary, finding drugs and prove clinical efficacy in TBI is a major challenge ahead for the research community and the drug industry. For a successful translation of basic science knowledge to the clinic to occur we believe that a further refinement of animal models and functional outcome methods is important. In the clinical setting, improved patient classification, more homogenous patient cohorts in clinical trials, standardized treatment strategies, improved central nervous system drug delivery systems and monitoring of target drug levels and drug effects is warranted. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21175576
Brain aging and Parkinson's disease: New therapeutic approaches using drug delivery systems.
Rodríguez-Nogales, C; Garbayo, E; Carmona-Abellán, M M; Luquin, M R; Blanco-Prieto, M J
2016-02-01
The etiology and pathogenesis of Parkinson's disease (PD) is unknown, aging being the strongest risk factor for brain degeneration. Understanding PD pathogenesis and how aging increases the risk of disease would aid the development of therapies able to slow or prevent the progression of this neurodegenerative disorder. In this review we provide an overview of the most promising therapeutic targets and strategies to delay the loss of dopaminergic neurons observed both in PD and aging. Among them, handling alpha-synuclein toxicity, enhancing proteasome and lysosome clearance, ameliorating mitochondrial disruptions and modifying the glial environment are so far the most promising candidates. These new and conventional drugs may present problems related to their labile nature and to the difficulties in reaching the brain. Thus, we highlight the latest types of drug delivery system (DDS)-based strategies for PD treatment, including DDS for local and systemic drug delivery. Finally, the ongoing challenges for the discovery of new targets and the opportunities for DDS-based therapies to improve and efficacious PD therapy will be discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Govender, Thiresen; Choonara, Yahya E; Kumar, Pradeep; Bijukumar, Divya; du Toit, Lisa C; Modi, Girish; Naidoo, Dinesh; Pillay, Viness
2017-06-01
The complexity of the brain and the membranous blood-brain barrier (BBB) has proved to be a significant limitation to the systemic delivery of pharmaceuticals to the brain rendering them sub-therapeutic and ineffective in the treatment of neurological diseases. Apart from this, lack of innovation in product development to counteract the problem is also a major contributing factor to a poor therapeutic outcome. Various innovative strategies show potential in treating some of the neurological disorders; however, drug delivery remains the most popular. To attain therapeutic drug levels in the central nervous system, large, intolerable systemic doses are generally administered. The major factors responsible for the success maintenance therapy of neurological diseases included controlled and sustained release of neurotherapeutics, reduced frequency of administration, higher bioavailability, and patient compliances. Conventional oral or injectable formulations cannot satisfy all the requirements in many circumstances. This article reviews the therapeutic implantable polymeric and transdermal devices employed in an attempt to effectively achieve therapeutic quantities of drug across the BBB over a prolonged period, to improve patient disease prognosis.
Neurostimulation for Drug-Resistant Epilepsy
DeGiorgio, Christopher M.; Krahl, Scott E.
2013-01-01
Purpose of Review: The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries. Recent Findings: The field of neurostimulation for epilepsy has grown dramatically since 1997, when vagus nerve stimulation became the first device to be approved for epilepsy by the US Food and Drug Administration (FDA). New data from recently completed randomized controlled trials are available for deep brain stimulation of the anterior thalamus, responsive neurostimulation, and trigeminal nerve stimulation. Although vagus nerve stimulation is the only device currently approved in the United States, deep brain stimulation and responsive neurostimulation devices are awaiting FDA approval. Deep brain stimulation, trigeminal nerve stimulation, and transcutaneous vagus nerve stimulation are now approved for epilepsy in the European Union. In this article, the mechanisms of action, safety, and efficacy of new neurostimulation devices are reviewed, and the key advantages and disadvantages of each are discussed. Summary: The exponential growth of the field of neuromodulation for epilepsy is an exciting development; these new devices provide physicians with new options for patients with drug-resistant epilepsy. PMID:23739108
... Used Drugs in the Past Drug Use Prevention Phone Numbers and Websites Search ... who aren't yet born. Drug use can hurt the body and the brain, sometimes forever. Drug use can also lead to addiction, a long-lasting brain disease in which people ...
The development, past achievements, and future directions of brain PET
Jones, Terry; Rabiner, Eugenii A
2012-01-01
The early developments of brain positron emission tomography (PET), including the methodological advances that have driven progress, are outlined. The considerable past achievements of brain PET have been summarized in collaboration with contributing experts in specific clinical applications including cerebrovascular disease, movement disorders, dementia, epilepsy, schizophrenia, addiction, depression and anxiety, brain tumors, drug development, and the normal healthy brain. Despite a history of improving methodology and considerable achievements, brain PET research activity is not growing and appears to have diminished. Assessments of the reasons for decline are presented and strategies proposed for reinvigorating brain PET research. Central to this is widening the access to advanced PET procedures through the introduction of lower cost cyclotron and radiochemistry technologies. The support and expertize of the existing major PET centers, and the recruitment of new biologists, bio-mathematicians and chemists to the field would be important for such a revival. New future applications need to be identified, the scope of targets imaged broadened, and the developed expertize exploited in other areas of medical research. Such reinvigoration of the field would enable PET to continue making significant contributions to advance the understanding of the normal and diseased brain and support the development of advanced treatments. PMID:22434067
Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model
On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.
2013-01-01
The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143
Drug transport across the blood–brain barrier
Pardridge, William M
2012-01-01
The blood–brain barrier (BBB) prevents the brain uptake of most pharmaceuticals. This property arises from the epithelial-like tight junctions within the brain capillary endothelium. The BBB is anatomically and functionally distinct from the blood–cerebrospinal fluid barrier at the choroid plexus. Certain small molecule drugs may cross the BBB via lipid-mediated free diffusion, providing the drug has a molecular weight <400 Da and forms <8 hydrogen bonds. These chemical properties are lacking in the majority of small molecule drugs, and all large molecule drugs. Nevertheless, drugs can be reengineered for BBB transport, based on the knowledge of the endogenous transport systems within the BBB. Small molecule drugs can be synthesized that access carrier-mediated transport (CMT) systems within the BBB. Large molecule drugs can be reengineered with molecular Trojan horse delivery systems to access receptor-mediated transport (RMT) systems within the BBB. Peptide and antisense radiopharmaceuticals are made brain-penetrating with the combined use of RMT-based delivery systems and avidin–biotin technology. Knowledge on the endogenous CMT and RMT systems expressed at the BBB enable new solutions to the problem of BBB drug transport. PMID:22929442
Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease.
Gunay, Mine Silindir; Ozer, A Yekta; Chalon, Sylvie
2016-01-01
Although a variety of therapeutic approaches are available for the treatment of Parkinson's disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson's disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α -synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson's disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson's Disease therapy and reduce its side effects.
Unifying Theories of Psychedelic Drug Effects
Swanson, Link R.
2018-01-01
How do psychedelic drugs produce their characteristic range of acute effects in perception, emotion, cognition, and sense of self? How do these effects relate to the clinical efficacy of psychedelic-assisted therapies? Efforts to understand psychedelic phenomena date back more than a century in Western science. In this article I review theories of psychedelic drug effects and highlight key concepts which have endured over the last 125 years of psychedelic science. First, I describe the subjective phenomenology of acute psychedelic effects using the best available data. Next, I review late 19th-century and early 20th-century theories—model psychoses theory, filtration theory, and psychoanalytic theory—and highlight their shared features. I then briefly review recent findings on the neuropharmacology and neurophysiology of psychedelic drugs in humans. Finally, I describe recent theories of psychedelic drug effects which leverage 21st-century cognitive neuroscience frameworks—entropic brain theory, integrated information theory, and predictive processing—and point out key shared features that link back to earlier theories. I identify an abstract principle which cuts across many theories past and present: psychedelic drugs perturb universal brain processes that normally serve to constrain neural systems central to perception, emotion, cognition, and sense of self. I conclude that making an explicit effort to investigate the principles and mechanisms of psychedelic drug effects is a uniquely powerful way to iteratively develop and test unifying theories of brain function. PMID:29568270
Functional imaging studies in cannabis users.
Chang, Linda; Chronicle, Edward P
2007-10-01
Cannabis remains the most widely used illegal drug in the United States. This update examines the available literature on neuroimaging studies of the brains of cannabis users. The majority of studies examining the acute effects of delta-9-tetrahydrocannabinol (THC) administration used PET methods and concluded that administration of THC leads to increased activation in frontal and paralimbic regions and the cerebellum. These increases in activation are broadly consistent with the behavioral effects of the drug. Although there is only equivocal evidence that chronic cannabis use might result in structural brain changes, blood-oxygenation-level-dependent-fMRI studies in chronic users consistently show alterations, or neuroadaptation, in the activation of brain networks responsible for higher cognitive functions. It is not yet certain whether these changes are reversible with abstinence. Given the high prevalence of cannabis use among adolescents, studies are needed to evaluate whether cannabis use might affect the developing brain. Considerable further work, employing longitudinal designs, is also required to determine whether cannabis use causes permanent functional alterations in the brains of adults.
[Therapeutic strategies targeting brain tumor stem cells].
Toda, Masahiro
2009-07-01
Progress in stem cell research reveals cancer stem cells to be present in a variety of malignant tumors. Since they exhibit resistance to anticancer drugs and radiotherapy, analysis of their properties has been rapidly carried forward as an important target for the treatment of intractable malignancies, including brain tumors. In fact, brain cancer stem cells (BCSCs) have been isolated from brain tumor tissue and brain tumor cell lines by using neural stem cell culture methods and isolation methods for side population (SP) cells, which have high drug-efflux capacity. Although the analysis of the properties of BCSCs is the most important to developing methods in treating BCSCs, the absence of BCSC purification methods should be remedied by taking it up as an important research task in the immediate future. Thus far, there are no effective treatment methods for BCSCs, and several treatment methods have been proposed based on the cell biology characteristics of BCSCs. In this article, I outline potential treatment methods damaging treatment-resistant BCSCs, including immunotherapy which is currently a topic of our research.
New developments in brain research of internet and gaming disorder.
Weinstein, Aviv; Livny, Abigail; Weizman, Abraham
2017-04-01
There is evidence that the neural mechanisms underlying Internet Gaming Disorder (IGD) resemble those of drug addiction. Functional Magnetic Resonance Imaging (fMRI) studies of the resting state and measures of gray matter volume have shown that Internet game playing was associated with changes to brain regions responsible for attention and control, impulse control, motor function, emotional regulation, sensory-motor coordination. Furthermore, Internet game playing was associated with lower white matter density in brain regions that are involved in decision-making, behavioral inhibition and emotional regulation. Videogame playing involved changes in reward inhibitory mechanisms and loss of control. Structural brain imaging studies showed alterations in the volume of the ventral striatum that is an important part of the brain's reward mechanisms. Finally, videogame playing was associated with dopamine release similar in magnitude to those of drugs of abuse and lower dopamine transporter and dopamine receptor D 2 occupancy indicating sub-sensitivity of dopamine reward mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molino, Yves; David, Marion; Varini, Karine; Jabès, Françoise; Gaudin, Nicolas; Fortoul, Aude; Bakloul, Karima; Masse, Maxime; Bernard, Anne; Drobecq, Lucile; Lécorché, Pascaline; Temsamani, Jamal; Jacquot, Guillaume; Khrestchatisky, Michel
2017-05-01
The blood-brain barrier (BBB) prevents the entry of many drugs into the brain and, thus, is a major obstacle in the treatment of CNS diseases. There is some evidence that the LDL receptor (LDLR) is expressed at the BBB and may participate in the transport of endogenous ligands from blood to brain, a process referred to as receptor-mediated transcytosis. We previously described a family of peptide vectors that were developed to target the LDLR. In the present study, in vitro BBB models that were derived from wild-type and LDLR-knockout animals ( ldlr -/- ) were used to validate the specific LDLR-dependent transcytosis of LDL via a nondegradative route. We next showed that LDLR-targeting peptide vectors, whether in fusion or chemically conjugated to an Ab Fc fragment, promote binding to apical LDLR and transendothelial transfer of the Fc fragment across BBB monolayers via the same route as LDL. Finally, we demonstrated in vivo that LDLR significantly contributes to the brain uptake of vectorized Fc. We thus provide further evidence that LDLR is a relevant receptor for CNS drug delivery via receptor-mediated transcytosis and that the peptide vectors we developed have the potential to transport drugs, including proteins or Ab based, across the BBB.-Molino, Y., David, M., Varini, K., Jabès, F., Gaudin, N., Fortoul, A., Bakloul, K., Masse, M., Bernard, A., Drobecq, L., Lécorché, P., Temsamani, J., Jacquot, G., Khrestchatisky, M. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. © FASEB.
Early Exposure to Haloperidol or Olanzapine Induces Long-Term Alterations of Dendritic Form
Frost, Douglas O.; Page, Stephanie Cerceo; Carroll, Cathy; Kolb, Bryan
2009-01-01
Exposure of the developing brain to a wide variety of drugs of abuse (eg., stimulants, opioids, ethanol, etc.) can induce life-long changes in behavior and neural circuitry. However, the long-term effects of exposure to therapeutic, psychotropic drugs have only recently begun to be appreciated. Antipsychotic drugs are little studied in this regard. Here we quantitatively analyzed dendritic architecture in adult mice treated with paradigmatic typical- (haloperidol) or atypical (olanzapine) antipsychotic drugs at developmental stages corresponding to fetal or fetal plus early childhood stages in humans. In layer 3 pyramidal cells of the medial and orbital prefrontal cortices and the parietal cortex and in spiny neurons of the core of the nucleus accumbens, both drugs induced significant changes (predominantly reductions) in the amount and complexity of dendritic arbor and the density of dendritic spines. The drug-induced plasticity of dendritic architecture suggests changes in patterns of neuronal connectivity in multiple brain regions that are likely to be functionally significant. PMID:19862684
Alcohol-induced apoptosis of oligodendrocytes in the fetal macaque brain.
Creeley, Catherine E; Dikranian, Krikor T; Johnson, Stephen A; Farber, Nuri B; Olney, John W
2013-06-12
In utero exposure of the fetal non-human primate (NHP) brain to alcohol on a single occasion during early or late third-trimester gestation triggers widespread acute apoptotic death of cells in both gray and white matter (WM) regions of the fetal brain. In a prior publication, we documented that the dying gray matter cells are neurons, and described the regional distribution and magnitude of this cell death response. Here, we present new findings regarding the magnitude, identity and maturational status of the dying WM cells in these alcohol-exposed fetal NHP brains. Our findings document that the dying WM cells belong to the oligodendrocyte (OL) lineage. OLs become vulnerable when they are just beginning to generate myelin basic protein in preparation for myelinating axons, and they remain vulnerable throughout later stages of myelination. We found no evidence linking astrocytes, microglia or OL progenitors to this WM cell death response. The mean density (profiles per mm3) of dying WM cells in alcohol-exposed brains was 12.7 times higher than the mean density of WM cells dying by natural apoptosis in drug-naive control brains. In utero exposure of the fetal NHP brain to alcohol on a single occasion triggers widespread acute apoptotic death of neurons (previous study) and of OLs (present study) throughout WM regions of the developing brain. The rate of OL apoptosis in alcohol-exposed brains was 12.7 times higher than the natural OL apoptosis rate. OLs become sensitive to the apoptogenic action of alcohol when they are just beginning to generate constituents of myelin in their cytoplasm, and they remain vulnerable throughout later stages of myelination. There is growing evidence for a similar apoptotic response of both neurons and OLs following exposure of the developing brain to anesthetic and anticonvulsant drugs. Collectively, this body of evidence raises important questions regarding the role that neuro and oligo apoptosis may play in the human condition known as fetal alcohol spectrum disorder (FASD), and also poses a question whether other apoptogenic drugs, although long considered safe for pediatric/obstetric use, may have the potential to cause iatrogenic FASD-like developmental disability syndromes.
The endogenous opioid system: a common substrate in drug addiction.
Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael
2010-05-01
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Biomarker-guided translation of brain imaging into disease pathway models
Younesi, Erfan; Hofmann-Apitius, Martin
2013-01-01
The advent of state-of-the-art brain imaging technologies in recent years and the ability of such technologies to provide high-resolution information at both structural and functional levels has spawned large efforts to introduce novel non-invasive imaging biomarkers for early prediction and diagnosis of brain disorders; however, their utility in both clinic and drug development at their best resolution remains limited to visualizing and monitoring disease progression. Given the fact that efficient translation of valuable information embedded in brain scans into clinical application is of paramount scientific and public health importance, a strategy is needed to bridge the current gap between imaging and molecular biology, particularly in neurodegenerative diseases. As an attempt to address this issue, we present a novel computational method to link readouts of imaging biomarkers to their underlying molecular pathways with the aim of guiding clinical diagnosis, prognosis and even target identification in drug discovery for Alzheimer's disease. PMID:24287435
Johnsen, Kasper Bendix; Moos, Torben
2016-01-28
An unmet need exists for therapeutic compounds to traverse the brain capillary endothelial cells that denote the blood-brain barrier (BBB) to deliver effective treatment to the diseased brain. The use of nanoparticle technology for targeted delivery to the brain implies that targeted liposomes encapsulating a drug of interest will undergo receptor-mediated uptake and transport through the BBB with a subsequent unfolding of the liposomal content inside the brain, hence revealing drug release to adjacent drug-demanding neurons. As transferrin receptors (TfRs) are present on brain capillary endothelial, but not on endothelial cells elsewhere in the body, the use of TfR-targeted liposomes - colloidal particulates with a phospholipid bilayer membrane - remains the most relevant strategy to obtain efficient drug delivery to the brain. However, many studies have failed to provide sufficient quantitative data to proof passage of the BBB and significant appearance of drugs inside the brain parenchyma. Here, we critically evaluate the current evidence on the use of TfR-targeted liposomes for brain drug delivery based on a thorough investigation of all available studies within this research field. We focus on issues with respect to experimental design and data analysis that may provide an explanation to conflicting reports, and we discuss possible explanations for the current lack of sufficient transcytosis across the BBB for implementation in the design of TfR-targeted liposomes. We finally provide a list of suggestions for strategies to obtain substantial uptake and transport of drug carriers at the BBB with a concomitant transport of therapeutics into the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Mohamed, Loqman A; Qosa, Hisham; Kaddoumi, Amal
2015-05-20
In Alzheimer's disease (AD), accumulation of brain amyloid-β (Aβ) depends on imbalance between production and clearance of Aβ. Several pathways for Aβ clearance have been reported including transport across the blood-brain barrier (BBB) and hepatic clearance. The incidence of AD increases with age and failure of Aβ clearance correlates with AD. The cholinesterase inhibitors (ChEIs) donepezil and rivastigmine are used to ease the symptoms of dementia associated with AD. Besides, both drugs have been reported to provide neuroprotective and disease-modifying effects. Here, we investigated the effect of ChEIs on age-related reduced Aβ clearance. Findings from in vitro and in vivo studies demonstrated donepezil and rivastigmine to enhance (125)I-Aβ40 clearance. Also, the increase in brain and hepatic clearance of (125)I-Aβ40 was more pronounced in aged compared to young rats, and was associated with significant reduction in brain Aβ endogenous levels determined by ELISA. Furthermore, the enhanced clearance was concomitant with up-regulation in the expression of Aβ major transport proteins P-glycoprotein and LRP1. Collectively, our findings that donepezil and rivastigmine enhance Aβ clearance across the BBB and liver are novel and introduce an additional mechanism by which both drugs could affect AD pathology. Thus, optimizing their clinical use could help future drug development by providing new drug targets and possible mechanisms involved in AD pathology.
Brain Mapping of drug addiction in witdrawal condition based P300 Signals
NASA Astrophysics Data System (ADS)
Turnip, Arjon; Esti Kusumandari, Dwi; Hidayat, Teddy
2018-04-01
Drug abuse for a long time will slowly cause changes in brain structure and performance. These changes tend to occur in the front of the brain which is directly interfere the concentration and the decision-making process. In this study an experiment involving 10 drug users was performed. The process of recording data with EEG system is conducted during craving condition and 1 hour after taking methadone. From brain mapping results obtained that brain activity tend to occur in the upper layer of the brain during craving conditions and tend to be in the midle layer of the brain after one hour of taking methadone.
Risky decision making and the anterior cingulate cortex in abstinent drug abusers and nonusers.
Fishbein, Diana H; Eldreth, Diana L; Hyde, Christopher; Matochik, John A; London, Edythe D; Contoreggi, Carlo; Kurian, Varughese; Kimes, Alane S; Breeden, Andrew; Grant, Steven
2005-04-01
Risky decision making is a hallmark behavioral phenotype of drug abuse; thus, an understanding of its biological bases may inform efforts to develop therapies for addictive disorders. A neurocognitive task that measures this function (Rogers Decision-Making Task; RDMT) was paired with measures of regional cerebral perfusion to identify brain regions that may underlie deficits in risky decision making in drug abusers. Subjects were abstinent drug abusers (> or =3 months) and healthy controls who underwent positron emission tomography scans with H(2)(15)O. Drug abusers showed greater risk taking and heightened sensitivity to rewards than control subjects. Both drug abusers and controls exhibited significant activations in a widespread network of brain regions, primarily in the frontal cortex, previously implicated in decision-making tasks. The only significant group difference in brain activation, however, was found in the left pregenual anterior cingulate cortex, with drug abusers exhibiting less task-related activation than control subjects. There were no significant correlations between neural activity and task performance within the control group. In the drug abuse group, on the other hand, increased risky choices on the RDMT negatively correlated with activation in the right hippocampus, left anterior cingulate gyrus, left medial orbitofrontal cortex, and left parietal lobule, and positively correlated with activation in the right insula. Drug abuse severity was related positively to right medial orbitofrontal activity. Attenuated activation of the pregenual ACC in the drug abusers relative to the controls during performance on the RDMT may underlie the abusers' tendency to choose risky outcomes.
Zhao, Hong; Jin, Guangxu; Cui, Kemi; Ren, Ding; Liu, Timothy; Chen, Peikai; Wong, Solomon; Li, Fuhai; Fan, Yubo; Rodriguez, Angel; Chang, Jenny; Wong, Stephen T C
2013-10-15
A new type of signaling network element, called cancer signaling bridges (CSB), has been shown to have the potential for systematic and fast-tracked drug repositioning. On the basis of CSBs, we developed a computational model to derive specific downstream signaling pathways that reveal previously unknown target-disease connections and new mechanisms for specific cancer subtypes. The model enables us to reposition drugs based on available patient gene expression data. We applied this model to repurpose known or shelved drugs for brain, lung, and bone metastases of breast cancer with the hypothesis that cancer subtypes have their own specific signaling mechanisms. To test the hypothesis, we addressed specific CSBs for each metastasis that satisfy (i) CSB proteins are activated by the maximal number of enriched signaling pathways specific to a given metastasis, and (ii) CSB proteins are involved in the most differential expressed coding genes specific to each breast cancer metastasis. The identified signaling networks for the three types of breast cancer metastases contain 31, 15, and 18 proteins and are used to reposition 15, 9, and 2 drug candidates for the brain, lung, and bone metastases. We conducted both in vitro and in vivo preclinical experiments as well as analysis on patient tumor specimens to evaluate the targets and repositioned drugs. Of special note, we found that the Food and Drug Administration-approved drugs, sunitinib and dasatinib, prohibit brain metastases derived from breast cancer, addressing one particularly challenging aspect of this disease. ©2013 AACR.
Treatment Approaches for Interoceptive Dysfunctions in Drug Addiction
Paulus, Martin P.; Stewart, Jennifer L.; Haase, Lori
2013-01-01
There is emerging evidence that individuals with drug addiction have dysfunctions in brain systems that are important for interoceptive processing, which include, among others, the insular and the anterior cingulate cortices. These individuals may not be expending sufficient neural resources to process perturbations of the interoceptive state but may exert over-activation of these systems when processing drug-related stimuli. As a consequence, insufficient detection and processing of interoceptive state changes may result in inadequate anticipation and preparation to adapt to environmental challenges, e.g., adapt to abstinence in the presence of withdrawal symptoms. Here, we integrate interoceptive dysfunction in drug-addicted individuals, with the neural basis for meditation and exercise to develop a heuristic to target the interoceptive system as potential treatments for drug addiction. First, it is suggested that mindfulness-based approaches can modulate both interoceptive function and insular activation patterns. Second, there is an emerging literature showing that the regulation of physical exercise in the brain involves the insula and anterior cingulate cortex and that intense physical exercise is associated with a insula changes that may provide a window to attenuate the increased interoceptive response to drug-related stimuli. It is concluded that the conceptual framework of interoceptive dysfunctions in drug addiction and the experimental findings in meditation and exercise provide a useful approach to develop new interventions for drug addiction. PMID:24151471
Treatment approaches for interoceptive dysfunctions in drug addiction.
Paulus, Martin P; Stewart, Jennifer L; Haase, Lori
2013-10-18
There is emerging evidence that individuals with drug addiction have dysfunctions in brain systems that are important for interoceptive processing, which include, among others, the insular and the anterior cingulate cortices. These individuals may not be expending sufficient neural resources to process perturbations of the interoceptive state but may exert over-activation of these systems when processing drug-related stimuli. As a consequence, insufficient detection and processing of interoceptive state changes may result in inadequate anticipation and preparation to adapt to environmental challenges, e.g., adapt to abstinence in the presence of withdrawal symptoms. Here, we integrate interoceptive dysfunction in drug-addicted individuals, with the neural basis for meditation and exercise to develop a heuristic to target the interoceptive system as potential treatments for drug addiction. First, it is suggested that mindfulness-based approaches can modulate both interoceptive function and insular activation patterns. Second, there is an emerging literature showing that the regulation of physical exercise in the brain involves the insula and anterior cingulate cortex and that intense physical exercise is associated with a insula changes that may provide a window to attenuate the increased interoceptive response to drug-related stimuli. It is concluded that the conceptual framework of interoceptive dysfunctions in drug addiction and the experimental findings in meditation and exercise provide a useful approach to develop new interventions for drug addiction.
Cocaine-Induced Neurodevelopmental Deficits and Underlying Mechanisms
Martin, Melissa M.; Graham, Devon L.; McCarthy, Deirdre M.; Bhide, Pradeep G.; Stanwood, Gregg D.
2017-01-01
Exposure to drugs early in life has complex and long-lasting implications for brain structure and function. This review summarizes work to date on the immediate and long-term effects of prenatal exposure to cocaine. In utero cocaine exposure produces disruptions in brain monoamines, particularly dopamine, during sensitive periods of brain development, and leads to permanent changes in specific brain circuits, molecules, and behavior. Here, we integrate clinical studies and significance with mechanistic preclinical studies, to define our current knowledge base and identify gaps for future investigation. PMID:27345015
2016-03-01
Currently, no effective drug treatments are available for brain metastasis. In this proposal, we hypothesize: interactions with reactive brain astrocytes...neurological drugs . In this project, we propose two specific aims to explore the functional importance of the early metastatic evolution and the...feasibility of targeting metastatic evolution by repurposing neurological drugs . Aim 1: Study the spatial and temporal interactions between brain
Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury
2012-10-01
W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury 5a. CONTRACT NUMBER 5b...The grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function
[The blood-brain barrier and drug delivery in the central nervous system].
Loch-Neckel, Gecioni; Koepp, Janice
2010-08-01
To provide an updated view of the difficulties due to barriers and strategies used to allow the release of drugs in the central nervous system. The difficulty for the treatment of many diseases of the central nervous system, through the use of intra-venous drugs, is due to the presence of barriers that prevent the release of the same: the blood-brain barrier, blood-cerebro-spinal fluid barrier and the blood-arachnoid barrier. The blood-brain barrier is the main barrier for the transport of drugs in the brain that also acts as a immunologic and metabolic barrier. The endothelial cells of the blood-brain barrier are connected to a junction complex through the interaction of transmembrane proteins that protrude from de inside to the outside, forming a connection between the endothelial cells. The transport of substances to the brain depends on the mechanisms of transport present in the barrier and the diffusion of these compounds also depends on the physicochemical characteristics of the molecule. Some diseases alter the permeability of the blood-brain barrier and thus the passage of drugs. Strategies such as the use of methods for drug delivery in the brain have been investigated. Further details regarding the mechanisms of transport across the blood-brain barrier and the changes in neuropathology would provide important information about the etiology of diseases and lead to better therapeutic strategies.
The basics of preclinical drug development for neurodegenerative disease indications.
Steinmetz, Karen L; Spack, Edward G
2009-06-12
Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonization. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial.
The basics of preclinical drug development for neurodegenerative disease indications
Steinmetz, Karen L; Spack, Edward G
2009-01-01
Preclinical development encompasses the activities that link drug discovery in the laboratory to initiation of human clinical trials. Preclinical studies can be designed to identify a lead candidate from several hits; develop the best procedure for new drug scale-up; select the best formulation; determine the route, frequency, and duration of exposure; and ultimately support the intended clinical trial design. The details of each preclinical development package can vary, but all have some common features. Rodent and nonrodent mammalian models are used to delineate the pharmacokinetic profile and general safety, as well as to identify toxicity patterns. One or more species may be used to determine the drug's mean residence time in the body, which depends on inherent absorption, distribution, metabolism, and excretion properties. For drugs intended to treat Alzheimer's disease or other brain-targeted diseases, the ability of a drug to cross the blood brain barrier may be a key issue. Toxicology and safety studies identify potential target organs for adverse effects and define the Therapeutic Index to set the initial starting doses in clinical trials. Pivotal preclinical safety studies generally require regulatory oversight as defined by US Food and Drug Administration (FDA) Good Laboratory Practices and international guidelines, including the International Conference on Harmonisation. Concurrent preclinical development activities include developing the Clinical Plan and preparing the new drug product, including the associated documentation to meet stringent FDA Good Manufacturing Practices regulatory guidelines. A wide range of commercial and government contract options are available for investigators seeking to advance their candidate(s). Government programs such as the Small Business Innovative Research and Small Business Technology Transfer grants and the National Institutes of Health Rapid Access to Interventional Development Pilot Program provide funding and services to assist applicants in preparing the preclinical programs and documentation for their drugs. Increasingly, private foundations are also funding preclinical work. Close interaction with the FDA, including a meeting to prepare for submission of an Investigational New Drug application, is critical to ensure that the preclinical development package properly supports the planned phase I clinical trial. PMID:19534731
Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies
Jahangiri, Arman; Chin, Aaron T.; Flanigan, Patrick M.; Chen, Rebecca; Bankiewicz, Krystof; Aghi, Manish K.
2017-01-01
Glioblastoma is the most common malignant brain tumor, and it carries an extremely poor prognosis. Attempts to develop targeted therapies have been hindered because the blood-brain barrier prevents many drugs from reaching tumors cells. Furthermore, systemic toxicity of drugs often limits their therapeutic potential. A number of alternative methods of delivery have been developed, one of which is convection-enhanced delivery (CED), the focus of this review. The authors describe CED as a therapeutic measure and review preclinical studies and the most prominent clinical trials of CED in the treatment of glioblastoma. The utilization of this technique for the delivery of a variety of agents is covered, and its shortcomings and challenges are discussed in detail. PMID:27035164
Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment.
Zhou, Zhiping; Singh, Ranjodh; Souweidane, Mark M
2017-01-01
Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease.
Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment
Zhou, Zhiping; Singh, Ranjodh; Souweidane, Mark M.
2017-01-01
Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease. PMID:27306036
The present and future of pharmacotherapy of Alzheimer's disease: A comprehensive review.
Anand, Abhinav; Patience, Albert Anosi; Sharma, Neha; Khurana, Navneet
2017-11-15
Alzheimer's disease (AD) is a generalized term used for the loss in memory and other intellectual abilities on levels serious enough to interfere with daily life. It accounts for 60-80% of dementia cases. The characteristic features include aggregation of Amyloid-Beta (Aβ) plaques and Tau Protein Tangles in the nervous tissue of brain. Another important aspect associated with development of AD is the decrease in levels of Acetylcholine (ACh) in brain. The conventional pharmacotherapy of AD employs the use of compounds that inhibit the enzyme acetylcholinesterase (e.g. donepezil, rivastigmine) thereby elevating the levels of Acetylcholine in nervous tissue of brain. Lately, another drug has come into picture for treatment of AD i.e.memantine. It is a Glutamatergic antagonist that protects the nervous tissue against glutamate mediated excitotoxicity. However, both these classes of drugs provide only the symptomatic relief. There has been a desperate need arising since the past few decades for evolution of a drug that could treat the underlying causes of AD and thereby halt its development in susceptible individuals. There are several plants and derived products which have been employed for their benefits against the symptoms and complications of AD. Some novel drugs having the potential to moderate AD are under clinical trials. This review presents a comprehensive overview of the existing and the upcoming potential treatments for AD. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamics of neuronal circuits in addiction: reward, antireward, and emotional memory.
Koob, G F
2009-05-01
Drug addiction is conceptualized as chronic, relapsing compulsive use of drugs with significant dysregulation of brain hedonic systems. Compulsive drug use is accompanied by decreased function of brain substrates for drug positive reinforcement and recruitment of brain substrates mediating the negative reinforcement of motivational withdrawal. The neural substrates for motivational withdrawal ("dark side" of addiction) involve recruitment of elements of the extended amygdala and the brain stress systems, including corticotropin-releasing factor and norepinephrine. These changes, combined with decreased reward function, are hypothesized to persist in the form of an allostatic state that forms a powerful motivational background for relapse. Relapse also involves a key role for the basolateral amygdala in mediating the motivational effects of stimuli previously paired with drug seeking and drug motivational withdrawal. The basolateral amygdala has a key role in mediating emotional memories in general. The hypothesis argued here is that brain stress systems activated by the motivational consequences of drug withdrawal can not only form the basis for negative reinforcement that drives drug seeking, but also potentiate associative mechanisms that perpetuate the emotional state and help drive the allostatic state of addiction.
Ye, Zheng; Rae, Charlotte L.; Nombela, Cristina; Ham, Timothy; Rittman, Timothy; Jones, Peter Simon; Rodríguez, Patricia Vázquez; Coyle‐Gilchrist, Ian; Regenthal, Ralf; Altena, Ellemarije; Housden, Charlotte R.; Maxwell, Helen; Sahakian, Barbara J.; Barker, Roger A.; Robbins, Trevor W.
2016-01-01
Abstract Recent studies indicate that selective noradrenergic (atomoxetine) and serotonergic (citalopram) reuptake inhibitors may improve response inhibition in selected patients with Parkinson's disease, restoring behavioral performance and brain activity. We reassessed the behavioral efficacy of these drugs in a larger cohort and developed predictive models to identify patient responders. We used a double‐blind randomized three‐way crossover design to investigate stopping efficiency in 34 patients with idiopathic Parkinson's disease after 40 mg atomoxetine, 30 mg citalopram, or placebo. Diffusion‐weighted and functional imaging measured microstructural properties and regional brain activations, respectively. We confirmed that Parkinson's disease impairs response inhibition. Overall, drug effects on response inhibition varied substantially across patients at both behavioral and brain activity levels. We therefore built binary classifiers with leave‐one‐out cross‐validation (LOOCV) to predict patients’ responses in terms of improved stopping efficiency. We identified two optimal models: (1) a “clinical” model that predicted the response of an individual patient with 77–79% accuracy for atomoxetine and citalopram, using clinically available information including age, cognitive status, and levodopa equivalent dose, and a simple diffusion‐weighted imaging scan; and (2) a “mechanistic” model that explained the behavioral response with 85% accuracy for each drug, using drug‐induced changes of brain activations in the striatum and presupplementary motor area from functional imaging. These data support growing evidence for the role of noradrenaline and serotonin in inhibitory control. Although noradrenergic and serotonergic drugs have highly variable effects in patients with Parkinson's disease, the individual patient's response to each drug can be predicted using a pattern of clinical and neuroimaging features. Hum Brain Mapp 37:1026–1037, 2016. © 2016 Wiley Periodicals, Inc. PMID:26757216
Yin, Tiantian; Yang, Licong; Liu, Yanan; Zhou, Xianbo; Sun, Jing; Liu, Jie
2015-10-01
The blood-brain barrier (BBB) is a formidable gatekeeper toward exogenous substances, playing an important role in brain homeostasis and maintaining a healthy microenvironment for complex neuronal activities. However, it also greatly hinders drug permeability into the brain and limits the management of brain diseases. The development of new drugs that show improved transport across the BBB represents a promising strategy for Alzheimer's disease (AD) intervention. Whereas, previous study of receptor-mediated endogenous BBB transport systems has focused on a strategy of using transferrin to facilitate brain drug delivery system, a system that still suffers from limitations including synthesis procedure, stability and immunological response. In the present study, we synthetised sialic acid (SA)-modified selenium (Se) nanoparticles conjugated with an alternative peptide-B6 peptide (B6-SA-SeNPs, a synthetic selenoprotein analogue), which shows high permeability across the BBB and has the potential to serve as a novel nanomedicine for disease modification in AD. Laser-scanning confocal microscopy, flow cytometry analysis and inductively coupled plasma-atomic emission spectroscopy ICP-AES revealed high cellular uptake of B6-SA-SeNPs by cerebral endothelial cells (bEnd.3). The transport efficiency of B6-SA-SeNPs was evaluated in a Transwell experiment based on in vitro BBB model. It provided direct evidence for B6-SA-SeNPs crossing the BBB and being absorbed by PC12 cells. Moreover, inhibitory effects of B6-SA-SeNPs on amyloid-β peptide (Aβ) fibrillation could be demonstrated in PC12 cells and bEnd3 cells. B6-SA-SeNPs could not only effectively inhibit Aβ aggregation but could disaggregate preformed Aβ fibrils into non-toxic amorphous oligomers. These results suggested that B6-SA-SeNPs may provide a promising platform, particularly for the application of nanoparticles in the treatment of brain diseases. Alzheimer's disease (AD) is the world's most common form of dementia characterized by intracellular neurofibrillary tangles in the brain. Over the past decades, the blood-brain barrier (BBB) limits access of therapeutic or diagnostic agents into the brain, which greatly hinders the development of new drugs for treating AD. In this work, we evaluated the efficiency of B6-SA-SeNPs across BBB and investigated the interactions between B6-SA-SeNPs and amyloid-β peptide (Aβ). We confirm that B6-SA-SeNPs could provide a promising platform because of its high brain delivery efficiency, anti-amyloid properties and anti-oxidant properties, which may serve as a novel nanomedicine for the application in the treatment of brain diseases. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zhang, Rui Xue; Li, Jason; Zhang, Tian; Amini, Mohammad A; He, Chunsheng; Lu, Brian; Ahmed, Taksim; Lip, HoYin; Rauth, Andrew M; Wu, Xiao Yu
2018-05-01
Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.
Morales, Juan F; Montoto, Sebastian Scioli; Fagiolino, Pietro; Ruiz, Maria E
2017-01-01
The Blood-Brain Barrier (BBB) is a physical and biochemical barrier that restricts the entry of certain drugs to the Central Nervous System (CNS), while allowing the passage of others. The ability to predict the permeability of a given molecule through the BBB is a key aspect in CNS drug discovery and development, since neurotherapeutic agents with molecular targets in the CNS should be able to cross the BBB, whereas peripherally acting agents should not, to minimize the risk of CNS adverse effects. In this review we examine and discuss QSAR approaches and current availability of experimental data for the construction of BBB permeability predictive models, focusing on the modeling of the biorelevant parameter unbound partitioning coefficient (Kp,uu). Emphasis is made on two possible strategies to overcome the current limitations of in silico models: considering the prediction of brain penetration as a multifactorial problem, and increasing experimental datasets through accurate and standardized experimental techniques.
Does Traumatic Brain Injury Increase Risk for Substance Abuse?
Grant, Steven J.
2009-01-01
Abstract Wars in Afghanistan and Iraq have resulted in thousands of military personnel suffering traumatic brain injury (TBI), including closed-head injuries. Of interest is whether these individuals and other TBI survivors are at increased risk for substance use disorder (SUD). While it has been well established that drug or alcohol intoxication itself increases probability of suffering a TBI in accidents or acts of violence, little is known about whether the brain insult itself increases the likelihood that a previously non-drug-abusing individual would develop SUD. Might TBI survivors be unusually vulnerable to addiction to opiate analgesics compared to other pain patients? Similarly, it is not known if TBI increases the likelihood of relapse among persons with SUD in remission. We highlight challenges in answering these questions, and review neurochemical and behavioral evidence that supports a causal relationship between TBI and SUD. In this review, we conclude that little is known regarding the directionality of TBI increasing drug abuse, and that collaborative research in this area is critically needed. PMID:19203230
Predisposition to and effects of methamphetamine use on the adolescent brain
Lyoo, IK; Yoon, S; Kim, TS; Lim, SM; Choi, Y; Kim, JE; Hwang, J; Jeong, HS; Cho, HB; Chung, YA; Renshaw, PF
2017-01-01
Adolescence is a period of heightened vulnerability both to addictive behaviors and drug-induced brain damage. Yet, only limited information exists on the brain mechanisms underlying these adolescent-specific characteristics. Moreover, distinctions in brain correlates between predisposition to drug use and effects of drugs in adolescents are unclear. Using cortical thickness and diffusion tensor image analyses, we found greater and more widespread gray and white matter alterations, particularly affecting the frontostriatal system, in adolescent methamphetamine (MA) users compared with adult users. Among adolescent-specific gray matter alterations related to MA use, smaller cortical thickness in the orbitofrontal cortex was associated with family history of drug use. Our findings highlight that the adolescent brain, which undergoes active myelination and maturation, is more vulnerable to MA-related alterations than the adult brain. Furthermore, MA-use-related executive dysfunction was greater in adolescent MA users than in adult users. These findings may provide explanation for the severe behavioral complications and relapses that are common in adolescent-onset drug addiction. Additionally, these results may provide insights into distinguishing the neural mechanisms that underlie the predisposition to drug addiction from effects of drugs in adolescents. PMID:25666756
Predisposition to and effects of methamphetamine use on the adolescent brain.
Lyoo, I K; Yoon, S; Kim, T S; Lim, S M; Choi, Y; Kim, J E; Hwang, J; Jeong, H S; Cho, H B; Chung, Y A; Renshaw, P F
2015-12-01
Adolescence is a period of heightened vulnerability both to addictive behaviors and drug-induced brain damage. Yet, only limited information exists on the brain mechanisms underlying these adolescent-specific characteristics. Moreover, distinctions in brain correlates between predisposition to drug use and effects of drugs in adolescents are unclear. Using cortical thickness and diffusion tensor image analyses, we found greater and more widespread gray and white matter alterations, particularly affecting the frontostriatal system, in adolescent methamphetamine (MA) users compared with adult users. Among adolescent-specific gray matter alterations related to MA use, smaller cortical thickness in the orbitofrontal cortex was associated with family history of drug use. Our findings highlight that the adolescent brain, which undergoes active myelination and maturation, is more vulnerable to MA-related alterations than the adult brain. Furthermore, MA-use-related executive dysfunction was greater in adolescent MA users than in adult users. These findings may provide explanation for the severe behavioral complications and relapses that are common in adolescent-onset drug addiction. Additionally, these results may provide insights into distinguishing the neural mechanisms that underlie the predisposition to drug addiction from effects of drugs in adolescents.
Nicotine and the adolescent brain
Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M
2015-01-01
Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. PMID:26018031
Introduction: Addiction and Brain Reward and Anti-Reward Pathways
Gardner, Eliot L.
2013-01-01
Addictive drugs have in common that they are voluntarily self-administered by laboratory animals (usually avidly) and that they enhance the functioning of the reward circuitry of the brain (producing the “high” that the drug-user seeks). The core reward circuitry consists of an “in series” circuit linking the ventral tegmental area, nucleus accumbens, and ventral pallidum - via the medial forebrain bundle. Although originally believed to encode simply the set-point of hedonic tone, these circuits are now believed to be functionally far more complex - also encoding attention, expectancy of reward, disconfirmation of reward expectancy, and incentive motivation. “Hedonic dysregulation” within these circuits may lead to addiction. The “second-stage” dopaminergic component in this reward circuitry is the crucial addictive-drug-sensitive component. All addictive drugs have in common that they enhance (directly or indirectly or even transsynaptically) dopaminergic reward synaptic function in the nucleus accumbens. Drug self-administration is regulated by nucleus accumbens dopamine levels, and is done to keep nucleus accumbens dopamine within a specific elevated range (to maintain a desired hedonic level). For some classes of addictive drugs (e.g., opiates), tolerance to the euphoric effects develops with chronic use. Post-use dysphoria then comes to dominate reward circuit hedonic tone, and addicts no longer use drugs to get “high,” but simply to get back to normal (“get straight”). The brain circuits mediating the pleasurable effects of addictive drugs are anatomically, neurophysiologically, and neurochemically different from those mediating physical dependence, and from those mediating craving and relapse. There are important genetic variations in vulnerability to drug addiction, yet environmental factors such as stress and social defeat also alter brain-reward mechanisms in such a manner as to impart vulnerability to addiction. In short, the “bio-psycho-social” model of etiology holds very well for addiction. Addiction appears to correlate with a hypo-dopaminergic dysfunctional state within the reward circuitry of the brain. Neuroimaging studies in humans add credence to this hypothesis. Credible evidence also implicates serotonergic, opioid, endocannabinoid, GABAergic, and glutamatergic mechanisms in addiction. Critically, drug addiction progresses from occasional recreational use to impulsive use to habitual compulsive use. This correlates with a progression from reward-driven to habit-driven drug-seeking behavior. This behavioral progression correlates with a neuroanatomical progression from ventral striatal (nucleus accumbens) to dorsal striatal control over drug-seeking behavior. The three classical sets of craving and relapse triggers are a) re-exposure to addictive drugs, b) stress, and c) re-exposure to environmental cues (“people, places, things”) previously associated with drug-taking behavior. Drug-triggered relapse involves the nucleus accumbens and the neurotransmitter dopamine. Stress-triggered relapse involves a) the central nucleus of the amygdala, the bed nucleus of the stria terminalis, and the neurotransmitter CRF; and b) the lateral tegmental noradrenergic nuclei of the brain stem and the neurotransmitter norepinephrine. Cue-triggered relapse involves the basolateral nucleus of the amygdala, the hippocampus, and the neurotransmitter glutamate. Knowledge of the neuroanatomy, neurophysiology, neurochemistry, and neuropharmacology of addictive drug action in the brain is currently producing a variety of strategies for pharmacotherapeutic treatment of drug addiction, some of which appear promising. PMID:21508625
Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E
2016-05-01
Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.
Pathophysiological implications of neurovascular P450 in brain disorders
Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Dadas, Aaron; Marchi, Nicola; Janigro, Damir
2016-01-01
Over the past decades, the significance of cytochrome P450 (CYP) enzymes has expanded beyond their role as peripheral drug metabolizers in the liver and gut. CYP enzymes are also functionally active at the neurovascular interface. CYP expression is modulated by disease states, impacting cellular functions, detoxification, and reactivity to toxic stimuli and brain drug biotransformation. Unveiling the physiological and molecular complexity of brain P450 enzymes will improve our understanding of the mechanisms underlying brain drug availability, pharmacological efficacy, and neurotoxic adverse effects from pharmacotherapy targeting brain disorders. PMID:27312874
Krishnan, Jishnu K S; Arun, Peethambaran; Chembukave, Bhadra; Appu, Abhilash P; Vijayakumar, Nivetha; Moffett, John R; Puthillathu, Narayanan; Namboodiri, Aryan M A
2017-07-15
The intranasal route of administration has proven to be an effective method for bypassing the blood brain barrier and avoiding first pass hepatic metabolism when targeting drugs to the brain. Most small molecules gain rapid access to CNS parenchyma when administered intranasally. However, bioavailability is affected by various factors ranging from the molecular weight of the drug to the mode of intranasal delivery. We examined the effects of animal posture, intranasal application method and animal weight and age on the delivery of radiolabeled pralidoxime ( 3 H-2-PAM) to the brain of rats. We found that using upright vs. supine posture did not significantly affect 3 H-2-PAM concentrations in different brain regions. Older animals with higher weights required increased doses to achieve the same drug concentration throughout the brain when compared to young animals with lower body weights. The use of an intranasal aerosol propelled delivery device mainly increased bioavailability in the olfactory bulbs, but did not reliably increase delivery of the drug to various other brain regions, and in some regions of the brain delivered less of the drug than simple pipette administration. In view of the emerging interest in the use of intranasal delivery of drugs to combat cognitive decline in old age, we tested effectiveness in very old rats and found the method to be as effective in the older rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Mattner, Filomena; Mardon, Karine; Loc'h, Christian; Katsifis, Andrew
2006-06-13
In vitro binding of the iodinated imidazopyridine, N',N'-dimethyl-6-methyl-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [(123)I]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [(123)I]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K(d)=30 nM). The density of binding sites was 22+/-6 and 1.2+/-0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [(123)I]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [(123)I]IZOL by 30% (p<0.05) in olfactory bulbs and by 51-86% (p<0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p<0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p<0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [(123)I]IZOL in peripheral organs and in the brain. [(123)I]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites.
Liposome-based glioma targeted drug delivery enabled by stable peptide ligands.
Wei, Xiaoli; Gao, Jie; Zhan, Changyou; Xie, Cao; Chai, Zhilan; Ran, Danni; Ying, Man; Zheng, Ping; Lu, Weiyue
2015-11-28
The treatment of glioma is one of the most challenging tasks in clinic. As an intracranial tumor, glioma exhibits many distinctive characteristics from other tumors. In particular, various barriers including enzymatic barriers in the blood and brain capillary endothelial cells, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) rigorously prevent drug and drug delivery systems from reaching the tumor site. To tackle this dilemma, we developed a liposomal formulation to circumvent multiple-barriers by modifying the liposome surface with proteolytically stable peptides, (D)CDX and c(RGDyK). (D)CDX is a D-peptide ligand of nicotine acetylcholine receptors (nAChRs) on the BBB, and c(RGDyK) is a ligand of integrin highly expressed on the BBTB and glioma cells. Lysosomal compartments of brain capillary endothelial cells are implicated in the transcytosis of those liposomes. However, both peptide ligands displayed exceptional stability in lysosomal homogenate, ensuring that intact ligands could exert subsequent exocytosis from brain capillary endothelial cells and glioma targeting. In the cellular uptake studies, dually labeled liposomes could target both brain capillary endothelial cells and tumor cells, effectively traversing the BBB and BBTB monolayers, overcoming enzymatic barrier and targeting three-dimensional tumor spheroids. Its targeting ability to intracranial glioma was further verified in vivo by ex vivo imaging and histological studies. As a result, doxorubicin liposomes modified with both (D)CDX and c(RGDyK) presented better anti-glioma effect with prolonged median survival of nude mice bearing glioma than did unmodified liposomes and liposomes modified with individual peptide ligand. In conclusion, the liposome suggested in the present study could effectively overcome multi-barriers and accomplish glioma targeted drug delivery, validating its potential value in improving the therapeutic efficacy of doxorubicin for glioma. Copyright © 2015 Elsevier B.V. All rights reserved.
Hemmelmann, Mirjam; Metz, Verena V; Koynov, Kaloian; Blank, Kerstin; Postina, Rolf; Zentel, Rudolf
2012-10-28
The successful non-invasive treatment of diseases associated with the central nervous system (CNS) is generally limited by poor brain permeability of various developed drugs. The blood-brain barrier (BBB) prevents the passage of therapeutics to their site of action. Polymeric drug delivery systems are promising solutions to effectively transport drugs into the brain. We recently showed that amphiphilic random copolymers based on the hydrophilic p(N-(2-hydroxypropyl)-methacrylamide), pHPMA, possessing randomly distributed hydrophobic p(laurylmethacrylate), pLMA, are able to mediate delivery of domperidone into the brain of mice in vivo. To gain further insight into structure-property relations, a library of carefully designed polymers based on p(HPMA) and p(LMA) was synthesized and tested applying an in vitro BBB model which consisted of human brain microvascular endothelial cells (HBMEC). Our model drug Rhodamine 123 (Rh123) exhibits, like domperidone, a low brain permeability since both substances are recognized by efflux transporters at the BBB. Transport studies investigating the impact of the polymer architecture in relation to the content of hydrophobic LMA revealed that random p(HPMA)-co-p(LMA) having 10mol% LMA is the most auspicious system. The copolymer significantly increased the permeability of Rh123 across the HBMEC monolayer whereas transcytosis of the polymer was very low. Further investigations on the mechanism of transport showed that integrity and barrier function of the BBB model were not harmed by the polymer. According to our results, p(HPMA)-co-p(LMA) copolymers are a promising delivery system for neurological therapeutics and their application might open alternative treatment strategies. Copyright © 2012 Elsevier B.V. All rights reserved.
Ahmad, Niyaz; Ahmad, Rizwan; Naqvi, Atta Abbas; Alam, Md Aftab; Ashafaq, Mohammad; Abdur Rub, Rehan; Ahmad, Farhan Jalees
2018-06-01
Quercetin (QUR), as an antioxidant flavonoid, exhibits potential role in the amelioration of cerebral ischaemia; however, poor solubility as well as oral absorption results low serum and tissue levels for this drug. To enhance bioavailability, this study aims to prepare QUR nanoemulsions and administer via non-invasive nasal route in order to evaluate the drug targeting in brain. Quercetin mucoadhesive nanoemulsion (QMNE) was prepared (ionic gelation method) and optimized using various parameters, that is, particle size, entrapment efficiency, zeta potential and ex vivo permeation study. The results observed for optimized QMNE were as follows: mean globule size (91.63 ± 4.36 nm), zeta potential (-17.26 ± 1.04 mV), drug content (99.84 ± 0.34%) and viscosity (121 ± 13 cp). To evaluate the extent of bioavailability for QMNE via post-intranasal (i.n.) administration, Ultra performance liquid chromatography-mass spectroscopy (UPLC-ESI-Q-TOF-MS/MS)-based bioanalytical method was developed and validated for pharmacokinetics, biodistribution, brain-targeting efficiency (9333.33 ± 39.39%) and brain drug-targeting potential (2181.83 ± 5.69%) which revealed enhanced QUR brain bioavailability as compared to intravenous administration (i.v.). Furthermore, improved neurobehavioral activity (locomotor and grip strength), histopathology and reduced infarction volume effects were observed in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic rats model after i.n. administration of QMNE. This study supports a significant role for QMNE in terms of high brain-targeting potential and formulation efficiency due to ease of access and effective targeting in brain.
Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E
2013-12-28
Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.
Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis.
Nair, Keerthi G S; Ramaiyan, Velmurugan; Sukumaran, Sathesh Kumar
2018-06-01
The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier regulating its homeostasis. Blood-brain barrier is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the blood-brain barrier also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the blood-brain barrier. Within this review a brief description of the structural and physiological features of the barriers and the recently born strategy of brain drug delivery based on the use of nanoparticles are described. Finally, the future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments.
Laszlo, I.
1963-01-01
Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136
Nanobiotechnology-based strategies for crossing the blood-brain barrier.
Jain, Kewal K
2012-08-01
The blood-brain barrier (BBB) is meant to protect the brain from noxious agents; however, it also significantly hinders the delivery of therapeutics to the brain. Several strategies have been employed to deliver drugs across this barrier and some of these may do structural damage to the BBB by forcibly opening it to allow the uncontrolled passage of drugs. The ideal method for transporting drugs across the BBB should be controlled and should not damage the barrier. Among the various approaches that are available, nanobiotechnology-based delivery methods provide the best prospects for achieving this ideal. This review describes various nanoparticle (NP)-based methods used for drug delivery to the brain and the known underlying mechanisms. Some strategies require multifunctional NPs combining controlled passage across the BBB with targeted delivery of the therapeutic cargo to the intended site of action in the brain. An important application of nanobiotechnology is to facilitate the delivery of drugs and biological therapeutics for brain tumors across the BBB. Although there are currently some limitations and concerns for the potential neurotoxicity of NPs, the future prospects for NP-based therapeutic delivery to the brain are excellent.
[Brain protection against cerebral ischemia].
Kitagawa, Kazuo
2013-01-01
Previous clinical trials failed to show the benefit of several potentially protective drugs in acute ischemic stroke. However, there would be three main approaches for brain protection against stroke. The first is to develop a novel thrombolytic agent which is more efficient and safer than alteplase. Tenecteplase and desmoteplase are in progress as a new thrombolytic drug. The second strategy is to augment collateral circulation through leptomeningeal anastomosis. Administration of G-CSF could enhance arteriogenesis, but it takes several days to develop functional collateral. For this purpose, partial aortic balloon clumping or stimulation of pterygopalatine ganglion may be promising. The third one is to protect neurovascular unit against reperfusion injury. Brain hypothermia is the most effective strategy in experimental ischemia, and the clinical trial for hypothermia combined with thrombolysis therapy is in progress. Activation of endogenous protective response, as presented by ischemic tolerance, has focused on remote ischemic conditioning. Although the precise mechanisms of remote preconditioning remain unclear, intermittent limb ischemia is a safe approach. Remote ischemic conditioning is now investigated in acute patients with thrombolysis therapy.
Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank; Baler, Ruben
2010-09-01
Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.
Kanamitsu, Kayoko; Arakawa, Ryosuke; Sugiyama, Yuichi; Suhara, Tetsuya; Kusuhara, Hiroyuki
2016-12-01
The effect of drugs in the central nervous system (CNS) is closely related to occupancy of their target receptor. In this study, we integrated plasma concentrations, in vitro/in vivo data for receptor or protein binding, and in silico data, using a physiologically based pharmacokinetic model, to examine the predictability of receptor occupancy in humans. The occupancy of the dopamine D2 receptor and the plasma concentrations of the antipsychotic drugs quetiapine and perospirone in humans were collected from the literature or produced experimentally. Association and dissociation rate constants and unbound fractions in the serum and brain were determined in vitro/in vivo using human D2 receptor-expressing membrane fractions, human serum and mouse brain. The permeability of drugs across the blood-brain barrier was estimated based on their physicochemical properties. The effect of a metabolite of perospirone, ID-15036, was also considered. The time profiles of D2 receptor occupancy following oral dose of quetiapine and perospirone predicted were similar to the observed values. This approach could assist in the design of clinical studies for drug development and the prediction of the impact of drug-drug interactions on CNS function in clinical settings. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S
2012-01-01
Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932
Finke, John M; Banks, William A
2017-01-01
This review serves to highlight approaches that may improve the access of antibody drugs to regions of the brain affected by Alzheimer's Disease. While previous antibody drugs have been unsuccessful in treating Alzheimer's disease, recent work demonstrates that Alzheimer's pathology can be modified if these drugs can penetrate the brain parenchyma with greater efficacy. Research in antibody blood-brain barrier drug delivery predominantly follows one of three distinct directions: (1) enhancing influx with reduced antibody size, addition of Trojan horse modules, or blood-brain barrier disruption; (2) modulating trancytotic equilibrium and/or kinetics of the neonatal Fc Receptor; and (3) manipulation of antibody glycan carbohydrate composition. In addition to these topics, recent studies are discussed that reveal a role of glycan sialic acid in suppressing antibody efflux from the brain.
Peptides: important tools for the treatment of central nervous system disorders.
Malavolta, Luciana; Cabral, Francisco Romero
2011-10-01
This review shows some classical applications of peptides and suggests there is great promise for the treatment of various central nervous system diseases. Actually, peptides are considered the new generation of biologically active tools because they are key regulators in cellular and intercellular physiological responses, which possess enormous potential for the treatment of various diseases. In spite of their clinical potential, native peptides have seen limited use due to their poor bioavailability and low stability in physiological conditions. Moreover, most peptide or protein pharmaceuticals currently in use are delivered by invasive routes such as via subcutaneous injection. Considerable efforts have been made to design new drugs based on peptides and recent developments in technology and science have provided the means and opportunity to produce a stable as well as controlled-release form of peptide and protein drugs to combat poorly controlled diseases and to increase patients' quality of life. A major challenge in this regard, however, is the delivery of peptides over the blood-brain barrier. This review gives an overview of some strategies used to improve both bioavailability and uptake of peptide drugs for delivery into the brain. Indeed, recent findings suggest that the use of peptides by conjugation to a polymer such as nanoparticles can offer tremendous hope in the treatment of brain disorders. The polymer conjugation improves pharmacokinetics by increasing the molecular mass of proteins and peptides and shielding them from proteolytic enzymes. These new strategies will create new opportunities for the future development of neurotherapeutic drugs. In the present review we have focused our attention on the peptide controlled delivery, summarizing literature reports on the use of peptides and nanotechnology for the treatment and diagnosis of brain disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik
2015-01-01
Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer® RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood–brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140–170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy. PMID:25792832
Lopalco, Antonio; Ali, Hazem; Denora, Nunzio; Rytting, Erik
2015-01-01
Encapsulation of antiepileptic drugs (AEDs) into nanoparticles may offer promise for treating pregnant women with epilepsy by improving brain delivery and limiting the transplacental permeability of AEDs to avoid fetal exposure and its consequent undesirable adverse effects. Oxcarbazepine-loaded nanoparticles were prepared by a modified solvent displacement method from biocompatible polymers (poly(lactic-co-glycolic acid) [PLGA] with or without surfactant and PEGylated PLGA [Resomer(®) RGPd5055]). The physical properties of the developed nanoparticles were determined with subsequent evaluation of their permeability across in vitro models of the blood-brain barrier (hCMEC/D3 cells) and human placental trophoblast cells (BeWo b30 cells). Oxcarbazepine-loaded nanoparticles with encapsulation efficiency above 69% were prepared with sizes ranging from 140-170 nm, polydispersity indices below 0.3, and zeta potential values below -34 mV. Differential scanning calorimetry and X-ray diffraction studies confirmed the amorphous state of the nanoencapsulated drug. The apparent permeability (Pe ) values of the free and nanoencapsulated oxcarbazepine were comparable across both cell types, likely due to rapid drug release kinetics. Transport studies using fluorescently-labeled nanoparticles (loaded with coumarin-6) demonstrated increased permeability of surfactant-coated nanoparticles. Future developments in enzyme-prodrug therapy and targeted delivery are expected to provide improved options for pregnant patients with epilepsy.
Controversies about the enhanced vulnerability of the adolescent brain to develop addiction.
Bernheim, Aurélien; Halfon, Olivier; Boutrel, Benjamin
2013-11-28
Adolescence, defined as a transition phase toward autonomy and independence, is a natural time of learning and adjustment, particularly in the setting of long-term goals and personal aspirations. It also is a period of heightened sensation seeking, including risk taking and reckless behaviors, which is a major cause of morbidity and mortality among teenagers. Recent observations suggest that a relative immaturity in frontal cortical neural systems may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors. However, converging preclinical and clinical studies do not support a simple model of frontal cortical immaturity, and there is substantial evidence that adolescents engage in dangerous activities, including drug abuse, despite knowing and understanding the risks involved. Therefore, a current consensus considers that much brain development during adolescence occurs in brain regions and systems that are critically involved in the perception and evaluation of risk and reward, leading to important changes in social and affective processing. Hence, rather than naive, immature and vulnerable, the adolescent brain, particularly the prefrontal cortex, should be considered as prewired for expecting novel experiences. In this perspective, thrill seeking may not represent a danger but rather a window of opportunities permitting the development of cognitive control through multiple experiences. However, if the maturation of brain systems implicated in self-regulation is contextually dependent, it is important to understand which experiences matter most. In particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse episodes of stress or unrestricted access to drugs can shape the adolescent brain and potentially trigger life-long maladaptive responses.
Ahmad, Javed; Akhter, Sohail; Rizwanullah, Md; Khan, Mohammad Ahmed; Pigeon, Lucie; Addo, Richard T; Greig, Nigel H; Midoux, Patrick; Pichon, Chantal; Kamal, Mohammad Amjad
2017-01-01
Alzheimer's disease (AD), a cognitive dysfunction/dementia state amongst the elders is characterized by irreversible neurodegeneration due to varied pathophysiology. Up till now, anti-AD drugs having different pharmacology have been developed and used in clinic. Yet, these medications are not curative and only lowering the AD associated symptoms. Improvement in treatment outcome required drug targeting across the blood-brain barrier (BBB) to the central nervous system (CNS) in optimal therapeutic concentration. Nanotechnology based diagnostic tools, drug carriers and theranostics offer highly sensitive molecular detection, effective drug targeting and their combination. Over the past decade, significant works have been done in this area and we have seen very remarkable outocome in AD therapy. Various nanoparticles from organic and inorganic nanomaterial category have successfully been investigated against AD. This paper discussed the role of nanoparticles in early detection of AD, effective drug targeting to brain and theranostic (diagnosis and therapy) approaches in AD's management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Unbalanced neuronal circuits in addiction.
Volkow, Nora D; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D
2013-08-01
Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it. Published by Elsevier Ltd.
Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease
Gunay, Mine Silindir; Ozer, A. Yekta; Chalon, Sylvie
2016-01-01
Background: Although a variety of therapeutic approaches are available for the treatment of Parkinson’s disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. Methods: This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. Results: It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson’s disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α-synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Conclusion: Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson’s disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson’s Disease therapy and reduce its side effects. PMID:26714584
Blood brain barrier: a challenge for effectual therapy of brain tumors.
Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti
2015-01-01
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Lockman, Paul R; Mittapalli, Rajendar K; Taskar, Kunal S; Rudraraju, Vinay; Gril, Brunilde; Bohn, Kaci A; Adkins, Chris E; Roberts, Amanda; Thorsheim, Helen R; Gaasch, Julie A; Huang, Suyun; Palmieri, Diane; Steeg, Patricia S; Smith, Quentin R
2010-12-01
Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases; however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune-compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Analysis of over 2,000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) showed partial BTB permeability compromise in greater than 89% of lesions, varying in magnitude within and between metastases. Brain metastasis uptake of ¹⁴C-paclitaxel and ¹⁴C-doxorubicin was generally greater than normal brain but less than 15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (∼10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with overexpression of the pericyte protein desmin. This work shows that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. ©2010 AACR.
Lockman, Paul R.; Mittapalli, Rajendar K.; Taskar, Kunal S.; Rudraraju, Vinay; Gril, Brunilde; Bohn, Kaci A.; Adkins, Chris E.; Roberts, Amanda; Thorsheim, Helen R.; Gaasch, Julie A.; Huang, Suyun; Palmieri, Diane; Steeg, Patricia S.; Smith, Quentin R.
2010-01-01
Purpose Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases, however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental Design Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Results Analysis of >2000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) demonstrated partial BTB permeability compromise in >89% lesions, varying in magnitude within and between metastases. Brain metastasis uptake of 14C- paclitaxel and 14C- doxorubicin was generally greater than normal brain but <15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (~10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with over expression of the pericyte protein, desmin. Conclusions This work demonstrates that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. PMID:20829328
Addictive genes and the relationship to obesity and inflammation.
Heber, David; Carpenter, Catherine L
2011-10-01
There is increasing evidence that the same brain reward circuits involved in perpetuating drug abuse are involved in the hedonic urges and food cravings observed clinically in overweight and obese subjects. A polymorphism of the D2 dopamine receptor which renders it less sensitive to dopamine stimulation has been proposed to promote self-stimulatory behavior such as consuming alcohol, abusing drugs, or binging on foods. It is important to determine how this polymorphism may interact with other well-known candidate genes for obesity including polymorphisms of the leptin receptor gene and the opiomelanocortin gene. Leptin is a proinflammatory cytokine as well as a long-term signal maintaining body fat. Upper-body obesity stimulates systemic inflammation through the action of multiple cytokines including leptin throughout many organs including the brain. The association of numerous diseases including diabetes mellitus, heart disease, as well as depression with chronic low-grade inflammation due to abdominal obesity has raised the possibility that obesity-associated inflammation affecting the brain may promote addictive behaviors leading to a self-perpetuating cycle that may affect not only foods but addictions to drugs, alcohol, and gambling. This new area of interdisciplinary research holds the promise of developing new approaches to treating drug abuse and obesity.
Drugs & the Brain: Case-based Instruction for an Undergraduate Neuropharmacology Course.
Nagel, Anastasia; Nicholas, Andrea
2017-01-01
In order to transform a traditional large non-majors general education (GE) neurobiology lecture (Drugs & the Brain) into an active learning course, we developed a series of directed mini-cases targeting major drug classes. Humorous and captivating case-based situations were used to better engage and motivate students to solve problems related to neuropharmacology and physiology. Here we provide directed cases, questions and learning outcomes for our opiates mini-cases. In addition, we describe how case studies were incorporated into our course and assessed using peer review and online quizzing. An in-depth analysis of the overall course transformation on student exam performance, opinions and instructor evaluations can be found in the JUNE article Don't Believe the Gripe! Increasing Course Structure in a Large Non-majors Neuroscience Course.
The Science of Addiction: Drugs, Brains, and Behavior
... Issue Past Issues The Science of Addiction: Drugs, Brains, and Behavior Past Issues / Spring 2007 Table of ... Americans understand addiction as a chronic but treatable brain disease. The eye-opening documentary, Addiction , first aired ...
Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.
Badawy, Abdulla A-B
2013-10-01
It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.
Brains Rule!: a model program for developing professional stewardship among neuroscientists.
Zardetto-Smith, Andrea M; Mu, Keli; Carruth, Laura L; Frantz, Kyle J
2006-01-01
Brains Rule! Neuroscience Expositions, funded through a National Institute on Drug Abuse Science Education Drug Abuse Partnership Award, has developed a successful model for informal neuroscience education. Each Exposition is a "reverse science fair" in which neuroscientists present short neuroscience teaching modules to students. This study focuses on results of assessments conducted with neuroscientist presenters during Expositions at two sites, Atlanta, Georgia and Corpus Christi, Texas. The effects of participating in the Expositions on presenters' perceptions of their own presentation and communication skills were evaluated, as was the potential for increased active participation by neuroscientists in future outreach programs. In four of the five Expositions studied, pre- versus post-event surveys demonstrated significant changes in presenters' perceptions of their own abilities to explain neuroscience concepts to children. Over the course of an Exposition, presenters learned to fit their approaches to conveying neuroscience concepts to fifth through eighth graders and learned to link information they presented about the brain and nervous system to children's past experiences to improve comprehension. The present data suggest that Brains Rule! Neuroscience Expositions are effective in improving communication and teaching skills among neuroscience professionals and contribute to professional stewardship by increasing motivation to participate in future informal education programs.
Han, Seunggu J; Bankiewicz, Krystof; Butowski, Nicholas A; Larson, Paul S; Aghi, Manish K
2016-06-01
Local delivery of therapeutic agents into the brain has many advantages; however, the inability to predict, visualize and confirm the infusion into the intended target has been a major hurdle in its clinical development. Here, we describe the current workflow and application of the interventional MRI (iMRI) system for catheter placement and real time visualization of infusion. We have applied real time convection-enhanced delivery (CED) of therapeutic agents with iMRI across a number of different clinical trials settings in neuro-oncology and movement disorders. Ongoing developments and accumulating experience with the technique and technology of drug formulations, CED platforms, and iMRI systems will continue to make local therapeutic delivery into the brain more accurate, efficient, effective and safer.
NASA Astrophysics Data System (ADS)
Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko
2017-07-01
An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.
Greenfield, Susan A.; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M.
2017-01-01
Abstract. Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between “bottom-up” cellular mechanisms and “top-down” cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo, depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness. PMID:28573153
Greenfield, Susan A; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M
2017-07-01
Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between "bottom-up" cellular mechanisms and "top-down" cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo , depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness.
Viral Oncolytic Therapeutics for Neoplastic Meningitis
2012-07-01
the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the
Convection-enhanced delivery for the treatment of brain tumors
Debinski, Waldemar; Tatter, Stephen B
2013-01-01
The brain is highly accessible for nutrients and oxygen, however delivery of drugs to malignant brain tumors is a very challenging task. Convection-enhanced delivery (CED) has been designed to overcome some of the difficulties so that pharmacological agents that would not normally cross the BBB can be used for treatment. Drugs are delivered through one to several catheters placed stereotactically directly within the tumor mass or around the tumor or the resection cavity. Several classes of drugs are amenable to this technology including standard chemotherapeutics or novel experimental targeted drugs. The first Phase III trial for CED-delivered, molecularly targeted cytotoxin in the treatment of recurrent glioblastoma multiforme has been accomplished and demonstrated objective clinical efficacy. The lessons learned from more than a decade of attempts at exploiting CED for brain cancer treatment weigh critically for its future clinical applications. The main issues center around the type of catheters used, number of catheters and their exact placement; pharmacological formulation of drugs, prescreening patients undergoing treatment and monitoring the distribution of drugs in tumors and the tumor-infiltrated brain. It is expected that optimizing CED will make this technology a permanent addition to clinical management of brain malignancies. PMID:19831841
PET IMAGING STUDIES IN DRUG ABUSE RESEARCH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, J.S.; Volkow, N.D.; Ding, Y.S.
There is overwhelming evidence that addiction is a disease of the brain (Leshner, 1997). Yet public perception that addiction is a reflection of moral weakness or a lack of willpower persists. The insidious consequence of this perception is that we lose sight of the fact that there are enormous medical consequences of addiction including the fact that a large fraction of the total deaths from cancer and heart disease are caused by smoking addiction. Ironically the medical school that educates physicians in addiction medicine and the cancer hospital that has a smoking cessation clinic are vanishingly rare and efforts atmore » harm reduction are frequently met with a public indignation. Meanwhile the number of people addicted to substances is enormous and increasing particularly the addictions to cigarettes and alcohol. It is particularly tragic that addiction usually begins in adolescence and becomes a chronic relapsing problem and there are basically no completely effective treatments. Clearly we need to understand how drugs of abuse affect the brain and we need to be creative in using this information to develop effective treatments. Imaging technologies have played a major role in the conceptualization of addiction as a disease of the brain (Fowler et al., 1998a; Fowler et al., 1999a). New knowledge has been driven by advances in radiotracer design and chemistry and positron emission tomography (PET) instrumentation and the integration of these scientific tools with the tools of biochemistry, pharmacology and medicine. This topic cuts across the medical specialties of neurology, psychiatry, cancer and heart disease because of the high medical, social and economic toll that drugs of abuse, including and especially the legal drugs, cigarettes and alcohol, take on society. In this chapter we will begin by highlighting the important role that chemistry has played in making it possible to quantitatively image the movement of drugs as well as their effects on the human brain. This will be followed by highlights of PET studies of the acute effects of the psychostimulant drugs cocaine and methylphenidate (ritalin) and studies of the chronic effects of cocaine and of tobacco smoke on the human brain. This chapter concludes with the description of a study which uses brain imaging coupled with a specific pharmacological challenge to address the age-old question of why some people who experiment with drugs become addicted while others do not.« less
ERIC Educational Resources Information Center
Cheng, Meng-Tzu; Annetta, Leonard; Folta, Elizabeth; Holmes, Shawn Y.
2011-01-01
"Drugs and the Brain: A Serious Game," a prototype museum exhibit, was designed to employ virtual models of the brain into a video game format. It was done to create a fun and engaging way of conveying knowledge and concepts about neuroscience, as well as the impact of methamphetamine abuse on the brain. The purpose of this study is to…
Green, A R
2008-01-01
The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT. PMID:18516072
Green, A R
2008-08-01
The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT.
Howell, Brett A; Chauhan, Anuj
2010-08-01
Physiologically based pharmacokinetic (PBPK) models were developed for design and optimization of liposome therapy for treatment of overdoses of tricyclic antidepressants and local anesthetics. In vitro drug-binding data for pegylated, anionic liposomes and published mechanistic equations for partition coefficients were used to develop the models. The models were proven reliable through comparisons to intravenous data. The liposomes were predicted to be highly effective at treating amitriptyline overdoses, with reductions in the area under the concentration versus time curves (AUC) of 64% for the heart and brain. Peak heart and brain drug concentrations were predicted to drop by 20%. Bupivacaine AUC and peak concentration reductions were lower at 15.4% and 17.3%, respectively, for the heart and brain. The predicted pharmacokinetic profiles following liposome administration agreed well with data from clinical studies where protein fragments were administered to patients for overdose treatment. Published data on local cardiac function were used to relate the predicted concentrations in the body to local pharmacodynamic effects in the heart. While the results offer encouragement for future liposome therapies geared toward overdose, it is imperative to point out that animal experiments and phase I clinical trials are the next steps to ensuring the efficacy of the treatment. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S
2016-05-01
Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.
Kamiichi, Atsuko; Furihata, Tomomi; Kishida, Satoshi; Ohta, Yuki; Saito, Kosuke; Kawamatsu, Shinya; Chiba, Kan
2012-12-07
The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells (BMEC) working together with astrocytes and pericytes, in which tight junctions and various transporters strictly regulate the penetration of diverse compounds into the brain. Clarification of the molecular machinery that provides such regulation using in vitro BBB models has provided important insights into the roles of the BBB in central nervous system (CNS) disorders and CNS drug development. In this study, we succeeded in establishing a new cell line, hereinafter referred to as human BMEC/conditionally immortalized, clone β (HBMEC/ciβ), as part of our ongoing efforts to develop an in vitro human BBB model. Our results showed that HBMEC/ciβ proliferated well. Furthermore, we found that HBMEC/ciβ exhibited the barrier property of restricting small molecule intercellular penetration and possessed effective efflux transporter functions, both of which are essential to a functioning BBB. Because higher temperatures are known to terminate immortalization signals, we specifically examined the effects of higher temperatures on the HBMEC/ciβ differentiation status. The results showed that higher temperatures stimulated HBMEC/ciβ differentiation, marked by morphological alteration and increases in several mRNA levels. To summarize, our data indicates that the newly established HBMEC/ciβ offers a promising tool for use in the development of a practical in vitro human BBB model that could make significant contributions toward understanding the molecular biology of CNS disorders, as well as to CNS drug development. It is also believed that the development of a specific culture method for HBMEC/ciβ will add significant value to the HBMEC/ciβ-based BBB model. Copyright © 2012 Elsevier B.V. All rights reserved.
Psychological Effects of Stimulant Drugs in Children with Minimal Brain Dysfunction
ERIC Educational Resources Information Center
Conners, C. Keith
1972-01-01
Two technical studies involving the drugs dextroamphetamine, methylphenidate, and magnesium pemoline were reported in regard to the psychological characteristics and effects of stimulant drugs in children with minimal brain injuries. (CB)
Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery.
Vazana, Udi; Veksler, Ronel; Pell, Gaby S; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio; Friedman, Alon
2016-07-20
The blood-brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood-brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood-brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood-brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood-brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. In this study, we reveal a new mechanism that governs blood-brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. Copyright © 2016 the authors 0270-6474/16/367727-13$15.00/0.
Glutamate-Mediated Blood–Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery
Vazana, Udi; Veksler, Ronel; Pell, Gaby S.; Prager, Ofer; Fassler, Michael; Chassidim, Yoash; Roth, Yiftach; Shahar, Hamutal; Zangen, Abraham; Raccah, Ruggero; Onesti, Emanuela; Ceccanti, Marco; Colonnese, Claudio; Santoro, Antonio; Salvati, Maurizio; D'Elia, Alessandro; Nucciarelli, Valter; Inghilleri, Maurizio
2016-01-01
The blood–brain barrier is a highly selective anatomical and functional interface allowing a unique environment for neuro-glia networks. Blood–brain barrier dysfunction is common in most brain disorders and is associated with disease course and delayed complications. However, the mechanisms underlying blood–brain barrier opening are poorly understood. Here we demonstrate the role of the neurotransmitter glutamate in modulating early barrier permeability in vivo. Using intravital microscopy, we show that recurrent seizures and the associated excessive glutamate release lead to increased vascular permeability in the rat cerebral cortex, through activation of NMDA receptors. NMDA receptor antagonists reduce barrier permeability in the peri-ischemic brain, whereas neuronal activation using high-intensity magnetic stimulation increases barrier permeability and facilitates drug delivery. Finally, we conducted a double-blind clinical trial in patients with malignant glial tumors, using contrast-enhanced magnetic resonance imaging to quantitatively assess blood–brain barrier permeability. We demonstrate the safety of stimulation that efficiently increased blood–brain barrier permeability in 10 of 15 patients with malignant glial tumors. We suggest a novel mechanism for the bidirectional modulation of brain vascular permeability toward increased drug delivery and prevention of delayed complications in brain disorders. SIGNIFICANCE STATEMENT In this study, we reveal a new mechanism that governs blood–brain barrier (BBB) function in the rat cerebral cortex, and, by using the discovered mechanism, we demonstrate bidirectional control over brain endothelial permeability. Obviously, the clinical potential of manipulating BBB permeability for neuroprotection and drug delivery is immense, as we show in preclinical and proof-of-concept clinical studies. This study addresses an unmet need to induce transient BBB opening for drug delivery in patients with malignant brain tumors and effectively facilitate BBB closure in neurological disorders. PMID:27445149
Where does HIV hide? A focus on the central nervous system
Churchill, Melissa; Nath, Avindra
2017-01-01
Purpose of review To review the literature on infection and evolution of HIV within the brain in the context for understanding the nature of the brain reservoir and its consequences. Recent findings HIV-1 in the brain can evolve in separate compartments within macrophage/microglia and astrocytes. The virus adapts to the brain environment to infect these cells and brain-specific mutations can be found in nearly all genes of the virus. The virus evolves to become more neurovirulent. Summary The brain is an ideal reservoir for the HIV. The brain is a relatively immune privileged site and the blood–brain barrier prevents easy access to antiretroviral drugs. Further, the virus infects resident macrophages and astrocytes which are long-lived cells and causes minimal cytopathology in these cells. Hence as we move towards developing strategies for eradication of the virus from the peripheral reservoirs, it is critical that we pay close attention to the virus in the brain and develop strategies for maintaining it in a latent state failure of which could result in dire consequences. PMID:23429501
Dendrimer advances for the central nervous system delivery of therapeutics.
Xu, Leyuan; Zhang, Hao; Wu, Yue
2014-01-15
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.
[Plant metabolites as nootropics and cognitives].
Cervenka, F; Jahodár, L
2006-09-01
Nowadays several millions of people suffer from Alzheimer's disease and other types of dementia. Etiology of these diseases is not known very well. There occur different levels of neurotransmitters, the level of acetylcholine in the brain is decreased and pathological changes affect the brain tissue. Organic and toxic damage of the brain, free radicals, and other changes participate in the development of these diseases. Drugs as nootropics, cognitives, and neuroprotectives are commonly used to treat these diseases. Some of these drugs have often side and undesirable effects. In recent years some natural substances (galanthamine, huperzine A, vinpocetine), and standardized plant extracts (Ginkgo biloba L., Centella asiatica L.) Urban, Bacopa monniera L., Evolvulus alsinoides L.) are often used. These plant preparations produce fewer undesirable effects and the same effectiveness as the classic therapy, or these preparations are used as a supplement to the classic therapy.
Dendrimer Advances for the Central Nervous System Delivery of Therapeutics
2013-01-01
The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162
Drugs in development for toxoplasmosis: advances, challenges, and current status.
Alday, P Holland; Doggett, Joseph Stone
2017-01-01
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.
Drugs in development for toxoplasmosis: advances, challenges, and current status
Alday, P Holland; Doggett, Joseph Stone
2017-01-01
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis. PMID:28182168
Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art.
Karim, Reatul; Palazzo, Claudio; Evrard, Brigitte; Piel, Geraldine
2016-04-10
Glioblastoma multiforme, a grade IV glioma, is the most frequently occurring and invasive primary tumor of the central nervous system, which causes about 4% of cancer-associated-deaths, making it one of the most fatal cancers. With present treatments, using state-of-the-art technologies, the median survival is about 14 months and 2 year survival rate is merely 3-5%. Hence, novel therapeutic approaches are urgently necessary. However, most drug molecules are not able to cross the blood-brain barrier, which is one of the major difficulties in glioblastoma treatment. This review describes the features of blood-brain barrier, and its anatomical changes with different stages of tumor growth. Moreover, various strategies to improve brain drug delivery i.e. tight junction opening, chemical modification of the drug, efflux transporter inhibition, convection-enhanced delivery, craniotomy-based drug delivery and drug delivery nanosystems are discussed. Nanocarriers are one of the highly potential drug transport systems that have gained huge research focus over the last few decades for site specific drug delivery, including drug delivery to the brain. Properly designed nanocolloids are capable to cross the blood-brain barrier and specifically deliver the drug in the brain tumor tissue. They can carry both hydrophilic and hydrophobic drugs, protect them from degradation, release the drug for sustained period, significantly improve the plasma circulation half-life and reduce toxic effects. Among various nanocarriers, liposomes, polymeric nanoparticles and lipid nanocapsules are the most widely studied, and are discussed in this review. For each type of nanocarrier, a general discussion describing their composition, characteristics, types and various uses is followed by their specific application to glioblastoma treatment. Moreover, some of the main challenges regarding toxicity and standardized evaluation techniques are narrated in brief. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Chunsheng; Cai, Ping; Li, Jason; Zhang, Tian; Lin, Lucy; Abbasi, Azhar Z; Henderson, Jeffrey T; Rauth, Andrew Michael; Wu, Xiao Yu
2017-01-28
Brain metastasis is a fatal disease with limited treatment options and very short survival. Although systemic chemotherapy has some effect on peripheral metastases of breast cancer, it is ineffective in treating brain metastasis due largely to the blood-brain barrier (BBB). Here we developed a BBB-penetrating amphiphilic polymer-lipid nanoparticle (NP) system that efficiently delivered anti-mitotic drug docetaxel (DTX) for the treatment of brain metastasis of triple negative breast cancer (TNBC). We evaluated the biodistribution, brain accumulation, pharmacokinetics and efficacy of DTX-NP in a mouse model of brain metastasis of TNBC. Confocal fluorescence microscopy revealed extravasation of dye-loaded NPs from intact brain microvessels in healthy mice. DTX-NP also extravasated from brain microvessels and accumulated in micrometastasis lesions in the brain. Intravenously injected DTX-NPs increased the blood circulation time of DTX by 5.5-fold and the AUC 0-24h in tumor-bearing brain by 5-fold compared to the clinically used DTX formulation Taxotere® . The kinetics of NPs in the brain, determined by ex vivo fluorescence imaging, showed synchronization with DTX kinetics in the brain measured by LC-MS/MS. This result confirmed successful delivery of DTX by the NPs into the brain and suggested that ex vivo fluorescence imaging of NP could be an effective and quick means for probing drug disposition in the brain. Treatment with the DTX-NP formulation delayed tumor growth by 11-fold and prolonged median survival of tumor-bearing mice by 94% compared to an equivalent dose of Taxotere®, without inducing histological changes in the major organs. Copyright © 2016 Elsevier B.V. All rights reserved.
Kühn, Simone; Gallinat, Jürgen
2011-04-01
The present quantitative meta-analysis set out to test whether cue-reactivity responses in humans differ across drugs of abuse and whether these responses constitute the biological basis of drug craving as a core psychopathology of addiction. By means of activation likelihood estimation, we investigated the concurrence of brain regions activated by cue-induced craving paradigms across studies on nicotine, alcohol and cocaine addicts. Furthermore, we analysed the concurrence of brain regions positively correlated with self-reported craving in nicotine and alcohol studies. We found direct overlap between nicotine, alcohol and cocaine cue reactivity in the ventral striatum. In addition, regions of close proximity were observed in the anterior cingulate cortex (ACC; nicotine and cocaine) and amygdala (alcohol, nicotine and cocaine). Brain regions of concurrence in drug cue-reactivity paradigms that overlapped with brain regions of concurrence in self-reported craving correlations were found in the ACC, ventral striatum and right pallidum (for alcohol). This first quantitative meta-analysis on drug cue reactivity identifies brain regions underlying nicotine, alcohol and cocaine dependency, i.e. the ventral striatum. The ACC, right pallidum and ventral striatum were related to drug cue reactivity as well as self-reported craving, suggesting that this set of brain regions constitutes the core circuit of drug craving in nicotine and alcohol addiction. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Kamei, Noriyasu
2017-01-01
Recent reports suggest that peptide drugs such as insulin have the potential to serve as therapeutics in neurodegenerative diseases such as Alzheimer's disease. However, the transport of these drugs to the therapeutic target, the brain, is significantly hindered by the blood-brain barrier (BBB). Intranasal administration appears to be an ideal solution for drug delivery to the brain, bypassing the BBB, however the entry of peptide drugs into neuronal and epithelial cells in the olfactory mucosa remains low. In this study, we therefore examined whether intranasal coadministration of cell-penetrating peptides (CPPs) could improve nose-to-brain drug transport. In both mice and rats, we found that direct transport of insulin into the brain was significantly facilitated when coadministered with amphipathic CPP penetratin, and eventually insulin reached the deeper regions of the brain such as the hippocampus. In the mouse line senescence-accelerated mouse prone-8 (SAMP8), spatial learning tests demonstrated that long-term intranasal coadministration of insulin with penetratin improved mild memory loss in the early stages of dementia. In contrast, the severe cognitive dysfunction in the aged SAMP8 mice was preserved despite intranasal coadministration of insulin with penetratin. The immunohistological examination of the hippocampus suggested that enhanced nose-to-brain delivery of insulin had a partial neuroprotective effect but unexpectedly increased amyloid β plaque deposition. In conclusion, intranasal coadministration of insulin with CPPs has the potential to serve as a therapeutic for mild cognitive dysfunction. To identify suitable pharmacotherapy for dementia with severe pathology, further studies of nose-to-brain delivery of molecularly appropriate biopharmaceuticals are necessary.
A review on neuroimaging studies of genetic and environmental influences on early brain development.
Gao, Wei; Grewen, Karen; Knickmeyer, Rebecca C; Qiu, Anqi; Salzwedel, Andrew; Lin, Weili; Gilmore, John H
2018-04-16
The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions. Copyright © 2018 Elsevier Inc. All rights reserved.
Strategies for drug delivery to the central nervous system by systemic route.
Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata
2015-05-01
Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.
Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting.
Vyas, Tushar K; Babbar, A K; Sharma, R K; Singh, Shashi; Misra, Ambikanandan
2006-03-01
The aim of this investigation was to prepare clonazepam microemulsions (CME) for rapid drug delivery to the brain to treat acute status epileptic patients and to characterize and evaluate the performance of CME in vitro and in vivo in rats. The CME were prepared by the titration method and were characterized for globule size and size distribution, zeta potential, and drug content. CME was radiolabeled with (99m)Tc (technetium) and biodistribution of drug in the brain was studied in Swiss albino rats after intranasal and intravenous administrations. Brain scintigraphy imaging in rabbits was also performed to ascertain the uptake of the drug into the brain. Pre and postCME formulation treated human nasal mucosa was subjected to transmission electron microscopy to investigate the mechanism of drug uptake across the nasal mucosa. CME were transparent and stable with mean globule size of 15 +/- 10 nm and zeta potential of -30 mV to -40 mV. (99m)Tc-labeled clonazepam solution ((99m)Tc CS)/ clonazepam microemulsion (CME)/clonazepam mucoadhesive microemulsion (CMME) were found to be stable and suitable for in vivo studies. Brain/blood uptake ratios at 0.50 hour (h) following intranasal CMME, CME, clonazepam solution (CS), and intravenous CME administrations were found to be 0.67, 0.50, 0.48, and 0.13, respectively indicating more effective targeting with intranasal administration and best targeting of the brain with intranasal CMME. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMME compared to intravenous was found to be twofold higher indicating larger extent of distribution of the drug in brain. Rabbit brain scintigraphy also showed higher intranasal uptake of the drug into the brain. Transmission electron microscopy revealed significant accretion of CMME within interstitial spaces and paracellular mode of transport due to stretching of the tight junctions present in the nasal mucosa. This investigation demonstrates a more rapid and larger extent of transport of clonazepam into the rat brain with intranasal CMME, which may prove useful in treating acute status epileptics. Copyright 2006 Wiley-Liss, Inc. and the American Pharmacists Association.
Immunopharmacotherapy: vaccination strategies as a treatment for drug abuse and dependence.
Moreno, Amira Y; Janda, Kim D
2009-04-01
Despite intensive efforts for its eradication, addiction to both legal and illicit drugs continues to be a major worldwide medical and social problem. Drug addiction is defined as a disease state in which the body relies on a substance for normal functioning and develops physical dependence leading to compulsive and repetitive use despite negative consequences to the user's health, mental state or social life. Psychoactive substances such as cocaine, nicotine, alcohol, and amphetamines are able to cross the blood-brain barrier once ingested and temporarily alter the chemical balance of the brain. Current medications used for the treatment of dependence are typically agonists or antagonists of the drugs of abuse. The complex interrelations of the neuronal circuits have made it difficult to accurately predict the actions of potential agonist/antagonist drugs and have led to undesirable side effects within the central nervous system. Nearly forty years ago, a handful of groups began to explore the possibility of utilizing an individual's own immune machinery to counteract the effects of drug exposure in an approach later termed by our laboratory, immunopharmacotherapy.Immunopharmacotherapy aims to use highly specific antibodies to sequester the drug of interest while the latter is still in the bloodstream. Thus, creation of the antibody-drug complex will blunt crossing of the blood brain barrier (BBB) not only counteracting the reinforcing effects of the drug but also preventing any detrimental side effects on the CNS. In the present mini-review we aim to present a focused summary, including relevant challenges and future directions, of the current state of cocaine and nicotine vaccines as these two programs have been the most successful to date.
Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging
Wen, Chih-Jen; Zhang, Li-Wen; Al-Suwayeh, Saleh A; Yen, Tzu-Chen; Fang, Jia-You
2012-01-01
Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders. PMID:22619515
Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging.
Wen, Chih-Jen; Zhang, Li-Wen; Al-Suwayeh, Saleh A; Yen, Tzu-Chen; Fang, Jia-You
2012-01-01
Quantum dots (QDs) and apomorphine were incorporated into liposomes to eliminate uptake by the liver and enhance brain targeting. We describe the preparation, physicochemical characterization, in vivo bioimaging, and brain endothelial cell uptake of the theranostic liposomes. QDs and the drug were mainly located in the bilayer membrane and inner core of the liposomes, respectively. Spherical vesicles with a mean diameter of ~140 nm were formed. QDs were completely encapsulated by the vesicles. Nearly 80% encapsulation percentage was achieved for apomorphine. A greater fluorescence intensity was observed in mouse brains treated with liposomes compared to free QDs. This result was further confirmed by ex vivo imaging of the organs. QD uptake by the heart and liver was reduced by liposomal incorporation. Apomorphine accumulation in the brain increased by 2.4-fold after this incorporation. According to a hyperspectral imaging analysis, multifunctional liposomes but not the aqueous solution carried QDs into the brain. Liposomes were observed to have been efficiently endocytosed into bEND3 cells. The mechanisms involved in the cellular uptake were clathrin- and caveola-mediated endocytosis, which were energy-dependent. To the best of our knowledge, our group is the first to develop liposomes with a QD-drug hybrid for the aim of imaging and treating brain disorders.
Decreased frontal white-matter volume in chronic substance abuse.
Schlaepfer, Thomas E; Lancaster, Eric; Heidbreder, Rebecca; Strain, Eric C; Kosel, Markus; Fisch, Hans-Ulrich; Pearlson, Godfrey D
2006-04-01
There is quite a body of work assessing functional brain changes in chronic substance abuse, much less is known about structural brain abnormalities in this patient population. In this study we used magnetic resonance imaging (MRI) to determine if structural brain differences exist in patients abusing illicit drugs compared to healthy controls. Sixteen substance abusers who abused heroin, cocaine and cannabis but not alcohol and 16 age-, sex- and race-matched controls were imaged on a MRI scanner. Contiguous, 5-mm-thick axial slices were acquired with simultaneous T2 and proton density sequences. Volumes were estimated for total grey and white matter, frontal grey and white matter, ventricles, and CSF using two different methods: a conventional segmentation and a stereological method based on the Cavalieri principle. Overall brain volume differences were corrected for by expressing the volumes of interest as a percentage of total brain volume. Volume measures obtained with the two methods were highly correlated (r=0.65, p<0.001). Substance abusers had significantly less frontal white-matter volume percentage than controls. There were no significant differences in any of the other brain volumes measured. This difference in frontal lobe white matter might be explained by a direct neurotoxic effect of drug use on white matter, a pre-existing abnormality in the development of the frontal lobe or a combination of both effects. This last explanation might be compelling based on the fact that newer concepts on shared aspects of some neuropsychiatric disorders focus on the promotion and inhibition of the process of myelination throughout brain development and subsequent degeneration.
Nicotine and the adolescent brain.
Yuan, Menglu; Cross, Sarah J; Loughlin, Sandra E; Leslie, Frances M
2015-08-15
Adolescence encompasses a sensitive developmental period of enhanced clinical vulnerability to nicotine, tobacco, and e-cigarettes. While there are sociocultural influences, data at preclinical and clinical levels indicate that this adolescent sensitivity has strong neurobiological underpinnings. Although definitions of adolescence vary, the hallmark of this period is a profound reorganization of brain regions necessary for mature cognitive and executive function, working memory, reward processing, emotional regulation, and motivated behavior. Regulating critical facets of brain maturation are nicotinic acetylcholine receptors (nAChRs). However, perturbations of cholinergic systems during this time with nicotine, via tobacco or e-cigarettes, have unique consequences on adolescent development. In this review, we highlight recent clinical and preclinical data examining the adolescent brain's distinct neurobiology and unique sensitivity to nicotine. First, we discuss what defines adolescence before reviewing normative structural and neurochemical alterations that persist until early adulthood, with an emphasis on dopaminergic systems. We review how acute exposure to nicotine impacts brain development and how drug responses differ from those seen in adults. Finally, we discuss the persistent alterations in neuronal signaling and cognitive function that result from chronic nicotine exposure, while highlighting a low dose, semi-chronic exposure paradigm that may better model adolescent tobacco use. We argue that nicotine exposure, increasingly occurring as a result of e-cigarette use, may induce epigenetic changes that sensitize the brain to other drugs and prime it for future substance abuse. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Brimijoin, Stephen
2013-01-01
Recent progress in enzyme engineering has led to versions of human butyrylcholinesterase (BChE) that hydrolyze cocaine efficiently in plasma, reduce concentrations reaching reward neurocircuity in the brain, and weaken behavioral responses to this drug. Along with enzyme advances, increasingly avid anti-cocaine antibodies and potent anti-cocaine vaccines have also been developed. Here we review these developments and consider the potential advantages along with the risks of delivering drug-intercepting proteins via gene transfer approaches to treat cocaine addiction. PMID:22229308
Bola, R. Aaron; Kiyatkin, Eugene A.
2016-01-01
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008
NASA Astrophysics Data System (ADS)
Abookasis, David; Shochat, Ariel
2016-03-01
We present a comparative evaluation of five different neuroprotective drugs in the early phase following focal traumatic brain injury (TBI) in mouse intact head. The effectiveness of these drugs in terms of changes in brain tissue morphology and hemodynamic properties was experimentally evaluated through analysis of the optical absorption coefficient and spectral reduced scattering parameters in the range of 650-1000 nm. Anesthetized male mice (n=50 and n=10 control) were subjected to weight drop model mimics real life focal head trauma. Monitoring the effect of injury and neuroprotective drugs was obtained by using a diffuse reflectance spectroscopy system utilizing independent source-detector separation and location. Result indicates that administration of minocycline improve hemodynamic and reduced the level of tissue injury at an early phase post-injury while hypertonic saline treatment decrease brain water content. These findings highlight the heterogeneity between neuroprotective drugs and the ongoing controversy among researchers regarding which drug therapy is preferred for treatment of TBI. On the other hand, our results show the capability of optical spectroscopy technique to noninvasively study brain function following injury and drug therapy.
NASA Astrophysics Data System (ADS)
López, T.; Basaldella, E. I.; Ojeda, M. L.; Manjarrez, J.; Alexander-Katz, R.
2006-10-01
Temporal lobe epilepsy is one of the most frequent types of human neurological diseases, and a variety of surgical procedures have been developed for the treatment of intractable cases. An alternative is the use of drug-containing reservoirs based on nanostructured materials of controlled pore sizes in order to deliver the drug without causing secondary effects. Ordered SiO 2 nanostructures were developed as drug reservoirs. The latter were prepared by the sol-gel process using tetraethyl orthosilicate TEOS as precursor to form the "sol" and P123 surfactant as the organic structure-directing agent. In addition to the nontoxic nature of amorphous silica, uniform and tunable pore sizes between 2.5 and 30 nm can be obtained in this way. The aim of this study is to investigate the potential of these materials for the storage and release of drugs in the brain. For that, we loaded valproic acid (VH) and sodic phenytoin (PH) molecules into an ordered mesoporous SiO 2 by impregnation and characterized the drug impregnated SiO 2 by standard physical and spectroscopic techniques to identify the parameters necessary to improve the capacity and quality of the reservoirs. Finally, a study of neurohistopathology of the effects of these reservoirs on brain tissue is presented.
Herradón, G; Pérez-García, C
2014-01-01
Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up-regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of the neurodegenerative disorders associated with drugs of abuse in humans. In this review, evidence demonstrating that MK and PTN limit the rewarding effects of drugs of abuse and, potentially, prevent drug relapse is compiled. There is also convincing evidence that MK and PTN have neuroprotective effects against the neurotoxicity and development of neurodegenerative disorders induced by drugs of abuse. Exogenous administration of MK and/or PTN into the CNS by means of non-invasive methods is proposed as a novel therapeutic strategy for addictive and neurodegenerative diseases. Identification of new molecular targets downstream of the MK and PTN signalling pathways or pharmacological modulation of those already known may also provide a more traditional, but probably effective, therapeutic strategy for treating addictive and neurodegenerative disorders. Linked Articles This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4 PMID:23889475
Sugita, Taku; Kondo, Yusuke; Ishino, Seigo; Mori, Ikuo; Horiguchi, Takashi; Ogawa, Mikako; Magata, Yasuhiro
2018-05-15
The purpose of this study is the development of novel fluorine-18-fluorodeoxyglucose (F-FDG)-PET and Tc-hexamethylpropylene amine oxime (HMPAO) SPECT methods with free-moving apparatus on conscious rats to investigate brain activity without the effects of anesthesia and tactual stimulation. We also assessed the sensitivity of the experimental system by an intervention study using fluoxetine as a reference drug. A catheter was inserted into the femoral vein and connected to a free-moving cannula system. After fluoxetine administration, the rats were given an injection of F-FDG or Tc-HMPAO via the intravenous cannula and released into a free-moving cage. After the tracer was trapped in the brain, the rats were anesthetized and scanned with PET or SPECT scanners. Then a volume of interest analysis and statistical parametric mapping were performed. We could inject the tracer without touching the rats, while keeping them conscious until the tracers were distributed and trapped in the brain using the developed system. The effects of fluoxetine on glucose uptake and cerebral blood flow were perceptively detected by volume of interest and statistical parametric mapping analysis. We successfully developed free-moving F-FDG-PET and Tc-HMPAO-SPECT imaging systems and detected detailed glucose uptake and cerebral blood flow changes in the conscious rat brain with fluoxetine administration. This system is expected to be useful to assess brain activity without the effects of anesthesia and tactual stimulation to evaluate drug effect or animal brain function.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Toward a 3D model of human brain development for studying gene/environment interactions
2013-01-01
This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology. PMID:24564953
Levetiracetam-induced neutropenia following traumatic brain injury.
Bunnell, Kristen; Pucci, Francesco
2015-01-01
Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.
The future of neurotechnology innovation.
Lynch, Zack
2009-06-01
Advances across several areas of neurotechnology research including stem cells treatments, new imaging technologies, drug delivery technologies and novel neuromodulation platforms promise to accelerate the development of treatments and cures for brain-related illnesses.
Neurocircuitry for modeling drug effects.
Noori, Hamid R; Spanagel, Rainer; Hansson, Anita C
2012-09-01
The identification and functional understanding of the neurocircuitry that mediates alcohol and drug effects that are relevant for the development of addictive behavior is a fundamental challenge in addiction research. Here we introduce an assumption-free construction of a neurocircuitry that mediates acute and chronic drug effects on neurotransmitter dynamics that is solely based on rodent neuroanatomy. Two types of data were considered for constructing the neurocircuitry: (1) information on the cytoarchitecture and neurochemical connectivity of each brain region of interest obtained from different neuroanatomical techniques; (2) information on the functional relevance of each region of interest with respect to alcohol and drug effects. We used mathematical data mining and hierarchical clustering methods to achieve the highest standards in the preprocessing of these data. Using this approach, a dynamical network of high molecular and spatial resolution containing 19 brain regions and seven neurotransmitter systems was obtained. Further graph theoretical analysis suggests that the neurocircuitry is connected and cannot be separated into further components. Our analysis also reveals the existence of a principal core subcircuit comprised of nine brain regions: the prefrontal cortex, insular cortex, nucleus accumbens, hypothalamus, amygdala, thalamus, substantia nigra, ventral tegmental area and raphe nuclei. Finally, by means of algebraic criteria for synchronizability of the neurocircuitry, the suitability for in silico modeling of acute and chronic drug effects is indicated. Indeed, we introduced as an example a dynamical system for modeling the effects of acute ethanol administration in rats and obtained an increase in dopamine release in the nucleus accumbens-a hallmark of drug reinforcement-to an extent similar to that seen in numerous microdialysis studies. We conclude that the present neurocircuitry provides a structural and dynamical framework for large-scale mathematical models and will help to predict chronic drug effects on brain function. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Hongaard-Andersen, Peter; Moscicki, Richard A.; Sahakian, Barbara; Quirion, Rémi; Krishnan, K. Ranga Rama; Race, Tim
2015-01-01
Central nervous system (CNS) diseases and, in particular, mental health disorders, are becoming recognized as the health challenge of the 21st century. Currently, at least 10% of the global population is affected by a mental health disorder, a figure that is set to increase year on year. Meanwhile, the rate of development of new CNS drugs has not increased for many years, despite unprecedented levels of investment. In response to this state of affairs, the Collegium Internationale Neuro-Psychopharmacologicum (CINP) convened a summit to discuss ways to reverse this disturbing trend through new partnerships to accelerate CNS drug discovery. The objectives of the Summit were to explore the issues affecting the value chain (i.e. the chain of activities or stakeholders that a company engages in/with to deliver a product to market) in brain research, thereby gaining insights from key stakeholders and developing actions to address unmet needs; to identify achievable objectives to address the issues; to develop action plans to bring about measurable improvements across the value chain and accelerate CNS drug discovery; and finally, to communicate recommendations to governments, the research and development community, and other relevant stakeholders. Summit outputs include the following action plans, aligned to the pressure points within the brain research-drug development value chain: Code of conduct dealing with conflict of interest issues,Prevention, early diagnosis, and treatment,Linking science and regulation,Patient involvement in trial design, definition of endpoints, etc.,Novel trial design,Reproduction and confirmation of data,Update of intellectual property (IP) laws to facilitate repurposing and combination therapy (low priority),Large-scale, global patient registries,Editorials on nomenclature, biomarkers, and diagnostic tools, andPublic awareness, with brain disease advocates to attend G8 meetings and World Economic Forum (WEF) Annual meetings in Davos, Switzerland. In this context Professor Barbara Sahakian recently made a formal presentation at the World Economic Forum (see Barbara Sahakian Blog from April 11, 2014, at https://forumblog.org/people/barbara-sahakian/) Full details of the discussions that formed the bases for these actions are presented in the main body of this document. PMID:25542690
Bertrand, Luc; Nair, Madhavan; Toborek, Michal
2016-01-01
Recent decades mark a great progress in the treatment of HIV infection. What was once a deadly disease is now a chronic infection. However, HIV-infected patients are prone to develop comorbidities, which severely affect their daily functions. For example, a large population of patients develop a variety of neurological and cognitive complications, called HIV associated neurological disorders (HAND). Despite efficient repression of viral replication in the periphery, evidence shows that the virus can remain active in the central nervous system (CNS). This low level of replication is believed to result in a progression of neurocognitive dysfunction in infected individuals. Insufficient viral inhibition in the brain results from the inability of several treatment drugs in crossing the blood-brain barrier (BBB) and reaching therapeutic concentrations in the CNS. The current manuscript discusses several strategies that are being developed to enable therapeutics to cross the BBB, including bypassing BBB, inhibition of efflux transporters, the use of active transporters present at the BBB, and nanotechnology. The increased concentration of therapeutics in the CNS is desirable to prevent viral replication; however, potential side effects of anti-retroviral drugs need also to be taken into consideration.
Oral Delivery of Protein Drugs Bioencapsulated in Plant Cells.
Kwon, Kwang-Chul; Daniell, Henry
2016-08-01
Plants cells are now approved by the FDA for cost-effective production of protein drugs (PDs) in large-scale current Good Manufacturing Practice (cGMP) hydroponic growth facilities. In lyophilized plant cells, PDs are stable at ambient temperature for several years, maintaining their folding and efficacy. Upon oral delivery, PDs bioencapsulated in plant cells are protected in the stomach from acids and enzymes but are subsequently released into the gut lumen by microbes that digest the plant cell wall. The large mucosal area of the human intestine offers an ideal system for oral drug delivery. When tags (receptor-binding proteins or cell-penetrating peptides) are fused to PDs, they efficiently cross the intestinal epithelium and are delivered to the circulatory or immune system. Unique tags to deliver PDs to human immune or nonimmune cells have been developed recently. After crossing the epithelium, ubiquitous proteases cleave off tags at engineered sites. PDs are also delivered to the brain or retina by crossing the blood-brain or retinal barriers. This review highlights recent advances in PD delivery to treat Alzheimer's disease, diabetes, hypertension, Gaucher's or ocular diseases, as well as the development of affordable drugs by eliminating prohibitively expensive purification, cold chain and sterile delivery.
Palacios, J M; Mengod, G
2018-03-01
This is a historical account of how receptors for neurotransmitters and drugs got to be seen at the regional, cellular, and subcellular levels in brain, in the years going from the end of the World War II until the collapse of the Soviet Union, the Cold War (1945-1991). The realization in the US of the problem of mental health care, as a consequence of the results of medical evaluation for military service during the war, let the US Government to act creating among other things the National Institute for Mental Health (NIMH). Coincident with that, new drug treatments for these disorders were introduced. War science also created an important number of tools and instruments, such as the radioisotopes, that played a significant role in the development of our story. The scientific context was marked by the development of Biochemistry, Molecular Biology and the introduction in the early 80's of the DNA recombinant technologies. The concepts of chemical neurotransmission in the brain and of receptors for drugs and transmitters, although proposed before the war, where not generally accepted. Neurotransmitters were identified and the mechanisms of biosynthesis, storage, release and termination of action by mechanisms such as reuptake, elucidated. Furthermore, the synapse was seen with the electron microscope and more important for our account, neurons and their processes visualized in the brain first by fluorescence histochemistry, then using radioisotopes and autoradiography, and later by immunohistochemistry (IHC), originating the Chemical Neuroanatomy. The concept of chemical neurotransmission evolved from the amines, expanded to excitatory and inhibitory amino acids, then to neuropeptides and finally to gases and other "atypical" neurotransmitters. In addition, coexpression of more than one transmitter in a neuron, changed the initial ideas of neurotransmission. The concept of receptors for these and other messengers underwent a significant evolution from an abstract chemical concept to their physical reality as gene products. Important steps were the introduction in the 70's of radioligand binding techniques and the cloning of receptor genes in the 80's. Receptors were first visualized using radioligands and autoradiography, and analyzed with the newly developed computer-assisted image analysis systems. Using Positron Emission Tomography transmitters and receptors were visualized in living human brain. The cloning of receptor genes allowed the use of in situ hybridization histochemistry and immunohistochemistry to visualize with the light and electron microscopes the receptor mRNAs and proteins. The results showed the wide heterogeneity of receptors and the diversity of mode of signal transmission, synaptic and extra-synaptic, again radically modifying the early views of neurotransmission. During the entire period the interplay between basic science and Psychopharmacology and Psychiatry generated different transmitter or receptor-based theories of brain drug action. These concepts and technologies also changed the way new drugs were discovered and developed. At the end of the period, a number of declines in these theories, the use of certain tools and the ability to generate new diagnostics and treatments, the end of an era and the beginning of a new one in the research of how the brain functions. Copyright © 2017 Elsevier B.V. All rights reserved.
Factors influencing frontal cortex development and recovery from early frontal injury.
Halliwell, Celeste; Comeau, Wendy; Gibb, Robbin; Frost, Douglas O; Kolb, Bryan
2009-01-01
Neocortical development represents more than a simple unfolding of a genetic blueprint but rather represents a complex dance of genetic and environmental events that interact to adapt the brain to fit a particular environmental context. Although most cortical regions are sensitive to a wide range of experiential factors during development and later in life, the prefrontal cortex appears to be unusually sensitive to perinatal experiences and relatively immune to many adulthood experiences relative to other neocortical regions. One way to examine experience-dependent prefrontal development is to conduct studies in which experiential perturbations are related neuronal morphology. This review of the research reveals both pre- and post-natal factors have important effects on prefrontal development and behaviour. Such factors include psychoactive drugs, including both illicit drugs and prescription drugs, stress, gonadal hormones and sensory and motor stimulation. A second method of study is to examine both the effects of perinatal prefrontal injury on the development of the remaining cerebral mantle and correlated behaviours as well as the effects of post-injury rehabilitation programmes on the anatomical and behavioural measures. Prefrontal injury alters cerebral development in a developmental-stage dependent manner with perinatal injuries having far more deleterious effects than similar injuries later in infancy. The outcome of perinatal injuries can be modified, however, by rehabilitation with many of the factors shown to influence prefrontal development in the otherwise normal brain.
The Biochemistry of Psychoactive Drugs.
ERIC Educational Resources Information Center
Abood, Leo G.
The effect of psychochemicals on the higher central nervous system, and recent theories regarding drug addiction are discussed. The effect of drugs upon each individual is different. Many drugs have no effect on the brain because of a blood-brain barrier. However, alterations in the rate and character of one's metabolic pattern can lead to…
Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder
Eissa, Nermin; Al-Houqani, Mohammed; Sadeq, Adel; Ojha, Shreesh K.; Sasse, Astrid; Sadek, Bassem
2018-01-01
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD. PMID:29867317
Current Enlightenment About Etiology and Pharmacological Treatment of Autism Spectrum Disorder.
Eissa, Nermin; Al-Houqani, Mohammed; Sadeq, Adel; Ojha, Shreesh K; Sasse, Astrid; Sadek, Bassem
2018-01-01
Autistic Spectrum Disorder (ASD) is a complex neurodevelopmental brain disorder characterized by two core behavioral symptoms, namely impairments in social communication and restricted/repetitive behavior. The molecular mechanisms underlying ASD are not well understood. Recent genetic as well as non-genetic animal models contributed significantly in understanding the pathophysiology of ASD, as they establish autism-like behavior in mice and rats. Among the genetic causes, several chromosomal mutations including duplications or deletions could be possible causative factors of ASD. In addition, the biochemical basis suggests that several brain neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), gamma-amino butyric acid (GABA), acetylcholine (ACh), glutamate (Glu) and histamine (HA) participate in the onset and progression of ASD. Despite of convincible understanding, risperidone and aripiprazole are the only two drugs available clinically for improving behavioral symptoms of ASD following approval by Food and Drug Administration (FDA). Till date, up to our knowledge there is no other drug approved for clinical usage specifically for ASD symptoms. However, many novel drug candidates and classes of compounds are underway for ASD at different phases of preclinical and clinical drug development. In this review, the diversity of numerous aetiological factors and the alterations in variety of neurotransmitter generation, release and function linked to ASD are discussed with focus on drugs currently used to manage neuropsychiatric symptoms related to ASD. The review also highlights the clinical development of drugs with emphasis on their pharmacological targets aiming at improving core symptoms in ASD.
Agrawal, Mukta; Ajazuddin; Tripathi, Dulal K; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Mourtas, Spyridon; Hammarlund-Udenaes, Margareta; Alexander, Amit
2017-08-28
In this modern era, with the help of various advanced technologies, medical science has overcome most of the health-related issues successfully. Though, some diseases still remain unresolved due to various physiological barriers. One such condition is Alzheimer; a neurodegenerative disorder characterized by progressive memory impairment, behavioral abnormalities, mood swing and disturbed routine activities of the person suffering from. It is well known to all that the brain is entirely covered by a protective layer commonly known as blood brain barrier (BBB) which is responsible to maintain the homeostasis of brain by restricting the entry of toxic substances, drug molecules, various proteins and peptides, small hydrophilic molecules, large lipophilic substances and so many other peripheral components to protect the brain from any harmful stimuli. This functionally essential structure creates a major hurdle for delivery of any drug into the brain. Still, there are some provisions on BBB which facilitate the entry of useful substances in the brain via specific mechanisms like passive diffusion, receptor-mediated transcytosis, carrier-mediated transcytosis etc. Another important factor for drug transport is the selection of a suitable drug delivery systems like, liposome, which is a novel drug carrier system offering a potential approach to resolving this problem. Its unique phospholipid bilayer structure (similar to physiological membrane) had made it more compatible with the lipoidal layer of BBB and helps the drug to enter the brain. The present review work focused on various surface modifications with functional ligand (like lactoferrin, transferrin etc.) and carrier molecules (such as glutathione, glucose etc.) on the liposomal structure to enhance its brain targeting ability towards the successful treatment of Alzheimer disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.
Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W
2015-07-01
Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.
Understanding Drug Use and Addiction
... as well, affecting functions that include: learning judgment decision-making stress memory behavior Despite being aware of these ... teens. Because areas in their brains that control decision-making, judgment, and self-control are still developing, teens ...
Meng, Jianing; Agrahari, Vivek; Youm, Ibrahima
2017-03-01
At present, brain tumor is among the most challenging diseases to treat and the therapy is limited by the lack of effective methods to deliver anticancer agents across the blood-brain barrier (BBB). BBB is a selective barrier that separates the circulating blood from the brain extracellular fluid. In its neuroprotective function, BBB prevents the entry of toxins, as well as most of anticancer agents and is the main impediment for brain targeted drug delivery approaches. Nanotechnology-based delivery systems provide an attractive strategy to cross the BBB and reach the central nervous system (CNS). The incorporation of anticancer agents in various nanovehicles facilitates their delivery across the BBB. Moreover, a more powerful tool in brain tumor therapy has relied surface modifications of nanovehicles with specific ligands that can promote their passage through the BBB and favor the accumulation of the drug in CNS tumors. This review describes the physiological and anatomical features of the brain tumor and the BBB, and summarizes the recent advanced approaches to deliver anticancer drugs into brain tumor using nanobiotechnology-based drug carrier systems. The role of specific ligands in the design of functionalized nanovehicles for targeted delivery to brain tumor is reviewed. The current trends and future approaches in the CNS delivery of therapeutic molecules to tumors are also discussed.
Wen, Ran; Zhang, Qing; Xu, Pan; Bai, Jie; Li, Pengyue; Du, Shouying; Lu, Yang
2016-01-01
Xingnaojing microemulsion (XNJ-M) administered intranasally is used for stroke treatment. In order to decrease the XNJ-M-induced mucosal irritation, XNJ-M modified by mPEG2000-PLA (XNJ-MM) were prepared in a previous work. The present work aimed to assess the impact of mPEG2000-PLA on pharmacokinetic features and brain-targeting ability of XNJ-M. The bioavailability and brain-target effects of borneol and geniposide in XNJ-M and XNJ-MM were compared in mice after intravenous (i.v.) and intranasal (i.n.) administrations. Gas chromatography, high-performance liquid chromatography, and ultra-performance liquid chromatography/tandem mass spectrometry methods were developed for the quantification of borneol and geniposide. Blood and brain samples were collected from mice at different time points after i.v. and i.n. treatments with borneol at 8.0 mg/kg, geniposide at 4.12 mg/kg. In addition, near-infrared fluorescence dye, 1,1'-dioctadecyl-3,3,3',3'-tetramethyl indotricarbocyanine iodide was loaded into microemulsions to evaluate the brain-targeting ability of XNJ-M and XNJ-MM by near-infrared fluorescence imaging in vivo and ex vivo. For XNJ-M and XNJ-MM, the relative brain targeted coefficients (Re) were 134.59% and 198.09% (borneol), 89.70% and 188.33% (geniposide), respectively. Besides, significant near-infrared fluorescent signal was detected in the brain after i.n. administration of microemulsions, compared with that of groups for i.v. administration. These findings indicated that mPEG2000-PLA modified microemulsion improved drug entry into blood and brain compared with normal microemulsion: the introduction of mPEG2000-PLA in microemulsion resulted in brain-targeting enhancement of both fat-soluble and water-soluble drugs. These findings provide a basis for the significance of mPEG2000-PLA addition in microemulsion, defining its effects on the drugs in microemulsion.
Strauss, Wayne L; Unis, Alan S; Cowan, Charles; Dawson, Geraldine; Dager, Stephen R
2002-05-01
Pediatric populations, including those with autistic disorder or other pervasive developmental disorders, increasingly are being prescribed selective serotonin reuptake inhibitors (SSRIs). Little is known about the age-related brain pharmacokinetics of SSRIs; there is a lack of data regarding optimal dosing of medications for children. The authors used fluorine magnetic resonance spectroscopy ((19)F MRS) to evaluate age effects on whole-brain concentrations of fluvoxamine and fluoxetine in children taking SSRIs. Twenty-one pediatric subjects with diagnoses of autistic disorder or other pervasive developmental disorders, 6-15 years old and stabilized with a consistent dose of fluvoxamine or fluoxetine, were recruited for the study; 16 successfully completed the imaging protocol. Whole-brain drug levels in this group were compared to similarly acquired data from 28 adults. A significant relationship between dose and brain drug concentration was observed for both drugs across the age range studied. Brain fluvoxamine concentration in the children was lower, consistent with a lower dose/body mass drug prescription; when brain concentration was adjusted for dose/mass, age effects were no longer significant. Brain fluoxetine concentration was similar between age groups; no significant age effects on brain fluoxetine drug levels remained after adjustment for dose/mass. Observations of brain fluoxetine bioavailability and elimination half-life also were similar between age groups. These findings suggest that fluvoxamine or fluoxetine prescriptions adjusted for dose/mass are an acceptable treatment approach for medicating children with autistic disorder or other pervasive developmental disorders. It must be determined whether these findings can be generalized to other pediatric populations.
Kaushik, Ajeet; Jayant, Rahul D; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan
2016-05-04
Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning.
Role of Monocarboxylate Transporters in Drug Delivery to the Brain
Vijay, Nisha; Morris, Marilyn E.
2014-01-01
Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. Currently, fourteen members of this transporter family have been identified by sequence homology, of which only the first four members (MCT1- MCT4) have been shown to mediate the proton-linked transport of monocarboxylates. Another transporter family involved in the transport of endogenous monocarboxylates is the sodium coupled MCTs (SMCTs). These act as a symporter and are dependent on a sodium gradient for their functional activity. MCT1 is the predominant transporter among the MCT isoforms and is present in almost all tissues including kidney, intestine, liver, heart, skeletal muscle and brain. The various isoforms differ in terms of their substrate specificity and tissue localization. Due to the expression of these transporters in the kidney, intestine, and brain, they may play an important role in influencing drug disposition. Apart from endogenous short chain monocarboxylates, they also mediate the transport of exogenous drugs such as salicylic acid, valproic acid, and simvastatin acid. The influence of MCTs on drug pharmacokinetics has been extensively studied for γ-hydroxybutyrate (GHB) including distribution of this drug of abuse into the brain and the results will be summarized in this review. The physiological role of these transporters in the brain and their specific cellular localization within the brain will also be discussed. This review will also focus on utilization of MCTs as potential targets for drug delivery into the brain including their role in the treatment of malignant brain tumors. PMID:23789956
Ding, Jiaojiao; Sun, Yujiao; Li, Jinfeng; Wang, Huimin; Mao, Shirui
2017-07-01
The blood-brain barrier represents an insurmountable obstacle for the therapy of central nervous system related diseases. Polymeric micelles have many desirable properties for brain targeting by oral delivery, but the stability and targeting efficiency needs to be improved. In this study, it was demonstrated that binary micelle system can compensate the drawbacks of mono system by preparing mixed micelles in combination with PEG-based copolymers. Here, we explored a brain targeting drug delivery system via facile approaches using P123 based mixed micelles in combination with a message guider from traditional Chinese medicine, borneol, for oral delivery. With higher drug-loading, improved stability, prolonged in vitro release profile, increased bioavailability and enhanced brain targeting effect was achieved after peroral delivery of the mixed micelles. More importantly, without extra structure modification for active targeting, it was demonstrated for the first time that oral delivery of vinpocetine loaded mixed micelles together with borneol is an effective way to increase drug concentration in the brain and the targeting efficiency is borneol dose dependent. Such a "simple but effective" modality may shed light on the potential use of polymeric micelles in combination with a message drug to achieve drug brain targeting or other targeting sites via oral delivery.
Khalili-Mahani, Najmeh; Rombouts, Serge A R B; van Osch, Matthias J P; Duff, Eugene P; Carbonell, Felix; Nickerson, Lisa D; Becerra, Lino; Dahan, Albert; Evans, Alan C; Soucy, Jean-Paul; Wise, Richard; Zijdenbos, Alex P; van Gerven, Joop M
2017-04-01
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Piwnica-Worms, David; Kesarwala, Aparna H; Pichler, Andrea; Prior, Julie L; Sharma, Vijay
2006-11-01
Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.
Nanoparticle transport across the blood brain barrier.
Grabrucker, Andreas M; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni
2016-01-01
While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.
A PML/Slit Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS.
Amodeo, Valeria; A, Deli; Betts, Joanne; Bartesaghi, Stefano; Zhang, Ying; Richard-Londt, Angela; Ellis, Matthew; Roshani, Rozita; Vouri, Mikaella; Galavotti, Sara; Oberndorfer, Sarah; Leite, Ana Paula; Mackay, Alan; Lampada, Aikaterini; Stratford, Eva Wessel; Li, Ningning; Dinsdale, David; Grimwade, David; Jones, Chris; Nicotera, Pierluigi; Michod, David; Brandner, Sebastian; Salomoni, Paolo
2017-07-11
Cell migration through the brain parenchyma underpins neurogenesis and glioblastoma (GBM) development. Since GBM cells and neuroblasts use the same migratory routes, mechanisms underlying migration during neurogenesis and brain cancer pathogenesis may be similar. Here, we identify a common pathway controlling cell migration in normal and neoplastic cells in the CNS. The nuclear scaffold protein promyelocytic leukemia (PML), a regulator of forebrain development, promotes neural progenitor/stem cell (NPC) and neuroblast migration in the adult mouse brain. The PML pro-migratory role is active also in transformed mouse NPCs and in human primary GBM cells. In both normal and neoplastic settings, PML controls cell migration via Polycomb repressive complex 2 (PRC2)-mediated repression of Slits, key regulators of axon guidance. Finally, a PML/SLIT1 axis regulates sensitivity to the PML-targeting drug arsenic trioxide in primary GBM cells. Taken together, these findings uncover a drug-targetable molecular axis controlling cell migration in both normal and neoplastic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
In vivo performance of a microelectrode neural probe with integrated drug delivery
Rohatgi, Pratik; Langhals, Nicholas B.; Kipke, Daryl R.; Patil, Parag G.
2014-01-01
Object The availability of sophisticated neural probes is a key prerequisite in the development of future brain machine interfaces (BMI). In this study, we developed and validated a neural probe design capable of simultaneous drug delivery and electrophysiology recordings in vivo. Focal drug delivery has promise to dramatically extend the recording lives of neural probes, a limiting factor to clinical adoption of BMI technology. Methods To form the multifunctional neural probe, we affixed a 16-channel microfabricated silicon electrode array to a fused silica catheter. Three experiments were conducted to characterize the performance of the device. Experiment 1 examines cellular damage from probe insertion and the drug distribution in tissue. Experiment 2 measures the effects of saline infusions delivered through the probe on concurrent electrophysiology. Experiment 3 demonstrates that a physiologically relevant amount of drug can be delivered in a controlled fashion. For these experiments, Hoechst and propidium iodide were used to assess insertion trauma and the tissue distribution of the infusate. Artificial cerebral spinal fluid and tetrodotoxin were injected to determine the efficacy of drug delivery. Results The newly developed multifunctional neural probes were successfully inserted into rat cortex and were able to deliver fluids and drugs that resulted in the expected electrophysiological and histological responses. The damage from insertion of the device into brain tissue was substantially less than the volume of drug dispersion in tissue. Electrophysiological activity, including both individual spikes as well as local field potentials, was successfully recorded with this device during real-time drug delivery. No significant changes were seen in response to delivery of artificial cerebral spinal fluid as a control experiment, whereas delivery of tetrodotoxin produced the expected result of suppressing all spiking activity in the vicinity of the catheter outlet. Conclusions Multifunctional neural probes such as the ones developed and validated within this study have great potential to help further understand the design space and criteria for the next generation of neural probe technology. By incorporating integrated drug delivery functionality into the probes, new treatment options for neurological disorders and regenerative neural interfaces utilizing localized and feedback controlled delivery of drugs can be realized in the near future. PMID:19569896
Miller, R T; Miksys, S; Hoffmann, E; Tyndale, R F
2014-01-01
BACKGROUND AND PURPOSE CYP2D6 metabolizes many centrally acting drugs, neurotoxins and endogenous neurochemicals, and differences in brain levels of CYP2D have been associated with brain function and drug response. Alcohol consumers and smokers have higher levels of CYP2D6 in brain, but not liver, suggesting ethanol and/or nicotine may induce human brain CYP2D6. We investigated the independent and combined effects of chronic ethanol self-administration and nicotine treatment on CYP2D expression in African green monkeys. EXPERIMENTAL APPROACH Forty monkeys were randomized into control, ethanol-only, nicotine-only and ethanol + nicotine groups. Two groups voluntarily self-administered 10% ethanol in sucrose solution for 4 h·day−1, whereas two groups consumed sucrose solution on the same schedule. Two groups received daily s.c. injections of 0.5 mg·kg−1 nicotine in saline bid, whereas two groups were injected with saline on the same schedule. KEY RESULTS Both nicotine and ethanol dose-dependently increased CYP2D in brain; brain mRNA was unaffected, and neither drug altered hepatic CYP2D protein or mRNA. The combination of ethanol and nicotine increased brain CYP2D protein levels to a greater extent than either drug alone (1.2–2.2-fold, P < 0.05 among the eight brain regions assessed). Immunohistochemistry revealed the induction of brain CYP2D protein within specific cell types and regions in the treatment groups. CONCLUSIONS AND IMPLICATIONS Ethanol and nicotine increase brain CYP2D protein levels in monkeys, in a region and treatment-specific manner, suggesting that CNS drug responses, neurodegeneration and personality may be affected among people who consume alcohol and/or nicotine. PMID:24611668
Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings.
Le Foll, Bernard; Collo, Ginetta; Rabiner, Eugenii A; Boileau, Isabelle; Merlo Pich, Emilio; Sokoloff, Pierre
2014-01-01
The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction. © 2014 Elsevier B.V. All rights reserved.
Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins
Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin
2012-01-01
Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates. PMID:22300099
A murine model of targeted infusion for intracranial tumors.
Kim, Minhyung; Barone, Tara A; Fedtsova, Natalia; Gleiberman, Anatoli; Wilfong, Chandler D; Alosi, Julie A; Plunkett, Robert J; Gudkov, Andrei; Skitzki, Joseph J
2016-01-01
Historically, intra-arterial (IA) drug administration for malignant brain tumors including glioblastoma multiforme (GBM) was performed as an attempt to improve drug delivery. With the advent of percutaneous neuorovascular techniques and modern microcatheters, intracranial drug delivery is readily feasible; however, the question remains whether IA administration is safe and more effective compared to other delivery modalities such as intravenous (IV) or oral administrations. Preclinical large animal models allow for comparisons between treatment routes and to test novel agents, but can be expensive and difficult to generate large numbers and rapid results. Accordingly, we developed a murine model of IA drug delivery for GBM that is reproducible with clear readouts of tumor response and neurotoxicities. Herein, we describe a novel mouse model of IA drug delivery accessing the internal carotid artery to treat ipsilateral implanted GBM tumors that is consistent and reproducible with minimal experience. The intent of establishing this unique platform is to efficiently interrogate targeted anti-tumor agents that may be designed to take advantage of a directed, regional therapy approach for brain tumors.
Manley, Geoffrey T; MacDonald, Christine L; Markowitz, Amy; Stephenson, Diane; Robbins, Ann; Gardner, Raquel C; Winkler, Ethan A; Bodien, Yelena; Taylor, Sabrina; Yue, John K; Kannan, Lakshmi; Kumar, Allison; McCrea, Michael; Wang, Kevin K W
2017-03-31
The Traumatic Brain Injury Endpoints Development (TED) Initiative is a 5-year, Department of Defense (DoD) funded project that is working toward the ultimate goal of developing better designed clinical trials, leading to more precise diagnosis, and effective treatments for traumatic brain injury (TBI). TED is comprised of leading academic clinician-scientists, along with innovative industry leaders in biotechnology and imaging technology, patient advocacy organizations, and philanthropists, working collaboratively with regulatory authorities, specifically the US Food and Drug Administration (FDA). The goals of the TED Initiative are to gain consensus and validation of TBI clinical outcome assessment measures and biomarkers for endorsement by global regulatory agencies for use in drug and device development processes. This manuscript summarizes the Initiative's Stage 1 progress over the first 18 months, including intensive engagement with a number of FDA divisions responsible for review and validation of biomarkers and clinical outcome assessments, progression into the prequalification phase of FDA's Medical Device Development Tool program for a candidate set of neuroimaging biomarkers, and receipt of FDA's Recognition of Research Importance Letter regarding TBI. Other signal achievements relate to the creation of the TED Metadataset, harmonizing study measures across eight major TBI studies, and the leadership role played by TED investigators in the conversion of the NINDS TBI Common Data Elements (CDEs) to Clinical Data Interchange Standards Consortium (CDISC) standards. This paper frames both the near-term expectations and the Initiative's long-term vision to accelerate approval of treatments for patients affected by TBI in urgent need of effective therapies.
FDA Accelerates Testing and Review of Experimental Brain Cancer Drug | FNLCR Staging
An investigational brain cancer drug made with disabled polio virus and manufactured at the Frederick National Lab has won breakthrough status from the Food and Drug Administration (FDA) to fast-track its further refinement and clinical testing. Br
Cannabis abuse and addiction: a contemporary literature review.
Iyalomhe, G B S
2009-01-01
Drug addiction, particularly among teenagers and young adults, has become a serious public health problem globally. Drugs with addictive potential include the non-therapeutic drugs that are licit/legal (caffeine, tobacco or nicotine, alcohol) and those that are illegal/illicit for common use such as benzodiazepines, amphetamines, cocaine and crack, heroin and cannabis. Worldwide, the challenge of cannabis abuse and addiction is particularly devastating, nay in Nigeria. Despite this ugly scenario, the use of cannabis continues unabated and its control remains enigmatic. The aim of the present review is to provide a contemporary comprehensible overview of exciting recent developments in the understanding of brain circuits related to the nature and effects of cannabis abuse and addiction as well as to highlight the current therapeutic approach to effective management. A thorough manual literature and internet (Medline and HINARI databases) search were conducted. It was found that recent advances in the neurobiology of drug abuse and addiction have led to the identification of neuronal substrates (eg dopamine, 5-hydroxyltrypytamine etc) as being responsible for the rewarding effects of cannabis and are also crucial to the addictive process/behaviour. There is increasing evidence that prolonged exposure to drugs of abuse including cannabis, produces long-lasting effects in cognitive and drug-rewarding brain circuits. Hence, addiction is now generally considered a chronic brain disease. Chronic use of cannabis impairs cognitive functions, perception, reaction time, learning, memory, concentration, social skills and control of emotions. There may also be panic reactions, hallucinations, paranoid states with fixed delusions and even acute psychosis. These impairments have obvious negative implications for the operation of a motor vehicle or machinery and performance at school or workplace as well as the development of a healthy family, a strong national economy and a secure society. Complications of use, including psychosis and withdrawal effects, can be treated. Psychosocial measures and rehabilitation, together with effective prevention initiatives are essential in the management of individuals with drug-related problems. Cannabis abuse and addiction is destructive and may affect all of our lives and the fabric of the society. The development of long-term management strategies based on medication, psychosocial support and continued monitoring as well as preventive initiatives to reduce risk factors and strengthen protective factors against drug abuse is a challenging clinical goal.
He-Ne ILLLI used for brain trauma: a clinical observation of 46 cases
NASA Astrophysics Data System (ADS)
Yang, Da-Ke; Ru, Zheng-Guo; Ge, Sheng-Li; Shuo, Wei-Lan
1998-11-01
With the background that ILLLI can lower the viscosity of blood, improve the microcirculation, we investigated and compared the therapeutic effect of conventional drug therapy and ILLLI combined drug therapy for brain trauma. We found that ILLLI combined drug therapy could effectively alleviate some symptoms such as headache, vertigo, nausea, vomiting, blurred vision, anorexia caused by brain trauma. the therapeutic effect of treated group was prior to control group.
Ma, Jing; Porter, Alan L; Aminabhavi, Tejraj M; Zhu, Donghua
2015-10-01
"Tech mining" applies bibliometric and text analytic methods to scientific literature of a target field. In this study, we compare the evolution of nano-enabled drug delivery (NEDD) systems for two different applications - viz., brain cancer (BC) and Alzheimer's disease (AD) - using this approach. In this process, we derive research intelligence from papers indexed in MEDLINE. Review by domain specialists helps understand the macro-level disease problems and pathologies to identify commonalities and differences between BC and AD. Results provide a fresh perspective on the developmental pathways for NEDD approaches that have been used in the treatment of BC and AD. Results also point toward finding future solutions to drug delivery issues that are critical to medical practitioners and pharmaceutical scientists addressing the brain. Drug delivery to brain cells has been very challenging due to the presence of the blood-brain barrier (BBB). Suitable and effective nano-enabled drug delivery (NEDD) system is urgently needed. In this study, the authors utilized "tech-mining" tools to describe and compare various choices of delivery system available for the diagnosis, as well as treatment, of brain cancer and Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
AAV viral vector delivery to the brain by shape-conforming MR-guided infusions.
Bankiewicz, Krystof S; Sudhakar, Vivek; Samaranch, Lluis; San Sebastian, Waldy; Bringas, John; Forsayeth, John
2016-10-28
Gene transfer technology offers great promise as a potential therapeutic approach to the brain but has to be viewed as a very complex technology. Success of ongoing clinical gene therapy trials depends on many factors such as selection of the correct genetic and anatomical target in the brain. In addition, selection of the viral vector capable of transfer of therapeutic gene into target cells, along with long-term expression that avoids immunotoxicity has to be established. As with any drug development strategy, delivery of gene therapy has to be consistent and predictable in each study subject. Failed drug and vector delivery will lead to failed clinical trials. In this article, we describe our experience with AAV viral vector delivery system, that allows us to optimize and monitor in real time viral vector administration into affected regions of the brain. In addition to discussing MRI-guided technology for administration of AAV vectors we have developed and now employ in current clinical trials, we also describe ways in which infusion cannula design and stereotactic trajectory may be used to maximize the anatomical coverage by using fluid backflow. This innovative approach enables more precise coverage by fitting the shape of the infusion to the shape of the anatomical target. Copyright © 2016 Elsevier B.V. All rights reserved.
Toll-like receptor signaling and stages of addiction.
Crews, Fulton T; Walter, T Jordan; Coleman, Leon G; Vetreno, Ryan P
2017-05-01
Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.
Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting
Clementino, Adryana; Buttini, Francesca; Colombo, Gaia; Pescina, Silvia; Stanisçuaski Guterres, Silvia; Nicoli, Sara
2018-01-01
In the field of nasal drug delivery, nose-to-brain delivery is among the most fascinating applications, directly targeting the central nervous system, bypassing the blood brain barrier. Its benefits include dose lowering and direct brain distribution of potent drugs, ultimately reducing systemic side effects. Recently, nasal administration of insulin showed promising results in clinical trials for the treatment of Alzheimer’s disease. Nanomedicines could further contribute to making nose-to-brain delivery a reality. While not disregarding the need for devices enabling a formulation deposition in the nose’s upper part, surface modification of nanomedicines appears the key strategy to optimize drug delivery from the nasal cavity to the brain. In this review, nanomedicine delivery based on particle engineering exploiting surface electrostatic charges, mucoadhesive polymers, or chemical moieties targeting the nasal epithelium will be discussed and critically evaluated in relation to nose-to-brain delivery. PMID:29543755
From nose to brain: understanding transport capacity and transport rate of drugs.
Wu, Hongbing; Hu, Kaili; Jiang, Xinguo
2008-10-01
The unique relationship between nasal cavity and cranial cavity tissues in anatomy and physiology makes intranasal delivery to the brain feasible. An intranasal delivery provides some drugs with short channels to bypass the blood-brain barrier (BBB), especially for those with fairly low brain concentrations after a routine delivery, thus greatly enhancing the therapeutic effect on brain diseases. In the past two decades, a good number of encouraging outcomes have been reported in the treatment of diseases of the brain or central nervous system (CNS) through nasal administration. In spite of the significant merit of bypassing the BBB, direct nose-to-brain delivery still bears the problems of low efficiency and volume for capacity due to the limited volume of the nasal cavity, the small area ratio of olfactory mucosa to nasal mucosa and the limitations of low dose and short retention time of drug absorption. It is crucial that selective distribution and retention time of drugs or preparations on olfactory mucosa should be enhanced so as to increase the direct delivery efficiency. In this article, we first briefly review the nose-to-brain transport pathways, before detailing the impacts on them, followed by a comprehensive summary of effective methods, including formulation modification, agglutinant-mediated transport and a brain-homing, peptide-mediated delivery based on phage display screening technique, with a view to providing a theoretic reference for elevating the therapeutic effects on brain diseases.
Management of melanoma brain metastases in the era of targeted therapy.
Shapiro, Daniela Gonsalves; Samlowski, Wolfram E
2011-01-01
Disseminated metastatic disease, including brain metastases, is commonly encountered in malignant melanoma. The classical treatment approach for melanoma brain metastases has been neurosurgical resection followed by whole brain radiotherapy. Traditionally, if lesions were either too numerous or surgical intervention would cause substantial neurologic deficits, patients were either treated with whole brain radiotherapy or referred to hospice and supportive care. Chemotherapy has not proven effective in treating brain metastases. Improvements in surgery, radiosurgery, and new drug discoveries have provided a wider range of treatment options. Additionally, recently discovered mutations in the melanoma genome have led to the development of "targeted therapy." These vastly improved options are resulting in novel treatment paradigms for approaching melanoma brain metastases in patients with and without systemic metastatic disease. It is therefore likely that improved survival can currently be achieved in at least a subset of melanoma patients with brain metastases.
Altered blood-brain barrier transport in neuro-inflammatory disorders.
Schenk, Geert J; de Vries, Helga E
2016-06-01
During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volkow, Nora D; Fowler, Joanna S; Wang, Gene-Jack
2004-01-01
Imaging studies have provided evidence of how the human brain changes as an individual becomes addicted. Here, we integrate the findings from imaging studies to propose a model of drug addiction. The process of addiction is initiated in part by the fast and high increases in DA induced by drugs of abuse. We hypothesize that this supraphysiological effect of drugs trigger a series of adaptations in neuronal circuits involved in saliency/reward, motivation/drive, memory/conditioning, and control/disinhibition, resulting in an enhanced (and long lasting) saliency value for the drug and its associated cues at the expense of decreased sensitivity for salient events of everyday life (including natural reinforcers). Although acute drug intake increases DA neurotransmission, chronic drug consumption results in a marked decrease in DA activity, associated with, among others, dysregulation of the orbitofrontal cortex (region involved with salience attribution) and cingulate gyrus (region involved with inhibitory control). The ensuing increase in motivational drive for the drug, strengthened by conditioned responses and the decrease in inhibitory control favors emergence of compulsive drug taking. This view of how drugs of abuse affect the brain suggests strategies for intervention, which might include: (a) those that will decrease the reward value of the drug of choice; (b) interventions to increase the saliency value of non-drug reinforcers; (c) approaches to weaken conditioned drug behaviors; and (d) methods to strengthen frontal inhibitory and executive control. Though this model focuses mostly on findings from PET studies of the brain DA system it is evident that other neurotransmitters are involved and that a better understanding of their roles in addiction would expand the options for therapeutic targets.
Lewis, George K.; Guarino, Sabrina; Gandhi, Gaurav; Filinger, Laurent; Lewis, George K.; Olbricht, Willam L.; Sarvazyan, Armen
2011-01-01
We describe a drug delivery method that combines Time-Reversal Acoustics (TRA) with Convection-Enhanced Delivery (CED) to improve the delivery of therapeutics to the interstitium of the brain. The Ultrasound-assisted CED approach (UCED) circumvents the blood-brain barrier by infusing compounds through a cannula that is inserted into the brain while simultaneously delivering ultrasound to improve the penetration of pharmaceuticals. CED without ultrasound-assistance has been used to treat a variety of neural disorders, including glioblastoma multiforme, a malignancy that presents a very poor prognosis for patients. We describe a novel system that is used to infuse fluids into the brain parenchyma while simultaneously exposing the tissue to safe levels of 1-MHz, low intensity, ultrasound energy. The system includes a combined infusion needle-hydrophone, a 10-channel ultralow-output impedance amplifier, a broad-band ultrasound resonator, and MatLab®-based TRA control and user-interface. TRA allows easy coupling of ultrasound therapy through the skull without complex phase-correction and array design. The smart targeting UCED system has been tested in vivo and results show it provides 1.5-mm spatial resolution for UCED and improves tracer distribution in the brain over CED alone. PMID:21881622
Skvortsov, I A; Khavkhun, L A; Ustinova, E V; I'lin, L B
1989-01-01
In 121 children with perinatal CNS damage a combined therapy was performed including, besides routine drug treatment, imitation stimulation of age-matched posture-++-tonic attitudes and motor skills, metameric reflexotherapy aimed at the CNS region lesioned, magnetotherapy, electric laser puncture targeted at correction of dysfunctioning brain structures. Treatment efficiency was controlled by the brain "development profile" derived from formalized neurological and neuropsychological investigations, and electroneuromyography. The efficiency of the therapy was considerably decreased by the 3rd semester of life.
Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian
2014-01-01
Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain. PMID:25187980
Wen, Xiangru; Wang, Kai; Zhao, Ziming; Zhang, Yifang; Sun, Tingting; Zhang, Fang; Wu, Jian; Fu, Yanyan; Du, Yang; Zhang, Lei; Sun, Ying; Liu, YongHai; Ma, Kai; Liu, Hongzhi; Song, Yuanjian
2014-01-01
Magnetic poly (D,L-lactide-co-glycolide) (PLGA)/lipid nanoparticles (MPLs) were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol) (DSPE-PEG-NH2), and magnetic nanoparticles (NPs), and then conjugated to trans-activating transcriptor (TAT) peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES), naringin (NAR), and glutathione (GSH) were encapsulated in MPLs with drug loading capacity (>10%) and drug encapsulation efficiency (>90%). The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC)-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.
Alterations in Striatal Circuits Underlying Addiction-Like Behaviors.
Kim, Hyun Jin; Lee, Joo Han; Yun, Kyunghwa; Kim, Joung-Hun
2017-06-30
Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.
Targeted drug delivery across the blood brain barrier in Alzheimer's disease.
Rocha, Sandra
2013-01-01
The discovery of drugs for Alzheimer's disease (AD) therapy that can also permeate the blood brain barrier (BBB) is very difficult owing to its specificity and restrictive nature. The BBB disruption or the administration of the drug directly into the brain is not an option due to toxic effects and low diffusion of the therapeutic molecule in the brain parenchyma. A promising approach for drug systemic delivery to the central nervous system is the use of nanosized carriers. The therapeutic potential of certain nanopharmaceuticals for AD has already been demonstrated in vivo after systemic delivery. They are based on i) conjugates of drug and monoclonal antibodies against BBB endogenous receptors; ii) cationized or end terminal protected proteins/peptides; iii) liposomes and polymeric nanoparticles coated with polysorbate 80, cationic macromolecules or antibodies against BBB receptors/amyloid beta-peptides. Optimization and further validation of these systems are needed.
Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan
2014-01-01
The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. PMID:24462453
Gril, Brunilde; Evans, Lynda; Palmieri, Diane; Steeg, Patricia S.
2010-01-01
Central nervous system (CNS) or brain metastasis is an emerging area of interest in organ-specific metastasis research. Lung and breast cancers are the most common types of primary tumors to develop brain metastases. This disease complication contributes significantly to the morbidity and mortality of both of these common cancers; as such, brain metastasis is designated an unmet medical need by the US Food and Drug Administration. Recently, an increase in incidence of CNS disease has been noted in the literature for breast cancer, while it has been an ongoing major complication from lung cancer. Progress in treating brain metastases has been hampered by a lack of model systems, a lack of human tissue samples, and the exclusion of brain metastatic patients from many clinical trials. While each of those is significant, the major impediment to effectively treating brain metastatic disease is the blood–brain barrier (BBB). This barrier excludes most chemotherapeutics from the brain and creates a sanctuary site for metastatic tumors. Recent findings on the biology of this disease and translational leads identified by molecular studies are discussed in this article. PMID:20303257
Gril, Brunilde; Evans, Lynda; Palmieri, Diane; Steeg, Patricia S
2010-05-01
Central nervous system (CNS) or brain metastasis is an emerging area of interest in organ-specific metastasis research. Lung and breast cancers are the most common types of primary tumors to develop brain metastases. This disease complication contributes significantly to the morbidity and mortality of both of these common cancers; as such, brain metastasis is designated an unmet medical need by the US Food and Drug Administration (FDA). Recently, an increase in incidence of CNS disease has been noted in the literature for breast cancer, while it has been an ongoing major complication from lung cancer. Progress in treating brain metastases has been hampered by a lack of model systems, a lack of human tissue samples, and the exclusion of brain metastatic patients from many clinical trials. While each of those is significant, the major impediment to effectively treating brain metastatic disease is the blood-brain barrier (BBB). This barrier excludes most chemotherapeutics from the brain and creates a sanctuary site for metastatic tumors. Recent findings on the biology of this disease and translational leads identified by molecular studies are discussed in this article. Published by Elsevier Ltd.
Acute organic brain syndrome: a review of 100 cases.
Purdie, F R; Honigman, B; Rosen, P
1981-09-01
A retrospective review of 100 admissions to Denver General Hospital with a diagnosis of acute organic brain syndrome was conducted. A total of 44% of the patients were found to have a chronic organic brain syndrome with a superimposed acute insult which caused decompensation. The other 56% of patients developed acute organic brain syndromes de novo for a variety of reasons. The most common etiologic factors producing decompensation of the chronic OBS were infections (in 23%) and environmental changes (in 17%). The most common etiologic factor causing AOBS de novo was drug-related. In most cases, a toxicologic screen, lumbar puncture, and CT scan of the brain should be a part of the investigation of any patient with AOBS.
CNS Anticancer Drug Discovery and Development: 2016 conference insights
Levin, Victor A; Abrey, Lauren E; Heffron, Timothy P; Tonge, Peter J; Dar, Arvin C; Weiss, William A; Gallo, James M
2017-01-01
CNS Anticancer Drug Discovery and Development, 16-17 November 2016, Scottsdale, AZ, USA The 2016 second CNS Anticancer Drug Discovery and Development Conference addressed diverse viewpoints about why new drug discovery/development focused on CNS cancers has been sorely lacking. Despite more than 70,000 individuals in the USA being diagnosed with a primary brain malignancy and 151,669–286,486 suffering from metastatic CNS cancer, in 1999, temozolomide was the last drug approved by the US FDA as an anticancer agent for high-grade gliomas. Among the topics discussed were economic factors and pharmaceutical risk assessments, regulatory constraints and perceptions and the need for improved imaging surrogates of drug activity. Included were modeling tumor growth and drug effects in a medical environment in which direct tumor sampling for biological effects can be problematic, potential new drugs under investigation and targets for drug discovery and development. The long trajectory and diverse impediments to novel drug discovery, and expectation that more than one drug will be needed to adequately inhibit critical intracellular tumor pathways were viewed as major disincentives for most pharmaceutical/biotechnology companies. While there were a few unanimities, one consensus is the need for continued and focused discussion among academic and industry scientists and clinicians to address tumor targets, new drug chemistry, and more time- and cost-efficient clinical trials based on surrogate end points. PMID:28718326
Natural Rewards, Neuroplasticity, and Non-Drug Addictions
Olsen, Christopher M.
2011-01-01
There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse. “Non-drug” or “behavioral” addictions have become increasingly documented in the clinic, and pathologies include compulsive activities such as shopping, eating, exercising, sexual behavior, and gambling. Like drug addiction, non-drug addictions manifest in symptoms including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse. These alterations in behavior suggest that plasticity may be occurring in brain regions associated with drug addiction. In this review, I summarize data demonstrating that exposure to non-drug rewards can alter neural plasticity in regions of the brain that are affected by drugs of abuse. Research suggests that there are several similarities between neuroplasticity induced by natural and drug rewards and that, depending on the reward, repeated exposure to natural rewards might induce neuroplasticity that either promotes or counteracts addictive behavior. PMID:21459101
Neuroimaging study of sex differences in the neuropathology of cocaine abuse.
Li, Chiang-shan Ray; Kemp, Kathleen; Milivojevic, Verica; Sinha, Rajita
2005-09-01
Female and male substance abusers differ in their disease patterns and clinical outcomes. An important question in addiction neuroscience thus concerns the neural substrates underlying these sex differences. This article aims to examine what is known of the neural mechanisms involved in the sex differences between substance abusers. We reviewed neuroimaging studies that addressed sex differences in cerebral perfusion deficits after chronic cocaine use and in regional brain activation during pharmacologic challenge and cue-induced craving. We also present results from a preliminary study in which cocaine-dependent men and women participated in script-guided imagery of stress- and drug cue-related situations while blood oxygenation level-dependent signals of their brain were acquired in a 1.5T scanner. Spatial pre-processing and statistical analysis of brain images were performed. Regional brain activation was compared between stress and drug cue trials in men versus women. The results of our study showed greater activation in the left uncus and right claustrum (both, statistical threshold of P = 0.01, uncorrected; extent = 10 voxels) in men (n = 5) during drug cue trials compared with stress trials. No brain regions showed greater activation during stress trials compared with drug cue trials. In contrast, women (n = 6) showed greater activation in the right medial and superior frontal gyri during stress trials compared with drug cue trials at the same statistical threshold. No brain regions showed more activation during drug cue trials than during stress trials. The studies reviewed underscore the need to consider sex-related factors in examining the neuropathology of cocaine addiction. Our preliminary results also suggest important sex differences in the effect of stress- and drug cue-associated brain activation in individuals with cocaine use disorder.
Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective.
Landis, Margaret S; Boyden, Tracey; Pegg, Simon
2012-02-01
Delivery of drug therapeutics across the blood-brain barrier is a challenging task for pharmaceutical scientists. Nasal-to-CNS drug delivery has shown promising results in preclinical efficacy models and investigatory human clinical trials. The further development of this technology with respect to the establishment of valid, predictable preclinical species models, translatable pharmacokinetic-pharmacodynamic relationships and definition of toxicology impact will help attract additional pharmaceutical investment in this drug-delivery approach. Further discoveries in nasal nanotechnology, targeted delivery devices and diagnostic olfactory imaging will serve to fuel the advancements in this area of drug delivery.
Farsa, Oldřich
2013-01-01
The log BB parameter is the logarithm of the ratio of a compound's equilibrium concentrations in the brain tissue versus the blood plasma. This parameter is a useful descriptor in assessing the ability of a compound to permeate the blood-brain barrier. The aim of this study was to develop a Hansch-type linear regression QSAR model that correlates the parameter log BB and the retention time of drugs and other organic compounds on a reversed-phase HPLC containing an embedded amide moiety. The retention time was expressed by the capacity factor log k'. The second aim was to estimate the brain's absorption of 2-(azacycloalkyl)acetamidophenoxyacetic acids, which are analogues of piracetam, nefiracetam, and meclofenoxate. Notably, these acids may be novel nootropics. Two simple regression models that relate log BB and log k' were developed from an assay performed using a reversed-phase HPLC that contained an embedded amide moiety. Both the quadratic and linear models yielded statistical parameters comparable to previously published models of log BB dependence on various structural characteristics. The models predict that four members of the substituted phenoxyacetic acid series have a strong chance of permeating the barrier and being absorbed in the brain. The results of this study show that a reversed-phase HPLC system containing an embedded amide moiety is a functional in vitro surrogate of the blood-brain barrier. These results suggest that racetam-type nootropic drugs containing a carboxylic moiety could be more poorly absorbed than analogues devoid of the carboxyl group, especially if the compounds penetrate the barrier by a simple diffusion mechanism.
Ziejewski, Mary K; Solomon, Howard M; Rendemonti, Joyce; Stanislaus, Dinesh
2015-02-01
There are two methods used when examining fetal rabbit eyes and brain in teratology studies. One method employs prior fixation before serial sectioning (Wilson's technique) and the other uses fresh tissue (mid-coronal sectioning). We modified the mid-coronal sectioning technique to include removal of eyes and brain for closer examination and to increase the number of structures that can be evaluated and compared it to the Wilson's technique. We found that external examination of the head, in conjunction with either sectioning method, is equally sensitive in identifying developmental defects. We evaluated 40,401 New Zealand White (NZW) and Dutch-Belted (DB) rabbit fetuses for external head alterations, of which 28,538 fetuses were further examined for eye and brain alterations using the modified mid-coronal sectioning method (16,675 fetuses) or Wilson's technique (11,863 fetuses). The fetuses were from vehicle control or drug-treated pregnant rabbits in embryo-fetal development studies conducted to meet international regulatory requirements for the development of new drugs. Both methods detected the more common alterations (microphthalmia and dilated lateral cerebral ventricles) and other less common findings (changes in size and/or shape of eye and brain structures). While both methods are equally sensitive at detecting common and rare developmental defects, the modified mid-coronal sectioning technique eliminates the use of chemicals and concomitant fixation artifacts that occur with the Wilson's technique and allows for examination of 100% intact fetuses thereby increasing potential for detecting eye and brain alterations as these findings occur infrequently in rabbits. © 2015 Wiley Periodicals, Inc.
Abdel-Bar, Hend Mohamed; Abdel-Reheem, Amal Youssef; Awad, Gehanne Abdel Samie; Mortada, Nahed Daoud
2013-01-01
The aim of the study was to target clonazepam, a CNS active drug, to the brain through the non-invasive intranasal (in) route using of nanocarriers with proven safety in clonazepam nanocarriers were prepared by mixing isopropyl myristate, Tween 80, Cremophor EL or lecithin, polyethylene glycol 200, propylene glycol or ethanol in different ratios with water. in-vitro characterization of the nanocarriers was done by various methods including: polarized light microscopy, particle size determination, viscosity measurements and drug release studies. in-vivo study comparing intranasal and intravenous administration was performed. The drug targeting efficiency (DTE %) and direct nose to brain transport percentage (DTP %) were calculated and nasal integrity assessment was carried out. The obtained formulae had particle size below 100 nm favoring rapid direct nose to brain transport and the time for 100% drug release (T100%) depended on systems composition. Plasma Tmax of clonazepam nanostructured carriers varied from 10-30 min., while their brain Tmax did not exceed 10 min, in comparison with 30 min for iv solution. Although there was no significant difference (p>0.05) between the plasma AUC0-∞ of the different tested nanocarriers and intravenous one, the increase in brain AUC 0 -∞ of different nasal formulations in comparison to that of iv administration (3.6 -7.2 fold) confirms direct nose to brain transport via olfactory region. Furthermore, DTE and DTP% confirmed brain targeting of clonazepam following intranasal administration. The results confirmed that intranasal nanocarriers were proved to be safe alternative for iv clonazepam delivery with rapid nose to brain transport.
Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme.
Nam, L; Coll, C; Erthal, L C S; de la Torre, C; Serrano, D; Martínez-Máñez, R; Santos-Martínez, M J; Ruiz-Hernández, E
2018-05-11
Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood⁻brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood⁻brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma.
Dimpfel, Wilfried
2013-09-16
Herbal extracts targeting at the brain remain a continuous challenge to pharmacology. Usually, a number of different animal tests have to be performed in order to find a potential clinical use. Due to manifold possibly active ingredients biochemical approaches are difficult. A more holistic approach using a neurophysiological technique has been developed earlier in order to characterise synthetic drugs. Stereotactic implantation of four semi-microelectrodes into frontal cortex, hippocampus, striatum and reticular formation of rats allowed continuous wireless monitoring of field potentials (EEG) before and after drug intake. After frequency analysis (Fast Fourier Transformation) electric power was calculated for 6 ranges (delta, theta, alpha1, alpha2, beta1 and beta2). Data from 14 synthetic drugs - tested earlier and representative for different clinical indications - were taken for construction of discriminant functions showing the projection of the frequency patterns in a six-dimensional graph. Quantitative analysis of the EEG frequency pattern from the depth of the brain succeeded in discrimination of drug effects according to their known clinical indication (Dimpfel and Schober, 2003). Extracts from Valerian root, Ginkgo leaves, Paullinia seed, Hop strobile, Rhodiola rosea root and Sideritis scardica herb were tested now under identical conditions. Classification of these extracts based on the matrix from synthetic drugs revealed that Valerian root and hop induced a pattern reminiscent of physiological sleep. Ginkgo and Paullinia appeared in close neighbourhood of stimulatory drugs like caffeine or to an analgesic profile (tramadol). Rhodiola and Sideritis developed similar frequency patterns comparable to a psychostimulant drug (methylphenidate) as well to an antidepressive drug (paroxetine). © 2013 The Author. Published by Elsevier Ireland Ltd. All rights reserved.
An investigational brain cancer drug made with disabled polio virus and manufactured at the Frederick National Lab has won breakthrough status from the Food and Drug Administration (FDA) to fast-track its further refinement and clinical testing. Br
Applying Neurodevelopmental Theory to School-Based Drug Misuse Prevention during Adolescence
ERIC Educational Resources Information Center
Riggs, Nathaniel R.; Black, David S.; Ritt-Olson, Anamara
2014-01-01
Adolescence is characterized by incredible development in the prefrontal cortex of the brain, which is responsible for behavioral and emotional self-regulation, and higher order cognitive decision-making skills (that is, executive function). Typically late prefrontal cortical development and its integration with limbic areas of the brain…
USDA-ARS?s Scientific Manuscript database
Toxoplasma gondii, the most common parasitic infection of the human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we developed novel models to facilitate drug development: EGS strain T. gondi...
USDA-ARS?s Scientific Manuscript database
Serotonin (5-HT) acts as a neurogenic compound in the developing brain; however serotonin altering drugs such as SSRIs are often prescribed to pregnant and lactating mothers. Early agonism of 5-HT receptors could alter the development of serotonergic circuitry, altering neurotransmission and behavio...
Saletu, Bernd; Anderer, Peter; Saletu-Zyhlarz, Gerda M; Pascual-Marqui, Roberto D
2005-04-01
Different psychiatric disorders, such as schizophrenia with predominantly positive and negative symptomatology, major depression, generalized anxiety disorder, agoraphobia, obsessive-compulsive disorder, multi-infarct dementia, senile dementia of the Alzheimer type and alcohol dependence, show EEG maps that differ statistically both from each other and from normal controls. Representative drugs of the main psychopharmacological classes, such as sedative and non-sedative neuroleptics and antidepressants, tranquilizers, hypnotics, psychostimulants and cognition-enhancing drugs, induce significant and typical changes to normal human brain function, which in many variables are opposite to the above-mentioned differences between psychiatric patients and normal controls. Thus, by considering these differences between psychotropic drugs and placebo in normal subjects, as well as between mental disorder patients and normal controls, it may be possible to choose the optimum drug for a specific patient according to a key-lock principle, since the drug should normalize the deviant brain function. This is supported by 3-dimensional low-resolution brain electromagnetic tomography (LORETA), which identifies regions within the brain that are affected by psychiatric disorders and psychopharmacological substances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.
Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissuemore » samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.« less
Barua, Neil U; Gill, Steven S; Love, Seth
2014-03-01
Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD). © 2013 International Society of Neuropathology.
Wang, Ju; Yuan, Wenji; Li, Ming D
2011-12-01
Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.
Developmental neurotoxicity screening using human embryonic stem cells.
Bosnjak, Zeljko J
2012-09-01
Research in the area of stem cell biology and regenerative medicine, along with neuroscience, will further our understanding of drug-induced death of neurons during their development. With the development of an in vitro model of stem cell-derived human neural cell lines investigators can, under control conditions and during intense neuronal growth, examine molecular mechanisms of various drugs and conditions on early developmental neuroapoptosis in humans. If the use of this model will lead to fewer risks, or identification of drugs and anesthetics that are less likely to cause the death of neurons, this approach will be a major stride toward assuring the safety of drugs during the brain development. The ultimate goal would be not only to find the trigger for the catastrophic chain of events, but also to prevent neuronal cell death itself. Copyright © 2012. Published by Elsevier Inc.
The blood-brain barrier: structure, function and therapeutic approaches to cross it.
Tajes, Marta; Ramos-Fernández, Eva; Weng-Jiang, Xian; Bosch-Morató, Mònica; Guivernau, Biuse; Eraso-Pichot, Abel; Salvador, Bertrán; Fernàndez-Busquets, Xavier; Roquer, Jaume; Muñoz, Francisco J
2014-08-01
The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.
Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model.
Guidi, Sandra; Stagni, Fiorenza; Bianchi, Patrizia; Ciani, Elisabetta; Giacomini, Andrea; De Franceschi, Marianna; Moldrich, Randal; Kurniawan, Nyoman; Mardon, Karine; Giuliani, Alessandro; Calzà, Laura; Bartesaghi, Renata
2014-02-01
Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.
He, Quanguo; Liu, Jun; Liang, Jing; Liu, Xiaopeng; Li, Wen; Liu, Zhi; Ding, Ziyu; Tuo, Du
2018-01-01
The blood–brain barrier (BBB) is a critical biological structure that prevents damage to the brain and maintains its bathing microenvironment. However, this barrier is also the obstacle to deliver beneficial drugs to treat CNS (central nervous system) diseases. Many efforts have been made for improvement of delivering drugs across the BBB in recent years to treat CNS diseases. In this review, the anatomical and functional structure of the BBB is comprehensively discussed. The mechanisms of BBB penetration are summarized, and the methods and effects on increasing BBB permeability are investigated in detail. It also elaborates on the physical, chemical, biological and nanocarrier aspects to improve drug delivery penetration to the brain and introduces some specific drug delivery effects on BBB permeability. PMID:29570659
Wu, Shih-Ying; Aurup, Christian; Sanchez, Carlos Sierra; Grondin, Julien; Zheng, Wenlan; Kamimura, Hermes; Ferrera, Vincent P; Konofagou, Elisa E
2018-05-22
Brain diseases including neurological disorders and tumors remain under treated due to the challenge to access the brain, and blood-brain barrier (BBB) restricting drug delivery which, also profoundly limits the development of pharmacological treatment. Focused ultrasound (FUS) with microbubbles is the sole method to open the BBB noninvasively, locally, and transiently and facilitate drug delivery, while translation to the clinic is challenging due to long procedure, targeting limitations, or invasiveness of current systems. In order to provide rapid, flexible yet precise applications, we have designed a noninvasive FUS and monitoring system with the protocol tested in monkeys (from in silico preplanning and simulation, real-time targeting and acoustic mapping, to post-treatment assessment). With a short procedure (30 min) similar to current clinical imaging duration or radiation therapy, the achieved targeting (both cerebral cortex and subcortical structures) and monitoring accuracy was close to the predicted 2-mm lower limit. This system would enable rapid clinical transcranial FUS applications outside of the MRI system without a stereotactic frame, thereby benefiting patients especially in the elderly population.
Zhang, Cheng-Xiang; Zhao, Wei-Yu; Liu, Lei; Ju, Rui-Jun; Mu, Li-Min; Zhao, Yao; Zeng, Fan; Xie, Hong-Jun; Yan, Yan; Lu, Wan-Liang
2015-01-01
The objectives of the present study were to develop functional targeting epirubicin liposomes for transferring drugs across the blood-brain barrier (BBB), treating glioblastoma, and disabling neovascularization. The studies were performed on glioblastoma cells in vitro and on glioblastoma-bearing mice. The results showed that the constructed liposomes had a high encapsulation efficiency for drugs (>95%), suitable particle size (109 nm), and less leakage in the blood component-containing system; were significantly able to be transported across the BBB; and exhibited efficacies in killing glioblastoma cells and in destroying glioblastoma neovasculature in vitro and in glioblastoma-bearing mice. The action mechanisms of functional targeting epirubicin liposomes correlated with the following features: the long circulation in the blood system, the ability to be transported across the BBB via glucose transporter-1, and the targeting effects on glioblastoma cells and on the endothelial cells of the glioblastoma neovasculature via the integrin β3 receptor. In conclusion, functional targeting epirubicin liposomes could be used as a potential therapy for treating brain glioblastoma and disabling neovascularization in brain glioblastomas. PMID:26418720
Murphy, Anna; Taylor, Eleanor; Elliott, Rebecca
2012-01-01
Substance dependence is complex and multifactorial, with many distinct pathways involved in both the development and subsequent maintenance of addictive behaviors. Various cognitive mechanisms have been implicated, including impulsivity, compulsivity, and impaired decision-making. These mechanisms are modulated by emotional processes, resulting in increased likelihood of initial drug use, sustained substance dependence, and increased relapse during periods of abstinence. Emotional traits, such as sensation-seeking, are risk factors for substance use, and chronic drug use can result in further emotional dysregulation via effects on reward, motivation, and stress systems. We will explore theories of hyper and hypo sensitivity of the brain reward systems that may underpin motivational abnormalities and anhedonia. Disturbances in these systems contribute to the biasing of emotional processing toward cues related to drug use at the expense of natural rewards, which serves to maintain addictive behavior, via enhanced drug craving. We will additionally focus on the sensitization of the brain stress systems that result in negative affect states that continue into protracted abstinence that is may lead to compulsive drug-taking. We will explore how these emotional dysregulations impact upon decision-making controlled by goal-directed and habitual action selections systems, and, in combination with a failure of prefrontal inhibitory control, mediate maladaptive decision-making observed in substance dependent individuals such that they continue drug use in spite of negative consequences. An understanding of the emotional impacts on cognition in substance dependent individuals may guide the development of more effective therapeutic interventions. PMID:23162443
Focused ultrasound-enhanced intranasal brain delivery of brain-derived neurotrophic factor
NASA Astrophysics Data System (ADS)
Chen, Hong; Yang, Georgiana Zong Xin; Getachew, Hoheteberhan; Acosta, Camilo; Sierra Sánchez, Carlos; Konofagou, Elisa E.
2016-06-01
The objective of this study was to unveil the potential mechanism of focused ultrasound (FUS)-enhanced intranasal (IN) brain drug delivery and assess its feasibility in the delivery of therapeutic molecules. Delivery outcomes of fluorescently-labeled dextrans to mouse brains by IN administration either before or after FUS sonication were compared to evaluate whether FUS enhances IN delivery by active pumping or passive diffusion. Fluorescence imaging of brain slices found that IN administration followed by FUS sonication achieved significantly higher delivery than IN administration only, while pre-treatment by FUS sonication followed by IN administration was not significantly different from IN administration only. Brain-derived neurotrophic factor (BDNF), a promising neurotrophic factor for the treatment of many central nervous system diseases, was delivered by IN followed by FUS to demonstrate the feasibility of this technique and compared with the established FUS technique where drugs are injected intravenously. Immunohistochemistry staining of BDNF revealed that FUS-enhanced IN delivery achieved similar locally enhanced delivery as the established FUS technique. This study suggested that FUS enhances IN brain drug delivery by FUS-induced active pumping of the drug and demonstrated that FUS-enhanced IN delivery is a promising technique for noninvasive and localized delivery of therapeutic molecules to the brain.
Johnsen, Kasper Bendix; Burkhart, Annette; Melander, Fredrik; Kempen, Paul Joseph; Vejlebo, Jonas Bruun; Siupka, Piotr; Nielsen, Morten Schallburg; Andresen, Thomas Lars; Moos, Torben
2017-09-04
Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain.
Passage of Magnetic Tat-Conjugated Fe3O4@SiO2 Nanoparticles Across In Vitro Blood-Brain Barrier
NASA Astrophysics Data System (ADS)
Zhao, Xueqin; Shang, Ting; Zhang, Xiaodan; Ye, Ting; Wang, Dajin; Rei, Lei
2016-10-01
Delivery of diagnostic or therapeutic agents across the blood-brain barrier (BBB) remains a major challenge of brain disease treatment. Magnetic nanoparticles are actively being developed as drug carriers due to magnetic targeting and subsequently reduced off-target effects. In this paper, we developed a magnetic SiO2@Fe3O4 nanoparticle-based carrier bound to cell-penetrating peptide Tat (SiO2@Fe3O4 -Tat) and studied its fates in accessing BBB. SiO2@Fe3O4-Tat nanoparticles (NPs) exhibited suitable magnetism and good biocompatibility. NPs adding to the apical chamber of in vitro BBB model were found in the U251 glioma cells co-cultured at the bottom of the Transwell, indicating that particles passed through the barrier and taken up by glioma cells. Moreover, the synergistic effects of Tat and magnetic field could promote the efficient cellular internalization and the permeability across the barrier. Besides, functionalization with Tat peptide allowed particles to locate into the nucleus of U251 cells than the non-conjugated NPs. These results suggest that SiO2@Fe3O4-Tat NPs could penetrate the BBB through the transcytosis of brain endothelial cells and magnetically mediated dragging. Therefore, SiO2@Fe3O4-Tat NPs could be exploited as a potential drug delivery system for chemotherapy and gene therapy of brain disease.
Emami, Jaber; Rezazadeh, Mahboubeh; Sadeghi, Hojjat; Khadivar, Khashayar
2017-05-01
The treatment of brain cancer remains one of the most difficult challenges in oncology. The purpose of this study was to develop transferrin-conjugated nanostructured lipid carriers (Tf-NLCs) for brain delivery of paclitaxel (PTX). PTX-loaded NLCs (PTX-NLCs) were prepared using solvent evaporation method and the impact of various formulation variables were assessed using Box-Behnken design. Optimized PTX-NLC was coupled with transferrin as targeting ligand and in vitro cytotoxicity of it was investigated against U-87 brain cancer cell line. As a result, 14.1 mg of cholesterol, 18.5 mg of triolein, and 0.5% poloxamer were used to prepare the optimal formulation. Mean particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug loading (DL), mean release time (MRT) of adopted formulation were confirmed to be 205.4 ± 11 nm, 25.7 ± 6.22 mV, 91.8 ± 0.5%, 5.38 ± 0.03% and 29.3 h, respectively. Following conjugation of optimized PTX-NLCs with transferrin, coupling efficiency was 21.3 mg transferrin per mmol of stearylamine; PS and MRT were increased while ZP, EE and DL decreased non-significantly. Tf-PTX-NLCs showed higher cytotoxic activity compared to non-targeted NLCs and free drug. These results indicated that the Tf-PTX-NLCs could potentially be exploited as a delivery system in brain cancer cells.
Pharmacologic Effects in vivo in Brain by Vector-Mediated Peptide Drug Delivery
NASA Astrophysics Data System (ADS)
Bickel, Ulrich; Yoshikawa, Takayoshi; Landaw, Elliot M.; Faull, Kym F.; Pardridge, William M.
1993-04-01
Pharmacologic effects in brain caused by systemic administration of neuropeptides are prevented by poor transport of the peptide through the brain vascular endothelium, which comprises the blood-brain barrier in vivo. In the present study, successful application of a chimeric peptide approach to enhance drug delivery through the blood-brain barrier for the purpose of achieving a central nervous system pharmacologic effect is described. The chimeric peptide was formed by linkage of a potent vasoactive intestinal peptide (VIP) analogue, which had been monobiotinylated, to a drug transport vector. The vector consisted of a covalent conjugate of avidin and the OX26 monoclonal antibody to the transferrin receptor. Owing to the high concentration of transferrin receptors on brain capillary endothelia, OX26 targets brain and undergoes receptor-mediated transcytosis through the blood-brain barrier. Systemic infusion of low doses (12 μg/kg) of the VIP chimeric peptide in rats resulted in an in vivo central nervous system pharmacologic effect: a 65% increase in cerebral blood flow. Biotinylated VIP analogue without the brain transport vector was ineffective.
Molecular Imaging of Transporters with Positron Emission Tomography
NASA Astrophysics Data System (ADS)
Antoni, Gunnar; Sörensen, Jens; Hall, Håkan
Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug-Pgp interactions, although [11C]verapamil and [18F]fluoropaclitaxel are probably restricted to use in studies of the blood-brain barrier. The vesicular monoamine transporter 2 (VMAT2) is another interesting target for diagnostic imaging and [11C]DTBZ is a promising tracer. The noninvasive imaging of transporter density as a function of disease progression or availability following interaction with blocking drugs is highlighted, including the impact on both development of new therapies and the process of developing new drugs. Although CNS-related work focusing on psychiatric disorders is the main focus of this review, other applications of PET ligands, such as diagnosis of cancer, diabetes research, and drug interactions with efflux systems, are also discussed. The use of PET especially in terms of tracer development is briefly described. Finally, it can be concluded that there is an urgent need for new, selective radioligands for the study of the transporter systems in the human brain using PET.
Controlling Differentiation of Stem Cells for Developing Personalized Organ-on-Chip Platforms.
Geraili, Armin; Jafari, Parya; Hassani, Mohsen Sheikh; Araghi, Behnaz Heidary; Mohammadi, Mohammad Hossein; Ghafari, Amir Mohammad; Tamrin, Sara Hasanpour; Modarres, Hassan Pezeshgi; Kolahchi, Ahmad Rezaei; Ahadian, Samad; Sanati-Nezhad, Amir
2018-01-01
Organ-on-chip (OOC) platforms have attracted attentions of pharmaceutical companies as powerful tools for screening of existing drugs and development of new drug candidates. OOCs have primarily used human cell lines or primary cells to develop biomimetic tissue models. However, the ability of human stem cells in unlimited self-renewal and differentiation into multiple lineages has made them attractive for OOCs. The microfluidic technology has enabled precise control of stem cell differentiation using soluble factors, biophysical cues, and electromagnetic signals. This study discusses different tissue- and organ-on-chip platforms (i.e., skin, brain, blood-brain barrier, bone marrow, heart, liver, lung, tumor, and vascular), with an emphasis on the critical role of stem cells in the synthesis of complex tissues. This study further recaps the design, fabrication, high-throughput performance, and improved functionality of stem-cell-based OOCs, technical challenges, obstacles against implementing their potential applications, and future perspectives related to different experimental platforms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Serotonin 5-HT4 receptors: A new strategy for developing fast acting antidepressants?
Vidal, Rebeca; Castro, Elena; Pilar-Cuéllar, Fuencisla; Pascual-Brazo, Jesús; Díaz, Alvaro; Rojo, María Luisa; Linge, Raquel; Martín, Alicia; Valdizán, Elsa M; Pazos, Angel
2014-01-01
The regulation of the activity of brain monoaminergic systems has been the focus of attention of many studies since the first antidepressant drug emerged 50 years ago. The search for novel antidepressants is deeply linked to the search for fast-acting strategies, taking into account that 2-4 weeks of treatment with classical antidepressant are required before clinical remission of the symptoms becomes evident. In the recent years several hypotheses have been proposed on the basis of the existence of alterations in brain synaptic plasticity in major depression. Recent evidences support a role for 5-HT4 receptors in the pathogenesis of depression as well as in the mechanism of action of antidepressant drugs. In fact, chronic treatment with antidepressant drugs appears to modulate, at different levels, the signaling pathway associated to 5-HT4 receptors, as well as their levels of expression in the brain. Moreover, several experimental studies have identified this receptor subtype as a promising new target for fast-acting antidepressant strategy: the administration of partial agonists of this receptor induces a number of responses similar to those observed after chronic treatment with classical antidepressants, but with a rapid onset of action. They include efficacy in behavioral models of depression, rapid desensitization of 5-HT1A autoreceptors, and modifications in the expression of several molecular markers of brain neuroplasticity. Although much work remains to be done in order to clarify the real therapeutic potential of these drugs, the evidences reviewed below support the hypothesis that 5-HT4 receptor partial agonists could behave as rapid and effective antidepressants.
Drugs, Brains, and Behavior: The Science of Addiction
... Video Featured Publications Drugs, Brains, and Behavior: The Science of Addiction Principles of Substance Abuse Prevention for Early Chil... Marijuana: Facts Parents Need to Know Marijuana: Facts for Teens ...
Tuberculous ventriculitis: A rare complication of central nervous system tuberculosis.
Vaziri, Siavash; Soleiman-Meigooni, Saeed; Rajabi, Jalil; Asgari, Ali
2016-06-01
Tuberculous ventriculitis is an inflammatory infection of the ventricular system of the brain, and is caused by Mycobacterium tuberculosis. We herein present the case of an immunocompromised patient with brain tuberculomas who developed ventriculitis during treatment. The patient was successfully treated with a high dose of steroid, long-term antituberculosis drugs, and aggressive supportive care. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
1994-10-01
Human Brain PRINCIPAL INVESTIGATOR: Professor Norman G. Bowery CONTRACTING ORGANIZATION: University of London Department of Pharmacology The School...Rat and Human Brain 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution unlimited 13. ABSTRACT...DM ’bindinj was clearly not a marker for the degree of neuronal damage. At autoradiographic technique is als( being developed for examining the binding
77 FR 43601 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-25
... of the patent applications. Novel Analogues of the Asthma Drug Fenoterol as Liver and Brain Cancer... as MNF, that inhibit the growth of various types of cancers, including brain, liver, colon, and lung..., represents one of the first potential drugs directed at this target. MNF crosses the blood brain barrier and...
[The negative side of emotions: addiction to drugs of abuse].
Contreras, M; Ceric, F; Torrealba, F
According to the model of emotions, feelings have their origin in the conscious perception of body changes produced in response to an emotional stimulus. These changes are perceived thanks to the fact that they are represented in the brain by the interoceptive system. During abstinence, addicts experience intense feelings of ill-being that drive them to consume drugs. The purpose of this review is to discuss the role played by the interoceptive system, and more especially the insular cortex, in the perception of the negative feelings that characterise abstinence. The continuous processing of interoceptive signals in the insular cortex is what accounts for the conscious appreciation of the body changes that accompany an emotional state. Temporary inactivation of the insular cortex suppresses the search for drugs in addicted rats. Neuroimaging studies reveal an increase in the neuronal activity in the insular cortex and in other areas of the brain while addicts are experiencing the craving to consume drugs. Likewise, nicotine addicts who suffer a brain injury that affects the insular cortex give up smoking easily because they lose the desire to do it. The temporary suppression of neuronal activity in the insular cortex in human addicts by means of non-invasive techniques could be a new therapy to treat the craving to consume drugs. The insular cortex is essential in the perception of the emotional states and in orienting behaviour to match the needs of the body. New therapies that have the insular cortex as their target could be developed to mitigate craving.
The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin.
Temoçin, Zülfikar; Kim, Eunkyoung; Li, Jinyang; Panzella, Lucia; Alfieri, Maria Laura; Napolitano, Alessandra; Kelly, Deanna L; Bentley, William E; Payne, Gregory F
2017-12-20
Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O 2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.
Mirtazapine and ketanserin alter preference for gambling-like schedules of reinforcement in rats.
Persons, Amanda L; Tedford, Stephanie E; Celeste Napier, T
2017-07-03
Drug and behavioral addictions have overlapping features, e.g., both manifest preference for larger, albeit costlier, reinforcement options in cost/benefit decision-making tasks. Our prior work revealed that the mixed-function serotonergic compound, mirtazapine, attenuates behaviors by rats motivated by abused drugs. To extend this work to behavioral addictions, here we determined if mirtazapine and/or ketanserin, another mixed-function serotonin-acting compound, can alter decision-making in rats that is independent of drug (or food)-motivated reward. Accordingly, we developed a novel variable-ratio task in rats wherein intracranial self-stimulation was used as the positive reinforcer. Using lever pressing for various levels of brain stimulation, the operant task provided choices between a small brain stimulation current delivered on a fixed-ratio schedule (i.e., a predictable reward) and a large brain stimulation delivered following an unpredictable number of responses (i.e., a variable-ratio schedule). This task allowed for demonstration of individualized preference and detection of shifts in motivational influences during a pharmacological treatment. Once baseline preference was established, we determined that pretreatment with mirtazapine or ketanserin significantly decreased preference for the large reinforcer presented after gambling-like schedules of reinforcement. When the rats were tested the next day without drug, preference for the unpredictable large reinforcer option was restored. These data demonstrate that mirtazapine and ketanserin can reduce preference for larger, costlier reinforcement options, and illustrate the potential for these drugs to alter behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
Running is rewarding and antidepressive.
Brené, Stefan; Bjørnebekk, Astrid; Aberg, Elin; Mathé, Aleksander A; Olson, Lars; Werme, Martin
2007-09-10
Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent in activating the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus.
Running is rewarding and antidepressive
Brené, Stefan; Bjørnebekk, Astrid; Åberg, Elin; Mathé, Aleksander A; Olson, Lars; Werme, Martin
2007-01-01
Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent to activate the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus. PMID:17561174
Dissociated learning using GABAergic drugs.
Azarashvili, A A; Kaimachnikova, I E
2009-02-01
Experiments on Wistar rats addressed the possibility of dissociated learning using drugs acting directly on brain GABA(B) receptors. A previously suggested hypothesis was tested: that the cholinergic system of the brain plays the decisive role in the mechanisms of dissociative learning. The data obtained here provided evidence that dissociated learning an occur with compounds acting on the GABAergic transmitter system of the brain. Dissociated states arose on treatment of animals with both the GABA-mimetic baclofen and the GABA receptor antagonist 5-aminovaleric acid. Thus, these results show that dissociated learning can occur using drugs acting on both the cholinergic and the GABAergic transmitter systems of the brain.
Preskorn, Sheldon H
2014-11-01
This column is the first in a two-part series exploring lessons for psychiatric drug development that can be learned from the development of six central nervous system drugs with novel mechanisms of action over the past 25 years. Part 1 presents a brief overview of the neuroscience that supported the development of each drug, including the rationale for selecting a) the target, which in each case was a receptor for a specific neurotransmitter system, and b) the indication, which was based on an understanding of the role that target played in a specific neural circuit in the brain. The neurotransmitter systems on which the development of these agents were based included serotonin for ondansetron and lorcaserin, dopamine for varenicline, substance P (or neurokinin) for aprepitant, melatonin for ramelteon, and orexin for suvorexant. The indications were chemotherapy-induced nausea and vomiting for ondansetron and aprepitant, smoking cessation for varenicline, weight loss for lorcaserin, and insomnia for suvorexant and ramelteon.
Orson, Frank M; Kinsey, Berma M; Singh, Rana A K; Wu, Yan; Gardner, Tracie; Kosten, Thomas R
2008-10-01
Conventional substance-abuse treatments have only had limited success for drugs such as cocaine, nicotine, methamphetamine, and phencyclidine. New approaches, including vaccination to block the effects of these drugs on the brain, are in advanced stages of development. Although several potential mechanisms for the effects of antidrug vaccines have been suggested, the most straightforward and intuitive mechanism involves binding of the drug by antibodies in the bloodstream, thereby blocking entry and/or reducing the rate of entry of the drug into the central nervous system. The benefits of such antibodies on drug pharmacodynamics will be influenced by both the quantitative and the qualitative properties of the antibodies. The sum of these effects will determine the success of the clinical applications of antidrug vaccines in addiction medicine. This review will discuss these issues and present the current status of vaccine development for nicotine, cocaine, methamphetamine, phencyclidine, and morphine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsivemore » behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.« less
Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.
Travaglia, A; La Mendola, D
2017-01-01
Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.
Nanoparticle transport across the blood brain barrier
Grabrucker, Andreas M; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni
2016-01-01
ABSTRACT While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes. PMID:27141426
Kinetics of 11C-labeled opiates in the brain of rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartvig, P.; Bergstroem, K.; Lindberg, B.
1984-07-01
The regional uptake in the brain of Rhesus monkeys of i.v. administered 11C-labeled morphine, codeine, heroin and pethidine was studied by means of positron emission tomography. The technique measures the sum of parent drug and radiolabeled metabolites. (For the sake of simplicity the drug derived radioactivity is denoted by the drug name.) Morphine had a limited uptake to discrete areas of the brain. The maximum normalized uptake, with respect to dose per kilogram body weight, was about 0.2, i.e., 20% of the calculated activity if the drug had been evenly distributed throughout the body of the monkey. Maximum radioactivity appearedmore » 30 to 45 min after injection. Morphine left the brain slowly with an estimated half-life of more than 2 hr. An area with a normalized uptake of about 1.0 was detected centrally in the lowest horizontal transsection of the skull. The origin of this area was identified as the pituitary. Codeine, heroin and pethidine were taken up to the brain to a larger extent than morphine, with maximum normalized uptakes of 2.6, 4.6 and 6.3, respectively. Maximum radioactivities of these drugs were achieved earlier and the elimination rates were faster than for morphine. Differences in the uptake of these drugs to the brain, as well as differences in time to maximal normalized uptake and rate of disappearance are considered to reflect differences in the lipophilic character between the drugs. Pethidine had the most rapid and extensive uptake followed by heroin, codeine and morphine in order of decreasing lipophilicity.« less
25 years of research on global asphyxia in the immature rat brain.
Barkhuizen, M; van den Hove, D L A; Vles, J S H; Steinbusch, H W M; Kramer, B W; Gavilanes, A W D
2017-04-01
Hypoxic-ischemic encephalopathy remains a common cause of brain damage in neonates. Preterm infants have additional complications, as prematurity by itself increases the risk of encephalopathy. Currently, therapy for this subset of asphyxiated infants is limited to supportive care. There is an urgent need for therapies in preterm infants - and for representative animal models for preclinical drug development. In 1991, a novel rodent model of global asphyxia in the preterm infant was developed in Sweden. This method was based on the induction of asphyxia during the birth processes itself by submerging pups, still in the uterine horns, in a water bath followed by C-section. This insult occurs at a time-point when the rodent brain maturity resembles the brain of a 22-32 week old human fetus. This model has developed over the past 25 years as an established model of perinatal global asphyxia in the early preterm brain. Here we summarize the knowledge gained on the short- and long-term neuropathological and behavioral effects of asphyxia on the immature central nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tessitore, Alessandro; De Micco, Rosa; Giordano, Alfonso; di Nardo, Federica; Caiazzo, Giuseppina; Siciliano, Mattia; De Stefano, Manuela; Russo, Antonio; Esposito, Fabrizio; Tedeschi, Gioacchino
2017-12-01
Impulse control disorders can be triggered by dopamine replacement therapies in patients with PD. Using resting-state functional MRI, we investigated the intrinsic brain network connectivity at baseline in a cohort of drug-naive PD patients who successively developed impulse control disorders over a 36-month follow-up period compared with patients who did not. Baseline 3-Tesla MRI images of 30 drug-naive PD patients and 20 matched healthy controls were analyzed. The impulse control disorders' presence and severity at follow-up were assessed by the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale. Single-subject and group-level independent component analysis was used to investigate functional connectivity differences within the major resting-state networks. We also compared internetwork connectivity between patients. Finally, a multivariate Cox regression model was used to investigate baseline predictors of impulse control disorder development. At baseline, decreased connectivity in the default-mode and right central executive networks and increased connectivity in the salience network were detected in PD patients with impulse control disorders at follow-up compared with those without. Increased default-mode/central executive internetwork connectivity was significantly associated with impulse control disorders development (P < 0.05). Our findings demonstrated that abnormal brain connectivity in the three large-scale networks characterizes drug-naive PD patients who will eventually develop impulse control disorders while on dopaminergic treatment. We hypothesize that these divergent cognitive and limbic network connectivity changes could represent a potential biomarker and an additional risk factor for the emergence of impulse control disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Kaushik, Ajeet; Jayant, Rahul D.; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan
2016-01-01
Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning. PMID:27143580
Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy
Clossen, Bryan L.; Reddy, Doodipala Samba
2017-01-01
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982–2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy. PMID:28179120
Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy.
Clossen, Bryan L; Reddy, Doodipala Samba
2017-06-01
This article describes the recent advances in epileptogenesis and novel therapeutic approaches for the prevention of epilepsy, with a special emphasis on the pharmacological basis of disease-modification of epileptogenesis for curing epilepsy. Here we assess animal studies and human clinical trials of epilepsy spanning 1982-2016. Epilepsy arises from a number of neuronal factors that trigger epileptogenesis, which is the process by which a brain shifts from a normal physiologic state to an epileptic condition. The events precipitating these changes can be of diverse origin, including traumatic brain injury, cerebrovascular damage, infections, chemical neurotoxicity, and emergency seizure conditions such as status epilepticus. Expectedly, the molecular and system mechanisms responsible for epileptogenesis are not well defined or understood. To date, there is no approved therapy for the prevention of epilepsy. Epigenetic dysregulation, neuroinflammation, and neurodegeneration appear to trigger epileptogenesis. Targeted drugs are being identified that can truly prevent the development of epilepsy in at-risk people. The promising agents include rapamycin, COX-2 inhibitors, TRK inhibitors, epigenetic modulators, JAK-STAT inhibitors, and neurosteroids. Recent evidence suggests that neurosteroids may play a role in modulating epileptogenesis. A number of promising drugs are under investigation for the prevention or modification of epileptogenesis to halt the development of epilepsy. Some drugs in development appear rational for preventing epilepsy because they target the initial trigger or related signaling pathways as the brain becomes progressively more prone to seizures. Additional research into the target validity and clinical investigation is essential to make new frontiers in curing epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.
Krauze, Michal T.; Noble, Charles O.; Kawaguchi, Tomohiro; Drummond, Daryl; Kirpotin, Dmitri B.; Yamashita, Yoji; Kullberg, Erika; Forsayeth, John; Park, John W.; Bankiewicz, Krystof S.
2007-01-01
We have previously shown that convection-enhanced delivery (CED) of highly stable nanoparticle/liposome agents encapsulating chemotherapeutic drugs is effective against intracranial rodent brain tumor xenografts. In this study, we have evaluated the combination of a newly developed nanoparticle/liposome containing the topoisomerase I inhibitor CPT-11 (nanoliposomal CPT-11 [nLs-CPT-11]), and PEGylated liposomal doxorubicin (Doxil) containing the topoisomerase II inhibitor doxorubicin. Both drugs were detectable in the CNS for more than 36 days after a single CED application. Tissue half-life was 16.7 days for nLs-CPT-11 and 10.9 days for Doxil. The combination of the two agents produced synergistic cytotoxicity in vitro. In vivo in U251MG and U87MG intracranial rodent xenograft models, CED of the combination was also more efficacious than either agent used singly. Analysis of the parameters involved in this approach indicated that tissue pharmacokinetics, tumor microanatomy, and biochemical interactions of the drugs all contributed to the therapeutic efficacy observed. These findings have implications for further clinical applications of CED-based treatment of brain tumors. PMID:17652269
NASA Astrophysics Data System (ADS)
Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan
2016-05-01
The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06658a
Abnormal brain structure implicated in stimulant drug addiction.
Ersche, Karen D; Jones, P Simon; Williams, Guy B; Turton, Abigail J; Robbins, Trevor W; Bullmore, Edward T
2012-02-03
Addiction to drugs is a major contemporary public health issue, characterized by maladaptive behavior to obtain and consume an increasing amount of drugs at the expense of the individual's health and social and personal life. We discovered abnormalities in fronto-striatal brain systems implicated in self-control in both stimulant-dependent individuals and their biological siblings who have no history of chronic drug abuse; these findings support the idea of an underlying neurocognitive endophenotype for stimulant drug addiction.